WO2023093743A1 - 一种电池 - Google Patents

一种电池 Download PDF

Info

Publication number
WO2023093743A1
WO2023093743A1 PCT/CN2022/133613 CN2022133613W WO2023093743A1 WO 2023093743 A1 WO2023093743 A1 WO 2023093743A1 CN 2022133613 W CN2022133613 W CN 2022133613W WO 2023093743 A1 WO2023093743 A1 WO 2023093743A1
Authority
WO
WIPO (PCT)
Prior art keywords
termination
positive electrode
electrolyte
rubber
cyanoethoxy
Prior art date
Application number
PCT/CN2022/133613
Other languages
English (en)
French (fr)
Inventor
母英迪
王海
李素丽
Original Assignee
珠海冠宇电池股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202111396647.7A external-priority patent/CN114122518B/zh
Priority claimed from CN202111396652.8A external-priority patent/CN114050232B/zh
Priority claimed from CN202111396654.7A external-priority patent/CN114122638B/zh
Priority claimed from CN202111394913.2A external-priority patent/CN114094105B/zh
Priority claimed from CN202111396648.1A external-priority patent/CN114094167B/zh
Priority claimed from CN202111396653.2A external-priority patent/CN114094049B/zh
Priority claimed from CN202111394925.5A external-priority patent/CN114122637B/zh
Priority claimed from CN202111394938.2A external-priority patent/CN114094048B/zh
Priority to KR1020237045396A priority Critical patent/KR20240019174A/ko
Priority to JP2023579755A priority patent/JP2024526225A/ja
Priority to EP22897826.8A priority patent/EP4345934A1/en
Application filed by 珠海冠宇电池股份有限公司 filed Critical 珠海冠宇电池股份有限公司
Publication of WO2023093743A1 publication Critical patent/WO2023093743A1/zh
Priority to US18/400,260 priority patent/US20240136580A1/en
Priority to US18/400,449 priority patent/US20240136688A1/en
Priority to US18/400,403 priority patent/US20240136582A1/en
Priority to US18/400,316 priority patent/US20240136685A1/en
Priority to US18/400,428 priority patent/US20240136687A1/en
Priority to US18/400,361 priority patent/US20240136581A1/en
Priority to US18/400,216 priority patent/US20240136684A1/en
Priority to US18/400,360 priority patent/US20240136686A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J107/00Adhesives based on natural rubber
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J109/00Adhesives based on homopolymers or copolymers of conjugated diene hydrocarbons
    • C09J109/06Copolymers with styrene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J123/00Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers
    • C09J123/02Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers not modified by chemical after-treatment
    • C09J123/18Homopolymers or copolymers of hydrocarbons having four or more carbon atoms
    • C09J123/20Homopolymers or copolymers of hydrocarbons having four or more carbon atoms having four to nine carbon atoms
    • C09J123/22Copolymers of isobutene; Butyl rubber ; Homo- or copolymers of other iso-olefines
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/04Homopolymers or copolymers of esters
    • C09J133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09J133/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/04Homopolymers or copolymers of esters
    • C09J133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09J133/10Homopolymers or copolymers of methacrylic acid esters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/586Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries inside the batteries, e.g. incorrect connections of electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/59Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries characterised by the protection means
    • H01M50/595Tapes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0034Fluorinated solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0091Composites in the form of mixtures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the disclosure belongs to the technical field of batteries, and in particular relates to a battery.
  • batteries have been widely used in smartphones, tablet computers, smart wearables, power tools, and electric vehicles.
  • consumers' requirements for battery energy density and use environment continue to increase, which requires batteries to have excellent high-temperature safety performance under high voltage.
  • the purpose of the present disclosure is to provide a new type of battery for improving the high-temperature safety performance of the battery.
  • the battery has excellent high-temperature safety performance, and can also exhibit good high-temperature safety performance under high voltage.
  • the present disclosure provides a battery, the battery includes a positive electrode sheet, a negative electrode sheet, a non-aqueous electrolyte and a separator; the non-aqueous electrolyte includes a non-aqueous organic solvent, lithium salt and an optional electrolyte Additive; the paste tail of the positive electrode is provided with a positive electrode termination tape; the area of the positive electrode termination tape is Acm 2 , and the width of the positive electrode is C cm, wherein the ratio of A to C is in the range of 1 to 3 between.
  • the terminated adhesive tape includes a substrate and a terminated adhesive layer coated on the surface of the substrate, and the terminated adhesive layer is a rubber terminated adhesive layer or a (meth)acrylic terminated adhesive layer.
  • the terminator layer includes vinylene carbonate.
  • the content of the lithium salt is B1 mol/L, and the ratio of A to B1 is in the range of 2-20.
  • the electrolyte additive includes fluoroethylene carbonate, based on the total weight of the non-aqueous electrolyte, the content of the fluoroethylene carbonate is B2wt%, and the ratio of A to B2 is 0.5 ⁇ 5 range.
  • the electrolyte additive includes lithium difluorooxalate borate, based on the total weight of the nonaqueous electrolyte, the content of the lithium difluorooxalate borate is B3wt%, and the ratio of A to B3 is 5 ⁇ 200 range.
  • the electrolyte additive includes lithium difluorophosphate, based on the total weight of the non-aqueous electrolyte, the content of lithium difluorophosphate is B4wt%, and the ratio of A to B4 is 5-200 In the range.
  • the electrolyte additive includes 1,2-bis(cyanoethoxy)ethane and/or 1,2,3-tris(2-cyanoethoxy)propane, which is used in the non-aqueous electrolytic Based on the total weight of the liquid, the content of the 1,2-bis(cyanoethoxy)ethane and/or 1,2,3-tri(2-cyanoethoxy)propane is B56wt%, A and B56 The ratio is in the range of 2-40.
  • the electrolyte additives include lithium difluorooxalate borate, fluoroethylene carbonate, lithium difluorophosphate, 1,2-bis(cyanoethoxy)ethane and 1,2,3-tri( One or a combination of two or more of 2-cyanoethoxy)propane.
  • the electrolyte additive includes at least lithium difluorooxalate borate.
  • the electrolyte additive includes at least lithium difluorophosphate.
  • the electrolyte additive includes at least lithium difluorophosphate.
  • the electrolyte additive includes at least fluoroethylene carbonate.
  • the electrolyte additive includes at least 1,2-bis(cyanoethoxy)ethane and/or 1,2,3-tris(2-cyanoethoxy)propane.
  • the battery includes at least one of the following combinations (1)-(8):
  • the content of the lithium salt is B1mol/L
  • the ratio of A to B1 is in the range of 2 to 20
  • the termination glue of the positive plate termination tape is The layer is a rubber terminated rubber layer
  • the content of the lithium salt is B1mol/L
  • the ratio of A to B1 is in the range of 2 to 20
  • the termination glue of the positive plate termination tape is The layer is a (meth)acrylic terminated adhesive layer
  • the electrolyte additive includes fluoroethylene carbonate, based on the total weight of the non-aqueous electrolyte, the content of the fluoroethylene carbonate is B2wt%, and the ratio of A to B2 is 0.5 to 5 , and the termination adhesive layer of the positive plate termination tape is a (meth)acrylic termination adhesive layer;
  • the electrolyte additive includes fluoroethylene carbonate, based on the total weight of the non-aqueous electrolyte, the content of the fluoroethylene carbonate is B2wt%, and the ratio of A to B2 is 0.5 to 5 , and the termination rubber layer of the positive plate termination tape is a rubber termination rubber layer;
  • the electrolyte additive includes lithium difluorooxalate borate, based on the total weight of the non-aqueous electrolyte, the content of the lithium difluorooxalate borate is B3wt%, and the ratio of A to B3 is 5 to 200 , and the termination rubber layer of the positive plate termination tape is a rubber termination rubber layer;
  • the electrolyte additive includes lithium difluorophosphate, based on the total weight of the non-aqueous electrolyte, the content of lithium difluorophosphate is B4wt%, and the ratio of A to B4 is in the range of 5 to 200 Inside, and the termination adhesive layer of the positive plate termination tape is a (meth)acrylic termination adhesive layer;
  • the electrolyte additive includes 1,2-bis(cyanoethoxy)ethane and/or 1,2,3-tris(2-cyanoethoxy)propane, based on the non-aqueous electrolyte Based on the total weight, the content of the 1,2-bis(cyanoethoxy)ethane and/or 1,2,3-tri(2-cyanoethoxy)propane is B56wt%, the ratio of A to B56 In the range of 2 to 40, and the termination glue layer of the positive electrode plate termination tape is a (meth)acrylic termination glue layer;
  • the electrolyte additive includes 1,2-bis(cyanoethoxy)ethane and/or 1,2,3-tris(2-cyanoethoxy)propane, based on the non-aqueous electrolyte Based on the total weight, the content of the 1,2-bis(cyanoethoxy)ethane and/or 1,2,3-tri(2-cyanoethoxy)propane is B56wt%, the ratio of A to B56 In the range of 2 to 40, and the termination glue layer of the positive plate termination tape is a rubber termination glue layer.
  • the battery of the present disclosure is a high voltage type battery and has excellent high temperature performance.
  • By controlling the size of the positive electrode sheet termination tape, further controlling the material of the adhesive layer in the preferred scheme, and by optimizing the relationship between the positive electrode sheet termination tape and the non-aqueous electrolyte and controlling the selection and content of specific components in the non-aqueous electrolyte it is possible to Effectively solve the problem that the adhesive layer in the positive electrode termination tape is easily soluble in non-aqueous electrolyte and the non-aqueous electrolyte is easy to redox and decompose at the positive and negative interface, avoiding the warping and deformation of the positive electrode termination tape when the battery is used in a high temperature environment High-temperature storage thickness failure of the battery cell and high-temperature cycle lithium deposition; thus, the high-temperature performance of the battery cell prepared can be effectively improved, and at the same time, the problem of lithium deposition at the edge of the pole piece after the cell cycle can be solved.
  • FIG. 1 is a schematic structural diagram of a positive electrode sheet in an example of the present disclosure.
  • FIG. 2 is a schematic structural diagram of a positive electrode sheet in another example of the present disclosure.
  • FIG. 3 is a side view of the positive electrode sheet shown in FIG. 2 .
  • 1-Positive electrode head 2-Positive electrode tail; 3-Empty foil area; 4-Positive electrode termination tape;
  • the first aspect of the present disclosure provides a battery, the battery includes a positive electrode sheet, a negative electrode sheet, a non-aqueous electrolyte and a separator; the non-aqueous electrolyte includes a non-aqueous organic solvent, a lithium salt, and an optional electrolyte additive;
  • the paste tail of the positive electrode sheet is provided with a positive electrode sheet termination tape; the area of the positive electrode sheet termination tape is Ac m 2 , and the width of the positive electrode sheet is C cm, wherein the ratio of A to C is within the range of 1 to 3 between.
  • the tail of the cell By arranging the positive electrode termination tape on the pasted tail of the positive electrode, the tail of the cell can be fixed, and at the same time, the burr on the cut edge of the positive electrode can be covered to prevent the short circuit of the battery and play the role of insulation protection.
  • the termination tape is prone to local deformation and warping under high temperature and high pressure. When the deformation and warping reach a certain level, there will be a risk of short circuit. Therefore, the applicant has done in-depth research on the size of the termination tape, and found that when the ratio of the area of the termination tape to the width of the positive electrode sheet is between 1 and 3, it can more reasonably cover the surface of the paste and the empty foil. , to control the risk of short circuit caused by deformation and warping to a low level.
  • positive electrode sheet termination tape refers to an adhesive tape disposed at the tail of the paste (such as the positive electrode active material layer) on the surface of the positive electrode current collector in the positive electrode sheet.
  • Fig. 1 and Fig. 2 respectively illustrate the structural diagrams of the positive electrode sheets of the two examples (the positions of the tabs are different), wherein 1 indicates the head of the positive electrode sheet; 2 indicates the tail of the positive electrode sheet; 3 indicates the empty foil area .
  • the number of positive electrode termination tapes is two, that is, a positive electrode termination tape is provided on both sides of the positive electrode collector in the positive electrode, as shown in Figure 3, where 5 represents the paste tail of one side of the positive electrode; 6 represents One side of the positive electrode termination tape; 7 represents the positive paste tail on the other side; 8 represents the other positive electrode termination tape.
  • a part of the positive electrode sheet termination adhesive tape 6 and 8 covers the paste 5 and 7 on the positive electrode current collector surface, and a part covers the positive electrode current collector surface (ie, the empty foil 3 on the positive electrode current collector surface) .
  • the positive plate termination tape 4, 6 or 8 has covered part of the paste and part of the empty foil at the same time;
  • the junction makes the positive plate terminate the crease produced by the tape), the left side of the vertical line is the area covered with paste (covering part of the positive plate tail 2), and the right side of the vertical line is the area covered with empty foil.
  • the area A of the positive electrode sheet termination tape refers to the area of the positive electrode sheet termination tape provided on the surface of the positive electrode collector side of the positive electrode sheet. In one example, the area of the positive electrode sheet termination tapes provided on both sides of the positive electrode current collector in the positive electrode sheet is the same.
  • the ratio of A to C is 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3 or any point value within the range formed by the above two endpoints.
  • the ratio of A to C is in the range of 1.6-2.2.
  • the area A of the tape for terminating the positive electrode sheet can be adjusted according to the size of the positive electrode sheet, actual needs and the ratio of A to C, for example, between 3 cm 2 and 120 cm 2 ; for example, the area A of the tape for terminating the positive electrode sheet is 3cm 2 , 5cm 2 , 10cm 2 , 20cm 2 , 30cm 2 , 40cm 2 , 50cm 2 , 60cm 2 , 70cm 2 , 80cm 2 , 90cm 2 , 100cm 2 , 120cm 2 , or any point within the range formed by the above two endpoints value.
  • the width C of the positive electrode sheet can be adjusted according to the battery size, actual needs and AC ratio, for example, in the range of 1 cm to 120 cm; for example, the width C of the positive electrode sheet is 1 cm, 3 cm, 5 cm, 6 cm, 8 cm .
  • the termination tape includes a base material and a termination adhesive layer coated on the surface of the base material.
