WO2023093658A1 - 雷击防护方法、雷击防护装置、电源模块、基站 - Google Patents

雷击防护方法、雷击防护装置、电源模块、基站 Download PDF

Info

Publication number
WO2023093658A1
WO2023093658A1 PCT/CN2022/133131 CN2022133131W WO2023093658A1 WO 2023093658 A1 WO2023093658 A1 WO 2023093658A1 CN 2022133131 W CN2022133131 W CN 2022133131W WO 2023093658 A1 WO2023093658 A1 WO 2023093658A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
module
control signal
lightning strike
lightning
Prior art date
Application number
PCT/CN2022/133131
Other languages
English (en)
French (fr)
Inventor
程周立
王新坤
杨志强
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2023093658A1 publication Critical patent/WO2023093658A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H11/00Emergency protective circuit arrangements for preventing the switching-on in case an undesired electric working condition might result
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H11/00Emergency protective circuit arrangements for preventing the switching-on in case an undesired electric working condition might result
    • H02H11/002Emergency protective circuit arrangements for preventing the switching-on in case an undesired electric working condition might result in case of inverted polarity or connection; with switching for obtaining correct connection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H11/00Emergency protective circuit arrangements for preventing the switching-on in case an undesired electric working condition might result
    • H02H11/006Emergency protective circuit arrangements for preventing the switching-on in case an undesired electric working condition might result in case of too high or too low voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/02Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/04Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage

Definitions

  • the present disclosure relates to, but is not limited to, the field of communication devices.
  • Communication base stations located outdoors are often attacked by lightning. Lightning strikes can affect the operation status of communication base stations, and even cause damage to communication base stations, which poses a serious threat to the normal operation of the communication system and the guarantee of communication quality.
  • the power supply module in the communication base station is relatively easy to be damaged by lightning because it is connected to a long input power supply line.
  • the present disclosure provides a lightning strike protection method, a lightning strike protection device, a power supply module, and a base station.
  • the present disclosure provides a lightning strike protection method, which is applied to a lightning strike protection device.
  • the lightning strike protection device includes an input end and an output end; the input end includes a positive polarity end and a negative polarity end; the lightning strike protection device also includes It includes a unidirectional conduction module connected between the positive polarity terminal and the negative polarity terminal, a first capacitor connected to the output terminal, and an anti- Anti-slow up module; the lightning protection method includes: controlling the unidirectional conduction module from the negative terminal to the positive terminal, so that when the negative terminal generates a reverse current, the The reverse current is directed to the positive polarity terminal.
  • the present disclosure provides a lightning strike protection device, including: an input terminal and an output terminal; the input terminal includes a positive polarity terminal and a negative polarity terminal; A one-way conduction module between the negative polarity terminals, a first capacitor connected to the output terminal, an anti-reverse slow-start module and a control module connected between the one-way conduction module and the first capacitor;
  • the control module is configured to control the unidirectional conduction module to conduct unidirectionally from the negative terminal to the positive terminal, so that when a reverse current is generated at the negative terminal, the reverse current is guided to the Positive terminal.
  • the present disclosure provides a power module, including any lightning protection device described herein.
  • the present disclosure provides a base station, including any power module described herein.
  • Figure 1 is a schematic diagram of a lightning strike protection circuit
  • Fig. 2 is a flow chart of a lightning strike protection method of the present disclosure
  • FIG. 3 is a schematic diagram of a lightning strike protection device of the present disclosure
  • Fig. 4 is a flow chart of some steps in another lightning strike protection method of the present disclosure.
  • Fig. 5 is a flow chart of some steps in yet another lightning strike protection method of the present disclosure.
  • Fig. 6 is a flow chart of some steps in yet another lightning strike protection method of the present disclosure.
  • Fig. 8 is a flow chart of some steps in yet another lightning strike protection method of the present disclosure.
  • Fig. 9 is a flow chart of some steps in yet another lightning strike protection method of the present disclosure.
  • FIG. 10 is a flow chart of some steps in yet another lightning strike protection method of the present disclosure.
  • Fig. 11 is a schematic diagram of another lightning strike protection device of the present disclosure.
  • Fig. 12 is a schematic diagram of another lightning strike protection device of the present disclosure.
  • Fig. 13 is a schematic diagram of another lightning protection device of the present disclosure.
  • Fig. 14 is a schematic diagram of another lightning protection device of the present disclosure.
  • 15 is a schematic diagram of a power module of the present disclosure.
  • Fig. 16 is a schematic diagram of a base station of the present disclosure.
  • a two-level lightning protection circuit as shown in FIG. 1 is usually used in the base station power module.
  • the first stage uses large-capacity varistors, transient voltage suppressors or multi-gap gas discharge tubes to discharge most of the lightning energy
  • the second stage uses varistors or transient voltage suppressors to discharge part of the lightning energy.
  • the energy discharge between the first stage and the second stage is matched by decoupling inductance.
  • the power module involves a power conversion module, and an electrolytic capacitor is connected to the front end of the power conversion module to process energy for the power conversion module; in the case of a forward lightning strike, the electrolytic capacitor can also absorb the lightning energy to make the power conversion module work at a safe voltage.
  • the working principle of the lightning strike protection circuit shown in FIG. 1 includes the following contents.
  • the lightning strike current enters from -48VGND, the first-stage varistor MOV1 absorbs most of the lightning strike current, the second-stage varistor MOV2 and electrolytic capacitor C absorb the remaining energy, and anti-reverse slow metal rises during a forward lightning strike Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET, Metal-Oxide-Semiconductor Field-Effect Transistor) VT1 and VT2 are turned on; when reverse lightning strikes, the lightning current enters from -48V, and the first-stage varistor MOV1 absorbs most of the lightning strikes Current, when the current flows into the second stage, the transient voltage suppressor (TVS, Transient Voltage Suppressor) connected in parallel with VT1 and VT2 acts to clamp the voltage of VT1 and VT2 to within the safe voltage due to the disconnection of VT1 and VT2.
  • TVS Transient Voltage Suppressor
  • the present disclosure provides a lightning strike protection method, which is applied to the lightning strike protection device shown in FIG. 3 , the lightning strike protection device includes an input end and an output end; the input end includes a positive polarity end and a negative polarity end; The lightning protection device also includes a one-way conduction module 100 connected between the positive terminal and the negative terminal, a first capacitor 200 connected at the output terminal, and an anti-reverse slowdown connected between the one-way conduction module 100 and the first capacitor 200 Starting module 300; Referring to FIG. 2, the lightning strike protection method at least includes but is not limited to the following step S1.
  • step S1 the one-way conduction module is controlled to perform one-way conduction from the negative terminal to the positive terminal, so that when a reverse current is generated at the negative terminal, the reverse current is guided to the positive terminal.
  • the reverse current refers to the current flowing from the negative terminal.
  • the conduction direction of the unidirectional conduction module is conduction from the negative terminal to the positive terminal. It should be noted that the unidirectional conduction module is turned on when there is a reverse current in the negative terminal, and is turned off when there is no reverse current in the negative terminal. In some embodiments, the unidirectional conduction module has a small impedance when it is turned on, and a large impedance when it is turned off. In some embodiments, the unidirectional conduction module is equivalent to a short circuit when it is turned on, and is equivalent to an open circuit when it is turned off.
  • step S1 the unidirectional conduction module 100 is unidirectionally conducted from the negative terminal to the positive terminal, and the reverse current is supplied by The negative terminal flows to the positive terminal through the unidirectional conduction module 100, and flows out from the positive terminal. Therefore, the first capacitor 200 will not be discharged, and the voltage at the output terminal (that is, the voltage of the power conversion module) will not drop rapidly.
  • the voltage at both ends of the slow-start module is clamped at the voltage of the first capacitor 200; in the scenario where the system is not powered on, when a reverse lightning strike is received, the one-way conduction module 100 can also be connected from the negative terminal to the The positive terminal conducts in one direction, and the reverse current flows from the negative terminal through the unidirectional conduction module 100 to the positive terminal, and then flows out from the positive terminal, without causing the reverse current to flow into the power conversion module.
  • the first capacitor 200 can absorb the lightning strike energy, so that the power conversion module can work at a safe voltage, or keep the port voltage of the power conversion module at a safe voltage when the system is not powered on , so as to achieve protection against forward lightning strikes.
  • the lightning strike protection method provided by the present disclosure can direct the reverse current in the negative polarity terminal of the input terminal to the positive polarity terminal and derive it from the positive polarity terminal when receiving a reverse lightning strike, thereby avoiding the discharge of the first capacitor 200 connected to the output terminal.
  • the port voltage of the power conversion module drops rapidly and is damaged, and the voltage at both ends of the anti-reverse slow-start module 300 can be clamped to the voltage of the first capacitor 200, which can also prevent reverse lightning caused by reverse lightning when the system is not powered on.
  • the current flows into the power conversion module, so as to effectively protect against reverse lightning strikes; the lightning protection method provided by the disclosure can also effectively protect against forward lightning strikes, thereby improving the reliability of the power conversion module; in addition, in this disclosure, also There is no need to use transient voltage suppression devices to clamp the voltage across the anti-reverse slow-start module 300 , which can simplify the structure of the lightning protection device, and at the same time, lower voltage devices can be used to construct the anti-reverse slow-start module 300 , thereby reducing costs.
  • the unidirectional conduction module 100 is constructed with active devices. In some embodiments, the unidirectional conduction module 100 is constructed with passive components. For example, the unidirectional conduction module 100 is formed by combining a switching device and a diode.
  • the conduction direction of the diode is from the first pole to the second pole.
  • the unidirectional conduction module 100 includes a first diode and a switching device connected in series between the positive terminal and the negative terminal; referring to FIG. 4 , step S1 may include steps S11 and S12.
  • step S11 in response to the reverse current, a first control signal is generated according to the reverse current.
  • step S12 the first control signal is used to control the switching device to conduct, so that the first diode conducts unidirectionally from the negative terminal to the positive terminal.
  • the present disclosure makes no special limitation on how to generate the first control signal in response to the reverse current.
  • the reverse current is converted to generate the first control signal.
  • a first control signal is generated relatively independent of the reverse current.
  • a coupling inductor is provided at the negative terminal of the lightning protection device.
  • a reverse current flows through the coupling inductor, a voltage can be induced, and the induced voltage can be used to control the conduction of the one-way conduction module 100, regardless of the system Whether it is powered on or not, the one-way conduction module 100 can work when it is struck by reverse lightning, thereby improving the reliability of the system.
  • the lightning protection device further includes a first coupled inductance element connected between the negative terminal and the unidirectional conduction module; referring to FIG. 5 , step S11 may include steps S111 and S112.
  • step S111 the first induced voltage is generated according to the reverse current by using the first coupled inductance element.
  • step S112 a first control signal is generated according to the first induced voltage.
  • the first coupled inductive element includes a first winding and a second winding, and using the first coupled inductive element to generate the first induced voltage according to the reverse current through step S111 means that the reverse current flows through the first winding, Thus, a voltage is induced in the second winding, that is, the first induced voltage.
  • the present disclosure makes no special limitation on how to generate the first control signal according to the first induced voltage.
  • the first induced voltage is directly used as the first control signal.
  • the first induced voltage is rectified to obtain a first control signal suitable for the switching device.
  • the first induced voltage is filtered to obtain a first control signal suitable for the switching device.
  • the first control signal suitable for the switching device means that the voltage, polarity, etc. of the first control signal are suitable for the switching device.
  • step S112 may include step S1121.
  • step S1121 the first induced voltage is rectified to obtain a first control signal, and the polarity of the first control signal remains unchanged.
  • full-wave rectification is performed on the first induced voltage to obtain the first control signal.
  • 7 is a schematic diagram of a reverse current, a first induced voltage induced by the reverse current, and a first control signal obtained by rectifying the first induced voltage.
  • the first induced voltage induced by the reverse current is an AC voltage
  • the first control signal is obtained as a DC voltage during the entire period when the reverse current exists.
  • performing full-wave rectification on the first induced voltage can improve rectification efficiency and make the first control signal easy to smooth, thereby improving the lightning protection effect.
