WO2023093690A1 - 一种电路板及电子设备 - Google Patents

一种电路板及电子设备 Download PDF

Info

Publication number
WO2023093690A1
WO2023093690A1 PCT/CN2022/133305 CN2022133305W WO2023093690A1 WO 2023093690 A1 WO2023093690 A1 WO 2023093690A1 CN 2022133305 W CN2022133305 W CN 2022133305W WO 2023093690 A1 WO2023093690 A1 WO 2023093690A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal layer
dielectric layer
circuit board
layer
dielectric
Prior art date
Application number
PCT/CN2022/133305
Other languages
English (en)
French (fr)
Inventor
黄明利
徐劲拓
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023093690A1 publication Critical patent/WO2023093690A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details

Definitions

  • the present application relates to the technical field of radar, in particular to a circuit board and electronic equipment.
  • Planar phased array antenna is a commonly used design method for millimeter wave radar.
  • the RF chip and antenna of traditional millimeter wave radar can be coplanar.
  • the antenna on the circuit board The surface space is limited, and some RF chips need to be placed on the bottom of the circuit board.
  • the antenna microwave signal needs to be transmitted from the antenna of the circuit board facing the bottom.
  • the traditional design is to interconnect the antenna signal from the antenna to the bottom through the via hole.
  • the frequency of automotive radar is as high as 77GHz, and the loss of traditional vias is very high, which has become the main factor affecting the performance of the antenna.
  • the application provides a circuit board and electronic equipment, which are used to reduce the transmission loss of the circuit board and reduce the production cost.
  • the present application provides a circuit board, including a first dielectric layer, a second dielectric layer and an inner sub-board, the first dielectric layer and the second dielectric layer are stacked in sequence along the thickness direction, and the inner sub-board is filled in Inside the second dielectric layer, and the inner sub-board is provided with a through groove penetrating through itself along the thickness direction, and the through groove can be used for signal transmission.
  • a first metal layer is provided on the side of the first dielectric layer away from the second dielectric layer
  • a second metal layer is provided between the first dielectric layer and the second dielectric layer
  • a layer between the second inner sub-board and the second dielectric layer is provided.
  • a third metal layer is provided between them, and a fourth metal layer is provided on the side of the second dielectric layer away from the first dielectric layer, wherein the second metal layer is also provided with a first opening so that the first dielectric layer can pass through the first dielectric layer. The opening communicates with the second dielectric layer.
  • the inner sub-board is filled in the second dielectric layer, and the inner sub-board is provided with through grooves to transmit signals, so that the signals on the upper surface of the circuit board can pass through the first metal in turn.
  • Layer, the first dielectric layer, the first opening, the second dielectric layer, the through groove and the fourth metal layer are transmitted to the lower surface of the circuit board.
  • the design of the through groove can reduce the transmission loss, and the through groove
  • the third metal layer is formed on the inner wall of the channel, which can not only shield the leakage of electromagnetic signals, but also reduce the roughness of the inner wall of the through groove, making the inner wall of the through groove more flat, thereby further reducing the transmission loss.
  • the material of the second dielectric layer may be polyphenylene ether resin, since the dielectric loss (Df) of polyphenylene ether resin is low, transmission loss can be reduced.
  • a dielectric block can also be filled in the through slot, and the dielectric loss (Df) of the dielectric block can be less than or equal to 0.004, so that the transmission loss can be further reduced when the signal passes through the slot.
  • the material of the dielectric block includes fluororesin, which may be fluororesin or its composite material.
  • the dielectric block may be polytetrafluoroethylene block or polytetrafluoroethylene foam, which can further reduce the dielectric loss.
  • covering films can be provided on the openings at both ends of the through groove, and the covering films cover the openings at both ends, so that a closed space filled with air is formed inside the through groove. Since the dielectric loss of air is very low, it can be Further reduce losses.
  • the first metal layer is also provided with a first shielding hole to avoid poor shielding.
  • One end of the first shielding hole is electrically connected to the first metal layer, and the other end extends to the third metal layer. , and electrically connected with the third metal layer, thereby effectively reducing radiation loss.
  • the fourth metal layer is also provided with a second shielding hole to avoid poor shielding.
  • One end of the second shielding hole is electrically connected to the fourth metal layer, and the other end extends to the third metal layer. , and electrically connected with the third metal layer, thereby effectively reducing radiation loss.
  • the circuit board is further provided with a metallized via hole penetrating through the circuit board along the thickness direction, and the metallized via hole is provided avoiding the through slot, so as to realize signal interconnection and also realize shielding and heat dissipation.
  • the circuit board further includes a third dielectric layer located between the second dielectric layer and the fourth metal layer, a fifth metal layer is provided between the third dielectric layer and the second dielectric layer, and the fifth The metal layer is provided with a second opening, so that the second dielectric layer can communicate with the third dielectric layer through the second opening.
  • the present application also provides an electronic device, including an antenna, a radio frequency chip, and a circuit board as in any of the above embodiments, wherein the antenna is disposed on the surface of the first metal layer of the circuit board, and the radio frequency chip is disposed on the circuit board surface of the fourth metal layer.
  • FIG. 1 is a schematic structural diagram of an electronic device provided in an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a circuit board provided in an embodiment of the present application.
  • FIG. 3 is a schematic top view of a circuit board provided in an embodiment of the present application.
  • Fig. 4 is a schematic cross-sectional structure diagram of the circuit board in Fig. 1;
  • Fig. 5 is another schematic cross-sectional structure diagram of the circuit board in Fig. 1;
  • Fig. 6 is a kind of loss simulation schematic diagram that filling medium is foam among Fig. 4;
  • Fig. 7 is another schematic cross-sectional structure diagram of the circuit board in Fig. 1;
  • FIG. 8 is another schematic cross-sectional structure diagram of the circuit board in FIG. 1 .
  • first”, “second”, “third”, “fourth”, and “fifth” are used for descriptive purposes only, and should not be understood as indicating or implying relative importance or implicitly Contains the number of indicated technical features.
  • features defined as “first”, “second”, “third”, “fourth”, “fifth” may expressly or implicitly include one or more of such features.
  • connection includes a direct connection or an indirect connection.
  • references to "one embodiment” or “some embodiments” or the like in this specification means that a particular feature, structure, or characteristic described in connection with the embodiment is included in one or more embodiments of the present application.
  • appearances of the phrases “in one embodiment,” “in some embodiments,” “in other embodiments,” “in other embodiments,” etc. in various places in this specification are not necessarily All refer to the same embodiment, but mean “one or more but not all embodiments” unless specifically stated otherwise.
  • the terms “including”, “comprising”, “having” and variations thereof mean “including but not limited to”, unless specifically stated otherwise.
  • Planar phased array antenna is the most commonly used design method for millimeter-wave radar.
  • the RF chip and antenna of traditional 3T4R millimeter-wave radar can be coplanar on the circuit board, but high-density point cloud imaging requires more Antenna array, and due to the limited space on the antenna surface of the circuit board, some radio frequency chips need to be laid out on the bottom surface of the circuit board, which leads to the non-coplanar design of the radio frequency chip and the antenna.
  • the antenna microwave signal needs to be transmitted from the antenna facing the bottom surface.
  • the traditional design is to interconnect the antenna signal from the antenna to the bottom surface through vias. However, because the frequency of the vehicle radar is as high as 77GHz, the loss of the traditional vias is very high.
  • an embodiment of the present application provides a circuit board, which can be applied to electronic equipment, and is used to realize functions such as electrical interconnection and signal transmission of electronic components, so as to meet the electrical characteristics required by electronic equipment, wherein , the electronic device may be a mobile phone, a tablet computer, a notebook computer, a server, a router, a switch, and a vehicle radar in the prior art.
  • the electronic device is described as a vehicle-mounted radar.
  • the vehicle-mounted radar includes a circuit board 1 on which a radio frequency chip 3 and a radio frequency transceiver circuit are arranged. The circuit is connected with the radio frequency port of the radio frequency chip 3 .
  • the vehicle-mounted radar can also include an antenna 2.
  • the antenna 2 can include a dielectric substrate and a radiator. The dielectric substrate can be used to support and fix the radiator.
  • the radiator is arranged on the dielectric substrate. The radiator can be electrically connected to the radio frequency transceiver circuit through a feeding transmission line.
