WO2023093635A1 - 数据传输方法、配置方法、装置、终端及网络侧设备 - Google Patents

数据传输方法、配置方法、装置、终端及网络侧设备 Download PDF

Info

Publication number
WO2023093635A1
WO2023093635A1 PCT/CN2022/132859 CN2022132859W WO2023093635A1 WO 2023093635 A1 WO2023093635 A1 WO 2023093635A1 CN 2022132859 W CN2022132859 W CN 2022132859W WO 2023093635 A1 WO2023093635 A1 WO 2023093635A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
data
transmission
primary
master
Prior art date
Application number
PCT/CN2022/132859
Other languages
English (en)
French (fr)
Inventor
刘佳敏
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2023093635A1 publication Critical patent/WO2023093635A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/06Authentication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections

Definitions

  • the present application belongs to the technical field of communication, and specifically relates to a data transmission method, a configuration method, a device, a terminal, and a network side device.
  • the processes of data distribution and data replication are all for compatibility with Dual Connectivity (DC) scenarios, that is, a terminal is connected to two network-side devices such as base stations at the same time, and is subject to the independent scheduling process of the two base stations. Complete the uplink transmission.
  • DC Dual Connectivity
  • aggregation multiple terminals are connected to the same base station at the same time, and the same base station schedules data. In this case, how to perform data distribution and data copy transmission has not yet been determined.
  • the embodiments of the present application provide a data transmission method, a configuration method, a device, a terminal, and a network-side device, which can solve the problem of how to perform data distribution and data replication and transmission under the terminal aggregation architecture.
  • a data transmission method which is applied to a master terminal, and the method includes:
  • the master terminal receives configuration information from the network side device; wherein, the master terminal can perform data transmission with the slave terminal;
  • the main terminal performs data distribution or data copy transmission according to the configuration information.
  • a data transmission method which is applied to a secondary terminal, and the method includes:
  • the secondary terminal receives configuration information from the network side device; wherein, the secondary terminal can perform data transmission with the primary terminal;
  • the secondary terminal performs data transmission according to the configuration information.
  • a configuration method which is applied to a network side device, and the method includes:
  • the network side device sends configuration information to the master terminal and/or the slave terminal;
  • the primary terminal can perform data common transmission with the secondary terminal;
  • the configuration information is used to indicate at least one of the following:
  • the threshold of the amount of data cached by the main terminal is the threshold of the amount of data cached by the main terminal
  • the network side device configures the distribution (split) bearer for the main terminal
  • the packet data convergence protocol (Packet Data Convergence Protocol, PDCP) entity carried by the split configured by the network side device is located in the main terminal;
  • PDCP Packet Data Convergence Protocol
  • the PDCP entity carried by the split configured by the network side device is located in the primary terminal, and the PDCP entity is associated with at least two RLC entities, and each of the RLC entities is located in a different primary terminal or secondary terminal;
  • the type of split bearer configured by the network side device
  • a standardized interface is adopted between the main terminal and the auxiliary terminal;
  • a non-standardized interface is adopted between the main terminal and the auxiliary terminal;
  • the ideal interface is between the main terminal and the auxiliary terminal
  • the data replication method adopted by the master terminal is the data replication method adopted by the master terminal.
  • a data transmission device which is applied to a master terminal, including:
  • the first receiving module is configured to receive configuration information from a network-side device; wherein, the master terminal and the slave terminal can perform data common transmission;
  • An execution module configured to perform data distribution or data copying and transmission according to the configuration information.
  • a data transmission device which is applied to a secondary terminal, including:
  • the third receiving module is configured to receive configuration information from the network side device; wherein, the auxiliary terminal can perform data transmission with the main terminal;
  • the transmission module is configured to perform data transmission according to the configuration information.
  • a configuration method which is applied to a network side device, and the method includes:
  • a third sending module configured to send configuration information to the master terminal and/or the slave terminal;
  • the primary terminal can perform data common transmission with the secondary terminal;
  • the configuration information is used to indicate at least one of the following:
  • the threshold of the amount of data cached by the main terminal is the threshold of the amount of data cached by the main terminal
  • the network side device configures the split bearer for the main terminal
  • the PDCP entity carried by the split configured by the network side device is located in the main terminal;
  • the PDCP entity carried by the split configured by the network side device is located in the primary terminal, and the PDCP entity is associated with at least two RLC entities, and each of the RLC entities is located in a different primary terminal or secondary terminal;
  • the type of split bearer configured by the network side device
  • a standardized interface is adopted between the main terminal and the auxiliary terminal;
  • a non-standardized interface is adopted between the main terminal and the auxiliary terminal;
  • the ideal interface is between the main terminal and the auxiliary terminal
  • the data replication method adopted by the master terminal is the data replication method adopted by the master terminal.
  • a terminal in a seventh aspect, includes a processor and a memory, the memory stores programs or instructions that can run on the processor, and when the programs or instructions are executed by the processor, the following steps are implemented: The steps of the method described in one aspect, or the steps of implementing the method described in the second aspect.
  • a terminal including a processor and a communication interface, wherein when the terminal is the main terminal, the communication interface is used to receive configuration information from a network side device, and perform data distribution according to the configuration information or data copy transmission; or, when the terminal is a secondary terminal, the communication interface is used to receive configuration information from the network side device, and perform data transmission according to the configuration information; wherein, the primary terminal can share data with the secondary terminal transmission.
  • a network-side device in a ninth aspect, includes a processor and a memory, the memory stores programs or instructions that can run on the processor, and the programs or instructions are executed by the processor When realizing the steps of the method as described in the third aspect.
  • a network side device including a processor and a communication interface, wherein the communication interface is used to send configuration information to a master terminal and/or a slave terminal; the master terminal and the slave terminal can perform data transmission together.
  • a communication system including: a master terminal, a slave terminal, and a network-side device, the master terminal can be used to execute the steps of the data processing method described in the first aspect, and the slave terminal can be used to Execute the steps of the data processing method described in the second aspect, and the network side device can be used to execute the steps of the configuration method described in the third aspect.
  • a readable storage medium on which a program or an instruction is stored, and when the program or instruction is executed by a processor, the steps of the method as described in the first aspect are implemented, or The steps of the method described in the second aspect, or implementing the steps of the method described in the third aspect.
  • a thirteenth aspect provides a chip, the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run programs or instructions, as in the method described in the first aspect or implement the steps of the method described in the second aspect, or implement the steps of the method described in the third aspect.
  • a computer program/program product is provided, the computer program/program product is stored in a storage medium, and the computer program/program product is executed by at least one processor to perform as described in the first aspect
  • a fifteenth aspect provides a communication device configured to perform the steps of the method described in the first aspect, or configured to perform the steps of the method described in the second aspect, or configured to perform the steps of the method described in the first aspect The steps of the method described in the three aspects.
  • the master terminal can receive configuration information from the network side device, and perform data distribution or data copy transmission according to the configuration information, and the master terminal can perform data transmission with the slave terminal.
  • the method of data distribution or data replication and transmission under the terminal aggregation architecture can be clarified, so that the data of a single user can be fully and efficiently transmitted using the links of multiple terminals, thereby improving the user's business experience and ensuring business services Quality of Service (QoS) ensures system efficiency while improving user experience.
  • QoS Quality of Service
  • FIG. 1 is a block diagram of a wireless communication system to which an embodiment of the present application is applicable;
  • FIG. 2A, FIG. 2B and FIG. 2C are schematic diagrams of the architecture of the applicable protocol stack in the embodiment of the present application.
  • FIG. 3 is a flow chart of a data transmission method provided by an embodiment of the present application.
  • FIG. 4 is a flow chart of another data transmission method provided by an embodiment of the present application.
  • FIG. 5 is a flow chart of a configuration method provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a data transmission device provided in an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of another data transmission device provided by an embodiment of the present application.
  • Fig. 8 is a schematic structural diagram of a configuration device provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a terminal provided in an embodiment of the present application.
  • Fig. 11 is a schematic structural diagram of a network side device provided by an embodiment of the present application.
  • first, second and the like in the specification and claims of the present application are used to distinguish similar objects, and are not used to describe a specific sequence or sequence. It is to be understood that the terms so used are interchangeable under appropriate circumstances such that the embodiments of the application are capable of operation in sequences other than those illustrated or described herein and that "first" and “second” distinguish objects. It is usually one category, and the number of objects is not limited. For example, there may be one or more first objects.
  • “and/or” in the description and claims means at least one of the connected objects, and the character “/” generally means that the related objects are an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced LTE-Advanced
  • LTE-A Long Term Evolution-Advanced
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency Division Multiple Access
  • system and “network” in the embodiments of the present application are often used interchangeably, and the described technology can be used for the above-mentioned system and radio technology, and can also be used for other systems and radio technologies.
  • the following description describes the New Radio (New Radio, NR) system for example purposes, and uses NR terminology in most of the following descriptions, but these techniques can also be applied to applications other than NR system applications, such as the 6th generation (6th Generation , 6G) communication system.
  • 6G 6th generation
  • Fig. 1 shows a block diagram of a wireless communication system to which the embodiment of the present application is applicable.
  • the wireless communication system includes a terminal 11 and a network side device 12 .
  • the terminal 11 can be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer) or a notebook computer, a personal digital assistant (Personal Digital Assistant, PDA), a palmtop computer, a netbook, a super mobile personal computer (ultra-mobile personal computer, UMPC), mobile internet device (Mobile Internet Device, MID), augmented reality (Augmented Reality, AR)/virtual reality (virtual reality, VR) equipment, robot, wearable device (Wearable Device) , vehicle equipment (Vehicle User Equipment, VUE), pedestrian terminal (Personal User Equipment, PUE), smart home (home equipment with wireless communication functions, such as refrigerators, TVs, washing machines or furniture, etc.), game consoles, personal computers (Personal Computer, PC), teller machines or self-service machines and
  • the network side device 12 may include an access network device or a core network device, wherein the access network device 12 may also be called a radio access network device, a radio access network (Radio Access Network, RAN), a radio access network function or Wireless access network unit.
  • RAN Radio Access Network
  • the access network device 12 may include a base station, a wireless local area network (Wireless Local Area Network, WLAN) access point or a wireless fidelity (Wireless Fidelity, WiFi) node, etc., and the base station may be called a node B, an evolved node B (eNB) , access point, base transceiver station (Base Transceiver Station, BTS), radio base station, radio transceiver, basic service set (Basic Service Set, BSS), extended service set (Extended Service Set, ESS), home B node, Evolved Home Node B, Transmitting Receiving Point (TRP) or some other suitable term in the field, as long as the same technical effect is achieved, the base station is not limited to specific technical terms. It should be noted that in In the embodiment of the present application, only the base station in the NR system is used as an example for introduction, and the specific type of the base station is not limited.
  • the multi-terminal architecture/terminal aggregation architecture involved in aggregation/backup/switching bearer mainly refers to the user plane (User Plane, UP) protocol stack architecture shown in FIG. 2A to FIG. 2C.
  • the UP protocol stack architecture shown in FIG. 2A can also be referred to as the packet data convergence protocol (Packet Data Convergence Protocol, PDCP) anchor (anchor) architecture, and the PDCP entity of the main terminal (P-UE) communicates with the P-UE and the P-UE respectively.
  • the UP protocol stack architecture shown in FIG. 2C can also be called a MAC anchor architecture, and the MAC entity of the P-UE is associated with the physical layer (Physical Layer, PHY) entity of the P-UE and the S-UE respectively.
  • PHY Physical Layer
  • the bearers involved mainly include: the split bearer with the anchor point at the master terminal, that is, a data bearer is generated by the master terminal and can be transmitted through the protocol stack and link of the master terminal and/or the slave terminal ;
  • This bearer may also be called aggregated bearer, which is a new bearer type involved in this embodiment.
  • the distribution bearer in this embodiment of the present application may also be called a backup bearer, a handover bearer, an aggregation bearer, etc., and this is not limited.
  • the data distribution (split) in this embodiment of the present application may also be referred to as data splitting, which is not limited.
  • the multi-terminal bearer aggregation architecture involves in-depth cooperation between multiple terminals, the characteristics of the interfaces between terminals are relatively important determining factors for the data scheduling and distribution mechanism.
  • the interface between the terminals may be a non-ideal interface or an ideal interface.
  • the non-ideal interface can be applied to scenarios that do not require high interface characteristics, and can be applied to all interface types.
  • user equipment User Equipment, UE
  • UE User Equipment
  • the characteristics of the non-ideal interface are: real-time information and data interaction cannot be achieved between terminals, and the general interaction delay is in the order of milliseconds (ms) or sub-ms, such as 10 ⁇ -2ms to tens of ms.
  • the data generated by the primary terminal needs to be sent to the secondary terminal in advance, and the secondary terminal will report the buffer status report (Buffer Status Report, BSR) according to the amount of aggregated data it caches and carry, and request scheduling from the base station. And according to the size of scheduling resources, the organization organizes the data already in its own cache to package and send.
  • BSR Buffer Status Report
  • the characteristics of an ideal interface are: the transmission delay between terminals is low enough, for example, less than or much less than ms level, so that the status and data between terminals can quickly interact, making transmission and scheduling more efficient.
  • the applicable architecture is the PDCP anchor architecture shown in FIG. 2A.
  • the interface between the terminals is an ideal interface, any UP protocol stack architecture in FIG. 2A to FIG. 2C can be selected.
  • PDCP duplication (duplication): The PDCP duplication transmission mechanism is introduced to improve transmission reliability and shorten transmission delay.
  • PDCP replication transmission can be based on whether each radio bearer is configured to support it. Once the replication transmission is activated, all PDCP data protocol data units (Protocol Data Unit, PDU) can be copied N copies in the PDCP entity of the radio bearer and sent to Different RLC entities perform transmission, where N is greater than or equal to 2 and is a configurable parameter.
  • PDU Policy Data Unit
  • PDCP duplication transport can be activated or deactivated.
  • FIG. 3 is a flowchart of a data transmission method provided in an embodiment of the present application. The method is executed by the master terminal. As shown in FIG. 3, the method includes the following steps:
  • Step 31 The master terminal receives configuration information from the network side device.
  • Step 32 The master terminal performs data distribution or data copy transmission according to the configuration information.
  • the master terminal can perform data transmission with the slave terminal. That is to say, the data of a certain service or the data of the master terminal can be jointly transmitted between the master terminal and the slave terminal, that is, data transmission is jointly performed between the master terminal and the slave terminal.
  • data distribution or data duplication transmission can be performed dynamically based on whether the duplication function is activated or whether the uplink authorization resource sizes of the primary and secondary terminals are the same.
  • the replication function is activated or the uplink authorization resource sizes of the primary and secondary terminals are the same, data replication and transmission can be performed, and if the replication function is deactivated or the uplink authorization resource sizes of the primary and secondary terminals are different, data distribution can be performed.
  • the master terminal can receive configuration information from the network side device, and perform data distribution or data copy transmission according to the configuration information, and the master terminal can perform data transmission with the slave terminal.
  • the method of data distribution or data replication and transmission under the terminal aggregation architecture can be clarified, so that the data of a single user can be fully and efficiently transmitted using the links of multiple terminals, thereby improving the user's service experience and ensuring the service.
  • Quality of Service ensures system efficiency while improving user experience.
  • the master terminal and/or the slave terminal may determine the operation mode of data distribution (split) and duplication (duplication) according to the configuration of the network side device.
  • the above configuration information may be used to indicate at least one of the following:
  • DRB Data Radio Bearer
  • the protocol layer where the replication function is located for example, it can be at the PDCP layer, MAC layer, etc.;
  • the main RLC entity of the radio bearer of the main terminal for example, the RLC entity of the main terminal may be the main RLC entity by default, or the main RLC entity may be explicitly indicated;
  • the threshold for data distribution for example, it may be the link quality threshold of the terminal where the primary RLC entity is located, or the link quality threshold of the terminal where the secondary RLC entity is located; the link may be a Uu link, which is not limited;
  • the threshold of the amount of data cached by the master terminal for example, if the amount of cached data does not exceed the first threshold, only the master terminal can participate in the transmission; if the amount of cached data exceeds the first threshold, a secondary terminal can be started to participate in the transmission; if the amount of cached data exceeds The second threshold, you can start another secondary terminal to participate in the transmission, the second threshold is greater than the first threshold; and so on;
  • the network side device configures the split bearer for the main terminal
  • the PDCP entity carried by the split configured by the network side device is located in the main terminal;
  • the PDCP entity carried by the split configured by the network side device is located in the primary terminal, and the PDCP entity is associated with at least two RLC entities, and each RLC entity is located in a different primary terminal or secondary terminal;
  • the type of split bearer configured by the network side device for example, the type is PDCP anchor, RLC anchor or MAC anchor, etc.;
  • a standardized interface is adopted between the main terminal and the auxiliary terminal; for example, the interface is a PC5 interface, etc.;
  • a non-standardized interface is adopted between the main terminal and the auxiliary terminal;
  • non-ideal interface between the main terminal and the auxiliary terminal;
  • the non-ideal interface is a wireless interface, or an interface with a transmission delay greater than or equal to a certain threshold, etc.;
  • the ideal interface is a wired connection, or an interface whose transmission delay is less than or equal to a certain threshold, etc.;
  • the data replication method adopted by the master terminal is the data replication method adopted by the master terminal.
  • the network side device can explicitly configure the data distribution mode and/or data replication mode adopted by the main terminal.
  • operations between the network side device and the main terminal can be performed in a unified data distribution or replication manner. That is, after the configuration of the network-side device is completed, the network-side device and the main terminal have the same cognition and understanding of the data distribution or replication method, and then follow the rules to operate.
  • a certain UE reporting process may be introduced, such as the information of the interface between UEs and/or the preferred operation and processing mode of the UE, etc., so that the base station Decide on the appropriate data processing method. For example, reporting may only be done by the master UE.
  • the data distribution method can be determined based on the size of the scheduling resource received by each terminal, that is, the larger the received scheduling resource , the larger the amount of data carried; or, when the interface between the terminals is a non-ideal interface, that is, the terminal is a non-ideal backhaul, the data distribution needs to be based on certain conditions, such as the link quality of each terminal and/or the status of the data to be transmitted in the cache, etc., the distributed data needs to be sent to the corresponding secondary terminal in advance for transmission.
  • the data replication method can be dynamically determined, for example, based on the size of the scheduling resource received by each terminal; or, in The interface between terminals is a non-ideal interface, that is, in the case of a non-ideal backhaul between terminals, the data replication function needs to be activated/deactivated explicitly or activated based on certain conditions. Once the data replication function is activated, the copied data needs to be sent in advance to the corresponding secondary terminal for transmission.
  • the characteristics of the interfaces between terminals are relatively important determining factors for data distribution and replication transmission under the terminal aggregation architecture.
  • the following will combine the types of interfaces between terminals , to describe the data distribution/replication of the master terminal according to the situation.
  • the interface between terminals is an ideal interface, that is, an ideal backhaul between terminals.
  • the interface between the terminals is an ideal interface, which is one of the characteristics that play a decisive role in the data scheduling and distribution mechanism. Therefore, the interaction between the radio resource control (Radio Resource Control, RRC) signaling between the terminal and the network During the process, this interface type needs to be exchanged, for example, through the uplink terminal aggregation request (UE Aggregation Request), or the terminal auxiliary information report, or other uplink RRC processes, the interface type is reported to the network side equipment such as the base station, which is convenient for the base station to schedule and distribute to configure.
  • RRC Radio Resource Control
  • the base station When the base station knows that the interface between the terminals is an ideal interface, it can configure separate buffer reporting and/or data distribution parameters for the main terminal, for example, indicating that the main terminal can perform the data distribution process of the ideal interface through a bit indicating information. Compared with non-ideal backhaul, both data distribution and data replication transmission can be more flexible during ideal backhaul transmission.
  • the master terminal may cache the data to be transmitted in its own buffer. That is to say, in the case of an ideal interface, the data to be transmitted by the master terminal does not need to be sent to a designated slave terminal for buffering in advance, but can be directly buffered in the buffer of the master terminal.
  • the master terminal can perform a buffer status report (Buffer Status Report, BSR) reporting process according to its own cached data volume. That is to say, in the case of an ideal interface, the master terminal can perform a BSR reporting process according to its buffered data volume, and inform the network side device of the size of the data volume to be sent.
  • BSR Buffer Status Report
  • the main terminal can perform at least one of the following:
  • the master terminal generates the first data packet by means of data distribution or copying according to the size of the uplink authorization resource allocated to it by the network side device, and sends the first data packet;
  • the master terminal receives the data request sent by the slave terminal according to the size of its uplink authorization resource, and generates a second data packet according to the size of the uplink authorization resource through data distribution or copying, and sends the second data packet to the slave terminal,
  • the secondary terminal sends the second data packet; that is, if the secondary terminal receives the scheduled uplink authorization resource, it can notify the primary terminal of the resource size, and the primary terminal organizes the data packet according to the resource size and sends it to the secondary terminal , the secondary terminal sends the received data packet;
  • the master terminal receives the scheduling information of the slave terminal, determines the size of the uplink authorization resource of the slave terminal according to the scheduling information, generates a third data packet according to the size of the uplink grant resource and by means of data distribution or copying, and sends the third data packet to the slave terminal Three data packets, the secondary terminal sends the third data packet;
  • the primary terminal sends the fourth data packet to the secondary terminal by means of data distribution or copying according to its UP protocol stack architecture; wherein, according to the different UP protocol stack architectures, the corresponding data packets can have different forms, such as the PDCP protocol Data unit (Protocol Data Unit, PDU), RLC PDU or MAC PDU, etc.
  • PDU Packet Data Unit
  • RLC PDU Radio Link Control Unit
  • MAC PDU MAC Protocol Data Unit
  • the secondary terminal may have its own hybrid automatic repeat request (Hybrid Automatic Repeat reQuest, HARQ) retransmission cache, and store data that needs to be processed by HARQ in the cache. If HARQ retransmission is required, the The data is obtained from the cache and retransmitted. When the maximum number of retransmissions is reached or the HARQ process is occupied by new data, the cached data of the HARQ process is cleared.
  • Hybrid Automatic Repeat reQuest Hybrid Automatic Repeat reQuest
  • the network side equipment such as the base station can decide how to allocate multiple terminals according to its own scheduling algorithm according to the cache report of the main terminal and the link conditions of each terminal. upstream resources. For example, when there are 10,000 bytes of data to be transmitted, the base station can choose to transmit the 10,000 bytes of data through the uplink resources of the master terminal at different times (for example, four schedulings are required), or it can schedule the master terminal and the slave terminal at the same time (For example, two schedulings are required for each).
  • the previous scheduling method has low resource requirements and can be used for heavy system load or business quality of service (Quality of Service, QoS), such as low delay requirements.
  • QoS Quality of Service
  • the latter scheduling method It has a large demand for resources and can be used in situations where the system load is light or the QoS of the business such as delay is high.
  • the purpose of terminal aggregation is to simultaneously utilize the transmission channel conditions of multiple terminals to obtain extremely high throughput or better QoS, so the latter scheduling method is preferred from the perspective of terminals.
  • the network can also try to perform multi-terminal co-scheduling for the terminal according to this requirement of the terminal, so as to achieve the peak service experience.
  • the network side device can make full use of the channel conditions of multiple terminals and flexibly schedule uplink resources. Due to the existence of ideal interfaces between terminals, it can also well support flexible multi-terminal scheduling and quickly perform resource allocation. Packets are sent, so it is a case of high resource scheduling and transmission efficiency.
  • the interface between the terminals is a non-ideal interface, that is, the interface between the terminals is a non-ideal backhaul.
  • the master terminal may further perform data distribution (split) in combination with link quality of the master and slave terminals, feedback information of the slave terminal, and the like.
  • the process of data distribution by the master terminal may include: when there are M-1 data volume thresholds and M RLC entity sets, the M-1 data volume thresholds include the first threshold, the second threshold absolutely M-1 threshold, the M sets of RLC entities include the first set of RLC entities, the second set of RLC entities... the Mth RLC entity set, and when M is greater than 1, the main terminal performs any of the following:
  • the above M ⁇ 1 data volume thresholds may be predefined or configured on the network side, and this is not limited.
  • the foregoing M sets of RLC entities may be predefined or configured on the network side, which is not limited.
  • the first RLC entity set includes an RLC entity, and the RLC entity is the RLC entity of the master terminal or a designated primary RLC entity;