  • half-wave rectification is performed on the first induced voltage to obtain the first control signal.
  • voltage limiting processing is performed on the first induced voltage to obtain the first control signal.
  • step S112 may further include step S1122.
  • step S1122 the first induced voltage is filtered to obtain a first control signal, and the polarity of the first control signal remains unchanged.
  • step S1122 by filtering the first induced voltage in step S1122, the AC component in the obtained first control signal can be reduced, and the first control signal can be smoothed.
  • the unidirectional conduction module 100 includes a first diode and a switching device connected in series between the positive terminal and the negative terminal; referring to FIG. 9 , step S1 may include steps S12 and S14.
  • step S13 a second control signal is generated.
  • step S14 the second control signal is used to control the switching device to conduct, so that the first diode conducts unidirectionally from the negative terminal to the positive terminal.
  • the second control signal is not related to the reverse current.
  • the second control signal is generated by an independent signal generating circuit.
  • a reverse current is generated at the negative terminal
  • a second control signal independent of the reverse current is generated.
  • the second control signal is generated when the lightning strike protection device is powered on, so that the one-way conduction module 100 remains on, which can effectively protect against reverse lightning strikes without affecting normal operation.
  • the second control signal when the power input is reversed, the second control signal is not generated, so that the switching device is turned off, so that the anti-reverse creep module 300 can function.
  • the present disclosure makes no special limitation on how to generate the second control signal.
  • the lightning strike protection device further includes a second coupling inductance element connected to the one-way conduction module 100; referring to FIG. 10 , step S13 may include steps S131 and S132.
  • step S131 an excitation voltage is generated.
  • step S132 the second coupled inductive element is used to generate a second induced voltage according to the induced voltage to obtain a second control signal.
  • the second coupled inductive element includes a first winding and a second winding
  • the induced voltage is a voltage applied to the first winding of the second coupled inductive element, so that the first winding generates The induced current induces a second induced voltage in the second winding.
  • the second induced voltage is a second control signal suitable for the switching device.
  • the second control signal is obtained after processing such as rectification and filtering on the second coupled inductance element. The present disclosure makes no special limitation on this.
  • the present disclosure provides a lightning strike protection device, including: an input terminal and an output terminal; the input terminal includes a positive polarity terminal and a negative polarity terminal; the lightning strike protection device also includes a The unidirectional conduction module 100 between them, the first capacitor 200 connected to the output terminal, the anti-reversal slow-start module 300 and the control module 400 connected between the unidirectional conduction module 100 and the first capacitor 200; the control module 400 is configured to control The unidirectional conduction module 100 is unidirectionally conducted from the negative terminal to the positive terminal, so that when a reverse current is generated at the negative terminal, the reverse current is guided to the positive terminal.
  • the reverse current refers to the current flowing from the negative terminal.
  • the conduction direction of the unidirectional conduction module 100 during conduction is from the negative terminal to the positive terminal. It should be noted that the unidirectional conduction module 100 is turned on when there is a reverse current in the negative terminal, and is turned off when there is no reverse current in the negative terminal. In some embodiments, the unidirectional conduction module has a small impedance when it is turned on, and a large impedance when it is turned off. In some embodiments, the unidirectional conduction module is equivalent to a short circuit when it is turned on, and is equivalent to an open circuit when it is turned off.
  • the principle of the lightning protection device provided by the present disclosure will be described with reference to FIG. 3 .
  • the reverse current enters from the negative terminal, the anti-reverse slow-start module 300 is disconnected, the unidirectional conduction module 100 conducts unidirectionally from the negative terminal to the positive terminal, and the reverse current passes through the negative terminal.
  • the unidirectional conduction module 100 flows to the positive polarity end and flows out from the positive polarity end. Therefore, the first capacitor 200 will not be discharged, and the output terminal voltage (that is, the voltage of the power conversion module) will not drop rapidly.
  • the anti-reverse slow-start module 300 The voltage at both ends is clamped at the voltage of the first capacitor 200; in the scenario where the system is not powered on, when receiving a reverse lightning strike, the unidirectional conduction module 100 can also conduct unidirectionally from the negative terminal to the positive terminal, The reverse current flows from the negative terminal through the unidirectional conduction module 100 to the positive terminal, and flows out from the positive terminal without causing the reverse current to flow into the power conversion module.
  • the first capacitor 200 can absorb the lightning strike energy, so that the power conversion module can work at a safe voltage, or keep the port voltage of the power conversion module at a safe voltage when the system is not powered on , so as to achieve protection against forward lightning strikes.
  • the lightning strike protection device can guide the reverse current in the negative polarity terminal of the input terminal to the positive polarity terminal and derive it from the positive polarity terminal when receiving a reverse lightning strike, thereby avoiding the discharge of the first capacitor 200 connected to the output terminal and causing
  • the port voltage of the power conversion module drops rapidly and is damaged, and the voltage at both ends of the anti-reverse slow-start module 300 can be clamped to the voltage of the first capacitor, and the reverse current generated by the reverse lightning strike can also be prevented when the system is not powered on.
  • the lightning protection method provided by the disclosure can also effectively protect against forward lightning, thereby improving the reliability of the power conversion module; in addition, in this disclosure, neither It is necessary to use a transient voltage suppression device to clamp the voltage across the anti-reverse slow-start module 300, which can simplify the structure of the lightning protection device, and at the same time, use lower voltage devices to construct the anti-reverse slow-start module, thereby reducing costs.
  • the unidirectional conduction module 100 is constructed with active devices. In some embodiments, the unidirectional conduction module 100 is constructed with passive components. For example, the unidirectional conduction module 100 is formed by combining the switching device S and the diode.
  • the conduction direction of the diode is from the first pole to the second pole.
  • the unidirectional conduction module 100 includes a first diode D1 and a switching device S connected in series between the positive terminal and the negative terminal;
  • the control module 400 is configured to respond to the reverse current, generate a first control signal according to the reverse current, and use the first control signal to control the switching device S to turn on, so that the first diode D1 is turned from the negative polarity terminal to the positive polarity terminal One-way communication.
  • connection of the switching device S to the first pole of the first diode D1 in FIG. 11 is only an optional embodiment of the position and connection of the first diode D1 and the switching device S in this disclosure. schematic diagram. In some implementation manners, the switching device S may also be connected to the second pole of the first diode D1. The present disclosure makes no special limitation on this.
  • control module 400 makes no special limitation on how the control module 400 generates the first control signal in response to the reverse current.
  • the control module 400 converts the reverse current to generate a first control signal.
  • the control module 400 generates a first control signal relatively independent of the reverse current in response to the reverse current.
  • a coupling inductor is provided at the negative terminal of the lightning protection device.
  • a reverse current flows through the coupling inductor, a voltage can be induced, and the induced voltage can be used to control the conduction of the one-way conduction module 100, regardless of the system Whether it is powered on or not, the one-way conduction module 100 can work when it is struck by reverse lightning, thereby improving the reliability of the system.
  • the control module 400 includes a signal processing unit and a first coupling inductance element L1 connected between the negative terminal and the unidirectional conduction module 100; the first coupling inductance element L1 is configured according to the reverse The current generates a first induced voltage; the signal processing unit is configured to generate a first control signal according to the first induced voltage.
  • the first coupled inductive element L1 includes a first winding and a second winding, and the first coupled inductive element L1 generates a first induced voltage according to the reverse current, which means that the reverse current flows through the first winding, so that the The second winding induces a voltage, that is, the first induced voltage.
  • the present disclosure makes no special limitation on how to generate the first control signal according to the first induced voltage.
  • the first induced voltage is directly used as the first control signal.
  • the first induced voltage is rectified to obtain a first control signal suitable for the switching device S.
  • the first induced voltage is filtered to obtain a first control signal suitable for the switching device S.
  • the first control signal suitable for the switching device S means that the voltage, polarity, etc. of the first control signal are suitable for the switching device S.
  • the signal processing unit is configured to rectify the first induced voltage to obtain the first control signal, and the polarity of the first control signal remains unchanged.
  • full-wave rectification is performed on the first induced voltage to obtain the first control signal.
  • 7 is a schematic diagram of a reverse current, a first induced voltage induced by the reverse current, and a first control signal obtained by rectifying the first induced voltage.
  • the first induced voltage induced by the reverse current is an AC voltage
  • the first control signal is obtained as a DC voltage during the entire period when the reverse current exists.
  • performing full-wave rectification on the first induced voltage can improve rectification efficiency and make the first control signal easy to smooth, thereby improving the lightning protection effect.
  • half-wave rectification is performed on the first induced voltage to obtain the first control signal.
  • voltage limiting processing is performed on the first induced voltage to obtain the first control signal.
  • the present disclosure makes no special limitation on how to rectify the first induced current.
  • the signal processing unit includes a second diode D2, a third diode D3, a fourth diode D4, a fifth diode D5, a second capacitor C2, a first resistor R1; the signal processing unit also includes a first node N1, a second node N2, a third node N3, and a fourth node N4; the second pole of the second diode D2, the second pole of the third diode D3, the second pole of the third diode D3, The second pole of the second capacitor C2 is connected to the third node N3; the first pole of the fourth diode D4, the first pole of the fifth diode D5, and the first pole of the second capacitor C2 are connected to the fourth node N4 ; The first pole of the second diode D2, the second pole of the fourth diode D4 are connected to the first node N1; the first pole of the third diode D3, the second pole of the fifth diode D5 Connected to the second
  • the switching device S includes a first power semiconductor device VT3, the control electrode of the first power semiconductor device VT3 is connected to the third node N3; the first resistor R1 is connected in series between the control electrode and the first electrode of the first power semiconductor device VT3.
  • the first pole of the first diode D1 is connected to the first pole of the first power semiconductor device VT3, and the second pole of the first diode D1 is connected to the positive terminal.
  • the first coupled inductance includes a first winding and a second winding; the first end of the first winding is connected to the negative polarity end, and the second end of the first winding is connected to the second pole of the first power semiconductor device VT3; The first end is connected to the first node N1, and the second end of the second winding is connected to the second node N2.
  • the first pole of the first power semiconductor device VT3 and the fourth node N4 are connected to the common electrode terminal VSS.
  • the signal processing unit is configured to filter the first induced voltage to obtain the first control signal, and the polarity of the first control signal remains unchanged.
  • filtering the first induced voltage can reduce the AC component in the obtained first control signal, so that the first control signal becomes smoother.
