WO2023095473A1 - 薄膜キャパシタ - Google Patents

薄膜キャパシタ Download PDF

Info

Publication number
WO2023095473A1
WO2023095473A1 PCT/JP2022/037963 JP2022037963W WO2023095473A1 WO 2023095473 A1 WO2023095473 A1 WO 2023095473A1 JP 2022037963 W JP2022037963 W JP 2022037963W WO 2023095473 A1 WO2023095473 A1 WO 2023095473A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitor
electrode
protective insulating
insulating film
section
Prior art date
Application number
PCT/JP2022/037963
Other languages
English (en)
French (fr)
Inventor
仁 齊田
Original Assignee
Tdk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk株式会社 filed Critical Tdk株式会社
Publication of WO2023095473A1 publication Critical patent/WO2023095473A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/228Terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/228Terminals
    • H01G4/252Terminals the terminals being coated on the capacitive element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/33Thin- or thick-film capacitors 

Definitions

  • the present invention relates to thin film capacitors.
  • Patent Document 1 discloses an electronic component having a structure in which capacitor electrodes and dielectric layers are alternately laminated. The odd-numbered capacitor electrodes are commonly connected to one terminal electrode, and the even-numbered capacitor electrodes are commonly connected to the other terminal electrode.
  • Patent Document 1 the electronic component described in Patent Document 1 is not suitable for applications where high voltage is applied because a plurality of capacitors are connected in parallel.
  • an object of the present invention is to provide a thin film capacitor suitable for applications where high voltage is applied.
  • a thin film capacitor includes a dielectric layer having a first surface and a second surface opposite the first surface, and a first capacitor electrode provided on the first surface of the dielectric layer.
  • a second capacitor electrode provided on the second surface of the dielectric layer;
  • a first protective insulating film provided on the first surface of the dielectric layer so as to embed the first capacitor electrode;
  • a second protective insulating film provided on the second surface of the dielectric layer so as to bury a second protective insulating film;
  • the first terminal electrode is located on the upper surface of the first protective insulating film and includes a first section that partially overlaps with the second capacitor electrode, and a first section that is in contact with the first capacitor electrode.
  • a second section positioned on the side surface of the protective insulating film is included, and the second terminal electrode is not provided on the upper surface of the first protective insulating film.
  • the second terminal electrode is located on the upper surface of the second protective insulating film, and includes a third section partially overlapping with the first capacitor electrode and a side surface of the second protective insulating film so as to be in contact with the second capacitor electrode. , and the first terminal electrode may not be provided on the upper surface of the second protective insulating film.
  • a thin film capacitor according to another aspect of the present invention is a thin film capacitor comprising first and second unit capacitors, wherein the first and second unit capacitors are located on opposite sides of the first surface and the first surface, respectively.
  • a dielectric layer having a second surface a first capacitor electrode provided on the first surface of the dielectric layer; a second capacitor electrode provided on the second surface of the dielectric layer; a first protective insulating film provided on the first surface of the dielectric layer to bury the second capacitor electrode; and a second protective insulating film provided on the second surface of the dielectric layer to bury the second capacitor electrode;
  • the first and second unit capacitors are connected in series.
  • the thin film capacitor according to the present invention further includes a third unit capacitor having the same structure as the first and second unit capacitors, the second terminal electrode being located on the top surface of the second protective insulating film and part of the first capacitor. It includes a third section overlapping with the electrode and a fourth section positioned on the side surface of the second protective insulating film so as to be in contact with the second capacitor electrode, and a first terminal electrode is provided on the upper surface of the second protective insulating film.