  • the vehicle-mounted radar mentioned above can be installed in the vehicle. When the vehicle-mounted radar is in use, it can be used to detect obstacles, predict collisions, adaptive cruise control, etc., so as to assist the vehicle to realize intelligent driving functions.
  • the circuit board includes a first dielectric layer 10 and a second dielectric layer 20 stacked along the thickness direction, the second dielectric layer 20 is filled with an inner sub-board 30, and the inner sub-board has a through groove 31, The through groove 31 can pass through the inner sub-board 30 along the thickness direction for signal transmission.
  • the side of the first dielectric layer 10 facing away from the second dielectric layer 20 can be provided with a first metal layer 40, and the surface of the first metal layer 40 can be provided with a first wire 150, and the first wire 150 is electrically connected to the first metal layer 40.
  • the first metal layer 40 may be a copper skin, and the side of the first wire 150 facing the first metal layer 40 also has a copper skin, and the copper skin of the first wire 150 is connected to the first metal layer 40 to Realize the transmission of signals.
  • a second metal layer 50 may be provided between the first dielectric layer 10 and the second dielectric layer 20, the second metal layer 50 may be provided with a first opening 51, and the first dielectric layer 10 may pass through the first opening 51 and the second dielectric layer. Layer 20 is connected.
  • a third metal layer 60 may be provided between the second dielectric layer 20 and the inner sub-board 30 , and a fourth metal layer 70 may be provided on the side of the second dielectric layer 20 away from the first dielectric layer 10 .
  • the fourth metal layer 70 The surface of the surface can be provided with a second wire 160, and the second wire 160 is electrically connected to the fourth metal layer 70.
  • the fourth metal layer 70 can be a copper skin, and the second wire 160 faces one side of the fourth metal layer 70. The side also has a copper skin, and the copper skin of the second wire 160 is connected to the fourth metal layer 70 to realize signal transmission.
  • the material of the first dielectric layer 10 can be a material with lower dielectric loss (Df).
  • the material of the first dielectric layer 10 can be RO3003, namely ceramics filled polytetrafluoroethylene (poly tetrafluoroethylene, PTFE) composite material , can also be NF30, R5515 (thermosetting resin material), industrialized liquid crystal polymer (liquid crystal polymer, LCP), etc., the mechanical stability and electrical properties of the above materials are good, and the dielectric loss is low, which can not only ensure good signal Transmission can also facilitate the reduction of transmission loss.
  • the material of the second dielectric layer 20 may be low-loss resin such as polyphenylene ether, and the dielectric loss (Df) of low-loss resin such as polyphenylene ether is also relatively low, so it is beneficial to further reduce transmission loss. In addition, cost reduction can be facilitated by avoiding the use of expensive materials due to the use of low-loss resins such as polyphenylene oxide.
  • low-loss resin such as polyphenylene ether and the inner sub-board 30 can be pressed into one body, so that the inner sub-board 30 is filled in the second dielectric layer 20 , so as to simplify the process flow.
  • the inner sub-board 30 is provided with a through groove 31, when the inner sub-board 30 is pressed with a low-loss resin such as polyphenylene ether, the through groove 31 can also be filled with a low-loss resin such as polyphenylene ether. resin.
  • the inner sub-board 30 can be a double-sided board or a multi-layer board.
  • the inner sub-board 30 can be specifically a four-layer board, a five-layer board, a six-layer board, etc., and its specific structure can be The design is performed according to the signal to be transmitted, which is not limited in the present application.
  • the inner sub-board 30 can use FR4 (epoxy glass cloth laminated board) board, FR4 board has good electrical insulation, low dielectric loss (Df), and smooth surface, which can effectively reduce conductor loss.
  • FR4 epoxy glass cloth laminated board
  • the first wire 150 can be electrically connected to the components arranged on the surface of the first metal layer 40 of the circuit board
  • the second wire 160 can be electrically connected to the components arranged on the surface of the fourth metal layer 70 of the circuit board.
  • the component on the surface of the first metal layer 40 of the circuit board may be an antenna
  • the component on the surface of the fourth metal layer 70 may be a radio frequency chip.
  • the signal transmission path on the circuit board can be: antenna ⁇ first wire 150 ⁇ first metal layer 40 ⁇ first dielectric layer 10 ⁇ first opening 51 ⁇ second dielectric layer 20 ⁇ through slot 31 ⁇ second Dielectric layer 20 ⁇ fourth metal layer 70 ⁇ second wire 160 ⁇ radio frequency chip, the signal transmission process of this circuit board adopts the structure of through slot for transmission, avoiding the design of via hole, thereby reducing conductor loss, and adopting through slot
  • the structure of 31 makes the process tolerance of the circuit board large and the impedance matching is good, which can improve the yield rate of the circuit board and reduce the reflection loss.
  • Both the first wire 150 and the second wire 160 are used for transmitting microwave signals. It can be a microstrip line to improve the efficiency of signal transmission.
  • the inner wall of the through groove 31 also has a third metal layer 60. By setting the third metal layer 60 for shielding, not only the leakage loss can be reduced, but also the roughness of the inner wall of the through groove 31 can be reduced, so that the through groove 31 The inner wall is flatter, which can further reduce the transmission loss (Df).
  • the circuit board is also provided with a first shielding hole 80
  • the first shielding hole 80 can be a blind hole opened in the first metal layer 40
  • the side wall of the first shielding hole 80 is a metal Material
  • the first shielding hole 80 can pass through the first dielectric layer 10 from the first metal layer 40 and extend to the side of the third metal layer 60 facing the first dielectric layer 10, so that the first metal layer 40 and the third metal layer Layer 60 is electrically connected.
  • the first shielding hole 80 can avoid electromagnetic leakage in the through slot 31 , thereby improving shielding performance and reducing signal transmission loss.
  • the first shielding hole 80 may be filled with materials such as resin, or may not be filled with a medium, which is not limited here.
  • the number of first shielding holes 80 may be one or more. For example, as shown in FIG. It can be evenly distributed around the through groove 31 to further improve the shielding performance of the through groove.
  • the circuit board is also provided with a second shielding hole 90
  • the second shielding hole 90 can be a blind hole opened in the fourth metal layer 70
  • the side wall of the second shielding hole 90 is a metal material
  • the second shielding hole 90 can extend from the fourth metal layer 70 into the second dielectric layer 20, and then extend to the side of the third metal layer 60 facing the fourth metal layer 70, so that the fourth metal layer 70 and the first The three metal layers 60 are electrically connected.
  • the second shielding hole 90 can also prevent electromagnetic leakage in the through slot 31 , thereby improving shielding performance and reducing signal transmission loss.
  • the second shielding hole 90 may be filled with materials such as resin, or may not be filled with a medium, which is not limited here.
  • the number of the second shielding holes 90 can be one or more.
  • the arrangement can refer to the arrangement of the first shielding holes 80, that is, around the through slot 31 are evenly distributed around to further improve the shielding performance of the slot.
  • the circuit board can also be provided with a metallized via hole 120, which penetrates the circuit board along the thickness direction.
  • the metallized via hole 120 can avoid the through slot 31 to avoid affecting the signal transmission function of the through groove 31.
  • the metallized via hole 120 can be used for signal interconnection and shielding and heat dissipation, and its function is the same as that of the via hole provided on the traditional circuit board, so it will not be repeated here.
  • the number of metallized vias 120 can be one or more.
  • the metallized vias 120 can be arranged outside the first shielding hole 80 and the second shielding hole 90 , it can also be understood that, viewed from the surface of the first metal layer 40, the metallized via hole 120 is located on the side of the first shielding hole 80 away from the through groove 31, and viewed from the surface of the fourth metal layer 70, the metallized via hole 120 Located on a side of the second shielding hole 90 away from the through slot 31 .
  • the circuit board shown in FIG. 4 when the material of the second dielectric layer 20 is filled in the through groove 31, the circuit board can be manufactured by the following process: first make and form the inner layer sub-board 30, and then form The position of the slot 31 is milled or drilled to form the slot 31 , and then the surface of the inner sub-board 30 is electroplated to form the third metal layer 60 , and then etched and browned normally.
  • Low-loss resin such as polyphenylene ether is used to press the prepared inner sub-board 30 and the first dielectric layer 10 into a whole, wherein the low-loss resin such as polyphenylene ether forms the second dielectric layer 20, and the inner sub-board 30 is covered, and the space in the through groove 31 is directly filled with low-loss resin such as polyphenylene ether.
  • first shielding hole 80 and the second shielding hole 90 after the first shielding hole 80 passes through the first dielectric layer 10, extends into the second dielectric layer 20 and connects with the third metal layer 60 towards the first dielectric layer 10
  • One side is electrically connected