  • the base material may be a conventional base material used as a termination tape in the art, such as PET (Polyethylene terephthalate).
  • the termination adhesive layer adopts conventional materials in the art.
  • the terminated rubber layer is a rubber terminated rubber layer and/or a (meth)acrylic terminated rubber layer.
  • the rubber termination layer is a rubber termination rubber layer.
  • the rubber-terminated rubber layer includes cross-linked modified rubber.
  • the cross-linked modified rubber is obtained by cross-linking and modifying the first base under the action of the first cross-linking agent, and the first base is a rubber base, for example, selected from natural rubber, styrene-butadiene rubber, polyisobutylene rubber , butyl rubber, nitrile rubber, etc. at least one.
  • the first crosslinking agent includes vinylene carbonate.
  • Vinylene carbonate can participate in the cross-linking and polymerization of rubber to prevent cracking, make the rubber terminated rubber layer more resistant to high temperature and high pressure, stabilize the structure of the rubber layer, and further improve the high temperature performance of the battery.
  • the content of the vinylene carbonate is 0.5-5wt%, such as 0.5wt%, 0.6wt%, 0.7wt%, 0.8wt% %, 0.9wt%, 1wt%, 1.2wt%, 1.5wt%, 1.8wt%, 2wt%, 2.5wt%, 3wt%, 3.5wt%, 3.8wt%, 4wt%, 4.5wt% or 5wt%.
  • the stop glue layer is a (meth)acrylic stop glue layer.
  • the (meth)acrylic terminated rubber layer includes cross-linked modified (meth)acrylic acid and/or cross-linked modified (meth)acrylate.
  • the (meth)acrylate is selected from C1-C10 alkyl (meth)acrylates, illustratively selected from isooctyl acrylate, n-butyl acrylate, methyl acrylate, ethyl acrylate, At least one of n-propyl acrylate and the like.
  • the (meth)acrylic terminated glue layer includes At least one of link-modified methacrylic acid, cross-linked modified acrylic acid, cross-linked modified methacrylate and cross-linked modified acrylate.
  • the (meth)acrylic acid stop glue layer is obtained by crosslinking and modifying the second substrate under the action of a second crosslinking agent, and the second substrate is selected from methacrylic acid, acrylic acid, methacrylate and acrylic acid at least one of esters.
  • the second crosslinking agent includes vinylene carbonate.
  • Vinylene carbonate can participate in the cross-linking polymerization of acrylic acid, so that the acrylic terminated adhesive layer contains ethyl carbonate structural branches, making it more resistant to high temperature and high pressure, stabilizing the adhesive layer structure, and further improving the high temperature performance of the battery.
  • the content of the vinylene carbonate is 0.5-5 wt%. , such as 0.5wt%, 0.6wt%, 0.7wt%, 0.8wt%, 0.9wt%, 1wt%, 1.2wt%, 1.5wt%, 1.8wt%, 2wt%, 2.5wt%, 3wt%, 3.5wt% %, 3.8wt%, 4wt%, 4.5wt% or 5wt%.
  • the stop glue layer may also contain other conventional components such as auxiliary agents.
  • the auxiliary agent is, for example, at least one selected from antioxidants, inorganic fillers and the like.
  • the antioxidant can be conventionally used and suitable for main components (such as cross-linked modified rubber, or, cross-linked modified (meth)acrylic acid and/or cross-linked modified (meth)acrylate) Antioxidant.
  • the inorganic filler may be a conventionally used inorganic filler suitable for the main component.
  • the terminator rubber layer contains neither cross-linked modified rubber nor cross-linked modified (meth)acrylic acid and/or cross-linked modified (meth)acrylate, And it is other conventional termination adhesive layer materials in this field.
  • the thickness of the positive plate termination tape is 8 ⁇ m ⁇ 20 ⁇ m, for example, 8 ⁇ m, 9 ⁇ m, 10 ⁇ m, 11 ⁇ m, 12 ⁇ m, 13 ⁇ m, 14 ⁇ m, 15 ⁇ m, 16 ⁇ m, 17 ⁇ m, 18 ⁇ m, 19 ⁇ m, 20 ⁇ m.
  • the electrolyte is also an important factor affecting the safety performance of the battery under high temperature and high pressure.
  • the possible reason is that the electrolyte in the prior art is easy to decompose under high temperature and high voltage, and redox decomposition occurs on the surface of the positive and negative electrodes to destroy the SEI film. , causing the cell impedance to increase continuously and deteriorating the cell performance. Therefore, the applicant conducted intensive research on the composition of the electrolyte solution.
  • the non-aqueous electrolyte includes a non-aqueous organic solvent, lithium salt and optional electrolyte additives.
  • the applicant found that by controlling the content of lithium salt and/or by using electrolyte additives with specific content and composition, the performance of non-aqueous electrolyte under high temperature and high pressure can be made more stable.
  • the concentration of the lithium salt is specifically controlled. Based on the total weight of the non-aqueous electrolyte, the content of the lithium salt is recorded as B1mol/L.
  • the ratio of A to B1 is in the range of 2-20.
  • the ratio of A to B1 is 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 or Any point value in the range formed by the above two endpoints.
  • the content B1 of the lithium salt is 1 mol/L to 6 mol/L, such as 1 mol/L, 1.5 mol/L, 2 mol/L, 2.5 mol/L, 3 mol/L, 3.5 mol/L, 4mol/L, 5mol/L or 6mol/L.
  • the concentration B1 of the lithium salt is 1.5 mol/L ⁇ 3 mol/L.
  • the lithium salt concentration disclosed in the present disclosure is higher than the lithium salt concentration commonly used in the prior art (usually below 1.2 mol/L).
  • the lithium salt is selected from at least one of lithium bistrifluoromethylsulfonyl imide, lithium bisfluorosulfonyl imide and lithium hexafluorophosphate.
  • optionally means that it may or may not exist.
  • optional electrolyte additive means that the non-aqueous electrolyte may or may not contain an electrolyte additive.
  • the non-aqueous electrolyte does not contain the electrolyte additive.
  • the non-aqueous electrolyte contains the electrolyte additive.
  • the electrolyte additive includes fluoroethylene carbonate. Based on the total weight of the non-aqueous electrolyte, the content of the fluoroethylene carbonate is recorded as B2wt%.
  • the ratio of A to B2 is in the range of 0.5-5.
  • the ratio of A to B2 is 0.5, 0.8, 1, 1.2, 1.4, 1.5, 1.8, 2, 2.2, 2.5, 2.8, 3, 3.2, 3.5, 3.8, 4, 4.5, 5 or both Any point value in the range consisting of two endpoints.
  • the content B2 of the fluoroethylene carbonate is 5-30wt%, such as 5wt%, 6wt%, 7wt%, 8wt%, 9wt%, 10wt%, 12wt%, 15wt%, 18wt%, 20wt%, 22wt%, 25wt%, 28wt% or 30wt%.
  • the content of the fluoroethylene carbonate is 5-10 wt%.
  • the electrolyte additive includes lithium difluorooxalate borate. Based on the total weight of the non-aqueous electrolytic solution, the content of the lithium difluorooxalate borate is recorded as B3wt%.
  • the ratio of A to B3 is in the range of 5-200.
  • the ratio of A to B3 is 5, 10, 15, 20, 25, 30, 40, 50, 60, 80, 100, 120, 150, 180, 200 or in the range formed by the above two endpoints any point value of .
  • the content B3 of lithium difluorooxalate borate is 0.1-3wt%, such as 0.1wt%, 0.2wt%, 0.3wt%, 0.4wt%, 0.5wt%, 0.6wt%, 0.7wt% , 0.8wt%, 0.9wt%, 1wt%, 1.2wt%, 1.5wt%, 1.8wt%, 2wt%, 2.2wt%, 2.5wt%, 2.8wt% or 3wt%.
  • the content B3 of the lithium difluorooxalate borate is 0.2-1 wt%.
  • the electrolyte additive includes lithium difluorophosphate. Based on the total weight of the non-aqueous electrolytic solution, the content of the lithium difluorophosphate is recorded as B4wt%.
  • the ratio of A to B4 is in the range of 5-200.
  • the ratio of A to B4 is 5, 10, 15, 20, 25, 30, 40, 50, 60, 80, 100, 120, 150, 180, 200 or in the range formed by the above two endpoints any point value of .
  • the content B4 of lithium difluorophosphate is 0.1-3wt%, such as 0.1wt%, 0.2wt%, 0.3wt%, 0.4wt%, 0.5wt%, 0.6wt%, 0.7wt%, 0.8wt%, 0.9wt%, 1wt%, 1.2wt%, 1.5wt%, 1.8wt%, 2wt%, 2.2wt%, 2.5wt%, 2.8wt%, or 3wt%.
  • the content B4 of the lithium difluorophosphate is 0.2-1 wt%.
  • the electrolyte additive includes 1,2-bis(cyanoethoxy)ethane. Based on the total weight of the non-aqueous electrolyte, the content of the 1,2-bis(cyanoethoxy)ethane is recorded as B5wt%.
  • the ratio of A to B5 is in the range of 2-40.
  • the ratio of A to B5 is 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40 or in the range formed by the above two endpoints any point value of .
  • the content B5 of the 1,2-bis(cyanoethoxy)ethane is 0.5-3wt%, such as 0.5wt%, 0.6wt%, 0.7wt%, 0.8wt%, 0.9wt% , 1 wt%, 1.2 wt%, 1.5 wt%, 1.8 wt%, 2 wt%, 2.2 wt%, 2.5 wt%, 2.8 wt%, or 3 wt%.
  • the content B5 of the 1,2-bis(cyanoethoxy)ethane is 1-2 wt%.
  • the electrolyte additive includes 1,2,3-tris(2-cyanoethoxy)propane. Based on the total weight of the non-aqueous electrolyte, the content of the 1,2,3-tris(2-cyanoethoxy)propane is recorded as B6wt%.
  • the ratio of A to B6 is in the range of 2-40.
  • the ratio of A to B6 is 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40 or in the range formed by the above two endpoints any point value of .
  • the content B6 including 1,2,3-tris(2-cyanoethoxy)propane is 0.5-3wt%, such as 0.5wt%, 0.6wt%, 0.7wt%, 0.8wt% , 0.9wt%, 1wt%, 1.2wt%, 1.5wt%, 1.8wt%, 2wt%, 2.2wt%, 2.5wt%, 2.8wt% or 3wt%.
  • the content B6 including 1,2,3-tris(2-cyanoethoxy)propane is 1-2 wt%.
  • the electrolyte additive may also contain other components, exemplarily selected from 1,3-propane sultone, 1,3-propene sulfonic acid At least one of lactone, vinyl sulfite, vinyl sulfate, lithium dioxalate borate, lithium difluorooxalate phosphate, and vinyl vinyl carbonate.
  • the total content of the electrolyte additive is 0-10wt%, such as 1wt%, 2wt%, 3wt%, 4wt%, 5wt%, 6wt%. , 7wt%, 8wt%, 9wt%, 10wt%.
  • the content is 0 wt%, it means that the non-aqueous electrolyte does not contain the electrolyte additive.
  • various embodiments of the lithium salt and the electrolyte additive in the non-aqueous electrolyte may be combined in any manner.
  • the six implementations of the Y1 embodiment (restriction on lithium salt) and the Y2-Y6 embodiment (restriction on electrolyte additives) exemplified above in this disclosure can be combined in any way , and optionally with or without adding other electrolyte additives.
  • a new combination of Y5 and Y6 is counted as Y56.
  • the electrolyte additive includes 1,2-bis(cyanoethoxy)ethane and/or 1,2,3-tris(2-cyanoethoxy)propane. That is, the Y56th embodiment includes the Y5th embodiment, the Y6th embodiment, and also includes the combination of Y5 and Y6.
  • the non-aqueous electrolyte Based on the total weight of 1,2-bis(cyanoethoxy)ethane and 1,2,3-tris(2-cyanoethoxy)propane, the content is recorded as B56wt%.
  • the ratio of A to B56 is in the range of 2-40.
  • the ratio of A to B56 is 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40 or in the range formed by the above two endpoints any point value of .
  • the total content B56 of 1,2-bis(cyanoethoxy)ethane and 1,2,3-tris(2-cyanoethoxy)propane is 0.5-3 wt%, for example 0.5 wt%, 0.6wt%, 0.7wt%, 0.8wt%, 0.9wt%, 1wt%, 1.2wt%, 1.5wt%, 1.8wt%, 2wt%, 2.2wt%, 2.5wt%, 2.8wt% or 3wt% %.
  • the total content B56 of 1,2-bis(cyanoethoxy)ethane and 1,2,3-tris(2-cyanoethoxy)propane is 1 ⁇ 2 wt%.
  • ratio generally refers to the calculation of a ratio using the numerical parts of two parameters.
  • the electrolyte additive includes at least lithium difluorooxalate borate.
  • the electrolyte additive includes at least lithium difluorophosphate.
  • the electrolyte additive includes at least lithium difluorophosphate.
  • the electrolyte additive includes at least fluoroethylene carbonate.
  • the electrolyte additive includes at least 1,2-bis(cyanoethoxy)ethane and/or 1,2,3-tris(2-cyanoethoxy)propane.
  • the electrolyte additive includes a combination of Y2 and Y3.
  • the electrolyte additive includes a combination of Y2 and Y4.
  • the electrolyte additive includes a combination of Y2 and Y56.
  • the electrolyte additive includes a combination of Y3 and Y4.
  • the electrolyte additive includes a combination of Y3 and Y56.
  • the electrolyte additive includes a combination of Y4 and Y56.
  • the electrolyte additive includes a combination of Y2, Y3 and Y4.
  • the electrolyte additive includes a combination of Y2, Y3 and Y56.
  • the electrolyte additive includes a combination of Y2, Y4 and Y56.
  • the electrolyte additive includes a combination of Y3, Y4 and Y56.
  • the electrolyte additive includes a combination of Y2, Y3, Y4 and Y56.
  • the non-aqueous electrolytic solution must contain the lithium salt, and optionally the electrolytic solution additive.
  • the non-aqueous electrolyte may only include the Y1.
  • the non-aqueous electrolytic solution may only include Y2-Y6 and combinations thereof (that is, the lithium salt content may not meet the limitation in Y1).
  • the non-aqueous electrolyte may include Y1 and Y2-Y6 and their internal combinations at the same time.
  • the non-aqueous electrolyte includes a combination of Y1 and Y2.
  • the non-aqueous electrolytic solution includes a combination of Y1 and Y3.
  • the non-aqueous electrolytic solution includes a combination of Y1 and Y4.
  • the non-aqueous electrolyte includes a combination of Y1 and Y56.
  • the non-aqueous electrolyte includes Y1 and a combination of Y2 and Y3.
  • the non-aqueous electrolyte includes Y1 and a combination of Y2 and Y4.
  • the non-aqueous electrolytic solution includes Y1 and a combination of Y2 and Y56.
  • the non-aqueous electrolytic solution includes Y1 and a combination of Y3 and Y4.
  • the non-aqueous electrolyte includes Y1 and a combination of Y3 and Y56.
  • the nonaqueous electrolyte includes Y1 and a combination of Y4 and Y56.
  • the non-aqueous electrolytic solution includes Y1 and a combination of Y2, Y3 and Y4.
  • the non-aqueous electrolytic solution includes Y1 and a combination of Y2, Y3 and Y56.
  • the non-aqueous electrolytic solution includes Y1 and a combination of Y2, Y4 and Y56.
  • the non-aqueous electrolytic solution includes Y1 and a combination of Y3, Y4 and Y56.
  • the non-aqueous electrolyte includes Y1 and a combination of Y2, Y3, Y4 and Y56.
  • the non-aqueous electrolyte also contains a non-aqueous organic solvent
  • the non-aqueous organic solvent can be a conventional organic solvent in the field, for example, at least one selected from carbonates, carboxylates and fluorinated ethers.
  • the carbonate is, for example, selected from one or more combinations of ethylene carbonate, propylene carbonate, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, and propyl methyl carbonate.
  • the carboxylate is, for example, selected from one or more combinations of ethyl propionate and propyl propionate.
  • the fluoroethers are, for example, selected from 1,1,2,3-tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether.
  • the non-aqueous organic solvent includes ethylene carbonate (EC), propylene carbonate (PC), propyl propionate (PP), 1,1,2,3-tetrafluoroethyl-2,2 , 3,3-tetrafluoropropyl ether in a combination of weight ratio (1-3):(0.5-2):(2-4):(1-3).
  • the risk of short circuit caused by deformation and warping of the termination tape can be reduced by specially limiting the size of the termination tape of the positive electrode sheet.
  • the phenomenon that the adhesive layer is easily dissolved in the electrolyte under high temperature and pressure can be further reduced, thereby further reducing the short circuit risk caused by the deformation and warping of the termination tape.
  • the limitations of Y1 to Y6 on the electrolyte can play a synergistic role with the limitations of the above positive plate termination tape (especially the limitation of the termination adhesive layer material), thereby effectively improving the high temperature of the battery cell prepared.
  • the adhesive layer in the battery is easily soluble in the non-aqueous electrolyte, and the non-aqueous electrolyte is easy to redox and decompose at the interface of the positive and negative electrodes.
  • the combination of one or more of Y1 to Y6 is further combined with X1 and/or X2.
  • the battery includes a combination of X1 and Y1.