  • the present disclosure makes no special limitation on how to filter the first induced voltage.
  • the switching device S includes a second power semiconductor device VT4, the first pole of the first diode D1 is connected to the first pole of the second power semiconductor device VT4, and the first diode D1 The second pole is connected to the positive terminal.
  • the signal processing unit includes a sixth diode D6, a third capacitor C3, and a second resistor R2; the third capacitor C3 is connected in series between the control electrode and the first electrode of the second power semiconductor device VT4; the second resistor R2 is connected in series Between the control pole and the first pole of the second power semiconductor device VT4; the second pole of the sixth diode D6 is connected to the control pole of the second power semiconductor device VT4.
  • the first coupled inductance includes a first winding and a second winding; the first end of the first winding is connected to the negative polarity end, and the second end of the first winding is connected to the second pole of the second power semiconductor device VT4; the second winding's The first end is connected to the first pole of the sixth diode D6, and the second end of the second winding is connected to the first pole of the second power semiconductor device VT4.
  • the first pole of the second power semiconductor device VT4 is connected to the common electrode terminal VSS.
  • the unidirectional conduction module 100 includes a first diode D1 and a switching device S connected in series between the positive terminal and the negative terminal.
  • the control module 400 is configured to generate a second control signal, and use the second control signal to control the switching device S to turn on, so that the first diode D1 conducts unidirectionally from the negative terminal to the positive terminal.
  • the control module 400 further includes an inductive unit 410 and a second coupled inductive element L2, the second coupled inductive element L2 is connected to the one-way conduction module 100; the inductive unit 410 is configured to generate an inductive Voltage; the second coupled inductive element L2 is configured to generate a second induced voltage according to the induced voltage to obtain a second control signal.
  • the second coupled inductive element includes a first winding and a second winding
  • the induced voltage is a voltage applied to the first winding of the second coupled inductive element, so that the first winding generates The induced current induces a second induced voltage in the second winding.
  • the second induced voltage is a second control signal suitable for the switching device S.
  • the second control signal is obtained after processing such as rectification and filtering on the second coupled inductance element. The present disclosure makes no special limitation on this.
  • the present disclosure makes no special limitation on the type of the first diode D1.
  • the first diode is a semiconductor device parasitic diode.
  • the unidirectional conduction module can be integrated with semiconductor materials.
  • the unidirectional conduction module is a semiconductor integrated circuit.
  • the present disclosure provides a power module, including the lightning strike protection device according to any one of the second aspect of the present disclosure.
  • the present disclosure provides a base station, including the power module according to the third aspect of the present disclosure.
  • Fig. 11 is a schematic diagram of a lightning protection device in the present disclosure.
  • the anti-reverse slow-start module is composed of power semiconductor devices VT1 and VT2 in series; in order to prevent damage caused by reverse connection of the power supply at the input end, the unidirectional conduction module is composed of the first diode D1 It is formed in series with the switching device S, and the positions of the first diode D1 and the switching device S can be exchanged; the first capacitor C1 is connected to the output terminal.
  • the control module includes a first coupling inductor L1, the voltage of pins A2 and B2 of the first coupling inductor L1 will induce a first induced voltage at pins A1 and B1, and the first induced voltage is used to control the switching device S in the one-way conduction module Work.
  • the first coupling inductor L1 is a key component in the control module but not all of them.
  • the impedance when the switching device S is turned on, the impedance is small, which is equivalent to a short circuit; when it is turned off, the impedance is large, which is equivalent to an open circuit.
  • the first diode may also be realized by using a parasitic diode of a power semiconductor.
  • the working principle of the lightning protection device in this exemplary embodiment is as follows.
  • the anti-reverse slow-start circuit When there is a reverse current caused by a reverse lightning strike, the anti-reverse slow-start circuit is disconnected, and the reverse current will charge the junction capacitance of the power semiconductor device VT1 of the anti-reverse slow-start circuit. At this time, the switching device S is turned on.
  • the anti-reverse slow-start When the charging voltage of the power semiconductor device VT1 junction capacitance of the starting circuit reaches the voltage of the first capacitor C1 at the output terminal plus the voltage drop of the first diode D1, the voltage on the anti-reverse slow starting circuit is clamped at the voltage of the first capacitor C1, The residual pressure is very low.
  • the switching device S since the switching device S is turned on, the reverse current will flow from the negative polarity terminal -48V of the input terminal through the first diode D1 of the unidirectional conduction module and the switching device S flows out from the negative polarity terminal -48VGND of the input terminal, and the output terminal
  • the capacitor C1 will not be discharged, the voltage does not drop instantaneously, and the reliability of the power module connected to the output terminal is improved.
  • Fig. 12 is a schematic diagram of a lightning strike protection device of the present disclosure.
  • the anti-reverse slow start module is composed of power semiconductor devices VT1 and VT2; VT1 is used for protection when the input power is reversed, and VT2 is used for surge current suppression when the power is turned on.
  • a transient voltage suppression device TVS may be connected in parallel to VT1 and VT2, or TVS may not be connected in parallel;
  • the unidirectional conduction module is composed of the first diode D1 and the power semiconductor device VT3 in series; the first two The positions of the pole diode D1 and the power semiconductor device VT3 can be interchanged, for example, the anode of the first diode D1 is connected to the source of the power semiconductor device VT3, or the cathode of the first diode D1 is connected to the drain of the power semiconductor device VT3
  • the poles are connected; the output terminal is used to connect the first capacitor C1 and the power conversion circuit;
  • the first coupled inductor L1 generates a first induced voltage when it is struck by lightning and has a reverse current, and the first induced voltage passes through the second diode D2, the third diode D3, the fourth diode D4, the fifth diode After full-wave rectification by the diode D5, a first control signal is obtained, and the first control signal is used to drive the power semiconductor device VT3.
  • the first induced voltage is rectified by a diode to obtain a suitable voltage, and other rectification methods can also be used to obtain a suitable voltage as the first control signal.
  • a diode or two diodes are used to form a half-wave
  • the rectification circuit performs half-wave rectification on the first induced voltage, or obtains a suitable voltage through a voltage limiting method, and obtains the first control signal.
  • the power semiconductor device VT3 is turned on when lightning strikes, the voltage of the anti-reverse slow start module is clamped to the voltage of the first capacitor C1 at the output end, and the residual voltage is very low; in addition, the reverse current will flow through the one-way conduction module, and the output end The voltage of the first capacitor C1 will not drop, and the reliability of the power conversion circuit is improved; when the system is not powered on, the reverse current will not flow into the power conversion circuit when struck by lightning, and the reliability of the power conversion circuit is further improved.
  • the working principle of the lightning protection device shown in FIG. 12 is briefly described in conjunction with FIG. 7 .
  • the waveforms in FIG. 7 are the reverse current waveform, the first induced voltage waveform, and the first control signal voltage waveform from top to bottom.
  • the reverse current rises, the first induced voltage waveform is negative, and is controlled to be positive through rectification.
  • the first control signal can reach an appropriate voltage by limiting, absorbing or stepping down the voltage to drive the power semiconductor device VT3.
  • Fig. 13 is a schematic diagram of a lightning protection device in the present disclosure.
  • the anti-reverse slow-start module is composed of power semiconductor devices VT1 and VT2; VT1 is used for protection when the input power is reversed, and VT2 is used for surge current suppression when the power supply is powered on; the output terminal is connected to The first capacitor C1 and the power conversion circuit.
  • VT4 and D1 are connected in series to form a one-way conduction module, and the positions of VT4 and D1 can be interchanged; the first winding A2 ⁇ B2 of the first coupling inductor L1 is connected to the input power line, and the second winding A1 ⁇ B1 passes through the sixth diode
  • the tube D6 is rectified and connected to the control terminal of the power device VT4; the third capacitor C3 is used for energy storage and filtering, and the second resistor R2 is connected in series between the control terminal of the VT4 and the first terminal (for example, the source).
  • a -48V ⁇ -48VGND 6KV10/50US lightning strike waveform is input to the input terminal.
  • the peak voltage at both ends of the anti-reverse slow-start module is 62V when the lightning strikes in the negative direction
  • the platform voltage that is, the voltage of the first capacitor C1 at the output end
  • the peak voltage and platform voltage of the anti-reverse slow-start module have dropped by 30V, and the voltage stress has been significantly improved.
  • adding a unidirectional conduction module has at least the following advantages:
  • the power semiconductor device of the anti-backlash and slow-start module can use lower voltage devices
  • the voltage of the one-way conduction module is taken from the coupling inductor. If a lightning strike occurs when the system is powered off, the one-way conduction module will still work, and the current will not flow into the power conversion module at the output end, which improves the reliability of the power conversion module.
  • Fig. 14 is a schematic diagram of a lightning strike protection device in the present disclosure.
  • the anti-backlash slow-start module is composed of power semiconductor devices VT1 and VT2; the unidirectional conduction module adopts the first diode D1 and the switching device S in series; the first diode The positions of D1 and switching device S can be interchanged; the first capacitor C1 is connected to the output terminal; the control module is composed of the inducing unit 410 and the second coupling inductance L2, and the inducing unit 410 can make A2-B2 of the second coupling inductance L2 generate The induced voltage is coupled to the secondary side A1-B1 of the second coupling inductor L2 to generate a second control signal for controlling the switch S in the one-way conduction module.
  • Embodiments of the present disclosure provide a lightning strike protection method, a lightning strike protection device for implementing the lightning strike protection method, a power module using the lightning strike protection device, and a base station using the power supply module.
  • the reverse current in the negative terminal of the input terminal can be directed to the positive terminal and derived from the positive terminal, thereby avoiding the discharge of the first capacitor connected to the output terminal to cause power conversion
  • the terminal voltage of the module drops rapidly and is damaged. It can also clamp the voltage at both ends of the anti-reverse slow-start module to the voltage of the first capacitor, and prevent the reverse current generated by the reverse lightning strike from flowing into the power conversion when the system is not powered on.
  • the lightning strike protection method provided in the embodiments of the present disclosure can also effectively protect against forward lightning strikes, thereby improving the reliability of the power conversion module; in addition, in the embodiments of the present disclosure, also There is no need to use a transient voltage suppression device to clamp the voltage at both ends of the anti-reverse slow start circuit, which can simplify the structure of the lightning strike protection device and reduce the cost.
  • Example embodiments have been disclosed herein, and while specific terms have been employed, they are used and should be construed in a general descriptive sense only and not for purposes of limitation. In some instances, it will be apparent to those skilled in the art that features, characteristics and/or elements described in connection with a particular embodiment may be used alone, or may be described in combination with other embodiments, unless expressly stated otherwise. Combinations of features and/or elements. Accordingly, it will be understood by those of ordinary skill in the art that various changes in form and details may be made without departing from the scope of the present disclosure as set forth in the appended claims.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

