WO2023093735A1 - 机械臂碰撞力检测系统、方法、电子设备和存储介质 - Google Patents

机械臂碰撞力检测系统、方法、电子设备和存储介质 Download PDF

Info

Publication number
WO2023093735A1
WO2023093735A1 PCT/CN2022/133588 CN2022133588W WO2023093735A1 WO 2023093735 A1 WO2023093735 A1 WO 2023093735A1 CN 2022133588 W CN2022133588 W CN 2022133588W WO 2023093735 A1 WO2023093735 A1 WO 2023093735A1
Authority
WO
WIPO (PCT)
Prior art keywords
force
collision
mechanical arm
detection unit
force detection
Prior art date
Application number
PCT/CN2022/133588
Other languages
English (en)
French (fr)
Inventor
郑阿勇
江磊
张晓波
王家寅
朱祥
Original Assignee
上海微创医疗机器人(集团)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海微创医疗机器人(集团)股份有限公司 filed Critical 上海微创医疗机器人(集团)股份有限公司
Publication of WO2023093735A1 publication Critical patent/WO2023093735A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1674Programme controls characterised by safety, monitoring, diagnostic
    • B25J9/1676Avoiding collision or forbidden zones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B34/35Surgical robots for telesurgery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J18/00Arms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/0095Means or methods for testing manipulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1602Programme controls characterised by the control system, structure, architecture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • the present application relates to the field of robot technology, and in particular to a detection system for collision force of a mechanical arm, a detection method, a control method of a mechanical arm, a surgical robot system, electronic equipment, and a storage medium.
  • a robot is an intelligent machine that can work semi-autonomously or fully autonomously. It has basic characteristics such as perception, decision-making, and execution, and can assist or even replace humans in completing dangerous, heavy, and complicated tasks.
  • the collision detection is to determine whether the robot collides by detecting whether the torque sensor detects whether the force changes or detects whether the joint current has a sudden change.
  • the method of using the torque sensor for collision detection will affect the flexibility of the manipulator because the torque sensor will occupy a large space; while the method of using current detection cannot accurately detect the size of the collision force.
  • the purpose of this application is to provide a mechanical arm collision force detection system, detection method, mechanical arm control method, surgical robot system, electronic equipment and storage media, which can effectively detect The impact force on the mechanical arm improves the safety performance of the mechanical arm during movement.
  • the first aspect of the present application provides a mechanical arm collision force detection system, including a flexible device and a controller, the flexible device is provided with a plurality of force detection units, the force detection unit and the control
  • the flexible device is used to wrap the specified area of the mechanical arm; the force detection unit is used to detect the force and send the result of the force detection to the controller; the controller is used to The force detection result of the force detection unit is to obtain the detection result of the collision force of the mechanical arm, wherein the plurality of force detection units are closely arranged in an array on the flexible device.
  • the flexible device is an electronic skin.
  • the second aspect of the present application provides a method for detecting the collision force of a mechanical arm.
  • the mechanical arm is wrapped with a flexible device, and the flexible device is provided with a plurality of force detection units, wherein the plurality of The force detection units are closely arranged in an array on the flexible device, and the detection method includes: obtaining the force detection result of the force detection unit; according to the force detection result of the force detection unit, obtaining the mechanical The detection result of the collision force of the arm.
  • the acquiring the detection result of the collision force of the mechanical arm according to the force detection result of the force detection unit includes: detecting the force of the external force according to the force detection result of the force detection unit The detection unit is determined as a target force detection unit; according to the position information of the target force detection unit, the force vector of the target force detection unit is obtained; according to the force vector of the target force detection unit, the force vector of the mechanical arm is obtained The detection result of the collision force.
  • the acquiring the force vector of the target force detection unit according to the position information of the target force detection unit includes: according to the position information of the target force detection unit on the flexible device and the According to the positional relationship between the flexible device and the corresponding joint, the position information of the target force detection unit in the joint coordinate system is obtained; according to the position information of the target force detection unit in the joint coordinate system, the joint is in The position information in the world coordinate system and the force detection result of the target force detection unit are used to obtain the force vector of the target force detection unit in the world coordinate system.
  • the obtaining the detection result of the collision force of the mechanical arm according to the force vector of the target force detection unit includes: combining all the force vectors of the target force detection unit in the world coordinate system The force vectors are added to obtain a total force vector; according to the total force vector and the position information of the target force detection unit in the world coordinate system, the detection result of the collision force of the mechanical arm is obtained.
  • the detection result of the collision force includes the magnitude, direction, location and type of the collision force.
  • the acquiring the detection result of the collision force of the mechanical arm according to the total force vector and the position information of the target force detection unit in the world coordinate system includes: The force vector is to obtain the collision force vector of the mechanical arm; according to the position information of the target force detection unit in the world coordinate system, the collision occurrence position of the mechanical arm is obtained; Whether there is a mechanical arm in the mechanical arm whose collision force vector is equal in magnitude and opposite to the direction of the collision and the collision occurs at the same position; , then it is determined that the collision force type of the robot arm is the collision force between the robot arm and the external environment; according to the collision force vector of the robot arm, the collision force type and the target force detection unit in the world coordinate system The position information of the robot arm is used to obtain the detection result of the collision force of the robot arm.
  • the detection result of the collision force also includes a collision moment.
  • the collision moment is obtained through the following process: according to the position information of the target force detection unit on the flexible device and the positional relationship between the flexible device and the corresponding joint, the target force detection The position information of the unit in the joint coordinate system; according to the position information of the target force detection unit in the joint coordinate system and the force detection result of the target force detection unit, obtain the target force detection unit in the joint coordinates The force vector in the system; according to the position information of the target force detection unit in the joint coordinate system and the force vector of the target force detection unit in the joint coordinate system, the collision moment is obtained.
  • the third aspect of the present application provides a method for controlling a mechanical arm.
  • the flexible device is wrapped on the mechanical arm, and a plurality of force detection units are arranged on the flexible device.
  • the control method includes: using the above The method for detecting the collision force of the robotic arm described herein obtains the detection result of the collision force of the robotic arm; and controls the robotic arm to perform corresponding operations according to the detection result of the collision force of the robotic arm.
  • the detection result of the collision force of the robotic arm includes the type of collision force of the robotic arm
  • controlling the robotic arm to perform corresponding operations according to the detection result of the collision force of the robotic arm includes: if The collision force type of the mechanical arm is the collision force between the mechanical arm and the external environment, then control the mechanical arm to stop moving; if the collision force type of the mechanical arm is the collision force between the mechanical arms, the mechanical No collision between the arms is used as a constraint condition, the motion trajectory of the mechanical arm is replanned, and the mechanical arm is controlled to move according to the motion trajectory.
  • the fourth aspect of the present application provides a surgical robot system
  • the surgical robot system includes a main control terminal, an operating terminal and a controller, the main control terminal and the operating terminal are connected to the controller Communication connection, the control end and the operation end have a master-slave control relationship and are used to control the operation of the mechanical arm; the operation end includes at least one mechanical arm, and the flexible device is wrapped on the mechanical arm.
  • the device is provided with a plurality of force detection units; the controller is configured to implement the method for detecting the collision force of the manipulator and/or the method for controlling the manipulator described above.
  • the fifth aspect of the present application provides an electronic device, including a processor and a memory, and a computer program is stored in the memory, and when the computer program is executed by the processor, the above-mentioned A detection method for a collision force of a mechanical arm and/or a control method for a mechanical arm.
  • the sixth aspect of the present application provides a readable storage medium, the computer program is stored in the readable storage medium, and when the computer program is executed by the processor, the above-mentioned mechanical arm collision is realized Force detection methods and/or robotic arm control methods.
  • the mechanical arm collision force detection system, detection method, control method, surgical robot system, electronic equipment and storage medium have the following advantages:
  • the mechanical arm collision force detection system provided by the application includes a flexible device and a controller, the flexible device is provided with a plurality of force detection units, the force detection units are connected to the controller in communication, and the flexible device It is used to wrap the designated area of the mechanical arm; the force detection unit is used to detect the force and send the result of the force detection to the controller; the controller is used to detect the force according to the force of the force detection unit The detection result is to obtain the detection result of the collision force of the mechanical arm. Since the plurality of force detection units are arranged on the flexible device, and the flexible device is wrapped on the mechanical arm, the collision force detection system provided by this application can be used without affecting the mechanical arm. Under the premise of flexibility, it can effectively detect the collision force of the robot arm and the location of the collision.
  • the method for detecting the collision force of the mechanical arm provided by this application is to wrap a flexible device with multiple force detection units on the mechanical arm, so that the force detection results of the force detection units can be used to obtain all
  • the detection result of the collision force of the mechanical arm can be used to effectively detect the collision force received by the mechanical arm and the location where the collision occurs when the mechanical arm collides.
  • the flexible device since the flexible device is wrapped on the mechanical arm, when a collision occurs, the collision will first occur on the flexible device, so that the mechanical arm can be protected to a certain extent.
  • control method of the manipulator provided in the present application uses the detection method of the manipulator collision force described above to obtain the detection result of the collision force, the accuracy of the obtained detection result of the collision force can be guaranteed.
  • control method of the mechanical arm provided in the present application controls the mechanical arm to perform corresponding operations according to the detection result of the collision force of the mechanical arm, the safety performance of the mechanical arm during movement can be effectively improved.
  • FIG. 1 is a schematic block diagram of a mechanical arm collision force detection system in Embodiment 1 of the present application;
  • FIG. 2 is a schematic diagram of a partial structure of the flexible device in Embodiment 1 of the present application.
  • FIG. 3 is a schematic diagram of a partial structure of the mechanical arm in Embodiment 1 of the present application.
  • FIG. 4 is a schematic diagram of a collision of a robotic arm in a specific example of Embodiment 1 of the present application;
  • FIG. 5 is a schematic structural diagram of the force detection unit in Embodiment 1 of the present application.
  • FIG. 6 is a schematic flow chart of a method for detecting a collision force of a mechanical arm in Embodiment 2 of the present application;
  • FIG. 7 is a schematic flow chart of obtaining the detection result of the collision force of the mechanical arm in Embodiment 2 of the present application.
  • Fig. 8 is a schematic diagram of the flexible device in Example 2 of the present application when it is subjected to an external force
  • FIG. 9 is a schematic diagram showing the position of the force detection unit on the flexible device in Embodiment 2 of the present application.
  • FIG. 10 is a schematic diagram of the principle of obtaining the position information of the target force detection unit in the joint coordinate system in Embodiment 2 of the present application;
  • Fig. 11 is a schematic diagram of a collision between a robotic arm and a robotic arm in a specific example of Embodiment 2 of the present application;
  • FIG. 12 is a schematic diagram of a collision between the robotic arm and the external environment in a specific example of Embodiment 2 of the present application;
  • FIG. 13 is a schematic flowchart of a method for controlling a robotic arm in Embodiment 3 of the present application.
  • FIG. 14 is a schematic flow chart of a method for controlling a robotic arm in Embodiment 3 of the present application.
  • FIG. 15 is a schematic diagram of an application scenario of the surgical robot system in Embodiment 4 of the present application.
  • Fig. 16 is a schematic diagram of the interface display when a collision between mechanical arms occurs in Embodiment 4 of the present application;
  • FIG. 17 is a schematic diagram of the interface display when a collision between the robotic arm and the external environment occurs in Embodiment 4 of the present application;
  • FIG. 18 is a schematic block diagram of an electronic device in Embodiment 5 of the present application.
  • the core idea of this application is to provide a mechanical arm collision force detection system, detection method, mechanical arm control method, surgical robot system, electronic equipment and storage media, which can be used without affecting the flexibility of the mechanical arm. Effectively detect the collision force of the mechanical arm, and improve the safety performance of the mechanical arm during movement.
  • detection method of the collision force of the robotic arm and the control method of the robotic arm provided in the present application are described using the robotic arm in the surgical robot system as an example, as those skilled in the art can understand, in specific implementation , the method for detecting collision force of a robotic arm and the method for controlling a robotic arm provided in the present application are not only applicable to the robotic arm of the surgical robot system, but also applicable to other types of robotic arms, which are not limited in the present application.
  • the joint coordinate system referred to in this application is a coordinate system created with a certain point (preferably the center point) on the joint as the origin
  • the so-called The coordinate system of the target force detection unit is a coordinate system created with a certain point (preferably a center point) on the target force detection unit as the origin.
  • the proximal end referred to in this application refers to the end close to the lesion
  • the distal end refers to the end far away from the lesion.