  • the second shielding hole 90 extends into the second dielectric layer 20 and is electrically connected to the side of the third metal layer 60 facing the fourth metal layer 70 .
  • electroplating and post-process fabrication are carried out.
  • the first metal layer 40 is formed on the side surface of the first dielectric layer 10 away from the inner layer sub-board 30, and the first metal layer 40 is formed on the side of the first metal layer 40 away from the first dielectric layer 10.
  • a wire 150, the fourth metal layer 70 is formed on the surface of the second dielectric layer 20 away from the first dielectric layer 10, and the second wire 160 is formed on the side of the fourth metal layer 70 away from the second dielectric layer 20, the latter.
  • the circuit board adopts a structure of 2+6+1, that is, the structure of the first dielectric layer 10 + the second dielectric layer 20 + the six-layer inner sub-board 30, and the inner sub-board 30 is located in the second Relative to the middle position of the dielectric layer 20, the material of the first dielectric layer 10 can be RO3003 or other low-loss dielectric materials, the inner sub-board 30 can be FR4 plate, and the material of the second dielectric layer 20 can be polyphenylene ether, etc. Loss of resin.
  • the manufacturing process of the circuit board is simple, the resin hole filling process is avoided, and the loss of the dielectric material filled in the through groove 31 is low, which is beneficial to reduce the transmission loss.
  • the process in this embodiment is more suitable for the case where the thickness of the inner sub-board 30 is relatively thin and the size of the through groove 31 is small.
  • a dielectric block 100 can also be arranged in the through groove 31.
  • the dielectric loss (Df) of the dielectric block 100 can be relatively low, so as to further reduce the loss and improve the electrical resistance of the circuit board. performance.
  • the dielectric loss (Df) of the dielectric block 100 may be less than or equal to 0.004, so as to effectively reduce transmission loss during signal transmission.
  • the material of the dielectric block 100 may be fluororesin and its composite material. Since the dielectric loss (Df) of fluororesin is very low, the transmission loss of signals can be reduced. Alternatively, in some other embodiments, the material of the dielectric block 100 may be other materials with low dielectric loss.
  • the material of the dielectric block 100 when the material of the dielectric block 100 is fluororesin and its composite material, for example, the material of the dielectric block 100 can be polytetrafluoroethylene (polytetrafluoroethylene, PTFE), soluble polytetrafluoroethylene (polytetrafluoroethylene , PFA), and so on.
  • polytetrafluoroethylene polytetrafluoroethylene
  • PFA polytetrafluoroethylene
  • the dielectric block 100 can be a polytetrafluoroethylene block, or a polytetrafluoroethylene foam, or other low-loss high-temperature-resistant foams, wherein the dielectric constant of the polytetrafluoroethylene block is 2.1, and the dielectric loss (Df ) between 0.0001-0.0009, the dielectric constant of PTFE foam is about 1.2, and the dielectric loss (Df) is 0.001. Since the dielectric loss of PTFE block or PTFE foam is low, it is beneficial to reduce transmission loss.
  • the inner layer sub-board 30 can be formed first, and milling or drilling is carried out at the position corresponding to the formation of the through groove 31 to form the through groove 31, and then the inner layer sub-board The surface of 30 is electroplated to form the third metal layer 60 and the fourth metal layer 70, and then it is normally etched and browned.
  • first shielding hole 80 and the second shielding hole 90 after the first shielding hole 80 passes through the first dielectric layer 10, extends into the second dielectric layer 20 and connects with the third metal layer 60 towards the first dielectric layer 10
  • One side is electrically connected
  • the second shielding hole 90 extends into the second dielectric layer 20 and is electrically connected to the side of the third metal layer 60 facing the fourth metal layer 70 .
  • electroplating and post-process fabrication are carried out.
  • the first metal layer 40 is formed on the side surface of the first dielectric layer 10 away from the inner layer sub-board 30, and the first metal layer 40 is formed on the side of the first metal layer 40 away from the first dielectric layer 10.
  • a wire 150, the fourth metal layer 70 is formed on the surface of the second dielectric layer 20 away from the first dielectric layer 10, and the second wire 160 is formed on the side of the fourth metal layer 70 away from the second dielectric layer 20, the latter.
  • the material of the first dielectric layer 10 can be RO3003 or other low-loss dielectric materials
  • the inner sub-board 30 can be a FR4 plate
  • the dielectric block 100 filled in the through groove 31 has a relatively low dielectric loss (Df). This helps reduce transmission loss.
  • FIG. 6 is a schematic diagram of circuit board loss simulation when using polytetrafluoroethylene foam or other high-temperature-resistant and low-loss foam to fill the through slot 31, wherein L1 is the curve of transmission loss, L2 and L3 are curves of reflection loss, Taking the millimeter-wave radar with a working frequency of 77GHz as an example, its dielectric loss (Df) can be reduced to 0.84dB, and the reflection loss is also significantly reduced.
  • Df dielectric loss
  • the through groove 31 is filled with polytetrafluoroethylene blocks or polytetrafluoroethylene foam, it is not limited by the flow of resin. larger case.
  • the through groove 31 can also adopt a cavity design, that is, the filling medium in the through groove 31 is air, and since the dielectric loss (Df) of air is very low, this design is also beneficial to reduce transmission loss.
  • openings at both ends of the through groove 31 can be covered with a covering film 110 , so that the through groove 31 forms a sealed cavity, thereby preventing the filling resin from flowing into the through groove 31 when the second dielectric layer 20 is subsequently formed.
  • the inner sub-board 30 and the first dielectric layer 10 are pressed into a whole by using low loss resin such as polyphenylene ether, wherein the low loss resin such as polyphenylene ether can form the second dielectric layer 20, which will be covered with a cover film 110
  • the inner sub-board 30 is covered.
  • make the first shielding hole 80 and the second shielding hole 90 after the first shielding hole 80 passes through the first dielectric layer 10, extends into the second dielectric layer 20 and connects with the third metal layer 60 towards the first dielectric layer 10
  • One side is electrically connected, and the second shielding hole 90 extends into the second dielectric layer 20 and is electrically connected to the side of the third metal layer 60 facing the fourth metal layer 70 .
  • electroplating and post-process fabrication are carried out.
  • the first metal layer 40 is formed on the side surface of the first dielectric layer 10 away from the inner layer sub-board 30, and the first metal layer 40 is formed on the side of the first metal layer 40 away from the first dielectric layer 10.
  • a wire 150, the fourth metal layer 70 is formed on the surface of the second dielectric layer 20 away from the first dielectric layer 10
  • the second wire 160 is formed on the side of the fourth metal layer 70 away from the second dielectric layer 20, the latter.
  • cover film 110 can adopt the lamination structure of polyimide (polyimide film, PI) film and glue layer, and glue layer sticks polyimide film around the opening at both ends of through groove 31, so that the opening is covered live.
  • polyimide polyimide film, PI
  • glue layer sticks polyimide film around the opening at both ends of through groove 31, so that the opening is covered live.
  • the material of the first dielectric layer 10 can be RO3003 or other low-loss dielectric materials
  • the inner layer sub-board 30 can be FR4 plate
  • the cavity structure is in the through groove 31, due to the dielectric loss (Df) of air It is also relatively low, so the transmission loss can be further reduced.
  • the circuit board may further include a third dielectric layer 130, and the third dielectric layer 130 is located between the second dielectric layer 20 and the fourth metal layer 70, wherein the third dielectric layer 130 A fifth metal layer 140 may be provided between the second dielectric layer 20 , the fifth metal layer 140 may have a second opening 141 , and the second dielectric layer 20 may communicate with the third dielectric layer 130 through the second opening 141 .
  • the signal transmission path between the upper and lower surfaces of the circuit board can be: first wire 150 ⁇ first metal layer 40 ⁇ first dielectric layer 10 ⁇ first opening 51 ⁇ second dielectric layer 20 ⁇ through groove 31 ⁇ second dielectric layer 20 ⁇ second opening 141 ⁇ third dielectric layer 130 ⁇ fourth metal layer 70 ⁇ second wire 160 .
  • the material of the third dielectric layer 130 can be the same as that of the second dielectric layer 20 , and can be a low-loss resin such as polyphenylene ether, so as to save process flow and reduce costs.
  • the structure of the second shielding hole 90 can be similar to that of the second shielding hole 90 in FIG. 4 , that is, the second shielding hole 90 can be The blind hole opened in the fourth metal layer 70, the second shielding hole 90 can penetrate the third dielectric layer 130 from the fourth metal layer 70 and extend into the second dielectric layer 20, and extend to the third metal layer 60 toward the third One side of the dielectric layer 130 is electrically connected to the fourth metal layer 70 and the third metal layer 60 .
  • the circuit board of this embodiment is provided with a through groove, and a filling medium with a lower dielectric loss (Df) can be arranged in the through groove, and a metal layer is formed on the side wall surface of the through groove , not only reduces the transmission loss of the vertical interconnection, but also reduces the processing accuracy specifications, improves the processing yield, and can simplify the process flow and reduce the production cost of the circuit board.
  • Df dielectric loss