  • the third section of the second terminal electrode included in the second unit capacitor and the third section of the second terminal electrode included in the third thin film capacitor are connected to each other. It may be laminated so as to be According to this, the first, second and third unit capacitors are connected in series.
  • FIG. 1 is a schematic cross-sectional view for explaining the structure of a thin film capacitor 1 according to a first embodiment of the invention.
  • FIG. 2A is a schematic diagram showing a planar positional relationship between the capacitor electrodes 21 and 22 and the terminal electrodes 41 and 42 viewed from the protective insulating film 31 side.
  • FIG. 2B is a schematic diagram showing a planar positional relationship between the capacitor electrodes 21 and 22 and the terminal electrodes 41 and 42 viewed from the protective insulating film 32 side.
  • FIG. 3 is a schematic cross-sectional view showing a state in which the thin film capacitor 1 is mounted on a DBC substrate.
  • 4A and 4B are schematic diagrams for explaining a method of manufacturing the thin film capacitor 1.
  • FIG. 1 is a schematic cross-sectional view for explaining the structure of a thin film capacitor 1 according to a first embodiment of the invention.
  • FIG. 2A is a schematic diagram showing a planar positional relationship between the capacitor electrodes 21 and 22 and the terminal electrodes 41 and 42
  • FIG. 1 is a schematic cross-sectional view for explaining the structure of a thin film capacitor 1 according to the first embodiment of the invention.
  • the thin film capacitor 1 according to the first embodiment has a structure in which a plurality of unit capacitors 10 are laminated.
  • the thin film capacitor 1 shown in FIG. 1 has a structure in which three unit capacitors 10 are stacked, but the number of stacked unit capacitors 10 is not particularly limited.
  • the unit capacitor 10 includes a dielectric layer 20 , a capacitor electrode 21 formed on one surface of the dielectric layer 20 , and a capacitor electrode 22 formed on the other surface of the dielectric layer 20 . Capacitor electrodes 21 and 22 overlap with dielectric layer 20 interposed therebetween to provide a predetermined capacitance.
  • the dielectric layer 20 is made of, for example, a perovskite-based dielectric material.
  • Perovskite-based dielectric materials include BaTiO 3 (barium titanate), (Ba 1-X Sr X )TiO 3 (barium strontium titanate), (Ba 1-X Ca X )TiO 3 , PbTiO 3 , Pb( ZrXTi1 -X ) O3 , (Sr1 - XCaX )(Ti1 -YZrY ) O3 , Ba(Mg1 /3Ta2 / 3) O3 and other strong materials having a perovskite structure.
  • Dielectric materials or paraelectric materials Dielectric materials or paraelectric materials, composite perovskite relaxor type ferroelectric materials represented by Pb(Mg1 / 3Nb2/ 3 ) O3 , Bi4Ti3O12 , SrBi2Ta2O Bismuth layered compounds typified by 9 and the like, and tungsten bronze type ferroelectric materials typified by (Sr 1-X Ba X )Nb 2 O 6 and PbNb 2 O 6 and the like.
  • the ratio of the A site to the B site is usually an integer ratio. You can deviate from the integer ratio.
  • the dielectric layer 20 may contain an additive substance as an auxiliary component as appropriate.
  • a dielectric constant ( ⁇ r ) of the dielectric layer 20 is, for example, 10 or more. Further, it is preferable that the dielectric layer 20 has a high withstand voltage, and the upper limit is not particularly limited. It should be noted that the higher the dielectric constant of the dielectric layer 20 is, the more preferable it is, and the upper limit thereof is not particularly limited.
  • the thickness of the dielectric layer 20 is, for example, about 10 nm to 6000 nm.
  • the capacitor electrode 21 is made of a high-melting-point metal such as nickel (Ni), and also functions as a support for ensuring the mechanical strength of the unit capacitor 10 .
  • One surface of dielectric layer 20 has a region covered with capacitor electrode 21 and a region not covered with capacitor electrode 21 .
  • the capacitor electrode 21 is covered with a protective insulating film 31 made of resin or the like.
  • Capacitor electrode 22 is made of a low resistance metal such as copper (Cu).
  • the other surface of dielectric layer 20 has a region covered with capacitor electrode 22 and a region not covered with capacitor electrode 22 .
  • the capacitor electrodes 22 are covered with a protective insulating film 32 made of resin or the like.
  • FIG. 1 is connected to the terminal electrode 41, and the capacitor electrode 22 is connected to the terminal electrode 42.