  • the second RLC entity set includes an RLC entity, and the RLC entity It is the RLC entity specified by the configuration, or the RLC entity of any secondary terminal among all the secondary terminals associated with the primary terminal;
  • the third RLC entity set includes an RLC entity, which is the RLC entity specified by the configuration, or all the secondary terminals associated with the primary terminal. The RLC entity of any secondary terminal in the secondary terminal; and so on.
  • the data of the main terminal is only transmitted on the RLC entity/transmission path of the main terminal, or the data of the main terminal is only transmitted on the RLC entity of a specified terminal (this is designated primary RLC entity)/transmission path for transmission;
  • the data of the main terminal can be transmitted on the RLC entity/transmission path of the two terminals; wherein, one of the two terminals is the main terminal or designated The terminal of the primary RLC entity/transmission path, the other terminal is the terminal specified by the configuration, or any secondary terminal except the primary terminal; as for how the primary terminal selects the secondary terminal, it can be implemented based on the terminal, for example, the primary terminal can be based on The attribute selection of the backhaul, try to choose the secondary terminal with a small backhaul delay, or choose the main terminal according to the link quality, etc.;
  • the data of the main terminal can be transmitted on the RLC entity/transmission path of all terminals, the number of all terminals is greater than 2, and all terminals include the main terminal and All secondary terminals associated with the primary terminal.
  • the data of the main terminal is only transmitted on the RLC entity/transmission path of the main terminal, or the data of the main terminal is only transmitted on the RLC entity of a specified terminal (this is the specified Main RLC entity)/transmission path for transmission;
  • the data of the master terminal can be transmitted on the RLC entity/transmission path of the two terminals; wherein, one of the two terminals is The primary terminal or the terminal designated as the primary RLC entity/transmission path, and the other terminal is the terminal specified by the configuration, or any secondary terminal except the primary terminal; as for how the primary terminal selects the secondary terminal, it can be implemented based on the terminal, for example
  • the main terminal can be selected according to the attributes of the backhaul, try to choose the secondary terminal with a smaller backhaul delay, or the main terminal can be selected according to the link quality, etc.;
  • the data of the master terminal can be transmitted on the RLC entities/transmission paths of the three terminals; wherein, one of the three terminals is The main terminal or the terminal designated as the main RLC entity/transmission path, and the other two terminals are the terminals specified by the configuration, or any two auxiliary terminals except the main terminal; as for how the main terminal selects the auxiliary terminal, it can be implemented based on the terminal , for example, the main terminal can be selected according to the attributes of the backhaul, try to choose the secondary terminal with a smaller backhaul delay, or the main terminal can be selected according to the link quality, etc.;
  • the data of the master terminal when the amount of data buffered by the master terminal is higher than the threshold M-1, the data of the master terminal can be transmitted on the RLC entity/transmission path of all terminals, the number of all terminals is greater than 2, and all terminals include the master terminal and the master All secondary terminals associated with the terminal.
  • the above data distribution methods can also be properly combined and transformed.
  • the first threshold can be used to control single-path transmission, and if it is higher than or equal to the first threshold, dual-path transmission is performed.
  • the first threshold is used to control the n-path transmission, and when it is higher than or equal to the second threshold, the n-path transmission of all terminals is performed. That is to say:
  • the data of the master terminal is only transmitted on the RLC entity/transmission path of the master terminal, or the data of the master terminal is only transmitted on the RLC entity of a specified terminal (this is designated primary RLC entity)/transmission path for transmission;
  • the data of the master terminal is transmitted on the RLC entities/transmission paths of the two terminals;
  • One terminal is the main terminal or the terminal designated as the main RLC entity/transmission path, and the other terminal is the terminal specified by the configuration, or any secondary terminal except the main terminal; as for how the main terminal selects the secondary terminal, it can be based on the terminal Realization, for example, the main terminal can be selected according to the attributes of the backhaul, try to choose the secondary terminal with a smaller backhaul delay, or the main terminal can be selected according to the link quality, etc.;
  • the data of the master terminal is transmitted on the RLC entities/transmission paths of all n terminals.
  • the primary terminal may distribute specific data volumes according to information reported/feedback/negotiated by the secondary terminal.
  • the process of data distribution by the main terminal may include at least one of the following:
  • the master terminal distributes data to the slave terminal according to the data transmission feedback information of the slave terminal; feedback, continue to distribute more data to the auxiliary terminal;
  • the master terminal distributes data to the slave terminal according to the amount of data requested by the slave terminal; is the bit rate, etc.;
  • the master terminal distributes data to the slave terminal according to the link quality fed back by the slave terminal; , adopt the basic principle of distributing more data from terminals with good link quality and distributing less data from terminals with poor link quality, and carry out data distribution;
  • the master terminal distributes data to the slave terminal according to the capability information sent by the slave terminal;
  • the basic principle of distributing more data from powerful terminals and less data from weaker terminals is to distribute data;
  • the main terminal distributes data to the auxiliary terminal according to the negotiation information with the auxiliary terminal for data offloading; for example, the main terminal can negotiate with each auxiliary terminal to offload data, and determine the data rate that each auxiliary terminal can offload , for example, auxiliary terminal 1 can distribute X Bps, auxiliary terminal 2 can distribute Y Bps, and so on; or the total data rate of the main terminal is M Bps, auxiliary terminal 1 can distribute 30% of it, and auxiliary terminal 2 can distribute 40% of it, etc;
  • the master terminal distributes data to the slave terminal according to the control information received from the network side device for data distribution; for example, the base station can control the distribution ratio or data rate of each slave terminal.
  • the base station can control the distribution ratio or data rate of each slave terminal.
  • the offload situation is sent to the main terminal in the form of configuration parameters, by The master terminal complies.
  • the master terminal may also determine a data distribution behavior based on a link quality threshold.
  • the way of the link quality threshold can be determined according to the interface characteristics between terminals. For example, when the interface between terminals is an ideal interface, such as when the terminals are directly connected by wired data lines, there is no need to configure the link quality threshold. At this time, how to distribute data can be determined by the base station according to dynamic information.
  • the link quality threshold is only configured when the intermediate interface is a non-ideal interface, and/or the non-ideal interface needs to use Third Generation Partnership Projects (Third Generation Partnership Projects, 3GPP) technology or licensed spectrum for transmission.
  • 3GPP Third Generation Partnership Projects
  • the master terminal can perform any of the following:
  • the RLC entity and/or transmission path of the primary terminal and the RLC entity and/or transmission path of the secondary terminal perform data transmission, or, in the secondary The RLC entity and/or transmission path of the terminal performs data transmission.
  • the above-mentioned signal measurement value may include: a reference signal received power (Reference Signal Receiving Power, RSRP) measurement value and/or a reference signal reception quality (Reference Signal Received Quality, RSRQ) measurement value between the main terminal and its serving cell, etc., Or, RSRP measurement values and/or RSRQ measurement values between the secondary terminal and its serving cell.
  • the first link quality threshold may be configured based on actual requirements, which is not limited.
  • the threshold is the threshold of the measured value of RSRP between the master terminal and its serving cell
  • the data of the primary terminal can be transmitted on the RLC entity/transmission path of the primary terminal and the RLC entity/transmission path of the secondary terminal;
  • the data of the primary terminal can be transmitted on the RLC entity/transmission path of the secondary terminal.
  • the thresholds involved in the above ii) and iii) can be different during configuration, such as threshold 1 and threshold 2, then when threshold 1 is configured and the RSRP measurement value between the main terminal and its serving cell is lower than threshold 1 , the data of the primary terminal is transmitted on the RLC entity/transmission path of the primary terminal and the RLC entity/transmission path of the secondary terminal; or, at the configuration threshold 2, and the RSRP measurement value between the primary terminal and its serving cell is lower than the threshold At time 2, the data of the primary terminal is transmitted on the RLC entity/transmission path of the secondary terminal.
  • the threshold is the RSRP measurement value threshold between the secondary terminal and its serving cell
  • the data of the primary terminal can be transmitted on the RLC entity/transmission path of the primary terminal and the RLC entity/transmission path of the secondary terminal;
  • the data of the primary terminal can be transmitted on the RLC entity/transmission path of the secondary terminal.
  • the thresholds involved in the above b) and c) can be different during configuration, for example, threshold 1 and threshold 2, then when threshold 1 is configured and the RSRP measurement value between the secondary terminal and its serving cell is lower than threshold 1 , the data of the primary terminal is transmitted on the RLC entity/transmission path of the primary terminal and the RLC entity/transmission path of the secondary terminal; or, when threshold 2 is configured, and the RSRP measurement value between the secondary terminal and its serving cell is lower than the threshold At time 2, the data of the primary terminal is transmitted on the RLC entity/transmission path of the secondary terminal.
  • 1 to s secondary terminal thresholds can be configured, which are respectively used for s secondary terminals or secondary terminal groups, and comprehensively consider secondary terminal Link quality is used to determine the distribution of master terminal data.
  • the master terminal can perform any of the following:
  • data transmission is performed on the RLC entity and/or transmission path of the primary terminal, and the RLC entity and/or transmission path of the secondary terminal, or, between the RLC entity and the transmission path of the secondary terminal / or transmission path for data transmission;
  • the first condition includes: the signal measurement value of the master terminal is higher than or equal to the second link quality threshold, and the signal measurement value of the secondary terminal is lower than the third link quality threshold;
  • the second condition includes: the signal measurement value of the master terminal The value is lower than the second link quality threshold, and the signal measurement value of the secondary terminal is higher than or equal to the third link quality threshold.
  • the above signal measurement values may include: RSRP measurement values and/or RSRQ measurement values between the primary terminal and its serving cell, or RSRP measurement values and/or RSRQ measurement values between the secondary terminal and its serving cell.
  • the second link quality threshold and the third link quality threshold may be configured based on actual requirements, which is not limited.
  • the primary terminal threshold is the RSRP measurement value threshold between the primary terminal and its serving cell
  • the secondary terminal threshold is the Between the measured value thresholds of RSRP, then:
  • condition 1 When the RSRP measurement value between the primary terminal and its serving cell is higher than or equal to the primary terminal threshold, and the RSRP measurement value between the secondary terminal and its serving cell is lower than the secondary terminal threshold (condition 1), the data of the primary terminal transmit on the RLC entity/transmission path of the master terminal;
  • the data of the primary terminal can be transmitted on the RLC entity/transmission path of the primary terminal and the RLC entity/transmission path of the secondary terminal;
  • the data of the primary terminal can be transmitted on the RLC entity/transmission path of the secondary terminal;
  • condition 2 When the RSRP measurement value between the primary terminal and its serving cell is lower than the primary terminal threshold, and the RSRP measurement value between the secondary terminal and its serving cell is higher than or equal to the secondary terminal threshold (condition 2), the data of the primary terminal It can be transmitted on the RLC entity/transmission path of the primary terminal and the RLC entity/transmission path of the secondary terminal;
  • the primary terminal when the RSRP measurement value between the primary terminal and its serving cell is lower than the primary terminal threshold, and the RSRP measurement value between the secondary terminal and its serving cell is higher than or equal to the secondary terminal threshold (condition 2), the primary terminal The data can be transmitted on the RLC entity/transmission path of the secondary terminal;
  • the thresholds involved in the above 2) and 3) may be different during configuration, and the thresholds involved in the above 4) and 5) may be different during configuration.
  • the number of secondary terminals is s, and s is greater than or equal to 2
  • the master terminal when dual-path or multi-path transmission is enabled based on the link quality of the master terminal/secondary terminal, the master terminal can distribute specific data volumes according to information reported/feedback/negotiated by the slave terminal.
  • the interface between terminals is a non-ideal interface, that is, the backhaul between terminals is non-ideal
  • the PDCP anchor architecture shown in Figure 2A can be used, that is, there is a common PDCP entity, and the RLC entity associated with the PDCP entity is located in a different location. in the master terminal and slave terminal.
  • the PDCP replication function is configured on the radio bearer (Radio Bearer, RB) of the master terminal, and the PDCP replication function is activated, and the master terminal contains at least two PDCP entities associated to the radio bearer
  • the radio bearer of the master terminal is configured with the PDCP replication function , and the PDCP replication function is deactivated, and the master terminal includes at least two RLC entities associated with the PDCP entity of the radio bearer, the master RLC entity of the master terminal uses all active CCs of the master terminal to transmit distribution data.
  • the radio bearer when the PDCP replication function is configured on the radio bearer of the master terminal, the radio bearer includes L transmission paths, and the PDCP replication function of the L transmission paths is activated, the master terminal can transfer the Copy L copies of the transmitted PDCP data PDUs, and transmit the copied L copies of PDCP data PDUs on the L transmission paths; or, configure the PDCP replication function on the radio bearer of the master terminal, and the radio bearer includes L transmission paths , and activates the PDCP copy function of P transmission paths among the L transmission paths, the master terminal can copy P copies of the PDCP data PDUs to be transmitted, and place the copied P copies of PDCP data PDUs in the P
  • the transmission path performs transmission; wherein, L is greater than 2, and L is greater than P; the P transmission paths include the main transmission path of the radio bearer.
  • two or more RLC entities may be included in a certain primary terminal/secondary terminal, which are associated with the same PDCP anchor entity. Two or more RLC entities within the same terminal need to perform data transmission corresponding to different CC groups, and only when the PDCP replication function is activated, distinguish the correspondingly configured CC groups for data transmission. Once the PDCP replication function is deactivated, the primary RLC entity on the primary terminal/secondary terminal can use all activated CCs for data transmission without being restricted by CC groups.
  • the PDCP entity of an RB can be configured to be located in the primary UE, and its three corresponding RLC entities are respectively located in the primary UE and two secondary UEs. Therefore, the PDCP Entities can transmit up to three transmission paths.
  • the PDCP replication function of all transmission paths is activated, one PDCP data PDU can be replicated into three copies and sent to the primary UE RLC entity and two secondary UE RLC entities respectively.
  • only two of the transmission paths can be activated for copy transmission.
  • the two transmission paths must include the main transmission path.
  • the main transmission path generally defaults to the RLC entity (entity) of the main UE or the RLC entity specified for the configuration. transmission path.
  • data transmission can be performed at the primary RLC entity according to the data transmission mode of the above-mentioned case 2, or data transmission can be performed at a primary RLC entity and a configured or selected secondary RLC entity. , or perform offload transmission in one primary RLC entity and all secondary RLC entities, and so on.
  • the PDCP entity of one RB can be configured to be located in the primary UE, and the five corresponding RLC entities of the PDCP anchor are respectively located in the primary UE and the two secondary UEs.
  • Each RLC entity corresponds to 5 transmission paths respectively.
  • the main UE includes two RLC entities, RLC entity 1 corresponds to the CC group including CC1 (main CC), CC2 and CC3, the RLC entity 1 is the default main RLC entity, RLC entity 2 corresponds to the CC group including CC4 and CC5 CC group; Secondary UE1 contains two RLC entities, RLC entity 3 corresponds to the CC group containing CC6 (primary CC) and CC7, the RLC entity 6 is the default reserved RLC entity, RLC entity 4 corresponds to the CC containing CC8 and CC9 group; the secondary UE2 includes an RLC entity, and the RLC entity 5 corresponds to all CCs of the secondary UE2.
  • RLC entity 1 corresponds to the CC group including CC1 (main CC), CC2 and CC3
  • the RLC entity 1 is the default main RLC entity
  • RLC entity 2 corresponds to the CC group including CC4 and CC5 CC group
  • Secondary UE1 contains two RLC entities, R
  • the PDCP duplication function when the PDCP duplication function is activated, all 5 transmission paths can be activated, that is, the PDCP data PDU is copied into 5 parts and transmitted through 5 transmission paths, and the PDCP duplication function can also be activated on any 3 transmission paths. It must include the main transmission path, and the PDCP data PDU is copied into 3 copies and transmitted through the 3 transmission paths with duplication activated.
  • the RLC entity of a certain UE When the RLC entity of a certain UE is activated with PDCP duplication, it can perform data transmission according to the corresponding CC group configured by itself, and when the RLC entity of a certain UE is deactivated with the PDCP duplication function, it retains the RLC entity corresponding to the primary CC As the RLC offloading entity of the UE, and the RLC offloading entity can use all active CCs of the UE for transmission, and is not restricted by the CC group.
  • the PDCP duplication function of all transmission paths When the PDCP duplication function of all transmission paths is deactivated, data transmission can be performed at the primary RLC entity according to the data transmission mode of the above-mentioned case 2, or data transmission can be performed at a primary RLC entity and a configured or selected secondary RLC entity. , or perform offload transmission in one primary RLC entity and all secondary RLC entities, and so on.
  • the main terminal may receive indication information from the network side device; where the indication information is used to instruct the main terminal to activate or deactivate the replication function.
  • This copy function is, for example, a PDCP copy function.
  • the indication information may be sent by RRC signaling or MAC CE, for example.
  • PDCP duplication requires additional transmission resources, it needs to be performed under the control of the network side device.
  • it can be configured through RRC signaling.
  • the same serving base station can send configuration information to the master terminal and the slave terminal respectively, and ensure the consistency and coordination between the configurations, that is, the master terminal and the slave terminal cannot fail to work due to a configuration mismatch between the master terminal and the slave terminal.
  • the master terminal and the slave terminal can respectively establish the RLC entity structure of their duplication.
  • the initial state of the PDCP duplication function that is, the initial state is activated or deactivated, or activate some of the RLC entities, or you can configure the main transmission path (primary RLC entity) corresponding to the entire PDCP anchor. and a reserved RLC entity located in the RLC entity of each terminal.
  • the main RLC entity can be the default or specified, and the rest of the RLC entities can be dynamically determined by the network side device whether to participate in PDCP duplication.
  • the MAC CE can be used to indicate whether the secondary RLC entity participates in PDCP duplication.
  • the MAC CE can contain multiple bits, representing different secondary RLC entities. For example, when a certain bit is 1, it can indicate the activation of PDCP duplication of the corresponding secondary RLC entity. function, and when a certain bit is 0, it can indicate to deactivate the PDCP duplication function of the corresponding secondary RLC entity.
  • a duplicated PDCP data PDU will be sent to the RLC entity to participate in the duplication transmission, while the RLC entity with the PDCP duplication function deactivated will not participate in the duplication transmission.
  • the PDCP duplication function is deactivated for all RLC entities, data distribution can be performed according to the distribution rule of the above-mentioned case 2.
  • the interface between terminals is an ideal interface, that is, an ideal backhaul between terminals, and any UP protocol stack architecture in FIG. 2A to FIG. 2C can be selected.
  • the PDCP anchor architecture shown in FIG. 2A is adopted, data processing can be performed according to the above-mentioned case three.
  • the process of data distribution or data replication and transmission by the master terminal may include any of the following:
  • the master terminal uses PDCP PDU as the data granularity for data distribution or data copy transmission;
  • the master terminal uses RLC PDU as the data granularity for data distribution or data copy transmission;
  • the main terminal uses MAC PDU as the data granularity for data distribution or data copy transmission.
  • the interface between the terminals is an ideal interface
  • the PDCP anchor architecture for the UP protocol stack architecture of the main terminal
  • there are other more flexible architecture options such as RLC anchor architecture or MAC anchor architecture, etc.
  • the granularity of data distribution/replication is PDCP PDU, which is the PDCP layer PDU, which can contain at least one of PDCP initial transmission PDU, PDCP retransmission PDU and PDCP status PDU.
  • the granularity of data distribution/replication is RLC PDU, which is the RLC layer PDU, which can contain at least one of RLC initial transmission PDU, RLC retransmission PDU and RLC status PDU.
  • the granularity of data distribution/replication is MAC PDU, which is the MAC layer PDU, which can contain at least one of MAC data PDU and MAC control PDU.
  • the entire MAC PDU can be duplicated, that is, it is required that each terminal participating in the duplication has the same allocated resource block size, and the duplicated MAC PDU is transmitted in the same resource size.
  • each terminal can independently perform HARQ feedback or retransmission, and can also introduce association, that is, when the HARQ transmission of one terminal is successful, the HARQ feedback of each terminal is fed back to confirm ACK, or when HARQ retransmission is required, HARQ retransmissions are performed at all terminals.
  • the real-time data processing can respond faster, so when the size of the uplink authorization resources obtained by the master terminal and the slave terminal is different at a certain moment, the master terminal and the slave terminal
  • the secondary terminal can transmit split data separately, and when the uplink authorization resources obtained by the primary terminal and the secondary terminal are of the same size, the primary terminal and the secondary terminal automatically perform duplicated data transmission.
  • the above process of data distribution or data copy transmission may include: when the sizes of the uplink authorization resources of the master terminal and the slave terminal are different, the master terminal performs data distribution; or, when the sizes of the uplink authorization resources of the master terminal and the slave terminal are the same , the master terminal performs data replication and transmission.
  • the main terminal may receive indication information from the network side device; the indication information is used to instruct the main terminal to activate or deactivate the replication function.
  • This copy function is, for example, a PDCP copy function.
  • the indication information may be sent by RRC signaling or MAC CE, for example.
  • an additional 1-bit indication information can be added in the scheduling signaling of the master terminal, the indication information indicates whether to perform duplication transmission, or the indication information can be set as a default value, the default value is to activate/deactivate the duplication function,
  • the meaning of the default value can be specified in the standard or configured in signaling.
  • it is also possible to set the validity range for the above indication information in the scheduling signaling for example, it is valid only in the current Transport Time Interval (Transport Time Interval, TTI), or it is valid within a certain time range, and this time range can be stipulated in the protocol or The signaling configuration, or it will remain valid until the next time an explicit instruction to change the state is received.
  • FIG. 4 is a flowchart of a data transmission method provided by an embodiment of the present application. The method is executed by the secondary terminal. As shown in FIG. 4, the method includes the following steps:
  • Step 41 The secondary terminal receives configuration information from the network side device. Wherein, the secondary terminal can perform data transmission with the primary terminal;
  • Step 42 The secondary terminal performs data transmission according to the configuration information.
  • the master terminal can perform data transmission with the slave terminal. That is to say, the data of a certain service or the data of the master terminal can be jointly transmitted between the master terminal and the slave terminal, that is, data transmission is jointly performed between the master terminal and the slave terminal.
  • the secondary terminal can receive configuration information from the network side device, and perform data transmission according to the configuration information, and the secondary terminal can perform data transmission with the primary terminal.
  • the method of data distribution or data replication and transmission under the terminal aggregation architecture can be clarified, so that the data of a single user can be fully and efficiently transmitted using the links of multiple terminals, thereby improving the user's service experience and ensuring the service.
  • Quality of Service ensures system efficiency while improving user experience.
  • the above data transmission may include: the PDCP replication function is configured on the radio bearer of the primary terminal, and the PDCP replication function is activated, and the secondary terminal contains at least two RLC entities associated with the PDCP entity of the radio bearer In this case, the at least two RLC entities of the secondary terminal respectively use their corresponding CC groups to transmit the replicated data; or, the PDCP replication function is configured on the radio bearer of the primary terminal, and the PDCP replication function is deactivated, and the secondary terminal In the case of at least two RLC entities including PDCP entities associated with radio bearers, the primary RLC entity of the secondary terminal uses all active CCs of the secondary terminal to transmit distribution data.
  • two or more RLC entities may be included in a certain primary terminal/secondary terminal, which are associated with the same PDCP anchor entity. Two or more RLC entities within the same terminal need to correspond to different CC groups for data transmission, and only when the PDCP replication function is activated, the corresponding configured CC groups are distinguished for data transmission. Once the PDCP replication function is deactivated, the primary RLC entity on the primary terminal/secondary terminal can use all activated CCs for data transmission without being restricted by CC groups.
  • the above configuration information may be used to indicate at least one of the following:
  • DRB Data Radio Bearer
  • the protocol layer where the replication function is located for example, it can be at the PDCP layer, MAC layer, etc.;
  • the main RLC entity of the radio bearer of the main terminal for example, the RLC entity of the main terminal may be the main RLC entity by default, or the main RLC entity may be explicitly indicated;
  • the threshold for data distribution for example, it may be the link quality threshold of the terminal where the primary RLC entity is located, or the link quality threshold of the terminal where the secondary RLC entity is located; the link may be a Uu link, which is not limited;
  • the threshold of the amount of data cached by the master terminal for example, if the amount of cached data does not exceed the first threshold, only the master terminal can participate in the transmission; if the amount of cached data exceeds the first threshold, a secondary terminal can be started to participate in the transmission; if the amount of cached data exceeds The second threshold, you can start another secondary terminal to participate in the transmission, the second threshold is greater than the first threshold; and so on;
  • the network side device configures the split bearer for the main terminal
  • the PDCP entity carried by the split configured by the network side device is located in the main terminal;
  • the PDCP entity carried by the split configured by the network side device is located in the primary terminal, and the PDCP entity is associated with at least two RLC entities, and each RLC entity is located in a different primary terminal or secondary terminal;
  • the type of split bearer configured by the network side device for example, the type is PDCP anchor, RLC anchor or MAC anchor, etc.;
  • a standardized interface is adopted between the main terminal and the auxiliary terminal; for example, the interface is a PC5 interface, etc.;
  • a non-standardized interface is adopted between the main terminal and the auxiliary terminal;
  • non-ideal interface between the main terminal and the auxiliary terminal;
  • the non-ideal interface is a wireless interface, or an interface with a transmission delay greater than or equal to a certain threshold, etc.;
  • the ideal interface is a wired connection, or an interface whose transmission delay is less than or equal to a certain threshold, etc.;