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Structure Of Printed Boards (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

本申请公开了一种电路板及电子设备,电路板包括沿厚度方向依次堆叠的第一介质层和第二介质层,第二介质层内填充有内层子板,内层子板设有沿厚度方向贯穿其自身的通槽,第一介质层背离第二介质层的一侧设有第一金属层,第一介质层与第二介质层之间设有第二金属层,第二金属层设有第一开口,内层子板的表面设有第三金属层,第二介质层背离第一介质层的一侧设有第四金属层。上述电路板,可有效降低信号传输损耗。

Description

一种电路板及电子设备
相关申请的交叉引用
本申请要求在2021年11月29日提交中国专利局、申请号为202111433718.6、申请名称为“一种电路板及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及雷达技术领域,尤其涉及到一种电路板及电子设备。
背景技术
出于对车载成像雷达的迫切需求,毫米波雷达的技术在不断地发展。平面相控阵天线是毫米雷达波常用的一种设计方式,传统的毫米波雷达的射频芯片与天线可实现共面设计,但由于高密度点云成像需要更多的天线阵列,电路板的天线面空间有限,部分射频芯片需要布局在电路板的底面,这时,天线微波信号就需要由电路板的天线面向底面传输,传统设计是通过过孔将天线信号由天线面向底面互连,但由于车载雷达的频率高达77GHz,传统过孔的损耗非常高,这种损耗已成为影响天线性能的主要因素。
发明内容
本申请提供了一种电路板及电子设备,用以降低电路板传输损耗,并降低生产成本。
第一方面,本申请提供了一种电路板,包括第一介质层、第二介质层和内层子板,第一介质层和第二介质层沿厚度方向依次堆叠,内层子板填充于第二介质层内部,并且内层子板设有沿厚度方向贯穿自身的通槽,该通槽可用于信号传输。此外,第一介质层背离第二介质层的一侧设有第一金属层,第一介质层与第二介质层之间设有第二金属层,第内层子板与第二介质层之间设有第三金属层,第二介质层背离第一介质层的一侧设有第四金属层,其中,第二金属层还设有第一开口,以使得第一介质层可通过第一开口与第二介质层连通。
相较于传统的电路板,本申请中通过在第二介质层中填充内层子板,并在内层子板设置通槽来传输信号,使得电路板上表面的信号可依次通过第一金属层、第一介质层、第一开口、第二介质层、通槽和第四金属层后传输给电路板下表面,相比于过孔传输,通槽的设计能够减少传输损耗,并且通槽的内壁形成有第三金属层,不仅可屏蔽电磁信号的泄露,还可降低通槽内壁的粗糙度,使通槽内壁更加平整,从而可进一步降低传输损耗。
在一些可能的实施方案中,第二介质层的材料可以为聚苯醚树脂,由于聚苯醚树脂的介质损(Df)耗低,可减小传输损耗。
在一些可能的实施方案中,还可在通槽内填充介质块,并且介质块的介质损耗(Df)可小于等于0.004,以使得信号通过通槽时能够进一步降低传输损耗。
在一些实施例中,介质块的材料包括氟树脂,可以是氟树脂及其复合材料,具体实施时,介质块可以是聚四氟乙烯块或者是聚四氟乙烯泡沫,可进一步降低介质损耗。
在一些可能的实施方案中,可在通槽的两端开口分别设置覆盖膜,覆盖膜将两端开口盖住,使得通槽内部形成填充空气的封闭空间,由于空气的介质损耗很低,可进一步降低损耗。
在一些可能的实施方案中,第一金属层还设有第一屏蔽孔,以避免屏蔽不良的情况,第一屏蔽孔的一端与第一金属层电性连接,另一端延伸至第三金属层,并与第三金属层电性连接,从而有效降低辐射损耗。
在一些可能的实施方案中,第四金属层还设有第二屏蔽孔,以避免屏蔽不良的情况,第二屏蔽孔的一端与第四金属层电性连接,另一端延伸至第三金属层,并与第三金属层电性连接,从而有效降低辐射损耗。
在一些可能的实施方案中,电路板还设有沿厚度方向贯穿电路板的金属化过孔,该金属化过孔避开通槽设置,以便于实现信号互连,还可实现屏蔽散热。
在一些可能的实施方案中,电路板还包括位于第二介质层与第四金属层之间的第三介质层,第三介质层与第二介质层之间设有第五金属层,第五金属层设有第二开口,以使得第二介质层可通过第二开口与第三介质层连通。
第二方面,本申请还提供一种电子设备,包括天线、射频芯片和如上述任一实施方案中的电路板,其中,天线设置于电路板的第一金属层表面,射频芯片设置于电路板的第四金属层表面。
附图说明
图1为本申请实施例提供的电子设备的一种结构示意图;
图2为本申请实施例提供的电路板的一种结构示意图;
图3为本申请实施例提供的电路板的一种俯视结构示意图;
图4为图1中电路板的一种剖面结构示意图;
图5为图1中电路板的又一种剖面结构示意图;
图6为图4中填充介质为泡沫的一种损耗仿真示意图;
图7为图1中电路板的又一种剖面结构示意图;
图8为图1中电路板的又一种剖面结构示意图。
附图标记:
1-电路板;2-天线;3-射频芯片;10-第一介质层;20-第二介质层;30-内层子板;31-通槽;40-第一金属层;50-第二金属层;51-第一开口;60-第三金属层;70-第四金属层;80-第一屏蔽孔;90-第二屏蔽孔;100-介质块;110-覆盖膜;120-金属化过孔;130-第三介质层;140-第五金属层;141-第二开口;150-第一导线;160-第二导线。
具体实施方式
下面将结合本申请实施方式中的附图,对本申请实施方式中的技术方案进行清楚、完整地描述。
在本申请实施例中,术语“第一”、“第二”、“第三”、“第四”、“第五”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”、“第三”、“第四”、“第五”的特征可以明示或者隐含地包括一个或者更多 个该特征。
在本申请实施例中,“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。连接包括直接连接或间接连接。
在本说明书中描述的参考“一个实施例”或“一些实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其他一些实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
平面相控阵天线是毫米波雷达的最常用的一种设计方式,传统的3T4R毫米波雷达的射频芯片与天线可实现在电路板上的共面设计,但高密度点云成像需要更多的天线阵列,而由于电路板的天线面空间有限,部分射频芯片需要布局在电路板的底面,这就导致了射频芯片与天线不共面设计。而天线微波信号需要由天线面向底面传输,传统设计是通过过孔将天线信号由天线面向底面互连,但由于车载雷达的频率高达77GHz,传统过孔的损耗非常高。
基于此,本申请实施例提供了一种电路板,该电路板可应用于电子设备,用于实现电子元器件的电气互连以及信号传输等功能,以满足电子设备所要求的电气特性,其中,电子设备可以为现有技术中的手机、平板电脑、笔记本电脑、服务器、路由器、交换机以及车载雷达等设备。
在本实施例中,以电子设备为车载雷达进行说明。如图1所示,车载雷达包括电路板1,电路板1上设有射频芯片3以及射频收发电路,射频芯片3可通过晶元级封装或者倒片封装等方式设置在电路板上,射频收发电路与射频芯片3的射频端口连接。车载雷达还可包括天线2,天线2可包括介质基板以及辐射体,介质基板可用于支撑并固定辐射体,辐射体设置在介质基板上,辐射体可通过馈电传输线与射频收发电路电性连接,以将射频收发电路经馈电传输线馈入天线2的电流能量转化为电磁能量辐射出去,以及将天线2接收的电磁能量转化为电流能量经馈电传输线传送到射频收发电路,使车载雷达实现信号收发功能。上述车载雷达可安装于车辆,车载雷达在使用时,可用于发现障碍物,预测碰撞,自适应巡航控制,等等,以辅助车辆实现智能驾驶功能。