  • the terminal electrodes 41 and 42 are made of a low resistance metal such as copper (Cu).
  • the surfaces of the terminal electrodes 41 and 42 may be covered with a plated layer such as gold (Au).
  • FIG. 2A is a schematic diagram showing a planar positional relationship between the capacitor electrodes 21 and 22 and the terminal electrodes 41 and 42 viewed from the protective insulating film 31 side.
  • FIG. 2B is a schematic diagram showing a planar positional relationship between the capacitor electrodes 21 and 22 and the terminal electrodes 41 and 42 viewed from the protective insulating film 32 side.
  • the terminal electrode 41 has a first section 41A provided on the upper surface 31A of the protective insulating film 31 and a second section 41B provided on the side surface S1 of the laminate.
  • the second section 41B is in contact with the capacitor electrode 21 exposed on the side surface S1 of the laminate.
  • Terminal electrode 41 is not provided on upper surface 32A of protective insulating film 32 .
  • the terminal electrode 42 has a third section 42A provided on the upper surface 32A of the protective insulating film 32 and a fourth section 42B provided on the side surface S2 of the laminate.
  • the fourth section 42B is in contact with the capacitor electrode 22 exposed on the side surface S2 of the laminate.
  • the terminal electrode 42 is not provided on the upper surface 31A of the protective insulating film 31 .
  • the edge of the first section 41A of the terminal electrode 41 is located inside the edge E2 of the capacitor electrode 22 when viewed from the stacking direction. That is, the first section 41A of the terminal electrode 41 overlaps the edge E2 of the capacitor electrode 22 when viewed from the stacking direction. As a result, the stress concentrated on the edge E2 of the capacitor electrode 22 is relieved, thereby improving the reliability of the product.
  • First section 41A of terminal electrode 41 covers most of capacitor electrode 21 .
  • the edge of the third section 42A of the terminal electrode 42 is located inside the edge E1 of the capacitor electrode 21 when viewed from the stacking direction. That is, the third section 42A of the terminal electrode 42 overlaps the edge E1 of the capacitor electrode 21 when viewed from the stacking direction. As a result, the stress concentrated on the edge E1 of the capacitor electrode 21 is relieved, thereby enhancing the reliability of the product.
  • a third section 42 A of terminal electrode 42 covers most of capacitor electrode 22 .
  • the unit capacitors 10 having such a structure are stacked so that the protective insulating films 31 or the protective insulating films 32 of the vertically adjacent unit capacitors 10 face each other.
  • the first sections 41A of the terminal electrodes 41 and the third sections 42A of the terminal electrodes 42 are connected to each other via the solder 50 or the like.
  • FIG. 3 is a schematic cross-sectional view showing a state in which the thin film capacitor 1 is mounted on a DBC (Direct Bonded Copper) substrate.
  • DBC Direct Bonded Copper
  • the DBC substrate has a substrate 60 made of an insulating material with high thermal conductivity such as Al 2 O 3 , AlN, Si 3 N 4 and copper patterns 61 and 63 formed on the surface of the substrate 60 .
  • copper pattern 61 is provided on one surface of substrate 60 and copper pattern 63 is provided on the other surface of substrate 60 .
  • the first section 41A of the terminal electrode 41 of the unit capacitor 10 located in the lowest layer among the plurality of unit capacitors 10 forming the thin film capacitor 1 is connected to the copper pattern 61 via the solder 50 .
  • the terminal electrode 42 is not provided on the upper surface 31A of the protective insulating film 31 of the unit capacitor 10 positioned at the bottom layer, insulation between the terminal electrode 42 and the copper pattern 61 is ensured. Furthermore, the third section 42A of the terminal electrode 42 of the uppermost unit capacitor 10 among the plurality of unit capacitors 10 forming the thin film capacitor 1 is connected to the bonding wire 70 . As a result, a plurality of unit capacitors 10 are connected in series between the copper pattern 61 and the bonding wire 70, making it possible to obtain a thin film capacitor 1 with a high breakdown voltage.
  • the thin film capacitor 1 is manufactured by taking a large number of a plurality of unit capacitors 10 using an aggregate substrate, and then performing a non-defective product inspection. by doing. This makes it possible to obtain a high manufacturing yield.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