  • the data replication method adopted by the master terminal is the data replication method adopted by the master terminal.
  • the secondary terminal may receive scheduling information from the network side device, and the scheduling information is used to indicate the uplink authorization resource allocated for the secondary terminal; then, according to the size of the uplink authorization resource, send a data request to the primary terminal, and send a data request from the primary terminal Receive a second data packet, where the second data packet is generated by the master terminal according to the size of the uplink grant resource.
  • the secondary terminal may send first information to the primary terminal, and receive data distributed by the primary terminal according to the first information; wherein the first information includes at least one of the following:
  • FIG. 5 is a flowchart of a configuration method provided in an embodiment of the present application. The method is executed by a network side device. As shown in FIG. 5, the method includes the following steps:
  • Step 51 The network side device sends configuration information to the master terminal and/or the slave terminal.
  • the master terminal can perform data transmission with the slave terminal.
  • the above configuration information may be used to indicate at least one of the following:
  • DRB Data Radio Bearer
  • the protocol layer where the replication function is located for example, it can be at the PDCP layer, MAC layer, etc.;
  • the main RLC entity of the radio bearer of the main terminal for example, the RLC entity of the main terminal may be the main RLC entity by default, or the main RLC entity may be explicitly indicated;
  • the threshold for data distribution for example, it may be the link quality threshold of the terminal where the primary RLC entity is located, or the link quality threshold of the terminal where the secondary RLC entity is located; the link may be a Uu link, which is not limited;
  • the threshold of the amount of data cached by the master terminal for example, if the amount of cached data does not exceed the first threshold, only the master terminal can participate in the transmission; if the amount of cached data exceeds the first threshold, a secondary terminal can be started to participate in the transmission; if the amount of cached data exceeds The second threshold, you can start another secondary terminal to participate in the transmission, the second threshold is greater than the first threshold; and so on;
  • the network side device configures the split bearer for the main terminal
  • the PDCP entity carried by the split configured by the network side device is located in the main terminal;
  • the PDCP entity carried by the split configured by the network side device is located in the primary terminal, and the PDCP entity is associated with at least two RLC entities, and each RLC entity is located in a different primary terminal or secondary terminal;
  • the type of split bearer configured by the network side device for example, the type is PDCP anchor, RLC anchor or MAC anchor, etc.;
  • a standardized interface is adopted between the main terminal and the auxiliary terminal; for example, the interface is a PC5 interface, etc.;
  • a non-standardized interface is adopted between the main terminal and the auxiliary terminal;
  • non-ideal interface between the main terminal and the auxiliary terminal;
  • the non-ideal interface is a wireless interface, or an interface with a transmission delay greater than or equal to a certain threshold, etc.;
  • the ideal interface is a wired connection, or an interface whose transmission delay is less than or equal to a certain threshold, etc.;
  • the data replication method adopted by the master terminal is the data replication method adopted by the master terminal.
  • the network side device and the primary/secondary terminal can have the same cognition and understanding of the data distribution or replication method, and can operate in a unified data distribution or replication method.
  • the network side device may send indication information to the master terminal, where the indication information is used to instruct the master terminal to activate or deactivate the replication function.
  • the network side device may allocate uplink authorization resources to the primary terminal and the secondary terminal according to the BSR of the primary terminal.
  • the network side device may allocate uplink authorization resources for the primary terminal according to the BSR of the primary terminal, and allocate uplink authorization resources for the secondary terminal according to the BSR of the secondary terminal.
  • the network side device may allocate uplink grant resources of the same size to the master terminal and the slave terminal.
  • the data transmission method provided in the embodiment of the present application may be executed by a data transmission device.
  • the data transmission device provided in the embodiment of the present application is described by taking the execution of the data transmission method by the data transmission device as an example.
  • FIG. 6 is a schematic structural diagram of a data transmission device provided by an embodiment of the present application. The device is applied to a master terminal. As shown in FIG. 6, the data transmission device 60 includes:
  • the first receiving module 61 is configured to receive configuration information from the network side device; wherein, the master terminal and the slave terminal can perform data common transmission;
  • the execution module 62 is configured to perform data distribution or data copy transmission according to the configuration information.
  • the data transmission device 60 also includes:
  • a processing module for performing at least one of the following:
  • the BSR reporting process is performed.
  • the executing module 62 is configured to execute at least one of the following:
  • the fourth data packet is sent to the secondary terminal in a data distribution or duplication manner.
  • the M-1 data volume thresholds include the first threshold, the second threshold etc the M-1th threshold
  • the M RLC entity sets include a first RLC entity set, a second RLC entity set... Mth RLC entity set
  • the executing module 62 is configured to execute any of the following item:
  • the executing module 62 is configured to execute at least one of the following:
  • the executing module 62 is configured to execute any of the following:
  • the RLC entity and/or transmission path of the primary terminal, and the RLC entity and/or transmission path of the secondary terminal performing data transmission on or a transmission path, or performing data transmission on the RLC entity and/or transmission path of the secondary terminal;
  • the executing module 62 is configured to execute any of the following:
  • data transmission is performed on the RLC entity and/or transmission path of the primary terminal and the RLC entity and/or transmission path of the secondary terminal, or, in the The RLC entity and/or transmission path of the secondary terminal performs data transmission;
  • the first condition includes: the signal measurement value of the primary terminal is higher than or equal to the second link quality threshold, and the signal measurement value of the secondary terminal is lower than the third link quality threshold;
  • the second condition includes: the signal measurement value of the primary terminal is lower than the second link quality threshold, and the signal measurement value of the secondary terminal is higher than or equal to the third link quality threshold.
  • the PDCP replication function is configured on the radio bearer of the main terminal, and the PDCP replication function is activated, and the main terminal includes at least two RLC entities associated with the PDCP entity of the radio bearer
  • the execution module 62 is specifically configured to: use the corresponding CC groups to transmit the replicated data through the at least two RLC entities respectively;
  • the PDCP replication function is configured on the radio bearer of the master terminal, and the PDCP replication function is deactivated, and the master terminal includes at least two RLC entities associated with the PDCP entity of the radio bearer
  • the executing module 62 is specifically configured to: use all activated CCs of the main terminal to transmit distribution data through the main RLC entity of the main terminal.
  • the executing module 62 is configured to execute any of the following:
  • the radio bearer of the master terminal When the radio bearer of the master terminal is configured with the PDCP replication function, the radio bearer includes L transmission paths, and the PDCP replication function of the L transmission paths is activated, the PDCP data protocol data unit to be transmitted is Copying L shares of the PDU, and transmitting the copied L shares of PDCP data PDUs on the L transmission paths respectively;
  • the radio bearer of the master terminal is configured with the PDCP replication function
  • the radio bearer includes L transmission paths, and the PDCP replication function of P transmission paths among the L transmission paths is activated, the to-be-transmitted Copy P copies of the PDCP data PDUs, and transmit the copied P copies of PDCP data PDUs on the P transmission paths respectively;
  • L is greater than 2
  • L is greater than P
  • the P transmission paths include the main transmission path of the radio bearer.
  • the executing module 62 is configured to execute any of the following:
  • the UP protocol stack architecture of the master terminal is a PDCP anchor architecture
  • data distribution or data copy transmission is performed with PDCP PDU as the data granularity
  • the UP protocol stack architecture of the master terminal is an RLC anchor architecture
  • data distribution or data copy transmission is performed with RLC PDU as the data granularity
  • the UP protocol stack architecture of the master terminal is a MAC anchor architecture
  • data distribution or data copy transmission is performed with MAC PDU as the data granularity.
  • the execution module 62 is used for:
  • the data transmission device 60 also includes:
  • the second receiving module is configured to receive indication information from the network side device; wherein the indication information is used to instruct the main terminal to activate or deactivate the copy function.
  • the configuration information is used to indicate at least one of the following:
  • the threshold of the amount of data cached by the main terminal is the threshold of the amount of data cached by the main terminal
  • the network side device configures the split bearer for the main terminal
  • the PDCP entity carried by the split configured by the network side device is located in the main terminal;
  • the PDCP entity carried by the split configured by the network side device is located in the primary terminal, and the PDCP entity is associated with at least two RLC entities, and each of the RLC entities is located in a different primary terminal or secondary terminal;
  • the type of split bearer configured by the network side device
  • a standardized interface is adopted between the main terminal and the auxiliary terminal;
  • a non-standardized interface is adopted between the main terminal and the auxiliary terminal;
  • the ideal interface is between the main terminal and the auxiliary terminal
  • the data replication method adopted by the master terminal is the data replication method adopted by the master terminal.
  • the data transmission device 60 in the embodiment of the present application may be an electronic device, such as an electronic device with an operating system, or a component of the electronic device, such as an integrated circuit or a chip.
  • the electronic device may be a terminal, or other devices other than the terminal.
  • the terminal may include but not limited to the types of terminal 11 listed above, and other devices may be servers, network attached storage (Network Attached Storage, NAS), etc., which are not specifically limited in this embodiment of the present application.
  • NAS Network Attached Storage
  • the data transmission device 60 provided in the embodiment of the present application can implement various processes implemented in the method embodiment in FIG. 3 and achieve the same technical effect. To avoid repetition, details are not repeated here.
  • FIG. 7 is a schematic structural diagram of a data transmission device provided in an embodiment of the present application. The device is applied to a secondary terminal. As shown in FIG. 7, the data transmission device 70 includes:
  • the third receiving module 71 is configured to receive configuration information from the network side device; wherein, the auxiliary terminal can perform data transmission with the main terminal;
  • the transmission module 72 is configured to perform data transmission according to the configuration information.
  • the PDCP replication function is configured on the radio bearer of the primary terminal, and the PDCP replication function is activated, and the secondary terminal includes at least two RLC entities associated with the PDCP entity of the radio bearer
  • the transmission module 72 is specifically configured to: use the corresponding CC groups to transmit the replicated data through the at least two RLC entities respectively;
  • the PDCP replication function is configured on the radio bearer of the primary terminal, and the PDCP replication function is deactivated, and the secondary terminal includes at least two RLC entities associated with the PDCP entity of the radio bearer
  • the transmission module 72 is specifically configured to: use all activated CCs of the secondary terminal to transmit distribution data through the primary RLC entity of the secondary terminal.
  • the configuration information is used to indicate at least one of the following:
  • the threshold of the amount of data cached by the main terminal is the threshold of the amount of data cached by the main terminal
  • the network side device configures the split bearer for the main terminal
  • the PDCP entity carried by the split configured by the network side device is located in the main terminal;
  • the PDCP entity carried by the split configured by the network side device is located in the primary terminal, and the PDCP entity is associated with at least two RLC entities, and each of the RLC entities is located in a different primary terminal or secondary terminal;
  • the type of split bearer configured by the network side device
  • a standardized interface is adopted between the main terminal and the auxiliary terminal;
  • a non-standardized interface is adopted between the main terminal and the auxiliary terminal;
  • the ideal interface is between the main terminal and the auxiliary terminal
  • the data replication method adopted by the master terminal is the data replication method adopted by the master terminal.
  • the third receiving module 72 is further configured to: receive scheduling information from the network side device; wherein the scheduling information is used to indicate the uplink grant resource allocated for the secondary terminal;
  • the data transmission device 70 also includes:
  • a first sending module configured to send a data request to the master terminal according to the size of the uplink authorization resource
  • a fourth receiving module configured to receive a second data packet from the master terminal; wherein, the second data packet is generated by the master terminal according to the size of the uplink grant resource.
  • the data transmission device 70 also includes:
  • a second sending module configured to send first information to the main terminal
  • a fifth receiving module configured to receive data distributed by the master terminal according to the first information
  • the first information includes at least one of the following:
  • the data transmission device 70 in the embodiment of the present application may be an electronic device, such as an electronic device with an operating system, or a component of the electronic device, such as an integrated circuit or a chip.
  • the electronic device may be a terminal, or other devices other than the terminal.
  • the terminal may include, but not limited to, the types of terminal 11 listed above, and other devices may be servers, Network Attached Storage (NAS), etc., which are not specifically limited in this embodiment of the present application.
  • NAS Network Attached Storage
  • the data transmission device 70 provided in the embodiment of the present application can implement various processes implemented in the method embodiment in FIG. 4 and achieve the same technical effect. To avoid repetition, details are not repeated here.
  • the configuration method provided in the embodiment of the present application may be executed by a configuration device.
  • the configuration device provided in the embodiment of the present application is described by taking the configuration device executing the configuration method as an example.
  • FIG. 8 is a schematic structural diagram of a configuration device provided by an embodiment of the present application. The device is applied to network side equipment. As shown in FIG. 8, the configuration device 80 includes
  • the third sending module 81 is configured to send configuration information to the master terminal and/or the slave terminal;
  • the primary terminal can perform data common transmission with the secondary terminal;
  • the configuration information is used to indicate at least one of the following:
  • the threshold of the amount of data cached by the main terminal is the threshold of the amount of data cached by the main terminal
  • the network side device configures the split bearer for the main terminal
  • the PDCP entity carried by the split configured by the network side device is located in the main terminal;
  • the PDCP entity carried by the split configured by the network side device is located in the primary terminal, and the PDCP entity is associated with at least two RLC entities, and each of the RLC entities is located in a different primary terminal or secondary terminal;
  • the type of split bearer configured by the network side device
  • a standardized interface is adopted between the main terminal and the auxiliary terminal;
  • a non-standardized interface is adopted between the main terminal and the auxiliary terminal;
  • the ideal interface is between the main terminal and the auxiliary terminal
  • the data replication method adopted by the master terminal is the data replication method adopted by the master terminal.
  • the third sending module 81 is further configured to: send indication information to the master terminal; the indication information is used to instruct the master terminal to activate or deactivate the replication function.
  • configuration device 80 also includes
  • An allocation module for at least one of the following:
  • uplink grant resources of the same size are allocated to the master terminal and the slave terminal.
  • the configuration device 80 provided in the embodiment of the present application can realize various processes realized by the method embodiment in FIG. 5 and achieve the same technical effect. To avoid repetition, details are not repeated here.
  • this embodiment of the present application also provides a communication device 90, including a processor 91 and a memory 92, and the memory 92 stores programs or instructions that can run on the processor 91, such as
  • the communication device 90 is the master terminal or the slave terminal
  • the program or instruction is executed by the processor 91
  • each step of the above data processing method embodiment can be realized, and the same technical effect can be achieved.
  • the communication device 90 is a network-side device
  • the program or instruction is executed by the processor 91
  • each step of the configuration method embodiment described above can be achieved, and the same technical effect can be achieved. To avoid repetition, details are not repeated here.
  • the embodiment of the present application also provides a terminal, including a processor and a communication interface.
  • the communication interface is used to receive configuration information from the network side device, and perform data distribution or data distribution based on the configuration information. Duplicate transmission; or, when the terminal is a secondary terminal, the communication interface is used to receive configuration information from the network side device, and perform data transmission according to the configuration information.
  • This terminal embodiment may correspond to the above-mentioned method embodiment on the main terminal side, or correspond to the above-mentioned method embodiment on the auxiliary terminal side.
  • the various implementation processes and implementation methods of the above-mentioned method embodiments can be applied to this terminal embodiment, and can achieve Same technical effect.
  • FIG. 10 is a schematic diagram of a hardware structure of a terminal implementing an embodiment of the present application.
  • the terminal 1000 includes, but is not limited to: a radio frequency unit 1001, a network module 1002, an audio output unit 1003, an input unit 1004, a sensor 1005, a display unit 1006, a user input unit 1007, an interface unit 1008, a memory 1009, and a processor 1010. At least some parts.
  • the terminal 1000 can also include a power supply (such as a battery) for supplying power to various components, and the power supply can be logically connected to the processor 1010 through the power management system, so as to manage charging, discharging, and power consumption through the power management system. Management and other functions.
  • a power supply such as a battery
  • the terminal structure shown in FIG. 10 does not constitute a limitation on the terminal, and the terminal may include more or fewer components than shown in the figure, or combine certain components, or arrange different components, which will not be repeated here.
  • the input unit 1004 may include a graphics processing unit (Graphics Processing Unit, GPU) 10041 and a microphone 10042, and the graphics processor 10041 can be used by the image capture device (such as the image data of the still picture or video obtained by the camera) for processing.
  • the display unit 1006 may include a display panel 10061, and the display panel 10061 may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 1007 includes at least one of a touch panel 10071 and other input devices 10072 .
  • the touch panel 10071 is also called a touch screen.
  • the touch panel 10071 may include two parts, a touch detection device and a touch controller.
  • Other input devices 10072 may include, but are not limited to, physical keyboards, function keys (such as volume control buttons, switch buttons, etc.), trackballs, mice, and joysticks, which will not be repeated here.
  • the radio frequency unit 1001 may transmit it to the processor 1010 for processing; in addition, the radio frequency unit 1001 may send the uplink data to the network side device.
  • the radio frequency unit 1001 includes, but is not limited to, an antenna, an amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the memory 1009 can be used to store software programs or instructions as well as various data.
  • the memory 1009 may mainly include a first storage area for storing programs or instructions and a second storage area for storing data, wherein the first storage area may store an operating system, an application program or instructions required by at least one function (such as a sound playing function, image playback function, etc.), etc.
  • memory 1009 may include volatile memory or nonvolatile memory, or, memory 1009 may include both volatile and nonvolatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electronically programmable Erase Programmable Read-Only Memory (Electrically EPROM, EEPROM) or Flash.
  • ROM Read-Only Memory
  • PROM programmable read-only memory
  • Erasable PROM Erasable PROM
  • EPROM erasable programmable read-only memory
  • Electrical EPROM Electrical EPROM
  • EEPROM electronically programmable Erase Programmable Read-Only Memory
  • Volatile memory can be random access memory (Random Access Memory, RAM), static random access memory (Static RAM, SRAM), dynamic random access memory (Dynamic RAM, DRAM), synchronous dynamic random access memory (Synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (Double Data Rate SDRAM, DDRSDRAM), enhanced synchronous dynamic random access memory (Enhanced SDRAM, ESDRAM), synchronous connection dynamic random access memory (Synch link DRAM , SLDRAM) and Direct Memory Bus Random Access Memory (Direct Rambus RAM, DRRAM).
  • RAM Random Access Memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM Double Data Rate SDRAM
  • DDRSDRAM double data rate synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM enhanced synchronous dynamic random access memory
  • Synch link DRAM , SLDRAM
  • Direct Memory Bus Random Access Memory Direct Rambus
  • the processor 1010 may include one or more processing units; optionally, the processor 1010 integrates an application processor and a modem processor, wherein the application processor mainly processes operations related to the operating system, user interface, and application programs, etc., Modem processors mainly process wireless communication signals, such as baseband processors. It can be understood that the foregoing modem processor may not be integrated into the processor 1010 .
  • the radio frequency unit 1001 when the terminal 1000 is the main terminal, the radio frequency unit 1001 is used to: receive configuration information from the network side device, and perform data distribution or data copy transmission according to the configuration information; or, when the terminal 1000 is the secondary terminal, the radio frequency unit 1001 Unit 1001 is configured to: receive configuration information from a network side device, and perform data transmission according to the configuration information.
  • this terminal embodiment corresponds to the above-mentioned method embodiment on the main terminal side, and each implementation process and implementation method of the above-mentioned method embodiment can be applied to this terminal embodiment, and can achieve the same technical effect.
  • this terminal embodiment corresponds to the above-mentioned auxiliary terminal-side method embodiment, and the various implementation processes and implementation methods of the above-mentioned method embodiments can be applied to this terminal embodiment, and can achieve the same technology Effect, in order to avoid repetition, will not repeat them here.
  • the embodiment of the present application also provides a network side device, including a processor and a communication interface, where the communication interface is used to send configuration information to a master terminal and/or a slave terminal.
  • the network-side device embodiment corresponds to the above-mentioned network-side device method embodiment, and each implementation process and implementation mode of the above-mentioned method embodiment can be applied to this network-side device embodiment, and can achieve the same technical effect.
  • the embodiment of the present application also provides a network side device.
  • the network side device 110 includes: an antenna 111 , a radio frequency device 112 , a baseband device 113 , a processor 114 and a memory 115 .
  • the antenna 111 is connected to the radio frequency device 112 .
  • the radio frequency device 112 receives information through the antenna 111, and sends the received information to the baseband device 113 for processing.
  • the baseband device 113 processes the information to be sent and sends it to the radio frequency device 112, and the radio frequency device 112 processes the received information and sends it out through the antenna 111.
  • the method performed by the network side device in the above embodiments may be implemented in the baseband device 113, where the baseband device 113 includes a baseband processor.
  • the baseband device 113 may include at least one baseband board, for example, a plurality of chips are arranged on the baseband board, as shown in FIG.
  • the program executes the network device operations shown in the above method embodiments.
  • the network side device may also include a network interface 116, such as a common public radio interface (Common Public Radio Interface, CPRI).
  • a network interface 116 such as a common public radio interface (Common Public Radio Interface, CPRI).
  • CPRI Common Public Radio Interface
  • the network side device 110 in this embodiment of the present invention further includes: instructions or programs stored in the memory 115 and executable on the processor 114, and the processor 114 calls the instructions or programs in the memory 115 to execute the various programs shown in FIG.
  • the method of module execution achieves the same technical effect, so in order to avoid repetition, it is not repeated here.
  • the embodiment of the present application also provides a readable storage medium, the readable storage medium stores a program or an instruction, and when the program or instruction is executed by a processor, the various processes of the above-mentioned data transmission method embodiment are realized, or the above-mentioned configuration is realized Each process of the method embodiment can achieve the same technical effect, and will not be repeated here to avoid repetition.
  • the processor is the processor in the terminal described in the foregoing embodiments.
  • the readable storage medium includes a computer-readable storage medium, such as a computer read-only memory ROM, a random access memory RAM, a magnetic disk or an optical disk, and the like.
  • the embodiment of the present application further provides a chip, the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run programs or instructions to implement the above data transmission method embodiment
  • the chip includes a processor and a communication interface
  • the communication interface is coupled to the processor
  • the processor is used to run programs or instructions to implement the above data transmission method embodiment
  • the chip mentioned in the embodiment of the present application may also be called a system-on-chip, a system-on-chip, a system-on-a-chip, or a system-on-a-chip.
  • the embodiment of the present application further provides a computer program/program product, the computer program/program product is stored in a storage medium, and the computer program/program product is executed by at least one processor to implement the above data transmission method embodiment
  • the embodiment of the present application also provides a communication system, including: a master terminal, a slave terminal, and a network side device, the master terminal can be used to execute the steps of the information reporting method described in FIG. 3 , and the slave terminal can be used to execute the 4, the network side device can be used to execute the steps of the configuration method described in FIG. 5 .
  • the embodiment of the present application also provides a communication device configured to execute the steps of the information reporting method described in FIG. 3 , or the steps of the information reporting method described in FIG. 4 , or the steps of the configuration method described in FIG. 5 Steps, and can achieve the same technical effect, in order to avoid repetition, no more details here.
  • the term “comprising”, “comprising” or any other variation thereof is intended to cover a non-exclusive inclusion such that a process, method, article or apparatus comprising a set of elements includes not only those elements, It also includes other elements not expressly listed, or elements inherent in the process, method, article, or device. Without further limitations, an element defined by the phrase “comprising a " does not preclude the presence of additional identical elements in the process, method, article, or apparatus comprising that element.
  • the scope of the methods and devices in the embodiments of the present application is not limited to performing functions in the order shown or discussed, and may also include performing functions in a substantially simultaneous manner or in reverse order according to the functions involved. Functions are performed, for example, the described methods may be performed in an order different from that described, and various steps may also be added, omitted, or combined. Additionally, features described with reference to certain examples may be combined in other examples.
  • the methods of the above embodiments can be implemented by means of software plus a necessary general-purpose hardware platform, and of course also by hardware, but in many cases the former is better implementation.
  • the technical solution of the present application can be embodied in the form of computer software products, which are stored in a storage medium (such as ROM/RAM, magnetic disk, etc.) , CD-ROM), including several instructions to make a terminal (which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) execute the methods described in the various embodiments of the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种数据传输方法、配置方法、装置、终端及网络侧设备,属于通信技术领域,本申请实施例的数据传输方法包括:主终端从网络侧设备接收配置信息;其中,所述主终端能够和辅终端进行数据共同传输;所述主终端根据所述配置信息,进行数据分发或数据复制传输。