参考图2至图4,电路板包括沿厚度方向堆叠的第一介质层10和第二介质层20,第二介质层20内部填充有内层子板30,内层子板具有通槽31,该通槽31可沿厚度方向贯穿内层子板30,以用于信号传输。第一介质层10背离第二介质层20的一侧可设有第一金属层40,第一金属层40的表面可设有第一导线150,第一导线150与第一金属层40电性连接,示例性地,第一金属层40可以为铜皮,第一导线150朝向第一金属层40的一侧也具有铜皮,第一导线150的铜皮与第一金属层40连接,以实现信号的传输。第一介质层10与第二介质层20之间可设有第二金属层50,第二金属层50可设有第一开口51,第一介质层10可通过第一开口51与第二介质层20连通。第二介质层20与内层子板30之间可设有第三金属层60,第二介质层20背离第一介质层10的一侧可设有第四金属层70,第四金属层70的表面可设有第二导线160,第二导线160与第四金属层70电性连接,示 例性地,第四金属层70可以为铜皮,第二导线160朝向第四金属层70的一侧也具有铜皮,第二导线160的铜皮与第四金属层70连接,以实现信号的传输。
第一介质层10的材料可以是介质损耗(Df)较低的材料,示例性地,第一介质层10的材料可以是RO3003,即陶瓷填充聚四氟乙烯(poly tetra fluoroethylene,PTFE)复合材料,也可以是NF30、R5515(热固性树脂材料)、工业化液晶聚合物(liquid crystal polymer,LCP),等等,上述材料的机械稳定性和电气性能良好,介质损耗较低,不仅可保证良好的信号传输,还可便于降低传输损耗。
在一些实施例中,第二介质层20的材料可以为聚苯醚等低损耗树脂,聚苯醚等低损耗树脂的介质损耗(Df)也相对较低,因此有利于进一步降低传输损耗。此外,由于采用聚苯醚等低损耗树脂而避免采用昂贵的材料,可便于降低成本。一种实现方式中,可将聚苯醚等低损耗树脂与内层子板30压合成一个整体,从而使得内层子板30填充于第二介质层20内,以便于简化工艺流程。需要说明的是,由于内层子板30设置有通槽31,当采用聚苯醚等低损耗树脂与内层子板30压合时,通槽31内也可填充有聚苯醚等低损耗树脂。
内层子板30可以是双面板,也可以是多层板,当内层子板30为多层板时,具体可以为四层板、五层板、六层板等等,其具体结构可根据需要传输的信号进行设计,本申请对此不作限制。内层子板30可采用FR4(环氧玻璃布层压板)板材,FR4板材的电绝缘性较好,介质损耗(Df)低,并且表面光滑,可有效降低导体损耗。
本实施例中,第一导线150可与设置在电路板的第一金属层40表面的元器件电性连接,第二导线160可与设置在电路板的第四金属层70表面的元器件电性连接,示例性地,电路板第一金属层40表面的元器件可以为天线,第四金属层70表面的元器件可以为射频芯片。这时,电路板上的信号传输的路径可以为:天线→第一导线150→第一金属层40→第一介质层10→第一开口51→第二介质层20→通槽31→第二介质层20→第四金属层70→第二导线160→射频芯片,该电路板的信号传输过程采用了通槽的结构进行传输,避免了过孔设计,从而可以降低导体损耗,并且采用通槽31的结构,使得电路板的工艺容差大,阻抗匹配性佳,可提高电路板的良率,降低反射损耗。
第一导线150和第二导线160均用于传输微波信号,当电路板应用于工作频率较高的电子设备时,例如工作频率为77GHz的毫米波雷达,第一导线150和第二导线160具体可以为微带线,以提高信号传输的效率。
参考图3,通槽31在垂直于厚度方向的横截面形状可以大致为矩形,需要说明的是,当传输信号的工作频率越高时,通槽31的体积越小,示例性地,以工作频率为77GHz的毫米波雷达来说,由于工作频率较高,通槽31的横截面尺寸可以设计为a=1.5mm,b=2mm。参考图4,通槽31的内壁还有第三金属层60,通过设置第三金属层60进行屏蔽,不仅可降低泄露损耗,并且还有利于降低通槽31内壁的粗糙度,使通槽31内壁更加平整,从而可进一步降低传输损耗(Df)。
继续参考图4,在一些实施例中,电路板还设有第一屏蔽孔80,第一屏蔽孔80可以为开设于第一金属层40的盲孔,第一屏蔽孔80的侧壁为金属材质,第一屏蔽孔80可由第一金属层40穿过第一介质层10后并延伸至第三金属层60朝向第一介质层10的一侧,从而将第一金属层40与第三金属层60电性连接。第一屏蔽孔80可避免通槽31内的电磁泄露,从而提高屏蔽性能,降低信号传输损耗。需要说明的是,第一屏蔽孔80内可填充树脂等材料,或者也可不填充介质,此处不做限定。
在本实施例中,第一屏蔽孔80的数量可以为一个或多个,示例性地,如图3所示,当第一屏蔽孔80的数量为多个时,多个第一屏蔽孔80可绕通槽31的周围均匀分布,以进一步提高对通槽的屏蔽性能。
继续参考图4,在一些实施例中,电路板还设有第二屏蔽孔90,第二屏蔽孔90可以为开设于第四金属层70的盲孔,第二屏蔽孔90的侧壁为金属材质,第二屏蔽孔90可由第四金属层70伸入至第二介质层20内后,延伸到第三金属层60朝向第四金属层70的一侧,从而将第四金属层70与第三金属层60电性连接。与第一屏蔽孔80的作用类似,该第二屏蔽孔90也可避免通槽31内的电磁泄露,从而提高屏蔽性能,降低信号传输损耗。需要说明的是,第二屏蔽孔90内可填充树脂等材料,或者也可不填充介质,此处不做限定。
在本实施例中,第二屏蔽孔90的数量可以为一个或多个,当第二屏蔽孔90的数量为多个时,其布置方式可参照第一屏蔽孔80的布置,即围绕通槽31的周围均匀分布,以进一步提高对通槽的屏蔽性能。
继续参考图4,在一些实施例中,电路板还可设置金属化过孔120,金属化过孔120沿厚度方向贯穿于电路板,需要说明的是,金属化过孔120可避开通槽31设置,以避免影响通槽31的信号传输作用。金属化过孔120可用于信号互连以及屏蔽散热,其作用与传统的电路板设置的过孔相同,此处不再赘述。
本实施例中,金属化过孔120的数量可以为一个或多个,示例性地,以图3为例,金属化过孔120可设置于第一屏蔽孔80以及第二屏蔽孔90的外侧,也可以理解为,从第一金属层40的表面看,金属化过孔120位于第一屏蔽孔80远离通槽31的一侧,从第四金属层70的表面看,金属化过孔120位于第二屏蔽孔90远离通槽31的一侧。
以图4中所示的电路板为例,当通槽31内填充第二介质层20的材料时,该电路板可通过以下工艺进行制作:先制作形成内层子板30,在对应于形成通槽31的位置进行铣槽或钻孔,以形成通槽31,之后在内层子板30的表面电镀以形成第三金属层60,然后再正常刻蚀及棕化。采用聚苯醚等低损耗树脂将制作好的内层子板30与第一介质层10压合成一个整体,其中,聚苯醚等低损耗树脂形成第二介质层20,并且将内层子板30包覆,通槽31内的空间直接被聚苯醚等低损耗树脂填充。然后制作第一屏蔽孔80和第二屏蔽孔90,第一屏蔽孔80穿过第一介质层10后,伸入至第二介质层20后与第三金属层60朝向第一介质层10的一侧电性连接,第二屏蔽孔90伸入至第二介质层20与第三金属层60朝向第四金属层70的一侧电性连接。最后进行电镀与后制程制作,例如,在第一介质层10背离内层子板30的一侧表面形成第一金属层40,在第一金属层40背离第一介质层10的一侧制作第一导线150,在第二介质层20背离第一介质层10的一侧表面形成第四金属层70,在第四金属层70背离第二介质层20的一侧制作第二导线160,该后制程与常规电路板的传统流程相同,具体工艺此处不再赘述。