  • the battery includes a combination of X2 and Y1.
  • the non-aqueous electrolyte contains a high concentration of solute lithium salt
  • the high concentration of solute lithium salt is more conducive to enhancing the force between the solute and the solvent in the solution, and the free solvent molecules disappear, forming a new non-aqueous electrolytic solution.
  • Liquid that is, high-concentration non-aqueous electrolyte
  • ions such as lithium ions
  • it can better slow down the aging of the adhesive layer in the positive electrode termination tape after the positive electrode termination tape is soaked in non-aqueous electrolyte, so that it can still maintain good durability.
  • the working voltage range of the non-aqueous electrolyte widens, matching high-voltage cathode materials to achieve stable charge and discharge, and less flammable solvent molecules, which can alleviate the interaction between the electrolyte and the active oxygen generated by the cathode. reaction, improve battery life and safety.
  • the battery includes a combination of X1 and Y2.
  • the battery includes a combination of X2 and Y2.
  • fluoroethylene carbonate can have a better synergistic effect with the positive plate termination tape.
  • fluoroethylene carbonate belongs to carbonate compounds, has a high viscosity, a large intermolecular dipole moment, and strong polarity, and has poor compatibility with the termination glue layer in the positive electrode termination tape.
  • the intermolecular force of the termination adhesive layer can be strengthened after the positive electrode termination tape is soaked in the non-aqueous electrolyte, and the flow dispersion of the termination adhesive layer after soaking in the non-aqueous electrolyte can be suppressed, so that The termination adhesive layer maintains good viscosity, delays the aging failure of the positive electrode termination tape, prevents the termination adhesive layer from overflowing the positive electrode termination tape and covers the surface of the positive active material to cause plugging, and improves the battery core after high-temperature storage due to the positive electrode termination tape.
  • fluoroethyl carbonate can form a relatively strong SEI film on the surface of the positive and negative electrodes, stabilize the positive and negative electrode interfaces under high temperature and high pressure, reduce side reactions and the generation of hydrofluoric acid, and avoid the corrosion and damage of hydrofluoric acid to the termination rubber layer.
  • the battery includes a combination of X1 and Y3.
  • the battery includes a combination of X2 and Y3.
  • lithium difluorooxalate borate When the non-aqueous electrolyte contains lithium difluorooxalate borate, lithium difluorooxalate borate can adsorb and complex small molecular substances (such as Cl, SO 4 2- , HF, H 2 O, etc.) in the non-aqueous electrolyte, Slow down the aging of the adhesive layer in the termination tape of the positive electrode piece soaked in the non-aqueous electrolyte, so that it still maintains good resistance to multiple flexures and adhesion, and ensures that the constant elongation strength is still maintained under the immersion in the non-aqueous electrolyte , so that the glue layer maintains better stability and reduces the flow of the glue layer; while lithium difluorooxalate borate absorbs and complexes small molecular substances in the non-aqueous electrolyte, it can also enhance the positive electrode active material (such as cobalt and other metals) The protective effect of dissolution can delay the
  • the lithium difluorooxalate borate in the non-aqueous electrolyte can also form a strong electrode/electrolyte interface film on the surface of the positive and negative electrodes, optimize the insertion/extraction of ions on the surface of the positive and negative electrodes, and improve the cycle of the battery performance.
  • the battery includes a combination of X1 and Y4.
  • the battery includes a combination of X2 and Y4.
  • lithium difluorophosphate When lithium difluorophosphate is contained in the non-aqueous electrolyte, lithium difluorophosphate can have a better synergistic effect with the positive plate termination tape. Specifically, lithium difluorophosphate can absorb and complex more small molecular substances (such as Cl, SO 4 2- , HF, H 2 O, etc.)
  • the hydrolysis of the acrylic terminated adhesive layer in the tape can effectively increase the stability of the macromolecular cross-linking structure in the acrylic terminated adhesive layer, strengthen the molecular structure of the acrylic terminated adhesive layer, keep the acrylic terminated adhesive layer with good viscosity, and reduce liquefaction and flow , delay the aging failure of the positive terminal tape at high temperature, prevent the acrylic terminal layer from overflowing the positive terminal tape and cover the surface of the positive active material to cause plugging, and improve the batteries caused by the warping of the positive terminal tape after high-temperature storage Deformation, and at the same time improve the problem of lithium precipitation at the edge caused by plugging holes
  • the lithium difluorophosphate in the non-aqueous electrolyte is combined with the protonic acid in the non-aqueous electrolyte, which not only avoids the corrosion and damage of the acrylic acid stop glue layer by the protonic acid, but also avoids the damage of the protonic acid to the electrode material. Influence, and form an excellent electrode/electrolyte interface film on the positive and negative electrodes, optimize the insertion/extraction of ions (such as lithium ions) on the electrode surface, and improve the cycle performance of lithium secondary batteries.
  • the battery includes a combination of X1 and Y56.
  • the battery includes a combination of X2 and Y56.
  • 1,2-bis(cyanoethoxy)ethane and/or 1,2,3-tris(2-cyanoethoxy)propane 1,2-bis(cyanoethoxy) base) ethane and/or 1,2,3-tris(2-cyanoethoxy)propane can react at high temperature, the ether bond is broken to generate ⁇ (CH 2 ) 2 CN free radical, and the free radical is subjected to cyanide
  • the influence of radicals is relatively stable, which can more fully initiate the chain reaction of free radicals.
  • the positive electrode termination tape After the positive electrode termination tape is soaked in electrolyte, it can further cross-link and polymerize some macromonomers in the adhesive layer, which can Inhibit the molecular chain breakage of the cross-linked body in the terminated adhesive layer at high temperature, effectively increase the stability of the macromolecular cross-linked structure of the adhesive layer, strengthen the molecular structure of the adhesive layer, delay the aging failure of the positive electrode termination tape, and prevent the terminated adhesive layer from overflowing the positive electrode sheet
  • the tape is terminated and covered on the surface of the positive electrode active material to cause hole plugging, which improves the deformation of the battery cell caused by the warping of the positive electrode sheet termination tape, and at the same time improves the problem of edge lithium deposition caused by hole plugging during the cycle of the cell.
  • the N-containing groups in 1,2-bis(cyanoethoxy)ethane and/or 1,2,3-tris(2-cyanoethoxy)propane in the non-aqueous electrolyte can be Combined with the protonic acid in the electrolyte, it not only avoids the corrosion damage of the protonic acid to the termination glue layer, but also avoids the influence of the protonic acid on the electrode material, and forms an excellent electrode/electrolyte interface film on the positive electrode, optimizing the ion (such as lithium ions) intercalation/extraction on the electrode surface improves the cycle performance of the battery.
  • the battery includes a combination of X1 and/or X2 and two or more of Y1 to Y6 (see the combination examples listed above).
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer coated on one or both sides of the positive electrode current collector, and the positive electrode active material layer includes a positive electrode active material, a conductive agent and a binder.
  • the positive electrode active material is selected from lithium cobalt oxide or lithium cobalt oxide that has been doped and coated with two or more elements in Al, Mg, Mn, Cr, Ti, and Zr.
  • the chemical formula of lithium cobalt oxide coated with two or more elements in Cr, Ti, Zr is Li x Co 1-y1-y2-y3-y4 A y1 B y2 C y3 D y4 O 2 ; 0.95 ⁇ x ⁇ 1.05, 0.01 ⁇ y1 ⁇ 0.1, 0.01 ⁇ y2 ⁇ 0.1, 0 ⁇ y3 ⁇ 0.1, 0 ⁇ y4 ⁇ 0.1,
  • A, B, C, D are selected from two of Al, Mg, Mn, Cr, Ti, Zr or multiple elements.
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode active material layer coated on one or both sides of the negative electrode current collector, and the negative electrode active material layer includes a negative electrode active material, a conductive agent and a binder.
  • the negative electrode active material is selected from graphite or a graphite composite material containing 1-12 wt% SiO x /C or Si/C.
  • the charging cut-off voltage of the battery is 4.45V or above.
  • the battery is a lithium ion battery.
  • the components of the lithium-ion battery were prepared and assembled according to the manner in the following preparation examples.
  • a 1% sodium carboxymethylcellulose (CMC) binder and a 1.4% styrene-butadiene rubber (SBR) binder are made into a slurry by a wet process and coated on the negative electrode current collector copper foil After drying (temperature: 85° C., time: 5 h), rolling and die-cutting, negative electrode sheets of different sizes were obtained.
  • the batteries obtained in the examples and comparative examples were placed at room temperature for 3 charge-discharge cycle tests at a charge-discharge rate of 0.5C, and then charged to a fully charged state at a rate of 0.5C, and the highest discharge capacity Q of the first 3 cycles of 0.5C was recorded respectively.
  • 2 and cell thickness T 1 Store the fully charged battery at a set temperature (70°C or 85°C, see the examples of each group for details) for a certain period of time (see the examples of each group for details), and record the battery thickness T2 and 0.5C discharge capacity after the end Q 3 , calculate the experimental data such as the thickness change rate and capacity retention rate of the battery under high temperature storage, and record the results in the tables of each group.
  • the batteries obtained in the examples and comparative examples were heated at an initial temperature of 25 ⁇ 3°C with a convection method or a circulating hot air box, with a temperature change rate of 5 ⁇ 2°C/min, and the temperature was raised to 130 ⁇ 2°C, and the test was ended after keeping for 60 minutes. Record the battery status results in a table for each group.
  • 82 parts by weight of natural rubber, 24 parts by weight of styrene-butadiene rubber, 20 parts by weight of butyl rubber, 10 parts by weight of nitrile rubber, 28 parts by weight of terpene resin, and 16 parts by weight of antioxidant are added to the mixed solvent of 1500 parts by weight successively ( In ethyl ester, toluene, xylene with a mass ratio of 1:1:1, stir evenly at a temperature of 85°C to obtain a mixed solution, add 105 parts by weight of polyisobutylene rubber and 38 parts by weight of inorganic pigments to the mixed solution in sequence, and Stir evenly at a temperature of 80°C to further obtain a mixed solution, then add a certain amount of cross-linking agent vinylene carbonate to the mixed solution, stir evenly at room temperature, and coat the surface of the PET substrate after mixing evenly to prepare Get the positive tab termination tape.
  • the battery prepared by using the lithium salt concentration in the electrolyte in conjunction with the positive electrode sheet termination tape can effectively improve the high-temperature performance of the battery while solving the problem of the battery cycle.
  • 82 parts by weight of natural rubber, 24 parts by weight of styrene-butadiene rubber, 20 parts by weight of butyl rubber, 10 parts by weight of nitrile rubber, 28 parts by weight of terpene resin, and 16 parts by weight of antioxidant are added to the mixed solvent of 1500 parts by weight successively ( In ethyl ester, toluene, xylene with a mass ratio of 1:1:1, stir evenly at a temperature of 85°C to obtain a mixed solution, add 105 parts by weight of polyisobutylene rubber and 38 parts by weight of inorganic pigments to the mixed solution in sequence, and Stir evenly at a temperature of 80°C to further obtain a mixed solution, then add a certain amount of cross-linking agent vinylene carbonate to the mixed solution, stir evenly at room temperature, and coat the surface of the PET substrate after mixing evenly to prepare Get the positive tab termination tape.
  • 82 parts by weight of natural rubber, 24 parts by weight of styrene-butadiene rubber, 20 parts by weight of butyl rubber, 10 parts by weight of nitrile rubber, 28 parts by weight of terpene resin, and 16 parts by weight of antioxidant are added to the mixed solvent of 1500 parts by weight successively ( In ethyl ester, toluene, xylene with a mass ratio of 1:1:1, stir evenly at a temperature of 85°C to obtain a mixed solution, add 105 parts by weight of polyisobutylene rubber and 38 parts by weight of inorganic pigments to the mixed solution in sequence, and Stir evenly at a temperature of 80°C to further obtain a mixed solution, then add a certain amount of cross-linking agent vinylene carbonate to the mixed solution, stir evenly at room temperature, and coat the surface of the PET substrate after mixing evenly to prepare Get the positive tab termination tape.
  • the battery prepared by adding lithium difluorooxalate borate and the positive plate termination tape to the electrolyte can effectively improve the high temperature performance of the battery cell and solve the problem after the cell cycle.
  • 82 parts by weight of natural rubber, 24 parts by weight of styrene-butadiene rubber, 20 parts by weight of butyl rubber, 10 parts by weight of nitrile rubber, 28 parts by weight of terpene resin, and 16 parts by weight of antioxidant are added to the mixed solvent of 1500 parts by weight successively ( In ethyl ester, toluene, xylene with a mass ratio of 1:1:1, stir evenly at a temperature of 85°C to obtain a mixed solution, add 105 parts by weight of polyisobutylene rubber and 38 parts by weight of inorganic pigments to the mixed solution in sequence, and Stir evenly at a temperature of 80°C to further obtain a mixed solution, then add a certain amount of cross-linking agent vinylene carbonate to the mixed solution, stir evenly at room temperature, and coat the surface of the PET substrate after mixing evenly to prepare Get the positive tab termination tape.
  • the prepared battery can effectively improve the high temperature performance of the battery and solve the problem of lithium deposition at the edge of the electrode sheet after the battery cycle.
  • the battery of the present disclosure is a high voltage type battery and has excellent high temperature performance.
  • the material of the adhesive layer is further controlled, and through the synergistic effect of the positive electrode termination tape and the non-aqueous electrolyte, the high temperature performance of the battery cell can be effectively improved, and at the same time It can also solve the problem of lithium deposition on the edge of the pole piece after the battery cycle, and avoid the warping and deformation of the positive electrode termination tape when the battery is used in a high temperature environment, resulting in the failure of the high-temperature storage thickness of the battery cell and high-temperature cycle lithium deposition, and the glue in the positive electrode termination tape
  • the layer is easily soluble in the non-aqueous electrolyte, and the non-aqueous electrolyte is easy to redox and decompose at the interface of the positive and negative electrodes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Secondary Cells (AREA)