【課題】高電圧が印加される用途に適した薄膜キャパシタを提供する。 【解決手段】薄膜キャパシタ1は、誘電体層20と、誘電体層20の第1及び第2表面上にそれぞれ設けられたキャパシタ電極21,22と、キャパシタ電極21を埋め込むよう、誘電体層20の第1表面上に設けられた保護絶縁膜31と、キャパシタ電極22を埋め込むよう、誘電体層20の第2表面上に設けられた保護絶縁膜32と、キャパシタ電極21,22それぞれ接続された端子電極41,42とを備える。端子電極41は、保護絶縁膜31の上面に位置し、一部がキャパシタ電極22と重なる第1区間41Aと、キャパシタ電極21と接するよう、保護絶縁膜31の側面に位置する第2区間41Bとを含む。保護絶縁膜31の上面には、端子電極42が設けられていない。

Description

薄膜キャパシタ
 本発明は薄膜キャパシタに関する。
 特許文献1には、キャパシタ電極と誘電体層を交互に積層した構造を有する電子部品が開示されている。奇数番目に位置するキャパシタ電極は一方の端子電極に共通に接続され、偶数番目に位置するキャパシタ電極は他方の端子電極に共通に接続されている。
特開2014-183104号公報
 しかしながら、特許文献1に記載された電子部品においては、複数のキャパシタが並列に接続されることから、高電圧が印加される用途には適していない。
 したがって、本発明は、高電圧が印加される用途に適した薄膜キャパシタを提供することを目的とする。
 本発明の一側面による薄膜キャパシタは、第1表面及び第1表面の反対側に位置する第2表面を有する誘電体層と、誘電体層の第1表面上に設けられた第1キャパシタ電極と、誘電体層の第2表面上に設けられた第2キャパシタ電極と、第1キャパシタ電極を埋め込むよう、誘電体層の第1表面上に設けられた第1保護絶縁膜と、第2キャパシタ電極を埋め込むよう、誘電体層の第2表面上に設けられた第2保護絶縁膜と、第1キャパシタ電極に電気的に接続された第1端子電極と、第2キャパシタ電極に電気的に接続された第2端子電極とを備え、第1端子電極は、第1保護絶縁膜の上面に位置し、一部が第2キャパシタ電極と重なる第1区間と、第1キャパシタ電極と接するよう、第1保護絶縁膜の側面に位置する第2区間とを含み、第1保護絶縁膜の上面には、第2端子電極が設けられていない。
 本発明によれば、直列接続に適した薄膜キャパシタを提供することが可能となる。
 本発明において、第2端子電極は、第2保護絶縁膜の上面に位置し、一部が第1キャパシタ電極と重なる第3区間と、第2キャパシタ電極と接するよう、第2保護絶縁膜の側面に位置する第4区間とを含み、第2保護絶縁膜の上面には、第1端子電極が設けられていなくても構わない。
 これによれば、3個以上の薄膜キャパシタを容易に直列接続することが可能となる。
 本発明の他の側面による薄膜キャパシタは、第1及び第2単位キャパシタを備える薄膜キャパシタであって、第1及び第2単位キャパシタのそれぞれは、第1表面及び第1表面の反対側に位置する第2表面を有する誘電体層と、誘電体層の第1表面上に設けられた第1キャパシタ電極と、誘電体層の第2表面上に設けられた第2キャパシタ電極と、第1キャパシタ電極を埋め込むよう、誘電体層の第1表面上に設けられた第1保護絶縁膜と、第2キャパシタ電極を埋め込むよう、誘電体層の第2表面上に設けられた第2保護絶縁膜と、第1キャパシタ電極に電気的に接続された第1端子電極と、第2キャパシタ電極に電気的に接続された第2端子電極とを備え、第1端子電極は、第1保護絶縁膜の上面に位置し、一部が第2キャパシタ電極と重なる第1区間と、第1キャパシタ電極と接するよう、第1保護絶縁膜の側面に位置する第2区間とを含み、第1保護絶縁膜の上面には、第2端子電極が設けられておらず、第1及び第2単位キャパシタは、第1単位キャパシタに含まれる第1端子電極の第1区間と第2単位キャパシタに含まれる第1端子電極の第1区間が互いに接続されるよう積層される。
 本発明によれば、第1及び第2単位キャパシタが直列接続される。