本实施例中,电路板采用的是2+6+1的结构,即第一介质层10+第二介质层20+六层的内层子板30的结构,内层子板30位于第二介质层20相对中部的位置,第一介质层10的材料可以为RO3003或者其它低损耗的介质材料,内层子板30可以为FR4板材,第二介质层20的材料可以为聚苯醚等低损耗树脂。电路板的制作流程简单,避免了树脂填孔工艺,并且通槽31内填充的介质材料损耗较低,有利于降低传输损耗。
需要说明的是,由于聚苯醚等低损耗树脂的流动有限,本实施例中的工艺较为适用于 内层子板30厚度较薄、通槽31尺寸较小的情况。
在一些实施例中,参考图5,通槽31内还可设置有介质块100,具体实施时,介质块100的介质损耗(Df)可相对较低,以进一步降低损耗,提高电路板的电性能。示例性地,介质块100的介质损耗(Df)可小于等于0.004,从而有效降低信号传输的过程中的传输损耗。
在一些实施例中,介质块100的材料可以是氟树脂及其复合材料,由于氟树脂的介质损耗(Df)很低,因此可降低信号的传输损耗。或者,在另一些实施例中,介质块100的材料可以是其它介质损耗低的材料。
结合图5,当介质块100的材料为氟树脂及其复合材料时,示例性地,介质块100的材料可以是聚四氟乙烯(poly tetra fluoroethylene,PTFE),可溶性聚四氟乙烯(polytetrafluoro ethylene,PFA),等等。具体实施时,介质块100可以是聚四氟乙烯块,或者是聚四氟乙烯泡沫,或者是其它低损耗耐高温泡沫,其中,聚四氟乙烯块的介电常数为2.1,介质损耗(Df)在0.0001-0.0009之间,聚四氟乙烯泡沫的介电常数大约为1.2,介质损耗(Df)为0.001。由于聚四氟乙烯块或聚四氟乙烯泡沫的介质损耗均较低,因此有利于降低传输损耗。
在制作图5中所示的电路板时,可以先制作形成内层子板30,在对应于形成通槽31的位置进行铣槽或钻孔,以形成通槽31,之后在内层子板30的表面电镀以形成第三金属层60、第四金属层70,然后再正常刻蚀及棕化。将聚四氟乙烯块或者聚四氟乙烯泡沫放置于通槽31内,采用聚苯醚等低损耗树脂将填充有聚四氟乙烯块或聚四氟乙烯泡沫的内层子板30与第一介质层10压合成一个整体,其中,聚苯醚等低损耗树脂可以形成第二介质层20,并且将填充有聚四氟乙烯块或聚四氟乙烯泡沫的内层子板30包覆。然后制作第一屏蔽孔80和第二屏蔽孔90,第一屏蔽孔80穿过第一介质层10后,伸入至第二介质层20后与第三金属层60朝向第一介质层10的一侧电性连接,第二屏蔽孔90伸入至第二介质层20与第三金属层60朝向第四金属层70的一侧电性连接。最后进行电镀与后制程制作,例如,在第一介质层10背离内层子板30的一侧表面形成第一金属层40,在第一金属层40背离第一介质层10的一侧制作第一导线150,在第二介质层20背离第一介质层10的一侧表面形成第四金属层70,在第四金属层70背离第二介质层20的一侧制作第二导线160,该后制程与常规电路板的传统流程相同,具体工艺此处不再赘述。
本实施例中,第一介质层10的材料可以为RO3003或其它低损耗的介质材料,内层子板30可以为FR4板材,通槽31内填充的介质块100介质损耗(Df)较低,从而有利于降低传输损耗。
参考图6,图6为利用聚四氟乙烯泡沫或者其它耐高温低损耗泡沫填充通槽31时电路板的损耗仿真示意图,其中,L1为传输损耗的曲线,L2和L3为反射损耗的曲线,以工作频率为77GHz的毫米波雷达为例,其介质损耗(Df)可降低至0.84dB,反射损耗也有明显降低。
需要说明的是,由于采用聚四氟乙烯块或聚四氟乙烯泡沫填充通槽31,不受树脂流动的局限性,本实施例的工艺可适用于内层子板30较厚或者通槽31较大的情况。
在一些实施例中,参考图7,通槽31也可以采用空腔设计,即通槽31内的填充介质为空气,由于空气的介质损耗(Df)非常低,因此这种设计也有利于降低传输损耗。如图7所示,通槽31的两端开口均可覆盖有覆盖膜110,使得通槽31形成密封的腔体,从而防 止后续形成第二介质层20时填充树脂流入通槽31内。
在制作图7中的电路板时,先制作内层子板30,在对应于通槽31的位置进行铣槽或钻孔,以形成通槽31,再在内层子板30暴露的各侧壁上电镀以形成第三金属层60,然后再正常刻蚀及棕化。将通槽31的两端开口设置覆盖膜110以使得两端开口被封住,防止后续压合树脂时流入通槽31内。采用聚苯醚等低损耗树脂将内层子板30与第一介质层10压合成一个整体,其中,聚苯醚等低损耗树脂可以形成第二介质层20,并将盖覆有覆盖膜110的内层子板30包覆。然后制作第一屏蔽孔80和第二屏蔽孔90,第一屏蔽孔80穿过第一介质层10后,伸入至第二介质层20后与第三金属层60朝向第一介质层10的一侧电性连接,第二屏蔽孔90伸入至第二介质层20与第三金属层60朝向第四金属层70的一侧电性连接。最后进行电镀与后制程制作,例如,在第一介质层10背离内层子板30的一侧表面形成第一金属层40,在第一金属层40背离第一介质层10的一侧制作第一导线150,在第二介质层20背离第一介质层10的一侧表面形成第四金属层70,在第四金属层70背离第二介质层20的一侧制作第二导线160,该后制程与常规电路板的传统流程相同,具体工艺此处不再赘述。
覆盖膜110的结构可采用聚酰亚胺(polyimide film,PI)膜和胶层的叠层结构,胶层将聚酰亚胺膜粘贴于通槽31的两端开口周围,以使得将开口覆盖住。
上述实施例中,第一介质层10的材料可以为RO3003或其它低损耗的介质材料,内层子板30可以为FR4板材,通槽31内为空腔结构,由于空气的介质损耗(Df)也相对低,因此可进一步降低传输损耗。
在一些实施例中,如图8所示,电路板还可以包括第三介质层130,第三介质层130位于第二介质层20与第四金属层70之间,其中,第三介质层130与第二介质层20之间可设有第五金属层140,第五金属层140可设有第二开口141,第二介质层20可通过第二开口141与第三介质层130连通。本实施例中,电路板上下表面之间的信号传输的路径可以为:第一导线150→第一金属层40→第一介质层10→第一开口51→第二介质层20→通槽31→第二介质层20→第二开口141→第三介质层130→第四金属层70→第二导线160。
第三介质层130的材料可以与第二介质层20的材料相同,可以是聚苯醚等低损耗树脂,以便于节省工艺流程,降低成本。
还需要说明的是,在本实施例中,当设置第二屏蔽孔90时,第二屏蔽孔90的结构可与图4中第二屏蔽孔90的结构类似,即第二屏蔽孔90可以为开设于第四金属层70的盲孔,第二屏蔽孔90可由第四金属层70贯穿第三介质层130后伸入至第二介质层20内,并延伸到第三金属层60朝向第三介质层130的一侧,从而将第四金属层70与第三金属层60电性连接。
相较于传统的垂直互连的电路板,本实施例的电路板通过设置通槽,通槽内可设置介质损耗(Df)较低的填充介质,并对通槽的侧壁表面形成金属层,不仅降低了垂直互连的传输损耗,还可降低加工精度规格,提升加工良率,并且可简化工艺流程,降低电路板的制作成本。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (10)