Abstract

本公开属于电池技术领域,具体涉及一种电池。所述电池包括正极片、负极片、非水电解液以及隔膜;所述非水电解液包括非水有机溶剂、锂盐和任选的电解液添加剂;所述正极片的涂膏尾部设置正极片终止胶带;所述正极片终止胶带的面积为A cm 2,所述正极片的宽度为C cm,其中,A与C的比值在1~3范围之间。所述电池能够有效提高制备得到的电池的电芯高温性能,同时还能解决电芯循环后极片边缘析锂的问题,避免电池在高温环境下使用时正极片终止胶带起翘变形导致电芯高温存储厚度失效和高温循环析锂、正极片终止胶带中的胶层易溶于非水电解液、以及非水电解液易在正负极界面氧化还原分解等问题。

Description

一种电池 技术领域
本公开属于电池技术领域,具体涉及一种电池。
技术背景
近年来,电池在智能手机、平板电脑、智能穿戴、电动工具和电动汽车等领域得到了广泛的应用。随着电池的广泛应用,消费者对电池能量密度和使用环境的要求不断提高,这就要求电池能够在高电压下具有优异的高温安全性能。
目前,电池在使用过程中存在安全隐患,例如当电池处于持续高温等一些极端使用情况下容易发生严重的安全事故,电芯变形起火甚至爆炸。因此提高电池的高温安全性能是十分重要的。
发明内容
本公开的目的是为提高电池的高温安全性能,提供一种新型的电池。该电池具有优异的高温安全性能,在高电压下也能够表现出很好的高温安全性能。
为实现上述目的,本公开提供了一种电池,所述电池包括正极片、负极片、非水电解液以及隔膜;所述非水电解液包括非水有机溶剂、锂盐和任选的电解液添加剂;所述正极片的涂膏尾部设置正极片终止胶带;所述正极片终止胶带的面积为Acm 2,所述正极片的宽度为C cm,其中,A与C的比值在1~3范围之间。
在一实例中,所述终止胶带包括基材及涂覆于该基材表面的终止胶层,所述终止胶层为橡胶终止胶层或(甲基)丙烯酸终止胶层。
在一实例中,所述终止胶层中包括碳酸亚乙烯酯。
在一实例中,以所述非水电解液的总重量为基准,所述锂盐的含量为B1mol/L,A与B1的比值在2~20的范围内。
在一实例中,所述电解液添加剂包括氟代碳酸乙烯酯,以所述非水电解液的总重量为基准,所述氟代碳酸乙烯酯的含量为B2wt%,A与B2的比值在0.5~5的范围内。
在一实例中,所述电解液添加剂包括二氟草酸硼酸锂,以所述非水电解液的总重量为基准,所述二氟草酸硼酸锂的含量为B3wt%,A与B3的比值在5~200的范围内。
在一实例中,所述电解液添加剂包括二氟磷酸锂,以所述非水电解液的总重量为基准,所述二氟磷酸锂的含量为B4wt%,A与B4的比值在5~200的范围内。
在一实例中,所述电解液添加剂包括1,2-双(氰乙氧基)乙烷和/或1,2,3-三(2-氰乙氧基)丙烷,以所述非水电解液的总重量为基准,所述1,2-双(氰乙氧基)乙烷和/或1,2,3-三(2-氰乙氧基)丙烷的含量为B56wt%,A与B56的比值在2~40的范围内。
在一实例中,所述电解液添加剂包括二氟草酸硼酸锂、氟代碳酸乙烯酯、二氟磷酸锂、1,2-双(氰乙氧基)乙烷和1,2,3-三(2-氰乙氧基)丙烷中的一种或两种及以上的组合。
在一实例中,所述电解液添加剂至少包括二氟草酸硼酸锂。
在一实例中,所述的电解液添加剂至少包括二氟磷酸锂。
在一实例中,所述电解液添加剂至少包括二氟磷酸锂。
在一实例中,所述电解液添加剂至少包括氟代碳酸乙烯酯。
在一实例中,所述电解液添加剂至少包括1,2-双(氰乙氧基)乙烷和/或1,2,3-三(2-氰乙氧基)丙烷。
在一实例中,所述电池包括以下组合(1)~(8)中的至少一种:
(1)以所述非水电解液的总重量为基准,所述锂盐的含量为B1mol/L,A与B1的比值在2~20的范围内,并且所述正极片终止胶带的终止胶层为橡胶终止胶层;
(2)以所述非水电解液的总重量为基准,所述锂盐的含量为B1mol/L,A与B1的比值在2~20的范围内,并且所述正极片终止胶带的终止胶层为(甲基)丙烯酸终止胶层;
(3)所述电解液添加剂包括氟代碳酸乙烯酯,以所述非水电解液的总重量为基准,所述氟代碳酸乙烯酯的含量为B2wt%,A与B2的比值在0.5~5的范围内,并且所述正极片终止胶带的终止胶层为(甲基)丙烯酸终止胶层;
(4)所述电解液添加剂包括氟代碳酸乙烯酯,以所述非水电解液的总重量为基准,所述氟代碳酸乙烯酯的含量为B2wt%,A与B2的比值在0.5~5的范围内,并且所述正极片终止胶带的终止胶层为橡胶终止胶层;
(5)所述电解液添加剂包括二氟草酸硼酸锂,以所述非水电解液的总重量为基准,所述二氟草酸硼酸锂的含量为B3wt%,A与B3的比值在5~200的范围内,并且所述正极片终止胶带的终止胶层为橡胶终止胶层;
(6)所述电解液添加剂包括二氟磷酸锂,以所述非水电解液的总重量为基准,所述二氟磷酸锂的含量为B4wt%,A与B4的比值在5~200的范围内,并且所述正极片终止胶带的终止胶层为(甲基)丙烯酸终止胶层;
(7)所述电解液添加剂包括1,2-双(氰乙氧基)乙烷和/或1,2,3-三(2-氰乙氧基)丙烷,以所述非水电解液的总重量为基准,所述1,2-双(氰乙氧基)乙烷和/或1,2,3-三(2-氰乙氧基)丙烷的含量为B56wt%,A与B56的比值在2~40的范围内,并且所述正极片终止胶带的终止胶层为(甲基)丙烯酸终止胶层;
(8)所述电解液添加剂包括1,2-双(氰乙氧基)乙烷和/或1,2,3-三(2-氰乙氧基)丙烷,以所述非水电解液的总重量为基准,所述1,2-双(氰乙氧基)乙烷和/或1,2,3-三(2-氰乙氧基)丙烷的含量为B56wt%,A与B56的比值在2~40的范围内,并且所述正极片终止胶带的终止胶层为橡胶终止胶层。
本公开的电池为高电压型电池且具有优异的高温性能。通过控制正极片终止胶带的尺寸,在优选的方案中进一步控制胶层的材料,并通过优化正极片终止胶带与非水电解液的关系并控制非水电解液中特定成分的选择和含量,能够有效解决正极片终止胶带中的胶层易溶于非水电解液以及非水电解液易在正负极界面氧化还原分解等问题,避免电池在高温环境下使用时正极片终止胶带起翘变形导致电芯高温存储厚度失效和高温循环析锂;从而能够有效提高制备得到的电池的电芯高温性能,同时还能解决电芯循环后极片边缘析锂的问题。
在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。
附图说明
图1为本公开一实例中正极片的结构示意图。
图2为本发明本公开另一实例中正极片的结构示意图。
图3为图2所述正极片的侧视图。
附图标记说明
1-正极片头部;2-正极片尾部;3-空箔区;4-正极片终止胶带;
5-一面正极涂膏尾部;6-一面正极片终止胶带;
7-另一面正极涂膏尾部;8-另一面正极片终止胶带。
具体实施方式
下文将结合具体实施例对本公开做更进一步的详细说明。应当理解,下列实施例仅为示例性地说明和解释本公开,而不应被解释为对本公开保护范围的限制。凡基于本公开上述内容所实现的技术均涵盖在本公开旨在保护的范围内。
本公开第一方面提供了一种电池,所述电池包括正极片、负极片、非水电解液以及隔膜;所述非水电解液包括非水有机溶剂、锂盐和任选的电解液添加剂;所述正极片的涂膏尾部设置正极片终止胶带;所述正极片终止胶带的面积为Ac m 2,所述正极片的宽度为C cm,其中,A与C的比值在1~3范围之间。
<正极片终止胶带>
通过在所述正极片的涂膏尾部设置正极片终止胶带,能够将电芯的尾部进行固定,同时覆盖住正极片切边的毛刺,防止电池短路,起到绝缘保护的作用。然而申请人发现,在高温高压下终止胶带容易发生局部变形起翘的现象,当变形起翘达到一定程度会产生短路风险。由此,申请人对终止胶带的尺寸做了深入研究,发现了当终止胶带的面积与正极片的宽度的比值在1~3范围之间时,能够更加合理地覆盖在涂膏和空箔表面,将变形起翘引发的短路风险控制在较低的程度。
在本公开中,术语“正极片终止胶带”是指设置在正极片中正极集流体表面的涂膏(如正极活性物质层)尾部的胶带。如附图所示,图1和图2分别示意了两种实例的正极片的结构图(极耳的位置不同),其中1表示正极片头部;2表示正极片尾部;3表示空箔区。在电池中,正极片终止胶带的数量为两个,即在正极片中正极集流体两侧表面均设置一个正极片终止胶带,如图3所示,其中5表示一面正极涂膏尾部;6表示一面正极片终止胶带;7表示另一面正极涂膏尾部;8表示另一面正极片终止胶带。从图3中可以看出,所述正极片终止胶带6和8的一部分覆盖住正极集流体表面的涂膏5和7,一部分覆盖住正极集流体表面(即正极集流体表面的空箔3)。其中,正极片终止胶带4、6或8同时覆盖住了部分涂膏和部分空箔;如图1所示,正极片终止胶带4中间有竖线分隔(该竖线为涂膏和空箔的交界使正极片终止胶带产生的折痕),该竖线左侧为覆盖涂膏的区域(覆盖住了部分正极片尾部2),该竖线的右侧为覆盖空箔的区域。
所述正极片终止胶带的面积A是指在正极片中正极集流体一侧表面设置的正极片终止胶带的面积。在一实例中在正极片中正极集流体两侧表面设置的正极片终止胶带的面积相同。
示例性地,所述A与C的比值为1、1.1、1.2、1.3、1.4、1.5、1.6、1.7、1.8、1.9、2、2.1、2.2、2.3、2.4、2.5、2.6、2.7、2.8、2.9、3或上述两两端点组成的范围内的任意点值。
在一实例中,A与C的比值在1.6-2.2范围之间。
所述正极片终止胶带的面积A可以根据正极片大小、实际需要和A与C比值进行调整,例如在3cm 2~120cm 2范围之间;示例性地,所述正极片终止胶带的面积A为3cm 2、5cm 2、10cm 2、20cm 2、30cm 2、40cm 2、50cm 2、60cm 2、70cm 2、80cm 2、90cm 2、100cm 2、120cm 2或上述两两端点组成的范围内的任意点值。
所述正极片的宽度C可以根据电池大小、实际需要和AC比值进行调整,例如在1cm~120cm范围之间;示例性地,所述正极片的宽度C为1cm、3cm、5cm、6cm、8cm、10cm、16cm、20cm、30cm、40cm、50cm、60cm、70cm、80cm、90cm、100cm、110cm、120cm或上述两两端点组成的范围内的任意点值。
申请人发现,终止胶带发生局部变形起翘的现象的一个重要原因在于胶层在高温高压下容易溶解于电解液。因此为了降低终止胶带受电解液的影响以进一步降低终止胶带变形起翘引发的短路风险,申请人对终止胶带的胶层的材料进行了深入研究。
在一实例中,所述终止胶带包括基材及涂覆于该基材表面的终止胶层。
所述基材可以为本领域常规的用作终止胶带的基材,例如为PET(Polyethylene terephthalate)。
在一实例中,所述终止胶层采用本领域常规的材料。
在一优选的实例中,所述终止胶层为橡胶终止胶层和/或(甲基)丙烯酸终止胶层。
在第X1种实施方式中,所述终止胶层为橡胶终止胶层。
在所述第X1种实施方式中,所述橡胶终止胶层中包括交联改性橡胶。
所述交联改性橡胶为第一基底在第一交联剂的作用下发生交联改性而得到,所述第一基底为橡胶基底,例如选自天然橡胶、丁苯橡胶、聚异丁烯橡胶、丁基橡胶、丁腈橡胶等中的至少一种。
在一实例中,所述第一交联剂包括碳酸亚乙烯酯。碳酸亚乙烯酯能够参与橡胶交联聚合,起到防龟裂作用,使橡胶终止胶层更耐高温高压,稳定胶层结构,进一步提升电芯高温性能。
在一实例中,以所述交联改性橡胶的总重量为基准,其中所述碳酸亚乙烯酯的含量为0.5~5wt%,例如为0.5wt%、0.6wt%、0.7wt%、0.8wt%、0.9wt%、1wt%、1.2wt%、1.5wt%、1.8wt%、2wt%、2.5wt%、3wt%、3.5wt%、3.8wt%、4wt%、4.5wt%或5wt%。
在第X2种实施方式中,所述终止胶层为(甲基)丙烯酸终止胶层。
在所述第X2种实施方式中,所述(甲基)丙烯酸终止胶层包括交联改性的(甲基)丙烯酸和/或交联改性的(甲基)丙烯酸酯。
在一实例中,所述(甲基)丙烯酸酯选自(甲基)丙烯酸C1~C10烷基酯,示例性地选自丙烯酸异辛酯、丙烯酸正丁酯、丙烯酸甲酯、丙烯酸乙酯、丙烯酸正丙酯等中的至少一种。
在本公开中,“(甲基)丙烯酸”和“(甲基)丙烯酸酯”中的“(甲基)”表示可以存在也可以不存在,即所述(甲基)丙烯酸终止胶层包括交联改性的甲基丙烯酸、交联改性的丙烯酸、交联改性的甲基丙烯酸酯和交联改性的丙烯酸酯中的至少一种。
所述(甲基)丙烯酸终止胶层为第二基底在第二交联剂的作用下发生交联改性而得到,所述第二基底选自甲基丙烯酸、丙烯酸、甲基丙烯酸酯和丙烯酸酯中的至少一种。
在一实例中,所述第二交联剂包括碳酸亚乙烯酯。碳酸亚乙烯酯能够参与丙烯酸交联聚合,使丙烯酸终止胶层含有碳酸乙酯结构支链,使其更耐高温高压,稳定胶层结构,进一步提升电芯高温性能。
在一实例中,以所述交联改性(甲基)丙烯酸和/或交联改性的(甲基)丙烯酸酯的总重量为基准,所述碳酸亚乙烯酯的含量为0.5~5wt%,例如为0.5wt%、0.6wt%、0.7wt%、0.8wt%、0.9wt%、1wt%、1.2wt%、1.5wt%、1.8wt%、2wt%、2.5wt%、3wt%、3.5wt%、3.8wt%、4wt%、4.5wt%或5wt%。
在所述第X1种和第X2种实施方式中,所述终止胶层中还可以含有助剂等其它常规成分。所述助剂例如选自抗氧剂、无机填料等中的至少一种。
所述抗氧剂可以为常规使用的适合于主成分(如交联改性橡胶,或,交联改性的(甲基)丙烯酸和/或交联改性的(甲基)丙烯酸酯)的抗氧剂。
所述无机填料可以为常规使用的适合于主成分的无机填料。
在第X0种实施方式中,所述终止胶层中既不含有交联改性橡胶也不含有交联改性的(甲基)丙烯酸和/或交联改性的(甲基)丙烯酸酯,而为其它的本领域常规的终止胶层材料。
在一实例中,所述正极片终止胶带的厚度为8μm~20μm,示例性地为8μm、9μm、10μm、11μm、12μm、13μm、14μm、15μm、16μm、17μm、18μm、19μm、20μm。
<电解液中的锂盐>
申请人还发现,电解液也是影响电池在高温高压下安全性能的重要因素,可能的原因在于现有技术的电解液在高温高电压下易分解,在正负极表面发生氧化还原分解破坏SEI膜,致使电芯阻抗不断增加,劣化电芯性能。由此,申请人对电解液的成分进行了深入研究。
所述非水电解液包括非水有机溶剂、锂盐和任选的电解液添加剂。申请人发现,通过控 制锂盐的含量和/或通过使用特定含量及成分的电解液添加剂,能够使得非水电解液在高温高压下性能更加稳定。
在第Y1种实施方式中,对锂盐的浓度进行特别的控制。以所述非水电解液的总重量为基准,所述锂盐的含量记为B1mol/L。
在一实例中,A与B1的比值在2~20的范围内。示例性地,所述A与B1的比值为2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20或上述两两端点组成的范围中的任意点值。
在本公开中,“在a~b的范围内”表示包括a和b这两个端点值以及ab之间的任意数值。
在一实例中,所述锂盐的含量B1为1mol/L~6mol/L,例如为1mol/L、1.5mol/L、2mol/L、2.5mol/L、3mol/L、3.5mol/L、4mol/L、5mol/L或6mol/L。
在一实例中,所述锂盐的浓度B1为1.5mol/L~3mol/L。本公开的锂盐浓度相对于现有技术普遍使用的锂盐浓度(通常在1.2mol/L以下)偏高。
优选地,所述锂盐选自双三氟甲基磺酰亚胺锂、双氟磺酰亚胺锂和六氟磷酸锂中的至少一种。
在本公开中,“任选的”表示可以存在也可以不存在。例如“任选的电解液添加剂”表示非水电解液中可以含有电解液添加剂也可以不含有电解液添加剂。
在一实例中,所述非水电解液中不含有所述电解液添加剂。
在一实例中,所述非水电解液中含有所述电解液添加剂。
<电解液中的电解液添加剂>
在第Y2种实施方式中,所述电解液添加剂包括氟代碳酸乙烯酯。以所述非水电解液的总重量为基准,所述氟代碳酸乙烯酯的含量记为B2wt%。
在一实例中,A与B2的比值在0.5~5的范围内。示例性地,所述A与B2的比值为0.5、0.8、1、1.2、1.4、1.5、1.8、2、2.2、2.5、2.8、3、3.2、3.5、3.8、4、4.5、5或上述两两端点组成的范围中的任意点值。
在一实例中,所述氟代碳酸乙烯酯的含量B2为5~30wt%,例如为5wt%、6wt%、7wt%、8wt%、9wt%、10wt%、12wt%、15wt%、18wt%、20wt%、22wt%、25wt%、28wt%或30wt%。
在一实例中,所述氟代碳酸乙烯酯的含量为5~10wt%。
在第Y3种实施方式中,所述电解液添加剂包括二氟草酸硼酸锂。以所述非水电解液的总重量为基准,所述二氟草酸硼酸锂的含量记为B3wt%。
在一实例中,A与B3的比值在5~200的范围内。示例性地,所述A与B3的比值为5、10、15、20、25、30、40、50、60、80、100、120、150、180、200或上述两两端点组成的范围中的任意点值。