 本発明による薄膜キャパシタは、第1及び第2単位キャパシタと同じ構造を有する第3単位キャパシタをさらに備え、第2端子電極は、第2保護絶縁膜の上面に位置し、一部が第1キャパシタ電極と重なる第3区間と、第2キャパシタ電極と接するよう、第2保護絶縁膜の側面に位置する第4区間とを含み、第2保護絶縁膜の上面には、第1端子電極が設けられておらず、第1、第2及び第3単位キャパシタは、第2単位キャパシタに含まれる第2端子電極の第3区間と第3薄膜キャパシタに含まれる第2端子電極の第3区間が互いに接続されるよう積層されていても構わない。これによれば、第1、第2及び第3単位キャパシタが直列接続される。
 このように、本発明によれば、高電圧が印加される用途に適した薄膜キャパシタを提供することが可能となる。
図1は、本発明の第1の実施形態による薄膜キャパシタ1の構造を説明するための略断面図である。 図2Aは、保護絶縁膜31側から見たキャパシタ電極21,22と端子電極41,42の平面的な位置関係を示す模式図である。 図2Bは、保護絶縁膜32側から見たキャパシタ電極21,22と端子電極41,42の平面的な位置関係を示す模式図である。 図3は、薄膜キャパシタ1をDBC基板に実装した状態を示す略断面図である。 図4は、薄膜キャパシタ1の製造方法を説明するための模式図である。
 以下、添付図面を参照しながら、本発明の好ましい実施形態について詳細に説明する。
 図1は、本発明の第1の実施形態による薄膜キャパシタ1の構造を説明するための略断面図である。
 図1に示すように、第1の実施形態による薄膜キャパシタ1は、複数の単位キャパシタ10が積層された構造を有している。図1に示す薄膜キャパシタ1は、3個の単位キャパシタ10が積層された構造を有しているが、単位キャパシタ10の積層数については特に限定されない。
 単位キャパシタ10は、誘電体層20と、誘電体層20の一方の表面に形成されたキャパシタ電極21と、誘電体層20の他方の表面に形成されたキャパシタ電極22とを備えている。キャパシタ電極21,22は誘電体層20を介して重なっており、これにより所定のキャパシタンスが得られる。
 誘電体層20は、例えばペロブスカイト系の誘電体材料によって構成される。ペロブスカイト系の誘電体材料としては、BaTiO(チタン酸バリウム)、(Ba1-XSr)TiO(チタン酸バリウムストロンチウム)、(Ba1-XCa)TiO、PbTiO、Pb(ZrTi1-X)O、(Sr1-XCa)(Ti1-YZr)O、Ba(Mg1/3Ta2/3)O等のペロブスカイト構造を持った強誘電体材料又は常誘電体材料や、Pb(Mg1/3Nb2/3)O等に代表される複合ペロブスカイトリラクサー型強誘電体材料や、BiTi12、SrBiTa等に代表されるビスマス層状化合物、(Sr1-XBa)Nb、PbNb等に代表されるタングステンブロンズ型強誘電体材料等が挙げられる。ここで、ペロブスカイト構造、ペロブスカイトリラクサー型強誘電体材料、ビスマス層状化合物、タングステンブロンズ型強誘電体材料において、AサイトとBサイト比は、通常整数比であるが、特性向上のため、意図的に整数比からずらしてもよい。なお、誘電体層20の特性制御のため、誘電体層20に適宜、副成分として添加物質が含有されていてもよい。誘電体層20の比誘電率(ε)は、例えば10以上である。さらに、誘電体層20の絶縁耐圧も大きいほど好ましく、その上限は特に限定されない。なお、誘電体層20の比誘電率は大きいほど好ましく、その上限値は特に限定されない。誘電体層20の厚さは、例えば10nm~6000nm程度である。
 キャパシタ電極21は、ニッケル(Ni)などの高融点金属からなり、単位キャパシタ10の機械的強度を確保するための支持体としても機能する。誘電体層20の一方の表面は、キャパシタ電極21で覆われている領域と、キャパシタ電極21で覆われていない領域を有している。キャパシタ電極21は、樹脂などからなる保護絶縁膜31で覆われている。キャパシタ電極22は、銅(Cu)などの低抵抗金属からなる。誘電体層20の他方の表面は、キャパシタ電極22で覆われている領域と、キャパシタ電極22で覆われていない領域を有している。キャパシタ電極22は、樹脂などからなる保護絶縁膜32で覆われている。
 図1に示すように、キャパシタ電極21は端子電極41に接続され、キャパシタ電極22は端子電極42に接続されている。端子電極41,42は銅(Cu)などの低抵抗金属からなる。端子電極41,42の表面は、金(Au)などのメッキ層で覆われていても構わない。図2Aは、保護絶縁膜31側から見たキャパシタ電極21,22と端子電極41,42の平面的な位置関係を示す模式図である。図2Bは、保護絶縁膜32側から見たキャパシタ電極21,22と端子電極41,42の平面的な位置関係を示す模式図である。
 端子電極41は、保護絶縁膜31の上面31A上に設けられた第1区間41Aと、積層体の側面S1に設けられた第2区間41Bを有している。第2区間41Bは、積層体の側面S1に露出するキャパシタ電極21と接している。端子電極41は、保護絶縁膜32の上面32Aには設けられていない。端子電極42は、保護絶縁膜32の上面32Aに設けられた第3区間42Aと、積層体の側面S2に設けられた第4区間42Bを有している。第4区間42Bは、積層体の側面S2に露出するキャパシタ電極22と接している。端子電極42は、保護絶縁膜31の上面31Aには設けられていない。
 積層方向から見て、端子電極41の第1区間41Aのエッジは、キャパシタ電極22のエッジE2よりも内側に位置する。つまり、端子電極41の第1区間41Aは、積層方向から見て、キャパシタ電極22のエッジE2と重なりを有している。これにより、キャパシタ電極22のエッジE2に集中する応力が緩和されるため、製品の信頼性が高められる。端子電極41の第1区間41Aは、キャパシタ電極21の大部分を覆っている。積層方向から見て、端子電極42の第3区間42Aのエッジは、キャパシタ電極21のエッジE1よりも内側に位置する。つまり、端子電極42の第3区間42Aは、積層方向から見て、キャパシタ電極21のエッジE1と重なりを有している。これにより、キャパシタ電極21のエッジE1に集中する応力が緩和されるため、製品の信頼性が高められる。端子電極42の第3区間42Aは、キャパシタ電極22の大部分を覆っている。
 このような構造を有する単位キャパシタ10は、上下に隣接する単位キャパシタ10の保護絶縁膜31同士又は保護絶縁膜32同士が向かい合うよう、積層される。これにより、上下に隣接する単位キャパシタ10は、端子電極41の第1区間41A同士、並びに、端子電極42の第3区間42A同士がハンダ50などを介して互いに接続される。
 図3は、薄膜キャパシタ1をDBC(Direct Bonded Copper)基板に実装した状態を示す略断面図である。
 DBC基板は、Al2O3、AlN、Si3N4など熱伝導率の高い絶縁材料からなる基板60と、基板60の表面に形成された銅パターン61,63とを有している。図3に示す例では、銅パターン61が基板60の一方の表面に設けられ、銅パターン63が基板60の他方の表面に設けられている。薄膜キャパシタ1を構成する複数の単位キャパシタ10のうち、最下層に位置する単位キャパシタ10の端子電極41の第1区間41Aは、ハンダ50を介して銅パターン61に接続される。ここで、最下層に位置する単位キャパシタ10の保護絶縁膜31の上面31Aには端子電極42が設けられていないことから、端子電極42と銅パターン61の絶縁性が確保される。さらに、薄膜キャパシタ1を構成する複数の単位キャパシタ10のうち、最上層に位置する単位キャパシタ10の端子電極42の第3区間42Aは、ボンディングワイヤ70に接続される。これにより、銅パターン61とボンディングワイヤ70の間には、複数の単位キャパシタ10が直列に接続されることになり、耐圧の高い薄膜キャパシタ1を得ることが可能となる。
 薄膜キャパシタ1の作製は、集合基板を用いて複数の単位キャパシタ10を多数個取りした後、良品検査を行い、良品であると確認された複数の単位キャパシタ10を図4に示すように積層することによって行う。これにより、高い製造歩留まりを得ることが可能となる。
 以上、本発明の好ましい実施形態について説明したが、本発明は、上記の実施形態に限定されることなく、本発明の主旨を逸脱しない範囲で種々の変更が可能であり、それらも本発明の範囲内に包含されるものであることはいうまでもない。
1  薄膜キャパシタ
10  単位キャパシタ
20  誘電体層
21,22  キャパシタ電極
31,32  保護絶縁膜
31A,32A  保護絶縁膜の上面
41,42  端子電極
41A  第1区間
41B  第2区間
42A  第3区間
42B  第4区間
50  ハンダ
60  基板
61  銅パターン
61,63  銅パターン
70  ボンディングワイヤ
E1,E2  エッジ
S1,S2  側面

Claims (4)

  1.  第1表面及び前記第1表面の反対側に位置する第2表面を有する誘電体層と、
     前記誘電体層の前記第1表面上に設けられた第1キャパシタ電極と、
     前記誘電体層の前記第2表面上に設けられた第2キャパシタ電極と、
     前記第1キャパシタ電極を埋め込むよう、前記誘電体層の前記第1表面上に設けられた第1保護絶縁膜と、
     前記第2キャパシタ電極を埋め込むよう、前記誘電体層の前記第2表面上に設けられた第2保護絶縁膜と、
     前記第1キャパシタ電極に電気的に接続された第1端子電極と、
     前記第2キャパシタ電極に電気的に接続された第2端子電極と、を備え、
     前記第1端子電極は、前記第1保護絶縁膜の上面に位置し、一部が前記第2キャパシタ電極と重なる第1区間と、前記第1キャパシタ電極と接するよう、前記第1保護絶縁膜の側面に位置する第2区間とを含み、
     前記第1保護絶縁膜の上面には、前記第2端子電極が設けられていない、薄膜キャパシタ。
  2.  前記第2端子電極は、前記第2保護絶縁膜の上面に位置し、一部が前記第1キャパシタ電極と重なる第3区間と、前記第2キャパシタ電極と接するよう、前記第2保護絶縁膜の側面に位置する第4区間とを含み、
     前記第2保護絶縁膜の上面には、前記第1端子電極が設けられていない、請求項1に記載の薄膜キャパシタ。
  3.  第1及び第2単位キャパシタを備える薄膜キャパシタであって、
     前記第1及び第2単位キャパシタのそれぞれは、
      第1表面及び前記第1表面の反対側に位置する第2表面を有する誘電体層と、
      前記誘電体層の前記第1表面上に設けられた第1キャパシタ電極と、
      前記誘電体層の前記第2表面上に設けられた第2キャパシタ電極と、
      前記第1キャパシタ電極を埋め込むよう、前記誘電体層の前記第1表面上に設けられた第1保護絶縁膜と、
      前記第2キャパシタ電極を埋め込むよう、前記誘電体層の前記第2表面上に設けられた第2保護絶縁膜と、
      前記第1キャパシタ電極に電気的に接続された第1端子電極と、
      前記第2キャパシタ電極に電気的に接続された第2端子電極と、を備え、
     前記第1端子電極は、前記第1保護絶縁膜の上面に位置し、一部が前記第2キャパシタ電極と重なる第1区間と、前記第1キャパシタ電極と接するよう、前記第1保護絶縁膜の側面に位置する第2区間とを含み、
     前記第1保護絶縁膜の上面には、前記第2端子電極が設けられておらず、
     前記第1及び第2単位キャパシタは、前記第1単位キャパシタに含まれる前記第1端子電極の前記第1区間と前記第2単位キャパシタに含まれる前記第1端子電極の前記第1区間が互いに接続されるよう積層される、薄膜キャパシタ。
  4.  前記第1及び第2単位キャパシタと同じ構造を有する第3単位キャパシタをさらに備え、
     前記第2端子電極は、前記第2保護絶縁膜の上面に位置し、一部が前記第1キャパシタ電極と重なる第3区間と、前記第2キャパシタ電極と接するよう、前記第2保護絶縁膜の側面に位置する第4区間とを含み、
     前記第2保護絶縁膜の上面には、前記第1端子電極が設けられておらず、
     前記第1、第2及び第3単位キャパシタは、前記第2単位キャパシタに含まれる前記第2端子電極の前記第3区間と前記第3薄膜キャパシタに含まれる前記第2端子電極の前記第3区間が互いに接続されるよう積層される、請求項3に記載の薄膜キャパシタ。
PCT/JP2022/037963 2021-11-24 2022-10-12 薄膜キャパシタ WO2023095473A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202163283186P 2021-11-24 2021-11-24
US63/283,186 2021-11-24

Publications (1)

Publication Number Publication Date
WO2023095473A1 true WO2023095473A1 (ja) 2023-06-01

Family

ID=86539220

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/037963 WO2023095473A1 (ja) 2021-11-24 2022-10-12 薄膜キャパシタ

Country Status (1)

Country Link
WO (1) WO2023095473A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03124625U (ja) * 1989-11-30 1991-12-17
JP2009224786A (ja) * 2008-03-17 2009-10-01 Ibiden Co Ltd コンデンサ内蔵プリント配線板及び電子部品
US20160183379A1 (en) * 2014-12-22 2016-06-23 Qualcomm Incorporated Substrate comprising an embedded capacitor
JP2020004953A (ja) * 2018-06-20 2020-01-09 Tdk株式会社 薄膜キャパシタ及びその製造方法、並びに、薄膜キャパシタが埋め込まれた多層回路基板
CN212365758U (zh) * 2020-05-06 2021-01-15 宁波保诚电气有限公司 一种低电感高电压脉冲电容器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03124625U (ja) * 1989-11-30 1991-12-17
JP2009224786A (ja) * 2008-03-17 2009-10-01 Ibiden Co Ltd コンデンサ内蔵プリント配線板及び電子部品
US20160183379A1 (en) * 2014-12-22 2016-06-23 Qualcomm Incorporated Substrate comprising an embedded capacitor
JP2020004953A (ja) * 2018-06-20 2020-01-09 Tdk株式会社 薄膜キャパシタ及びその製造方法、並びに、薄膜キャパシタが埋め込まれた多層回路基板
CN212365758U (zh) * 2020-05-06 2021-01-15 宁波保诚电气有限公司 一种低电感高电压脉冲电容器

Similar Documents

Publication Publication Date Title
US10811194B2 (en) Composite electronic component and resistor
US11227723B2 (en) Multilayer ceramic capacitor
US11763995B2 (en) Multilayer ceramic capacitor
JP5924461B1 (ja) 複合電子部品
CN110828165B (zh) 多层陶瓷电容器及制造多层陶瓷电容器的方法
KR20190121141A (ko) 적층 세라믹 커패시터 및 그 제조 방법
JP2018074116A (ja) 薄膜コンデンサ及び電子部品内蔵基板
JP7238771B2 (ja) 薄膜コンデンサ及び薄膜コンデンサの製造方法
US10340088B2 (en) Thin-film capacitor
US11227722B2 (en) Multilayer ceramic capacitor
US10319524B2 (en) Thin-film capacitor
KR20180026932A (ko) 커패시터 부품
WO2023095473A1 (ja) 薄膜キャパシタ
KR20190121135A (ko) 적층 세라믹 커패시터 및 그 제조 방법
WO2023095472A1 (ja) 薄膜キャパシタ
JP5153093B2 (ja) 積層型圧電素子
JP2018206839A (ja) 薄膜コンデンサ
CN110024066B (zh) 薄膜电容器
WO2022158340A1 (ja) 回路基板
KR20150042953A (ko) 압전 소자 및 그 제조방법
WO2024142961A1 (ja) 積層薄膜キャパシタ及びその製造方法
JP7272003B2 (ja) 薄膜電子部品搭載基板及びその製造方法
US20230197342A1 (en) Ceramic electronic component
WO2024004395A1 (ja) 薄膜キャパシタ及びこれを備える電子回路
JP2022162417A (ja) 薄膜キャパシタ及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22898257

Country of ref document: EP

Kind code of ref document: A1