  • this embodiment provides a mechanical arm collision force detection system, please refer to Fig. 1 and Fig. 2, wherein Fig. 1 schematically shows the mechanical arm collision force detection system provided in the first embodiment of this embodiment Schematic diagram of the block structure; FIG. 2 schematically shows a partial structural diagram of the flexible device 100 provided in the first embodiment of this embodiment.
  • the detection system includes a flexible device 100 and a controller 200, the flexible device 100 is provided with a plurality of force detection units 110, and the force detection units 110 communicate with the controller 200 connect.
  • FIG. 3 schematically shows a partial structural diagram of a robotic arm 300 provided in an implementation manner of this embodiment.
  • the robotic arm 300 includes a plurality of sequentially connected joints 310 , and any two adjacent joints 310 are connected by a connecting rod 320 .
  • the end of the robotic arm 300 is used to mount the surgical instrument 400 , and the robotic arm 300 can drive the surgical instrument 400 to move around a fixed point 330 .
  • the flexible device 100 is used to wrap a designated area of the robotic arm 300 , and in this embodiment, the designated area may be all or part of the robotic arm 300 .
  • the force detection unit 110 is used for force detection, and the force detection result is sent to the controller 200; the controller 200 is used for obtaining the force detection result according to the force detection unit 110 The detection result of the collision force of the robotic arm 300 . It should be noted that, as understood by those skilled in the art, the present application has no particular limitation on the specific configuration of the robotic arm 300 .
  • FIG. 4 schematically shows a collision diagram of the robotic arm 300 in a specific example of this embodiment.
  • the collision first occurs on the flexible device 100 installed on the surface of the mechanical arm 300, thus, when the mechanical arm 300 collides, the corresponding position on the flexible device 100
  • the force detection unit 110 at the location will first detect the force, that is, the detection value of the force detection unit 110 corresponding to the collision occurrence position is not 0, thus, according to the force detection results of each of the force detection units 110, it can be A detection result of the collision force of the robotic arm 300 is obtained.
  • the collision force detection system provided by this application can be used without Under the premise of affecting the flexibility of the mechanical arm 300 , the collision force and the location where the collision occurs can be effectively detected.
  • the collision first occurs on the flexible device 100 , so that the mechanical arm 300 can be protected to a certain extent.
  • the force detection unit 110 includes, but is not limited to, any one of a pressure force sensor, a resistive force sensor, a capacitive force sensor and a triboelectric force sensor. It should be noted that, as those skilled in the art can understand, the force detection unit 110 can be small enough so that the flexible device 100 after installing multiple force detection units 110 can be bent arbitrarily without damaging the function of the force detection unit 110, At the same time, it can also make the flexible device 100 more convenient to be installed on the mechanical arm 300 .
  • the flexible device 100 is an electronic skin. Since the electronic skin has good flexibility, conductivity and thinness, by using the electronic skin as the flexible device 100 in this application, the flexible device 100 can be closely attached to the mechanical arm 300, Not only can the installation of the flexible device 100 be more convenient, but also the installation space of the flexible device 100 can be reduced, further reducing the impact of the flexible device 100 on the flexibility of the mechanical arm 300 .
  • the plurality of force detection units 110 are closely arranged in an array on the flexible device 100 . Therefore, by arranging a plurality of force detection units 110 in an array and closely arranged on the flexible device 100 , the detection accuracy of the collision force detection system provided by the present application can be further improved.
  • FIG. 5 schematically shows a schematic structural view of the force detection unit 110 provided in an implementation manner of this embodiment.
  • the cross-section of the force detection unit 110 is arranged in a regular hexagonal shape.
  • the plurality of force detection units 110 can be made without gaps (that is, any adjacent two force detection units 110 are in contact with each other). ) are closely arranged in an array on the flexible device 100, which not only facilitates the installation of the force detection unit 110, but also further improves the detection accuracy of the collision force detection system provided by the present application.
  • the cross-sectional shape of the force detection unit 110 in the present application is not limited to a regular hexagon, and can be set in other suitable shapes as required, which is not specifically limited in the present application.
  • this embodiment provides a method for detecting the collision force of the robot arm, and the flexible device 100 described above is wrapped on the robot arm 300 .
  • FIG. 6 schematically shows a flowchart of a method for detecting collision force of a robot arm provided in an implementation manner of this embodiment. As shown in Figure 6, the method for detecting the collision force of the mechanical arm includes the following steps:
  • Step S110 acquiring the force detection result of the force detection unit 110 .
  • Step S120 according to the force detection result of the force detection unit 110 , obtain the detection result of the collision force of the mechanical arm 300 .
  • the method for detecting the collision force of the mechanical arm wraps the flexible device 100 provided with a plurality of force detection units 110 on the mechanical arm 300, so that according to the force detection results of the force detection units 110, it can be The detection result of the collision force of the robotic arm 300 is obtained, and then when the collision occurs to the robotic arm 300 , the collision force received by the robotic arm 300 and the location where the collision occurs can be effectively detected.
  • the flexible device 100 is wrapped on the robotic arm 300 , when a collision occurs, the collision will first occur on the flexible device 100 , thereby protecting the robotic arm 300 to a certain extent.
  • the acquiring the detection result of the collision force of the mechanical arm 300 according to the force detection result of the force detection unit 110 includes: according to the force detection result of the force detection unit 110 , the The force detection unit 110 that detects the external force is determined as the target force detection unit 110a; according to the position information of the target force detection unit 110a, the force vector of the target force detection unit 110a is obtained; according to the target force detection unit 110a The force vector is used to obtain the detection result of the collision force of the mechanical arm 300 .
  • FIG. 8 schematically shows a schematic view of the flexible device 100 provided by the first embodiment of the present embodiment when it is subjected to an external force
  • the gray part indicates that the force detection unit 110 at this position has detected the external force (that is, a collision)
  • the force detection unit 110 that detects the external force is defined as the target force detection unit 110a hereinafter
  • the white part indicates that the force detection unit 110 at this position does not detect the external force (that is, no collision occurs at this position).
  • the force detection unit 110 that detects the external force can be screened out, that is, the target force detection unit 110a, and then according to the position information of the target force detection unit 110a, To obtain the force vector of the target force detection unit 110a, so that the detection results of all target force detection units 110a can be converted to the same space coordinate system, and finally according to the force vector of the target force detection unit 110a, Then the detection result of the collision force of the robotic arm 300 can be obtained. It should be noted that, as those skilled in the art can understand, if none of the force detection units 110 on the robotic arm 300 detects an external force, the detection result of the collision force of the robotic arm 300 is 0.
  • the acquiring the force vector of the target force detection unit 110a according to the position information of the target force detection unit 110a includes:
  • the mapping relationship between the joint coordinate system and the world coordinate system, and the force detection result of the target force detection unit 110a the The force vector of the target force detection unit 110a in the world coordinate system.
  • the position information of the target force detection unit 110 a on the flexible device 100 it can be known which link 320 of the mechanical arm 300 the collision occurred on. Since the flexible device 100 is wrapped on the mechanical arm 300, the positional relationship between the flexible device 100 and each joint 310 on the mechanical arm 300 is fixed and known, so according to the The position information of the target force detection unit 110a on the flexible device 100 and the positional relationship between the flexible device 100 and the corresponding joint 310 (the joint 310 corresponding to the distal end of the connecting rod 320 that collided), namely The positional relationship between the target force detection unit 110 a and the corresponding joint 310 where the collision occurs may be obtained, so as to obtain position information of the target force detection unit 110 a in the coordinate system of the corresponding joint 310 .
  • each joint 310 of the mechanical arm 300 can be measured by the position sensor installed on each joint 310, and the coordinate system of the robot where the mechanical arm 300 is located (ie the robot coordinate system) and the world coordinate system
  • the relationship between is known, thus, according to the rotation angle of each joint 310 of the robot arm 300 and the relationship between the robot coordinate system and the world coordinate system, and based on the kinematic equation, the robot arm 300 can be obtained
  • the position information of each joint 310 in the world coordinate system Therefore, according to the position information of the target force detection unit 110a in the corresponding joint coordinate system and the position information of the joint 310 in the world coordinate system, the position of the target force detection unit 110a in the world coordinate system can be obtained. Position information, and then according to the force detection result of the target force detection unit 110a and the position information of the target force detection unit 110a in the world coordinate system, the target force detection unit 110a in the world can be obtained The force vector in the coordinate system.
  • FIG. 9 schematically shows a position display diagram of the force detection unit 110 provided on the flexible device 100 according to an embodiment of this embodiment.
  • a two-dimensional coordinate system can be created with a certain point on the flexible device 100 (for example, the upper left corner) as the origin, and the position of the force detection unit 110 on the flexible device 100 can be used in one or two dimensions. Coordinates (x'n, y'n) represent.
  • FIG. 10 schematically shows a schematic diagram of the principle of acquiring the position information of the target force detection unit 110a in the joint coordinate system provided by an embodiment of the present application.
  • point O represents the origin of the coordinate system of the joint 310 corresponding to the place where the collision occurred (preferably the center point of the joint 310)
  • point O1 represents a certain point on the flexible device 100 installed on the joint 310
  • point O' represents a certain point (preferably a center point) on a target force detection unit 110a
  • the position of point O' is the position of the target force detection unit 110a.
  • the position of the point O1 in the coordinate system of the joint 310 can be determined, namely is determined; according to the position coordinates of the target force detection unit 110a on the flexible device 100, and because the x' axis of the coordinate system of the target force detection unit 110a is parallel to the x axis of the coordinate system of the joint 310 ,therefore It is also known, thus, according to the following relational expression, the position vector of the target force detection unit 110a in the joint coordinate system can be obtained (that is, the position information of the target force detection unit 110a in the joint coordinate system):
  • the position of each of the target force detection units 110a can be obtained.
  • the position information in the world coordinate system and then according to the position information of each of the target force detection units 110a in the world coordinate system, the coordinate system of each of the target force detection units 110a and the world coordinate system can be obtained. mapping relationship between them.
  • the vector of the external force detected by the target force detection unit 110a in the coordinate system of the target force detection unit is expressed as The mapping relationship between the target force detection unit coordinate system and the world coordinate system is Then the vector of the external force detected by the target force detection unit 110a in the world coordinate system Expressed as:
  • the acquisition of the detection result of the collision force of the mechanical arm 300 according to the force vector of the target force detection unit 110a includes:
  • the target force detection unit 110a under the world coordinate system that is, all the target force detection units 110a under the world coordinate system are subjected to force vectors
  • the collision force received by the mechanical arm 300 can be obtained.
  • the position information of each of the target force detection units 110a in the world coordinate system the position where the collision force on the mechanical arm 300 occurs can be obtained.
  • the detection result of the collision force includes the magnitude, direction, location and type of the collision force. Therefore, by acquiring the type of the collision force of the mechanical arm 300 , a good foundation can be laid for performing corresponding operations on the mechanical arm 300 according to different force types.
  • the acquisition of the detection result of the collision force of the mechanical arm 300 according to the total force vector and the position information of the target force detection unit 110a in the world coordinate system includes:
  • the collision occurrence position of the mechanical arm 300 is acquired;
  • the collision force type of the mechanical arms 300 is a collision force between the mechanical arms 300
  • the collision force type of the robotic arm 300 is a collision force between the robotic arm 300 and the external environment
  • the detection result of the collision force of the robotic arm 300 is obtained according to the collision force vector of the robotic arm 300 , the collision force type, and the position information of the target force detection unit 110 a in the world coordinate system.
  • FIG. 11 schematically shows a schematic diagram of a collision between the robotic arms 300 and the robotic arms 300 in a specific example of this embodiment.
  • FIG. 11 is respectively the collision force vectors detected on the two robotic arms 300A and 300B, when and When the magnitudes are equal and the directions are opposite, and the collision occurs at the same location, it can be determined that the type of collision force received by the two robotic arms 300A and 300B is the collision force between the robotic arms 300 .
  • FIG. 12 schematically shows a schematic diagram of a collision between the robotic arm 300 and the external environment in a specific example of this embodiment.
  • the mechanical arm 300B is subjected to a collision force vector
  • the collision force vector with the mechanical arm 300B is not found If the mechanical arms 300 are equal in magnitude and opposite in direction and the collision occurs at the same position, it means that the collision force received by the mechanical arm 300B comes from the external environment, that is, the type of collision force received by the mechanical arm 300B is that of the mechanical arm 300 and the external environment. the collision force between them.
  • the detection result of the collision force of the robotic arm 300 also includes a collision moment.
  • the mapping relationship between the target force detection unit coordinate system and the joint coordinate system can be obtained through the position information of the target force detection unit 110a in the joint coordinate system corresponding to the collision occurrence Assume that the vector of the external force detected by the target force detection unit 110a in the coordinate system of the target force detection unit is expressed as Then the vector of the external force detected by the target force detection unit 110a in the joint coordinate system Expressed as:
  • the modulus of , x n represents the x-axis coordinate of the target force detection unit 110a in the joint coordinate system.
  • the method for detecting the collision force of the robotic arm provided in the present application can not only detect the magnitude of the collision force received by the robotic arm 300 , but also detect the direction, location, type and moment of the collision force received by the robotic arm 300 .
  • this embodiment provides a method for controlling the robotic arm.
  • FIG. 13 schematically shows a flowchart of a method for controlling a robotic arm provided in an implementation manner of this embodiment.
  • the control method of the mechanical arm includes:
  • Step S210 acquiring the detection result of the collision force of the mechanical arm 300 .
  • Step S220 according to the detection result of the collision force of the mechanical arm 300, control the mechanical arm 300 to perform corresponding operations.
  • the detection result of the collision force of the mechanical arm 300 is obtained by using the collision force detection method described above. Since the control method of the manipulator provided in the present application obtains the detection result of the collision force by using the above-mentioned detection method of the collision force of the robot arm, the accuracy of the obtained detection result of the collision force can be guaranteed. In addition, since the control method of the robotic arm provided in the present application is based on the detection result of the collision force of the robotic arm 300, the robotic arm 300 is controlled to perform corresponding operations, thereby effectively improving the safety performance of the robotic arm 300 during movement. .
  • the detection result of the collision force of the robotic arm 300 includes the type of collision force of the robotic arm 300 , and according to the detection result of the collision force of the robotic arm 300 , control the The mechanical arm 300 performs corresponding operations, including:
  • the collision force type of the robotic arm 300 is a collision force between the robotic arm 300 and the external environment, control the robotic arm 300 to stop moving;
  • the type of collision force of the mechanical arms 300 is the collision force between the mechanical arms 300, then with no collision between the mechanical arms 300 as a constraint condition, re-plan the motion trajectory of the mechanical arms 300, and control the mechanical The arm 300 moves according to the movement trajectory.
  • FIG. 14 schematically shows a specific flowchart of a method for controlling a robotic arm provided in an implementation manner of this embodiment.
  • the collision force type of the robot arm 300 is the collision force between the robot arm 300 and the external environment, since the external environment cannot be judged at this time (the external environment cannot be distinguished as a person or an object), so for safety reasons, the movement of the robotic arm 300 is interrupted, and further, the doctor is prompted to perform corresponding operations.
  • the collision force type of the robot arm 300 is the collision force between the robot arm 300 and the external environment
  • no collision between the robot arms 300 is used as a constraint condition
  • replan the motion trajectory of the robotic arm 300 and control the robotic arm 300 to move according to the replanned motion trajectory.
  • the end Cartesian position (position in the world coordinate system) of the master control terminal 500 in the surgical robot system can be used as the target position to re-plan The motion trajectory of the robotic arm 300.
  • the motion trajectory of the robotic arm 300 can be replanned according to the collision moment experienced by the robotic arm 300 and with the collision moment experienced by the robotic arm 300 being 0 as a constraint condition.
  • this embodiment provides a surgical robot system.
  • FIG. 15 schematically shows a schematic diagram of an application scenario of the surgical robot system provided in an implementation manner of this embodiment.
  • the surgical robot system includes a main control terminal 500, an operation terminal 600 and a controller 200, the main control terminal 500 and the operation terminal 600 are connected to the controller 200 in communication, and the control terminal and the operation terminal 600 has a master-slave control relationship and is used to control the operation of the robot arm 300 .
  • the operating end 600 includes at least one mechanical arm 300, and the flexible device 100 (not shown in the figure) is wrapped on the mechanical arm 300, and a plurality of force detection units 110 are arranged on the flexible device 100;
  • the controller 200 is configured to implement the method for detecting the collision force of the robotic arm and/or the method for controlling the robotic arm described above. Since the controller 200 can realize the detection method of the collision force of the mechanical arm and/or the control method of the mechanical arm described above, the surgical robot system provided by the present application can , to effectively detect the collision force received by the robotic arm 300 and the location where the collision occurs.
  • the flexible device 100 is wrapped on the mechanical arm 300 , when a collision occurs, the collision will first occur on the flexible device 100 , so that the mechanical arm 300 can be protected to a certain extent.
  • the surgical robot system can perform corresponding operations according to the detection result of the collision force of the mechanical arm 300 , the safety performance of the mechanical arm 300 during movement can be effectively improved.
  • the surgical robot system further includes a display device 700 communicatively connected with the controller 200 .
  • FIG. 16 schematically shows a schematic diagram of an interface display provided by an embodiment of this embodiment when a collision between the robotic arms 300 occurs.
  • the display device 700 may prompt the doctor that a collision between the robotic arms 300 has occurred through a screen prompt. And because when a collision occurs between the mechanical arms 300, the collision can be eliminated by re-planning the path (ie, the trajectory), thus, when a collision between the mechanical arms 300 occurs, the display device 700 can also Prompt the doctor to continue the operation.
  • FIG. 16 schematically shows a schematic diagram of an interface display provided by an embodiment of this embodiment when a collision between the robotic arms 300 occurs.
  • the display device 700 may prompt the doctor that a collision between the robotic arms 300 has occurred through a screen prompt. And because when a collision occurs between the mechanical arms 300, the collision can be eliminated by re-planning the path (ie, the trajectory), thus, when a collision between the mechanical arms 300 occurs, the display
  • FIG. 17 which schematically shows a schematic diagram of an interface display provided by an embodiment of the present application when a collision occurs between the robotic arm 300 and the external environment.
  • the system when a collision occurs between the robotic arm 300 of the surgical robot system and the external environment, the system will automatically interrupt the movement of the robotic arm 300 and suspend the operation due to safety concerns.
  • the above display device 700 will prompt the doctor that the robot arm 300 has collided, please check the surrounding environment of the robot.
  • this embodiment provides an electronic device.
  • FIG. 18 schematically shows a block structure diagram of the electronic device provided by an implementation mode of this embodiment.
  • the electronic device includes a processor 810 and a memory 830, and a computer program is stored on the memory 830.
  • the computer program is executed by the processor 810, the above-mentioned mechanical arm collision is realized. Force detection methods and/or robotic arm control methods.
  • the electronic device provided by this application belongs to the same inventive concept as the above-mentioned method for detecting the collision force of the robot arm and/or the method for controlling the robot arm, it has the above-mentioned method for detecting the collision force of the robot arm and/or All the advantages of the manipulator control method, so it will not be repeated here.
  • the electronic device further includes a communication interface 820 and a communication bus 840 , wherein the processor 810 , the communication interface 820 , and the memory 830 communicate with each other through the communication bus 840 .
  • the communication bus 840 may be a Peripheral Component Interconnect (PCI) bus or an Extended Industry Standard Architecture (Extended Industry Standard Architecture, EISA) bus or the like.
  • PCI Peripheral Component Interconnect
  • EISA Extended Industry Standard Architecture
  • the communication bus 840 can be divided into address bus, data bus, control bus and so on. For ease of representation, only one thick line is used in the figure, but it does not mean that there is only one bus or one type of bus.
  • the communication interface 820 is used for communication between the electronic device and other devices.
  • the processor 810 mentioned in this application can be a central processing unit (Central Processing Unit, CPU), and can also be other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), application specific integrated circuits (Application Specific Integrated Circuit, ASIC), off-the-shelf programmable gate array (Field-Programmable Gate Array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor or any conventional processor, etc.
  • the processor 810 is the control center of the electronic device, and uses various interfaces and lines to connect various parts of the entire electronic device.
  • the memory 830 can be used to store the computer program, and the processor 810 realizes various functions of the electronic device by running or executing the computer program stored in the memory 830 and calling the data stored in the memory 830. Function.
  • the memory 830 may include non-volatile and/or volatile memory.
  • Nonvolatile memory can include read only memory (ROM), programmable ROM (PROM), electrically programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM), or flash memory.
  • Volatile memory can include random access memory (RAM) or external cache memory.
  • RAM is available in many forms such as Static RAM (SRAM), Dynamic RAM (DRAM), Synchronous DRAM (SDRAM), Double Data Rate SDRAM (DDRSDRAM), Enhanced SDRAM (ESDRAM), Synchronous Chain Synchlink DRAM (SLDRAM), memory bus (Rambus) direct RAM (RDRAM), direct memory bus dynamic RAM (DRDRAM), and memory bus dynamic RAM (RDRAM), etc.
  • SRAM Static RAM
  • DRAM Dynamic RAM
  • SDRAM Synchronous DRAM
  • DDRSDRAM Double Data Rate SDRAM
  • ESDRAM Enhanced SDRAM
  • SLDRAM Synchronous Chain Synchlink DRAM
  • Rambus direct RAM
  • DRAM direct memory bus dynamic RAM
  • RDRAM memory bus dynamic RAM
  • This embodiment provides a readable storage medium, and a computer program is stored in the readable storage medium, and when the computer program is executed by a processor, the method for detecting the collision force of the mechanical arm and/or the mechanical arm collision force described above can be realized.
  • arm control method Since the readable storage medium provided by this application belongs to the same inventive concept as the above-mentioned method for detecting the collision force of the robot arm and/or the method for controlling the robot arm, it has the above-mentioned method for detecting the collision force of the robot arm and/or the method for controlling the robot arm Or all the advantages of the manipulator control method, so it will not be repeated here.
  • the readable storage medium in the embodiments of the present application may use any combination of one or more computer-readable media.
  • the readable medium may be a computer readable signal medium or a computer readable storage medium.
  • a computer-readable storage medium may be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, device, or device, or any combination thereof. More specific examples (non-exhaustive list) of computer readable storage media include: electrical connection with one or more wires, portable computer hard disk, hard disk, random access memory (RAM), read only memory (ROM), Erasable programmable read-only memory (EPROM or flash memory), optical fiber, portable compact disk read-only memory (CD-ROM), optical storage device, magnetic storage device, or any suitable combination of the above.
  • a computer-readable storage medium may be any tangible medium that contains or stores a program that can be used by or in combination with an instruction execution system, apparatus, or device.
  • a computer readable signal medium may include a data signal carrying computer readable program code in baseband or as part of a carrier wave. Such propagated data signals may take many forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the foregoing.
  • a computer-readable signal medium may also be any computer-readable medium other than a computer-readable storage medium, which can send, propagate, or transmit a program for use by or in conjunction with an instruction execution system, apparatus, or device. .
  • Computer program code for carrying out the operations of the present application may be written in one or more programming languages, or combinations thereof, including object-oriented programming languages—such as Java, Smalltalk, C++, and conventional Procedural Programming Language - such as "C" or a similar programming language.
  • the program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server.
  • the remote computer may be connected to the user computer through any kind of network, including a local area network (LAN) or a wide area network (WAN), or may be connected to an external computer (e.g., via an Internet connection using an Internet service provider). ).
  • LAN local area network
  • WAN wide area network
  • Internet service provider e.g., via an Internet connection using an Internet service provider
  • the mechanical arm collision force detection system, detection method, control method, surgical robot system, electronic equipment and storage medium provided by the present application have the following advantages:
  • the mechanical arm collision force detection system provided by the application includes a flexible device and a controller, the flexible device is provided with a plurality of force detection units, the force detection units are connected to the controller in communication, and the flexible device It is used to wrap the designated area of the mechanical arm; the force detection unit is used to detect the force and send the result of the force detection to the controller; the controller is used to detect the force according to the force of the force detection unit The detection result is to obtain the detection result of the collision force of the mechanical arm. Since the plurality of force detection units are arranged on the flexible device, and the flexible device is wrapped on the mechanical arm, the collision force detection system provided by this application can be used without affecting the mechanical arm. Under the premise of flexibility, it can effectively detect the collision force of the robot arm and the location of the collision.
  • the method for detecting the collision force of the mechanical arm provided by this application is to wrap a flexible device with multiple force detection units on the mechanical arm, so that the force detection results of the force detection units can be used to obtain all
  • the detection result of the collision force of the mechanical arm can be used to effectively detect the collision force received by the mechanical arm and the location where the collision occurs when the mechanical arm collides.
  • the flexible device since the flexible device is wrapped on the mechanical arm, when a collision occurs, the collision will first occur on the flexible device, so that the mechanical arm can be protected to a certain extent.
  • control method of the manipulator provided in the present application uses the detection method of the manipulator collision force described above to obtain the detection result of the collision force, the accuracy of the obtained detection result of the collision force can be guaranteed.
  • control method of the mechanical arm provided in the present application controls the mechanical arm to perform corresponding operations according to the detection result of the collision force of the mechanical arm, the safety performance of the mechanical arm during movement can be effectively improved.
  • each block in a flowchart or block diagram may represent a module, a program segment, or a portion of code that includes one or more programmable components for implementing specified logical functions.
  • Executable instructions, the module, program segment or part of the code contains one or more executable instructions for realizing the specified logic function.
  • the functions noted in the block may occur out of the order noted in the figures.
  • each block in the block diagrams and/or flowchart illustrations, and combinations of blocks in the block diagrams and/or flowchart illustrations can be implemented in special purpose hardware-based systems that perform the specified functions or actions. implemented, or may be implemented by a combination of special purpose hardware and computer instructions.
  • the functional modules in the various embodiments herein can be integrated together to form an independent part, or each module can exist independently, or two or more modules can be integrated to form an independent part.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Automation & Control Theory (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Manipulator (AREA)

Abstract

一种机械臂碰撞力检测系统,包括柔性装置(100)和控制器(200),柔性装置(100)上设有多个力检测单元(110),力检测单元(110)与控制器(200)通信连接,柔性装置(100)用于包裹住机械臂(300)的指定区域;力检测单元(110)用于进行受力检测,并将受力检测结果发送至控制器(200);控制器(200)用于根据力检测单元(110)的受力检测结果,获取机械臂(300)的碰撞力的检测结果。该检测系统能够在不影响机械臂灵活性的前提下,有效检测出机械臂所受到的碰撞力以及碰撞发生的位置。还提供了一种机械臂碰撞力检测方法、机械臂控制方法、手术机器人系统、电子设备和存储介质。

Description

机械臂碰撞力检测系统、方法、电子设备和存储介质 技术领域
本申请涉及机器人技术领域,特别涉及一种机械臂碰撞力检测系统、检测方法、机械臂控制方法、手术机器人系统、电子设备和存储介质。
背景技术
机器人是一种能够半自主或全自主工作的智能机器,其具有感知、决策、执行等基本特征,可以辅助甚至替代人类完成危险、繁重、复杂的工作。
现有机器人碰撞检测技术,碰撞检测是通过力矩传感器检测力是否发生变化或者检测关节电流是否发生突变来判断机器人是否发生碰撞。然而采用力矩传感器进行碰撞检测的方法由于力矩传感器会占用较大的空间,因此会对机械臂的灵活性造成影响;而采用电流检测的方法无法准确检测出碰撞力的大小。
需要说明的是,公开于该发明背景技术部分的信息仅仅旨在加深对本申请一般背景技术的理解,而不应当被视为承认或以任何形式暗示该信息构成已为本领域技术人员所公知的现有技术。
发明内容
本申请的目的在于提供一种机械臂碰撞力检测系统、检测方法、机械臂控制方法、手术机器人系统、电子设备和存储介质,可以在不对机械臂的灵活性造成影响的前提下,有效检测出机械臂所受到的碰撞力,提高机械臂在运动过程中的安全性能。
为达到上述目的,本申请的第一方面提供一种机械臂碰撞力检测系统,包括柔性装置和控制器,所述柔性装置上设有多个力检测单元,所述力检测单元与所述控制器通信连接,所述柔性装置用于包裹住所述机械臂的指定区域;所述力检测单元用于进行受力检测,并将受力检测结果发送至所述控制器;所述控制器用于根据所述力检测单元的受力检测结果,获取所述机械臂的碰撞力的检测结果,其中,所述多个力检测单元呈阵列式紧密排布在所述柔性装置上。
可选的,所述柔性装置为电子皮肤。
为达到上述目的,本申请的第二方面提供一种机械臂碰撞力检测方法,所述机械臂上包裹有柔性装置,所述柔性装置上设有多个力检测单元,其中,所述多个力检测单元呈阵列式紧密排布在所述柔性装置上,所述检测方法包括:获取所述力检测单元的受力检测结果;根据所述力检测单元的受力检测结果,获取所述机械臂的碰撞力的检测结果。
可选的,所述根据所述力检测单元的受力检测结果,获取所述机械臂的碰撞力的检测结果,包括:根据所述力检测单元的受力检测结果,将检测到外力的力检测单元确定为目标力检测单元;根据所述目标力检测单元的位置信息,获取所述目标力检测单元的受力向 量;根据所述目标力检测单元的受力向量,获取所述机械臂的碰撞力的检测结果。
可选的,所述根据所述目标力检测单元的位置信息,获取所述目标力检测单元的受力向量,包括:根据所述目标力检测单元在所述柔性装置上的位置信息以及所述柔性装置与对应的关节之间的位置关系,获取所述目标力检测单元在关节坐标系下的位置信息;根据所述目标力检测单元在所述关节坐标系下的位置信息、所述关节在世界坐标系下的位置信息以及所述目标力检测单元的受力检测结果,获取所述目标力检测单元在所述世界坐标系下的受力向量。
可选的,所述根据所述目标力检测单元的受力向量,获取所述机械臂的碰撞力的检测结果,包括:将所有的所述目标力检测单元在所述世界坐标系下的受力向量相加,以获取总受力向量;根据所述总受力向量以及所述目标力检测单元在所述世界坐标系下的位置信息,获取所述机械臂的碰撞力的检测结果。
可选的,所述碰撞力的检测结果包括碰撞力的大小、方向、发生位置和类型。
可选的,所述根据所述总受力向量以及所述目标力检测单元在所述世界坐标系下的位置信息,获取所述机械臂的碰撞力的检测结果,包括:根据所述总受力向量,获取所述机械臂的碰撞力向量;根据所述目标力检测单元在所述世界坐标系下的位置信息,获取所述机械臂的碰撞发生位置;判断除所述机械臂以外的其它机械臂中是否存在一条机械臂与所述机械臂的碰撞力向量大小相等方向相反且碰撞发生位置相同;若是,则判定所述机械臂的碰撞力类型为机械臂之间的碰撞力;若否,则判定所述机械臂的碰撞力类型为机械臂与外部环境之间的碰撞力;根据所述机械臂的碰撞力向量、碰撞力类型以及所述目标力检测单元在所述世界坐标系下的位置信息,获取所述机械臂的碰撞力的检测结果。
可选的,所述碰撞力的检测结果还包括碰撞力矩。
可选的,所述碰撞力矩通过以下过程获得:根据所述目标力检测单元在所述柔性装置上的位置信息以及所述柔性装置与对应的关节之间的位置关系,获取所述目标力检测单元在关节坐标系下的位置信息;根据所述目标力检测单元在关节坐标系下的位置信息以及所述目标力检测单元的受力检测结果,获取所述目标力检测单元在所述关节坐标系下的受力向量;根据所述目标力检测单元在所述关节坐标系下的位置信息以及所述目标力检测单元在所述关节坐标系下的受力向量,获取所述碰撞力矩。
为达到上述目的,本申请的第三方面提供一种机械臂控制方法,所述机械臂上包裹有柔性装置,所述柔性装置上设有多个力检测单元,所述控制方法包括:采用上文所述的机械臂碰撞力检测方法,获取所述机械臂的碰撞力的检测结果;根据所述机械臂的碰撞力的检测结果,控制所述机械臂进行相应操作。
可选的,所述机械臂的碰撞力的检测结果包括所述机械臂的碰撞力类型,所述根据所述机械臂的碰撞力的检测结果,控制所述机械臂进行相应操作,包括:若所述机械臂的碰撞力类型为机械臂与外部环境之间的碰撞力,则控制所述机械臂停止运动;若所述机械臂的碰撞力类型为机械臂之间的碰撞力,则以机械臂之间不发生碰撞作为约束条件,重新规 划所述机械臂的运动轨迹,并控制所述机械臂根据所述运动轨迹进行运动。
为达到上述目的,本申请的第四方面提供一种手术机器人系统,所述手术机器人系统包括主控端、操作端和控制器,所述主控端和所述操作端均与所述控制器通信连接,所述控制端与所述操作端具有主从控制关系并用于控制所述机械臂进行操作;所述操作端包括至少一条机械臂,所述机械臂上包裹有柔性装置,所述柔性装置上设有多个力检测单元;所述控制器被配置为实现上文所述的机械臂碰撞力检测方法和/或机械臂控制方法。
为达到上述目的,本申请的第五方面提供一种电子设备,包括处理器和存储器,所述存储器上存储有计算机程序,所述计算机程序被所述处理器执行时,实现上文所述的机械臂碰撞力检测方法和/或机械臂控制方法。
为达到上述目的,本申请的第六方面提供一种可读存储介质,所述可读存储介质内存储有计算机程序,所述计算机程序被处理器执行时,实现上文所述的机械臂碰撞力检测方法和/或机械臂控制方法。
与现有技术相比,本申请提供的机械臂碰撞力检测系统、检测方法、控制方法、手术机器人系统、电子设备和存储介质具有以下优点:
(1)本申请提供的机械臂碰撞力检测系统包括柔性装置和控制器,所述柔性装置上设有多个力检测单元,所述力检测单元与所述控制器通信连接,所述柔性装置用于包裹住所述机械臂的指定区域;所述力检测单元用于进行受力检测,并将受力检测结果发送至所述控制器;所述控制器用于根据所述力检测单元的受力检测结果,获取所述机械臂的碰撞力的检测结果。由于所述多个力检测单元是设置在所述柔性装置上的,而所述柔性装置是包裹在所述机械臂上的,由此本申请提供的碰撞力检测系统可以在不影响机械臂的灵活性的前提下,有效检测出机械臂所受到的碰撞力以及碰撞发生的位置。
(2)本申请提供的机械臂碰撞力检测方法,通过在机械臂上包裹设有多个力检测单元的柔性装置,由此,根据所述力检测单元的受力检测结果,即可获取所述机械臂的碰撞力的检测结果,从而可以在机械臂发生碰撞时,有效检测出所述机械臂所受到的碰撞力以及碰撞发生的位置。此外,由于所述柔性装置是包裹于所述机械臂上的,由此当发生碰撞时,碰撞首先发生在所述柔性装置上,从而可以对机械臂起到一定的保护作用。
(3)由于本申请提供的机械臂控制方法是采用上文所述的机械臂碰撞力检测方法获取碰撞力的检测结果,由此,可以保证所获取的碰撞力的检测结果的准确性。此外,由于本申请提供的机械臂控制方法是根据所述机械臂的碰撞力的检测结果,控制所述机械臂进行相应操作,由此可以有效提高机械臂在运动过程中的安全性能。
(4)由于本申请提供的手术机器人系统、电子设备和存储介质与上文所述的机械臂碰撞力检测方法和/或机械臂控制方法属于同一发明构思,因此其具有上文所述的机械臂碰撞力检测方法和/或机械臂控制方法的所有优点,故对比不再进行赘述。
附图说明
图1为本申请实施例1中的机械臂碰撞力检测系统的方框结构示意图;
图2为本申请实施例1中的柔性装置的局部结构示意图;
图3为本申请实施例1中的机械臂的局部结构示意图;
图4为本申请实施例1的一具体示例中的机械臂碰撞示意图;
图5为本申请实施例1中的力检测单元的结构示意图;
图6为本申请实施例2中的机械臂碰撞力检测方法的流程示意图;
图7为本申请实施例2中的获取机械臂的碰撞力的检测结果的具体流程示意图;
图8为本申请实施例2中的柔性装置受到外力时的示意图;
图9为本申请实施例2中的力检测单元在柔性装置上的位置显示示意图;
图10为本申请实施例2中的获取目标力检测单元在关节坐标系下的位置信息的原理示意图;
图11为本申请实施例2的一具体示例中的机械臂与机械臂之间发生碰撞时的示意图;
图12为本申请实施例2的一具体示例中的机械臂与外部环境之间发生碰撞时的示意图;
图13为本申请实施例3中的机械臂控制方法的流程示意图;
图14为本申请实施例3中的机械臂控制方法的具体流程示意图;
图15为本申请实施例4中的手术机器人系统的应用场景示意图;
图16为本申请实施例4中的当发生机械臂之间的碰撞时的界面显示示意图;
图17为本申请实施例4中的当发生机械臂与外部环境之间的碰撞时的界面显示示意图;
图18为本申请实施例5中的电子设备的方框结构示意图。
其中,附图标记如下:
柔性装置-100;力检测单元-110;控制器-200;机械臂-300、300A、300B;关节-310;连杆-320;不动点-330;手术器械-400;主控端-500;操作端-600;显示装置-700;处理器-810;通信接口-820;存储器-830;通信总线-840。
具体实施方式
以下结合附图和具体实施方式对本申请提出的机械臂碰撞力检测系统、检测方法、机械臂控制方法、手术机器人系统、电子设备和存储介质作进一步详细说明。根据下面说明,本申请的优点和特征将更清楚。需要说明的是,附图采用非常简化的形式且均使用非精准的比例,仅用以方便、明晰地辅助说明本申请实施方式的目的。为了使本申请的目的、特征和优点能够更加明显易懂,请参阅附图。须知,本说明书所附图式所绘示的结构、比例、大小等,均仅用以配合说明书所揭示的内容,以供熟悉此技术的人士了解与阅读,并非用以限定本申请实施的限定条件,任何结构的修饰、比例关系的改变或大小的调整,在与本申请所能产生的功效及所能达成的目的相同或近似的情况下,均应仍落在本申请所揭示的 技术内容能涵盖的范围内。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
本申请的核心思想在于提供一种机械臂碰撞力检测系统、检测方法、机械臂控制方法、手术机器人系统、电子设备和存储介质,可以在不会对机械臂的灵活性造成影响的前提下,有效检测出机械臂所受到的碰撞力,提高机械臂在运动过程中的安全性能。需要说明的是,虽然本申请提供的机械臂碰撞力检测方法和机械臂控制方法是以手术机器人系统中的机械臂为例进行说明,但是如本领域技术人员所能理解的,在具体实施时,本申请提供的机械臂碰撞力检测方法和机械臂控制方法不仅适用于手术机器人系统的机械臂,还适用于其它类型的机械臂,本申请对此并不进行限定。此外,需要说明的是,如本领域技术人员所能理解的,本申请中所称的关节坐标系是以关节上的某一点(优选为中心点)为原点所创建的坐标系,所称的目标力检测单元坐标系是以目标力检测单元上的某一点(优选为中心点)为原点所创建的坐标系。此外,需要说明的是,本申请中所称的近端是指靠近病灶的一端,所称的远端是指远离病灶的一端。
实施例1
为实现上述思想,本实施例提供一种机械臂碰撞力检测系统,请参考图1和图2,其中图1示意性地给出了本实施例一实施方式提供的机械臂碰撞力检测系统的方框结构示意图;图2示意性地给出了本实施例一实施方式提供的柔性装置100的局部结构示意图。如图1和图2所示,所述检测系统包括柔性装置100和控制器200,所述柔性装置100上设有多个力检测单元110,所述力检测单元110与所述控制器200通信连接。
请继续参考图3,其示意性地给出了本实施例一实施方式提供的机械臂300的局部结构示意图。如图3所示,所述机械臂300包括多个依次相连的关节310,任意相邻的两个关节310之间通过一连杆320相连。当所述机械臂300应用于手术机器人系统时,所述机械臂300的末端用于挂载手术器械400,所述机械臂300能够驱动所述手术器械400围绕一不动点330运动。所述柔性装置100用于包裹住所述机械臂300的指定区域,在本实施例中,指定区域可以是机械臂300的全部或部分区域。其中,所述力检测单元110用于进行受力检测,并将受力检测结果发送至所述控制器200;所述控制器200用于根据所述力检测单元110的受力检测结果,获取所述机械臂300的碰撞力的检测结果。需要说明的是,如本领域技术人员所能理解的,本申请对机械臂300的具体构型没有特别的限制。
请继续参考图4,其示意性地给出了本实施例一具体示例中的机械臂300碰撞示意图。 如图4所示,当机械臂300发生碰撞时,碰撞首先发生在安装于所述机械臂300表面的柔性装置100上,由此,当机械臂300发生碰撞时,柔性装置100上的对应位置处的力检测单元110会首先检测到力,即与碰撞发生位置对应处的力检测单元110的检测值不为0,由此,根据各个所述力检测单元110的受力检测结果,即可获取所述机械臂300的碰撞力的检测结果。由于所述多个力检测单元110是设置在所述柔性装置100上的,而所述柔性装置100是包裹在所述机械臂300上的,由此本申请提供的碰撞力检测系统可以在不影响机械臂300的灵活性的前提下,有效检测出机械臂300所受到的碰撞力以及碰撞发生的位置。此外,由于当发生碰撞时,碰撞首先发生在所述柔性装置100上,从而可以对机械臂300起到一定的保护作用。
具体地,所述力检测单元110包括但不限于压力式力传感器、电阻式力传感器、电容式力传感器和摩擦电式力传感器中的任一种。需要说明的是,如本领域技术人员所能理解的,力检测单元110可以足够小以使得安装多个力检测单元110后的柔性装置100可以任意弯折而不损坏力检测单元110的功能,同时也可以使得所述柔性装置100更加便于安装于所述机械臂300上。
优选地,所述柔性装置100为电子皮肤。由于电子皮肤具有良好的柔韧性、导电性和轻薄性,由此,通过采用电子皮肤作为本申请中的柔性装置100,可以使得所述柔性装置100能够紧密贴合在所述机械臂300上,不仅可以更加便于所述柔性装置100的安装,同时也可以减小所述柔性装置100的安装空间,进一步减少所述柔性装置100对所述机械臂300的灵活性的影响。
请继续参考图2,在一种示范性的实施方式中,所述多个力检测单元110呈阵列式紧密排布在所述柔性装置100上。由此,通过在所述柔性装置100上设置多个呈阵列式且紧密排布的力检测单元110,可以进一步提高本申请提供的碰撞力检测系统的检测准确性。
请继续参考图2和图5,其中图5示意性地给出了本实施例一实施方式提供的力检测单元110的结构示意图。如图2和图5所示,进一步地,所述力检测单元110的横截面呈正六边形设置。由此,通过将所述力检测单元110的横向截面设置成正六边形,可以使得所述多个力检测单元110能够无间隙(即任意相邻的两个力检测单元110之间是接触的)地呈阵列式紧密排布在所述柔性装置100上,从而不仅可以更加便于所述力检测单元110的安装,同时也可以进一步提高本申请提供的碰撞力检测系统的检测准确性。当然,本申请中力检测单元110的横截面形状并不局限于正六边形,可以根据需要设置成其它合适的形状,本申请对此不做具体限制。
实施例2
与上文所述的机械臂碰撞力检测系统相对应,本实施例提供了一种机械臂碰撞力检测方法,所述机械臂300上包裹有上文所述的柔性装置100。请参考图6,其示意性地给出了本实施例一实施方式提供的机械臂碰撞力检测方法的流程示意图。如图6所示,所述机械臂碰撞力检测方法包括如下步骤:
步骤S110、获取所述力检测单元110的受力检测结果。
步骤S120、根据所述力检测单元110的受力检测结果,获取所述机械臂300的碰撞力的检测结果。
由此,本申请提供的机械臂碰撞力检测方法,通过在机械臂300上包裹设有多个力检测单元110的柔性装置100,从而根据所述力检测单元110的受力检测结果,即可获取所述机械臂300的碰撞力的检测结果,进而可以在机械臂300发生碰撞时,有效检测出所述机械臂300所受到的碰撞力以及碰撞发生的位置。此外,由于所述柔性装置100是包裹于所述机械臂300上的,由此当发生碰撞时,碰撞首先发生在所述柔性装置100上,从而可以对机械臂300起到一定的保护作用。
请继续参考图7,其示意性地给出了本实施例一实施方式提供的获取机械臂300的碰撞力的检测结果的具体流程示意图。如图7所示,所述根据所述力检测单元110的受力检测结果,获取所述机械臂300的碰撞力的检测结果,包括:根据所述力检测单元110的受力检测结果,将检测到外力的力检测单元110确定为目标力检测单元110a;根据所述目标力检测单元110a的位置信息,获取所述目标力检测单元110a的受力向量;根据所述目标力检测单元110a的受力向量,获取所述机械臂300的碰撞力的检测结果。
请继续参考图8,其示意性地给出了本实施例一实施方式提供的柔性装置100受到外力时的示意图,其中灰色部分表示该处的力检测单元110检测到了外力(即该位置处发生了碰撞),将检查到外力的力检测单元110定义为下文中的目标力检测单元110a,白色部分表示该处的力检测单元110未检测到外力(即该位置处未发生碰撞)。由此,根据各个所述力检测单元110的受力检测结果,即可筛选出检测到外力的力检测单元110,即目标力检测单元110a,再根据所述目标力检测单元110a的位置信息,以获取所述目标力检测单元110a的受力向量,从而可以将所有的目标力检测单元110a的检测结果转换至同一空间坐标系下,最后再根据所述目标力检测单元110a的受力向量,即可获取所述机械臂300的碰撞力的检测结果。需要说明的是,如本领域技术人员所能理解的,若所述机械臂300上的所有力检测单元110均未检测出外力,则该机械臂300的碰撞力检测结果为0。
进一步地,所述根据所述目标力检测单元110a的位置信息,获取所述目标力检测单元110a的受力向量,包括:
根据所述目标力检测单元110a在所述柔性装置100上的位置信息以及所述柔性装置100与对应的关节310之间的位置关系,获取所述目标力检测单元110a在关节坐标系下的位置信息;
根据所述目标力检测单元110a在所述关节坐标系下的位置信息、所述关节坐标系与世界坐标系之间的映射关系以及所述目标力检测单元110a的受力检测结果,获取所述目标力检测单元110a在所述世界坐标系下的受力向量。
具体地,根据所述目标力检测单元110a在所述柔性装置100上的位置信息,可以知晓碰撞具体发生在所述机械臂300的哪个连杆320上。由于所述柔性装置100是包裹于所 述机械臂300上的,由此所述柔性装置100与所述机械臂300上的各个关节310之间的位置关系是固定且已知的,因此根据所述目标力检测单元110a在所述柔性装置100上的位置信息以及所述柔性装置100与对应的关节310(发生碰撞的连杆320的远端所对应的关节310)之间的位置关系,即可获取所述目标力检测单元110a与碰撞发生处所对应的关节310之间的位置关系,从而获取所述目标力检测单元110a在所对应的关节310的坐标系下的位置信息。由于所述机械臂300的各个关节310的旋转角度可以通过安装于各个关节310上的位置传感器测得,且所述机械臂300所在的机器人的坐标系(即机器人坐标系)与世界坐标系之间的关系是已知的,由此,根据所述机械臂300的各个关节310的旋转角度以及机器人坐标系与世界坐标系之间的关系,并基于运动学方程,可以获取所述机械臂300的各个关节310在世界坐标系下的位置信息。从而根据所述目标力检测单元110a在对应的关节坐标系的位置信息,以及该关节310在世界坐标系下的位置信息,即可获取所述目标力检测单元110a在所述世界坐标系下的位置信息,进而根据所述目标力检测单元110a的受力检测结果以及所述目标力检测单元110a在所述世界坐标系下的位置信息,即可获取所述目标力检测单元110a在所述世界坐标系下的受力向量。
请参考图9,其示意性地给出了本实施例一实施方式提供的力检测单元110在柔性装置100上的位置显示示意图。如图9所示,可以以所述柔性装置100上的某一点(例如左上角)为原点,创建二维坐标系,所述力检测单元110在所述柔性装置100上的位置可用一二维坐标(x’n,y’n)表示。请继续参考图10,其示意性地给出了本申请一实施方式提供的获取目标力检测单元110a在关节坐标系下的位置信息的原理示意图。如图10所示,点O表示碰撞发生处所对应的关节310的坐标系的原点(优选为关节310的中心点),点O1表示安装于该关节310上的柔性装置100上的某一点,点O’表示某一目标力检测单元110a上的某一点(优选为中心点),点O’的位置即为所述目标力检测单元110a的位置。根据所述柔性装置100在所述机械臂300上的安装位置,可以确定点O 1在所述关节310的坐标系下的位置,即
Figure PCTCN2022133588-appb-000001
是确定的;根据所述目标力检测单元110a在所述柔性装置100上的位置坐标,以及因为目标力检测单元110a的坐标系的x’轴与所述关节310的坐标系的x轴相平行,因此
Figure PCTCN2022133588-appb-000002
也是已知的,由此,根据如下关系式,即可获取关节坐标系下的目标力检测单元110a的位置向量
Figure PCTCN2022133588-appb-000003
(即目标力检测单元110a在关节坐标系下的位置信息):
Figure PCTCN2022133588-appb-000004
由此,根据各个所述目标力检测单元110a在所述关节坐标系下的位置信息,以及所述关节310在世界坐标系下的位置信息,即可获取各个所述目标力检测单元110a在所述世界坐标系下的位置信息,进而根据各个所述目标力检测单元110a在所述世界坐标系下的位置信息,即可获取各个所述目标力检测单元110a的坐标系与所述世界坐标系之间的映射关系。假设所述目标力检测单元110a所检测到的外力在所述目标力检测单元坐标系下的向量表示为
Figure PCTCN2022133588-appb-000005
所述目标力检测单元坐标系与所述世界坐标系之间的映射关系为
Figure PCTCN2022133588-appb-000006
则所述目标力检测单元110a所检测到的外力在所述世界坐标系的向量
Figure PCTCN2022133588-appb-000007
表示为:
Figure PCTCN2022133588-appb-000008
关于如何根据所述目标力检测单元110a在所述世界坐标系下的位置信息获取所述目标力检测单元坐标系与所述世界坐标系之间的映射关系可以参考现有技术,本申请对此不再进行赘述。
在一种示范性的实施方式中,所述根据所述目标力检测单元110a的受力向量,获取所述机械臂300的碰撞力的检测结果,包括:
将所有的所述目标力检测单元110a在所述世界坐标系下的受力向量相加,以获取总受力向量;
根据所述总受力向量以及所述目标力检测单元110a在所述世界坐标系下的位置信息,获取所述机械臂300的碰撞力的检测结果,获取所述机械臂300的碰撞力的检测结果。
由此,通过将所有的所述目标力检测单元110a所检测到的外力在所述世界坐标系下的向量相加(即将所有的所述目标力检测单元110a在所述世界坐标系下的受力向量相加),以获取总受力向量,再根据所述总受力向量即可根据获取所述机械臂300的所受到的碰撞力。根据各个所述目标力检测单元110a在所述世界坐标系下的位置信息即可获取所述机械臂300所受碰撞力的发生位置。
进一步地,所述碰撞力的检测结果包括碰撞力的大小、方向、发生位置和类型。由此,通过获取机械臂300的碰撞力的类型,可以为后续根据不同的受力类型,对机械臂300执行相应操作,奠定良好的基础。
更进一步地,所述根据所述总受力向量以及所述目标力检测单元110a在所述世界坐标系下的位置信息,获取所述机械臂300的碰撞力的检测结果,包括:
根据所述总受力向量,获取所述机械臂300的碰撞力向量;
根据所述目标力检测单元110a在所述世界坐标系下的位置信息,获取所述机械臂300的碰撞发生位置;
判断除所述机械臂300以外的其它机械臂300中是否存在一条机械臂300与所述机械臂300的碰撞力向量大小相等方向相反且碰撞发生位置相同;
若是,则判定所述机械臂300的碰撞力类型为机械臂300之间的碰撞力;
若否,则判定所述机械臂300的碰撞力类型为机械臂300与外部环境之间的碰撞力;
根据所述机械臂300的碰撞力向量、碰撞力类型以及所述目标力检测单元110a在所述世界坐标系下的位置信息,获取所述机械臂300的碰撞力的检测结果。
具体地,请参考图11,其示意性地给出了本实施例一具体示例中的机械臂300与机械臂300之间发生碰撞时的示意图。如图11所示,
Figure PCTCN2022133588-appb-000009
Figure PCTCN2022133588-appb-000010
分别是对应两条机械臂300A和300B上检测出的碰撞力向量,当
Figure PCTCN2022133588-appb-000011
Figure PCTCN2022133588-appb-000012
大小相等方向相反且碰撞发生位置相同时,则可以判定这两条机械臂300A和300B受到的碰撞力类型为机械臂300之间的碰撞力。
请继续参考图12,其示意性地给出了本实施例一具体示例中的机械臂300与外部环境之间发生碰撞时的示意图。如图12所示,当检测到所述机械臂300B受到碰撞力向量
Figure PCTCN2022133588-appb-000013
且没有找到与所述机械臂300B的碰撞力向量
Figure PCTCN2022133588-appb-000014
大小相等方向相反且碰撞发生位置相同的机械臂300,则说明所述机械臂300B所受到的碰撞力来自于外部环境,即所述机械臂300B所受到的碰撞力类型为机械臂300与外部环境之间的碰撞力。
在一种示范性的实施方式中,所述机械臂300的碰撞力的检测结果还包括碰撞力矩。具体地,通过所述目标力检测单元110a在碰撞发生处所对应的关节坐标系下的位置信息,即可获取所述目标力检测单元坐标系与所述关节坐标系之间的映射关系
Figure PCTCN2022133588-appb-000015
假设所述目标力检测单元110a所检测到的外力在所述目标力检测单元坐标系下的向量表示为
Figure PCTCN2022133588-appb-000016
则所述目标力检测单元110a所检测到的外力在所述关节坐标系下的向量
Figure PCTCN2022133588-appb-000017
表示为:
Figure PCTCN2022133588-appb-000018
由此,所述目标力检测单元110a所检测到的外力对所述关节310所产生的力矩T n为:
Figure PCTCN2022133588-appb-000019
式中,
Figure PCTCN2022133588-appb-000020
表示
Figure PCTCN2022133588-appb-000021
的模,x n表示所述目标力检测单元110a在所述关节坐标系下的x轴的坐标。
由此,将所有的所述目标力检测单元110a所检测到的外力对所述关节310所产生的力矩值相加,即可获取所述机械臂300所受到的碰撞力矩。
综上,本申请提供的机械臂碰撞力检测方法不仅可以检测出机械臂300所受到的碰撞力的大小,还可以检测出机械臂300所受到的碰撞力的方向、发生位置、类型和力矩。
实施例3
与上文所述的机械臂碰撞力检测方法相对应,本实施例提供一种机械臂控制方法。请参考图13,其示意性地给出了本实施例一实施方式提供的机械臂控制方法的流程示意图。如图13所示,所述机械臂控制方法包括:
步骤S210、获取所述机械臂300的碰撞力的检测结果。
步骤S220、根据所述机械臂300的碰撞力的检测结果,控制所述机械臂300进行相应操作。
其中,采用上文所述的碰撞力检测方法获取所述机械臂300的碰撞力的检测结果。由于本申请提供的机械臂控制方法是采用上文所述的机械臂碰撞力检测方法获取碰撞力的检测结果,由此,可以保证所获取的碰撞力的检测结果的准确性。此外,由于本申请提供的机械臂控制方法是根据所述机械臂300的碰撞力的检测结果,控制所述机械臂300进行相应操作,由此可以有效提高机械臂300在运动过程中的安全性能。
在一种示范性的实施方式中,所述机械臂300的碰撞力的检测结果包括所述机械臂300的碰撞力类型,所述根据所述机械臂300的碰撞力的检测结果,控制所述机械臂300进行相应操作,包括:
若所述机械臂300的碰撞力类型为机械臂300与外部环境之间的碰撞力,则控制所述机械臂300停止运动;
若所述机械臂300的碰撞力类型为机械臂300之间的碰撞力,则以机械臂300之间不 发生碰撞作为约束条件,重新规划所述机械臂300的运动轨迹,并控制所述机械臂300根据所述运动轨迹进行运动。
具体地,请参考图14,其示意性地给出了本实施例一实施方式提供的机械臂控制方法的具体流程示意图。如图14所示,若根据所述机械臂300的碰撞力的检测结果,判定所述机械臂300的碰撞力类型为机械臂300与外部环境之间的碰撞力,由于此时无法判断外部环境的情况(无法区分外部环境为人或物),由此出于安全考虑,则中断机械臂300的运动,进一步地,并提示医生进行相应操作。若根据所述机械臂300的碰撞力的检测结果,判定所述机械臂300的碰撞力类型为机械臂300与外部环境之间的碰撞力,则以机械臂300之间不发生碰撞作为约束条件,重新规划所述机械臂300的运动轨迹,并控制所述机械臂300根据重新规划后的运动轨迹进行运动。具体地,当所述机械臂300应用于手术机器人系统上时,可以以所述手术机器人系统中的主控端500的末端笛卡尔位置(在世界坐标系下的位置)作为目标位置,重新规划所述机械臂300的运动轨迹。优选地,可以根据所述机械臂300所受到的碰撞力矩,以所述机械臂300所受到的碰撞力矩为0作为约束条件,重新规划所述机械臂300的运动轨迹。
实施例4
基于同一发明构思,本实施例提供一种手术机器人系统。请参考图15,其示意性地给出了本实施例一实施方式提供的手术机器人系统的应用场景示意图。所述手术机器人系统包括主控端500、操作端600和控制器200,所述主控端500和所述操作端600均与所述控制器200通信连接,所述控制端与所述操作端600具有主从控制关系并用于控制所述机械臂300进行操作。其中,所述操作端600包括至少一条机械臂300,所述机械臂300上包裹有柔性装置100(图中未示出),所述柔性装置100上设有多个力检测单元110;所述控制器200被配置为实现上文所述的机械臂碰撞力检测方法和/或机械臂控制方法。由于所述控制器200能够实现上文所述的机械臂碰撞力检测方法和/或机械臂控制方法,由此,本申请提供的手术机器人系统可以在不影响机械臂300的灵活性的前提下,有效检测出机械臂300所受到的碰撞力以及碰撞发生的位置。由于所述柔性装置100是包裹于所述机械臂300上的,由此当发生碰撞时,碰撞首先发生在所述柔性装置100上,从而可以对机械臂300起到一定的保护作用。另外,由于所述手术机器人系统能够根据所述机械臂300的碰撞力的检测结果执行相应操作,由此可以有效提高机械臂300在运动过程中的安全性能。
进一步地,如图15所示,所述手术机器人系统还包括与所述控制器200通信连接的显示装置700。请继续参考图16,其示意性地给出了本实施例一实施方式提供的当发生机械臂300之间的碰撞时的界面显示示意图。如图16所示,当检测到所述手术机器人系统发生机械臂300之间的碰撞时,可以根据通过所述显示装置700采用画面提示的方式提示医生发生了机械臂300之间的碰撞。又由于当发生机械臂300之间的碰撞时,可以通过重新规划路径(即运动轨迹)的方式消除碰撞,由此,当发生机械臂300之间的碰撞时,通过所述显示装置700还可以提示医生可以继续进行操作。请继续参考图17,其示意性地给出了本申请一实施方式提供的当发生机械臂300与外部环境之间的碰撞时的界面显示示意图。如图17所示,当检查到所述手术机器人系统的机械臂300与外部环境之间发生碰撞 时,由于系统出于安全考虑,会自动中断机械臂300的运动,暂停手术,由此,所述显示装置700会提示医生机械臂300发生了碰撞,请检查机器人周边环境。
需要说明的是,如本领域技术人员所能理解的,除了可以采用界面显示的方式提示机械臂300发生了碰撞,还可以采用其它方式,例如声音提示的方式提示机械臂300发生了碰撞。
实施例5
基于同一发明构思,本实施例提供一种电子设备,请参考图18,其示意性地给出了本实施例一实施方式提供的电子设备的方框结构示意图。如图18所示,所述电子设备包括处理器810和存储器830,所述存储器830上存储有计算机程序,所述计算机程序被所述处理器810执行时,实现上文所述的机械臂碰撞力检测方法和/或机械臂控制方法。由于本申请提供的电子设备与上文所述的机械臂碰撞力检测方法和/或机械臂控制方法属于同一发明构思,由此,其具有上文所述的机械臂碰撞力检测方法和/或机械臂控制方法的所有优点,故对此不再进行赘述。
如图18所示,所述电子设备还包括通信接口820和通信总线840,其中所述处理器810、所述通信接口820、所述存储器830通过通信总线840完成相互间的通信。所述通信总线840可以是外设部件互连标准(Peripheral Component Interconnect,PCI)总线或扩展工业标准结构(Extended Industry Standard Architecture,EISA)总线等。该通信总线840可以分为地址总线、数据总线、控制总线等。为便于表示,图中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。所述通信接口820用于上述电子设备与其他设备之间的通信。
本申请中所称处理器810可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等,所述处理器810是所述电子设备的控制中心,利用各种接口和线路连接整个电子设备的各个部分。
所述存储器830可用于存储所述计算机程序,所述处理器810通过运行或执行存储在所述存储器830内的计算机程序,以及调用存储在存储器830内的数据,实现所述电子设备的各种功能。
所述存储器830可以包括非易失性和/或易失性存储器。非易失性存储器可包括只读存储器(ROM)、可编程ROM(PROM)、电可编程ROM(EPROM)、电可擦除可编程ROM(EEPROM)或闪存。易失性存储器可包括随机存取存储器(RAM)或者外部高速缓冲存储器。作为说明而非局限,RAM以多种形式可得,诸如静态RAM(SRAM)、动态RAM(DRAM)、同步DRAM(SDRAM)、双数据率SDRAM(DDRSDRAM)、增强型SDRAM(ESDRAM)、同步链路(Synchlink)DRAM(SLDRAM)、存储器总线(Rambus)直接RAM(RDRAM)、直接存储器总线动态RAM(DRDRAM)、以及存储器总线动态RAM(RDRAM)等。
实施例6
本实施例提供了一种可读存储介质,所述可读存储介质内存储有计算机程序,所述计算机程序被处理器执行时可以实现上文所述的机械臂碰撞力检测方法和/或机械臂控制方法。由于本申请提供的可读存储介质与上文所述的机械臂碰撞力检测方法和/或机械臂控制方法属于同一发明构思,由此其具有上文所述的机械臂碰撞力检测方法和/或机械臂控制方法的所有优点,故对此不再进行赘述。
本申请实施方式的可读存储介质,可以采用一个或多个计算机可读的介质的任意组合。可读介质可以是计算机可读信号介质或者计算机可读存储介质。计算机可读存储介质例如可以是但不限于电、磁、光、电磁、红外线或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子(非穷举的列表)包括:具有一个或多个导线的电连接、便携式计算机硬盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑磁盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本文中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其组合使用。
计算机可读的信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读的信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。
可以以一种或多种程序设计语言或其组合来编写用于执行本申请操作的计算机程序代码,所述程序设计语言包括面向对象的程序设计语言-诸如Java、Smalltalk、C++,还包括常规的过程式程序设计语言-诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络——包括局域网(LAN)或广域网(WAN)连接到用户计算机,或者可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。
综上所述,与现有技术相比,本申请提供的机械臂碰撞力检测系统、检测方法、控制方法、手术机器人系统、电子设备和存储介质具有以下优点:
(1)本申请提供的机械臂碰撞力检测系统包括柔性装置和控制器,所述柔性装置上设有多个力检测单元,所述力检测单元与所述控制器通信连接,所述柔性装置用于包裹住所述机械臂的指定区域;所述力检测单元用于进行受力检测,并将受力检测结果发送至所述控制器;所述控制器用于根据所述力检测单元的受力检测结果,获取所述机械臂的碰撞力的检测结果。由于所述多个力检测单元是设置在所述柔性装置上的,而所述柔性装置是包裹在所述机械臂上的,由此本申请提供的碰撞力检测系统可以在不影响机械臂的灵活性的前提下,有效检测出机械臂所受到的碰撞力以及碰撞发生的位置。
(2)本申请提供的机械臂碰撞力检测方法,通过在机械臂上包裹设有多个力检测单元的柔性装置,由此,根据所述力检测单元的受力检测结果,即可获取所述机械臂的碰撞力的检测结果,从而可以在机械臂发生碰撞时,有效检测出所述机械臂所受到的碰撞力以及碰撞发生的位置。此外,由于所述柔性装置是包裹于所述机械臂上的,由此当发生碰撞时,碰撞首先发生在所述柔性装置上,从而可以对机械臂起到一定的保护作用。
(3)由于本申请提供的机械臂控制方法是采用上文所述的机械臂碰撞力检测方法获取碰撞力的检测结果,由此,可以保证所获取的碰撞力的检测结果的准确性。此外,由于本申请提供的机械臂控制方法是根据所述机械臂的碰撞力的检测结果,控制所述机械臂进行相应操作,由此可以有效提高机械臂在运动过程中的安全性能。
(4)由于本申请提供的手术机器人系统、电子设备和存储介质与上文所述的机械臂碰撞力检测方法和/或机械臂控制方法属于同一发明构思,因此其具有上文所述的机械臂碰撞力检测方法和/或机械臂控制方法的所有优点,故对比不再进行赘述。
应当注意的是,在本文的实施方式中所揭露的装置和方法,也可以通过其他的方式实现。以上所描述的装置实施方式仅仅是示意性的,例如,附图中的流程图和框图显示了根据本文的多个实施方式的装置、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序或代码的一部分,所述模块、程序段或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令,所述模块、程序段或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。也应当注意,在有些作为替换的实现方式中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用于执行规定的功能或动作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。
另外,在本文各个实施方式中的各功能模块可以集成在一起形成一个独立的部分,也可以是各个模块单独存在,也可以两个或两个以上模块集成形成一个独立的部分。
此外,在本说明书的描述中,参考术语“一个实施方式”、“一些实施方式”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施方式或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施方式或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施方式或示例以及不同实施方式或示例的特征进行结合和组合。
上述描述仅是对本申请较佳实施方式的描述,并非对本申请范围的任何限定,本申请领域的普通技术人员根据上述揭示内容做的任何变更、修饰,均属于本申请的保护范围。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若这些修改和变型属于本申请及其等同技术的范围之内,则本申请也意图包括这些改动和变型在内。

Claims (16)

  1. 一种机械臂碰撞力检测系统,其特征在于,包括柔性装置和控制器,所述柔性装置上设有多个力检测单元,所述力检测单元与所述控制器通信连接,所述柔性装置用于包裹住所述机械臂的指定区域;
    所述力检测单元用于进行受力检测,并将受力检测结果发送至所述控制器;
    所述控制器用于根据所述力检测单元的受力检测结果,获取所述机械臂的碰撞力的检测结果,
    其中,所述多个力检测单元呈阵列式紧密排布在所述柔性装置上。
  2. 根据权利要求1所述的机械臂碰撞力检测系统,其特征在于,所述柔性装置为电子皮肤。
  3. 根据权利要求1所述的机械臂碰撞力检测系统,其特征在于,所述力检测单元包括压力式力传感器、电阻式力传感器、电容式力传感器和摩擦电式力传感器中的一种。
  4. 一种机械臂碰撞力检测方法,其特征在于,所述机械臂上包裹有柔性装置,所述柔性装置上设有多个力检测单元,所述多个力检测单元呈阵列式紧密排布在所述柔性装置上,所述检测方法包括:
    获取所述力检测单元的受力检测结果;
    根据所述力检测单元的受力检测结果,获取所述机械臂的碰撞力的检测结果。
  5. 根据权利要求4所述的机械臂碰撞力检测方法,其特征在于,所述根据所述力检测单元的受力检测结果,获取所述机械臂的碰撞力的检测结果,包括:
    根据所述力检测单元的受力检测结果,将检测到外力的力检测单元确定为目标力检测单元;
    根据所述目标力检测单元的位置信息,获取所述目标力检测单元的受力向量;
    根据所述目标力检测单元的受力向量,获取所述机械臂的碰撞力的检测结果。
  6. 根据权利要求5所述的机械臂碰撞力检测方法,其特征在于,所述根据所述目标力检测单元的位置信息,获取所述目标力检测单元的受力向量,包括:
    根据所述目标力检测单元在所述柔性装置上的位置信息以及所述柔性装置与对应的关节之间的位置关系,获取所述目标力检测单元在关节坐标系下的位置信息;
    根据所述目标力检测单元在所述关节坐标系下的位置信息、所述关节在世界坐标系下的位置信息以及所述目标力检测单元的受力检测结果,获取所述目标力检测单元在所述世界坐标系下的受力向量。
  7. 根据权利要求6所述的机械臂碰撞力检测方法,其特征在于,所述根据所述目标力检测单元的受力向量,获取所述机械臂的碰撞力的检测结果,包括:
    将所有的所述目标力检测单元在所述世界坐标系下的受力向量相加,以获取总受力向量;
    根据所述总受力向量以及所述目标力检测单元在所述世界坐标系下的位置信息,获取所述机械臂的碰撞力的检测结果。
  8. 根据权利要求7所述的机械臂碰撞力检测方法,其特征在于,所述碰撞力的检测结果包括碰撞力的大小、方向、发生位置和类型。
  9. 根据权利要求8所述的机械臂碰撞力检测方法,其特征在于,所述根据所述总受力向量以及所述目标力检测单元在所述世界坐标系下的位置信息,获取所述机械臂的碰撞力的检测结果,包括:
    根据所述总受力向量,获取所述机械臂的碰撞力向量;
    根据所述目标力检测单元在所述世界坐标系下的位置信息,获取所述机械臂的碰撞发生位置;
    判断除所述机械臂以外的其它机械臂中是否存在一条机械臂与所述机械臂的碰撞力向量大小相等方向相反且碰撞发生位置相同;
    若是,则判定所述机械臂的碰撞力类型为机械臂之间的碰撞力;
    若否,则判定所述机械臂的碰撞力类型为机械臂与外部环境之间的碰撞力;
    根据所述机械臂的碰撞力向量、碰撞力类型以及所述目标力检测单元在所述世界坐标系下的位置信息,获取所述机械臂的碰撞力的检测结果。
  10. 根据权利要求5所述的机械臂碰撞力检测方法,其特征在于,所述碰撞力的检测结果还包括碰撞力矩。
  11. 根据权利要求10所述的机械臂碰撞力检测方法,其特征在于,所述碰撞力矩通过以下过程获得:
    根据所述目标力检测单元在所述柔性装置上的位置信息以及所述柔性装置与对应的关节之间的位置关系,获取所述目标力检测单元在关节坐标系下的位置信息;
    根据所述目标力检测单元在关节坐标系下的位置信息以及所述目标力检测单元的受力检测结果,获取所述目标力检测单元在所述关节坐标系下的受力向量;
    根据所述目标力检测单元在所述关节坐标系下的位置信息以及所述目标力检测单元在所述关节坐标系下的受力向量,获取所述碰撞力矩。
  12. 一种机械臂控制方法,其特征在于,所述机械臂上包裹有柔性装置,所述柔性装置上设有多个力检测单元,所述控制方法包括:
    采用权利要求4至11中任一项所述的机械臂碰撞力检测方法,获取所述机械臂的碰撞力的检测结果;
    根据所述机械臂的碰撞力的检测结果,控制所述机械臂进行相应操作。
  13. 根据权利要求12所述的机械臂控制方法,其特征在于,所述机械臂的碰撞力的检测结果包括所述机械臂的碰撞力类型,所述根据所述机械臂的碰撞力的检测结果,控制所述机械臂进行相应操作,包括:
    若所述机械臂的碰撞力类型为机械臂与外部环境之间的碰撞力,则控制所述机械臂停 止运动;
    若所述机械臂的碰撞力类型为机械臂之间的碰撞力,则以机械臂之间不发生碰撞作为约束条件,重新规划所述机械臂的运动轨迹,并控制所述机械臂根据所述运动轨迹进行运动。
  14. 一种手术机器人系统,其特征在于,包括主控端、操作端和控制器,所述主控端和所述操作端均与所述控制器通信连接,所述控制端与所述操作端具有主从控制关系并用于控制所述机械臂进行操作;
    所述操作端包括至少一条机械臂,所述机械臂上包裹有柔性装置,所述柔性装置上设有多个力检测单元;
    所述控制器被配置为实现权利要求4至11中任一项所述的机械臂碰撞力检测方法和/或权利要求12至13中任一项所述的机械臂控制方法。
  15. 一种电子设备,其特征在于,包括处理器和存储器,所述存储器上存储有计算机程序,所述计算机程序被所述处理器执行时,实现权利要求4至11中任一项所述的机械臂碰撞力检测方法和/或权利要求12至13中任一项所述的机械臂控制方法。
  16. 一种可读存储介质,其特征在于,所述可读存储介质内存储有计算机程序,所述计算机程序被处理器执行时,实现权利要求4至11中任一项所述的机械臂碰撞力检测方法和/或权利要求12至13中任一项所述的机械臂控制方法。
PCT/CN2022/133588 2021-11-23 2022-11-23 机械臂碰撞力检测系统、方法、电子设备和存储介质 WO2023093735A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111397059.5 2021-11-23
CN202111397059.5A CN114043477B (zh) 2021-11-23 2021-11-23 机械臂碰撞力检测系统、方法、电子设备和存储介质

Publications (1)

Publication Number Publication Date
WO2023093735A1 true WO2023093735A1 (zh) 2023-06-01

Family

ID=80211495

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/133588 WO2023093735A1 (zh) 2021-11-23 2022-11-23 机械臂碰撞力检测系统、方法、电子设备和存储介质

Country Status (2)

Country Link
CN (1) CN114043477B (zh)
WO (1) WO2023093735A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116935252A (zh) * 2023-07-10 2023-10-24 齐鲁工业大学(山东省科学院) 一种基于子图嵌入图神经网络的机械臂碰撞检测方法
CN117653343A (zh) * 2023-11-13 2024-03-08 北京长木谷医疗科技股份有限公司 一种手术机器人智能动力控制方法及装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114043477B (zh) * 2021-11-23 2023-07-28 上海微创医疗机器人(集团)股份有限公司 机械臂碰撞力检测系统、方法、电子设备和存储介质
CN114734452B (zh) * 2022-05-17 2024-02-23 浙江理工大学 一种基于压阻信号的机械臂碰撞监测方法
CN115648229B (zh) * 2022-12-28 2023-03-21 库卡机器人(广东)有限公司 一种机械臂及其安全控制方法
CN116749196B (zh) * 2023-07-26 2024-06-18 睿尔曼智能科技(北京)有限公司 一种多轴机械臂碰撞检测系统及方法、机械臂
CN117067199B (zh) * 2023-07-26 2024-06-14 睿尔曼智能科技(北京)有限公司 一种机械臂电子皮肤、机械臂及其碰撞检测系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06278081A (ja) * 1993-03-26 1994-10-04 Nec Corp 衝突防止機能付ロボットアーム
CN106926239A (zh) * 2017-03-08 2017-07-07 江苏艾萨克机器人股份有限公司 一种模块化传感组件、包含模块化传感组件的机器人安全保护系统及其工作方法
CN109288592A (zh) * 2018-10-09 2019-02-01 成都博恩思医学机器人有限公司 具有机械臂的手术机器人及检测机械臂碰撞的方法
CN113211495A (zh) * 2021-04-12 2021-08-06 北京航天飞行控制中心 一种机械臂碰撞检测方法、系统、存储介质和机械臂
CN113478493A (zh) * 2021-09-07 2021-10-08 成都博恩思医学机器人有限公司 一种机械臂的碰撞保护方法、系统、机器人及存储介质
CN114043477A (zh) * 2021-11-23 2022-02-15 上海微创医疗机器人(集团)股份有限公司 机械臂碰撞力检测系统、方法、电子设备和存储介质

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100959656B1 (ko) * 2008-03-05 2010-05-26 성균관대학교산학협력단 로봇용 피부센서 및 그 센싱방법
CN108582070A (zh) * 2018-04-17 2018-09-28 上海达野智能科技有限公司 机器人碰撞检测系统和方法、存储介质、操作系统
KR102285631B1 (ko) * 2018-11-26 2021-08-04 한국전자기술연구원 로봇피부를 이용한 충돌감지 시스템 및 방법
CN112245014B (zh) * 2020-10-30 2023-06-02 上海微创医疗机器人(集团)股份有限公司 一种医疗机器人、检测机械臂碰撞的方法及存储介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06278081A (ja) * 1993-03-26 1994-10-04 Nec Corp 衝突防止機能付ロボットアーム
CN106926239A (zh) * 2017-03-08 2017-07-07 江苏艾萨克机器人股份有限公司 一种模块化传感组件、包含模块化传感组件的机器人安全保护系统及其工作方法
CN109288592A (zh) * 2018-10-09 2019-02-01 成都博恩思医学机器人有限公司 具有机械臂的手术机器人及检测机械臂碰撞的方法
CN113211495A (zh) * 2021-04-12 2021-08-06 北京航天飞行控制中心 一种机械臂碰撞检测方法、系统、存储介质和机械臂
CN113478493A (zh) * 2021-09-07 2021-10-08 成都博恩思医学机器人有限公司 一种机械臂的碰撞保护方法、系统、机器人及存储介质
CN114043477A (zh) * 2021-11-23 2022-02-15 上海微创医疗机器人(集团)股份有限公司 机械臂碰撞力检测系统、方法、电子设备和存储介质

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116935252A (zh) * 2023-07-10 2023-10-24 齐鲁工业大学(山东省科学院) 一种基于子图嵌入图神经网络的机械臂碰撞检测方法
CN116935252B (zh) * 2023-07-10 2024-02-02 齐鲁工业大学(山东省科学院) 一种基于子图嵌入图神经网络的机械臂碰撞检测方法
CN117653343A (zh) * 2023-11-13 2024-03-08 北京长木谷医疗科技股份有限公司 一种手术机器人智能动力控制方法及装置

Also Published As

Publication number Publication date
CN114043477B (zh) 2023-07-28
CN114043477A (zh) 2022-02-15

Similar Documents

Publication Publication Date Title
WO2023093735A1 (zh) 机械臂碰撞力检测系统、方法、电子设备和存储介质
US9579798B2 (en) Human collaborative robot system
WO2021128787A1 (zh) 一种定位的方法及装置
JP6570742B2 (ja) ロボット動作評価装置、ロボット動作評価方法及びロボットシステム
KR20140147681A (ko) 운동학적 리던던트 로봇의 감시
WO2022247172A1 (zh) 按摩运动控制方法、装置、机器人控制设备及存储介质
US11458619B2 (en) Method for controlling the motion of a robot arm, computing device and robot
CN110977974B (zh) 一种机器人规避奇异位型的导纳控制方法、装置及系统
CN108527361B (zh) 机器人系统
WO2022160509A1 (zh) 一种腹腔镜微创手术机器人的碰撞检测方法及装置
JP2019209407A (ja) ロボット、制御装置およびロボットの制御方法
US11897135B2 (en) Human-cooperative robot system
CN112936288B (zh) 机器人动作安全检测方法和装置、电子设备、存储介质
US20220009101A1 (en) Control device, control method, and non-transitory recording medium
US11654577B2 (en) Robot system
WO2021184859A1 (zh) 工具头位姿的调整方法、装置及可读存储介质
CN112118940B (zh) 机械手的直接教示装置以及直接教示方法
WO2020186406A1 (zh) 传感器的安装角度自校正方法、传感器及移动设备
CN116101908A (zh) 一种门座式起重机防碰撞方法、装置、设备与存储介质
CN112720450A (zh) 机器人关节角度检验方法、装置、设备及介质
Otis et al. Human safety algorithms for a parallel cable-driven haptic interface
US20230133207A1 (en) Touch sensing method and serial manipulator using the same
CN115958610B (zh) 一种机械臂避障方法、装置、电子设备及存储介质
US11787056B2 (en) Robot arm obstacle avoidance method and robot arm obstacle avoidance system
TWI764820B (zh) 機械手臂避障方法及機械手臂避障系統

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22897818

Country of ref document: EP

Kind code of ref document: A1