在一实例中,所述二氟草酸硼酸锂的含量B3为0.1~3wt%,例如为0.1wt%、0.2wt%、0.3wt%、0.4wt%、0.5wt%、0.6wt%、0.7wt%、0.8wt%、0.9wt%、1wt%、1.2wt%、1.5wt%、1.8wt%、2wt%、2.2wt%、2.5wt%、2.8wt%或3wt%。
在一实例中,所述二氟草酸硼酸锂的含量B3为0.2~1wt%。
在第Y4种实施方式中,所述电解液添加剂包括二氟磷酸锂。以所述非水电解液的总重量为基准,所述二氟磷酸锂的含量记为B4wt%。
在一实例中,A与B4的比值在5~200的范围内。示例性地,所述A与B4的比值为5、10、15、20、25、30、40、50、60、80、100、120、150、180、200或上述两两端点组成的范围中的任意点值。
在一实例中,所述二氟磷酸锂的含量B4为0.1~3wt%,例如为0.1wt%、0.2wt%、0.3wt%、0.4wt%、0.5wt%、0.6wt%、0.7wt%、0.8wt%、0.9wt%、1wt%、1.2wt%、1.5wt%、1.8wt%、2wt%、2.2wt%、2.5wt%、2.8wt%或3wt%。
在一实例中,所述二氟磷酸锂的含量B4为0.2~1wt%。
在第Y5种实施方式中,所述电解液添加剂包括1,2-双(氰乙氧基)乙烷。以所述非水电解液的总重量为基准,所述1,2-双(氰乙氧基)乙烷的含量记为B5wt%。
在一实例中,A与B5的比值在2~40的范围内。示例性地,所述A与B5的比值为2、3、4、5、6、7、8、9、10、15、20、25、30、35、40或上述两两端点组成的范围中的任意点值。
在一实例中,所述1,2-双(氰乙氧基)乙烷的含量B5为0.5~3wt%,例如为0.5wt%、0.6wt%、0.7wt%、0.8wt%、0.9wt%、1wt%、1.2wt%、1.5wt%、1.8wt%、2wt%、2.2wt%、2.5wt%、2.8wt%或3wt%。
在一实例中,所述1,2-双(氰乙氧基)乙烷的含量B5为1~2wt%。
在第Y6种实施方式中,所述电解液添加剂包括1,2,3-三(2-氰乙氧基)丙烷。以所述非水电解液的总重量为基准,所述1,2,3-三(2-氰乙氧基)丙烷的含量记为B6wt%。
在一实例中,A与B6的比值在2~40的范围内。示例性地,所述A与B6的比值为2、3、4、5、6、7、8、9、10、15、20、25、30、35、40或上述两两端点组成的范围中的任意点值。
在一实例中,所述包括1,2,3-三(2-氰乙氧基)丙烷的含量B6为0.5~3wt%,例如为0.5wt%、0.6wt%、0.7wt%、0.8wt%、0.9wt%、1wt%、1.2wt%、1.5wt%、1.8wt%、2wt%、2.2wt%、2.5wt%、2.8wt%或3wt%。
在一实例中,所述包括1,2,3-三(2-氰乙氧基)丙烷的含量B6为1~2wt%。
所述电解液添加剂中除了上述Y2~Y6的具体实施方式中所限定的主要成分,还可以含有其它成分,示例性地选自1,3-丙磺酸内酯、1,3-丙烯磺酸内酯、亚硫酸乙烯酯、硫酸乙烯酯、二草酸硼酸锂、二氟草酸磷酸锂和乙烯基碳酸乙烯酯中的至少一种。
在一实例中,以所述非水电解液的总重量为基准,所述电解液添加剂的总含量0~10wt%,例如为1wt%、2wt%、3wt%、4wt%、5wt%、6wt%、7wt%、8wt%、9wt%、10wt%。当含量为0wt%时,表示所述非水电解液中不含有所述电解液添加剂。
<电解液中成分间的组合方式>
根据本公开,所述非水电解液中所述锂盐和所述电解液添加剂的各种实施方式可以以任意方式进行组合。本公开中上述所示例的第Y1种实施方式(对锂盐进行的限定)和第Y2~Y6种实施方式(对电解液添加剂进行的限定)这6种实施方式之间可以以任意方式进行组合,并任选地加入或不加入其它电解液添加剂。
所述电解液添加剂的成分之间可以进行各种组合。在满足上述电解液添加剂的总重量占所述非水电解液的含量范围的条件下,各种组合方式均能够实现较好的效果。
根据一种具体实施方式,将Y5与Y6作为一种新的组合,计为Y56。
在第Y56种实施方式中,所述电解液添加剂包括1,2-双(氰乙氧基)乙烷和/或1,2,3-三(2-氰乙氧基)丙烷。即该第Y56种实施方式包括所述第Y5种实施方式、第Y6种实施方式,还包括Y5和Y6组合时的实施方式。
在第Y56种实施方式中,当1,2-双(氰乙氧基)乙烷或1,2,3-三(2-氰乙氧基)丙烷单独存在时,即为第Y5种或第Y6种实施方式,在此不再赘述。
在第Y56种实施方式中,当1,2-双(氰乙氧基)乙烷和1,2,3-三(2-氰乙氧基)丙烷同时存在时,以所述非水电解液的总重量为基准,所述1,2-双(氰乙氧基)乙烷和1,2,3-三(2-氰乙氧基)丙烷的含量记为B56wt%。
在一实例中,A与B56的比值在2~40的范围内。示例性地,所述A与B56的比值为2、3、4、5、6、7、8、9、10、15、20、25、30、35、40或上述两两端点组成的范围中的任意点值。
在一实例中,所述1,2-双(氰乙氧基)乙烷和1,2,3-三(2-氰乙氧基)丙烷的总含量B56为0.5~3wt%,例如为0.5wt%、0.6wt%、0.7wt%、0.8wt%、0.9wt%、1wt%、1.2wt%、1.5wt%、1.8wt%、2wt%、2.2wt%、2.5wt%、2.8wt%或3wt%。
在一实例中,所述1,2-双(氰乙氧基)乙烷和1,2,3-三(2-氰乙氧基)丙烷的总含量B56为1~ 2wt%。
在本公开中,“比值”通常是指用两个参数的数字部分计算比例。
在一实例中,所述电解液添加剂至少包括二氟草酸硼酸锂。
在一实例中,所述的电解液添加剂至少包括二氟磷酸锂。
在一实例中,所述电解液添加剂至少包括二氟磷酸锂。
在一实例中,所述电解液添加剂至少包括氟代碳酸乙烯酯。
在一实例中,所述电解液添加剂至少包括1,2-双(氰乙氧基)乙烷和/或1,2,3-三(2-氰乙氧基)丙烷。
在一实例中,所述电解液添加剂包括Y2与Y3的组合。
在一实例中,所述电解液添加剂包括Y2与Y4的组合。
在一实例中,所述电解液添加剂包括Y2与Y56的组合。
在一实例中,所述电解液添加剂包括Y3与Y4的组合。
在一实例中,所述电解液添加剂包括Y3与Y56的组合。
在一实例中,所述电解液添加剂包括Y4与Y56的组合。
在一实例中,所述电解液添加剂包括Y2、Y3和Y4的组合。
在一实例中,所述电解液添加剂包括Y2、Y3和Y56的组合。
在一实例中,所述电解液添加剂包括Y2、Y4和Y56的组合。
在一实例中,所述电解液添加剂包括Y3、Y4和Y56的组合。
在一实例中,所述电解液添加剂包括Y2、Y3、Y4和Y56的组合。
所述非水电解液中一定含有所述锂盐,任选地含有所述电解液添加剂。
根据一种实施方式,所述非水电解液可以只包括所述Y1。
根据另一种实施方式,所述非水电解液可以只包括所述Y2~Y6以及它们之间的组合(即锂盐含量可以不符合Y1中的限定)。
根据又一种实施方式,所述非水电解液可以同时包括Y1与Y2~Y6及其内部组合。
在一实例中,所述非水电解液包括Y1与Y2的组合。
在一实例中,所述非水电解液包括Y1与Y3的组合。
在一实例中,所述非水电解液包括Y1与Y4的组合。
在一实例中,所述非水电解液包括Y1与Y56的组合。
在一实例中,所述非水电解液包括Y1以及Y2与Y3的组合。
在一实例中,所述非水电解液包括Y1以及Y2与Y4的组合。
在一实例中,所述非水电解液包括Y1以及Y2与Y56的组合。
在一实例中,所述非水电解液包括Y1以及Y3与Y4的组合。
在一实例中,所述非水电解液包括Y1以及Y3与Y56的组合。
在一实例中,所述非水电解液包括Y1以及Y4与Y56的组合。
在一实例中,所述非水电解液包括Y1以及Y2、Y3和Y4的组合。
在一实例中,所述非水电解液包括Y1以及Y2、Y3和Y56的组合。
在一实例中,所述非水电解液包括Y1以及Y2、Y4和Y56的组合。
在一实例中,所述非水电解液包括Y1以及Y3、Y4和Y56的组合。
在一实例中,所述非水电解液包括Y1以及Y2、Y3、Y4和Y56的组合。
上述组合方式不限制其它电解液添加剂的存在。
所述非水电解液中还含有非水有机溶剂,所述非水有机溶剂可以为本领域常规的有机溶剂,例如选自碳酸酯、羧酸酯和氟代醚中的至少一种。其中,所述的碳酸酯例如选自碳酸乙烯酯、碳酸丙烯酯、碳酸二甲酯、碳酸甲乙酯、碳酸二乙酯、碳酸甲丙酯中的一种或多种组合。所述的羧酸酯例如选自丙酸乙酯、丙酸丙酯中的一种或多种组合。所述的氟代醚例如选自1,1,2,3-四氟乙基-2,2,3,3-四氟丙基醚。
在一实例中,所述非水有机溶剂包括碳酸乙烯酯(EC)、碳酸丙烯酯(PC)、丙酸丙酯(PP)、1,1,2,3-四氟乙基-2,2,3,3-四氟丙基醚以重量比(1-3):(0.5-2):(2-4):(1-3)的组合。
<电解液与正极终止胶带之间的组合方式>
根据本公开,通过对正极片终止胶带的尺寸进行特别的限定能够降低终止胶带变形起翘引发的短路风险。在优选方案中,通过进一步限定正极片终止胶带上终止胶层的材料能够进一步减少胶层在高温高压下容易溶解于电解液的现象,从而进一步降低终止胶带变形起翘引发的短路风险。
在满足对正极终止胶带的限定的情况下,可以不进一步满足上述Y1~Y6,也能够实现较好的效果。
在优选的方案中,Y1~Y6对电解液的限定能够与上面正极片终止胶带的限定(尤其是终止胶层材料的限定)起到协同作用,从而能够有效提高制备得到的电池的电芯高温性能,同时还能解决电芯循环后极片边缘析锂的问题,避免电池在高温环境下使用时正极片终止胶带起翘变形导致电芯高温存储厚度失效和高温循环析锂、正极片终止胶带中的胶层易溶于非水电解液、以及非水电解液易在正负极界面氧化还原分解等问题。
因此,在优选方案中,将Y1~Y6中的一种或多种的组合与X1和/或X2进行进一步组合。
在一实例中,所述电池包括X1与Y1的组合。
在一实例中,所述电池包括X2与Y1的组合。
当非水电解液中含有高浓度的溶质锂盐时,高浓度的溶质锂盐更利于增强溶液中的溶质与溶剂间的作用力,自由态的溶剂分子消失,形成一种新的非水电解液,即高浓度非水电解液,在当前比例下更有利于非水电解液形成特定的三维网络结构,离子(如锂离子)与有限的自由态的溶剂分子和阴离子形成配位,显著区别于以自由态溶剂分子为主体的常规低浓度电解液,可以更好的减缓正极片终止胶带浸泡在非水电解液后正极片终止胶带中的胶层的老化,使其仍然保持良好的耐多次挠曲性和粘结力,确保在非水电解液浸泡下仍维持定伸强力,延缓正极片终止胶带的老化失效,避免胶层溢出正极片终止胶带并覆盖在正极活性物质表面造成堵孔,改善由于正极片终止胶带起翘导致的电芯变形,同时改善电芯循环过程中由于堵孔导致的边缘析锂等问题。进一步地,随着锂盐浓度的增加,非水电解液的工作电压范围变宽,匹配高电压正极材料实现稳定充放电,可燃性溶剂分子较少,可缓解电解液与正极产生的活性氧的反应,提高电池的寿命及安全性。
在一实例中,所述电池包括X1与Y2的组合。
在一实例中,所述电池包括X2与Y2的组合。
当非水电解液中含有氟代碳酸乙烯酯时,氟代碳酸乙烯酯能够与正极片终止胶带之间有较好的协同作用。具体地,氟代碳酸乙烯酯属于碳酸酯类化合物,粘度较大,分子间偶极距大,极性强,与正极片终止胶带中的终止胶层的相容性较差,当A与B2的比值在0.5~5范围之间时,可在正极片终止胶带浸泡于非水电解液后强化终止胶层的分子间作用力,抑制终止胶层浸泡在非水电解液后的流动分散,使得终止胶层保持较好的粘性,延缓正极片终止胶带的老化失效,避免终止胶层溢出正极片终止胶带并覆盖在正极活性物质表面造成堵孔,改善电芯高温存储后因正极片终止胶带起翘导致的电芯变形,同时改善电芯循环过程中由于堵孔导致的边缘析锂等问题。同时氟代碳酸乙酯可在正负极表面形成较为坚固的SEI膜,稳定高温高压下正负极界面,减少副反应以及氢氟酸的生成,避免氢氟酸对终止胶层的腐蚀破坏,进一步减缓正极片终止胶带浸泡在非水电解液中终止胶层的老化失效,避免终止胶层溢出正极片终止胶带并覆盖在正极活性物质表面造成堵孔,改善电芯高温存储后因正极片终止胶带起翘导致的电芯变形,同时改善电芯循环过程中由于堵孔导致的边缘析锂等问题。
在一实例中,所述电池包括X1与Y3的组合。
在一实例中,所述电池包括X2与Y3的组合。
当非水电解液中含有二氟草酸硼酸锂时,二氟草酸硼酸锂能够吸附和络合非水电解液中的小分子物质(如Cl、SO 4 2-、HF、H 2O等),减缓浸泡在非水电解液中的正极片终止胶带中的胶层的老化,使其仍然保持良好的耐多次挠曲性和粘结力,确保在非水电解液浸泡下仍维持定伸强力,使胶层保持较好的稳定性,减少胶层的流动;二氟草酸硼酸锂吸附和络合非水电解液中的小分子物质的同时还可以增强对正极活性物质(如钴等金属)溶出的防护作用,延缓正极片终止胶带在高温下老化失效,避免终止胶层溢出正极片终止胶带并覆盖在正极活性物质表面造成堵孔,改善电芯高温存储后因正极片终止胶带起翘导致的电芯变形,同时改善电芯循环过程中由于堵孔导致的边缘析锂等问题。进一步地,所述非水电解液中的二氟草酸硼酸锂还可以在正负极表面形成坚固的电极/电解液界面膜,优化离子在正负极表面的嵌入/脱出,提高了电池的循环性能。
在一实例中,所述电池包括X1与Y4的组合。
在一实例中,所述电池包括X2与Y4的组合。
当非水电解液中含有二氟磷酸锂时,二氟磷酸锂能够与正极片终止胶带能有更好的协同作用。具体地,二氟磷酸锂能够更多的吸附和络合电解液中的小分子物质(如Cl、SO 4 2-、HF、H 2O等),以抑制浸泡非水电解液后正极片终止胶带中丙烯酸终止胶层的水解,从而有效增加丙烯酸终止胶层中大分子交联结构的稳定性,强化丙烯酸终止胶层的分子结构,使丙烯酸终止胶层保持较好的粘性,减少液化和流动,延缓正极片终止胶带在高温下老化失效,避免丙烯酸终止胶层溢出正极片终止胶带并覆盖在正极活性物质表面造成堵孔,改善电芯高温存储后因正极片终止胶带起翘导致的电芯变形,同时改善电芯循环过程中由于堵孔导致的边缘析锂等问题。进一步地,所述非水电解液中的二氟磷酸锂与非水电解液中的质子酸相结合,不仅避免了质子酸对丙烯酸终止胶层的腐蚀损坏,还可以避免质子酸对电极材料的影响,并在正负极形成优异的电极/电解液界面膜,优化离子(如锂离子)在电极表面的嵌入/脱出,提高了锂二次电池的循环性能。
在一实例中,所述电池包括X1与Y56的组合。
在一实例中,所述电池包括X2与Y56的组合。
当非水电解液中含有1,2-双(氰乙氧基)乙烷和/或1,2,3-三(2-氰乙氧基)丙烷时,1,2-双(氰乙氧基)乙烷和/或1,2,3-三(2-氰乙氧基)丙烷能够在高温下发生反应,醚键断裂生成·(CH 2) 2CN自由基,且该自由基受氰基的影响较为稳定,可更充分的引发自由基的链反应,在正极片终止胶带经过电解液浸泡后,可以使得胶层中的一些大分子单体之间的进行进一步的交联聚合,能够抑制高温下终止胶层中交联体的分子链断裂,有效增加胶层大分子交联结构的稳定性,强化胶层分子结构,延缓正极片终止胶带的老化失效,避免终止胶层溢出正极片终止胶带并覆盖在正极活性物质表面造成堵孔,改善由于正极片终止胶带起翘导致的电芯变形,同时改善电芯循环过程中由于堵孔导致的边缘析锂等问题。进一步地,所述非水电解液中的1,2-双(氰乙氧基)乙烷和/或1,2,3-三(2-氰乙氧基)丙烷中含N的基团可与电解液中的质子酸相结合,不仅避免了质子酸对终止胶层的腐蚀损坏,还可以避免质子酸对电极材料的影响,并在正极形成优异的电极/电解液界面膜,优化离子(如锂离子)在电极表面的嵌入/脱出,提高了电池的循环性能。
根据一种实施方式,所述电池包括X1和/或X2与Y1~Y6中两项或两项以上(见上述列举的组合实例)的组合。
<电池的其它部件>
所述电池的其它部件和要素均可以按照本领域常规的方式设置。
在一实例中,所述正极片包括正极集流体和涂覆在正极集流体一侧或两侧表面的正极活性物质层,所述正极活性物质层包括正极活性物质、导电剂和粘结剂。
所述的正极活性物质选自钴酸锂或经过Al、Mg、Mn、Cr、Ti、Zr中两种或多种元素掺杂 包覆处理的钴酸锂,所述经过Al、Mg、Mn、Cr、Ti、Zr中两种或多种元素掺杂包覆处理的钴酸锂的化学式为Li xCo 1-y1-y2-y3-y4A y1B y2C y3D y4O 2;0.95≤x≤1.05,0.01≤y1≤0.1,0.01≤y2≤0.1,0≤y3≤0.1,0≤y4≤0.1,A、B、C、D选自Al、Mg、Mn、Cr、Ti、Zr中两种或多种元素。
在一实例中,所述负极片包括负极集流体和涂覆在负极集流体一侧或两侧表面的负极活性物质层,所述负极活性物质层包括负极活性物质、导电剂和粘结剂。
在一实例中,所述的负极活性物质选自石墨或含1~12wt%SiO x/C或Si/C的石墨复合材料。
在一实例中,所述电池的充电截止电压在4.45V及以上。
在一实例中,所述电池为锂离子电池。
<实施例>
下述实施例中所使用的实验方法如无特殊说明,均为常规方法;下述实施例中所用的试剂、材料等,如无特殊说明,均可从商业途径得到。
在以下实施例和对比例中,在没有特别说明的情况下,按照如下制备例中的方式准备锂离子电池的各部件并进行组装。
制备例
(1)正极片制备