Description

数据传输方法、配置方法、装置、终端及网络侧设备
相关申请的交叉引用
本申请主张在2021年11月24日在中国提交的中国专利申请No.202111406554.8的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于通信技术领域,具体涉及一种数据传输方法、配置方法、装置、终端及网络侧设备。
背景技术
现有技术中,数据分发和数据复制的流程,都是为了兼容双连接(Dual Connectivity,DC)场景,即一个终端同时连接到两个网络侧设备比如基站,受两个基站的独立调度过程,完成上行传输。而在终端聚合(aggregation)架构下,多个终端同时连接到同一个基站,由同一个基站对数据进行调度,这种情况下,目前尚未确定如何进行数据分发和数据复制传输。
发明内容
本申请实施例提供一种数据传输方法、配置方法、装置、终端及网络侧设备,能够解决在终端聚合架构下,如何进行数据分发和数据复制传输的问题。
第一方面,提供了一种数据传输方法,应用于主终端,该方法包括:
主终端从网络侧设备接收配置信息;其中,所述主终端能够和辅终端进行数据共同传输;
所述主终端根据所述配置信息,进行数据分发或数据复制传输。
第二方面,提供了一种数据传输方法,应用于辅终端,该方法包括:
辅终端从网络侧设备接收配置信息;其中,所述辅终端能够和主终端进行数据共同传输;
所述辅终端根据所述配置信息,进行数据传输。
第三方面,提供了一种配置方法,应用于网络侧设备,该方法包括:
网络侧设备向主终端和/或辅终端发送配置信息;
其中,所述主终端能够和所述辅终端进行数据共同传输;所述配置信息用于指示以下至少一项:
为主终端的无线承载配置复制功能,或,不为主终端的无线承载配置复制功能;
复制功能所处的协议层;
主终端的无线承载的主RLC实体;
数据分发的条件;
数据分发的门限;
主终端缓存的数据量的门限;
网络侧设备为主终端配置分发(split)承载;
网络侧设备配置的split承载的分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)实体位于主终端;
网络侧设备配置的split承载的PDCP实体位于主终端,且所述PDCP实体关联至少两个RLC实体,每个所述RLC实体位于不同的主终端或者辅终端;
网络侧设备配置的split承载的类型;
主终端和辅终端之间采取标准化的接口;
主终端和辅终端之间采取非标准化的接口;
主终端和辅终端之间是非理想接口;
主终端和辅终端之间是理想接口;
主终端采用的数据分发方式;
主终端采用的数据复制方式。
第四方面,提供了一种数据传输装置,应用于主终端,包括:
第一接收模块,用于从网络侧设备接收配置信息;其中,所述主终端能够和辅终端进行数据共同传输;
执行模块,用于根据所述配置信息,进行数据分发或数据复制传输。
第五方面,提供了一种数据传输装置,应用于辅终端,包括:
第三接收模块,用于从网络侧设备接收配置信息;其中,辅终端能够和主终端进行数据共同传输;
传输模块,用于根据所述配置信息,进行数据传输。
第六方面,提供了一种配置方法,应用于网络侧设备,该方法包括:
第三发送模块,用于向主终端和/或辅终端发送配置信息;
其中,所述主终端能够和所述辅终端进行数据共同传输;所述配置信息用于指示以下至少一项:
为主终端的无线承载配置复制功能,或,不为主终端的无线承载配置复制功能;
复制功能所处的协议层;
主终端的无线承载的主RLC实体;
数据分发的条件;
数据分发的门限;
主终端缓存的数据量的门限;
网络侧设备为主终端配置split承载;
网络侧设备配置的split承载的PDCP实体位于主终端;
网络侧设备配置的split承载的PDCP实体位于主终端,且所述PDCP实体关联至少两个RLC实体,每个所述RLC实体位于不同的主终端或者辅终端;
网络侧设备配置的split承载的类型;
主终端和辅终端之间采取标准化的接口;
主终端和辅终端之间采取非标准化的接口;
主终端和辅终端之间是非理想接口;
主终端和辅终端之间是理想接口;
主终端采用的数据分发方式;
主终端采用的数据复制方式。
第七方面,提供了一种终端,该终端包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤,或者实现如第二方面所述的方法的 步骤。
第八方面,提供了一种终端,包括处理器及通信接口,其中,该终端为主终端时,所述通信接口用于从网络侧设备接收配置信息,并根据所述配置信息,进行数据分发或数据复制传输;或者,该终端为辅终端时,所述通信接口用于从网络侧设备接收配置信息,并根据所述配置信息,进行数据传输;其中,主终端能够和辅终端进行数据共同传输。
第九方面,提供了一种网络侧设备,该网络侧设备包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第三方面所述的方法的步骤。
第十方面,提供了一种网络侧设备,包括处理器及通信接口,其中,所述通信接口用于向主终端和/或辅终端发送配置信息;主终端能够和辅终端进行数据共同传输。
第十一方面,提供了一种通信系统,包括:主终端、辅终端及网络侧设备,所述主终端可用于执行如第一方面所述的数据处理方法的步骤,所述辅终端可用于执行如第二方面所述的数据处理方法的步骤,所述网络侧设备可用于执行如第三方面所述的配置方法的步骤。
第十二方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤,或者实现如第二方面所述的方法的步骤,或者实现如第三方面所述的方法的步骤。
第十三方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,如第一方面所述的方法的步骤,或者实现如第二方面所述的方法的步骤,或者实现如第三方面所述的方法的步骤。
第十四方面,提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以如第一方面所述的方法的步骤,或者实现如第二方面所述的方法的步骤,或者实现如第三方面所述的方法的步骤。
第十五方面,提供了一种通信设备,被配置为执行如第一方面所述的方 法的步骤,或者被配置为执行如第二方面所述的方法的步骤,或者被配置为执行如第三方面所述的方法的步骤。
在本申请实施例中,主终端可以从网络侧设备接收配置信息,并根据配置信息,进行数据分发或数据复制传输,该主终端能够和辅终端进行数据共同传输。由此,可以明确在终端聚合架构下进行数据分发或数据复制传输的方式,从而使得单个用户的数据充分高效地利用多个终端的链路进行传输,从而提升用户的业务感受,保障业务的服务质量(Quality of Service,QoS),在提升用户体验的同时保障了系统效率。
附图说明
图1是本申请实施例可应用的一种无线通信系统的框图;
图2A、图2B和图2C是本申请实施例可应用的协议栈的架构示意图;
图3是本申请实施例提供的一种数据传输方法的流程图;
图4是本申请实施例提供的另一种数据传输方法的流程图;
图5是本申请实施例提供的一种配置方法的流程图;
图6是本申请实施例提供的一种数据传输装置的结构示意图;
图7是本申请实施例提供的另一种数据传输装置的结构示意图;
图8是本申请实施例提供的一种配置装置的结构示意图;
图9是本申请实施例提供的一种通信设备的结构示意图;
图10是本申请实施例提供的一种终端的结构示意图;
图11是本申请实施例提供的一种网络侧设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术 语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络侧设备12。其中,终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、增强现实(Augmented Reality,AR)/虚拟现实(virtual reality,VR)设备、机器人、可穿戴式设备(Wearable Device)、车载设备(Vehicle User Equipment,VUE)、行人终端(Personal User Equipment,PUE)、智能家居(具有无线通信功能的家居设备,如冰箱、电视、洗衣机或者家具等)、游戏机、个人计算机(Personal Computer,PC)、柜员机或者自助机等终端侧设备,可穿戴式设备包括:智能手表、智能手环、智能耳机、智能眼镜、智能首饰(智能手镯、智能手链、智能戒指、智能项链、智能脚镯、智能脚链等)、 智能腕带、智能服装等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以包括接入网设备或核心网设备,其中,接入网设备12也可以称为无线接入网设备、无线接入网(Radio Access Network,RAN)、无线接入网功能或无线接入网单元。接入网设备12可以包括基站、无线局域网(Wireless Local Area Network,WLAN)接入点或无线保真技术(Wireless Fidelity,WiFi)节点等,基站可被称为节点B、演进节点B(eNB)、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、家用B节点、家用演进型B节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例进行介绍,并不限定基站的具体类型。
为了便于理解本申请实施例,首先说明以下内容。
本申请实施例中,涉及的聚合/备份/切换承载的多终端架构/终端aggregation架构主要指图2A至图2C所示的用户面(User Plane,UP)协议栈架构。其中,图2A所示的UP协议栈架构也可称为包数据汇聚协议(Packet Data Convergence Protocol,PDCP)锚点(anchor)架构,主终端(P-UE)的PDCP实体分别与P-UE和辅终端(S-UE)的无线链路控制(Radio Link Control,RLC)实体关联。图2B所示的UP协议栈架构也可称为RLC anchor架构,P-UE的RLC实体分别与P-UE和S-UE的媒体接入控制(Medium Access Control,MAC)实体关联。图2C所示的UP协议栈架构也可称为MAC anchor架构,P-UE的MAC实体分别与P-UE和S-UE的物理层(Physical Layer,PHY)实体关联。可理解的,在终端聚合架构中,存在一个主终端,该主终端关联至少一个辅终端,即可以存在一个或多个辅终端。
本申请实施例中,涉及的承载主要包含:锚点在主终端的分发(split)承载,即一个数据承载由主终端产生,可以通过主终端和/或辅终端的协议栈和链路进行传输;此承载也可称为聚合承载,为本实施例涉及的新承载类型。
可选的,本申请实施例中的分发承载也可以称为备份承载、切换承载、聚合承载等,对此不作限制。
可选的,本申请实施例中的数据分发(split)也可以称为数据分流,对此不作限制。
由于多终端承载聚合架构牵涉到多个终端之间的深度合作,因此,终端之间接口的特性,对于数据调度和分发机制,具有比较重要的决定因素。
可选的,在本申请实施例中,终端之间的接口可以为非理想接口或者理想接口。其中,非理想接口可以适用于对接口特性要求不高的场景,可以适用于所有的接口类型,例如,用户设备(User Equipment,UE)之间可以为有线接口/无线接口、标准化接口/非标准化接口、PC5接口/蓝牙/wifi等。非理想接口的特点是:终端之间不能做到实时的信息和数据交互,一般交互的时延在毫秒(millisecond,ms)或亚ms量级,例如10^-2ms到几十ms。在这种情况下,主终端产生的数据,需要提前发送给辅终端,由辅终端自行根据其缓存的聚合承载的数据量进行缓存状态报告(Buffer Status Report,BSR)上报,向基站请求调度,并根据调度资源大小,组织已经在自己缓存内的数据进行组包并发送。而理想接口的特点是:终端之间的传输时延足够低,例如小于或者远小于ms量级,这样终端之间的状态和数据可以快速的进行交互,使传输和调度效率更高。
可选的,如果终端之间的接口为非理想接口,则可以应用的架构为图2A所示的PDCP anchor架构。而如果终端之间的接口为理想接口,则可以选择图2A至图2C中任意一种UP协议栈架构。
PDCP复制(duplication):PDCP复制传输机制,是为了提升传输可靠性同时缩短传输时延而引入的。PDCP复制传输,可以基于每个无线承载配置是否支持,一旦激活了复制传输,则可以在无线承载的PDCP实体,将所有的PDCP数据协议数据单元(Protocol Data Unit,PDU)复制N份,发往不同的RLC实体进行传输,其中N大于或等于2,是可配置参数。PDCP复制传输可以被激活或去激活。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的数据传输方法、配置方法、装置、终端及网络侧设备进行详细地说明。
请参见图3,图3是本申请实施例提供的一种数据传输方法的流程图,该方法由主终端执行,如图3所示,该方法包括如下步骤:
步骤31:主终端从网络侧设备接收配置信息。
步骤32:主终端根据配置信息,进行数据分发或数据复制传输。
其中,主终端能够和辅终端进行数据共同传输。也就是说,对于某一业务的数据或者主终端的数据,可以共同在主终端和辅终端进行传输,即主终端和辅终端之间联合进行数据传输。对于数据分发(split)或数据复制(Duplication)传输,可以动态的基于是否激活复制功能或者主辅终端的上行授权资源大小是否一样,进行数据分发或数据复制传输。例如,若激活了复制功能或者主辅终端的上行授权资源大小一样,则可以进行数据复制传输,而若去激活了复制功能或者主辅终端的上行授权资源大小不一样,则可以进行数据分发。
本申请实施例的数据传输方法,主终端可以从网络侧设备接收配置信息,并根据配置信息,进行数据分发或数据复制传输,该主终端能够和辅终端进行数据共同传输。由此,可以明确在终端聚合架构下进行数据分发或数据复制传输的方式,从而使得单个用户的数据能够充分高效地利用多个终端的链路进行传输,从而提升用户的业务感受,保障业务的服务质量(Quality of Service,QoS),在提升用户体验的同时保障了系统效率。
由于在终端和网络侧设备的交互中,网络侧设备始终处于控制者的地位,终端处于被控制者的地位,因此在不同的情况中,如果需要达成网络侧设备和终端之间的统一理解以及统一行为,需要由网络侧设备发送配置信息给终端。主终端和/或辅终端可以根据网络侧设备的配置,决定数据分发(split)和复制(duplication)的操作方式。
可选的,上述配置信息可以用于指示以下至少一项:
为主终端的无线承载配置复制功能,或,不为主终端的无线承载配置复制功能;例如,可以指示为一个数据无线承载(Data Radio Bearer,DRB)是否配置duplication功能/机制;
复制功能所处的协议层;例如,可以处于PDCP层、MAC层等;
主终端的无线承载的主RLC实体;例如,可以默认主终端的RLC实体为主RLC实体,或者显式指示主RLC实体;
数据分发(split)的条件;
数据分发的门限;例如,可以为主RLC实体所在终端的链路质量门限、或者辅RLC实体所在终端的链路质量门限等;该链路可选为Uu链路,对此不作限定;
主终端缓存的数据量的门限;例如,若缓存数据量没有超过第一门限,可以只有主终端参与传输;若缓存数据量超过第一门限,可以启动一个辅终端参与传输;若缓存数据量超过第二门限,可以再启动一个辅终端参与传输,第二门限大于第一门限;依次类推;
网络侧设备为主终端配置split承载;
网络侧设备配置的split承载的PDCP实体位于主终端;
网络侧设备配置的split承载的PDCP实体位于主终端,且该PDCP实体关联至少两个RLC实体,每个RLC实体位于不同的主终端或者辅终端;
网络侧设备配置的split承载的类型;例如,该类型为PDCP anchor,RLC anchor或者MAC anchor等;
主终端和辅终端之间采取标准化的接口;例如,该接口为PC5接口等;
主终端和辅终端之间采取非标准化的接口;
主终端和辅终端之间是非理想接口;例如,该非理想接口为无线接口,或者传输时延大于或等于一定门限的接口等;
主终端和辅终端之间是理想接口;例如,该理想接口为有线连接,或者传输时延小于或等于一定门限的接口等;
主终端采用的数据分发方式;
主终端采用的数据复制方式。
一些实施例中,网络侧设备可以显式的配置主终端采用的数据分发方式和/或数据复制方式。
这样,根据上述配置信息,网络侧设备和主终端之间可以按照统一的数据分发或者复制方式进行操作。即在网络侧设备配置完成之后,网络侧设备和主终端之间对数据分发或者复制方式具有相同的认知和理解,后续按照规则进行操作即可。
一些实施例中,在网络侧设备比如基站发送配置信息给UE之前,可以引入一定的UE上报过程,上报信息例如为UE之间接口的信息和/或UE倾 向的操作处理方式等,以便于基站决定适合的数据处理方式。例如,上报可以仅由主UE进行。
一些实施例中,在终端之间接口为理想接口,即终端之间为理想回程的情况下,数据分发的方式可以基于每个终端接收到的调度资源大小来决定,即接收的调度资源越大,则承载的数据量越大;或者,在终端之间接口为非理想接口,即终端之间为非理想回程的情况下,数据分发需要基于一定的条件,例如每个终端的链路质量情况和/或缓存中的待传数据情况等进行启动,分发的数据需要提前发送给对应的辅终端以备传输。
一些实施例中,在终端之间接口为理想接口,即终端之间为理想回程的情况下,数据复制的方式可以动态决定,例如基于每个终端接收到的调度资源大小来决定;或者,在终端之间接口为非理想接口,即终端之间为非理想回程的情况下,数据复制功能需要显式激活/去激活或者基于一定条件激活,一旦激活了数据复制功能则需要将复制数据提前发送给对应的辅终端以备传输。
由于终端聚合架构牵涉到多个终端之间的深度合作,终端之间接口的特性,对于终端聚合架构下的数据分发和复制传输,是比较重要的决定因素,下面将结合终端之间接口的类型,分情况对主终端的数据分发/复制进行说明。
情况一:
此情况一下,终端之间接口为理想接口,即终端之间为理想回程。
需要说明的是,终端之间接口为理想接口,这是对于数据调度和分发机制起决定作用的特征之一,因此在终端和网络之间无线资源控制(Radio Resource Control,RRC)信令交互的过程中,需要交互此接口类型,例如通过上行终端聚合请求(UE Aggregation Request),或者终端辅助信息上报,或者其它上行RRC过程,将接口类型上报给网络侧设备比如基站,便于基站对调度和分发进行配置。基站在获知终端之间接口为理想接口的情况下,可以为主终端配置单独的缓存上报和/或数据分发参数,例如通过一个比特bit指示信息指示主终端可以执行理想接口的数据分发过程。相比于非理想回程,在理想回程传输时,无论是数据分发还是数据复制传输都可以更灵活。
可选的,在进行数据分发或数据复制传输之前,主终端可以将待传输数 据缓存在自身的缓存器中。也就是说,在理想接口的情况下,主终端的待传输数据不用提前发送给指定辅终端进行缓存,而是可以直接缓存在主终端的缓存器中。
可选的,在进行数据分发或数据复制传输之前,主终端可以根据自身的缓存数据量,进行缓存状态报告(Buffer Status Report,BSR)的上报过程。也就是说,在理想接口的情况下,可以由主终端根据自己的缓存数据量进行BSR上报过程,告知网络侧设备待发数据量大小。
可选的,此情况一下,对于进行数据分发或数据复制传输,主终端可以执行以下至少一项:
1)主终端根据网络侧设备为其分配的上行授权资源的大小,通过数据分发或复制的方式生成第一数据包,并发送第一数据包;
2)主终端接收辅终端根据其上行授权资源的大小发送的数据请求,并根据该上行授权资源的大小且通过数据分发或复制的方式生成第二数据包,向辅终端发送第二数据包,由辅终端对第二数据包进行发送;也就是说,如果辅终端接收到调度的上行授权资源,则可以将资源大小通知给主终端,由主终端根据资源大小组织数据包,发送给辅终端,由辅终端对接收到的数据包进行发送;
3)主终端接收辅终端的调度信息,根据调度信息确定辅终端的上行授权资源的大小,根据上行授权资源的大小且通过数据分发或复制的方式生成第三数据包,并向辅终端发送第三数据包,由辅终端对第三数据包进行发送;
4)主终端根据其UP协议栈架构,通过数据分发或复制的方式向辅终端发送第四数据包;其中,根据UP协议栈架构的不同,相应数据包可以有不同的形式,比如为PDCP协议数据单元(Protocol Data Unit,PDU)、RLC PDU或者MAC PDU等。
一些实施例中,辅终端可以具有自己的混合自动重传请求(Hybrid Automatic Repeat reQuest,HARQ)重传缓存,将需要HARQ处理的数据存储在该缓存中,如果需要进行HARQ重传,则从该缓存中获取数据并进行重传,当到达最大重传次数或者HARQ进程被新数据占用时,清掉该HARQ进程的缓存数据。
需要说明的是,对于终端之间接口为理想接口的情况,网络侧设备比如基站可以根据主终端的缓存上报,结合每个终端的链路情况,按照自身的调度算法决定如何为多个终端分配上行资源。例如,当待传数据有10000字节时,基站可以选择将这10000字节数据均通过不同时刻的主终端的上行资源进行传输(例如需要4次调度),也可以同时调度主终端和辅终端(例如各需要2次调度),前面的调度方式对资源需求较低,可用于系统负荷较重或者业务的服务质量(Quality of Service,QoS)例如时延要求不高的情况,后面的调度方式对资源需求较大,可用于系统负荷较轻或者业务的QoS例如时延要求高的情况。对于终端来说,终端aggregation的目的是为了能同时利用多个终端的传输信道条件,获取极大的吞吐量或者更好的QoS,因此从终端的角度更希望后一种调度方式。网络也可以根据终端的这一需求,尽量为终端进行多终端的共同调度,以达到业务体验的峰值。
此情况一下,网络侧设备可以充分利用多终端的信道条件,灵活的进行上行资源的调度,终端之间由于理想接口的存在,也可以很好的支持灵活的多终端调度并快速根据资源分配进行组包发送,因此是资源调度和传输效率较高的一种情况。
情况二:
此情况二下,终端之间接口为非理想接口,即终端之间为非理想回程。
对于终端aggregation架构,当终端之间接口为非理想接口时,可以当主终端缓存的数据量达到一定门限时,允许进行另一条路径的传输。进一步的,主终端还可以结合主辅终端的链路质量、辅终端的反馈信息等进行数据分发(split)。
可选的,主终端进行数据分发的过程可以包括:在具有M-1个数据量门限和M个RLC实体集合,该M-1个数据量门限包括第一门限、第二门限…..第M-1门限,该M个RLC实体集合包括第一RLC实体集合、第二RLC实体集合…..第M RLC实体集合,且M大于1的情况下,主终端执行以下任意一项:
当主终端缓存的数据量低于第一门限时,在第一RLC实体集合进行数据传输;
当主终端缓存的数据量高于或等于第一门限,且低于第二门限时,在第一RLC实体集合和第二RLC实体集合进行数据传输;
当主终端缓存的数据量高于或等于第二门限,且低于第三门限时,在第一RLC实体集合、第二RLC实体集合和第三RLC实体集合进行数据传输;
以此类推,当主终端缓存的数据量高于第M-1门限时,在M个RLC实体集合进行数据传输。
需指出的,上述M-1个数据量门限可以预定义或者网络侧配置,对此不作限定。上述M个RLC实体集合可以预定义或者网络侧配置,对此不作限定。优选的,在M个RLC实体集合中,第一RLC实体集合包括一个RLC实体,该RLC实体为主终端的RLC实体或者指定的主RLC实体;第二RLC实体集合包括一个RLC实体,该RLC实体为配置指定的RLC实体,或者主终端关联的所有辅终端中任一个辅终端的RLC实体;第三RLC实体集合包括一个RLC实体,该RLC实体为配置指定的RLC实体,或者主终端关联的所有辅终端中任一个辅终端的RLC实体;以此类推。
例如,若M等于2,即只有一个数据量门限,则:
-当主终端缓存的数据量低于该数据量门限时,主终端的数据仅在主终端的RLC实体/传输路径进行传输,或者,主终端的数据仅在指定的一个终端的RLC实体(此为指定的主RLC实体)/传输路径进行传输;
-当主终端缓存的数据量高于或等于该数据量门限时,主终端的数据可以在两个终端的RLC实体/传输路径进行传输;其中,该两个终端中的一个终端为主终端或者指定为主RLC实体/传输路径的终端,另一终端为配置指定的终端,或者为除了主终端之外的任意一个辅终端;至于主终端如何选择辅终端,可以基于终端实现,例如主终端可以根据回程的属性选择,尽量选择回程时延较小的辅终端,或者主终端根据链路质量选择等;