本公开提供一种雷击防护方法,应用于雷击防护装置,所述雷击防护装置包括输入端和输出端;所述输入端包括正极性端和负极性端;所述雷击防护装置还包括连接在所述正极性端和所述负极性端之间的单向导通模块、连接在所述输出端的第一电容、连接在所述单向导通模块和所述第一电容之间的防反缓起模块;所述雷击防护方法包括:控制所述单向导通模块由所述负极性端向所述正极性端单向导通,以在所述负极性端产生反向电流时,将所述反向电流引导到所述正极性端。本公开还提供一种雷击防护装置、一种电源模块、一种基站。

Description

雷击防护方法、雷击防护装置、电源模块、基站
相关申请的交叉引用
本申请要求2021年11月29日提交给中国专利局的第202111430607.X号专利申请的优先权,其全部内容通过引用合并于此。
技术领域
本公开涉及但不限于通信设备领域。
背景技术
位于户外的通信基站经常受到雷电的侵袭,雷击能够影响通信基站的运行状态,甚至造成通信基站损坏,对通信系统正常运行、保障通信质量造成严重威胁。通信基站中的电源模块由于外接较长的输入供电线,较为容易因雷击而损坏。
在一些相关技术中,基站雷击防护的有效性还有待提升。
发明内容
本公开提供一种雷击防护方法、一种雷击防护装置、一种电源模块、一种基站。
第一方面,本公开提供一种雷击防护方法,应用于雷击防护装置,所述雷击防护装置包括输入端和输出端;所述输入端包括正极性端和负极性端;所述雷击防护装置还包括连接在所述正极性端和所述负极性端之间的单向导通模块、连接在所述输出端的第一电容、连接在所述单向导通模块和所述第一电容之间的防反缓起模块;所述雷击防护方法包括:控制所述单向导通模块由所述负极性端向所述正极性端单向导通,以在所述负极性端产生反向电流时,将所述反向电流引导到所述正极性端。
第二方面,本公开提供一种雷击防护装置,包括:输入端和输出 端;所述输入端包括正极性端和负极性端;所述雷击防护装置还包括连接在所述正极性端和所述负极性端之间的单向导通模块、连接在所述输出端的第一电容、连接在所述单向导通模块和所述第一电容之间的防反缓起模块、控制模块;所述控制模块配置为控制所述单向导通模块由所述负极性端向所述正极性端单向导通,以在所述负极性端产生反向电流时,将所述反向电流引导到所述正极性端。
第三方面,本公开提供一种电源模块,包括本文所述任意一项雷击防护装置。
第四方面,本公开提供一种基站,包括本文所述任一电源模块。
附图说明
图1是雷击防护电路的示意图;
图2是本公开一种雷击防护方法的流程图;
图3是本公开一种雷击防护装置的示意图;
图4是本公开另一种雷击防护方法中部分步骤的流程图;
图5是本公开又一种雷击防护方法中部分步骤的流程图;
图6是本公开再一种雷击防护方法中部分步骤的流程图;
图7是本公开多种信号关系的示意图;
图8是本公开再一种雷击防护方法中部分步骤的流程图;
图9是本公开再一种雷击防护方法中部分步骤的流程图;
图10是本公开再一种雷击防护方法中部分步骤的流程图;
图11是本公开另一种雷击防护装置的示意图;
图12是本公开又一种雷击防护装置的示意图;
图13是本公开再一种雷击防护装置的示意图;
图14是本公开再一种雷击防护装置的示意图;
图15是本公开一种电源模块的示意图;
图16是本公开一种基站的示意图。
具体实施方式
为使本领域的技术人员更好地理解本公开的技术方案,下面结 合附图对本公开提供的雷击防护方法、雷击防护装置、电源模块、基站进行详细描述。
在下文中将参考附图更充分地描述示例实施方式,但是所述示例实施方式可以以不同形式来体现且不应当被解释为限于本文阐述的实施方式。反之,提供这些实施方式的目的在于使本公开透彻和完整,并将使本领域技术人员充分理解本公开的范围。
在不冲突的情况下,本公开各实施方式及实施方式中的各特征可相互组合。
如本文所使用的,术语“和/或”包括一个或多个相关列举条目的任何和所有组合。
本文所使用的术语仅用于描述特定实施方式,且不意欲限制本公开。如本文所使用的,单数形式“一个”和“该”也意欲包括复数形式,除非上下文另外清楚指出。还将理解的是,当本说明书中使用术语“包括”和/或“由……制成”时,指定存在所述特征、整体、步骤、操作、元件和/或组件,但不排除存在或添加一个或多个其它特征、整体、步骤、操作、元件、组件和/或其群组。
除非另外限定,否则本文所用的所有术语(包括技术和科学术语)的含义与本领域普通技术人员通常理解的含义相同。还将理解,诸如那些在常用字典中限定的那些术语应当被解释为具有与其在相关技术以及本公开的背景下的含义一致的含义,且将不解释为具有理想化或过度形式上的含义,除非本文明确如此限定。
在一些相关技术中,为了防止雷击损坏,通常在基站电源模块中采用如图1所示的两级雷击防护电路。其中,第一级采用大容量压敏电阻、瞬态电压抑制器或者多间隙气体放电管泄放大部分雷击能量,第二级采用压敏电阻或者瞬态电压抑制器泄放部分雷击能量,第一级和第二级之间的能量泄放采用退耦电感来配合。电源模块涉及功率变换模块,在功率变换模块前端接有电解电容为功率变换模块处理能量;在正向雷击时,电解电容也可以吸收雷击能量而使功率变换模块工作在安全电压下。此外,电源模块因电解电容的存在而需要在开机时抑制冲击电流,同时还需要防止电源输入反接而导致损坏,因此需要在 功率变换模块前端设置防反缓起电路。如图1所示的雷击防护电路的工作原理包括如下内容。
在正向雷击时,雷击电流从-48VGND进入,第一级压敏电阻MOV1吸收大部分雷击电流,第二级压敏电阻MOV2和电解电容C吸收剩余能量,正向雷击时防反缓起金属氧化物半导体场效应管(MOSFET,Metal-Oxide-Semiconductor Field-Effect Transistor)VT1、VT2是导通的;反向雷击时,雷击电流从-48V进入,第一级压敏电阻MOV1吸收大部分雷击电流,电流流入第二级时,因VT1、VT2断开导致与VT1、VT2并联的瞬态电压抑制器件(TVS,Transient Voltage Suppressor)动作把VT1、VT2的电压钳位到安全电压以内。
据发现,如图1所示的雷击防护电路中,TVS动作时,TVS支路也会流过大的雷击电流,会对电解电容C放电导致功率变换模块的端口电压迅速跌落,功率变换模块会因端口电压迅速跌落而损坏;此外,若在系统不上电时遭受雷击,正向雷击不会对功率变换模块造成损坏,但反向雷击的雷击电流会流入功率变换模块,对模块内部的MOSFET造成损坏。
有鉴于此,第一方面,本公开提供一种雷击防护方法,应用于如图3所示的雷击防护装置,雷击防护装置包括输入端和输出端;输入端包括正极性端和负极性端;雷击防护装置还包括连接在正极性端和负极性端之间的单向导通模块100、连接在输出端的第一电容200、连接在单向导通模块100和第一电容200之间的防反缓起模块300;参照图2,雷击防护方法至少包括但不限于以下步骤S1。
在步骤S1,控制单向导通模块由负极性端向正极性端单向导通,以在负极性端产生反向电流时,将反向电流引导到正极性端。
需要说明的是,在本公开中,反向电流是指由负极性端流入的电流。
在本公开中,单向导通模块在导通时的导通方向为由负极性端向正极性端导通。需要说明的是,单向导通模块在负极性端中有反向电流时导通,在负极性端中没有反向电流时截止。在一些实施方式中,单向导通模块在导通时阻抗很小,在截止时阻抗很大。在一些实施方 式中,单向导通模块在导通时相当于短路,在截止时相当于开路。
结合图3对本公开提供的雷击防护方法的原理进行说明。当受到反向雷击时,反向电流由负极性端进入,防反缓起模块300断开,通过步骤S1使得单向导通模块100由负极性端到正极性端单向导通,反向电流由负极性端经过单向导通模块100流向正极性端,并从正极性端流出,因此,第一电容200不会被放电,输出端电压(即功率变换模块的电压)不会迅速跌落,防反缓起模块两端的电压被钳位在第一电容200的电压上;在系统不上电的场景中,当受到反向雷击时,也能够通过步骤S1使得单向导通模块100由负极性端到正极性端单向导通,反向电流由负极性端经过单向导通模块100流向正极性端,并从正极性端流出,而不会使反向电流流入功率变换模块。
需要说明的是,当受到正向雷击时,第一电容200能够吸收雷击能量,使得功率变换模块能够工作在安全电压下,或在系统不上电时使得功率变换模块的端口电压保持在安全电压下,从而实现对正向雷击的防护。
本公开提供的雷击防护方法,在受到反向雷击时,能够将输入端的负极性端中的反向电流导向正极性端并从正极性端导出,从而避免连接在输出端的第一电容200放电导致功率变换模块的端口电压迅速跌落而损坏,还能够将防反缓起模块300两端的电压钳位在第一电容200的电压上,在系统不上电时也能够防止反向雷击产生的反向电流流入功率变换模块,从而能够对反向雷击进行有效防护;本公开提供的雷击防护方法对正向雷击也能够进行有效防护,从而提高了功率变换模块的可靠性;此外,本公开中,也不需要用瞬态电压抑制器件对防反缓起模块300两端电压进行钳位,能够简化雷击防护装置的结构,同时能够使用更低电压的器件构建防反缓起模块300,从而降低成本。
本公开对单向导通模块100的具体结构不做特殊限定。在一些实施方式中,用有源器件构建单向导通模块100。在一些实施方式中,用无源器件构建单向导通模块100。例如,将开关器件和二极管进行组合构成单向导通模块100。
需要说明的是,在本公开中,二极管的导通方向为由第一极向第二极导通。
在一些实施方式中,单向导通模块100包括串联在正极性端和负极性端之间的第一二极管和开关器件;参照图4,步骤S1可以包括步骤S11和S12。
在步骤S11,响应于反向电流,根据反向电流生成第一控制信号。
在步骤S12,利用第一控制信号控制开关器件导通,以使第一二极管由负极性端向正极性端单向导通。
本公开对于如何响应于反向电流生成第一控制信号不做特殊限定。在一些实施方式中,对反向电流进行转换,生成第一控制信号。在一些实施方式中,响应于反向电流,生成与反向电流相对独立的第一控制信号。
在一些实施方式中,在雷击防护装置的负极性端设置耦合电感,当反向电流流过耦合电感时,能够感应出电压,并利用感应出的电压控制单向导通模块100导通,无论系统是否上电,单向导通模块100在受到反向雷击时都能够工作,从而提升了系统的可靠性。
在一些实施方式中,雷击防护装置还包括连接在负极性端和单向导通模块之间的第一耦合电感元件;参照图5,步骤S11可以包括步骤S111和S112。