将正极活性物质LiCoO 2、粘结剂聚偏氟乙烯(PVDF)、导电剂乙炔黑按照重量比97.2:1.3:1.5进行混合,加入N-甲基吡咯烷酮(NMP),在真空搅拌机作用下搅拌,直至混合体系成均一流动性的正极浆料;将正极浆料均匀涂覆于厚度为9~12μm的铝箔上;将上述涂覆好的铝箔在5段不同温度梯度的烘箱烘烤后,再将其在120℃的烘箱干燥8h,然后经过辊压、分切得到所需的不同尺寸的正极片,具体极片宽度见各组实施例。
(2)正极片终止胶带的制备
见各组实施例。
(3)负极片制备
将质量占比为96.5%的人造石墨负极材料,质量占比为0.1%的单壁碳纳米管(SWCNT)导电剂、质量占比为1%的导电炭黑(SP)导电剂、质量占比为1%的羧甲基纤维素钠(CMC)粘结剂及质量占比为1.4%的丁苯橡胶(SBR)粘结剂以湿法工艺制成浆料,涂覆于负极集流体铜箔的表面,经烘干(温度:85℃,时间:5h)、辊压和模切得到不同尺寸的负极片。
(4)非水电解液制备
见各组实施例。
(5)隔膜的制备
选用7~9μm厚的聚乙烯隔膜。
(6)锂离子电池的制备
将上述准备的正极片、隔膜、负极片通过卷绕,在正极片收尾处贴正极片终止胶带(正极集流体两侧的正极片终止胶带的面积相同),得到未注液的裸电芯;将裸电芯置于外包装箔中,将上述制备好的电解液注入到干燥后的裸电芯中,经过真空封装、静置、化成、整形、分选等工序,获得所需的锂离子电池。
将各组所得的实施例和对比例的电池分别按照如下测试例中所示的方法进行测试。
测试例
(1)45℃循环实验
将实施例和对比例所得电池置于(45±2)℃环境中,静置2-3个小时,待电池本体达到(45±2)℃时,电池按照1C恒流充电截止电流为0.05C,电池充满电后搁置5min,再以0.7C恒 流放电至截止电压3.0V,记录前3次循环的最高放电容量为初始容量Q,当循环达到400次数时,记录电池的最后一次的放电容量Q 1,并拆解循环400T电池记录电池边缘是否析锂,将结果记录于各组的表中。
其中用到的计算公式如下:容量保持率(%)=Q 1/Q×100%。
(2)高温存储测试
将实施例和对比例所得电池置于室温下以0.5C的充放电倍率进行3次充放电循环测试,然后0.5C倍率充到满电状态,分别记录前3次0.5C循环的最高放电容量Q 2和电池厚度T 1。将满电状态的电池在设定温度(70℃或85℃,具体见各组实施例)下存储一定时间(具体见各组实施例),记录结束后的电池厚度T 2和0.5C放电容量Q 3,计算得到电池高温存储的厚度变化率和容量保持率等实验数据,将结果记录于各组的表中。
其中用到的计算公式如下:容量保持率(%)=Q 3/Q 2×100%;厚度变化率(%)=(T 2-T 1)/T 1×100%。
(3)130℃热冲击实验
将实施例和对比例所得电池用对流方式或循环热空气箱以起始温度25±3℃进行加热,温变率5±2℃/min,升温至130±2℃,保持60min后结束试验,记录电池状态结果于各组的表中。
以下各组实施例分别对正极终止胶带和/或非水电解液进行调整。这些实施例仅用于示例性地说明本公开的组合方式,并不用于限制优选的组合方式。本领域技术人员能够基于这些组合方式推测出其它各种组合方式的良好效果。
第I组实施例
该组实施例用于示例[X1+Y1]的组合。
(1)正极片终止胶带的制备
将天然橡胶82重量份、丁苯橡胶24重量份、丁基橡胶20重量份、丁腈橡胶10重量份、萜烯树脂28重量份、防老剂16重量份依次加入到1500重量份的混合溶剂(质量比为1:1:1的乙酯、甲苯、二甲苯)中,在85℃温度下搅拌均匀,得到混合液,将聚异丁烯橡胶105重量份和无机颜料38重量份依次加入混合液,在80℃温度下搅拌均匀,进一步得到混合液,然后将一定重量份数的交联剂碳酸亚乙烯酯加入到混合液中,在常温下搅拌均匀,混合均匀后涂覆在PET基材表面,制备得到正极片终止胶带。
(2)非水电解液制备
在充满氩气的手套箱(水分<10ppm,氧分<1ppm)中,将溶剂(碳酸乙烯酯(EC)、碳酸丙烯酯(PC)、丙酸丙酯(PP)、1,1,2,3-四氟乙基-2,2,3,3-四氟丙基醚以2:1:3:2质量比)混合均匀,在混合溶液中缓慢加入锂盐(锂盐的具体用量和选择见表I1),搅拌均匀得到非水电解液。
(3)正极片、负极片、隔膜的成分和制备,以及锂离子电池的组装按照制备例中的进行。
该组各实施例和对比例的编号及技术特征如表I1所示。
表I1
Figure PCTCN2022133613-appb-000001
Figure PCTCN2022133613-appb-000002
将实施例和对比例所得电池分别按照测试例中的方法进行测试,将所得结果记于表I2中。
表I2
Figure PCTCN2022133613-appb-000003
由表I2结果可以看出:通过对比例和实施例可以看出,电解液中提升锂盐浓度与正极片终止胶带配合使用制备得到的电池能够有效提高电池高温性能的同时解决电池循环后极片边缘析锂的问题。
第II组实施例
该组实施例用于示例[X2+Y1]的组合。
(1)正极片终止胶带的制备
将丙烯酸异辛酯40重量份、丙烯酸丁酯3重量份、醋酸乙烯3重量份、丙烯酸3重量份、异戊橡胶5重量份、季戊四醇三甲基丙烯酸酯1重量份、偶氮二异丁腈1重量份、乙酯40重量份,在80℃温度下搅拌均匀,得到混合液,然后将一定重量份的交联剂碳酸亚乙烯酯加入到混合液中,在常温下搅拌均匀,混合均匀后涂覆在PET基材表面,制备得到正极片终止胶带。
(2)非水电解液制备
在充满氩气的手套箱(水分<10ppm,氧分<1ppm)中,将碳酸乙烯酯(EC)、碳酸丙烯酯(PC)、丙酸丙酯(PP)、1,1,2,3-四氟乙基-2,2,3,3-四氟丙基醚以1:1:3:2质量比混合均匀,在混合溶液中缓慢加入锂盐,搅拌均匀得到非水电解液。
(3)正极片、负极片、隔膜的成分和制备,以及锂离子电池的组装按照制备例中的进行。
该组各实施例和对比例的编号及技术特征如表II1所示。
表II1
Figure PCTCN2022133613-appb-000004
Figure PCTCN2022133613-appb-000005
将实施例和对比例所得电池分别按照测试例中的方法进行测试,将所得结果记于表II2中。
表II2
Figure PCTCN2022133613-appb-000006
由表II2结果可以看出:通过对比例和实施例可以看出,电解液中锂盐与正极片终止胶带配合使用制备得到的电池能够有效提高电池高温性能的同时解决电池循环后极片边缘析锂的问题。
第III组实施例
该组实施例用于示例[X1+Y1+Y2]的组合。
(1)正极片终止胶带的制备
将天然橡胶82重量份、丁苯橡胶24重量份、丁基橡胶20重量份、丁腈橡胶10重量份、萜烯树脂28重量份、防老剂16重量份依次加入到1500重量份的混合溶剂(质量比为1:1:1的乙酯、甲苯、二甲苯)中,在85℃温度下搅拌均匀,得到混合液,将聚异丁烯橡胶105重量份和无机颜料38重量份依次加入混合液,在80℃温度下搅拌均匀,进一步得到混合液,然后将一定重量份数的交联剂碳酸亚乙烯酯加入到混合液中,在常温下搅拌均匀,混合均匀后涂覆在PET基材表面,制备得到正极片终止胶带。
(2)非水电解液制备
在充满氩气的手套箱(水分<10ppm,氧分<1ppm)中,将碳酸乙烯酯(EC)、碳酸丙烯酯(PC)、丙酸丙酯(PP)、丙酸乙酯(EP)以2:1:3:1质量比混合均匀,在混合溶液中缓慢加入基于非水电 解液总质量13wt%的LiPF 6和添加剂,搅拌均匀得到非水电解液。
(3)正极片、负极片、隔膜的成分和制备,以及锂离子电池的组装按照制备例中的进行。
该组各实施例和对比例的编号及特征如表III1所示。
表III1
Figure PCTCN2022133613-appb-000007
将实施例和对比例所得电池分别按照测试例中的方法进行测试,将所得结果记于表III2中。
表III2
Figure PCTCN2022133613-appb-000008
由表III2结果可以看出:通过对比例和实施例可以看出,电解液中加入氟代碳酸乙烯酯并符合与正极片终止胶带的协同关系,使得制备得到的电池能够有效提高电芯高温性能的同时解决电芯循环后极片边缘析锂的问题。
第IV组实施例
该组实施例用于示例[X2+Y1+Y2]的组合。
(1)正极片终止胶带的制备
将丙烯酸异辛酯38重量份、丙烯酸丁酯3重量份、醋酸乙烯3重量份、丙烯酸3重量份、异戊橡胶5重量份、季戊四醇三甲基丙烯酸酯1重量份、偶氮二异丁腈1重量份、乙酯36重 量份,在80℃温度下搅拌均匀,得到混合液,然后将一定重量份的交联剂碳酸亚乙烯酯加入到混合液中,在常温下搅拌均匀,混合均匀后涂覆在PET基材表面,制备得到正极片终止胶带。
(2)非水电解液制备
在充满氩气的手套箱(水分<10ppm,氧分<1ppm)中,将碳酸乙烯酯(EC)、碳酸丙烯酯(PC)、丙酸丙酯(PP)、丙酸乙酯(EP)以1:1:3:2质量比混合均匀,在混合溶液中缓慢加入基于非水电解液总质量13wt.%的LiPF6和添加剂(添加剂的具体用量和选择如表1所示),搅拌均匀得到非水电解液。
(3)正极片、负极片、隔膜的成分和制备,以及锂离子电池的组装按照制备例中的进行。
该组各实施例和对比例的编号及特征如表IV1所示。
表IV1
Figure PCTCN2022133613-appb-000009
将实施例和对比例所得电池分别按照测试例中的方法进行测试,将所得结果记于表IV2中。
表IV2
Figure PCTCN2022133613-appb-000010
由表IV2结果可以看出:通过对比例和实施例可以看出,电解液中加入氟代碳酸乙烯酯并符合与正极片终止胶带的协同关系,使得制备得到的电池能够有效提高电芯高温性能的同 时解决电芯循环后极片边缘析锂的问题。
第V组实施例
该组实施例用于示例[X1+Y1+Y3]的组合。
(1)正极片终止胶带的制备
将天然橡胶82重量份、丁苯橡胶24重量份、丁基橡胶20重量份、丁腈橡胶10重量份、萜烯树脂28重量份、防老剂16重量份依次加入到1500重量份的混合溶剂(质量比为1:1:1的乙酯、甲苯、二甲苯)中,在85℃温度下搅拌均匀,得到混合液,将聚异丁烯橡胶105重量份和无机颜料38重量份依次加入混合液,在80℃温度下搅拌均匀,进一步得到混合液,然后将一定重量份数的交联剂碳酸亚乙烯酯加入到混合液中,在常温下搅拌均匀,混合均匀后涂覆在PET基材表面,制备得到正极片终止胶带。
(2)非水电解液制备
在充满氩气的手套箱(水分<10ppm,氧分<1ppm)中,将碳酸乙烯酯(EC)、碳酸丙烯酯(PC)、丙酸丙酯(PP)、丙酸乙酯(EP)以1:1:3:2质量比混合均匀,在混合溶液中缓慢加入基于非水电解液总质量13wt%的LiPF 6和二氟草酸硼酸锂,搅拌均匀得到非水电解液。
(3)正极片、负极片、隔膜的成分和制备,以及锂离子电池的组装按照制备例中的进行。
该组各实施例和对比例的编号及特征如表V1所示。
表V1
Figure PCTCN2022133613-appb-000011
将实施例和对比例所得电池分别按照测试例中的方法进行测试,将所得结果记于表V2中。
表V2
Figure PCTCN2022133613-appb-000012
Figure PCTCN2022133613-appb-000013
由表V2结果可以看出:通过对比例和实施例可以看出,电解液中加入二氟草酸硼酸锂与正极片终止胶带制备得到的电池能够有效提高电芯高温性能的同时解决电芯循环后极片边缘析锂的问题。
第VI组实施例
该组实施例用于示例[X2+Y1+Y4]的组合。
(1)正极片终止胶带的制备
将丙烯酸异辛酯38重量份、丙烯酸丁酯3重量份、醋酸乙烯3重量份、丙烯酸3重量份、异戊橡胶5重量份、季戊四醇三甲基丙烯酸酯1重量份、偶氮二异丁腈1重量份、乙酯36重量份,在80℃温度下搅拌均匀,得到混合液,然后将一定重量份的交联剂碳酸亚乙烯酯加入到混合液中,在常温下搅拌均匀,混合均匀后涂覆在PET基材表面,制备得到正极片终止胶带。
(2)非水电解液制备
在充满氩气的手套箱(水分<10ppm,氧分<1ppm)中,将碳酸乙烯酯(EC)、碳酸丙烯酯(PC)、丙酸丙酯(PP)、丙酸乙酯(EP)以1:1:3:2质量比混合均匀,在混合溶液中缓慢加入基于非水电解液总质量13wt.%的LiPF 6和二氟磷酸锂,搅拌均匀得到非水电解液。
(3)正极片、负极片、隔膜的成分和制备,以及锂离子电池的组装按照制备例中的进行。
该组各实施例和对比例的编号及特征如表VI1所示。
表VI1
Figure PCTCN2022133613-appb-000014
将实施例和对比例所得电池分别按照测试例中的方法进行测试,将所得结果记于表VI2中。
表VI2
Figure PCTCN2022133613-appb-000015
Figure PCTCN2022133613-appb-000016
由表VI2结果可以看出:通过对比例和实施例可以看出,电解液中加入二氟磷酸锂并符合与正极片终止胶带的协同关系,制备得到的电池能够有效提高电芯高温性能的同时解决电芯循环后极片边缘析锂的问题。
第VII组实施例
该组实施例用于示例[X1+Y1+Y56]的组合。
(1)正极片终止胶带的制备
将天然橡胶82重量份、丁苯橡胶24重量份、丁基橡胶20重量份、丁腈橡胶10重量份、萜烯树脂28重量份、防老剂16重量份依次加入到1500重量份的混合溶剂(质量比为1:1:1的乙酯、甲苯、二甲苯)中,在85℃温度下搅拌均匀,得到混合液,将聚异丁烯橡胶105重量份和无机颜料38重量份依次加入混合液,在80℃温度下搅拌均匀,进一步得到混合液,然后将一定重量份数的交联剂碳酸亚乙烯酯加入到混合液中,在常温下搅拌均匀,混合均匀后涂覆在PET基材表面,制备得到正极片终止胶带。
(2)非水电解液制备
在充满氩气的手套箱(水分<10ppm,氧分<1ppm)中,将碳酸乙烯酯(EC)、碳酸丙烯酯(PC)、丙酸丙酯(PP)、丙酸乙酯(EP)以2:1:2:1质量比混合均匀,在混合溶液中缓慢加入基于非水电解液总质量13wt%的LiPF 6和添加剂,搅拌均匀得到非水电解液。
该组各实施例和对比例的编号及特征如表VII1所示。
表VII1
Figure PCTCN2022133613-appb-000017
Figure PCTCN2022133613-appb-000018
将实施例和对比例所得电池分别按照测试例中的方法进行测试,将所得结果记于表VII2中。
表VII2
Figure PCTCN2022133613-appb-000019
由表2结果可以看出:通过对比例和实施例可以看出,电解液中加入1,2-双(氰乙氧基)乙烷和/或1,2,3-三(2-氰乙氧基)丙烷并符合与正极片终止胶带的协同关系,制备得到的电池能够有效提高电池高温性能的同时解决电池循环后极片边缘析锂的问题。
第VIII组实施例
该组实施例用于示例[X1+Y1+Y56]的组合。
(1)正极片终止胶带的制备
将丙烯酸异辛酯40重量份、丙烯酸丁酯3重量份、醋酸乙烯3重量份、丙烯酸3重量份、异戊橡胶5重量份、季戊四醇三甲基丙烯酸酯1重量份、偶氮二异丁腈1重量份、乙酯40重量份,在80℃温度下搅拌均匀,得到混合液,然后将一定重量份的交联剂碳酸亚乙烯酯加入到混合液中,在常温下搅拌均匀,混合均匀后涂覆在PET基材表面,制备得到正极片终止胶带。
(2)非水电解液制备
在充满氩气的手套箱(水分<10ppm,氧分<1ppm)中,将碳酸乙烯酯(EC)、碳酸丙烯酯(PC)、丙酸丙酯(PP)、丙酸乙酯(EP)以2:1:3:2质量比混合均匀,在混合溶液中缓慢加入基于非水电解液总质量13wt.%的LiPF 6和添加剂,搅拌均匀得到非水电解液。
(3)正极片、负极片、隔膜的成分和制备,以及锂离子电池的组装按照制备例中的进行。
该组各实施例和对比例的编号及特征如表VIII1所示。
表VIII1
Figure PCTCN2022133613-appb-000020
Figure PCTCN2022133613-appb-000021
将实施例和对比例所得电池分别按照测试例中的方法进行测试,将所得结果记于表VIII2中。
表VIII2
Figure PCTCN2022133613-appb-000022
由表2结果可以看出:通过对比例和实施例可以看出,电解液中加入1,2-双(氰乙氧基)乙烷和/或1,2,3-三(2-氰乙氧基)丙烷与正极片终止胶带的协同作用下,制备得到的电池能够有效提高电池高温性能的同时解决电池循环后极片边缘析锂的问题。
本公开的电池为高电压型电池且具有优异的高温性能。通过控制正极片终止胶带的尺寸,在优选的方案中进一步控制胶层的材料,并通过正极片终止胶带与非水电解液的协同作用,能够有效提高制备得到的电池的电芯高温性能,同时还能解决电芯循环后极片边缘析锂的问题,避免电池在高温环境下使用时正极片终止胶带起翘变形导致电芯高温存储厚度失效和高温循环析锂、正极片终止胶带中的胶层易溶于非水电解液、以及非水电解液易在正负极界面氧化还原分解等问题。
以上,对本申请的实施方式进行了说明。但是,本申请不限定于上述实施方式。凡在本申请的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (15)

  1. 一种电池,其特征在于,所述电池包括正极片、负极片、非水电解液以及隔膜;所述非水电解液包括非水有机溶剂、锂盐和任选的电解液添加剂;所述正极片的涂膏尾部设置正极片终止胶带;
    所述正极片终止胶带的面积为A cm 2,所述正极片的宽度为C cm,其中,A与C的比值在1~3范围之间。
  2. 根据权利要求1所述的电池,其特征在于,所述正极片终止胶带的面积A在3cm 2~120cm 2范围之间;
    优选地,所述正极片的宽度C在1cm~120cm范围之间。
  3. 根据权利要求1或2所述的电池,其特征在于,所述终止胶带包括基材及涂覆于该基材表面的终止胶层,所述终止胶层为橡胶终止胶层或(甲基)丙烯酸终止胶层。
  4. 根据权利要求3所述的电池,其特征在于,所述橡胶终止胶层中包括交联改性橡胶;
    优选地,所述交联改性橡胶为第一基底在第一交联剂的作用下发生交联改性而得到,所述第一基底选自天然橡胶、丁苯橡胶、聚异丁烯橡胶、丁基橡胶、丁腈橡胶等中的至少一种;
    优选地,所述第一交联剂包括碳酸亚乙烯酯;以所述交联改性橡胶的总重量为基准,所述碳酸亚乙烯酯的含量为0.5~5wt%。
  5. 根据权利要求3所述的电池,其特征在于,所述(甲基)丙烯酸终止胶层包括交联改性的(甲基)丙烯酸和/或交联改性的(甲基)丙烯酸酯;
    优选地,所述(甲基)丙烯酸终止胶层为第二基底在第二交联剂的作用下发生交联改性而得到,所述第二基底选自甲基丙烯酸、丙烯酸、甲基丙烯酸酯和丙烯酸酯中的至少一种;
    优选地,所述第二交联剂包括碳酸亚乙烯酯;以所述交联改性(甲基)丙烯酸和/或交联改性的(甲基)丙烯酸酯的总重量为基准,所述碳酸亚乙烯酯的含量为0.5~5wt%。
  6. 根据权利要求1-5任一项所述的电池,其特征在于,以所述非水电解液的总重量为基准,所述锂盐的含量为B1mol/L,A与B1的比值在2~20的范围内;
    优选地,所述锂盐的含量B1为1mol/L~6mol/L,更优选为1.5mol/L~3mol/L。
  7. 根据权利要求1-6任一项所述的电池,其特征在于,所述电解液添加剂包括二氟草酸硼酸锂;
    优选地,以所述非水电解液的总重量为基准,所述二氟草酸硼酸锂的含量为B3wt%,A与B3的比值在5~200的范围内;
    优选地,所述二氟草酸硼酸锂的含量B3为0.1~3wt%,更优选为0.2~1wt%。
  8. 根据权利要求1-7任一项所述的电池,其特征在于,所述电解液添加剂包括氟代碳酸乙烯酯;
    优选地,以所述非水电解液的总重量为基准,所述氟代碳酸乙烯酯的含量为B2wt%,A与B2的比值在0.5~5的范围内;
    优选地,所述氟代碳酸乙烯酯的含量B2为5~30wt%,更优选为5~10wt%。
  9. 根据权利要求1-8任一项所述的电池,其特征在于,所述电解液添加剂包括二氟磷酸锂;
    优选地,以所述非水电解液的总重量为基准,所述二氟磷酸锂的含量为B4wt%,A与B4的比值在5~200的范围内;
    优选地,所述二氟磷酸锂的含量B4为0.1~3wt%,更优选为0.2~1wt%。
  10. 根据权利要求1-9任一项所述的电池,其特征在于,所述电解液添加剂包括1,2-双(氰乙氧基)乙烷和/或1,2,3-三(2-氰乙氧基)丙烷;
    优选地,以所述非水电解液的总重量为基准,所述1,2-双(氰乙氧基)乙烷和/或1,2,3-三(2-氰乙氧基)丙烷的含量为B56wt%,A与B56的比值在2~40的范围内;
    优选地,所述1,2-双(氰乙氧基)乙烷和/或1,2,3-三(2-氰乙氧基)丙烷的含量B56为0.5~3wt%,更优选为1~2wt%。
  11. 根据权利要求1-10任一项所述的电池,其特征在于,所述电解液添加剂包括二氟草酸硼酸锂、氟代碳酸乙烯酯、二氟磷酸锂、1,2-双(氰乙氧基)乙烷和1,2,3-三(2-氰乙氧基)丙烷中的一种或两种及以上的组合;
    优选地,所述电解液添加剂至少包括二氟草酸硼酸锂;
    优选地,所述电解液添加剂至少包括二氟磷酸锂;
    优选地,所述电解液添加剂至少包括氟代碳酸乙烯酯;
    优选地,所述电解液添加剂至少包括1,2-双(氰乙氧基)乙烷和/或1,2,3-三(2-氰乙氧基)丙烷。
  12. 根据权利要求1-11任一项所述的电池,其特征在于,所述电解液添加剂还包括1,3-丙磺酸内酯、1,3-丙烯磺酸内酯、亚硫酸乙烯酯、硫酸乙烯酯、二草酸硼酸锂、二氟草酸磷酸锂和乙烯基碳酸乙烯酯中的至少一种;
    优选地,以所述非水电解液的总重量为基准,所述电解液添加剂的总含量为0~10wt%。
  13. 根据权利要求1-12任一项所述的电池,其特征在于,所述的非水有机溶剂选自碳酸酯、羧酸酯和氟代醚中的至少一种,其中,所述碳酸酯选自碳酸乙烯酯、碳酸丙烯酯、碳酸二甲酯、碳酸甲乙酯、碳酸二乙酯、碳酸甲丙酯中的一种或多种组合;所述的羧酸酯选自丙酸乙酯、丙酸丙酯中的一种或多种组合;所述的氟代醚选自1,1,2,3-四氟乙基-2,2,3,3-四氟丙基醚。
  14. 根据权利要求1-13任一项所述的电池,其特征在于,所述电池包括以下组合(1)~(8)中的至少一种:
    (1)以所述非水电解液的总重量为基准,所述锂盐的含量为B1mol/L,A与B1的比值在2~20的范围内,并且所述正极片终止胶带的终止胶层为橡胶终止胶层;
    (2)以所述非水电解液的总重量为基准,所述锂盐的含量为B1mol/L,A与B1的比值在2~20的范围内,并且所述正极片终止胶带的终止胶层为(甲基)丙烯酸终止胶层;
    (3)所述电解液添加剂包括氟代碳酸乙烯酯,以所述非水电解液的总重量为基准,所述氟代碳酸乙烯酯的含量为B2wt%,A与B2的比值在0.5~5的范围内,并且所述正极片终止胶带的终止胶层为(甲基)丙烯酸终止胶层;
    (4)所述电解液添加剂包括氟代碳酸乙烯酯,以所述非水电解液的总重量为基准,所述氟代碳酸乙烯酯的含量为B2wt%,A与B2的比值在0.5~5的范围内,并且所述正极片终止胶带的终止胶层为橡胶终止胶层;
    (5)所述电解液添加剂包括二氟草酸硼酸锂,以所述非水电解液的总重量为基准,所述二氟草酸硼酸锂的含量为B3wt%,A与B3的比值在5~200的范围内,并且所述正极片终止胶带的终止胶层为橡胶终止胶层;
    (6)所述电解液添加剂包括二氟磷酸锂,以所述非水电解液的总重量为基准,所述二氟磷酸锂的含量为B4wt%,A与B4的比值在5~200的范围内,并且所述正极片终止胶带的终止胶层为(甲基)丙烯酸终止胶层;
    (7)所述电解液添加剂包括1,2-双(氰乙氧基)乙烷和/或1,2,3-三(2-氰乙氧基)丙烷,以所述非水电解液的总重量为基准,所述1,2-双(氰乙氧基)乙烷和/或1,2,3-三(2-氰乙氧基)丙烷的含量为B56wt%,A与B56的比值在2~40的范围内,并且所述正极片终止胶带的终止胶层为(甲基)丙烯酸终止胶层;
    (8)所述电解液添加剂包括1,2-双(氰乙氧基)乙烷和/或1,2,3-三(2-氰乙氧基)丙烷,以所述非水电解液的总重量为基准,所述1,2-双(氰乙氧基)乙烷和/或1,2,3-三(2-氰乙氧基)丙烷的含量为B56wt%,A与B56的比值在2~40的范围内,并且所述正极片终止胶带的终止胶层为橡胶终止胶层。
  15. 根据权利要求1-14任一项所述的电池,其中,所述电池的充电截止电压在4.45V及以上。
PCT/CN2022/133613 2021-11-23 2022-11-23 一种电池 WO2023093743A1 (zh)

Priority Applications (11)

Application Number Priority Date Filing Date Title
KR1020237045396A KR20240019174A (ko) 2021-11-23 2022-11-23 전지
JP2023579755A JP2024526225A (ja) 2021-11-23 2022-11-23 電池
EP22897826.8A EP4345934A1 (en) 2021-11-23 2022-11-23 Battery
US18/400,360 US20240136686A1 (en) 2021-11-23 2023-12-29 Battery
US18/400,260 US20240136580A1 (en) 2021-11-23 2023-12-29 Battery
US18/400,216 US20240136684A1 (en) 2021-11-23 2023-12-29 Battery
US18/400,361 US20240136581A1 (en) 2021-11-23 2023-12-29 Battery
US18/400,428 US20240136687A1 (en) 2021-11-23 2023-12-29 Battery
US18/400,316 US20240136685A1 (en) 2021-11-23 2023-12-29 Battery
US18/400,403 US20240136582A1 (en) 2021-11-23 2023-12-29 Battery
US18/400,449 US20240136688A1 (en) 2021-11-23 2023-12-29 Battery

Applications Claiming Priority (16)

Application Number Priority Date Filing Date Title
CN202111396653.2 2021-11-23
CN202111396654.7 2021-11-23
CN202111394925.5 2021-11-23
CN202111396653.2A CN114094049B (zh) 2021-11-23 2021-11-23 一种电池
CN202111394938.2A CN114094048B (zh) 2021-11-23 2021-11-23 一种电池
CN202111394925.5A CN114122637B (zh) 2021-11-23 2021-11-23 一种电池
CN202111396652.8 2021-11-23
CN202111396648.1 2021-11-23
CN202111396647.7 2021-11-23
CN202111394938.2 2021-11-23
CN202111396647.7A CN114122518B (zh) 2021-11-23 2021-11-23 一种电池
CN202111396648.1A CN114094167B (zh) 2021-11-23 2021-11-23 一种电池
CN202111394913.2A CN114094105B (zh) 2021-11-23 2021-11-23 一种电池
CN202111394913.2 2021-11-23
CN202111396654.7A CN114122638B (zh) 2021-11-23 2021-11-23 一种电池
CN202111396652.8A CN114050232B (zh) 2021-11-23 2021-11-23 一种电池

Related Child Applications (8)

Application Number Title Priority Date Filing Date
US18/400,360 Continuation-In-Part US20240136686A1 (en) 2021-11-23 2023-12-29 Battery
US18/400,449 Continuation-In-Part US20240136688A1 (en) 2021-11-23 2023-12-29 Battery
US18/400,403 Continuation-In-Part US20240136582A1 (en) 2021-11-23 2023-12-29 Battery
US18/400,428 Continuation-In-Part US20240136687A1 (en) 2021-11-23 2023-12-29 Battery
US18/400,361 Continuation-In-Part US20240136581A1 (en) 2021-11-23 2023-12-29 Battery
US18/400,316 Continuation-In-Part US20240136685A1 (en) 2021-11-23 2023-12-29 Battery
US18/400,216 Continuation-In-Part US20240136684A1 (en) 2021-11-23 2023-12-29 Battery
US18/400,260 Continuation-In-Part US20240136580A1 (en) 2021-11-23 2023-12-29 Battery

Publications (1)

Publication Number Publication Date
WO2023093743A1 true WO2023093743A1 (zh) 2023-06-01

Family

ID=86538845

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/133613 WO2023093743A1 (zh) 2021-11-23 2022-11-23 一种电池

Country Status (5)

Country Link
US (8) US20240136686A1 (zh)
EP (1) EP4345934A1 (zh)
JP (1) JP2024526225A (zh)
KR (1) KR20240019174A (zh)
WO (1) WO2023093743A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118099527A (zh) * 2024-04-22 2024-05-28 宁德新能源科技有限公司 非水电解液、锂离子电池和电子装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108598488A (zh) * 2018-06-08 2018-09-28 东莞市杉杉电池材料有限公司 一种高能量密度锂离子电池及其电解液
CN110676458A (zh) * 2019-11-04 2020-01-10 惠州市惠德瑞锂电科技股份有限公司 一种放电效率高的锂一次电池
CN114050232A (zh) * 2021-11-23 2022-02-15 珠海冠宇电池股份有限公司 一种电池
CN114094105A (zh) * 2021-11-23 2022-02-25 珠海冠宇电池股份有限公司 一种电池
CN114094048A (zh) * 2021-11-23 2022-02-25 珠海冠宇电池股份有限公司 一种电池
CN114094049A (zh) * 2021-11-23 2022-02-25 珠海冠宇电池股份有限公司 一种电池
CN114094167A (zh) * 2021-11-23 2022-02-25 珠海冠宇电池股份有限公司 一种电池
CN114122637A (zh) * 2021-11-23 2022-03-01 珠海冠宇电池股份有限公司 一种电池
CN114122638A (zh) * 2021-11-23 2022-03-01 珠海冠宇电池股份有限公司 一种电池
CN114122518A (zh) * 2021-11-23 2022-03-01 珠海冠宇电池股份有限公司 一种电池

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6044083B2 (ja) * 2011-06-21 2016-12-14 日産自動車株式会社 積層型電池およびその製造方法
KR20130081055A (ko) * 2012-01-06 2013-07-16 삼성에스디아이 주식회사 리튬 전지용 양극 소재, 이로부터 얻어지는 양극 및 상기 양극을 채용한 리튬 전지
KR102488677B1 (ko) * 2017-05-12 2023-01-16 주식회사 엘지에너지솔루션 리튬 이차전지의 제조방법

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108598488A (zh) * 2018-06-08 2018-09-28 东莞市杉杉电池材料有限公司 一种高能量密度锂离子电池及其电解液
CN110676458A (zh) * 2019-11-04 2020-01-10 惠州市惠德瑞锂电科技股份有限公司 一种放电效率高的锂一次电池
CN114050232A (zh) * 2021-11-23 2022-02-15 珠海冠宇电池股份有限公司 一种电池
CN114094105A (zh) * 2021-11-23 2022-02-25 珠海冠宇电池股份有限公司 一种电池
CN114094048A (zh) * 2021-11-23 2022-02-25 珠海冠宇电池股份有限公司 一种电池
CN114094049A (zh) * 2021-11-23 2022-02-25 珠海冠宇电池股份有限公司 一种电池
CN114094167A (zh) * 2021-11-23 2022-02-25 珠海冠宇电池股份有限公司 一种电池
CN114122637A (zh) * 2021-11-23 2022-03-01 珠海冠宇电池股份有限公司 一种电池
CN114122638A (zh) * 2021-11-23 2022-03-01 珠海冠宇电池股份有限公司 一种电池
CN114122518A (zh) * 2021-11-23 2022-03-01 珠海冠宇电池股份有限公司 一种电池

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118099527A (zh) * 2024-04-22 2024-05-28 宁德新能源科技有限公司 非水电解液、锂离子电池和电子装置

Also Published As

Publication number Publication date
US20240136688A1 (en) 2024-04-25
US20240136581A1 (en) 2024-04-25
JP2024526225A (ja) 2024-07-17
US20240136687A1 (en) 2024-04-25
US20240136684A1 (en) 2024-04-25
US20240136580A1 (en) 2024-04-25
US20240136686A1 (en) 2024-04-25
US20240136582A1 (en) 2024-04-25
US20240136685A1 (en) 2024-04-25
EP4345934A1 (en) 2024-04-03
KR20240019174A (ko) 2024-02-14

Similar Documents

Publication Publication Date Title
WO2022257859A1 (zh) 一种锂离子电池
WO2023040687A1 (zh) 一种电解液、包含该电解液的电化学装置和电子装置
CN104362346A (zh) 一种锂离子电池
CN111697266B (zh) 电解液和包括其的电化学装置及电子装置
CN116864805A (zh) 电化学装置和电子装置
CN115458810B (zh) 电解液及锂离子电池
CN113795526A (zh) 粘结剂、使用该粘结剂的电化学装置和电子设备
WO2023070770A1 (zh) 一种正极极片及包含其的锂离子二次电池
CN114122518B (zh) 一种电池
US20240136582A1 (en) Battery
CN113795952B (zh) 粘结剂、使用该粘结剂的电化学装置和电子设备
CN114094048B (zh) 一种电池
CN114094167B (zh) 一种电池
CN114122637B (zh) 一种电池
CN114122638B (zh) 一种电池
CN114094105B (zh) 一种电池
CN114094049B (zh) 一种电池
CN116666732A (zh) 一种二次电池及电子装置
CN114050232B (zh) 一种电池
WO2023216928A1 (zh) 一种电池
WO2022205172A1 (zh) 电解液、电化学装置以及电子装置
CN118589048A (zh) 电解液和电池
WO2023216824A1 (zh) 一种电解液及电池
CN117497700A (zh) 负极极片及其制备方法、二次电池和用电装置
WO2024197806A1 (zh) 电化学装置和包括电化学装置的电子装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22897826

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023579755

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022897826

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20237045396

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2022897826

Country of ref document: EP

Effective date: 20231227

NENP Non-entry into the national phase

Ref country code: DE