  1. 一种电路板,其特征在于,包括沿厚度方向依次堆叠的第一介质层和第二介质层,还包括填充于所述第二介质层内部的内层子板,所述内层子板设有通槽,所述通槽沿所述电路板的厚度方向贯穿所述内层子板,且所述通槽用于信号传输,其中:
    所述第一介质层背离所述第二介质层的一侧设有第一金属层;
    所述第一介质层与所述第二介质层之间设有第二金属层,所述第二金属层设有第一开口,所述第一介质层通过所述第一开口与所述第二介质层连通;
    所述内层子板与所述第二介质层之间设有第三金属层;
    所述第二介质层背离所述第一介质层的一侧设有第四金属层。
  2. 根据权利要求1所述的电路板,其特征在于,所述第二介质层的材料为聚苯醚树脂。
  3. 根据权利要求1所述的电路板,其特征在于,所述通槽内填充有介质块,所述介质块的介质损耗(Df)小于等于0.004。
  4. 根据权利要求3所述的电路板,其特征在于,所述介质块的材料包括氟树脂。
  5. 根据权利要求1所述的电路板,其特征在于,所述通槽的两端开口分别覆盖有覆盖膜,所述覆盖膜与所述通槽形成中空结构。
  6. 根据权利要求1-5任一项所述的电路板,其特征在于,所述第一金属层还设有第一屏蔽孔,所述第一屏蔽孔的一端与所述第一金属层电性连接,所述第一屏蔽孔的另一端延伸至所述第三金属层并与所述第三金属层电性连接。
  7. 根据权利要求1-6任一项所述的电路板,其特征在于,所述第四金属层还设有第二屏蔽孔,所述第二屏蔽孔的一端与所述第四金属层连接,所述第二屏蔽孔的另一端延伸至所述第三金属层并与所述第三金属层连接。
  8. 根据权利要求1-7任一项所述的电路板,其特征在于,所述电路板还设有沿厚度方向贯穿所述电路板的金属化过孔。
  9. 根据权利要求1-8任一项所述的电路板,其特征在于,还包括位于所述第二介质层与所述第四金属层之间的第三介质层,所述第三介质层与所述第二介质层之间设有第五金属层,所述第五金属层设有第二开口,所述第二介质层通过所述第二开口与所述第三介质层连通。
  10. 一种电子设备,其特征在于,包括天线、射频芯片和如权利要求1-9任一项所述的电路板,所述天线设置于所述电路板的第一金属层表面,所述射频芯片设置于所述电路板的第四金属层表面。
PCT/CN2022/133305 2021-11-29 2022-11-21 一种电路板及电子设备 WO2023093690A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111433718.6A CN114340139B (zh) 2021-11-29 2021-11-29 一种电路板及电子设备
CN202111433718.6 2021-11-29