在步骤S111,利用第一耦合电感元件根据反向电流生成第一感应电压。
在步骤S112,根据第一感应电压生成第一控制信号。
在一些实施方式中,第一耦合电感元件包括第一绕组和第二绕组,通过步骤S111利用第一耦合电感元件根据反向电流生成第一感应电压,是指使反向电流流过第一绕组,从而在第二绕组感应出电压,即第一感应电压。
本公开对如何根据第一感应电压生成第一控制信号不做特殊限定。在一些实施方式中,用第一感应电压直接作为第一控制信号。在一些实施方式中,对第一感应电压进行整流,得到适合开关器件的第一控制信号。在一些实施方式中,对第一感应电压进行滤波,得到适 合开关器件的第一控制信号。需要说明的是,在本公开中,适合开关器件的第一控制信号是指第一控制信号的电压、极性等与开关器件适配。
在一些实施方式中,参照图6,步骤S112可以包括步骤S1121。
在步骤S1121,对第一感应电压进行整流,得到第一控制信号,第一控制信号的极性保持不变。
本公开对于如何对电压进行整流不做特殊限定。在一些实施方式中,对第一感应电压进行全波整流,得到第一控制信号。图7为反向电流、由反向电流感应出的第一感应电压、以及对第一感应电压进行整流得到第一控制信号的示意图。如图7所示,由反向电流感应出的第一感应电压为交流电压,经过全波整流得到在反向电流存在的整个期间为直流电压的第一控制信号。需要说明的是,对第一感应电压进行全波整流能够提供整流效率,并且使第一控制信号易于平滑,从而提升防雷效果。在一些实施方式中,对第一感应电压进行半波整流,得到第一控制信号。在一些实施方式中,对第一感应电压进行限压处理,得到第一控制信号。
在一些实施方式中,参照图8,步骤S112还可以包括步骤S1122。
在步骤S1122,对第一感应电压进行滤波,得到第一控制信号,第一控制信号的极性保持不变。
需要说明的是,通过步骤S1122对第一感应电压进行滤波,能够降低得到的第一控制信号中的交流成分,使第一控制信号变得平滑。
在一些实施方式中,单向导通模块100包括串联在正极性端和负极性端之间的第一二极管和开关器件;参照图9,步骤S1可以包括步骤S12和S14。
在步骤S13,生成第二控制信号。
在步骤S14,利用第二控制信号控制开关器件导通,以使第一二极管由负极性端向正极性端单向导通。
需要说明的是,第二控制信号与反向电流不相关。例如,通过独立的信号生成电路生成第二控制信号。在一些实施方式中,在负极性端生成反向电流时,生成与反向电流相互独立的第二控制信号。在一 些实施方式中,在雷击防护装置上电时生成第二控制信号,使得单向导通模块100保持导通,即能够有效防护反向雷击,也不会影响正常工作。
在一些实施方式中,当电源输入反接时,则不生成第二控制信号,以使开关器件断开,使得防反缓起模块300能够发挥作用。
本公开对于如何生成第二控制信号不做特殊限定。
在一些实施方式中,雷击防护装置还包括第二耦合电感元件,第二耦合电感元件与单向导通模块100连接;参照图10,步骤S13可以包括步骤S131和S132。
在步骤S131,生成施感电压。
在步骤S132,利用第二耦合电感元件根据施感电压生成第二感应电压,得到第二控制信号。
需要说明的是,在本公开中,第二耦合电感元件包括第一绕组和第二绕组,施感电压是加载在第二耦合电感元件的第一绕组上的电压,以使第一绕组中产生施感电流,进而在第二绕组中感应出第二感应电压。
在一些实施方式中,第二感应电压为适合开关器件的第二控制信号。在一些实施方式中,对第二耦合电感元件进行整流、滤波等处理后,得到第二控制信号。本公开对此不做特殊限定。
第二方面,参照图3,本公开提供一种雷击防护装置,包括:输入端和输出端;输入端包括正极性端和负极性端;雷击防护装置还包括连接在正极性端和负极性端之间的单向导通模块100、连接在输出端的第一电容200、连接在单向导通模块100和第一电容200之间的防反缓起模块300、控制模块400;控制模块400配置为控制单向导通模块100由负极性端向正极性端单向导通,以在负极性端产生反向电流时,将反向电流引导到正极性端。
需要说明的是,在本公开中,反向电流是指由负极性端流入的电流。
在本公开中,单向导通模块100在导通时的导通方向为由负极性端向正极性端导通。需要说明的是,单向导通模块100在负极性端 中有反向电流时导通,在负极性端中没有反向电流时截止。在一些实施方式中,单向导通模块在导通时阻抗很小,在截止时阻抗很大。在一些实施方式中,单向导通模块在导通时相当于短路,在截止时相当于开路。
结合图3对本公开提供的雷击防护装置的原理进行说明。当受到反向雷击时,反向电流由负极性端进入,防反缓起模块300断开,单向导通模块100由负极性端到正极性端单向导通,反向电流由负极性端经过单向导通模块100流向正极性端,并从正极性端流出,因此,第一电容200不会被放电,输出端电压(即功率变换模块的电压)不会迅速跌落,防反缓起模块300两端的电压被钳位在第一电容200的电压上;在系统不上电的场景中,当受到反向雷击时,单向导通模块100也能够由负极性端到正极性端单向导通,反向电流由负极性端经过单向导通模块100流向正极性端,并从正极性端流出,而不会使反向电流流入功率变换模块。
需要说明的是,当受到正向雷击时,第一电容200能够吸收雷击能量,使得功率变换模块能够工作在安全电压下,或在系统不上电时使得功率变换模块的端口电压保持在安全电压下,从而实现对正向雷击的防护。
本公开提供的雷击防护装置,在受到反向雷击时,能够将输入端的负极性端中的反向电流导向正极性端并从正极性端导出,从而避免连接在输出端的第一电容200放电导致功率变换模块的端口电压迅速跌落而损坏,还能够将防反缓起模块300两端的电压钳位在第一电容的电压上,在系统不上电时也能够防止反向雷击产生的反向电流流入功率变换模块,从而能够对反向雷击进行有效防护;本公开提供的雷击防护方法对正向雷击也能够进行有效防护,从而提高了功率转换模块的可靠性;此外,本公开中,也不需要用瞬态电压抑制器件对防反缓起模块300两端电压进行钳位,能够简化雷击防护装置的结构,同时能够使用更低电压的器件构建防反缓起模块,从而降低成本。
本公开对单向导通模块100的具体结构不做特殊限定。在一些实施方式中,用有源器件构建单向导通模块100。在一些实施方式中, 用无源器件构建单向导通模块100。例如,将开关器件S和二极管进行组合构成单向导通模块100。
需要说明的是,在本公开中,二极管的导通方向为由第一极向第二极导通。
在一些实施方式中,参照图11,单向导通模块100包括串联在正极性端和负极性端之间的第一二极管D1和开关器件S;
控制模块400配置为响应于反向电流,根据反向电流生成第一控制信号,并利用第一控制信号控制开关器件S导通,以使第一二极管D1由负极性端向正极性端单向导通。
需要说明的是,图11中开关器件S连接第一二极管D1的第一极仅是本公开中第一二极管D1和开关器件S的位置和连接方式的一种可选实施方式的示意图。在一些实施方式中是,开关器件S还可以是与第一二极管D1的第二极连接。本公开对此不做特殊限定。
本公开对于控制模块400如何响应于反向电流生成第一控制信号不做特殊限定。在一些实施方式中,控制模块400对反向电流进行转换,生成第一控制信号。在一些实施方式中,控制模块400响应于反向电流,生成与反向电流相对独立的第一控制信号。
在一些实施方式中,在雷击防护装置的负极性端设置耦合电感,当反向电流流过耦合电感时,能够感应出电压,并利用感应出的电压控制单向导通模块100导通,无论系统是否上电,单向导通模块100在受到反向雷击时都能够工作,从而提升了系统的可靠性。
在一些实施方式中,参照图11,控制模块400包括信号处理单元和连接在负极性端和单向导通模块100之间的第一耦合电感元件L1;第一耦合电感元件L1配置为根据反向电流生成第一感应电压;信号处理单元配置为根据第一感应电压生成第一控制信号。
在一些实施方式中,第一耦合电感元件L1包括第一绕组和第二绕组,第一耦合电感元件L1根据反向电流生成第一感应电压,是指使反向电流流过第一绕组,从而在第二绕组感应出电压,即第一感应电压。
本公开对如何根据第一感应电压生成第一控制信号不做特殊限 定。在一些实施方式中,用第一感应电压直接作为第一控制信号。在一些实施方式中,对第一感应电压进行整流,得到适合开关器件S的第一控制信号。在一些实施方式中,对第一感应电压进行滤波,得到适合开关器件S的第一控制信号。需要说明的是,在本公开中,适合开关器件S的第一控制信号是指第一控制信号的电压、极性等与开关器件S适配。
在一些实施方式中,信号处理单元配置为对第一感应电压进行整流,得到第一控制信号,第一控制信号的极性保持不变。
本公开对于如何对电压进行整流不做特殊限定。在一些实施方式中,对第一感应电压进行全波整流,得到第一控制信号。图7为反向电流、由反向电流感应出的第一感应电压、以及对第一感应电压进行整流得到第一控制信号的示意图。如图7所示,由反向电流感应出的第一感应电压为交流电压,经过全波整流得到在反向电流存在的整个期间为直流电压的第一控制信号。需要说明的是,对第一感应电压进行全波整流能够提供整流效率,并且使第一控制信号易于平滑,从而提升防雷效果。在一些实施方式中,对第一感应电压进行半波整流,得到第一控制信号。在一些实施方式中,对第一感应电压进行限压处理,得到第一控制信号。
本公开对于如何实现对第一感应电流进行整流不做特殊限定。
在一些实施方式中,参照图12,信号处理单元包括第二二极管D2、第三二极管D3、第四二极管D4、第五二极管D5、第二电容C2、第一电阻R1;信号处理单元还包括第一节点N1、第二节点N2、第三节点N3、第四节点N4;第二二极管D2的第二极、第三二极管D3的第二极、第二电容C2的第二极与第三节点N3连接;第四二极管D4的第一极、第五二极管D5的第一极、第二电容C2的第一极与第四节点N4连接;第二二极管D2的第一极、第四二极管D4的第二极与第一节点N1连接;第三二极管D3的第一极、第五二极管D5的第二极与第二节点N2连接。
开关器件S包括第一功率半导体器件VT3,第一功率半导体器件VT3的控制极与第三节点N3连接;第一电阻R1串联在第一功率 半导体器件VT3的控制极和第一极之间。
第一二极管D1的第一极与第一功率半导体器件VT3的第一极连接,第一二极管D1的第二极与正极性端连接。
第一耦合电感包括第一绕组和第二绕组;第一绕组的第一端与负极性端连接,第一绕组的第二端与第一功率半导体器件VT3的第二极连接;第二绕组的第一端与第一节点N1连接,第二绕组的第二端与第二节点N2连接。
第一功率半导体器件VT3的第一极和第四节点N4与公共电极端VSS连接。
需要说明的是,根据图12所示的信号处理单元的电路,能够实现对第一感应电压的全波整流。
在一些实施方式中,信号处理单元配置为对第一感应电压进行滤波,得到第一控制信号,第一控制信号的极性保持不变。
需要说明的是,对第一感应电压进行滤波,能够降低得到的第一控制信号中的交流成分,是第一控制信号变得平滑。
本公开对于如何对第一感应电压进行滤波不做特殊限定。
在一些实施方式中,参照图13,开关器件S包括第二功率半导体器件VT4,第一二极管D1的第一极与第二功率半导体器件VT4的第一极连接,第一二极管D1的第二极与正极性端连接。
信号处理单元包括第六二极管D6、第三电容C3、第二电阻R2;第三电容C3串联在第二功率半导体器件VT4的控制极和第一极之间;第二电阻R2串联在第二功率半导体器件VT4的控制极和第一极之间;第六二极管D6的第二极与第二功率半导体器件VT4的控制极连接。
第一耦合电感包括第一绕组和第二绕组;第一绕组的第一端与负极性端连接,第一绕组的第二端与第二功率半导体器件VT4的第二极连接;第二绕组的第一端与第六二极管D6的第一极连接,第二绕组的第二端与第二功率半导体器件VT4的第一极连接。
第二功率半导体器件VT4的第一极与公共电极端VSS连接。
需要说明的是,根据图13所示的信号处理单元的电路,能够实 现对第一感应电压的滤波。
在一些实施方式中,参照图14,单向导通模块100包括串联在正极性端和负极性端之间的第一二极管D1和开关器件S。
控制模块400配置为生成第二控制信号,并利用第二控制信号控制开关器件S导通,以使第一二极管D1由负极性端向正极性端单向导通。
在一些实施方式中,参照图14,控制模块400还包括施感单元410和第二耦合电感元件L2,第二耦合电感元件L2与单向导通模块100连接;施感单元410配置为生成施感电压;第二耦合电感元件L2配置为根据施感电压生成第二感应电压,得到第二控制信号。
需要说明的是,在本公开中,第二耦合电感元件包括第一绕组和第二绕组,施感电压是加载在第二耦合电感元件的第一绕组上的电压,以使第一绕组中产生施感电流,进而在第二绕组中感应出第二感应电压。
在一些实施方式中,第二感应电压为适合开关器件S的第二控制信号。在一些实施方式中,对第二耦合电感元件进行整流、滤波等处理后,得到第二控制信号。本公开对此不做特殊限定。
本公开对第一二极管D1的类型不做特殊限定。
在一些实施方式中,第一二极管为半导体器件寄生二极管。
本公开对单向导通模块的实现方式不做特殊限定。例如,单向导通模块可以用半导体材料集成实现。
在一些实施方式中,单向导通模块为半导体集成电路。
第三方面,参照图15,本公开提供一种电源模块,包括本公开第二方面中任意一项的雷击防护装置。
第四方面,参照图16,本公开提供一种基站,包括本公开第三方面的电源模块。
为了使本领域技术人员能够更清楚地理解本公开提供的技术方案,下面通过示例性的实施方式,对本公开提供的技术方案进行详细说明。
图11是本公开中一种雷击防护装置的示意图。如图11所示, 在一个示例性实施方式中,防反缓起模块由功率半导体器件VT1和VT2串联组成;为防止输入端电源反接导致损坏,单向导通模块由第一二极管D1和开关器件S串联构成,第一二极管D1和开关器件S的位置可以互换;第一电容C1连接于输出端。
控制模块包括第一耦合电感L1,第一耦合电感L1的A2、B2脚的电压会在A1、B1脚感应出第一感应电压,第一感应电压用于控制单向导通模块中的开关器件S工作。需要说明的是,第一耦合电感L1为控制模块中的一个关键器件而不是全部。
在本示例性实施方式中,开关器件S导通时阻抗很小,相当于短路;截止时阻抗很大,相当于开路。
在本示例性实施方式中,第一二极管也可以采用功率半导体寄生二极管实现。
本示例性实施方式中雷击防护装置的工作原理如下。
当受到反向雷击有反向电流时,防反缓起电路断开,反向电流会对防反缓起电路的功率半导体器件VT1结电容充电,此时开关器件S导通,当防反缓起电路的功率半导体器件VT1结电容充电电压达到输出端第一电容C1的电压加第一二极管D1压降时,防反缓起电路上电压被钳位在第一电容C1的电压上,残压很低。此外,由于开关器件S导通,反向电流会从输入端的负极性端-48V经过单向导通模块的第一二极管D1和开关器件S从输入端的负极性端-48VGND流出,输出端第一电容C1不会被放电,电压不存在瞬间跌落情况,输出端连接的功率模块可靠性提高。
图12是本公开的一种雷击防护装置的示意图。在一个示例性实施方式中,如图12所示,防反缓起模块由功率半导体器件VT1和VT2组成;VT1用于输入电源反接时保护,VT2用于电源上电时冲击电流抑制。
在本示例性实施方式中,VT1和VT2之上可以并联瞬态电压抑制器件TVS,也可以不并联TVS;单向导通模块采用第一二极管D1和功率半导体器件VT3串联构成;第一二极管D1和功率半导体器件VT3位置可以互换,例如,第一二极管D1的阳极和功率半导体器 件VT3的源极相连,或者第一二极管D1的阴极和和功率半导体器件VT3的漏极相连;输出端用于连接第一电容C1和功率变换电路;
图12中第一耦合电感L1在受到雷击有反向电流时产生第一感应电压,第一感应电压通过第二二极管D2、第三二极管D3、第四二极管D4、第五二极管D5全波整流后,得到第一控制信号,第一控制信号用于驱动功率半导体器件VT3。本示例性实施方式中第一感应电压通过二极管全波整流后得到合适的电压,同样也可以采用其它整流方式得到合适的电压作为第一控制信号,例如,利用一个二极管或者两个二极管构成半波整流电路,对第一感应电压进行半波整流,或者通过限压方式得到合适的电压,得到第一控制信号。功率半导体器件VT3在雷击时开通,防反缓起模块的电压被钳位在输出端的第一电容C1的电压上,残压很低;另外,反向电流会流经单向导通模块,输出端的第一电容C1电压不会跌落,功率变换电路可靠性提高;在系统不上电时,受到雷击反向电流不会流入功率变换电路,功率变换电路可靠性进一步提高。
结合图7简述图12所示的雷击防护装置的工作原理。图7中波形从上到下依次为反向电流波形、第一感应电压波形,第一控制信号电压波形。
t0→t1,反向电流上升,第一感应电压波形为正,通过整流第一控制信号为正;
t1→t2,反向电流上升,第一感应电压波形为负,通过整流控制为正。
在本示例性实施方式中,第一控制信号可以通过限幅、吸收或者降压等达到一合适电压,用于驱动功率半导体器件VT3。
图13是本公开中一种雷击防护装置的示意图。参照图13,在一个示例性实施方式中,防反缓起模块由功率半导体器件VT1和VT2组成;VT1用于输入电源反接时保护,VT2用于电源上电时冲击电流抑制;输出端连接第一电容C1和功率变换电路。VT4和D1串联组成单向导通模块,VT4和D1的位置可以互换;第一耦合电感L1的第一绕组A2→B2连接于输入端功率线上,第二绕组A1→B1通过第 六二极管D6整流连接于功率器件VT4的控制端;第三电容C3用于储能和滤波,第二电阻R2串联在VT4的控制极和第一极(例如源极)之间。
在本示例性实施方式中,为输入端输入-48V→-48VGND 6KV10/50US雷击波形。在增加单向导通模块后,防反缓起模块两端电压在负向雷击时峰值为62V,平台电压(即输出端第一电容C1的电压)为54V,相比于不增加单向导通模块,防反缓起模块的峰值电压和平台电压都下降了30V,在电压应力上得到明显改善。
在本示例性实施方式中,增加单向导通模块至少还有以下几方面优点:
1)因雷反向电流全部由单向导通模块返回到输入端,故并联在防反缓起模块上的TVS可以取消,产品在成本上能获得收益;
2)防反缓起模块的功率半导体器件可以选用更低电压的器件;
3)因单向导通模块的存在,在雷击时不会对输出端第一电容C1放电,输出端第一电容C1电压不会快速跌落,提高了输出端连接的功率变换模块的可靠性;
4)单向导通模块电压取自耦合电感,在系统掉电时若发生雷击,单向导通模块依然工作,电流不会流入输出端功率变换模块,提高了功率变换模块的可靠性。
图14本公开中一种雷击防护装置的示意图。在一个示例性实施方式中,如图14所示,防反缓起模块由功率半导体器件VT1和VT2组成;单向导通模块采用第一二极管D1和开关器件S串联;第一二极管D1和开关器件S位置可以互换;第一电容C1连接于输出端;控制模块由施感单元410和第二耦合电感L2组成,施感单元410可使第二耦合电感L2的A2-B2产生施感电压,该施感电压耦合到第二耦合电感L2的副边A1-B1产生第二控制信号,用于控制单向导通模块中的开关S。在受到雷击有反向电流或者电压时,产生合适的电压或电流用于控制开关器件S导通,使得雷击能量从开关器件S和第一二极管D1中流通。此时,防反缓起模块中的VT1和VT2上的电压被钳位在输出段的第一电容C1的电压上。此外,输出端第一电容 C1不会被放电,电压不存在瞬间跌落情况,输出端连接的功率变换模块可靠性提高。
本公开实施方式提供一种雷击防护方法、一种用于实现该雷击防护方法的雷击防护装置、一种应用该雷击防护装置的电源模块、一种应用该电源模块的基站。在本公开实施方式中,当受到反向雷击时,能够将输入端的负极性端中的反向电流导向正极性端并从正极性端导出,从而避免连接在输出端的第一电容放电导致功率变换模块的端口电压迅速跌落而损坏,还能够将防反缓起模块两端的电压钳位在第一电容的电压上,在系统不上电时也能够防止反向雷击产生的反向电流流入功率变换模块,从而能够对反向雷击进行有效防护;本公开实施方式提供的雷击防护方法对正向雷击也能够进行有效防护,从而提高了功率变换模块的可靠性;此外,本公开实施方式中,也不需要用瞬态电压抑制器件对防反缓起电路两端电压进行钳位,能够简化雷击防护装置的结构,降低成本。
本文已经公开了示例实施方式,并且虽然采用了具体术语,但它们仅用于并仅应当被解释为一般说明性含义,并且不用于限制的目的。在一些实例中,对本领域技术人员显而易见的是,除非另外明确指出,否则可单独使用与特定实施方式相结合描述的特征、特性和/或元素,或可与其它实施方式相结合描述的特征、特性和/或元件组合使用。因此,本领域技术人员将理解,在不脱离由所附的权利要求阐明的本公开的范围的情况下,可进行各种形式和细节上的改变。

Claims (14)

  1. 一种雷击防护方法,应用于雷击防护装置,所述雷击防护装置包括输入端和输出端;所述输入端包括正极性端和负极性端;所述雷击防护装置还包括连接在所述正极性端和所述负极性端之间的单向导通模块、连接在所述输出端的第一电容、连接在所述单向导通模块和所述第一电容之间的防反缓起模块;所述雷击防护方法包括:
    控制所述单向导通模块由所述负极性端向所述正极性端单向导通,以在所述负极性端产生反向电流时,将所述反向电流引导到所述正极性端。
  2. 根据权利要求1所述的雷击防护方法,其中,所述单向导通模块包括串联在所述正极性端和所述负极性端之间的第一二极管和开关器件;控制所述单向导通模块由所述负极性端向所述正极性端单向导通的步骤包括:
    响应于所述反向电流,根据所述反向电流生成第一控制信号;
    利用所述第一控制信号控制所述开关器件导通,以使所述第一二极管由所述负极性端向所述正极性端单向导通。
  3. 根据权利要求2所述的雷击防护方法,其中,所述雷击防护装置还包括连接在所述负极性端和所述单向导通模块之间的第一耦合电感元件;响应于所述反向电流,根据所述反向电流生成第一控制信号的步骤包括:
    利用所述第一耦合电感元件根据所述反向电流生成第一感应电压;
    根据所述第一感应电压生成所述第一控制信号。
  4. 根据权利要求1所述的雷击防护方法,其中,所述单向导通模块包括串联在所述正极性端和所述负极性端之间的第一二极管和开关器件;控制所述单向导通模块由所述负极性端向所述正极性端单 向导通的步骤包括:
    生成第二控制信号;
    利用所述第二控制信号控制所述开关器件导通,以使所述第一二极管由所述负极性端向所述正极性端单向导通。
  5. 根据权利要求4所述的雷击防护方法,其中,所述雷击防护装置还包括第二耦合电感元件,所述第二耦合电感元件与所述单向导通模块连接;生成第二控制信号的步骤包括:
    生成施感电压;
    利用所述第二耦合电感元件根据所述施感电压生成第二感应电压,得到所述第二控制信号。
  6. 一种雷击防护装置,包括:输入端和输出端;所述输入端包括正极性端和负极性端;所述雷击防护装置还包括连接在所述正极性端和所述负极性端之间的单向导通模块、连接在所述输出端的第一电容、连接在所述单向导通模块和所述第一电容之间的防反缓起模块、控制模块;
    所述控制模块配置为控制所述单向导通模块由所述负极性端向所述正极性端单向导通,以在所述负极性端产生反向电流时,将所述反向电流引导到所述正极性端。
  7. 根据权利要求6所述的雷击防护装置,其中,所述单向导通模块包括串联在所述正极性端和所述负极性端之间的第一二极管和开关器件;
    所述控制模块用于响应于所述反向电流,根据所述反向电流生成第一控制信号,并利用所述第一控制信号控制所述开关器件导通,以使所述第一二极管由所述负极性端向所述正极性端单向导通。
  8. 根据权利要求7所述的雷击防护装置,其中,所述控制模块包括信号处理单元和连接在所述负极性端和所述单向导通模块之间 的第一耦合电感元件;
    所述第一耦合电感元件配置为根据所述反向电流生成第一感应电压;
    所述信号处理单元配置为根据所述第一感应电压生成所述第一控制信号。
  9. 根据权利要求6所述的雷击防护装置,其中,所述单向导通模块包括串联在所述正极性端和所述负极性端之间的第一二极管和开关器件;
    所述控制模块配置为生成第二控制信号,并利用所述第二控制信号控制所述开关器件导通,以使所述第一二极管由所述负极性端向所述正极性端单向导通。
  10. 根据权利要求9所述的雷击防护装置,其中,所述控制模块包括施感单元和第二耦合电感元件,所述第二耦合电感元件与所述单向导通模块连接;
    所述施感单元配置为生成施感电压;
    所述第二耦合电感元件配置为根据所述施感电压生成第二感应电压,得到所述第二控制信号。
  11. 根据权利要求7至10中任意一项所述的雷击防护装置,其中,所述第一二极管为半导体器件寄生二极管。
  12. 根据权利要求7至10中任意一项所述的雷击防护装置,其中,所述单向导通模块为半导体集成电路。
  13. 一种电源模块,包括根据权利要求6至12中任意一项所述的雷击防护装置。
  14. 一种基站,包括根据权利要求13所述的电源模块。
PCT/CN2022/133131 2021-11-29 2022-11-21 雷击防护方法、雷击防护装置、电源模块、基站 WO2023093658A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111430607.X 2021-11-29
CN202111430607.XA CN116191384A (zh) 2021-11-29 2021-11-29 雷击防护方法、雷击防护装置、电源模块、基站

Publications (1)

Publication Number Publication Date
WO2023093658A1 true WO2023093658A1 (zh) 2023-06-01

Family

ID=86433202

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/133131 WO2023093658A1 (zh) 2021-11-29 2022-11-21 雷击防护方法、雷击防护装置、电源模块、基站

Country Status (2)

Country Link
CN (1) CN116191384A (zh)
WO (1) WO2023093658A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011135665A (ja) * 2009-12-24 2011-07-07 Minebea Co Ltd 保護装置
CN103795045A (zh) * 2012-10-31 2014-05-14 华为技术有限公司 保护装置
CN104269835A (zh) * 2014-09-19 2015-01-07 华为技术有限公司 保护装置、电子设备和电源
CN109390924A (zh) * 2018-09-11 2019-02-26 锐捷网络股份有限公司 浪涌防护电路及poe系统
CN112736883A (zh) * 2019-10-14 2021-04-30 中兴通讯股份有限公司 浪涌防护方法及装置、防护电路、存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011135665A (ja) * 2009-12-24 2011-07-07 Minebea Co Ltd 保護装置
CN103795045A (zh) * 2012-10-31 2014-05-14 华为技术有限公司 保护装置
CN104269835A (zh) * 2014-09-19 2015-01-07 华为技术有限公司 保护装置、电子设备和电源
CN109390924A (zh) * 2018-09-11 2019-02-26 锐捷网络股份有限公司 浪涌防护电路及poe系统
CN112736883A (zh) * 2019-10-14 2021-04-30 中兴通讯股份有限公司 浪涌防护方法及装置、防护电路、存储介质

Also Published As

Publication number Publication date
CN116191384A (zh) 2023-05-30

Similar Documents

Publication Publication Date Title
US7233507B2 (en) Non dissipative snubber circuit with saturable reactor
US8929107B2 (en) Active surge protection in a power supply
WO2016019642A1 (zh) 一种防止电流反灌的装置
CN105262332B (zh) 一种应用于开关电源的上电浪涌电流抑制电路
CN105471242A (zh) 一种新型的上电浪涌电流抑制电路
US20230238795A1 (en) Brct clamping absorption circuit with short circuit protection
CN210431240U (zh) 具备硬件过流保护的三相谐振变换器
CN101594046B (zh) 突入电流限制器
CN215528878U (zh) 一种开关电源装置
JP2002153054A (ja) スイッチング電源回路
CN100561816C (zh) 突波电流抑制电路及使用其的电源供应装置
WO2023093658A1 (zh) 雷击防护方法、雷击防护装置、电源模块、基站
CN205123587U (zh) 超宽范围输入的开关电源
CN209329979U (zh) 一种风冷雷达发射机大功率ac-dc恒流电源电路及电源装置
CN212909356U (zh) 软启动辅助电源电路
CN116131637A (zh) 一种低成本高效率交流到直流转换拓扑及转换方法
CN208158437U (zh) 一种Boost全桥隔离型变换器及其复合有源箝位电路
CN207743687U (zh) 一种具有保护功能的辅助电源
CN212850307U (zh) 一种电源转换电路及电子设备
WO2005057766A1 (fr) Alimentation électrique en courant continu à haut facteur de puissance
CN217883226U (zh) 一种开关电源中的有源钳位线路
CN217642711U (zh) 一种基于mosfet的输入浪涌电压和启动电流抑制电路
CN110707676A (zh) 一种基于电荷泵的浪涌抑制电路
TWI783536B (zh) 防雷擊保護的電源供應器
CN110994573A (zh) 一种基于变压器反转极性退磁法的泄流保护电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22897741

Country of ref document: EP

Kind code of ref document: A1