-或者,当主终端缓存的数据量高于或等于该数据量门限时,主终端的数据可以在全部终端的RLC实体/传输路径进行传输,全部终端的个数大于2,全部终端包括主终端以及主终端关联的全部辅终端。
又例如,若M大于2,即具有多个数据量门限,假设门限大小按照门限1到门限M-1依次升高,则:
-当主终端缓存的数据量低于门限1时,主终端的数据仅在主终端的RLC实体/传输路径进行传输,或者,主终端的数据仅在指定的一个终端的RLC实体(此为指定的主RLC实体)/传输路径进行传输;
-当主终端缓存的数据量高于或等于门限1,且低于门限2时,主终端的数据可以在两个终端的RLC实体/传输路径进行传输;其中,该两个终端中的一个终端为主终端或者指定为主RLC实体/传输路径的终端,另一终端为配置指定的终端,或者为除了主终端之外的任意一个辅终端;至于主终端如何选择辅终端,可以基于终端实现,例如主终端可以根据回程的属性选择,尽量选择回程时延较小的辅终端,或者主终端根据链路质量选择等;
-当主终端缓存的数据量高于或等于门限2,且低于门限3时,主终端的数据可以在三个终端的RLC实体/传输路径进行传输;其中,该三个终端中的一个终端为主终端或者指定为主RLC实体/传输路径的终端,另两个终端为配置指定的终端,或者为除了主终端之外的任意两个辅终端;至于主终端如何选择辅终端,可以基于终端实现,例如主终端可以根据回程的属性选择,尽量选择回程时延较小的辅终端,或者主终端根据链路质量选择等;
-依次类推,当主终端缓存的数据量高于门限M-1时,主终端的数据可以在全部终端的RLC实体/传输路径进行传输,全部终端的个数大于2,全部终端包括主终端以及主终端关联的全部辅终端。
此外,也可以对上述数据分发方式进行适当的合并和变形。例如,当具有两个数据量门限,n个终端,且n大于或等于4时,可以第一个门限用于控制单路径传输,高于或者等于第一个门限即进行双路径传输,第二个门限用于控制n路径传输,高于或者等于第二门限时即进行所有终端的n路径传输。也就是说:
-当主终端缓存的数据量低于第一个门限时,主终端的数据仅在主终端的RLC实体/传输路径进行传输,或者,主终端的数据仅在指定的一个终端的RLC实体(此为指定的主RLC实体)/传输路径进行传输;
-当主终端缓存的数据量高于或等于第一个门限,且低于第二个门限时,主终端的数据在两个终端的RLC实体/传输路径进行传输;其中,该两个终端中的一个终端为主终端或者指定为主RLC实体/传输路径的终端,另一终 端为配置指定的终端,或者为除了主终端之外的任意一个辅终端;至于主终端如何选择辅终端,可以基于终端实现,例如主终端可以根据回程的属性选择,尽量选择回程时延较小的辅终端,或者主终端根据链路质量选择等;
-当主终端缓存的数据量高于第二个门限时,主终端的数据在全部n个终端的RLC实体/传输路径进行传输。
可选的,当启动了双路径或者多路径传输时,主终端可以依据辅终端上报/反馈/协商等的信息进行具体的数据量分发。主终端进行数据分发的过程可以包括以下至少一项:
(1)主终端根据辅终端的数据传输反馈信息,向辅终端分发数据;例如,当主终端分流给辅终端的数据已经被调度传输时,辅终端可以给予主终端反馈,主终端可以基于辅终端的反馈,继续向辅终端分流更多数据;
(2)主终端根据辅终端请求的数据量,向辅终端分发数据;例如,辅终端可以根据自己的数据发送情况,向主终端请求后续的数据量,可以是具体的字节数目,也可以是比特速率等;
(3)主终端根据辅终端反馈的链路质量,向辅终端分发数据;例如,辅终端可以将自己的链路质量反馈给主终端,由主终端根据参与传输的各个辅终端的链路情况,采取链路质量好的终端多分流数据,链路质量差的终端少分流数据的基本原则,进行数据分发;
(4)主终端根据辅终端发送的能力信息,向辅终端分发数据;例如,辅终端可以将自己的能力信息交互给主终端,主终端根据参与传输的各个辅终端的能力情况,采取能力强的终端多分流数据,能力弱的终端少分流数据的基本原则,进行数据分发;
(5)主终端根据与辅终端的针对数据分流的协商信息,向辅终端分发数据;例如,主终端可以和各个辅终端之间进行分流数据的协商,确定每个辅终端能够分流的数据速率,例如辅终端1可分流X Bps,辅终端2可分流Y Bps,依次类推;或者主终端的总数据速率为M Bps,辅终端1可分流其中30%,辅终端2可分流其中40%,等等;
(6)主终端根据从网络侧设备接收到的针对数据分发的控制信息,向辅终端分发数据;例如,可以由基站来控制每个辅终端的分流的比例或者数据 速率,其中,基站可以基于与每个辅终端的交互,根据例如能力、意愿、链路质量等因素,来决定每个辅终端的分流比例或者具体数据速率,决定之后将分流情况以配置参数的方式发送给主终端,由主终端遵照执行。
可选的,除了主终端缓存的数据量之外,主终端还可以基于链路质量门限来决定数据分发的行为。链路质量门限的方式,可以根据终端之间的接口特性进行决定是否配置。例如,当终端之间接口为理想接口,比如终端之间为有线数据线直接连接时,可以不需要配置链路质量门限,此时如何进行数据分发可以由基站根据动态信息决定,只有当终端之间接口为非理想接口,和/或者非理想接口需要使用第三代伙伴组织计划(Third Generation Partnership Projects,3GPP)的技术或者授权频谱进行传输时,才进行链路质量门限的配置。
可选的,在配置了主终端或辅终端的第一链路质量门限的情况下,主终端可以执行以下任意一项:
当主终端或辅终端的信号测量值高于或者等于第一链路质量门限时,在主终端的RLC实体和/或传输路径进行数据传输;
当主终端或辅终端的信号测量值低于第一链路质量门限时,在主终端的RLC实体和/或传输路径,以及辅终端的RLC实体和/或传输路径进行数据传输,或者,在辅终端的RLC实体和/或传输路径进行数据传输。
其中,上述信号测量值可以包括:主终端与其服务小区之间的参考信号接收功率(Reference Signal Receiving Power,RSRP)测量值和/或参考信号接收质量(Reference Signal Received Quality,RSRQ)测量值等,或者,辅终端与其服务小区之间的RSRP测量值和/或RSRQ测量值等。第一链路质量门限可以基于实际需求配置,对此不作限定。
例如,假设配置主终端的链路质量门限,该门限为主终端和其服务小区之间的RSRP的测量值门限,则:
ⅰ)当主终端和其服务小区之间的RSRP测量值高于或者等于该门限时,主终端的数据在主终端的RLC实体/传输路径进行传输;
ⅱ)当主终端和其服务小区之间的RSRP测量值低于该门限时,主终端的数据可以在主终端的RLC实体/传输路径,以及辅终端的RLC实体/传输路 径进行传输;
ⅲ)或者,当主终端和其服务小区之间的RSRP测量值低于该门限时,主终端的数据可以在辅终端的RLC实体/传输路径进行传输。
其中,上述ⅱ)和ⅲ)所涉及的门限在配置时可以不同,比如为门限1和门限2,则在配置门限1,且主终端和其服务小区之间的RSRP测量值低于门限1时,主终端的数据在主终端的RLC实体/传输路径,以及辅终端的RLC实体/传输路径进行传输;或者,在配置门限2,且主终端和其服务小区之间的RSRP测量值低于门限2时,主终端的数据在辅终端的RLC实体/传输路径进行传输。
又例如,假设配置辅终端的链路质量门限,该门限为辅终端和其服务小区之间的RSRP的测量值门限,则:
a)当辅终端和其服务小区之间的RSRP测量值高于或者等于该门限时,主终端的数据在主终端的RLC实体/传输路径进行传输;
b)当辅终端和其服务小区之间的RSRP测量值低于该门限时,主终端的数据可以在主终端的RLC实体/传输路径,以及辅终端的RLC实体/传输路径进行传输;
c)或者,当辅终端和其服务小区之间的RSRP测量值低于该门限时,主终端的数据可以在辅终端的RLC实体/传输路径进行传输。
其中,上述b)和c)所涉及的门限在配置时可以不同,比如为门限1和门限2,则在配置门限1,且辅终端和其服务小区之间的RSRP测量值低于门限1时,主终端的数据在主终端的RLC实体/传输路径,以及辅终端的RLC实体/传输路径进行传输;或者,在配置门限2,且辅终端和其服务小区之间的RSRP测量值低于门限2时,主终端的数据在辅终端的RLC实体/传输路径进行传输。
一些实施例中,对于辅终端的个数为s,s大于或等于2的情况,可以配置1到s个辅终端门限,分别用于s个辅终端或者辅终端分组,并综合考虑辅终端的链路质量来决定主终端数据的分发情况。
可选的,在配置了主终端的第二链路质量门限和辅终端的第三链路质量门限的情况下,主终端可以执行以下任意一项:
当满足第一条件,或者不满足第二条件时,在主终端的RLC实体和/或传输路径进行数据传输;
当不满足第一条件,或者满足第二条件时,在主终端的RLC实体和/或传输路径,以及辅终端的RLC实体和/或传输路径进行数据传输,或者,在辅终端的RLC实体和/或传输路径进行数据传输;
其中,第一条件包括:主终端的信号测量值高于或者等于第二链路质量门限,且辅终端的信号测量值低于第三链路质量门限;第二条件包括:主终端的信号测量值低于第二链路质量门限,且辅终端的信号测量值高于或者等于第三链路质量门限。
上述信号测量值可以包括:主终端与其服务小区之间的RSRP测量值和/或RSRQ测量值等,或者,辅终端与其服务小区之间的RSRP测量值和/或RSRQ测量值等。第二链路质量门限和第三链路质量门限可以基于实际需求配置,对此不作限定。
例如,假设同时配置主终端的链路质量门限和辅终端的链路质量门限,主终端门限为主终端和其服务小区之间的RSRP的测量值门限,辅终端门限为辅终端和其服务小区之间的RSRP的测量值门限,则:
1)当主终端和其服务小区之间的RSRP测量值高于或等于主终端门限,且辅终端和其服务小区之间的RSRP测量值低于辅终端门限(条件1)时,主终端的数据在主终端的RLC实体/传输路径进行传输;
2)当不能同时满足上述条件1时,主终端的数据可以在主终端的RLC实体/传输路径,以及辅终端的RLC实体/传输路径进行传输;
3)或者,当不能同时满足上述条件1时,主终端的数据可以在辅终端的RLC实体/传输路径进行传输;
4)当主终端和其服务小区之间的RSRP测量值低于主终端门限,且辅终端和其服务小区之间的RSRP测量值高于或等于辅终端门限(条件2)时,主终端的数据可以在主终端的RLC实体/传输路径,以及辅终端的RLC实体/传输路径进行传输;
5)或者,当主终端和其服务小区之间的RSRP测量值低于主终端门限,且辅终端和其服务小区之间的RSRP测量值高于或等于辅终端门限(条件2) 时,主终端的数据可以在辅终端的RLC实体/传输路径进行传输;
6)当不能同时满足上述条件2时,主终端的数据在主终端的RLC实体/传输路径进行传输。
其中,上述2)和3)所涉及的门限在配置时可以不同,上述4)和5)所涉及的门限在配置时可以不同。对于辅终端的个数为s,s大于或等于2的情况,可以配置1到s个辅终端门限,分别用于s个辅终端或者辅终端分组,并综合考虑辅终端的链路质量来决定主终端数据的分发情况。
一些实施例中,在基于主终端/辅终端的链路质量启动了双路径或者多路径传输的情况下,主终端可以依据辅终端上报/反馈/协商等的信息进行具体的数据量分发。
情况三:
此情况三下,终端之间接口为非理想接口,即终端之间为非理想回程,可以采用图2A所示的PDCP anchor架构,即具有公共的PDCP实体,该PDCP实体关联的RLC实体位于不同的主终端和辅终端中。
可选的,针对PDCP复制功能,在主终端的无线承载(Radio Bearer,RB)配置了PDCP复制功能,且激活了PDCP复制功能,且主终端内包含关联到无线承载的PDCP实体的至少两个RLC实体的情况下,主终端的至少两个RLC实体分别利用其对应的成员载波(Component Carrier,CC)组(group)进行复制数据的传输;或者,在主终端的无线承载配置了PDCP复制功能,且去激活了PDCP复制功能,且主终端内包含关联到无线承载的PDCP实体的至少两个RLC实体的情况下,主终端的主RLC实体利用主终端的全部激活CC进行分发数据的传输。
可选的,针对PDCP复制功能,在主终端的无线承载配置了PDCP复制功能,该无线承载包括L条传输路径,且激活了L条传输路径的PDCP复制功能的情况下,主终端可以将待传输的PDCP数据PDU复制L份,并将复制的L份PDCP数据PDU分别在该L条传输路径进行传输;或者,在主终端的无线承载配置了PDCP复制功能,该无线承载包括L条传输路径,且激活了L条传输路径中的P条传输路径的PDCP复制功能的情况下,主终端可以将待传输的PDCP数据PDU复制P份,并将复制的P份PDCP数据PDU分 别在该P条传输路径进行传输;其中,L大于2,且L大于P;P条传输路径中包括无线承载的主传输路径。
例如,在为一个RB配置了PDCP复制功能时,在某一个主终端/辅终端的内部可以包含两个或者两个以上的RLC实体,关联到相同的一个PDCP anchor实体。在同一个终端内部的两个或者两个以上的RLC实体,需要对应于不同的CC组进行数据传输,且仅在激活了PDCP复制功能的情况下,区分对应配置的CC组进行数据传输。一旦去激活了PDCP复制功能,则主终端/辅终端上的主RLC实体可以使用全部激活CC进行数据传输,不受CC组的限制。
例如,在一个主UE携带两个辅UE的场景中,可以配置一个RB的PDCP实体位于主UE,它的三个对应的RLC实体分别位于主UE和两个辅UE之中,因此,该PDCP实体可以进行最多三条传输路径的传输。当激活了全部传输路径的PDCP复制功能时,一个PDCP数据PDU可以被复制成三份,分别发送到主UE RLC实体和两个辅UE RLC实体。此外,也可以仅激活其中的两条传输路径进行复制传输,此两条传输路径中必须包含主传输路径,主传输路径一般默认为主UE的RLC实体(entity)或者为配置指定的RLC实体对应的传输路径。当全部传输路径的PDCP duplication功能被去激活之后,则可以根据上述情况二的数据传输方式,在主RLC实体进行数据传输,或者在一个主RLC实体以及配置或选择的一个辅RLC实体进行分流传输,或者在一个主RLC实体以及全部辅RLC实体进行分流传输,等等。
又例如,在一个主UE携带两个辅UE的场景中,可以配置一个RB的PDCP实体位于主UE,该PDCP anchor的五个对应的RLC实体分别位于主UE和两个辅UE之中,五个RLC实体分别对应5条传输路径。其中,主UE包含两个RLC实体,RLC实体1对应于包含CC1(主CC)、CC2和CC3的CC group,该RLC实体1为默认的主RLC实体,RLC实体2对应于包含CC4和CC5的CC group;辅UE1包含两个RLC实体,RLC实体3对应于包含CC6(主CC)和CC7的CC group,该RLC实体6为默认的保留RLC实体,RLC实体4对应于包含CC8和CC9的CC group;辅UE2包含一个RLC实体,RLC实体5对应于辅UE2的全部CC。则,在激活PDCP duplication功 能时,可以激活全部5条传输路径,即PDCP数据PDU被复制成5份分别通过5条传输路径进行传输,也可以在其中任意3条传输路径上激活PDCP duplication功能,其中必须包含主传输路径,PDCP数据PDU被复制成3份分别通过激活duplication的3条传输路径进行传输。当某个UE的RLC实体被激活PDCP duplication时,可以根据自己配置对应的CC group进行数据传输,而当某个UE的RLC实体被去激活PDCP duplication功能时,其保留与主CC对应的RLC实体作为该UE的RLC分流实体,且该RLC分流实体可以使用这个UE的全部激活CC进行传输,不受CC group限制。当全部传输路径的PDCP duplication功能被去激活之后,则可以根据上述情况二的数据传输方式,在主RLC实体进行数据传输,或者在一个主RLC实体以及配置或选择的一个辅RLC实体进行分流传输,或者在一个主RLC实体以及全部辅RLC实体进行分流传输,等等。
可选的,主终端可以从网络侧设备接收指示信息;其中,该指示信息用于指示主终端激活或者去激活复制功能。该复制功能比如为PDCP复制功能。该指示信息比如可以通过RRC信令或者MAC CE发送。
需要说明的是,PDCP duplication由于需要额外的传输资源,因此需要在网络侧设备的控制下进行。一般来说,可以通过RRC信令进行配置。比如,可以由同一个服务基站分别向主终端和辅终端发送配置信息,并确保配置之间的一致性和协调性,即不能因为主终端和辅终端之间的配置不匹配而导致不能工作。在接收到配置之后,主终端和辅终端可以各自建立其duplication的RLC实体架构。在配置PDCP duplication功能时,可以直接指定PDCP duplication功能的初始状态,即初始状态为激活或者去激活,或者激活其中部分RLC实体,也可以配置整个PDCP anchor对应的主传输路径(主RLC实体),以及位于每个终端的RLC实体中的保留RLC实体。
此外,对于配置了PDCP duplication功能的RLC entity,除了主RLC entity之外,该主RLC entity可以为默认或者指定的,其余的RLC entity都可以由网络侧设备动态的决定是否参与PDCP duplication。例如,可以通过MAC CE指示辅RLC entity是否参与PDCP duplication,MAC CE可以包含多个比特bit,分别代表不同的辅RLC entity,比如当某bit为1时,可以指示激活相应 辅RLC entity的PDCP duplication功能,而当某bit为0时,可以指示去激活相应辅RLC entity的PDCP duplication功能。对于激活了PDCP duplication功能的RLC entity,会有一路复制的PDCP数据PDU被发送至该RLC entity,参与复制传输,而被去激活了PDCP duplication功能的RLC entity不参与复制传输。当全部RLC实体都被去激活了PDCP duplication功能时,可以按照上述情况二的分发规则进行数据分发。
情况四:
此情况四下,终端之间接口为理想接口,即终端之间为理想回程,可以选择图2A至图2C中任意一种UP协议栈架构。当采用图2A所示的PDCP anchor架构时,可以按照上述情况三进行数据处理。
可选的,主终端进行数据分发或数据复制传输的过程可以包括以下任意一项:
在主终端的UP协议栈架构为PDCP anchor架构的情况下,主终端以PDCP PDU为数据粒度进行数据分发或者数据复制传输;
在主终端的UP协议栈架构为RLC anchor架构的情况下,主终端以RLC PDU为数据粒度进行数据分发或者数据复制传输;
在主终端的UP协议栈架构为MAC anchor架构的情况下,主终端以MAC PDU为数据粒度进行数据分发或者数据复制传输。
也就是说,由于终端之间接口为理想接口,因此,主终端的UP协议栈架构除了选择PDCP anchor架构之外,还可以有其它更灵活的架构选择,例如选择RLC anchor架构或者MAC anchor架构等。如果选择PDCP anchor架构,则数据分发/复制的粒度为PDCP PDU,该PDCP PDU即为PDCP层PDU,可以包含PDCP初传PDU、PDCP重传PDU和PDCP状态PDU中的至少一项。如果选择RLC anchor架构,则数据分发/复制的粒度为RLC PDU,该RLC PDU即为RLC层PDU,可以包含RLC初传PDU、RLC重传PDU和RLC状态PDU中的至少一项。如果选择MAC anchor架构,则数据分发/复制的粒度为MAC PDU,该MAC PDU即为MAC层PDU,可以包含MAC数据PDU和MAC控制PDU中的至少一项。比如,可以整个MAC PDU进行复制,即要求参与duplication的每个终端的被分配的资源块大小是一样的,在同样的 资源大小中,传输复制的MAC PDU。此外,每个终端可以独立进行HARQ反馈或者重传,也可以引入关联,即当其中一个终端的HARQ传输成功,则每个终端的HARQ反馈都被反馈确认ACK,或者在需要HARQ重传时,在所有终端都进行HARQ重传。
可选的,由于终端之间接口为理想接口,对数据处理的实时性可以更快响应,因此当某一个时刻,主终端和辅终端获得的上行授权资源大小为尺寸不一样时,主终端和辅终端可以分别传输split的数据,而当主终端和辅终端获得的上行授权资源大小为尺寸一致时,主终端和辅终端自动进行duplicated数据传输。上述进行数据分发或数据复制传输的过程可以包括:在主终端和辅终端的上行授权资源的大小不一样时,主终端进行数据分发;或者,在主终端和辅终端的上行授权资源的大小一样时,主终端进行数据复制传输。
需要说明的是,除了上述按照调度资源大小来隐式推导是否进行复制传输之外,还可以通过调度信令里的显式指示,来决定是否进行复制传输。
可选的,主终端可以从网络侧设备接收指示信息;该指示信息用于指示主终端激活或者去激活复制功能。该复制功能比如为PDCP复制功能。该指示信息比如可以通过RRC信令或者MAC CE发送。
例如,在主终端的调度信令中可以额外增加1bit的指示信息,该指示信息指示是否进行duplication传输,也可以将该指示信息设置为缺省值,缺省值为激活/去激活复制功能,缺省值的含义可以标准规定或者信令配置。此外,也可以为调度信令中的上述指示信息设置生效范围,比如仅在当前传输时间间隔(Transport Time Interval,TTI)有效,或者在一定的时间范围内有效,此时间范围可以为协议规定或者信令配置,或者一直有效,直到下一次收到改变状态的调度显式指示信息。
上述实施例对主终端相关的数据分发和数据复制传输过程进行了说明,下面将对辅终端的相关内容进行说明。
请参见图4,图4是本申请实施例提供的一种数据传输方法的流程图,该方法由辅终端执行,如图4所示,该方法包括如下步骤:
步骤41:辅终端从网络侧设备接收配置信息。其中,所述辅终端能够和主终端进行数据共同传输;
步骤42:辅终端根据配置信息,进行数据传输。
其中,主终端能够和辅终端进行数据共同传输。也就是说,对于某一业务的数据或者主终端的数据,可以共同在主终端和辅终端进行传输,即主终端和辅终端之间联合进行数据传输。
本申请实施例的数据传输方法,辅终端可以从网络侧设备接收配置信息,并根据配置信息,进行数据传输,该辅终端能够和主终端进行数据共同传输。由此,可以明确在终端聚合架构下进行数据分发或数据复制传输的方式,从而使得单个用户的数据能够充分高效地利用多个终端的链路进行传输,从而提升用户的业务感受,保障业务的服务质量(Quality of Service,QoS),在提升用户体验的同时保障了系统效率。
可选的,上述进行数据传输可以包括:在主终端的无线承载配置了PDCP复制功能,且激活了PDCP复制功能,且辅终端内包含关联到无线承载的PDCP实体的至少两个RLC实体的情况下,辅终端的该至少两个RLC实体分别利用其对应的CC组进行复制数据的传输;或者,在主终端的无线承载配置了PDCP复制功能,且去激活了PDCP复制功能,且辅终端内包含关联到无线承载的PDCP实体的至少两个RLC实体的情况下,辅终端的主RLC实体利用辅终端的全部激活CC进行分发数据的传输。
例如,在为一个RB配置了PDCP复制功能时,在某一个主终端/辅终端的内部可以包含两个或者两个以上的RLC实体,关联到相同的一个PDCP anchor实体。在同一个终端内部的两个或者两个以上的RLC实体,需要对应于不同的CC组进行数据传输,且仅在激活了PDCP复制功能的情况下,区分对应配置的CC组进行数据传输。一旦去激活了PDCP复制功能,则主终端/辅终端上的主RLC实体可以使用全部激活CC进行数据传输,不受CC组的限制。
可选的,上述配置信息可以用于指示以下至少一项:
为主终端的无线承载配置复制功能,或,不为主终端的无线承载配置复制功能;例如,可以指示为一个数据无线承载(Data Radio Bearer,DRB)是否配置duplication功能/机制;
复制功能所处的协议层;例如,可以处于PDCP层、MAC层等;
主终端的无线承载的主RLC实体;例如,可以默认主终端的RLC实体为主RLC实体,或者显式指示主RLC实体;
数据分发(split)的条件;
数据分发的门限;例如,可以为主RLC实体所在终端的链路质量门限、或者辅RLC实体所在终端的链路质量门限等;该链路可选为Uu链路,对此不作限定;
主终端缓存的数据量的门限;例如,若缓存数据量没有超过第一门限,可以只有主终端参与传输;若缓存数据量超过第一门限,可以启动一个辅终端参与传输;若缓存数据量超过第二门限,可以再启动一个辅终端参与传输,第二门限大于第一门限;依次类推;
网络侧设备为主终端配置split承载;
网络侧设备配置的split承载的PDCP实体位于主终端;
网络侧设备配置的split承载的PDCP实体位于主终端,且该PDCP实体关联至少两个RLC实体,每个RLC实体位于不同的主终端或者辅终端;
网络侧设备配置的split承载的类型;例如,该类型为PDCP anchor,RLC anchor或者MAC anchor等;