Publications (1)

Publication Number Publication Date
WO2023093690A1 true WO2023093690A1 (zh) 2023-06-01

Family

ID=81046451

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/133305 WO2023093690A1 (zh) 2021-11-29 2022-11-21 一种电路板及电子设备

Country Status (2)

Country Link
CN (1) CN114340139B (zh)
WO (1) WO2023093690A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117013248A (zh) * 2023-08-31 2023-11-07 西安电子科技大学 轻量化低成本发射天线子阵结构

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114340139B (zh) * 2021-11-29 2024-09-17 华为技术有限公司 一种电路板及电子设备
CN117651368A (zh) * 2023-12-08 2024-03-05 皆利士多层线路版(中山)有限公司 线路板工字形槽制作

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070126638A1 (en) * 2005-12-02 2007-06-07 M/A-Com, Inc. Compact broadband patch antenna
CN110676578A (zh) * 2019-10-18 2020-01-10 Oppo广东移动通信有限公司 毫米波天线及电子设备
CN110690570A (zh) * 2019-10-18 2020-01-14 Oppo广东移动通信有限公司 毫米波天线及电子设备
CN113054425A (zh) * 2021-03-17 2021-06-29 东南大学 一种毫米波双频双极化滤波天线
CN114340139A (zh) * 2021-11-29 2022-04-12 华为技术有限公司 一种电路板及电子设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110300498A (zh) * 2019-06-26 2019-10-01 Oppo广东移动通信有限公司 一种多层电路板叠层结构
CN110572965A (zh) * 2019-09-19 2019-12-13 深圳明阳电路科技股份有限公司 一种hdi线路板制作工艺方法
CN112867243A (zh) * 2021-01-06 2021-05-28 英韧科技(上海)有限公司 多层电路板

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070126638A1 (en) * 2005-12-02 2007-06-07 M/A-Com, Inc. Compact broadband patch antenna
CN110676578A (zh) * 2019-10-18 2020-01-10 Oppo广东移动通信有限公司 毫米波天线及电子设备
CN110690570A (zh) * 2019-10-18 2020-01-14 Oppo广东移动通信有限公司 毫米波天线及电子设备
CN113054425A (zh) * 2021-03-17 2021-06-29 东南大学 一种毫米波双频双极化滤波天线
CN114340139A (zh) * 2021-11-29 2022-04-12 华为技术有限公司 一种电路板及电子设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117013248A (zh) * 2023-08-31 2023-11-07 西安电子科技大学 轻量化低成本发射天线子阵结构

Also Published As

Publication number Publication date
CN114340139A (zh) 2022-04-12
CN114340139B (zh) 2024-09-17

Similar Documents

Publication Publication Date Title
WO2023093690A1 (zh) 一种电路板及电子设备
US10992022B2 (en) Microwave antenna apparatus, packing and manufacturing method
EP3252870B1 (en) Antenna module
US20140111293A1 (en) Coupling arrangement
CN114784489B (zh) 波导天线组件、雷达、终端和波导天线组件的制备方法
WO2023134474A1 (zh) 封装天线基板及其制备方法、电子设备
WO2009044987A1 (en) Ultra wideband hermetically sealed surface mount technology for microwave monolithic integrated circuit package
CN112038319A (zh) 基于htcc工艺的三维垂直互联结构及其制备方法
CN114256575A (zh) 一种多通道小型化微波组件及其金属基复合基板结构
CN114340215A (zh) 一种信号损耗小的4d车载雷达pcb板及其制作方法
CN114614247A (zh) 一种毫米波瓦片式相控阵天线综合网络
CN111491442B (zh) 一种具有电磁屏蔽结构的线路板及其制作方法
CN217655282U (zh) 雷达线路板及雷达设备
EP3996202A1 (en) Surface-mount waveguide for vertical transitions of a printed circuit board
EP4262326A1 (en) Printed circuit board, fabrication method therefor, and electronic communication device
CN116014400A (zh) 一种矩形波导、喇叭天线及片上系统
CN212908021U (zh) 基于htcc工艺的三维垂直互联结构及t/r组件
WO2021258270A1 (zh) 一种电路板、电子设备和电路板的加工方法
TWI823523B (zh) 電路板及其製作方法
US11764451B2 (en) Waveguide structure
CN215418544U (zh) 垂直过渡结构
CN219106696U (zh) 一种w波段多层射频板垂直过渡结构
US11737209B2 (en) Circuit board and manufacturing method thereof and electronic device
CN112736393A (zh) 基于多层pcb板的微带转波导结构
CN114156620B (zh) 一种带状线匹配负载

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22897773

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE