WO2023095450A1 - 超音波トランスデューサおよびその製造方法 - Google Patents

超音波トランスデューサおよびその製造方法 Download PDF

Info

Publication number
WO2023095450A1
WO2023095450A1 PCT/JP2022/037055 JP2022037055W WO2023095450A1 WO 2023095450 A1 WO2023095450 A1 WO 2023095450A1 JP 2022037055 W JP2022037055 W JP 2022037055W WO 2023095450 A1 WO2023095450 A1 WO 2023095450A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric
case
piezoelectric ceramic
porcelain
ultrasonic transducer
Prior art date
Application number
PCT/JP2022/037055
Other languages
English (en)
French (fr)
Inventor
健司 是沢
雄介 鈴木
淳一 野村
智昭 松下
章雄 藤田
和彦 藤井
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2023095450A1 publication Critical patent/WO2023095450A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/49Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
    • C04B35/491Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates based on lead zirconates and lead titanates, e.g. PZT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/30Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/60Piezoelectric or electrostrictive devices having a coaxial cable structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/88Mounts; Supports; Enclosures; Casings

Definitions

  • the present invention relates to an ultrasonic transducer and its manufacturing method.
  • Patent Document 1 As a prior art document disclosing the configuration of an ultrasonic transducer, there is Japanese Patent No. 2651140 (Patent Document 1).
  • the ultrasonic transducer described in Patent Document 1 includes a piezoelectric vibrator, a quarter-wave acoustic matching layer, and a metal case.
  • a piezoelectric vibrator utilizes the spreading vibration mode of a circular piezoelectric substrate.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2003-23187 is a prior art document that discloses a high heat resistant piezoelectric element and a piezoelectric device using the same.
  • the temperature at which the resonance frequency of piezoelectric resonance in the piezoelectric element before heat treatment is minimized is in the range of 60° C. or higher and 200° C. or lower.
  • Ultrasonic transducers are required to have a minimum detection distance of 20 cm or less.
  • An ultrasonic transducer based on the present invention includes a case, a piezoelectric vibrator, and wiring.
  • the case is in the shape of a bottomed cylinder having a bottom and side walls.
  • the piezoelectric vibrator has a piezoelectric porcelain containing Ti and Zr, and is attached to the bottom inside the case.
  • the wiring is connected to the piezoelectric vibrator and drawn out of the case.
  • the temperature at which the resonance frequency of the spreading vibration mode of the piezoelectric porcelain that is not adhered to the bottom portion is minimized is in the range of -30°C or higher and 10°C or lower.
  • the cross-sectional porosity in any longitudinal section of the piezoelectric porcelain is 1% or less.
  • the shortest detection distance at which an object can be detected can be set to 20 cm or less.
  • FIG. 1 is a vertical cross-sectional view showing the configuration of an ultrasonic transducer according to one embodiment of the present invention
  • FIG. 4 is an SEM image of a longitudinal section of the piezoelectric ceramic according to Example 1 after polishing.
  • 10 is an SEM image of a longitudinal section of the piezoelectric porcelain according to Comparative Example 3 after polishing.
  • 10 is an SEM image of a longitudinal section of the piezoelectric porcelain according to Comparative Example 5 after polishing.
  • the electromechanical coupling coefficient of the piezoelectric ceramics before attachment and the electromechanical coupling coefficient of the piezoelectric ceramics after attachment, and the piezoelectric ceramics It is a graph which shows the relationship with the temperature which becomes the minimum resonance frequency of porcelain.
  • FIG. 2 is a diagram showing the relationship between the temperature at which the resonance frequency of the piezoelectric ceramic is minimized and the composition of the piezoelectric ceramic in the crystal phase diagram of the piezoelectric material.
  • 4 is a flow chart showing a method of manufacturing an ultrasonic transducer according to an embodiment of the invention.
  • FIG. 1 is a vertical cross-sectional view showing the configuration of an ultrasonic transducer according to one embodiment of the present invention.
  • an ultrasonic transducer 100 according to one embodiment of the present invention includes a case 120, a piezoelectric vibrator 110, first wiring 130 and second wiring 140.
  • Ultrasonic transducer 100 further comprises bonding material 150 and sealing material 160 . Note that the sealing material 160 may not necessarily be provided.
  • the case 120 has a cylindrical shape with a bottom and a side wall. The upper end of the case 120 opposite to the bottom is open.
  • the bottom of case 120 has a disc shape.
  • the shape of the bottom portion of the case 120 is not limited to a disc shape, and may be a rectangular plate shape or a polygonal plate shape.
  • a side wall portion of the case 120 is erected vertically from the peripheral edge of the bottom portion to the bottom portion.
  • Case 120 is made of, for example, aluminum. Case 120 is grounded.
  • the piezoelectric vibrator 110 is attached to the bottom of the case 120 inside the case 120 with an insulating adhesive such as epoxy resin.
  • the piezoelectric vibrator 110 has a plate-like piezoelectric porcelain. When viewed from a direction perpendicular to the bottom of case 120, the piezoelectric ceramic has a square shape.
  • Piezoelectric porcelain contains Ti and Zr.
  • the piezoelectric porcelain is composed of PZT (lead zirconate titanate) ceramics. Electrodes are provided on each of the main surfaces of the piezoelectric ceramic that face each other.
  • Each of the first wiring 130 and the second wiring 140 is connected to the piezoelectric vibrator 110 and drawn out of the case 120 .
  • the first wiring 130 is electrically connected to an electrode on one main surface of the piezoelectric ceramic by a bonding material 150 such as solder.
  • the second wiring 140 is electrically connected to the electrode on the other main surface of the piezoelectric ceramic by a bonding material 150 such as solder.
  • FIG. 1 shows a state in which the second wiring 140 is connected to the electrode on the other main surface of the piezoelectric porcelain and is joined to the lead-out electrode drawn out to the one main surface by the joining material 150 .
  • the first wiring 130 and the second wiring 140 are lead wires, but may be composed of FPC (Flexible Printed Circuit).
  • the piezoelectric vibrator 110 When a driving voltage is applied between the electrodes of the piezoelectric ceramic through the first wiring 130 and the second wiring 140, the piezoelectric vibrator 110 expands in the in-plane direction and vibrates. The vibration of the piezoelectric vibrator 110 causes the bottom of the case 120 to vibrate.
  • the piezoelectric vibrator 110 When the bottom of the case 120 vibrates by receiving ultrasonic waves from the outside, the piezoelectric vibrator 110 also vibrates with this vibration. An electric charge is generated as the piezoelectric transducer 110 vibrates, so that the ultrasonic wave is converted into an electric signal by the piezoelectric transducer 110 . The electric signal is transmitted to the outside through the first wiring 130 and the second wiring 140 from the electrodes provided on the piezoelectric porcelain.
  • the sealing material 160 is filled inside the case 120 .
  • the space inside the case 120 is filled with the sealing material 160 .
  • Sealing material 160 is made of, for example, rubber such as silicone rubber or urethane rubber, or resin such as epoxy resin, and has sound insulation and adhesive properties.
  • a sound absorbing material made of a material having a lower elastic modulus than the sealing material 160 may be arranged so as to cover the piezoelectric vibrator 110 . In this case, the sealing material 160 covers the sound absorbing material.
  • Table 1 summarizes the evaluation results of the characteristics of the piezoelectric ceramics and ultrasonic transducers according to Examples 1-5 and Comparative Examples 1-6.
  • a lead zirconate titanate-based piezoelectric material which is used as a material for piezoelectric ceramics, was produced by the following method.
  • PbO powder, TiO 2 powder, ZrO 2 powder, water, dispersant, and mixed grinding media are placed in a container in predetermined amounts so that the content ratio of Ti to Zr is within the range of 0.89 or more and 0.95 or less. It was put in and mixed and pulverized over 24 hours. After mixing and pulverizing, the mixture was filtered to remove water and dried at 100° C. to obtain a powder. The obtained powder was placed in a sagger made of Al 2 O 3 and synthesized at a temperature of about 900°C to 1000°C.
  • piezoelectric materials according to Examples 1 to 5 and Comparative Examples 1 to 6 were prepared by various methods. Table 1 shows the content ratio of Ti to Zr in the piezoelectric materials according to Examples 1 to 5 and Comparative Examples 1 to 6.
  • the piezoelectric material was formed into a sheet. Specifically, a slurry was prepared by adding a binder, a dispersing agent and an antifoaming agent to the piezoelectric material, and a green sheet was prepared from the slurry using a doctor blade method. The obtained green sheets were laminated and pressure-bonded to form a laminated body, and the laminated body was sintered to produce a piezoelectric ceramic.
  • the piezoelectric material was extruded. Specifically, after adding a binder and a small amount of water to the piezoelectric material to make it clay-like, a compact is formed from the clay-like piezoelectric material using an extruder, and the compact is fired.
  • a piezoelectric porcelain was produced by
  • the piezoelectric material was press-molded. Specifically, after adding a binder and a dispersant to a dry powder of a piezoelectric material, a compact was formed from the dry powder using a press molding machine, and the compact was fired to produce a piezoelectric ceramic. .
  • Example 1 to 5 and Comparative Examples 1 to 6 the obtained piezoelectric porcelain was processed into a rectangular parallelepiped shape with a side length of 5 mm and a thickness of 0.2 mm. Subsequently, after forming Ag electrodes on both main surfaces of the piezoelectric ceramic by sputtering, a DC voltage was applied between the electrodes to polarize them. After the polarized piezoelectric ceramic was adhered to the bottom of case 120 with an adhesive, each of first wiring 130 and second wiring 140 was electrically connected to the electrodes of the piezoelectric ceramic by bonding material 150 . After each of the first wiring 130 and the second wiring 140 was pulled out from the case 120, the case 120 was filled with resin as the sealing material 160, and Examples 1 to 5 and Comparative Examples 1 to 6 were obtained.
  • both main piezoelectric ceramics produced under the same conditions as above were used. After forming electrodes made of Ag on the surface by sputtering, a DC voltage was applied between the electrodes to polarize them. A test piece was produced.
  • the shortest detection distance was evaluated by driving the ultrasonic transducers according to Examples 1 to 5 and Comparative Examples 1 to 6. Also, the equivalent circuit constants of the main vibration modes of the ultrasonic transducers according to Examples 1 to 5 and Comparative Examples 1 to 6 were measured using an impedance analyzer, and the square root of the value obtained by dividing the equivalent capacitance by the damping capacitance. , the electromechanical coupling coefficient of the piezoelectric porcelain pasted on the bottom of the case 120 was obtained.
  • test pieces of the piezoelectric porcelain according to Examples 1 to 5 and Comparative Examples 1 to 6 were placed in a temperature bath, and the temperature was changed in increments of 10°C within the range of -50°C to 200°C.
  • the resonance frequency of the spread vibration mode (31 mode) of the test piece when the temperature was changed was obtained, and the temperature Tfm at which this resonance frequency was minimized was obtained.
  • FIG. 2 is an SEM image of the longitudinal section of the piezoelectric porcelain according to Example 1 after polishing.
  • FIG. 3 is an SEM image of a longitudinal section of the piezoelectric porcelain according to Comparative Example 3 after polishing.
  • FIG. 4 is an SEM image of a longitudinal section of the piezoelectric porcelain according to Comparative Example 5 after polishing.
  • black dot-like portions are voids V.
  • FIG. 1 the piezoelectric ceramic according to Example 1 in which the piezoelectric material is sheet-formed has few air gaps V
  • the piezoelectric ceramic according to Comparative Example 3 in which the piezoelectric material is extruded has small air gaps V.
  • the piezoelectric porcelain according to Comparative Example 5 had many and large voids V.
  • FIG. 5 shows the electromechanical coupling coefficient of the piezoelectric ceramics before attachment and the electromechanical coupling coefficient of the piezoelectric ceramics after attachment in the piezoelectric ceramics of Examples 1 to 5 and Comparative Examples 1 to 3. and the temperature at which the resonance frequency of the piezoelectric ceramic is minimized.
  • the vertical axis on the left side is the electromechanical coupling coefficient (%) of the piezoelectric ceramic before attachment, and the vertical axis on the right side is the electromechanical coupling coefficient (%) of the piezoelectric ceramic after attachment.
  • the axis indicates the temperature (° C.) at which the resonance frequency of the piezoelectric ceramic becomes minimum.
  • the electromechanical coupling coefficient of the piezoelectric porcelain before pasting is shown by a circle
  • the electromechanical coupling coefficient of the piezoelectric porcelain after pasting is shown by a triangle
  • the transition of the electromechanical coupling coefficient of the piezoelectric porcelain before pasting is shown.
  • a dotted line L1 indicates an approximate curve of
  • a solid line L2 indicates an approximate curve of transition of the electromechanical coupling coefficient of the piezoelectric porcelain after bonding.
  • the electromechanical coupling coefficient of the piezoelectric ceramic before attachment and the electromechanical coupling coefficient of the piezoelectric ceramic after attachment show that the resonance frequency of the spreading vibration mode (31 mode) of the piezoelectric ceramic is It has been found that the transition with respect to the change in the temperature Tfm at which is the minimum is different. Specifically, the electromechanical coupling coefficient of the piezoelectric ceramics before attachment and the electromechanical coupling coefficient of the piezoelectric ceramics after attachment have different peak temperatures Tfm. Therefore, the temperature Tfm at which the electromechanical coupling coefficient of the piezoelectric ceramics before attachment increases is room temperature (about 30° C.), whereas the temperature Tfm at which the electromechanical coupling coefficient of the piezoelectric ceramics after attachment increases. was about -15°C. From this, as will be described later, it was found that the composition of the piezoelectric ceramic that maximizes the electromechanical coupling coefficient of the piezoelectric ceramic differs before and after attachment.
  • FIG. 6 is a diagram showing the relationship between the temperature at which the resonance frequency of the piezoelectric ceramic is minimized and the composition of the piezoelectric ceramic in the crystal phase diagram of the piezoelectric material.
  • the vertical axis indicates temperature (° C.) and the horizontal axis indicates the mole fraction of PbTiO 3 in PZT.
  • a dotted line indicates the room temperature Tr.
  • the temperature at the intersection of the morphotropic phase boundary MPB, which is the phase boundary between the rhombohedral crystal and the tetragonal crystal, and the dashed-dotted line La is the piezoelectric ceramic having the composition.
  • the temperature Tfm at which the resonance frequency of the spreading vibration mode (31 mode) is minimized is the temperature Tfm at which the resonance frequency of the spreading vibration mode (31 mode) is minimized. That is, by changing the content ratio of Ti to Zr in the piezoelectric material, it is possible to adjust the temperature Tfm at which the resonance frequency of the spreading vibration mode (31 mode) of the piezoelectric ceramic is minimized.
  • the crystal structure of the piezoelectric ceramic in the composition range T1 at which the temperature Tfm at which the resonance frequency of the broad vibration mode (31 mode) of the piezoelectric ceramic is minimized is lower than the room temperature indicated by the dashed line.
  • the crystal structure of the piezoelectric ceramic in the composition range T2 where the temperature Tfm is higher than the room temperature indicated by the dashed-dotted line becomes a rhombohedral crystal at room temperature.
  • the piezoelectric bodies of Examples 1 to 5 in which the temperature Tfm at which the resonance frequency of the spreading vibration mode (31 mode) of the piezoelectric ceramic is minimized is in the range of ⁇ 30° C. or more and 10° C. or less.
  • the electromechanical coupling coefficient of the piezoelectric porcelain after pasting was maintained as high as 18% or more.
  • the electromechanical coupling coefficient of the piezoelectric ceramic itself decreases due to the stress applied to the piezoelectric ceramic. ° C. or less, the crystal structure of the piezoelectric porcelain becomes a stable tetragonal crystal at room temperature, and the electromechanical coupling coefficient of the piezoelectric porcelain when the piezoelectric porcelain is attached to the case 120. It is thought that this is because the decrease in the
  • the temperature Tfm at which the electromechanical coupling coefficient of the piezoelectric porcelain before bonding is maximized at room temperature, that is, the resonance frequency of the spreading vibration mode (31 mode) of the piezoelectric porcelain is minimized is room temperature.
  • the composition of the piezoelectric porcelain was determined. In this case, as shown in FIG. 5, the electromechanical coupling coefficient of the piezoelectric ceramic after being attached is lowered, and the shortest detection distance of the ultrasonic transducer cannot be shortened.
  • the electromechanical coupling coefficient of the piezoelectric porcelain after attachment was maintained as high as 18% or more. It was possible to reduce the distance to 20 cm or less.
  • the temperature Tfm at which the resonance frequency of the spreading vibration mode (31 mode) of the piezoelectric ceramic is minimized is outside the range of ⁇ 30° C. or more and 10° C. or less, the piezoelectric after bonding
  • the electromechanical coupling coefficient of the body ceramic was less than 18%, and the shortest detection distance of the ultrasonic transducer could not be set to 20 cm or less.
  • the temperature Tfm at which the resonance frequency of the spreading vibration mode (31 mode) of the piezoelectric ceramic is minimized is -30°C or higher and 10°C or lower.
  • the electromechanical coupling coefficient of the piezoelectric porcelain after attachment was less than 18%, and the shortest detection distance of the ultrasonic transducer could not be reduced to 20 cm or less.
  • the cross-sectional porosity of the piezoelectric ceramics is 1% or less.
  • a decrease in the mechanical coupling coefficient can be suppressed, and as a result, the electromechanical coupling coefficient of the piezoelectric porcelain after bonding can be maintained as high as 18% or more, and the shortest detection distance of the ultrasonic transducer can be set to 20 cm or less. did it.
  • the resonance frequency of the spreading vibration mode (31 mode) of the piezoelectric ceramic in a state not attached to the bottom of the case 120 is
  • the minimum temperature Tfm is in the range of -30°C to 10°C.
  • the cross-sectional porosity in any longitudinal section of the piezoelectric porcelain is 1% or less.
  • the temperature at which the resonance frequency of the spreading vibration mode of the piezoelectric porcelain that is not attached to the bottom of the case 120 is minimized is in the range of -20°C or higher and 0°C or lower.
  • the electromechanical coupling coefficient of the piezoelectric ceramics after attachment can be maintained as high as 20% or more, and the shortest detection distance of the ultrasonic transducer 100 can be set to 12 cm or less.
  • the ultrasonic transducer according to this embodiment can reduce the shortest detection distance to 20 cm or less by being manufactured by the following steps.
  • FIG. 7 is a flow chart showing a method for manufacturing an ultrasonic transducer according to one embodiment of the present invention.
  • the content ratio of Ti to Zr is in the range of 0.915 or more and 0.935 or less.
  • ultrasonic transducer 110 piezoelectric vibrator, 120 case, 130 first wiring, 140 second wiring, 150 bonding material, 160 sealing material.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Abstract

ケース(120)と、圧電振動子(110)と、配線(130,140)とを備える。ケース(120)は、底部および側壁部を有する有底筒状である。圧電振動子(110)は、TiおよびZrを含む圧電体磁器を有し、ケース(120)の内側において上記底部に貼り付けられている。配線(130,140)は、圧電振動子(110)に接続されており、ケース(120)の外側に引き出されている。上記底部に貼り付けられていない状態の圧電体磁器の広がり振動モードの共振周波数が最小となる温度は、-30℃以上10℃以下の範囲内である。圧電体磁器の任意の縦断面における断面空隙率は1%以下である。

Description

超音波トランスデューサおよびその製造方法
 本発明は、超音波トランスデューサおよびその製造方法に関する。
 超音波トランスデューサの構成を開示した先行技術文献として、特許第2651140号(特許文献1)がある。特許文献1に記載された超音波トランスデューサは、圧電振動子と、1/4波長音響整合層と、金属ケースとを備える。圧電振動子は、円形の圧電基板の広がり振動モードを利用する。
 高耐熱圧電素子およびそれを用いた圧電装置を開示した先行技術文献として、特開2003-23187号公報(特許文献2)がある。特許文献2に記載された高耐熱圧電素子においては、加熱処理を行う前の圧電素子における圧電共振の共振周波数が極小を示す温度が、60℃以上200℃以下の範囲に存在している。
特許第2651140号 特開2003-23187号公報
 超音波トランスデューサには、被検出物を検出可能な最短検出距離が20cm以下であることが求められている。
 本発明は、上記の課題に鑑みてなされたものであって、被検出物を検出可能な最短検出距離を20cm以下にすることができる、超音波トランスデューサおよびその製造方法を提供することを目的とする。
 本発明に基づく超音波トランスデューサは、ケースと、圧電振動子と、配線とを備える。ケースは、底部および側壁部を有する有底筒状である。圧電振動子は、TiおよびZrを含む圧電体磁器を有し、ケースの内側において上記底部に貼り付けられている。配線は、圧電振動子に接続されており、ケースの外側に引き出されている。上記底部に貼り付けられていない状態の圧電体磁器の広がり振動モードの共振周波数が最小となる温度は、-30℃以上10℃以下の範囲内である。圧電体磁器の任意の縦断面における断面空隙率は1%以下である。
 本発明によれば、被検出物を検出可能な最短検出距離を20cm以下にすることができる。
本発明の一実施形態に係る超音波トランスデューサの構成を示す縦断面図である。 実施例1に係る圧電体磁器の研磨後の縦断面をSEMで観察した画像である。 比較例3に係る圧電体磁器の研磨後の縦断面をSEMで観察した画像である。 比較例5に係る圧電体磁器の研磨後の縦断面をSEMで観察した画像である。 実施例1~実施例5および比較例1~比較例3の圧電体磁器において、貼り付け前の圧電体磁器の電気機械結合係数および貼り付け後の圧電体磁器の電気機械結合係数と、圧電体磁器の共振周波数が最小となる温度との関係を示すグラフである。 圧電体材料における結晶状態図において、圧電体磁器の共振周波数が最小となる温度と圧電体磁器の組成との関係を示す図である。 本発明の一実施形態に係る超音波トランスデューサの製造方法を示すフローチャートである。
 以下、本発明の一実施形態に係る超音波トランスデューサおよびその製造方法について図面を参照して説明する。以下の実施形態の説明においては、図中の同一または相当部分には同一符号を付して、その説明は繰り返さない。
 図1は、本発明の一実施形態に係る超音波トランスデューサの構成を示す縦断面図である。図1に示すように、本発明の一実施形態に係る超音波トランスデューサ100は、ケース120と、圧電振動子110と、第1配線130および第2配線140とを備える。超音波トランスデューサ100は、接合材150および封止材160をさらに備える。なお、封止材160は、必ずしも設けられていなくてもよい。
 ケース120は、底部および側壁部を有する有底筒状である。ケース120における底部とは反対側の上端部は、開口している。ケース120の底部は、円板形状を有している。なお、ケース120の底部の形状は、円板状に限られず、矩形板状または多角形板状でもよい。ケース120の側壁部は、底部の周縁から底部に垂直に立設されている。ケース120は、たとえば、アルミニウムで形成されている。ケース120は、接地されている。
 圧電振動子110は、ケース120の内側において、エポキシ樹脂などの絶縁性接着剤によってケース120の底部に貼り付けられている。圧電振動子110は、平板状の圧電体磁器を有している。ケース120の底部に直交する方向から見て、圧電体磁器は、正方形の形状を有している。圧電体磁器は、TiおよびZrを含む。圧電体磁器は、PZT(チタン酸ジルコン酸鉛)系セラミックスで構成されている。圧電体磁器の互いに対向する主面の各々に電極が設けられている。
 第1配線130および第2配線140の各々は、圧電振動子110に接続されており、ケース120の外側に引き出されている。具体的には、第1配線130は、圧電体磁器の一方の主面の電極と、はんだなどの接合材150によって互いに電気的に接続されている。第2配線140は、圧電体磁器の他方の主面の電極と、はんだなどの接合材150によって互いに電気的に接続されている。図1においては、第2配線140が、圧電体磁器の他方の主面の電極に接続されて一方の主面まで引き出された引き出し電極に、接合材150によって接合されている状態を示している。本実施形態においては、第1配線130および第2配線140は、リード線であるが、FPC(フレキシブルプリント回路)で構成されていてもよい。
 圧電振動子110は、第1配線130および第2配線140を通じて圧電体磁器の電極間に駆動電圧が印加されると面内方向に広がり振動する。圧電振動子110が振動することにより、ケース120の底部が振動する。
 ケース120の底部が外部から超音波を受けることによって振動すると、この振動に伴って圧電振動子110も振動する。圧電振動子110の振動に伴って電荷を生じることにより、超音波が圧電振動子110にて電気信号に変換される。当該電気信号は、圧電体磁器に設けられた電極から第1配線130および第2配線140を通じて外部に伝送される。
 封止材160は、ケース120内に充填されている。封止材160によって、ケース120内の空間が埋められている。封止材160は、たとえば、シリコーンゴムまたはウレタンゴムなどのゴム、または、エポキシ樹脂などの樹脂からなり、遮音性および接着性を有している。なお、圧電振動子110を覆うように、封止材160より弾性率が低い材料で構成された吸音材が配置されていてもよい。この場合、封止材160は、吸音材を覆っている。
 (実験例)
 ここで、圧電体磁器の特性と超音波トランスデューサの検出距離との相関関係を検証した実験例について説明する。本実験例においては、実施例1~5および比較例1~6の11種類の超音波トランスデューサを作製し、その特性を検証した。
 表1は、実施例1~5および比較例1~6に係る、圧電体磁器および超音波トランスデューサの特性評価結果をまとめたものである。
Figure JPOXMLDOC01-appb-T000001
 圧電体磁器の材料となるチタン酸ジルコン酸鉛系の圧電体材料を以下の方法で作製した。Zrに対するTiの含有比率が0.89以上0.95以下の範囲内になるように、PbO粉末、TiO2粉末、ZrO2粉末、水、分散剤および混合粉砕用メディアの各々を所定量容器に投入し、24時間かけて混合粉砕を行なった。混合粉砕後、濾過して水を除去し、100℃で乾燥して粉末を得た。得られた粉末をAl23製のサヤに入れ、約900℃~1000℃の温度下で合成を行なった。合成後の粉末を乾式で粉砕した後、各種工法により実施例1~実施例5および比較例1~比較例6に係る圧電体材料を準備した。実施例1~実施例5および比較例1~比較例6に係る圧電体材料におけるZrに対するTiの含有比率は、表1に示す通りである。
 実施例1~実施例5および比較例1~比較例3においては、圧電体材料をシート成形した。具体的には、圧電体材料にバインダー、分散材および消泡材を添加してスラリーを作製し、当該スラリーからドクターブレード法を用いてグリーンシートを作製した。得られたグリーンシートを積層して圧着させることにより積層体を形成し、当該積層体を焼成して圧電体磁器を作製した。
 比較例4および比較例5においては、圧電体材料を押出成形した。具体的には、圧電体材料にバインダーおよび少量の水を投入して粘土状にした後、粘土状の圧電体材料から押出し成形機を使用して成形体を形成し、当該成形体を焼成して圧電体磁器を作製した。
 比較例6においては、圧電体材料をプレス成形した。具体的には、圧電体材料の乾燥粉末にバインダーおよび分散剤を添加した後、乾燥粉末からプレス成形機を使用して成形体を形成し、当該成形体を焼成して圧電体磁器を作製した。
 実施例1~実施例5および比較例1~比較例6において、得られた圧電体磁器を加工して、1辺の長さが5mmの正方形で厚さが0.2mmの直方体形状とした。続いて、圧電体磁器の両主面にスパッタでAgからなる電極を形成後、この電極間に直流電圧を印加して分極させた。分極した圧電体磁器をケース120の底部に接着剤で貼り付けた後、第1配線130および第2配線140の各々を接合材150によって圧電体磁器の電極に電気的に接続した。第1配線130および第2配線140の各々をケース120から引き出した後、ケース120内に封止材160である樹脂を充填して、実施例1~実施例5および比較例1~比較例6に係る超音波トランスデューサを作製した。
 また、実施例1~実施例5および比較例1~比較例6の圧電体磁器の共振周波数が最小となる温度を求めるための試験片として、上記と同一条件で作製した圧電体磁器の両主面にスパッタでAgからなる電極を形成後、この電極間に直流電圧を印加して分極させた後、長辺の長さが4mm、短辺の長さが1mm、厚さが0.2mmの試験片を作製した。
 実施例1~実施例5および比較例1~比較例6に係る超音波トランスデューサを駆動させて最短検出距離を評価した。また、実施例1~実施例5および比較例1~比較例6に係る超音波トランスデューサの主振動モードの等価回路定数をインピーダンスアナライザを用いて測定し、等価容量を制動容量で除した値の平方根から、ケース120の底部に貼り付け後の圧電体磁器の電気機械結合係数を求めた。
 また、実施例1~実施例5および比較例1~比較例6に係る圧電体磁器の上記試験片を温度槽に投入し、-50℃から200℃までの範囲内で10℃刻みで温度を変化させた時の試験片の広がり振動モード(31モード)の共振周波数を求め、この共振周波数が最小となる温度Tfmを求めた。
 さらに、実施例1~実施例5および比較例1~比較例6に係る圧電体磁器の縦断面を研磨した後、当該断面をSEM(Scanning Electron Microscope)で観察し、視野範囲内において圧電体磁器中に空隙が占める面積の割合である断面空隙率を評価した。
 図2は、実施例1に係る圧電体磁器の研磨後の縦断面をSEMで観察した画像である。図3は、比較例3に係る圧電体磁器の研磨後の縦断面をSEMで観察した画像である。図4は、比較例5に係る圧電体磁器の研磨後の縦断面をSEMで観察した画像である。図2~図4において、黒いドット状の部分が空隙Vである。図2~図4に示すように、圧電体材料をシート成形した実施例1に係る圧電体磁器では空隙Vが少なく、圧電体材料を押出成形した比較例3に係る圧電体磁器では空隙Vが多く、圧電体材料をプレス成形した比較例5に係る圧電体磁器では空隙Vが多くかつ大きかった。
 表1に示すように、超音波トランスデューサの最短検出距離と、貼り付け後の圧電体磁器の電気機械結合係数との間に強い相関があり、貼り付け後の圧電体磁器の電気機械結合係数が高いほど超音波トランスデューサの最短検出距離を短くすることができることが分かった。
 そこで、貼り付け後の圧電体磁器の電気機械結合係数を高くすることを検討したところ、貼り付け後の圧電体磁器の電気機械結合係数が、貼り付け前の圧電体磁器の電気機械結合係数と、圧電体磁器の広がり振動モード(31モード)の共振周波数が最小となる温度Tfmとに、相関関係を有することが分かった。
 図5は、実施例1~実施例5および比較例1~比較例3の圧電体磁器において、貼り付け前の圧電体磁器の電気機械結合係数および貼り付け後の圧電体磁器の電気機械結合係数と、圧電体磁器の共振周波数が最小となる温度との関係を示すグラフである。図5においては、左側の縦軸に、貼り付け前の圧電体磁器の電気機械結合係数(%)、右側の縦軸に、貼り付け後の圧電体磁器の電気機械結合係数(%)、横軸に、圧電体磁器の共振周波数が最小となる温度(℃)を示している。また、貼り付け前の圧電体磁器の電気機械結合係数を丸印、貼り付け後の圧電体磁器の電気機械結合係数を三角印で示し、貼り付け前の圧電体磁器の電気機械結合係数の推移の近似曲線を点線L1、貼り付け後の圧電体磁器の電気機械結合係数の推移の近似曲線を実線L2で示している。
 図5に示すように、貼り付け前の圧電体磁器の電気機械結合係数と、貼り付け後の圧電体磁器の電気機械結合係数とでは、圧電体磁器の広がり振動モード(31モード)の共振周波数が最小となる温度Tfmの変化に対する推移が異なっていることが判明した。具体的には、貼り付け前の圧電体磁器の電気機械結合係数と、貼り付け後の圧電体磁器の電気機械結合係数とでは、それぞれがピークとなる温度Tfmが異なっていた。そのため、貼り付け前の圧電体磁器の電気機械結合係数が高くなる温度Tfmが室温(30℃程度)であるのに対して、貼り付け後の圧電体磁器の電気機械結合係数が高くなる温度Tfmは、約-15℃であった。このことから、後述するように、貼り付け前後で圧電体磁器の電気機械結合係数が最大になる圧電体磁器の組成が異なることが判明した。
 ここで、圧電体磁器の広がり振動モード(31モード)の共振周波数が最小となる温度Tfmと、圧電体磁器の組成との関係について説明する。図6は、圧電体材料における結晶状態図において、圧電体磁器の共振周波数が最小となる温度と圧電体磁器の組成との関係を示す図である。図6においては、縦軸に、温度(℃)、横軸に、PZT中のPbTiO3のモル分率を示している。室温Trを点線で示している。圧電体磁器が1点鎖線Laで示す組成を有するとき、菱面体晶と正方晶の相境界であるモルフォトロピック相境界MPBと1点鎖線Laとの交点の温度が、当該組成を有する圧電体磁器の広がり振動モード(31モード)の共振周波数が最小となる温度Tfmとなる。すなわち、圧電体材料中のZrに対するTiの含有比率を変更することによって、圧電体磁器の広がり振動モード(31モード)の共振周波数が最小となる温度Tfmを調整することができる。
 図5に示すように、圧電体磁器の広がり振動モード(31モード)の共振周波数が最小となる温度Tfmが1点鎖線で示す室温より低くなる組成範囲T1の圧電体磁器の結晶構造は室温において正方晶となり、温度Tfmが1点鎖線で示す室温より高くなる組成範囲T2の圧電体磁器の結晶構造は室温において菱面体晶となる。
 図5に示すように、圧電体磁器の広がり振動モード(31モード)の共振周波数が最小となる温度Tfmが-30℃以上10℃以下の範囲内である実施例1~実施例5の圧電体磁器は、貼り付け後の圧電体磁器の電気機械結合係数が18%以上と高く維持された。
 この理由として、圧電体磁器をケース120に貼り付けた時に圧電体磁器にかかる応力により圧電体磁器自体の電気機械結合係数が低下するが、圧電体磁器の組成を温度Tfmが-30℃以上10℃以下の範囲内となる組成にすることで、室温での圧電体磁器の結晶構造が安定な正方晶になり、圧電体磁器をケース120に貼り付けた時の圧電体磁器の電気機械結合係数の低下を抑制することができるためと考えられる。
 従来は、貼り付け前の圧電体磁器の電気機械結合係数が室温で最大となるように、すなわち、圧電体磁器の広がり振動モード(31モード)の共振周波数が最小となる温度Tfmが室温となるように、圧電体磁器の組成が決定されていた。このようにした場合、図5に示すように、貼り付け後の圧電体磁器の電気機械結合係数が低下して、超音波トランスデューサの最短検出距離を短くすることができない。
 表1に示すように、実施例1~実施例5の超音波トランスデューサにおいては、貼り付け後の圧電体磁器の電気機械結合係数が18%以上と高く維持された結果、超音波トランスデューサの最短検出距離を20cm以下にすることができた。一方、圧電体磁器の広がり振動モード(31モード)の共振周波数が最小となる温度Tfmが-30℃以上10℃以下の範囲外である比較例1~比較例3においては、貼り付け後の圧電体磁器の電気機械結合係数が18%未満であり、超音波トランスデューサの最短検出距離を20cm以下にすることができなかった。
 表1に示すように、比較例4~比較例6に係る超音波トランスデューサにおいては、圧電体磁器の広がり振動モード(31モード)の共振周波数が最小となる温度Tfmが-30℃以上10℃以下の範囲内であるが、貼り付け後の圧電体磁器の電気機械結合係数が18%未満であり、超音波トランスデューサの最短検出距離を20cm以下にすることができなかった。
 この理由は、比較例4~比較例6に係る圧電体磁器の断面空隙率が1%より大きいため、圧電体磁器をケース120に貼り付けた時の圧電体磁器の電気機械結合係数の低下が大きくなることによると考えられる。
 実施例1~実施例5の超音波トランスデューサにおいては、圧電体磁器の断面空隙率が1%以下であるため、これによっても、圧電体磁器をケース120に貼り付けた時の圧電体磁器の電気機械結合係数の低下を抑制することができ、その結果、貼り付け後の圧電体磁器の電気機械結合係数が18%以上と高く維持され、超音波トランスデューサの最短検出距離を20cm以下にすることができた。
 上記の実験結果から分かるとおり、本発明の一実施形態に係る超音波トランスデューサ100においては、ケース120の底部に貼り付けられていない状態の圧電体磁器の広がり振動モード(31モード)の共振周波数が最小となる温度Tfmは、-30℃以上10℃以下の範囲内である。圧電体磁器の任意の縦断面における断面空隙率は1%以下である。これにより、貼り付け後の圧電体磁器の電気機械結合係数を18%以上と高く維持して、超音波トランスデューサ100の最短検出距離を20cm以下にすることができる。
 好ましくは、ケース120の底部に貼り付けられていない状態の圧電体磁器の広がり振動モードの共振周波数が最小となる温度が-20℃以上0℃以下の範囲内である。これにより、貼り付け後の圧電体磁器の電気機械結合係数を20%以上と高く維持して、超音波トランスデューサ100の最短検出距離を12cm以下にすることができる。
 従来は、押出成形またはプレス成形といったコストの安いプロセスで作製された圧電体磁器が超音波トランスデューサには使用されていた。しかし、本実施形態に係る超音波トランスデューサは、下記の工程で作製されることにより、最短検出距離を20cm以下にすることができる。
 図7は、本発明の一実施形態に係る超音波トランスデューサの製造方法を示すフローチャートである。図7および表1に示すように、本発明の一実施形態に係る超音波トランスデューサの製造方法においては、Zrに対するTiの含有比率が0.915以上0.935以下の範囲内であるチタン酸ジルコン酸鉛系材料のシート成形によって作製された複数のグリーンシートを積層して圧着させた積層体を焼成することにより圧電体磁器を作製する工程(S1)と、圧電体磁器を有する圧電振動子を有底筒状のケースの底部に貼り付ける工程(S2)と、圧電振動子に配線を接続する工程(S3)とを備える。
 上述した実施形態の説明において、組み合わせ可能な構成を相互に組み合わせてもよい。
 今回開示された実施形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 100 超音波トランスデューサ、110 圧電振動子、120 ケース、130 第1配線、140 第2配線、150 接合材、160 封止材。

Claims (3)

  1.  底部および側壁部を有する有底筒状のケースと、
     TiおよびZrを含む圧電体磁器を有し、前記ケースの内側において前記底部に貼り付けられた圧電振動子と、
     前記圧電振動子に接続されており、前記ケースの外側に引き出された配線とを備え、
     前記底部に貼り付けられていない状態の前記圧電体磁器の広がり振動モードの共振周波数が最小となる温度は、-30℃以上10℃以下の範囲内であり、
     前記圧電体磁器の任意の縦断面における断面空隙率は1%以下である、超音波トランスデューサ。
  2.  前記底部に貼り付けられていない状態の前記圧電体磁器の広がり振動モードの共振周波数が最小となる温度が-20℃以上0℃以下の範囲内である、請求項1に記載の超音波トランスデューサ。
  3.  Zrに対するTiの含有比率が0.915以上0.935以下の範囲内であるチタン酸ジルコン酸鉛系材料のシート成形によって作製された複数のグリーンシートを積層して圧着させた積層体を焼成することにより圧電体磁器を作製する工程と、
     前記圧電体磁器を有する圧電振動子を有底筒状のケースの底部に貼り付ける工程と、
     前記圧電振動子に配線を接続する工程とを備える、超音波トランスデューサの製造方法。
PCT/JP2022/037055 2021-11-29 2022-10-04 超音波トランスデューサおよびその製造方法 WO2023095450A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-193286 2021-11-29
JP2021193286 2021-11-29

Publications (1)

Publication Number Publication Date
WO2023095450A1 true WO2023095450A1 (ja) 2023-06-01

Family

ID=86539274

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/037055 WO2023095450A1 (ja) 2021-11-29 2022-10-04 超音波トランスデューサおよびその製造方法

Country Status (1)

Country Link
WO (1) WO2023095450A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5361097A (en) * 1976-11-15 1978-06-01 Hitachi Ltd Piezoelectric porcelain composition
JPH02270383A (ja) * 1989-04-11 1990-11-05 Japan Radio Co Ltd 圧電振動子とその製造方法
JPH09142931A (ja) * 1995-11-29 1997-06-03 Kyocera Corp 圧電磁器組成物
JP2651140B2 (ja) 1986-07-16 1997-09-10 株式会社 村田製作所 空中超音波トランスジユーサ
JP2000169223A (ja) * 1998-11-30 2000-06-20 Kyocera Corp 圧電磁器組成物及びその製造方法
JP2003023187A (ja) 2001-07-10 2003-01-24 Murata Mfg Co Ltd 高耐熱圧電素子およびそれを用いた圧電装置
JP2017157830A (ja) * 2016-02-26 2017-09-07 京セラ株式会社 圧電磁器板および板状基体ならびに電子部品
CN111848164A (zh) * 2020-06-22 2020-10-30 华南理工大学 一种高横向谐振频率温度稳定性压电陶瓷及其制备方法与应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5361097A (en) * 1976-11-15 1978-06-01 Hitachi Ltd Piezoelectric porcelain composition
JP2651140B2 (ja) 1986-07-16 1997-09-10 株式会社 村田製作所 空中超音波トランスジユーサ
JPH02270383A (ja) * 1989-04-11 1990-11-05 Japan Radio Co Ltd 圧電振動子とその製造方法
JPH09142931A (ja) * 1995-11-29 1997-06-03 Kyocera Corp 圧電磁器組成物
JP2000169223A (ja) * 1998-11-30 2000-06-20 Kyocera Corp 圧電磁器組成物及びその製造方法
JP2003023187A (ja) 2001-07-10 2003-01-24 Murata Mfg Co Ltd 高耐熱圧電素子およびそれを用いた圧電装置
JP2017157830A (ja) * 2016-02-26 2017-09-07 京セラ株式会社 圧電磁器板および板状基体ならびに電子部品
CN111848164A (zh) * 2020-06-22 2020-10-30 华南理工大学 一种高横向谐振频率温度稳定性压电陶瓷及其制备方法与应用

Similar Documents

Publication Publication Date Title
CN1163105C (zh) 压电电声换能器
US7791248B2 (en) Piezoelectric composite based on flexoelectric charge separation
US7581295B2 (en) Piezoelectric element and method of manufacturing the same
WO2013018579A1 (ja) 超音波トランスデューサ
JP5361635B2 (ja) 振動体
JP2006108639A (ja) 圧電アクチュエータ
JP3856380B2 (ja) コンポジット圧電振動子およびその製造方法
US7541716B2 (en) Resonator
JP2011068516A (ja) 圧電磁器組成物、圧電磁器、圧電素子及び発振子
Qin et al. Fabrication and characterization of thick-film piezoelectric lead zirconate titanate ceramic resonators by tape-casting
WO2023095450A1 (ja) 超音波トランスデューサおよびその製造方法
JP5931127B2 (ja) 圧電セラミックス、その製造方法、及び、それを有する圧電セラミックスピーカ
JP7013151B2 (ja) 積層圧電素子、振動子、振動波モータ、光学機器および電子機器
JP3370982B2 (ja) 圧電セラミック組成物及びこれを用いた高出力圧電トランス
Tressler et al. A comparison of the underwater acoustic performance of single crystal versus piezoelectric ceramic-based “cymbal” projectors
KR20060097839A (ko) 양면으로 진동하는 압전 진동자 및 이를 이용한 압전 평판스피커
CN118303039A (en) Ultrasonic transducer and method for manufacturing the same
JP2974815B2 (ja) 超音波振動子及びその製造方法
JP2000143335A (ja) 磁器材料及び超音波探触子及び圧電振動子及びそれらの製造方法
JP2009194226A (ja) 積層型圧電素子及びその製造方法
Shrout et al. Resonance behavior of internally electroded PZT devices
KR101662205B1 (ko) 압전 세라믹 조성물 및 그 제조 방법
CN1166055C (zh) 压电谐振器
JPS6410998B2 (ja)
JP6321562B2 (ja) 圧電磁器組成物、圧電素子および圧電振動装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22898235

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023563536

Country of ref document: JP

Kind code of ref document: A