主终端和辅终端之间采取标准化的接口;例如,该接口为PC5接口等;
主终端和辅终端之间采取非标准化的接口;
主终端和辅终端之间是非理想接口;例如,该非理想接口为无线接口,或者传输时延大于或等于一定门限的接口等;
主终端和辅终端之间是理想接口;例如,该理想接口为有线连接,或者传输时延小于或等于一定门限的接口等;
主终端采用的数据分发方式;
主终端采用的数据复制方式。
这样,根据上述配置信息,网络侧设备和辅终端之间可以按照统一的数据分发或者复制方式进行操作。即在网络侧设备配置完成之后,网络侧设备和辅终端之间对数据分发或者复制方式具有相同的认知和理解,后续按照规则进行操作即可。
可选的,辅终端可以从网络侧设备接收调度信息,该调度信息用于指示 为辅终端分配的上行授权资源;然后,根据上行授权资源的大小,向主终端发送数据请求,并从主终端接收第二数据包,该第二数据包是主终端根据上行授权资源的大小生成的。
可选的,辅终端可以向主终端发送第一信息,并接收主终端根据该第一信息分发的数据;其中,所述第一信息包括以下至少一项:
数据传输反馈信息;
请求的数据量;
链路质量;
能力信息。
请参见图5,图5是本申请实施例提供的一种配置方法的流程图,该方法由网络侧设备执行,如图5所示,该方法包括如下步骤:
步骤51:网络侧设备向主终端和/或辅终端发送配置信息。
其中,主终端能够和辅终端进行数据共同传输。上述配置信息可以用于指示以下至少一项:
为主终端的无线承载配置复制功能,或,不为主终端的无线承载配置复制功能;例如,可以指示为一个数据无线承载(Data Radio Bearer,DRB)是否配置duplication功能/机制;
复制功能所处的协议层;例如,可以处于PDCP层、MAC层等;
主终端的无线承载的主RLC实体;例如,可以默认主终端的RLC实体为主RLC实体,或者显式指示主RLC实体;
数据分发(split)的条件;
数据分发的门限;例如,可以为主RLC实体所在终端的链路质量门限、或者辅RLC实体所在终端的链路质量门限等;该链路可选为Uu链路,对此不作限定;
主终端缓存的数据量的门限;例如,若缓存数据量没有超过第一门限,可以只有主终端参与传输;若缓存数据量超过第一门限,可以启动一个辅终端参与传输;若缓存数据量超过第二门限,可以再启动一个辅终端参与传输,第二门限大于第一门限;依次类推;
网络侧设备为主终端配置split承载;
网络侧设备配置的split承载的PDCP实体位于主终端;
网络侧设备配置的split承载的PDCP实体位于主终端,且该PDCP实体关联至少两个RLC实体,每个RLC实体位于不同的主终端或者辅终端;
网络侧设备配置的split承载的类型;例如,该类型为PDCP anchor,RLC anchor或者MAC anchor等;
主终端和辅终端之间采取标准化的接口;例如,该接口为PC5接口等;
主终端和辅终端之间采取非标准化的接口;
主终端和辅终端之间是非理想接口;例如,该非理想接口为无线接口,或者传输时延大于或等于一定门限的接口等;
主终端和辅终端之间是理想接口;例如,该理想接口为有线连接,或者传输时延小于或等于一定门限的接口等;
主终端采用的数据分发方式;
主终端采用的数据复制方式。
这样,根据上述配置信息,网络侧设备和主/辅终端之间可以对数据分发或者复制方式具有相同的认知和理解,可以按照统一的数据分发或者复制方式进行操作。
可选的,网络侧设备可以向主终端发送指示信息,该指示信息用于指示主终端激活或者去激活复制功能。
可选的,网络侧设备可以根据主终端的BSR,为主终端和辅终端分配上行授权资源。
可选的,网络侧设备可以根据主终端的BSR,为主终端分配上行授权资源,以及根据辅终端的BSR,为辅终端分配上行授权资源。
可选的,在激活了复制功能的情况下,网络侧设备可以为主终端和辅终端分配相同大小的上行授权资源。
本申请实施例提供的数据传输方法,执行主体可以为数据传输装置。本申请实施例中以数据传输装置执行数据传输方法为例,说明本申请实施例提供的数据传输装置。
请参见图6,图6是本申请实施例提供的一种数据传输装置的结构示意图,该装置应用于主终端,如图6所示,数据传输装置60包括:
第一接收模块61,用于从网络侧设备接收配置信息;其中,所述主终端能够和辅终端进行数据共同传输;
执行模块62,用于根据所述配置信息,进行数据分发或数据复制传输。
可选的,数据传输装置60还包括:
处理模块,用于执行以下至少一项:
将待传输数据缓存在自身的缓存器中;
根据自身的缓存数据量,进行BSR的上报过程。
可选的,所述执行模块62用于执行以下至少一项:
根据所述网络侧设备为所述主终端分配的上行授权资源的大小,通过数据分发或复制的方式生成第一数据包,并发送所述第一数据包;
接收所述辅终端根据其上行授权资源的大小发送的数据请求,并根据所述上行授权资源的大小且通过数据分发或复制的方式生成第二数据包,向所述辅终端发送第二数据包;
接收所述辅终端的调度信息,根据所述调度信息确定所述辅终端的上行授权资源的大小,根据所述上行授权资源的大小且通过数据分发或复制的方式生成第三数据包,并向所述辅终端发送所述第三数据包;
根据所述主终端的UP协议栈架构,通过数据分发或复制的方式向所述辅终端发送第四数据包。
可选的,在具有M-1个数据量门限和M个无线链路层控制RLC实体集合,所述M-1个数据量门限包括第一门限、第二门限…..第M-1门限,所述M个RLC实体集合包括第一RLC实体集合、第二RLC实体集合…..第M RLC实体集合,且所述M大于1的情况下,所述执行模块62用于执行以下任意一项:
当所述主终端缓存的数据量低于所述第一门限时,在第一RLC实体集合进行数据传输;
当所述主终端缓存的数据量高于或等于所述第一门限,且低于所述第二门限时,在所述第一RLC实体集合和所述第二RLC实体集合进行数据传输;
当所述主终端缓存的数据量高于或等于所述第二门限,且低于第三门限时,在所述第一RLC实体集合、所述第二RLC实体集合和第三RLC实体集 合进行数据传输;
以此类推,当所述主终端缓存的数据量高于所述第M-1门限时,在所述M个RLC实体集合进行数据传输。
可选的,所述执行模块62用于执行以下至少一项:
根据所述辅终端的数据传输反馈信息,向所述辅终端分发数据;
根据所述辅终端请求的数据量,向所述辅终端分发数据;
根据所述辅终端反馈的链路质量,向所述辅终端分发数据;
根据所述辅终端发送的能力信息,向所述辅终端分发数据;
根据与所述辅终端的针对数据分流的协商信息,向所述辅终端分发数据;
根据从所述网络侧设备接收到的针对数据分发的控制信息,向所述辅终端分发数据。
可选的,在配置了所述主终端或所述辅终端的第一链路质量门限的情况下,所述执行模块62用于执行以下任意一项:
当所述主终端或所述辅终端的信号测量值高于或者等于所述第一链路质量门限时,在所述主终端的RLC实体和/或传输路径进行数据传输;
当所述主终端或所述辅终端的信号测量值低于所述第一链路质量门限时,在所述主终端的RLC实体和/或传输路径,以及所述辅终端的RLC实体和/或传输路径进行数据传输,或者,在所述辅终端的RLC实体和/或传输路径进行数据传输;
或者,在配置了所述主终端的第二链路质量门限和所述辅终端的第三链路质量门限的情况下,所述执行模块62用于执行以下任意一项:
当满足第一条件,或者不满足第二条件时,在所述主终端的RLC实体和/或传输路径进行数据传输;
当不满足第一条件,或者满足第二条件时,在所述主终端的RLC实体和/或传输路径,以及所述辅终端的RLC实体和/或传输路径进行数据传输,或者,在所述辅终端的RLC实体和/或传输路径进行数据传输;
其中,所述第一条件包括:所述主终端的信号测量值高于或者等于所述第二链路质量门限,且所述辅终端的信号测量值低于所述第三链路质量门限;
所述第二条件包括:所述主终端的信号测量值低于所述第二链路质量门 限,且所述辅终端的信号测量值高于或者等于所述第三链路质量门限。
可选的,在所述主终端的无线承载配置了PDCP复制功能,且激活了所述PDCP复制功能,且所述主终端内包含关联到所述无线承载的PDCP实体的至少两个RLC实体的情况下,所述执行模块62具体用于:通过所述至少两个RLC实体分别利用对应的CC组进行复制数据的传输;
或者,在所述主终端的无线承载配置了PDCP复制功能,且去激活了所述PDCP复制功能,且所述主终端内包含关联到所述无线承载的PDCP实体的至少两个RLC实体的情况下,所述执行模块62具体用于:通过所述主终端的主RLC实体利用所述主终端的全部激活CC进行分发数据的传输。
可选的,所述执行模块62用于执行以下任意一项:
在所述主终端的无线承载配置了PDCP复制功能,所述无线承载包括L条传输路径,且激活了所述L条传输路径的PDCP复制功能的情况下,将待传输的PDCP数据协议数据单元PDU复制L份,并将复制的L份PDCP数据PDU分别在所述L条传输路径进行传输;
在所述主终端的无线承载配置了PDCP复制功能,所述无线承载包括L条传输路径,且激活了所述L条传输路径中的P条传输路径的PDCP复制功能的情况下,将待传输的PDCP数据PDU复制P份,并将复制的P份PDCP数据PDU分别在所述P条传输路径进行传输;
其中,L大于2,L大于P;所述P条传输路径中包括所述无线承载的主传输路径。
可选的,所述执行模块62用于执行以下任意一项:
在所述主终端的UP协议栈架构为PDCP anchor架构的情况下,以PDCP PDU为数据粒度进行数据分发或者数据复制传输;
在所述主终端的UP协议栈架构为RLC anchor架构的情况下,以RLC PDU为数据粒度进行数据分发或者数据复制传输;
在所述主终端的UP协议栈架构为MAC anchor架构的情况下,以MAC PDU为数据粒度进行数据分发或者数据复制传输。
可选的,所述执行模块62用于:
在所述主终端和所述辅终端的上行授权资源的大小不一样时,进行数据 分发;或者,在所述主终端和所述辅终端的上行授权资源的大小一样时,进行数据复制传输。
可选的,数据传输装置60还包括:
第二接收模块,用于从所述网络侧设备接收指示信息;其中,所述指示信息用于指示所述主终端激活或者去激活复制功能。
可选的,所述配置信息用于指示以下至少一项:
为主终端的无线承载配置复制功能,或,不为主终端的无线承载配置复制功能;
复制功能所处的协议层;
主终端的无线承载的主RLC实体;
数据分发的条件;
数据分发的门限;
主终端缓存的数据量的门限;
网络侧设备为主终端配置split承载;
网络侧设备配置的split承载的PDCP实体位于主终端;
网络侧设备配置的split承载的PDCP实体位于主终端,且所述PDCP实体关联至少两个RLC实体,每个所述RLC实体位于不同的主终端或者辅终端;
网络侧设备配置的split承载的类型;
主终端和辅终端之间采取标准化的接口;
主终端和辅终端之间采取非标准化的接口;
主终端和辅终端之间是非理想接口;
主终端和辅终端之间是理想接口;
主终端采用的数据分发方式;
主终端采用的数据复制方式。
本申请实施例中的数据传输装置60可以是电子设备,例如具有操作系统的电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是终端,也可以为除终端之外的其他设备。示例性的,终端可以包括但不限于上述所列举的终端11的类型,其他设备可以为服务器、网络附属存 储器(Network Attached Storage,NAS)等,本申请实施例不作具体限定。
本申请实施例提供的数据传输装置60能够实现图3的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
请参见图7,图7是本申请实施例提供的一种数据传输装置的结构示意图,该装置应用于辅终端,如图7所示,数据传输装置70包括:
第三接收模块71,用于从网络侧设备接收配置信息;其中,辅终端能够和主终端进行数据共同传输;
传输模块72,用于根据所述配置信息,进行数据传输。
可选的,在所述主终端的无线承载配置了PDCP复制功能,且激活了所述PDCP复制功能,且所述辅终端内包含关联到所述无线承载的PDCP实体的至少两个RLC实体的情况下,所述传输模块72具体用于:通过所述至少两个RLC实体分别利用对应的CC组进行复制数据的传输;
或者,在所述主终端的无线承载配置了PDCP复制功能,且去激活了所述PDCP复制功能,且所述辅终端内包含关联到所述无线承载的PDCP实体的至少两个RLC实体的情况下,所述传输模块72具体用于:通过所述辅终端的主RLC实体利用所述辅终端的全部激活CC进行分发数据的传输。
可选的,所述配置信息用于指示以下至少一项:
为主终端的无线承载配置复制功能,或,不为主终端的无线承载配置复制功能;
复制功能所处的协议层;
主终端的无线承载的主RLC实体;
数据分发的条件;
数据分发的门限;
主终端缓存的数据量的门限;
网络侧设备为主终端配置split承载;
网络侧设备配置的split承载的PDCP实体位于主终端;
网络侧设备配置的split承载的PDCP实体位于主终端,且所述PDCP实体关联至少两个RLC实体,每个所述RLC实体位于不同的主终端或者辅终端;
网络侧设备配置的split承载的类型;
主终端和辅终端之间采取标准化的接口;
主终端和辅终端之间采取非标准化的接口;
主终端和辅终端之间是非理想接口;
主终端和辅终端之间是理想接口;
主终端采用的数据分发方式;
主终端采用的数据复制方式。
可选的,所述第三接收模块72还用于:从所述网络侧设备接收调度信息;其中,所述调度信息用于指示为所述辅终端分配的上行授权资源;
数据传输装置70还包括:
第一发送模块,用于根据所述上行授权资源的大小,向所述主终端发送数据请求;
第四接收模块,用于从所述主终端接收第二数据包;其中,所述第二数据包是所述主终端根据所述上行授权资源的大小生成的。
可选的,数据传输装置70还包括:
第二发送模块,用于向所述主终端发送第一信息;
第五接收模块,用于接收所述主终端根据所述第一信息分发的数据;
其中,所述第一信息包括以下至少一项:
数据传输反馈信息;
请求的数据量;
链路质量;
能力信息。
本申请实施例中的数据传输装置70可以是电子设备,例如具有操作系统的电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是终端,也可以为除终端之外的其他设备。示例性的,终端可以包括但不限于上述所列举的终端11的类型,其他设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)等,本申请实施例不作具体限定。
本申请实施例提供的数据传输装置70能够实现图4的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例提供的配置方法,执行主体可以为配置装置。本申请实施例中以配置装置执行配置方法为例,说明本申请实施例提供的配置装置。
上述实施例对主终端和辅终端相关的内容进行了说明,下面将对网络侧设备的配置过程进行说明。
请参见图8,图8是本申请实施例提供的一种配置装置的结构示意图,该装置应用于网络侧设备,如图8所示,配置装置80包括
第三发送模块81,用于向主终端和/或辅终端发送配置信息;
其中,所述主终端能够和所述辅终端进行数据共同传输;所述配置信息用于指示以下至少一项:
为主终端的无线承载配置复制功能,或,不为主终端的无线承载配置复制功能;
复制功能所处的协议层;
主终端的无线承载的主RLC实体;
数据分发的条件;
数据分发的门限;
主终端缓存的数据量的门限;
网络侧设备为主终端配置split承载;
网络侧设备配置的split承载的PDCP实体位于主终端;
网络侧设备配置的split承载的PDCP实体位于主终端,且所述PDCP实体关联至少两个RLC实体,每个所述RLC实体位于不同的主终端或者辅终端;
网络侧设备配置的split承载的类型;
主终端和辅终端之间采取标准化的接口;
主终端和辅终端之间采取非标准化的接口;
主终端和辅终端之间是非理想接口;
主终端和辅终端之间是理想接口;
主终端采用的数据分发方式;
主终端采用的数据复制方式。
可选的,第三发送模块81还用于:向所述主终端发送指示信息;所述指 示信息用于指示所述主终端激活或者去激活复制功能。
可选的,配置装置80还包括
分配模块,用于执行以下至少一项:
根据所述主终端的BSR,为所述主终端和所述辅终端分配上行授权资源;
根据所述主终端的BSR,为所述主终端分配上行授权资源,以及根据所述辅终端的BSR,为所述辅终端分配上行授权资源;
在激活了复制功能的情况下,为所述主终端和辅终端分配相同大小的上行授权资源。
本申请实施例提供的配置装置80能够实现图5的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选的,如图9所示,本申请实施例还提供一种通信设备90,包括处理器91和存储器92,存储器92上存储有可在所述处理器91上运行的程序或指令,例如,该通信设备90为主终端或者辅终端时,该程序或指令被处理器91执行时实现上述数据处理方法实施例的各个步骤,且能达到相同的技术效果。该通信设备90为网络侧设备时,该程序或指令被处理器91执行时实现上述配置方法实施例的各个步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种终端,包括处理器和通信接口,例如,该终端为主终端时,通信接口用于从网络侧设备接收配置信息,并根据所述配置信息,进行数据分发或数据复制传输;或者,该终端为辅终端时,通信接口用于从网络侧设备接收配置信息,并根据所述配置信息,进行数据传输。该终端实施例可以与上述主终端侧方法实施例对应,或者与上述辅终端侧方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该终端实施例中,且能达到相同的技术效果。
具体地,图10为实现本申请实施例的一种终端的硬件结构示意图。
该终端1000包括但不限于:射频单元1001、网络模块1002、音频输出单元1003、输入单元1004、传感器1005、显示单元1006、用户输入单元1007、接口单元1008、存储器1009以及处理器1010等中的至少部分部件。
本领域技术人员可以理解,终端1000还可以包括给各个部件供电的电源 (比如电池),电源可以通过电源管理系统与处理器1010逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图10中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元1004可以包括图形处理单元(Graphics Processing Unit,GPU)10041和麦克风10042,图形处理器10041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元1006可包括显示面板10061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板10061。用户输入单元1007包括触控面板10071以及其他输入设备10072中的至少一种。触控面板10071,也称为触摸屏。触控面板10071可包括触摸检测装置和触摸控制器两个部分。其他输入设备10072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元1001接收来自网络侧设备的下行数据后,可以传输给处理器1010进行处理;另外,射频单元1001可以向网络侧设备发送上行数据。通常,射频单元1001包括但不限于天线、放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器1009可用于存储软件程序或指令以及各种数据。存储器1009可主要包括存储程序或指令的第一存储区和存储数据的第二存储区,其中,第一存储区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器1009可以包括易失性存储器或非易失性存储器,或者,存储器1009可以包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous  DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请实施例中的存储器1009包括但不限于这些和任意其它适合类型的存储器。
处理器1010可包括一个或多个处理单元;可选的,处理器1010集成应用处理器和调制解调处理器,其中,应用处理器主要处理涉及操作系统、用户界面和应用程序等的操作,调制解调处理器主要处理无线通信信号,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器1010中。
可选的,终端1000为主终端时,射频单元1001用于:从网络侧设备接收配置信息,并根据所述配置信息,进行数据分发或数据复制传输;或者,终端1000为辅终端时,射频单元1001用于:从网络侧设备接收配置信息,并根据所述配置信息,进行数据传输。
可理解的,终端1000为主终端时,该终端实施例与上述主终端侧方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该终端实施例中,且能达到相同的技术效果。或者,终端1000为辅终端时,该终端实施例与上述辅终端侧方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该终端实施例中,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种网络侧设备,包括处理器和通信接口,通信接口用于向主终端和/或辅终端发送配置信息。该网络侧设备实施例与上述网络侧设备方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该网络侧设备实施例中,且能达到相同的技术效果。
具体地,本申请实施例还提供了一种网络侧设备。如图11所示,该网络侧设备110包括:天线111、射频装置112、基带装置113、处理器114和存储器115。天线111与射频装置112连接。在上行方向上,射频装置112通过天线111接收信息,将接收的信息发送给基带装置113进行处理。在下行方向上,基带装置113对要发送的信息进行处理,并发送给射频装置112,射频 装置112对收到的信息进行处理后经过天线111发送出去。
以上实施例中网络侧设备执行的方法可以在基带装置113中实现,该基带装置113包括基带处理器。
基带装置113例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图11所示,其中一个芯片例如为基带处理器,通过总线接口与存储器115连接,以调用存储器115中的程序,执行以上方法实施例中所示的网络设备操作。
该网络侧设备还可以包括网络接口116,该接口例如为通用公共无线接口(Common Public Radio Interface,CPRI)。
具体地,本发明实施例的网络侧设备110还包括:存储在存储器115上并可在处理器114上运行的指令或程序,处理器114调用存储器115中的指令或程序执行图8所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述数据传输方法实施例的各个过程,或者实现上述配置方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,该处理器为上述实施例中所述的终端中的处理器。该可读存储介质,包括计算机可读存储介质,如计算机只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述数据传输方法实施例的各个过程,或者实现上述配置方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
本申请实施例另提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现上述数据传输方法实施例的各个过程,或者实现上述配置方法实施例 的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供了一种通信系统,包括:主终端、辅终端及网络侧设备,所述主终端可用于执行图3所述的信息上报方法的步骤,所述辅终端可用于执行图4所述的信息上报方法的步骤,所述网络侧设备可用于执行图5所述的配置方法的步骤。
本申请实施例还提供了一种通信设备,被配置为执行如上述图3所述的信息上报方法的步骤,或图4所述的信息上报方法的步骤,或图5所述的配置方法的步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求 所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (29)

  1. 一种数据传输方法,包括:
    主终端从网络侧设备接收配置信息;其中,所述主终端能够和辅终端进行数据共同传输;
    所述主终端根据所述配置信息,进行数据分发或数据复制传输。
  2. 根据权利要求1所述的方法,其中,所述进行数据分发或数据复制传输之前,所述方法还包括以下至少一项:
    所述主终端将待传输数据缓存在自身的缓存器中;
    所述主终端根据自身的缓存数据量,进行缓存状态报告BSR的上报过程。
  3. 根据权利要求1或2所述的方法,其中,所述进行数据分发或数据复制传输,包括以下至少一项:
    所述主终端根据所述网络侧设备为其分配的上行授权资源的大小,通过数据分发或复制的方式生成第一数据包,并发送所述第一数据包;
    所述主终端接收所述辅终端根据其上行授权资源的大小发送的数据请求,并根据所述上行授权资源的大小且通过数据分发或复制的方式生成第二数据包,向所述辅终端发送所述第二数据包;
    所述主终端接收所述辅终端的调度信息,根据所述调度信息确定所述辅终端的上行授权资源的大小,根据所述上行授权资源的大小且通过数据分发或复制的方式生成第三数据包,并向所述辅终端发送所述第三数据包;
    所述主终端根据其用户面UP协议栈架构,通过数据分发或复制的方式向所述辅终端发送第四数据包。
  4. 根据权利要求1所述的方法,其中,所述进行数据分发,包括:
    在具有M-1个数据量门限和M个无线链路层控制RLC实体集合,所述M-1个数据量门限包括第一门限、第二门限…..第M-1门限,所述M个RLC实体集合包括第一RLC实体集合、第二RLC实体集合…..第M RLC实体集合,且所述M大于1的情况下,所述主终端执行以下任意一项:
    当所述主终端缓存的数据量低于所述第一门限时,在所述第一RLC实体集合进行数据传输;
    当所述主终端缓存的数据量高于或等于所述第一门限,且低于所述第二门限时,在所述第一RLC实体集合和所述第二RLC实体集合进行数据传输;
    当所述主终端缓存的数据量高于或等于所述第二门限,且低于第三门限时,在所述第一RLC实体集合、所述第二RLC实体集合和第三RLC实体集合进行数据传输;
    以此类推,当所述主终端缓存的数据量高于所述第M-1门限时,在所述M个RLC实体集合进行数据传输。
  5. 根据权利要求1所述的方法,其中,所述进行数据分发,包括以下至少一项:
    所述主终端根据所述辅终端的数据传输反馈信息,向所述辅终端分发数据;
    所述主终端根据所述辅终端请求的数据量,向所述辅终端分发数据;
    所述主终端根据所述辅终端反馈的链路质量,向所述辅终端分发数据;
    所述主终端根据所述辅终端发送的能力信息,向所述辅终端分发数据;
    所述主终端根据与所述辅终端的针对数据分流的协商信息,向所述辅终端分发数据;
    所述主终端根据从所述网络侧设备接收到的针对数据分发的控制信息,向所述辅终端分发数据。
  6. 根据权利要求1所述的方法,其中,所述进行数据分发,包括:
    在配置了所述主终端或所述辅终端的第一链路质量门限的情况下,所述主终端执行以下任意一项:
    当所述主终端或所述辅终端的信号测量值高于或者等于所述第一链路质量门限时,在所述主终端的RLC实体和/或传输路径进行数据传输;
    当所述主终端或所述辅终端的信号测量值低于所述第一链路质量门限时,在所述主终端的RLC实体和/或传输路径,以及所述辅终端的RLC实体和/或传输路径进行数据传输,或者,在所述辅终端的RLC实体和/或传输路径进行数据传输;
    或者,
    在配置了所述主终端的第二链路质量门限和所述辅终端的第三链路质量 门限的情况下,所述主终端执行以下任意一项:
    当满足第一条件,或者不满足第二条件时,在所述主终端的RLC实体和/或传输路径进行数据传输;
    当不满足第一条件,或者满足第二条件时,在所述主终端的RLC实体和/或传输路径,以及所述辅终端的RLC实体和/或传输路径进行数据传输,或者,在所述辅终端的RLC实体和/或传输路径进行数据传输;
    其中,所述第一条件包括:所述主终端的信号测量值高于或者等于所述第二链路质量门限,且所述辅终端的信号测量值低于所述第三链路质量门限;
    所述第二条件包括:所述主终端的信号测量值低于所述第二链路质量门限,且所述辅终端的信号测量值高于或者等于所述第三链路质量门限。
  7. 根据权利要求1所述的方法,其中,所述进行数据分发或数据复制传输,包括以下任意一项:
    在所述主终端的无线承载配置了包数据汇聚协议PDCP复制功能,且激活了所述PDCP复制功能,且所述主终端内包含关联到所述无线承载的PDCP实体的至少两个RLC实体的情况下,所述主终端的所述至少两个RLC实体分别利用其对应的成员载波CC组进行复制数据的传输;
    在所述主终端的无线承载配置了PDCP复制功能,且去激活了所述PDCP复制功能,且所述主终端内包含关联到所述无线承载的PDCP实体的至少两个RLC实体的情况下,所述主终端的主RLC实体利用所述主终端的全部激活CC进行分发数据的传输。
  8. 根据权利要求1所述的方法,其中,所述进行数据复制传输,包括以下任意一项:
    在所述主终端的无线承载配置了PDCP复制功能,所述无线承载包括L条传输路径,且激活了所述L条传输路径的PDCP复制功能的情况下,所述主终端将待传输的PDCP数据协议数据单元PDU复制L份,并将复制的L份PDCP数据PDU分别在所述L条传输路径进行传输;
    在所述主终端的无线承载配置了PDCP复制功能,所述无线承载包括L条传输路径,且激活了所述L条传输路径中的P条传输路径的PDCP复制功能的情况下,所述主终端将待传输的PDCP数据PDU复制P份,并将复制的 P份PDCP数据PDU分别在所述P条传输路径进行传输;
    其中,所述L大于2,所述L大于所述P;所述P条传输路径中包括所述无线承载的主传输路径。
  9. 根据权利要求1所述的方法,其中,所述进行数据分发或数据复制传输,包括以下任意一项:
    在所述主终端的UP协议栈架构为PDCP锚点anchor架构的情况下,所述主终端以PDCP PDU为数据粒度进行数据分发或者数据复制传输;
    在所述主终端的UP协议栈架构为RLC anchor架构的情况下,所述主终端以RLC PDU为数据粒度进行数据分发或者数据复制传输;
    在所述主终端的UP协议栈架构为MAC anchor架构的情况下,所述主终端以MAC PDU为数据粒度进行数据分发或者数据复制传输。
  10. 根据权利要求1所述的方法,其中,所述进行数据分发或数据复制传输,包括:
    在所述主终端和所述辅终端的上行授权资源的大小不一样时,所述主终端进行数据分发;
    或者,
    在所述主终端和所述辅终端的上行授权资源的大小一样时,所述主终端进行数据复制传输。
  11. 根据权利要求1所述的方法,其中,所述方法还包括:
    所述主终端从所述网络侧设备接收指示信息;其中,所述指示信息用于指示所述主终端激活或者去激活复制功能。
  12. 根据权利要求1所述的方法,其中,所述配置信息用于指示以下至少一项:
    为主终端的无线承载配置复制功能,或,不为主终端的无线承载配置复制功能;
    复制功能所处的协议层;
    主终端的无线承载的主RLC实体;
    数据分发的条件;
    数据分发的门限;
    主终端缓存的数据量的门限;
    网络侧设备为主终端配置分发split承载;
    网络侧设备配置的split承载的PDCP实体位于主终端;
    网络侧设备配置的split承载的PDCP实体位于主终端,且所述PDCP实体关联至少两个RLC实体,每个所述RLC实体位于不同的主终端或者辅终端;
    网络侧设备配置的split承载的类型;
    主终端和辅终端之间采取标准化的接口;
    主终端和辅终端之间采取非标准化的接口;
    主终端和辅终端之间是非理想接口;
    主终端和辅终端之间是理想接口;
    主终端采用的数据分发方式;
    主终端采用的数据复制方式。
  13. 一种数据传输方法,包括:
    辅终端从网络侧设备接收配置信息;其中,所述辅终端能够和主终端进行数据共同传输;
    所述辅终端根据所述配置信息,进行数据传输。
  14. 根据权利要求13所述的方法,其中,所述进行数据传输,包括:
    在所述主终端的无线承载配置了PDCP复制功能,且激活了所述PDCP复制功能,且所述辅终端内包含关联到所述无线承载的PDCP实体的至少两个RLC实体的情况下,所述辅终端的所述至少两个RLC实体分别利用其对应的CC组进行复制数据的传输;
    或者,
    在所述主终端的无线承载配置了PDCP复制功能,且去激活了所述PDCP复制功能,且所述辅终端内包含关联到所述无线承载的PDCP实体的至少两个RLC实体的情况下,所述辅终端的主RLC实体利用所述辅终端的全部激活CC进行分发数据的传输。
  15. 根据权利要求13所述的方法,其中,所述配置信息用于指示以下至少一项:
    为主终端的无线承载配置复制功能,或,不为主终端的无线承载配置复制功能;
    复制功能所处的协议层;
    主终端的无线承载的主RLC实体;
    数据分发的条件;
    数据分发的门限;
    主终端缓存的数据量的门限;
    网络侧设备为主终端配置split承载;
    网络侧设备配置的split承载的PDCP实体位于主终端;
    网络侧设备配置的split承载的PDCP实体位于主终端,且所述PDCP实体关联至少两个RLC实体,每个所述RLC实体位于不同的主终端或者辅终端;
    网络侧设备配置的split承载的类型;
    主终端和辅终端之间采取标准化的接口;
    主终端和辅终端之间采取非标准化的接口;
    主终端和辅终端之间是非理想接口;
    主终端和辅终端之间是理想接口;
    主终端采用的数据分发方式;
    主终端采用的数据复制方式。
  16. 根据权利要求13所述的方法,其中,所述方法还包括:
    所述辅终端从所述网络侧设备接收调度信息;其中,所述调度信息用于指示为所述辅终端分配的上行授权资源;
    所述辅终端根据所述上行授权资源的大小,向所述主终端发送数据请求;
    所述辅终端从所述主终端接收第二数据包;其中,所述第二数据包是所述主终端根据所述上行授权资源的大小生成的。
  17. 根据权利要求13所述的方法,其中,所述方法还包括:
    所述辅终端向所述主终端发送第一信息;
    所述辅终端接收所述主终端根据所述第一信息分发的数据;
    其中,所述第一信息包括以下至少一项:
    数据传输反馈信息;
    请求的数据量;
    链路质量;
    能力信息。
  18. 一种配置方法,包括:
    网络侧设备向主终端和/或辅终端发送配置信息;
    其中,所述主终端能够和所述辅终端进行数据共同传输;所述配置信息用于指示以下至少一项:
    为主终端的无线承载配置复制功能,或,不为主终端的无线承载配置复制功能;
    复制功能所处的协议层;
    主终端的无线承载的主RLC实体;
    数据分发的条件;
    数据分发的门限;
    主终端缓存的数据量的门限;
    网络侧设备为主终端配置split承载;
    网络侧设备配置的split承载的PDCP实体位于主终端;
    网络侧设备配置的split承载的PDCP实体位于主终端,且所述PDCP实体关联至少两个RLC实体,每个所述RLC实体位于不同的主终端或者辅终端;
    网络侧设备配置的split承载的类型;
    主终端和辅终端之间采取标准化的接口;
    主终端和辅终端之间采取非标准化的接口;
    主终端和辅终端之间是非理想接口;
    主终端和辅终端之间是理想接口;
    主终端采用的数据分发方式;
    主终端采用的数据复制方式。
  19. 根据权利要求18所述的方法,其中,所述方法还包括:
    所述网络侧设备向所述主终端发送指示信息;所述指示信息用于指示所 述主终端激活或者去激活复制功能。
  20. 根据权利要求18或19所述的方法,其中,所述方法还包括以下至少一项:
    所述网络侧设备根据所述主终端的BSR,为所述主终端和所述辅终端分配上行授权资源;
    所述网络侧设备根据所述主终端的BSR,为所述主终端分配上行授权资源,以及根据所述辅终端的BSR,为所述辅终端分配上行授权资源;
    在激活了复制功能的情况下,所述网络侧设备为所述主终端和所述辅终端分配相同大小的上行授权资源。
  21. 一种数据传输装置,应用于主终端,包括:
    第一接收模块,用于从网络侧设备接收配置信息;其中,所述主终端能够和辅终端进行数据共同传输;
    执行模块,用于根据所述配置信息,进行数据分发或数据复制传输。
  22. 一种数据传输装置,包括:
    第三接收模块,用于从网络侧设备接收配置信息;其中,辅终端能够和主终端进行数据共同传输;
    传输模块,用于根据所述配置信息,进行数据传输。
  23. 一种配置装置,包括:
    第三发送模块,用于向主终端和/或辅终端发送配置信息;
    其中,所述主终端能够和所述辅终端进行数据共同传输;所述配置信息用于指示以下至少一项:
    为主终端的无线承载配置复制功能,或,不为主终端的无线承载配置复制功能;
    复制功能所处的协议层;
    主终端的无线承载的主RLC实体;
    数据分发的条件;
    数据分发的门限;
    主终端缓存的数据量的门限;
    网络侧设备为主终端配置split承载;
    网络侧设备配置的split承载的PDCP实体位于主终端;
    网络侧设备配置的split承载的PDCP实体位于主终端,且所述PDCP实体关联至少两个RLC实体,每个所述RLC实体位于不同的主终端或者辅终端;
    网络侧设备配置的split承载的类型;
    主终端和辅终端之间采取标准化的接口;
    主终端和辅终端之间采取非标准化的接口;
    主终端和辅终端之间是非理想接口;
    主终端和辅终端之间是理想接口;
    主终端采用的数据分发方式;
    主终端采用的数据复制方式。
  24. 一种终端,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至12任一项所述的数据传输方法的步骤,或者如权利要求13至17任一项所述的数据传输方法的步骤。
  25. 一种网络侧设备,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求18至20任一项所述的配置方法的步骤。
  26. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1至12任一项所述的数据传输方法的步骤,或者如权利要求13至17任一项所述的数据传输方法的步骤,或者如权利要求18至20任一项所述的配置方法的步骤。
  27. 一种芯片,包括处理器和通信接口,其中,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如权利要求1至12任一项所述的数据传输方法的步骤,或者如权利要求13至17任一项所述的数据传输方法的步骤,或者如权利要求18至20任一项所述的配置方法的步骤。
  28. 一种计算机程序产品,其中,所述程序产品被存储在非易失的存储介质中,所述程序产品被至少一个处理器执行以实现如权利要求1至12任一项所述的数据传输方法的步骤,或者如权利要求13至17任一项所述的数据 传输方法的步骤,或者如权利要求18至20任一项所述的配置方法的步骤。
  29. 一种通信设备,被配置为执行如权利要求1-12中任一项所述的数据传输方法的步骤,或者执行如权利要求13-17中任一项所述的数据传输方法的步骤,或者执行如权利要求18-20中任一项所述的数据传输方法的步骤。
PCT/CN2022/132859 2021-11-24 2022-11-18 数据传输方法、配置方法、装置、终端及网络侧设备 WO2023093635A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111406554.8 2021-11-24
CN202111406554.8A CN116170897A (zh) 2021-11-24 2021-11-24 数据传输方法、配置方法、装置、终端及网络侧设备

Publications (1)

Publication Number Publication Date
WO2023093635A1 true WO2023093635A1 (zh) 2023-06-01

Family

ID=86416887

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/132859 WO2023093635A1 (zh) 2021-11-24 2022-11-18 数据传输方法、配置方法、装置、终端及网络侧设备

Country Status (2)

Country Link
CN (1) CN116170897A (zh)
WO (1) WO2023093635A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104754491A (zh) * 2013-12-26 2015-07-01 索尼公司 移动终端、以及移动终端之间协作传输的实现方法
CN110234114A (zh) * 2019-04-23 2019-09-13 中国移动通信集团内蒙古有限公司 数据传输方法、装置、设备、介质和系统
CN113455042A (zh) * 2019-07-29 2021-09-28 Oppo广东移动通信有限公司 无线通信的方法、终端设备和网络设备
CN115278546A (zh) * 2021-04-30 2022-11-01 维沃移动通信有限公司 数据传输方法、相关设备及可读存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104754491A (zh) * 2013-12-26 2015-07-01 索尼公司 移动终端、以及移动终端之间协作传输的实现方法
CN112954741A (zh) * 2013-12-26 2021-06-11 索尼公司 移动终端、以及移动终端之间协作传输的实现方法
CN110234114A (zh) * 2019-04-23 2019-09-13 中国移动通信集团内蒙古有限公司 数据传输方法、装置、设备、介质和系统
CN113455042A (zh) * 2019-07-29 2021-09-28 Oppo广东移动通信有限公司 无线通信的方法、终端设备和网络设备
CN115278546A (zh) * 2021-04-30 2022-11-01 维沃移动通信有限公司 数据传输方法、相关设备及可读存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "UE Aggregation", 3GPP DRAFT; RWS-210451, vol. TSG RAN, 7 June 2021 (2021-06-07), pages 1 - 3, XP052026003 *

Also Published As

Publication number Publication date
CN116170897A (zh) 2023-05-26

Similar Documents

Publication Publication Date Title
US10993277B2 (en) Enhanced PDCP duplication handling and RLC failure handling
WO2019096206A1 (zh) 无线通信系统中的装置和方法、计算机可读存储介质
CN110856189B (zh) 数据传输方法及装置
US11212698B2 (en) Communication method and communications device
US11729846B2 (en) Method for activating packet data convergence protocol duplication and node device
WO2018127219A1 (zh) 一种减少中断时延的方法、装置及用户设备
WO2022143508A1 (zh) 一种近场中传输数据的方法、设备及系统
WO2021026707A1 (zh) 一种去激活iab节点的方法及装置
KR20230098855A (ko) 원격단말 서비스 식별 방법, 장치, 기기 및 저장 매체
CN111224869A (zh) 基站及主通信装置
WO2022057825A1 (zh) 聚合配置方法、装置及终端
WO2022068714A1 (zh) 传输配置的方法、装置和设备
WO2021026706A1 (zh) 一种f1接口管理方法及装置
WO2021088006A1 (zh) 通信方法和通信装置
WO2023093635A1 (zh) 数据传输方法、配置方法、装置、终端及网络侧设备
WO2022078394A1 (zh) 多播业务的传输方法、装置及通信设备
WO2023093636A1 (zh) 信息上报方法、配置方法、装置、终端及网络侧设备
WO2024099093A1 (zh) 数据传输方法、装置、终端、网络侧设备及系统
WO2024120351A1 (zh) 消息传输方法、装置、ue及存储介质
WO2023179658A1 (zh) 路径建立方法及装置、终端及网络侧设备
WO2024131591A1 (zh) 信息传输方法、装置及通信设备
WO2023246619A1 (zh) 共享信道的方法、设备及可读存储介质
WO2023011286A1 (zh) 反馈方法、相关设备及可读存储介质
WO2024051656A1 (zh) 副链路sl复制传输方法、终端及网络侧设备
WO2022206505A1 (zh) 业务数据处理方法、装置及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22897718

Country of ref document: EP

Kind code of ref document: A1