WO2021026707A1 - 一种去激活iab节点的方法及装置 - Google Patents

一种去激活iab节点的方法及装置 Download PDF

Info

Publication number
WO2021026707A1
WO2021026707A1 PCT/CN2019/100097 CN2019100097W WO2021026707A1 WO 2021026707 A1 WO2021026707 A1 WO 2021026707A1 CN 2019100097 W CN2019100097 W CN 2019100097W WO 2021026707 A1 WO2021026707 A1 WO 2021026707A1
Authority
WO
WIPO (PCT)
Prior art keywords
iab node
deactivated state
deactivation
base station
donor base
Prior art date
Application number
PCT/CN2019/100097
Other languages
English (en)
French (fr)
Inventor
卓义斌
刘菁
朱元萍
戴明增
史玉龙
曹振臻
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201980096385.7A priority Critical patent/CN113826410B/zh
Priority to PCT/CN2019/100097 priority patent/WO2021026707A1/zh
Publication of WO2021026707A1 publication Critical patent/WO2021026707A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/02Processing of mobility data, e.g. registration information at HLR [Home Location Register] or VLR [Visitor Location Register]; Transfer of mobility data, e.g. between HLR, VLR or external networks
    • H04W8/08Mobility data transfer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • This application relates to the field of communication technologies, and in particular to a method and device for deactivating an IAB node.
  • the fifth-generation mobile communication system (5th-generation, 5G) introduces integrated access and backhaul (IAB) network technology, the access link and backhaul link in the IAB network (backhaul link) All adopt wireless transmission schemes to avoid fiber deployment, thereby reducing deployment costs and improving deployment flexibility.
  • IAB integrated access and backhaul
  • the IAB network it includes an IAB node (IAB node) and a donor base station (donor gNodeB, DgNB).
  • the terminal side device can access the IAB node, so the service data of the terminal side device can be transmitted by the IAB node connected to the IAB donor base station through a wireless backhaul link.
  • the business data transmitted by the IAB node fluctuates greatly in different time periods.
  • the IAB node regardless of whether there is business data transmission on the IAB node, the IAB node is always active, causing a lot of power consumption waste.
  • the embodiments of the present application provide a method and device for deactivating an IAB node, which are used to solve the problem of waste of power consumption of an IAB node in the prior art.
  • a method for deactivating an IAB node includes: the IAB node receives a deactivation instruction from a donor base station; and the IAB node enters a deactivation state according to the deactivation instruction.
  • the IAB node enters the deactivation state based on the deactivation instruction received from the donor base station, which can achieve the effect of power saving of the IAB node.
  • the IAB node may include a mobile terminal MT part and a distributed unit DU part; the deactivation indication may be used to instruct the MT to enter a deactivated state.
  • the MT enters the deactivated state according to the deactivation instruction. In this way, the MT can be brought into a deactivated state, the power consumption of the IAB node in the MT part can be reduced, and the power saving effect of the IAB node can be realized.
  • the DU can also be deactivated in the following ways.
  • the deactivation instruction is further used to instruct the DU to enter the deactivation state; the IAB node enters the deactivation state according to the deactivation instruction, and further includes: the DU enters the deactivation state according to the deactivation instruction state.
  • This method can make the DU enter the deactivated state, further reduce the power consumption of the IAB node, and achieve a better power saving effect of the IAB node.
  • Manner 2 After the MT receives the deactivation instruction from the donor base station, the MT may also send first indication information to the DU; wherein, the first indication information is used to indicate that the DU enters the deactivation state. Correspondingly, the DU enters the deactivated state according to the first indication information. This method can also make the DU enter the deactivated state, further reduce the power consumption of the IAB node, and achieve a better power saving effect of the IAB node.
  • the deactivation indication may be carried in a radio resource control release RRC Release message.
  • the IAB node includes a mobile terminal MT part and a distributed unit DU part; the deactivation indication is used to instruct the DU to enter a deactivated state.
  • the DU enters the deactivated state according to the deactivation instruction. In this way, the DU can be brought into the deactivated state, the power consumption of the IAB node in the DU part can be reduced, and the power saving effect of the IAB node can be realized.
  • the MT can also enter the deactivated state through the following several ways.
  • the deactivation instruction is also used to instruct the MT to enter the deactivated state; correspondingly, the MT enters the deactivated state according to the deactivation instruction. This method can make the MT enter the deactivated state, further reduce the power consumption of the IAB node, and achieve a better power saving effect of the IAB node.
  • Manner 2 After the DU receives the deactivation instruction from the donor base station, the DU sends second instruction information to the MT; wherein, the second instruction information is used to instruct the MT to enter the deactivation state. Correspondingly, the MT enters the deactivated state according to the second indication information. This method can also make the MT enter the deactivated state, further reduce the power consumption of the IAB node, and achieve better power saving effect of the IAB node.
  • the deactivation indication may be carried in the F1-AP message on the F1 interface between the donor base station and the IAB node.
  • the deactivation indication may be used to instruct the DU to deactivate one or more cells of the DU.
  • the DU may deactivate the one or more cells of the DU according to the deactivation instruction, and when the number of deactivated cells of the DU reaches the first number, the DU enters a deactivated state. This method can make the DU enter the deactivated state, reduce the power consumption of the IAB node, and realize the power saving effect of the IAB node.
  • the MT After the DU receives the deactivation indication from the donor base station, the MT enters the deactivation state when determining that the deactivated cells of the DU reach the first number. This method can make the MT enter the deactivated state, further reduce the power consumption of the IAB node, and achieve a better power saving effect of the IAB node.
  • the deactivation of one or more cells by the DU may be to stop the service of the one or more cells.
  • the one or more cells may be one or a combination of the following methods: the one or more cells only send one or more of SSB, MIB, and SIB1, and only receive random access pilot signals ; Adjust the communication bandwidth of the one or more cells; adjust the bandwidth part BWP used by the one or more cells; the one or more cells use the longest period of synchronization signal block sending configuration STC to send the synchronization signal block SSB.
  • the DU may also instruct the donor base station to release the F1 connection between the donor base station and the DU. In this way, the power consumption of the donor base station can be reduced.
  • the MT may suspend the MT's backhaul link BH radio link control RLC channel, and/or the MT suspends backhaul adaptation Protocol layer BAP configuration information.
  • the MT resumes the RRC connection, it can continue to use the previously suspended backhaul link BH radio link of the MT to control the RLC channel and/or BAP configuration information to quickly resume data communication.
  • the first mode when the DU enters the deactivated state, the first mode may be used to enter the deactivated state, or the second mode may be used to enter the deactivated state, which is not limited in this embodiment of the application.
  • the first mode is: one or more cells of the DU stop serving.
  • the second mode includes one or more of the following: the DU only transmits one or more of SSB, MIB, and SIB1, and only receives random access pilot signals; the DU adjusts one of the DUs Or the communication bandwidth of multiple cells; the DU adjusts the bandwidth part BWP used by one or more cells of the DU; one or more cells of the DU use the longest period of synchronization signal block transmission configuration STC transmission synchronization Signal block SSB.
  • This mode provides multiple modes for the DU to enter the deactivated state, which improves the flexibility of the solution.
  • the deactivation indication is also used to indicate the first mode or the second mode adopted by the DU to enter the deactivated state. In this way, the amount of information transmission between the base station and the IAB node can be reduced, system resources can be saved, and the communication rate can be increased.
  • a method for deactivating an IAB node including: a donor base station determines that an IAB node needs to be deactivated; and a deactivation instruction sent by the donor base station to the IAB to make the IAB node enter a deactivated state.
  • the donor base station may also receive a deactivation request from the IAB node before determining that the IAB node needs to be deactivated.
  • the donor base station determines that the IAB node needs to be deactivated according to the deactivation request.
  • the IAB node may include a mobile terminal MT part and a distributed unit DU part; the deactivation indication may be carried in the RRC Release message to indicate that the MT enters the deactivated state, or it may carry The F1-AP message on the F1 interface between the donor base station and the IAB node is used to instruct the DU to enter the deactivated state.
  • a device for deactivating an IAB node including: a receiving unit, configured to receive a deactivation instruction from a donor base station; and a processing unit, configured to control the device to enter a deactivated state according to the deactivation instruction.
  • the device includes a mobile terminal MT part and a distributed unit DU part; the processing unit is used to control the MT to enter a deactivated state according to the deactivation instruction.
  • the deactivation instruction is further used to instruct the DU to enter the deactivated state; the processing unit is further used to: control the DU to enter the deactivated state according to the deactivation instruction.
  • the processing unit is configured to: after the receiving unit receives a deactivation instruction from the donor base station, control the MT to send first instruction information to the DU; wherein, the first instruction information It is used to instruct the DU to enter the deactivated state; the processing unit is further used to control the DU to enter the deactivated state according to the first indication information.
  • the deactivation indication is carried in a radio resource control release RRC Release message.
  • the IAB includes a mobile terminal MT part and a distributed unit DU part; the deactivation indication is used to instruct the DU to enter the deactivation state; the processing unit is used to: according to the deactivation Instruct to control the DU to enter the deactivated state.
  • the deactivation instruction is further used to instruct the MT to enter the deactivated state; the processing unit is further used to: control the MT to enter the deactivated state according to the deactivation instruction.
  • the processing unit is further configured to: after the receiving unit receives a deactivation instruction from the donor base station, control the DU to send second instruction information to the MT; wherein, the second instruction The information is used to instruct the MT to enter the deactivated state; the processing unit is further used to control the MT to enter the deactivated state according to the second indication information.
  • the deactivation indication is carried in an F1-AP message on the F1 interface between the donor base station and the device.
  • the deactivation indication is used to instruct the DU to deactivate one or more cells of the DU; the processing unit is used to: deactivate the one or more cells of the DU When the deactivated cells of the DU reach the first number, it is determined that the DU enters the deactivated state.
  • the processing unit is further configured to: after the receiving unit receives a deactivation instruction from the donor base station, when it is determined that the deactivated cells of the DU reach the first number, control the MT enters the deactivated state.
  • the processing unit when one or more cells are deactivated, is specifically configured to: stop the service of the one or more cells; or control the one or more cells to only send SSB and MIB One or more of SIB1 and SIB1, and only receive random access pilot signals; or adjust the communication bandwidth of the one or more cells; or adjust the bandwidth part BWP used by the one or more cells; or Control the one or more cells to use the longest period of synchronization signal block transmission configuration STC to transmit the synchronization signal block SSB.
  • the processing unit is further configured to: after controlling the DU to enter the deactivated state, control the DU to instruct the donor base station to release the F1 connection between the donor base station and the DU.
  • the processing unit when the processing unit controls the MT to enter the deactivated state, it is specifically configured to: control the MT to suspend the MT's backhaul link BH radio link control RLC channel and/or The BAP configuration information of the adaptation protocol layer is returned.
  • the processing unit when the processing unit controls the DU to enter the deactivated state, it is specifically configured to: control the DU to enter the deactivated state in a first mode, and the first mode is: One or more cells stop serving; or, control the DU to enter a deactivated state in a second mode, where the second mode includes one or more of the following: the DU sends only one of SSB, MIB, and SIB1 Or multiple types, and only receive random access pilot signals; the DU adjusts the communication bandwidth of one or more cells of the DU; the DU adjusts the bandwidth part BWP used by one or more cells of the DU ; One or more cells of the DU use the longest period of synchronization signal block sending configuration STC to send the synchronization signal block SSB.
  • the deactivation indication is also used to indicate the first mode or the second mode adopted by the DU to enter the deactivated state.
  • an apparatus for deactivating an IAB node which includes: a processing unit, configured to determine that the IAB node needs to be deactivated; and a sending unit, configured to send a deactivation instruction to the IAB to enable the IAB node to enter Deactivated state.
  • the device further includes a receiving unit, configured to receive a deactivation request from the IAB node before the processing unit determines that the IAB node needs to be deactivated; the processing unit is specifically configured to: According to the deactivation request, it is determined that the IAB node needs to be deactivated.
  • the IAB node includes a mobile terminal MT part and a distributed unit DU part; the deactivation instruction is carried in a radio resource control release RRC Release message to instruct the MT to enter the deactivated state; or The deactivation instruction is carried in the F1-AP message on the F1 interface between the device and the IAB node, and is used to instruct the DU to enter the deactivated state.
  • RRC Release message to instruct the MT to enter the deactivated state
  • the deactivation instruction is carried in the F1-AP message on the F1 interface between the device and the IAB node, and is used to instruct the DU to enter the deactivated state.
  • a communication device including: at least one processor; and a memory and/or a communication interface communicatively connected to the at least one processor; wherein the memory stores the memory that can be used by the at least one processor. Executing instructions, the at least one processor executes the method described in the first aspect or the second aspect of the embodiments of the present application by executing the instructions stored in the memory.
  • a computer-readable storage medium stores a computer program
  • the computer program includes program instructions that, when executed by a computer, cause the computer to execute the application The method described in the first aspect or the second aspect of the embodiment.
  • a computer program product contains instructions that, when run on a computer, cause the computer to execute the method described in the first aspect or the second aspect of the embodiments of the present application .
  • FIG. 1 is a network architecture diagram of an IAB network in an embodiment of this application.
  • FIG. 2 is a network architecture diagram of another IAB network in the implementation of this application.
  • FIG. 3 is a flowchart of a method for deactivating an IAB node in the implementation of this application
  • FIG. 4 is a flowchart of another method for deactivating an IAB node in the implementation of this application.
  • FIG. 5 is a flowchart of another method for deactivating an IAB node in the implementation of this application.
  • Fig. 6 is a flowchart of another method for deactivating an IAB node in the implementation of this application.
  • FIG. 7 is a schematic structural diagram of an apparatus for deactivating an IAB node in the implementation of this application.
  • FIG. 8 is a schematic structural diagram of another device for deactivating an IAB node in the implementation of this application.
  • FIG. 9 is a schematic structural diagram of a communication device in the implementation of this application.
  • the fifth-generation mobile communication (5th-Generation, 5G) system puts forward more stringent requirements for various performance indicators of the network. For example, the capacity index is increased by 1000 times, wider coverage requirements, ultra-high reliability and ultra-low latency, etc.
  • the capacity index is increased by 1000 times, wider coverage requirements, ultra-high reliability and ultra-low latency, etc.
  • the use of high-frequency small stations to network is becoming more and more popular.
  • the high-frequency carrier has poor propagation characteristics, severe attenuation due to obstruction, and limited coverage, so a large number of densely deployed small stations are required.
  • the integrated access and backhaul (IAB) node can provide wireless access and backhaul services for the UE.
  • the service data of the UE can be connected to the host by one or more IAB nodes through the wireless backhaul link Base station (donor gNodeB, DgNB) transmission.
  • Donor gNodeB, DgNB wireless backhaul link Base station
  • An IAB node may include two parts, an MT part and a DU.
  • the IAB node faces its parent node (that is, the previous hop node of the IAB node)
  • it can be regarded as a terminal device, that is, as the role of MT;
  • the IAB faces its child node (that is, the next hop node of the IAB node)
  • the child node may be another IAB node, or it may be a UE
  • it can be regarded as a network device providing backhaul services for the child node, that is, it acts as a DU.
  • the DU of the IAB node is similar to the function of the DU in the gNB, including the functions of the physical layer (physical, PHY)/medium access control (MAC)/radio link control (RLC) layer, Communicate with the child node to provide access services for the child node.
  • the child node is another IAB node, it also includes a backhaul adaptation protocol (BAP) layer above the RLC layer.
  • BAP backhaul adaptation protocol
  • IAB devices can have different names in different communication systems, for example, in the Long Term Evolution (LTE) system and the advanced long term evolution (LTE-A) system,
  • the IAB node may be called a relay node (RN); and in the 5G system, it may be called an integrated access and backhaul node (IAB node).
  • RN relay node
  • IAB node integrated access and backhaul node
  • wireless backhaul devices can also have different names, which are not limited here.
  • the wireless access link and wireless backhaul link are integrated in the IAB node.
  • the wireless access link is the communication link between the UE and the IAB node
  • the wireless backhaul link is the communication link between the IAB nodes
  • the communication link between the IAB node and the IAB host is used for data return. Therefore, IAB nodes do not need a wired transmission network for data backhaul, and IAB nodes are easier to deploy in dense scenarios, which reduces the burden of deploying wired transmission networks.
  • FIG. 1 is a network architecture diagram of an IAB network provided for this application.
  • the network architecture includes a terminal-side device, an IAB node, and a donor base station.
  • the terminal-side device 110 is connected to the IAB node 120 in a wireless manner
  • the IAB node 120 is connected to the donor base station 130 in a wireless manner.
  • the terminal-side device 110 and the IAB node 120 and between the IAB node 120 and the donor base station 130 can communicate through a licensed spectrum, or communicate through an unlicensed spectrum, or at the same time.
  • the spectrum communicates with an unlicensed spectrum.
  • the licensed spectrum can be a spectrum below 6 GHz, which is not limited here.
  • the IAB node regards the node providing the backhaul service as the parent node.
  • the IAB node 120 regards the donor base station 130 as the parent node.
  • the IAB node 120 receives the uplink data of the terminal-side device 110, it transmits the uplink data to the donor base station, and then the donor base station sends the uplink data to the mobile gateway device (for example, the user plane function entity in the 5G network). port function, UPF)).
  • the mobile gateway device sends the downlink data to the donor base station, and then sends it to the terminal side device 110 via the IAB node 120 in turn.
  • the IAB network can adopt multi-hop networking.
  • IAB nodes can support dual connectivity (DC) or multi-connectivity to deal with possible abnormal situations in the backhaul link, such as link interruption. Or blocking (blockage) and load fluctuations and other abnormalities to improve the reliability of transmission.
  • DC dual connectivity
  • blockage blocking
  • load fluctuations and other abnormalities to improve the reliability of transmission.
  • the IAB network supports multi-hop and multi-connection networking, there may be multiple transmission paths between the UE and the donor base station.
  • On a path there is a certain hierarchical relationship between IAB nodes, as well as between IAB nodes and the host base station serving the IAB nodes.
  • Each IAB node regards the node providing the backhaul service as the parent node. Accordingly, each The IAB node can be regarded as a child node of its parent node.
  • FIG. 2 is a network architecture diagram of another IAB network provided for this application.
  • the network architecture includes two terminal side devices, five IAB nodes, and one donor base station.
  • the terminal-side device is connected to the IAB node in a wireless manner
  • the IAB node is connected to the donor base station or another IAB node in a wireless manner.
  • the terminal-side device and the IAB node, between the IAB node and the IAB node, and between the IAB node and the donor base station can communicate through licensed spectrum, or communicate through unlicensed spectrum, or through licensed spectrum and unlicensed at the same time
  • the spectrum is used for communication.
  • the licensed spectrum can be a spectrum below 6 GHz, which is not limited here.
  • the IAB node regards the node providing the backhaul service as the parent node.
  • the parent node of the IAB node 121 is the donor base station
  • the IAB node 121 is the IAB node 122 and the IAB node 123.
  • the parent node of IAB node 122 and IAB node 123 are both the parent node of IAB node 124
  • the parent node of IAB node 125 is IAB node 122.
  • the uplink data of the UE can be transmitted to the home base station of the home site via one or more IAB nodes, and then sent by the home base station to the mobile gateway device (such as the user plane functional unit in the 5G core network) UPF), the downlink data will be received by the donor base station from the mobile gateway device, and then sent to the UE through the IAB node.
  • the mobile gateway device such as the user plane functional unit in the 5G core network) UPF
  • path 1 the terminal side device 111 ⁇ IAB node 124 ⁇ IAB node 123 ⁇ IAB node 121 ⁇ the donor base station
  • path 2 The terminal side device 111 ⁇ IAB node 124 ⁇ IAB node 122 ⁇ IAB node 121 ⁇ the donor base station.
  • path 3 the terminal side device 111 ⁇ IAB node 124 ⁇ IAB node 122 ⁇ IAB node 121 ⁇ the donor base station.
  • Path 3 Terminal side device 112 ⁇ IAB node 124 ⁇ IAB node 123 ⁇ IAB node 121 ⁇ Door base station
  • path 4 Terminal side device 112 ⁇ IAB node 124 ⁇ IAB node 122 ⁇ IAB node 121 ⁇ Host base station
  • path 5 Terminal side device 112 ⁇ IAB node 125 ⁇ IAB node 122 ⁇ IAB node 121 ⁇ Host base station .
  • the terminal-side device is a device that provides voice and/or data connectivity to users.
  • the terminal-side device involved in this application may be a terminal device, or a hardware component inside the terminal device that can realize the function of the terminal device.
  • the terminal device may be called a user equipment (UE), a mobile station (MS), a mobile terminal (mobile terminal, MT), etc., for example, it may include a handheld device with a wireless connection function, or connect to Processing equipment for wireless modems.
  • the terminal may communicate with the core network via a radio access network (RAN), and exchange voice and/or data with the RAN.
  • RAN radio access network
  • Some examples of terminal equipment are: personal communication service (PCS) phones, cordless phones, session initiation protocol (SIP) phones, wireless local loop (WLL) stations, personal digital assistants (personal digital assistant, PDA), barcode, radio frequency identification (RFID), sensors, global positioning system (GPS), laser scanners and other information sensing equipment.
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices. It is a general term for the application of wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is directly worn on the body or integrated into the user's clothes or accessories. Wearable devices are not only a hardware device, but also realize powerful functions through software support, data interaction, and cloud interaction. In a broad sense, wearable smart devices include full-featured, large-sized, complete or partial functions that can be achieved without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, and need to cooperate with other devices such as smart phones.
  • the terminal can also be virtual reality (VR) equipment, augmented reality (AR) equipment, wireless terminals in industrial control, wireless terminals in self-driving (self-driving), remote surgery Wireless terminal in (remote medical surgery), wireless terminal in smart grid, wireless terminal in transportation safety, wireless terminal in smart city, and smart home Wireless terminals, etc.
  • VR virtual reality
  • AR augmented reality
  • wireless terminals in industrial control wireless terminals in self-driving (self-driving)
  • remote surgery Wireless terminal in remote surgery
  • wireless terminal in smart grid wireless terminal in transportation safety
  • wireless terminal in smart city and smart home Wireless terminals, etc.
  • terminal devices that can access the wireless communication network, communicate with the wireless network side, or communicate with other objects through the wireless network can all be the terminals in the embodiments of the present application, such as smart Terminals and cars in transportation, household equipment in smart homes, power meter reading equipment in smart grids, voltage monitoring equipment, environmental monitoring equipment, video monitoring equipment in smart security networks, cash registers, etc.
  • the terminal equipment can be statically fixed or mobile.
  • the functions of the terminal device can be implemented by hardware components inside the terminal device, and the hardware components may be a processor and/or a processor inside the terminal device.
  • Programmed chip may be implemented by an application-specific integrated circuit (ASIC) or a programmable logic device (PLD).
  • ASIC application-specific integrated circuit
  • PLD programmable logic device
  • the above-mentioned PLD can be a complex programmable logical device (CPLD), a field-programmable gate array (FPGA), a generic array logic (generic array logic, GAL), a system on a chip , SOC) or any combination thereof.
  • CPLD complex programmable logical device
  • FPGA field-programmable gate array
  • GAL generic array logic
  • SOC system on a chip
  • the network architecture may not be limited to include terminal-side equipment, IAB nodes, and Donor base station.
  • the network architecture may also include core network equipment or equipment for carrying virtualized network functions, etc., which are obvious to a person of ordinary skill in the art, and will not be detailed here.
  • the network architecture diagram shown in FIG. 2 shows two terminal side devices. , Five IAB nodes and one donor base station, but in specific implementation, the IAB network architecture does not limit the number of terminal side devices, IAB nodes and donor base stations.
  • the foregoing two network architecture diagrams are just examples, and in actual use, other network architecture diagrams may also be included, and examples of them are not given here.
  • the UE's unlimited resource control (radio resource control, RRC) state can include idle state (RRC_IDLE), connected state (RRC_Connected) and inactive state (RRC_Inactive).
  • the inactive state of RRC is the new wireless (new radio, NR)
  • a newly introduced radio resource control (Radio Resource Control, RRC) state also known as "RRC inactive state” or "RRC inactive state” or "inactive state”.
  • RRC inactive state As in the idle state, in the inactive state, the UE disconnects the RRC connection from the network, thus achieving the same power saving effect as in the idle state. Different from the idle state, in the inactive state, the UE and the access network equipment Save the UE context.
  • the UE When the UE returns to the RRC connection state, it can reuse the previously saved UE context and quickly restore the connection.
  • the IAB node since the IAB node is a wireless backhaul node, when the IAB node is in some hot scenes or In a disaster area, the service of the IAB node itself fluctuates greatly in different time periods.
  • the IAB node has no service for a certain period of time, it is still in an active state, resulting in a lot of unnecessary waste of power consumption.
  • an embodiment of the present application provides a solution for deactivating an IAB node.
  • the donor base station sends a deactivation instruction to the IAB node, so that the IAB node enters the deactivation state according to the deactivation instruction, so as to achieve the purpose of saving power for the IAB node.
  • the specific implementation plan will be introduced in detail later.
  • a donor base station, or IAB donor (IAB donor) or a donor node is a device in a communication system that connects a terminal-side device to a wireless network.
  • the donor base station can be connected to a core network (for example, connected to a 5G core network, 5GC) network element serving the UE through a wired link or a wireless link, and provides a wireless backhaul function for the IAB node.
  • a core network for example, connected to a 5G core network, 5GC
  • 5GC 5G core network
  • the donor base station may be an access network element with complete base station functions.
  • the donor base station may include a radio network controller (RNC), a node B (Node B, NB), a base station controller (BSC), a base transceiver station (BTS), and a home base station.
  • RNC radio network controller
  • Node B node B
  • BSC base station controller
  • BTS base transceiver station
  • home base station for example, home evolved NodeB, or home Node B, HNB), baseband unit (BBU), etc.
  • eNB or e-NodeB, evolutional Node B) or may also include the next generation node B (gNB) in the new radio (NR) system of the fifth generation (5G) mobile communication technology (fifth generation, 5G) Wait.
  • NR new radio
  • 5G fifth generation
  • the donor base station may include a centralized unit (centralized unit, CU) (may be called a donor CU, Donor-CU) and a distributed unit (DU) (may be called a donor DU, Donor-DU).
  • CU centralized unit
  • DU distributed unit
  • This structure separates the protocol layer of the eNB in the long term evolution (LTE) system or the gNB in the NR system, and some protocol layers (such as the packet data convergence protocol (PDCP) layer and unlimited
  • the functions of the resource control (radio resource control, RRC) layer are placed under the centralized control of the CU node, and some or all of the protocol layers (such as physical (PHY) layer, media access control (MAC) layer, wireless link
  • PHY physical
  • MAC media access control
  • BAP backhaul adaptation protocol
  • the centralized host base station can be The unit is abbreviated as donor CU, and the distributed unit of the donor base station is abbreviated as donor DU.
  • the donor CU may also be a form in which the control plane (CP) and the user plane (UP) are separated.
  • the CU can be a CU -CP and one (or more) CU-UP.
  • Link Refers to the path between two adjacent nodes in a path.
  • the access link refers to the link that the terminal accesses, and can refer to the link between the terminal and the access network device, or between the terminal and the IAB node, or between the terminal and the host node, or between the terminal and the host DU.
  • the access link includes a wireless link used when a certain IAB node is in the role of a common terminal device to communicate with its parent node. When the IAB node acts as an ordinary terminal device, it does not provide backhaul services for any child nodes.
  • the access link includes an uplink access link and a downlink access link.
  • the access link of the terminal is a wireless link, so the access link may be called a wireless access link.
  • the backhaul link refers to the link between the IAB node and the parent node when it is used as a wireless backhaul node.
  • the backhaul link includes an uplink backhaul link and a downlink backhaul link.
  • the backhaul link between the IAB node and the parent node is a wireless link, so the backhaul link can also be called a wireless backhaul link.
  • the last hop node of a node refers to the last node in the path containing the node that received the data packet before the node.
  • the next hop node of a node refers to the node in the path containing the node that receives the data packet first after the node.
  • Transmission can be understood as sending (send) and/or receiving (receive).
  • the data packet is transmitted through the backhaul link between the IAB node and the donor base station.
  • the data packet is sent through the backhaul link, and for the donor base station, the data packet is received through the backhaul link. package.
  • multiple refers to two or more than two. In view of this, “multiple” may also be understood as “at least two” in the embodiments of this application. "At least one" can be understood as one or more, for example, one, two or more. For example, including at least one refers to including one, two or more, and does not limit which ones are included. For example, including at least one of A, B, and C, then the included can be A, B, C, A and B, A and C, B and C, or A and B and C.
  • the donor base station described in the following may be the donor base station 130 in the network architecture shown in FIG. 1 or the donor base station 130 in the network architecture shown in FIG. 2.
  • the IAB node described below may be the donor base station 130 in the network architecture shown in FIG.
  • the IAB node 120 in the illustrated network architecture may also be the IAB node 121, the IAB node 122, the IAB node 123, the IAB node 124, or the IAB node 125 in the network architecture shown in FIG.
  • the understanding of the donor base station and the IAB node can refer to the description of applying the method to the network architecture shown in FIG. 1 or FIG. 2, which will not be repeated here.
  • FIG. 3 is a flowchart of a method for deactivating an IAB node provided in an embodiment of this application, and the method includes:
  • the donor base station sends a deactivation instruction to the IAB node.
  • the donor base station may be a complete network element, or an access network network element in the form of separate CU and DU. If the donor base station is a complete network element, the donor base station sends a deactivation instruction to the IAB node. If the donor base station is an access network element with a separate CU and DU form, the CU of the donor base station can send deactivation to the IAB node. Instructions.
  • the donor base station can directly The deactivation instruction is sent to the IAB node; if the IAB node is not a child node of the donor base station, the donor node can transmit the deactivation instruction to the IAB node through other network devices between the IAB node and itself, for example, the IAB node is as shown in Fig.
  • the donor base station can send the deactivation instruction to the IAB node 121, which is transmitted by the IAB node 121 to the IAB node 122, and then transmitted by the IAB node 122 to the IAB node 125; if the IAB node is not a child of the donor base station If the IAB node maintains a direct control plane connection with the donor base station at the same time, the donor base station can directly send a deactivation instruction to the IAB node. For example, the donor base station and the IAB node can be directly connected to the control plane through low frequency.
  • the donor base station before sending the deactivation instruction to the IAB, the donor base station first determines that the IAB node needs to be deactivated. In the embodiment of the present application, there may be multiple implementation manners for the donor base station to determine the need to deactivate the IAB node.
  • the first type is initiated by the donor base station.
  • the donor base station judges whether the IAB node is going to be inactive according to the cell service condition under the IAB node.
  • the donor base station may also require the IAB node to report its own cell service status.
  • the donor base station may determine the need to deactivate the IAB node according to the status of the child nodes (including the IAB node and/or UE) of the IAB node.
  • the donor base station detects that there are no connected child nodes under the IAB node, it decides that the IAB node needs to be deactivated.
  • the second type is requested by the IAB node.
  • the donor base station receives the deactivation request sent by the IAB node, and decides to deactivate the IAB node according to the deactivation request.
  • the above two cases are only examples of the implementation of the donor base station's decision to deactivate the IAB node.
  • the donor base station can also decide to deactivate the IAB node through other implementation methods.
  • the embodiment of this application determines how the donor base station needs to be There is no restriction on deactivating IAB nodes.
  • the IAB node receives the deactivation instruction, and enters the deactivation state according to the deactivation instruction.
  • the IAB node When the IAB node enters the deactivated state, it can suspend or close some functions. For example, the IAB node disconnects the RRC connection from the network, but retains the context and/or suspends some functions or configurations, so as to save power.
  • the embodiment of the application does not limit the state name of the IAB after entering the deactivated state.
  • it can be defined as RRC deactivated state/mode, deactivated state/mode, RRC inactive state/mode, inactive state/mode, discontinuous transmission state/mode, or power saving state/mode, etc.
  • the donor base station issues a deactivation instruction to the IAB node, so that the IAB node can enter the deactivation state (such as suspending or shutting down some functions) according to the deactivation instruction, which can reduce the waste of power consumption of the IAB node and achieve the IAB node saving Electric effect.
  • the deactivation indication in the embodiment of the present application may only be used to instruct the MT of the IAB node to enter the deactivated state, even if the MT is in the power saving mode; It can only be used to indicate that the DU of the IAB node is in the deactivated state, even if the DU is in the power saving mode; of course, it can also be used to indicate that the MT and DU of the IAB node are both in the deactivated state, even if both MT and DU are in the power saving mode. Mode, the embodiment of this application does not limit it.
  • the deactivation indication sent by the donor base station is used to instruct the MT of the IAB node to enter the deactivation state.
  • the MT of the IAB enters the deactivated state according to the deactivation instruction.
  • FIG 4 is a flow chart of the MT of the IAB node entering the deactivated state.
  • the flow may include:
  • the donor base station determines that the MT of the IAB node needs to enter a deactivated state.
  • the donor base station can decide that the MT enters the deactivated state according to the following two situations:
  • the donor base station judges the situation of the IAB node and decides that the MT of the IAB node enters the deactivated state. Specifically, the donor base station may determine whether the MT enters the deactivated state according to the cell service status of the DU of the IAB node where the MT is located, or determine whether the MT of the IAB node needs to enter the state according to the subordinate IAB node of the IAB node or/and the status of the UE. Active state. For example, when the donor base station detects that there are no connected child IAB nodes and UEs under the IAB node, it is determined that the MT of the IAB node needs to enter the deactivated state.
  • the donor base station receives the deactivation request sent by the IAB node and decides that the MT enters the deactivation state.
  • the donor base station sends a first deactivation instruction to the MT of the IAB node, where the first deactivation instruction is used to instruct the MT to enter a deactivated state.
  • the donor base station may carry the first deactivation indication in a radio resource control release (RRC Release) message and send it to the MT of the IAB node.
  • RRC Release radio resource control release
  • the donor base station may also carry the first deactivation instruction in other messages and send it to the MT, which is not limited in this embodiment of the application.
  • the MT of the IAB node enters the deactivated state according to the first deactivation instruction.
  • the MT can enter the deactivated state by performing one or more of the following operations: 1) save the context; 2) suspend all signaling radio bearer SRB and data radio bearer DRB except SRB0; 3) MT suspends the MT's backhaul link (BH) radio link control (radio link control, RLC) channel; 4) MT suspends the MT's backhaul adaptation protocol (BAP) configuration information .
  • 1) and 2) reuse the deactivated state of the UE in the existing RRC protocol, and 3) and 4) are unique to the IAB node on the basis of the UE, and the purpose is also when the MT returns to the RRC connected state , Directly use some configurations or states of suspend to achieve the purpose of quick recovery.
  • BH RLC channel can include: BH RLC channel configuration and BAP configuration used to carry all DRB and/or SRB0, 1, 2, 3 (SRB1, 2, 3 is also and/or relationship)
  • the information can include the configuration of the BAP layer about the bearer mapping rules and routing table information, as well as the address or ID information of the BAP.
  • the embodiment of the application does not limit the state name of the MT of the IAB after entering the deactivated state.
  • the state of the MT after entering the deactivated state as the RRC deactivated state/mode of the MT, the deactivated state/mode of the MT, the RRC inactive state/mode of the MT, the inactive state/mode of the MT, and the inactive state of the MT. Continuous receiving state/mode or power saving state/mode of MT, etc.
  • the IAB node can be defined to enter the deactivated state.
  • the IAB node after the MT of the IAB node receives the first deactivation instruction, the IAB node also initiates a process for the DU to enter the deactivation state.
  • the specific implementation manners for triggering the DU to enter the deactivated state include the following two: (1)
  • the DU can enter the deactivated state according to the first deactivation instruction. That is, the above-mentioned first deactivation instruction is also used to instruct the DU to enter the deactivation state.
  • the DU if there is no internal interface defined between the DU and the MT, that is, when the MT obtains the first deactivation instruction, the DU also obtains the first deactivation instruction, then the DU directly enters the deactivation according to the first deactivation instruction received by the MT State; if an internal interface is defined between the DU and the MT, the MT forwards the first deactivation instruction to the DU through the internal interface after receiving the first deactivation instruction, and the DU enters according to the first deactivation instruction forwarded by the MT Active state.
  • the MT sends first indication information to the DU, where the first indication information is used to instruct the DU to enter the deactivated state, and the DU enters the deactivated state according to the first indication information sent by the MT.
  • All cells of the DU stop serving For example, stop all uplink and downlink transmissions between all cells and subordinate UEs or child nodes, including sending synchronization signals, synchronization messages and other broadcast information.
  • the DU stops serving all cells except the primary cell.
  • the DU stops the specified type of downlink transmission and specified type of uplink transmission in one or more cells of the DU.
  • the specified type of downlink transmission does not include synchronization signal block (SSB) and master signal block (master signal block).
  • SSB synchronization signal block
  • MIB information block
  • SIB1 SIB1
  • the specified type of uplink transmission does not include receiving random access pilot signals from the child node and/or UE. That is, one or more cells of the DU can only send one or more of SSB, MIB, and SIB1, and receive random access pilot signals.
  • SSB/MIB/SIB1 can be sent through the one or more cells, and the random access preamble (preamble) sent by the child node/UE can also be received through the one or more cells. , In turn, provide new child nodes/UE access possibilities.
  • the DU adjusts the communication bandwidth of one or more cells of the DU, for example, adjusts the communication bandwidth of one or more cells to a pre-configured minimum communication bandwidth.
  • the DU adjusts the bandwidth part (BWP) used by one or more cells of the DU. For example, adjust the BWP of one or more cells to the BWP at the time of initial activation, or adjust the BWP of one or more cells to the BWP with the smallest bandwidth, or reduce the number of simultaneously activated BWPs of one or more cells to one, etc. .
  • BWP bandwidth part
  • One or more cells of the DU use the longest periodic synchronization signal block transmission configuration (SSB transmission configuration, STC) to transmit the synchronization signal block SSB.
  • STC periodic synchronization signal block transmission configuration
  • the DU can also notify the donor base station of the updated STC configuration information. It should be noted that when the DU enters the deactivated state, it can enter the deactivated state based on any of the above 6 modes, or it can enter the deactivated state based on the combination of any of the above (2) to (6). However, the embodiments of this application do not make specific restrictions.
  • the embodiment of the present application does not limit the state name of the DU of the IAB after entering the deactivated state.
  • the state of the DU after entering the deactivated state can be defined as the RRC deactivated state/mode of the DU, the deactivated state/mode of the DU, the RRC inactive state/mode of the DU, the inactive state/mode of the DU, Discontinuous transmission state/mode of DU or power saving state/mode of DU.
  • the donor base station may indicate the mode used by the DU to enter the deactivated state.
  • the foregoing first deactivation indication or the foregoing first indication information may also be used to indicate the mode used by the DU to enter the deactivated state, or the mode indication information may be carried in the RRC Release message carrying the first deactivation indication,
  • the mode indication information is used to indicate the mode used by the DU to enter the deactivated state, or the donor base station can send a separate message to indicate the mode used by the DU to enter the deactivated state, which is not limited in this embodiment of the application.
  • the donor base station and the IAB node may be pre-configured with multiple modes for the DU to enter the deactivated state, and different identifiers may be used to indicate different modes.
  • the donor base station and IAB node are pre-configured with the above 6 modes, and the first mode identifier is used to indicate the above mode (1), and the second mode is used to identify To indicate the above-mentioned (2) mode, the third mode identifier to indicate the above-mentioned (3) mode, the fourth mode identifier to indicate the above-mentioned (4) mode, and the fifth mode identifier to indicate the above-mentioned ( 5) Modes, the sixth mode is used to indicate the above-mentioned (6) mode.
  • the donor base station may indicate the mode used by sending an identifier.
  • the first deactivation instruction carries the first mode identifier, and accordingly, the DU adopts the first mode identifier after obtaining the first activation instruction from the donor base station
  • the corresponding mode that is, the above-mentioned mode (1) enters the deactivated state, that is, stops the services of all cells to enter the deactivated state.
  • the first indication information sent by the MT to the DU through the internal interface carries the second mode identifier.
  • the DU adopts the mode corresponding to the second mode identifier (that is, the above-mentioned (2) mode) to enter the deactivated state, that is, stops some cell services of the DU to enter the deactivated state.
  • the donor base station sends a separate message to indicate the mode used by the DU to enter the deactivated state, wherein the message carries the third mode identifier.
  • the DU adopts the mode corresponding to the third mode identifier in the message (ie the above-mentioned (3) mode) to enter the deactivated state, that is, one or more cells of the DU can only send SSB, One or more of MIB and SIB1, and only receive random access pilot signals to enter the deactivated state.
  • the donor base station may not indicate the mode used by the DU to enter the deactivated state, but the DU actively selects the mode used to enter the deactivated state.
  • the DU may also report the selected mode to the donor base station.
  • the donor base station can send the mode corresponding to the DU configuration parameters, such as directly issuing the identity of the cell that needs to stop serving, the identity of the cell that needs to be adjusted for the communication bandwidth, and the corresponding communication bandwidth value. , The identity of the cell whose BWP needs to be adjusted and the corresponding BWP value, the identity of the cell whose SSB transmission period needs to be adjusted, and the corresponding period value, etc.
  • the DU directly configures itself according to the relevant configuration parameters issued by the donor base station and enters the deactivated state.
  • the donor base station may also first switch the connected UE and sub-nodes under the DU to other IAB nodes to ensure that these sub-nodes and UEs can be in other IAB nodes. Normal communication under the node is not affected.
  • the donor base station determines that the MT of the IAB node needs to enter the deactivated state (ie step S401), and before sending the first deactivation instruction to the MT of the IAB node (ie step S402),
  • the connected UEs and child nodes issue handover messages, so that these connected UEs and child nodes are switched to other IAB nodes.
  • the above scheme provides a scheme of first letting the MT enter the deactivated state and then letting the DU enter the deactivated state, which can achieve the power saving effect of the IAB node.
  • the MT When the MT enters the deactivated state, it can suspend some functions or configurations (such as suspending the MT's BH RLC channel and/or BAP configuration information, etc.), so that when the MT returns to the RRC connection state, it can directly use some of the previously suspended functions Configuration or status to achieve the purpose of rapid recovery and improve user experience.
  • the DU When the DU enters the deactivated state, it can stop the services of all cells to save power, or reserve the services of one or more cells and adjust the cell downlink/line transmission, communication bandwidth, BWP or SSB transmission of the reserved service Cycle, etc., to achieve the purpose of power saving, while providing access to child nodes or UEs.
  • Solution 2 The deactivation instruction sent by the donor base station is used to instruct the DU of the IAB node to enter the deactivated state. Correspondingly, the DU of the IAB enters the deactivated state according to the deactivation instruction.
  • FIG. 5 is a flow chart of the DU of the IAB node entering the deactivated state.
  • the flow may include:
  • the donor base station determines that the DU of the IAB node needs to enter a deactivated state.
  • the donor base station may decide that the DU of the IAB node enters the deactivated state according to the following two situations:
  • the donor base station judges the situation of the IAB node and decides that the DU of the IAB node enters the deactivated state. Specifically, the donor base station may determine whether the DU of the IAB node enters the deactivated state according to the cell service status of the DU of the IAB node, or determine whether the DU of the IAB node is required according to the status of the subordinate IAB node of the IAB node or/and the UE Enter the deactivated state. For example, when the donor base station detects that there are no connected child IAB nodes and UEs under the IAB node, it is determined that the DU of the IAB node needs to enter the deactivated state.
  • the donor base station receives the deactivation request sent by the IAB node and decides that the DU enters the deactivation state.
  • the donor base station sends a second deactivation instruction to the DU of the IAB node.
  • the second deactivation indication can be used to directly instruct the DU of the IAB node to enter the deactivated state, or it can be used to instruct the cell of the DU of the IAB node to deactivate, thereby indirectly instructing the DU of the IAB node to enter Deactivated state.
  • the donor base station may carry the second deactivation instruction in the F1-AP message on the F1 interface between the donor base station and the IAB node and send it to DU.
  • the deactivation indication when the second deactivation indication indirectly indicates that the DU of the IAB node enters the deactivated state, the deactivation indication may be used to instruct the DU to deactivate one or more cells of the DU.
  • the second deactivation instruction may reuse an existing gNB-CU configuration update message (GNB-CU configuration update) message, which carries the cell identity of one or more cells of the DU.
  • GNB-CU configuration update gNB-CU configuration update
  • the DU after receiving the GNB-CU configuration update message, the DU deactivates one or more of its own cells according to the GNB-CU configuration update message, and when its deactivated cells reach the first number (for example, After deactivating all cells, or deactivating all cells except the primary cell), the DU determines that it enters the deactivated state.
  • the way for the DU to deactivate a certain cell can be to stop the service of the cell, or it can be one or a combination of the following methods: control the cell to send only one of SSB, MIB and SIB1 or There are many types, and only random access pilot signals are received; the communication bandwidth of the cell is adjusted; the BWP used by the cell is adjusted; the cell uses the longest period of STC to send the SSB.
  • control the cell to send only one of SSB, MIB and SIB1 or There are many types, and only random access pilot signals are received; the communication bandwidth of the cell is adjusted; the BWP used by the cell is adjusted; the cell uses the longest period of STC to send the SSB.
  • the embodiments of the present application do not limit it.
  • the implementation manner of the second deactivation instruction of the donor base station is not limited to the above two, and other implementation manners are also possible, which is not limited in the embodiment of the present application.
  • the DU can enter the deactivated state in various modes, including but not limited to the following:
  • the DU stops the services of all cells except the primary cell.
  • the DU stops the specified type of downlink transmission and specified type of uplink transmission in one or more cells of the DU, where the specified type of downlink transmission does not include one or more of SSB, MIB, and SIB1, and the specified type
  • the uplink transmission does not include receiving random access pilot signals from the child node and/or UE. That is, one or more cells of the DU can only send one or more of SSB, MIB, and SIB1, and receive random access pilot signals.
  • the DU when it is in the deactivated state, it can send SSB/MIB/SIB1 through the one or more cells, and can also receive the preamble sent by the child node/UE through the one or more cells, thereby providing a new child node /UE access is possible.
  • the DU adjusts the communication bandwidth of one or more cells of the DU. For example, adjusting the communication bandwidth of one or more cells to a pre-configured minimum communication bandwidth.
  • the DU adjusts the BWP used by one or more cells of the DU. For example, adjust the BWP of one or more cells to the BWP at the time of initial activation, or adjust the BWP of one or more cells to the BWP with the smallest bandwidth, or reduce the number of simultaneously activated BWPs of one or more cells to one, etc. .
  • One or more cells of the DU use the longest period of STC to send the synchronization signal block SSB.
  • the DU can also notify the donor base station of the updated STC configuration information.
  • the DU when the DU enters the deactivated state, it can enter the deactivated state based on any of the above 6 modes, or it can enter the deactivated state based on the combination of any of the above (2) to (6).
  • the embodiments of this application do not make specific restrictions.
  • the embodiment of the present application does not limit the state name of the DU of the IAB after entering the deactivated state.
  • the state of the DU after entering the deactivated state can be defined as the RRC deactivated state/mode of the DU, the deactivated state/mode of the DU, the RRC inactive state/mode of the DU, the inactive state/mode of the DU, and the inactive state/mode of the DU. Discontinuous transmission state/mode or power saving state/mode of DU, etc.
  • the donor base station may indicate the mode used by the DU to enter the deactivated state.
  • the above-mentioned second deactivation indication is also used to indicate the mode used by the DU to enter the deactivated state, or the F1-AP message carrying the second deactivation indication carries mode indication information, and the mode indication information is used for Indicate the mode used by the DU to enter the deactivated state, or the donor base station may send a separate message to indicate the mode used by the DU to enter the deactivated state, which is not limited in the embodiment of the present application.
  • the second deactivation instruction carries a third mode identifier, and the third mode identifier is used to indicate that the DU enters the deactivated state and all cells in which the mode is DU stop serving, and the DU obtains the second activation from the donor base station. After the instruction, stop all cell services to enter the deactivated state.
  • the donor base station may not indicate the mode used by the DU to enter the deactivated state, but the DU actively selects the mode used to enter the deactivated state.
  • the DU may also report the selected mode to the donor base station.
  • the donor base station can send the mode corresponding to the DU configuration parameters, such as directly issuing the identity of the cell that needs to stop serving, the identity of the cell that needs to be adjusted for the communication bandwidth, and the corresponding communication bandwidth value. , The identity of the cell whose BWP needs to be adjusted and the corresponding BWP value, the identity of the cell whose SSB transmission period needs to be adjusted, and the corresponding period value, etc.
  • the DU directly configures itself according to the relevant configuration parameters issued by the donor base station and enters the deactivated state.
  • the IAB node can be defined to enter the deactivated state.
  • the IAB node after the DU of the IAB node receives the second deactivation instruction, the IAB node also initiates a process for the MT to enter the deactivation state.
  • the specific implementation manners for triggering the MT to enter the deactivated state include the following three: (1)
  • the MT can enter the deactivated state according to the second deactivation instruction. That is, the above-mentioned second deactivation instruction is also used to instruct the MT to enter the deactivation state.
  • the MT if there is no internal interface defined between the DU and the MT, that is, when the DU obtains the second deactivation instruction, the MT also obtains the second deactivation instruction, then the MT directly enters the deactivation according to the second deactivation instruction received by the DU State; if there is an internal interface defined between the DU and the MT, after receiving the second deactivation instruction, the DU forwards the second deactivation instruction to the MT through the internal interface, and the MT enters according to the second deactivation instruction forwarded by the DU Active state.
  • the DU sends second indication information to the MT, the second indication information is used to instruct the MT to enter the deactivated state, and the MT enters the deactivated state according to the second indication information sent by the DU.
  • the MT detects that the DU has entered the deactivated state or the number of DU deactivated cells reaches the first number (for example, after all cells are deactivated, or after all cells except the primary cell are deactivated), the MT enters the deactivated state .
  • the operation performed by the MT to enter the deactivated state can refer to a specific implementation of step S403 in the foregoing embodiment, which will not be repeated here.
  • the DU may also instruct the donor base station to release the F1 connection between the donor base station and the DU.
  • the DU may directly send an instruction to the donor base station to request the donor base station to release the indication of the F1 connection between the donor base station and the DU.
  • the DU may receive from the MT requesting the donor base station to release the donor base station and the DU. After the indication of the F1 connection of the DU, the indication is forwarded to the donor base station.
  • the donor base station may also first switch the connected UE and sub-nodes under the DU to other IAB nodes to ensure that these sub-nodes and UEs can be in other IAB nodes. Normal communication under the node is not affected.
  • the donor base station after determining that the DU of the IAB node needs to enter the deactivated state (ie step S501), and before sending the second deactivation instruction to the DU of the IAB node (ie step S502), the donor base station The connected UEs and child nodes issue handover messages, so that these connected UEs and child nodes are switched to other IAB nodes.
  • the above scheme provides a scheme of first letting the DU enter the deactivated state and then letting the MT enter the deactivated state, which can achieve the power saving effect of the IAB node.
  • the DU When the DU enters the deactivated state, it can stop the services of all cells to save power, or reserve the services of one or more cells and adjust the cell downlink/line transmission, communication bandwidth, BWP or SSB transmission of the reserved service Cycle, etc., to achieve the purpose of power saving, while providing access to child nodes or UEs.
  • the MT When the MT enters the deactivated state, it can suspend some functions or configurations (such as suspending the MT's BH RLC channel and/or BAP configuration information, etc.), so that when the MT returns to the RRC connection state, it can directly use some of the previously suspended functions Configuration or status to achieve the purpose of rapid recovery and improve user experience.
  • some functions or configurations such as suspending the MT's BH RLC channel and/or BAP configuration information, etc.
  • Solution 3 The deactivation instruction sent by the donor base station is used to instruct the IAB node as a whole (including MT and DU) to enter the deactivated state. Correspondingly, the entire IAB node enters the deactivated state according to the deactivation instruction.
  • Figure 6 is a flow chart of the DU of the IAB node entering the deactivated state.
  • the flow may include:
  • the donor base station determines that the IAB node needs to enter the deactivated state.
  • the specific implementation manner for the donor base station to determine that the IAB node needs to enter the deactivated state can be combined with reference to the specific implementation manner of step 401 in the foregoing solution 1 and the specific implementation manner of step 502 in the foregoing solution 2, which will not be repeated here.
  • the donor base station sends a third deactivation instruction to the DU of the IAB node, where the third activation instruction is used for the entire IAB node (including the MT and DU) to enter the deactivated state.
  • the third deactivation instruction can be carried in the radio resource control release RRC Release message, or carried in the F1-AP message between the IAB node DU and the donor CU, or reuse the existing GNB-CU
  • the configuration update message is not specifically limited in the embodiment of this application.
  • the specific implementation manner of the third activation instruction can be combined with reference to the specific implementation manner of the first deactivation instruction in the foregoing solution 1 and the specific implementation manner of the second deactivation instruction in the foregoing solution 2, which will not be repeated here.
  • the specific implementation manner for the IAB node to enter the deactivated state according to the third deactivation instruction can be combined with reference to the specific implementation manner of step 403 in the foregoing solution 1 and the specific implementation manner of step 503 in the foregoing solution 2. Repeat.
  • the above scheme provides a scheme for letting the entire IAB node (including DU and MT) enter the deactivated state, which can achieve better power saving effects for the IAB node.
  • an embodiment of the present application also provides an apparatus for deactivating an IAB node.
  • the device includes:
  • the receiving unit 701 is configured to receive a deactivation instruction from the donor base station
  • the processing unit 702 is configured to control the device to enter a deactivated state according to the deactivation instruction.
  • the device includes a mobile terminal MT part and a distributed unit DU part; the processing unit 702 is configured to: control the MT to enter a deactivated state according to the deactivation instruction.
  • the deactivation instruction is also used to instruct the DU to enter a deactivated state; the processing unit 702 is further used to control the DU to enter the deactivated state according to the deactivation instruction.
  • the processing unit 702 is configured to: after the receiving unit 701 receives a deactivation instruction from the donor base station, control the MT to send first instruction information to the DU; wherein, the first instruction The indication information is used to instruct the DU to enter the deactivated state; the processing unit 702 is further used to control the DU to enter the deactivated state according to the first indication information.
  • the deactivation indication is carried in a radio resource control release RRC Release message.
  • the IAB includes a mobile terminal MT part and a distributed unit DU part; the deactivation indication is used to instruct the DU to enter the deactivated state; the processing unit 702 is used to: The activation instruction controls the DU to enter a deactivated state.
  • the deactivation instruction is also used to instruct the MT to enter the deactivated state; the processing unit 702 is further used to: control the MT to enter the deactivated state according to the deactivation instruction.
  • the processing unit 702 is further configured to: after the receiving unit 701 receives a deactivation instruction from the donor base station, control the DU to send second instruction information to the MT; wherein, the first The second indication information is used to instruct the MT to enter the deactivated state; the processing unit 702 is further used to control the MT to enter the deactivated state according to the second indication information.
  • the deactivation indication is carried in an F1-AP message on the F1 interface between the donor base station and the device.
  • the deactivation indication is used to instruct the DU to deactivate one or more cells of the DU; the processing unit 702 is used to: deactivate the one or more cells of the DU Cell; when the deactivated cells of the DU reach the first number, it is determined that the DU enters the deactivated state.
  • the processing unit 702 is further configured to: after the receiving unit 701 receives a deactivation instruction from the donor base station, when it is determined that the deactivated cells of the DU reach the first number, control The MT enters a deactivated state.
  • the processing unit 702 when deactivating one or more cells, is specifically configured to: stop the service of the one or more cells; or control the one or more cells to only send SSB, One or more of MIB and SIB1, and only receiving random access pilot signals; or adjusting the communication bandwidth of the one or more cells; or adjusting the bandwidth part BWP used by the one or more cells; Or control the one or more cells to use the synchronization signal block sending configuration STC with the longest period to send the synchronization signal block SSB.
  • the processing unit 702 is further configured to: after controlling the DU to enter the deactivated state, control the DU to instruct the donor base station to release the F1 connection between the donor base station and the DU.
  • the processing unit 702 when the processing unit 702 controls the MT to enter the deactivated state, it is specifically configured to: control the MT to suspend the MT's backhaul link BH radio link control RLC channel and/ Or return BAP configuration information of the adaptation protocol layer.
  • the processing unit 702 when the processing unit 702 controls the DU to enter the deactivated state, it is specifically configured to: control the DU to enter the deactivated state in a first mode, and the first mode is: the DU Stop serving one or more cells; or control the DU to enter a deactivated state in a second mode, the second mode including one or more of the following: the DU only sends one of SSB, MIB, and SIB1 One or more types, and only receive random access pilot signals; the DU adjusts the communication bandwidth of one or more cells of the DU; the DU adjusts the bandwidth part used by one or more cells of the DU BWP: One or more cells of the DU use the longest period of synchronization signal block sending configuration STC to send the synchronization signal block SSB.
  • the deactivation indication is also used to indicate the first mode or the second mode adopted by the DU to enter the deactivated state.
  • the method and device described in this application are based on the same technical concept, and because the principles of the method and device to solve the problem are similar, the specific implementation of the operations performed by the above units can refer to the IAB performing the corresponding steps in the method for deactivating IAB nodes in the above embodiments of this application.
  • the specific implementation manner, therefore, the implementation of the device and the method can be referred to each other, and the repetition will not be repeated.
  • an embodiment of the present application also provides an apparatus for deactivating an IAB node. See Figure 8.
  • the device includes:
  • the processing unit 801 is configured to determine that the IAB node needs to be deactivated
  • the sending unit 802 is configured to send a deactivation instruction to the IAB, so that the IAB node enters the deactivation state.
  • the device further includes a receiving unit, configured to receive a deactivation request from the IAB node before the processing unit 801 determines that the IAB node needs to be deactivated; the processing unit 801 is specifically configured to: According to the deactivation request, it is determined that the IAB node needs to be deactivated.
  • the IAB node includes a mobile terminal MT part and a distributed unit DU part; the deactivation instruction is carried in a radio resource control release RRC Release message to instruct the MT to enter the deactivated state; or The deactivation instruction is carried in the F1-AP message on the F1 interface between the device and the IAB node, and is used to instruct the DU to enter the deactivated state.
  • RRC Release message to instruct the MT to enter the deactivated state
  • the deactivation instruction is carried in the F1-AP message on the F1 interface between the device and the IAB node, and is used to instruct the DU to enter the deactivated state.
  • the method and device described in this application are based on the same technical concept. Since the principles of the method and device to solve the problem are similar, the specific implementation of the operations performed by the above units can refer to the corresponding steps performed by the donor base station in the method for deactivating IAB nodes in the above embodiments of this application. Therefore, the implementation of the device and the method can be referred to each other, and the repetition will not be repeated.
  • an embodiment of the present application also provides a communication device.
  • the device includes:
  • At least one processor 901 and
  • the communication interface 903 may be an interface for interaction with other devices.
  • the device in FIG. 9 may be an IAB node.
  • 903 may be a transceiver, and the deactivation instruction may be received from the donor base station through the transceiver.
  • the device in FIG. 9 may be a chip in an IAB node.
  • the communication interface 903 in the device in FIG. 9 may be understood as an input or output interface, pin, or circuit.
  • the processor 901 may specifically include a central processing unit (CPU), an application specific integrated circuit (ASIC), which may be one or
  • the multiple integrated circuits used to control program execution may be hardware circuits developed using field programmable gate arrays (FPGA), or baseband processors.
  • the processor 901 may include at least one processing core.
  • the memory 902 may include a read only memory (ROM), a random access memory (RAM), and a disk memory.
  • ROM read only memory
  • RAM random access memory
  • the memory 902 is used to store data required by the processor 901 during operation.
  • the method and device described in this application are based on the same technical idea. Since the principles of the method and device to solve the problem are similar, the specific implementation of the operation performed by the at least one processor 901 can refer to the corresponding method in the above-mentioned deactivating IAB node in the embodiment of this application. Steps, so the implementation of the device and the method can be referred to each other, and the repetition will not be repeated.
  • the embodiments of the present application also provide a computer-readable storage medium, the computer-readable storage medium stores a computer program, the computer program includes program instructions, and when the program instructions are executed by a computer, Make the computer execute the method for deactivating the IAB node described in the embodiment of the present application.
  • the embodiments of the present application also provide a computer program product, the computer program product contains instructions, when the instructions run on a computer, the computer executes the deactivation of the IAB described in the embodiments of the present application. Node method.
  • the embodiments of the present invention may be provided as methods, systems, or computer program products. Therefore, the present invention may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, the present invention may adopt the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer-usable program codes.
  • a computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing functions specified in a flow or multiple flows in the flowchart and/or a block or multiple blocks in the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Databases & Information Systems (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种去激活IAB节点的方法及装置,用于解决现有技术中IAB节点功耗浪费的问题。其中,所述方法包括:所述IAB节点从宿主基站接收去激活指示;所述IAB节点根据所述去激活指示进入去激活态。

Description

一种去激活IAB节点的方法及装置 技术领域
本申请涉及通信技术领域,尤其涉及一种去激活IAB节点的方法及装置。
背景技术
第五代移动通信系统(5th-generation,5G)中引入了接入回传一体化(integrated access and backhaul,IAB)网络技术,IAB网络中的接入链路(access link)和回传链路(backhaul link)皆采用无线传输方案,避免光纤部署,从而降低部署成本,提高部署灵活性。
在IAB网络中,包括IAB节点(IAB node)和宿主基站(donor gNodeB,DgNB)。终端侧设备可以接入IAB节点,因此终端侧设备的业务数据可以由IAB节点通过无线回传链路连接到IAB宿主基站传输。
在实际情况中,IAB节点传输的业务数据在不同的时间段波动比较大,但在目前的IAB网络中,无论IAB节点上是否有业务数据传输,IAB节点都一直处于活动状态,造成大量功耗浪费。
发明内容
本申请实施例提供一种去激活IAB节点的方法及装置,用于解决现有技术中IAB节点功耗浪费的问题。
第一方面,提供一种去激活IAB节点的方法,所述方法包括:所述IAB节点从宿主基站接收去激活指示;所述IAB节点根据所述去激活指示进入去激活态。
本申请实施例中,IAB节点基于从宿主基站接收的去激活指示进入去激活态,可以实现IAB节点省电的效果。
在一个可能的设计中,所述IAB节点可以包括移动终端MT部分和分布式单元DU部分;所述去激活指示可以用于指示所述MT进入去激活态。相应的,所述MT根据所述去激活指示进入去激活态。这样,可以使得MT进入去激活态,可以减少IAB节点在MT部分的耗电,可以实现IAB节点省电的效果。
在一个可能的设计中,还可以通过以下几种方式使得DU也进入去激活态。
方式1、所述去激活指示还用于指示所述DU进入去激活态;所述IAB节点根据所述去激活指示进入去激活态,还包括:所述DU根据所述去激活指示进入去激活态。本方式可以使得DU进入去激活态,进一步减少IAB节点的耗电,实现IAB节点更好的省电效果。
方式2、所述MT从宿主基站接收去激活指示之后,所述MT还可以向所述DU发送第一指示信息;其中,所述第一指示信息用于指示所述DU进入去激活态。相应的,所述DU根据所述第一指示信息进入去激活态。本方式也可以使得DU进入去激活态,进一步减少IAB节点的耗电,实现IAB节点更好的省电效果。
在一个可能的设计中,所述去激活指示可以携带于无线资源控制释放RRC Release消息。
在一个可能的设计中,所述IAB节点包括移动终端MT部分和分布式单元DU部分;所述去激活指示用于指示所述DU进入去激活态。相应的,所述DU根据所述去激活指示进入去激活态。这样,可以使得DU进入去激活态,可以减少IAB节点在DU部分的耗电,可以 实现IAB节点省电的效果。
在一个可能的设计中,还可以通过以下几种方式使得MT也进入去激活态。
方式1、所述去激活指示还用于指示所述MT进入去激活态;相应的,所述MT根据所述去激活指示进入去激活态。本方式可以使得MT进入去激活态,进一步减少IAB节点的耗电,实现IAB节点更好的省电效果。
方式2、所述DU从宿主基站接收去激活指示之后,所述DU向所述MT发送第二指示信息;其中,所述第二指示信息用于指示所述MT进入去激活态。相应的,所述MT根据所述第二指示信息进入去激活态。本方式也可以使得MT进入去激活态,进一步减少IAB节点的耗电,实现IAB节点更好的省电效果。
在上述两种方式中,所述去激活指示可以携带于所述宿主基站与所述IAB节点之间F1接口上的F1-AP消息。
在一个可能的设计中,所述去激活指示可以用于指示所述DU去激活所述DU的一个或者多个小区。相应的,所述DU可以根据所述去激活指示去激活所述DU的所述一个或者多个小区,当所述DU的去激活的小区达到第一数量后,所述DU进入去激活态。本方式可以使得DU进入去激活态,减少IAB节点的耗电,实现IAB节点的省电效果。
进一步的,在所述DU从宿主基站接收去激活指示之后,所述MT在确定所述DU的去激活的小区达到所述第一数量时,进入去激活态。本方式可以使得MT进入去激活态,进一步减少IAB节点的耗电,实现IAB节点更好的省电效果。
在一个可能的设计中,所述DU去激活一个或者多个小区,可以是停止所述一个或者多个小区的服务。
或者,可以是以下几种方式中的一种或者多种方式的组合:所述一个或者多个小区仅发送SSB、MIB和SIB1中的一种或者多种,且仅接收随机接入导频信号;调整所述一个或者多个小区的通信带宽;调整所述一个或者多个小区所使用的带宽部分BWP;所述一个或者多个小区使用最长周期的同步信号块发送配置STC发送同步信号块SSB。
在一个可能的设计中,在所述DU进入去激活态之后,所述DU还可以指示所述宿主基站释放所述宿主基站与所述DU的F1连接。这样,可以减少宿主基站的功耗。
在一个可能的设计中,所述MT进入去激活态,可以是所述MT挂起所述MT的回传链路BH无线链路控制RLC信道,和/或所述MT挂起回传适配协议层BAP配置信息。这样,MT恢复RRC连接时,可以继续使用之前挂起的所述MT的回传链路BH无线链路控制RLC信道和/或BAP配置信息,快速恢复数据通信。
在一个可能的设计中,所述DU进入去激活态,可以采用第一模式进入去激活态,也可以是采用第二模式进入去激活态,本申请实施例不做限制。其中,所述第一模式为:所述DU的一个或者多个小区停止服务。所述第二模式包括以下一种或者多种:所述DU仅发送SSB、MIB和SIB1中的一种或者多种,且仅接收随机接入导频信号;所述DU调整所述DU的一个或者多个小区的通信带宽;所述DU调整所述DU的一个或者多个小区所使用的带宽部分BWP;所述DU的一个或者多个小区使用最长周期的同步信号块发送配置STC发送同步信号块SSB。本方式提供多种模式可供DU进入去激活态,提高了方案的灵活性。
在一个可能的设计中,所述去激活指示还用于指示所述DU进入去激活态所采用的所述第一模式或所述第二模式。这样,可以减少基站和IAB节点之间的信息传输量,节省系 统资源,提高通信速率。
第二方面,提供一种去激活IAB节点的方法,包括:宿主基站确定需要去激活IAB节点;所述宿主基站向所述IAB发送的去激活指示,以使所述IAB节点进入去激活态。
在一个可能的设计中,所述宿主基站在确定需要去激活IAB节点之前,还可以从所述IAB节点接收去激活请求。相应的,所述宿主基站根据所述去激活请求,确定需要去激活所述IAB节点。
在一个可能的设计中,所述IAB节点可以包括移动终端MT部分和分布式单元DU部分;所述去激活指示可以携带于RRC Release消息,用于指示所述MT进入去激活态,也可以携带于所述宿主基站与所述IAB节点之间F1接口上的F1-AP消息,用于指示所述DU进入去激活态。
第三方面,提供一种去激活IAB节点的装置,包括:接收单元,用于从宿主基站接收去激活指示;处理单元,用于根据所述去激活指示控制所述装置进入去激活态。
在一个可能的设计中,所述装置包括移动终端MT部分和分布式单元DU部分;所述处理单元用于:根据所述去激活指示控制所述MT进入去激活态。
在一个可能的设计中,所述去激活指示还用于指示所述DU进入去激活态;所述处理单元还用于:根据所述去激活指示控制所述DU进入去激活态。
在一个可能的设计中,所述处理单元用于:在所述接收单元从宿主基站接收去激活指示之后,控制所述MT向所述DU发送第一指示信息;其中,所述第一指示信息用于指示所述DU进入去激活态;所述处理单元还用于:根据所述第一指示信息控制所述DU进入去激活态。
在一个可能的设计中,所述去激活指示携带于无线资源控制释放RRC Release消息。
在一个可能的设计中,所述IAB包括移动终端MT部分和分布式单元DU部分;所述去激活指示用于指示所述DU进入去激活态;所述处理单元用于:根据所述去激活指示控制所述DU进入去激活态。
在一个可能的设计中,所述去激活指示还用于指示所述MT进入去激活态;所述处理单元还用于:根据所述去激活指示控制所述MT进入去激活态。
在一个可能的设计中,所述处理单元还用于:在所述接收单元从宿主基站接收去激活指示之后,控制所述DU向所述MT发送第二指示信息;其中,所述第二指示信息用于指示所述MT进入去激活态;所述处理单元还用于:控制所述MT根据所述第二指示信息进入去激活态。
在一个可能的设计中,所述去激活指示携带于所述宿主基站与所述装置之间F1接口上的F1-AP消息。
在一个可能的设计中,所述去激活指示用于指示所述DU去激活所述DU的一个或者多个小区;所述处理单元用于:去激活所述DU的所述一个或者多个小区;当所述DU的去激活的小区达到第一数量后,确定所述DU进入去激活态。
在一个可能的设计中,所述处理单元还用于:在所述接收单元从宿主基站接收去激活指示之后,在确定所述DU的去激活的小区达到所述第一数量时,控制所述MT进入去激活态。
在一个可能的设计中,所述处理单元在去激活一个或者多个小区时,具体用于:停止所述一个或者多个小区的服务;或者控制所述一个或者多个小区仅发送SSB、MIB和SIB1 中的一种或者多种,且仅接收随机接入导频信号;或者调整所述一个或者多个小区的通信带宽;或者调整所述一个或者多个小区所使用的带宽部分BWP;或者控制所述一个或者多个小区使用最长周期的同步信号块发送配置STC发送同步信号块SSB。
在一个可能的设计中,所述处理单元还用于:在控制所述DU进入去激活态之后,控制所述DU指示所述宿主基站释放所述宿主基站与所述DU的F1连接。
在一个可能的设计中,所述处理单元在控制所述MT进入去激活态时,具体用于:控制所述MT挂起所述MT的回传链路BH无线链路控制RLC信道和/或回传适配协议层BAP配置信息。
在一个可能的设计中,所述处理单元在控制所述DU进入去激活态时,具体用于:控制所述DU采用第一模式进入去激活态,所述第一模式为:所述DU的一个或者多个小区停止服务;或者,控制所述DU采用第二模式进入去激活态,所述第二模式包括以下一种或者多种:所述DU仅发送SSB、MIB和SIB1中的一种或者多种,且仅接收随机接入导频信号;所述DU调整所述DU的一个或者多个小区的通信带宽;所述DU调整所述DU的一个或者多个小区所使用的带宽部分BWP;所述DU的一个或者多个小区使用最长周期的同步信号块发送配置STC发送同步信号块SSB。
在一个可能的设计中,所述去激活指示还用于指示所述DU进入去激活态所采用的所述第一模式或所述第二模式。
第四方面,提供一种去激活IAB节点的装置,包括:处理单元,用于确定需要去激活IAB节点;发送单元,用于向所述IAB发送的去激活指示,以使所述IAB节点进入去激活态。
在一个可能的设计中,该装置还包括接收单元,用于在所述处理单元在确定需要去激活IAB节点之前,从所述IAB节点接收去激活请求;所述处理单元具体用于:根据所述去激活请求,确定需要去激活所述IAB节点。
在一个可能的设计中,所述IAB节点包括移动终端MT部分和分布式单元DU部分;所述去激活指示携带于无线资源控制释放RRC Release消息,用于指示所述MT进入去激活态;或者所述去激活指示携带于所述装置与所述IAB节点之间F1接口上的F1-AP消息,用于指示所述DU进入去激活态。
第五方面,提供一种通信装置,包括:至少一个处理器;以及与所述至少一个处理器通信连接的存储器和/或通信接口;其中,所述存储器存储有可被所述至少一个处理器执行的指令,所述至少一个处理器通过执行所述存储器存储的指令,执行本申请实施例第一方面或者第二方面所述的方法。
第六方面,提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序包括程序指令,所述程序指令在被计算机执行时,使所述计算机执行本申请实施例第一方面或者第二方面所述的方法。
第七方面,提供一种计算机程序产品,所述计算机程序产品包含有指令,当所述指令在计算机上运行时,使得所述计算机执行本申请实施例第一方面或者第二方面所述的方法。
附图说明
图1为本申请实施例中一种IAB网络的网络架构图;
图2为本申请实施中另一种IAB网络的网络架构图;
图3为本申请实施中一种去激活IAB节点的方法的流程图;
图4为本申请实施中另一种去激活IAB节点的方法的流程图;
图5为本申请实施中另一种去激活IAB节点的方法的流程图;
图6为本申请实施中另一种去激活IAB节点的方法的流程图;
图7为本申请实施中一种去激活IAB节点的装置的结构示意图;
图8为本申请实施中另一种去激活IAB节点的装置的结构示意图;
图9为本申请实施中一种通信装置的结构示意图。
具体实施方式
为了使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施例作进一步地详细描述。
第五代移动通信(5th-Generation,5G)系统相较于第四代移动通信(4th-Generation,4G)系统,针对网络的各项性能指标,提出了更严苛的要求。例如,容量指标提升1000倍,更广的覆盖需求、超高可靠超低时延等。一方面,考虑到高频载波频率资源丰富,在热点区域,为满足5G超高容量需求,利用高频小站组网愈发流行。高频载波传播特性较差,受遮挡衰减严重,且覆盖范围不广,故而需要大量密集部署小站。但是,为这些大量密集部署的小站提供光纤回传的代价很高,施工难度大,因此需要经济便捷的回传方案。另一方面,从广覆盖需求的角度出发,在一些偏远地区提供网络覆盖,光纤的部署难度大,成本高,因此也需要设计灵活便利的接入和回传方案。接入回传一体化(integrated access and backhaul,IAB)节点,可以为UE提供无线接入服务和回传服务,UE的业务数据可以由一个或多个IAB节点通过无线回传链路连接到宿主基站(donor gNodeB,DgNB)传输。
类似5G中的网络设备gNB采用集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU)分离的架构,一个IAB节点可以包括MT部分和DU两部分。当IAB节点面向其父节点(也就是IAB节点的上一跳节点)时,可以被看做是终端设备,即作为MT的角色;当IAB面向其子节点(也就是IAB节点的下一跳节点,该子节点可能是另一IAB节点,也可能是UE)时,可以被看做网络设备为子节点提供回传服务,即作为DU的角色。其中,IAB节点的DU类似于gNB中DU的功能,包含物理层(physical,PHY)/媒体接入控制(medium access control,MAC)/无线链路控制(radio link control,RLC)层的功能,与子节点进行通信,为子节点提供接入服务,当子节点为另一IAB节点,在RLC层之上还包括回传适配协议(backhaul adaptation protocol,BAP)层。
需要说明的是,IAB设备在不同的通信系统中可以有不同的名称,例如,在长期演进(Long Term Evolution,LTE)系统、先进的长期演进(advanced long term evolution,LTE-A)系统中,IAB节点可以称为中继节点(relay node,RN);而在第5G系统中,则可以称为接入回传一体化节点(integrated access and backhaul node,IAB node)。当然,在其他通信系统中,无线回传设备还可以有不同的名称,在此不作限制。
IAB节点中集成了无线接入链路和无线回传链路,其中无线接入链路为UE与IAB节点之间通信链路,无线回传链路为IAB节点之间的通信链路,以及IAB节点和IAB宿主之间的通信链路,用于进行数据回传。因此IAB节点不需要有线传输网络进行数据回传,IAB节点更容易部署在密集场景,减轻了部署有线传输网络的负担。
请参考图1,为本申请提供的一种IAB网络的网络架构图。该网络架构中包括一个终 端侧设备、一个IAB节点以及一个宿主基站。在图1所示的网络架构中,终端侧设备110通过无线的方式与IAB节点120相连,IAB节点120通过无线的方式与宿主基站130相连。终端侧设备110与IAB节点120之间以及IAB节点120与宿主基站130之间均可以通过授权频谱(licensed spectrum)进行通信,也可以通过非授权频谱(unlicensed spectrum)进行通信,也可以同时通过授权频谱和非授权频谱进行通信,例如,该授权频谱可以为6GHz以下的频谱,在此不作限制。在图1所示的网络架构中,IAB节点将为其提供回传服务的节点视为父节点,例如,IAB节点120将宿主基站130视为父节点。当IAB节点120接收终端侧设备110的上行数据后,将所述上行数据传输至宿主基站后,再由宿主基站将该上行数据发送至移动网关设备(例如5G网络中的用户面功能实体(user port function,UPF))。移动网关设备将下行数据发送至宿主基站,然后依次经由IAB节点120发送至终端侧设备110。
考虑到高频段的覆盖范围小,为了保障网络的覆盖性能,IAB网络可以采用多跳组网。另外还考虑到业务传输可靠性的需求,可以使IAB节点支持双连接(dual connectivity,DC)或者多连接(multi-connectivity),以应对回传链路可能发生的异常情况,例如链路的中断或阻塞(blockage)及负载波动等异常,提高传输的可靠性保障。当IAB网络支持多跳和多连接组网时,UE和宿主基站之间可以存在多条传输路径。在一条路径上,IAB节点之间,以及IAB节点和为IAB节点服务的宿主基站有确定的层级关系,每个IAB节点将为其提供回传服务的节点视为父节点,相应地,每个IAB节点可视为其父节点的子节点。
请参考图2,为本申请提供的另一种IAB网络的网络架构图。该网络架构中,包括两个终端侧设备、五个IAB节点以及一个宿主基站。在图2所示的网络架构中,终端侧设备通过无线的方式与IAB节点相连,IAB节点通过无线的方式与宿主基站或者另一个IAB节点相连。终端侧设备与IAB节点之间、IAB节点和IAB节点之间以及IAB节点与宿主基站之间均可以通过授权频谱进行通信,也可以通过非授权频谱进行通信,也可以同时通过授权频谱和非授权频谱进行通信,例如,该授权频谱可以为6GHz以下的频谱,在此不作限制。在图2所示的网络架构中,IAB节点将为其提供回传服务的节点视为父节点,例如,IAB节点121的父节点为宿主基站,IAB节点121又为IAB节点122和IAB节点123的父节点,IAB节点122和IAB节点123均为IAB节点124的父节点,IAB节点125的父节点为IAB节点122。在图2所示的网络架构中,UE的上行数据可以经一个或多个IAB节点传输至宿主站点宿主基站后,再由宿主基站发送至移动网关设备(例如5G核心网中的用户平面功能单元UPF),下行数据将由宿主基站从移动网关设备处接收后,再通过IAB节点发送至UE。例如,终端侧设备111和宿主基站130之间的数据传输有两条可用的路径,路径1:终端侧设备111←→IAB节点124←→IAB节点123←→IAB节点121←→宿主基站,路径2:终端侧设备111←→IAB节点124←→IAB节点122←→IAB节点121←→宿主基站。例如,终端侧设备112和宿主基站之间的数据传输有三条可用的路径,路径3:终端侧设备112←→IAB节点124←→IAB节点123←→IAB节点121←→宿主基站,路径4:终端侧设备112←→IAB节点124←→IAB节点122←→IAB节点121←→宿主基站,路径5:终端侧设备112←→IAB节点125←→IAB节点122←→IAB节点121←→宿主基站。
在本申请实施例中,终端侧设备,是一种向用户提供语音和/或数据连通性的设备。本申请涉及的终端侧设备可以是终端设备,或者所述终端设备内部能够实现该终端设备功能的硬件部件。
所述终端设备可以称为用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等,例如可以包括具有无线连接功能的手持式设备、或连接到无线调制解调器的处理设备。该终端可以经无线接入网(radio access network,RAN)与核心网进行通信,与RAN交换语音和/或数据。一些终端设备的举例为:个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiation protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、条码、射频识别(radio frequency identification,RFID)、传感器、全球定位系统(global positioning system,GPS)、激光扫描器等信息传感设备等设备。
所述终端设备还可以可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能头盔、智能首饰等。该终端还可以是虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。
随着无线通信技术的发展,终端设备可以接入无线通信网络、可以与无线网络侧进行通信,或者通过无线网络与其它物体进行通信的设备都可以是本申请实施例中的终端,譬如,智能交通中的终端和汽车、智能家居中的家用设备、智能电网中的电力抄表仪器、电压监测仪器、环境监测仪器、智能安全网络中的视频监控仪器、收款机等等。终端设备可以是静态固定的,也可以是移动的。
在如图1和图2所示的网络架构图中,所述终端设备的功能可以通过终端设备内部的硬件部件来实现,所述硬件部件可以为所述终端设备内部的处理器和/或可编程的芯片。可选的,该芯片可以通过专用集成电路(application-specific integrated circuit,ASIC)实现,或可编程逻辑器件(programmable logic device,PLD)实现。上述PLD可以是复杂程序逻辑器件(complex programmable logical device,CPLD),现场可编程门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL),片上系统(system on a chip,SOC)中的任一项或其任意组合。
需要说明的是,在如图1和图2所示的网络架构图中,尽管示出了终端侧设备、IAB节点及宿主基站,但该网络架构可以并不限于包括终端侧设备、IAB节点及宿主基站。例如,还可以包括核心网设备或用于承载虚拟化网络功能的设备等,这些对于本领域普通技术人员而言是显而易见的,在此不一一详述。
另外,如图1所示的网络架构图中,尽管示出了一个终端侧设备、一个IAB节点及一个宿主基站,如图2所示的网络架构图中,尽管示出了两个终端侧设备、五个IAB节点及一个宿主基站,但在具体实施时,IAB网络架构并不限制终端侧设备、IAB节点及宿主基站的数量。前述两种网络架构图只是示例,在实际使用中,还可以包括其他的网络架构图, 在此不一一举例。
在当前的5G系统中,UE的无限资源控制(radio resource control,RRC)状态可以包括空闲态(RRC_IDLE)、连接态(RRC_Connected)和去活动态(RRC_Inactive),其中RRC的去活动态是新无线(new radio,NR)新引入的一种无线资源控制(Radio Resource Control,RRC)状态(又称为“RRC非激活态”或者“RRC去活动态”或“非激活态”。RRC去活动态与空闲态一样,在去活动态下,UE与网络断开了RRC连接,从而达到与空闲态一样的省电效果。不同于空闲态的是,在去活动态下,UE和接入网设备保存UE的上下文,当UE回到RRC连接态时,能够复用先前保存的UE上下文,快速恢复连接。而对于IAB场景,由于IAB节点作为一个无线回传节点,当IAB节点处于一些热点场景或灾难地区时,IAB节点本身的业务在不同时间段波动比较大。但在现有技术中,当IAB节点在某时段无业务时,仍然是处于活动状态,造成了大量不必要的功耗浪费。
鉴于此,本申请实施例提供一种去激活IAB节点的方案。通过宿主基站向IAB节点下发去激活指示,使得IAB节点根据该去激活指示进入去激活态,以达到IAB节点省电的目的。具体实现方案将在后文详细介绍。
为了使得本申请实施例更加清楚,以下对与本申请实施例相关的部分内容以及概念在此处作统一介绍。
1)宿主基站,或者叫IAB宿主(IAB donor)或宿主节点,是通信系统中将终端侧设备接入到无线网络的设备。宿主基站可以通过有线链路或无线链路的方式连接到为UE服务的核心网(例如连接到5G核心网,5GC)网元,并为IAB节点提供无线回传功能。
作为一种示例,宿主基站可以是一个具有完整基站功能的接入网网元。比如宿主基站可以包括无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU)等,也可以包括演进的LTE系统(LTE-Advanced,LTE-A)中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),或者也可以包括第五代移动通信技术(fifth generation,5G)新无线(new radio,NR)系统中的下一代节点B(next generation node B,gNB)等。
作为另一种示例,宿主基站可以包括集中单元(centralized unit,CU)(可以称为宿主CU,Donor-CU)和分布单元(distributed unit,DU)(可以称为宿主DU,Donor-DU)。这种结构将长期演进(long term evolution,LTE)系统中eNB或NR系统中的gNB的协议层拆分开,部分协议层(例如分组数据汇聚层协议(packet data convergence protocol,PDCP)层和无限资源控制(radio resource control,RRC)层的功能放在CU节点集中控制,剩下部分或全部协议层(例如物理(physical,PHY)层,媒体访问控制(media access control,MAC)层,无线链路控制(radio link control,RLC)层回传适配协议(backhaul adaptation protocol,BAP)层)的功能分布在DU节点中,由CU节点控制DU节点。为便于表述,可以将宿主基站的集中式单元简称为donor CU,宿主基站的分布式单元简称为donor DU,其中donor CU还有可能是控制面(control plane,CP)和用户面(user plane,UP)分离的形态,例如CU可由一个CU-CP和一个(或多个)CU-UP组成。
2)链路、接入链路和回传链路
链路:是指一条路径中的两个相邻节点之间的路径。
接入链路指终端接入的链路,可以指终端与接入网设备之间,或者终端与IAB节点之 间,或者终端与宿主节点之间,或者终端与宿主DU之间的链路。或者,接入链路包括某个IAB节点作为普通终端设备角色时和它的父节点进行通信时所使用的无线链路。IAB节点作为普通终端设备角色时,不为任何子节点提供回传服务。接入链路包括上行接入链路和下行接入链路。本申请中,终端的接入链路为无线链路,故接入链路可被称为无线接入链路。
回传链路指IAB节点作为无线回传节点时与父节点之间的链路。IAB节点作为无线回传节点时,为子节点提供无线回传服务。回传链路包括上行回传链路,以及下行回传链路。本申请中,IAB节点与父节点之间的回传链路为无线链路,故回传链路也可被称为无线回传链路。
3)节点的上一跳节点、节点的下一跳节点
节点的上一跳节点:是指在包含该节点的路径中的、在该节点之前最后一个接收到数据包的节点。
节点的下一跳节点:是指在包含该节点的路径中的、在该节点之后第一个接收到数据包的节点。
4)传输(transmission或者transmit):可以理解为发送(send)和/或接收(receive)。例如,通过IAB节点和宿主基站之间回传链路传输数据包,对于IAB节点而言,通过该回传链路发送该数据包,对于宿主基站而言,通过该回传链路接收该数据包。
5)本申请实施例中“多个”是指两个或两个以上,鉴于此,本申请实施例中也可以将“多个”理解为“至少两个”。“至少一个”,可理解为一个或多个,例如理解为一个、两个或更多个。例如,包括至少一个,是指包括一个、两个或更多个,而且不限制包括的是哪几个,例如,包括A、B和C中的至少一个,那么包括的可以是A、B、C、A和B、A和C、B和C、或A和B和C。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,字符“/”,如无特殊说明,一般表示前后关联对象是一种“或”的关系。本申请实施例中的术语“系统”和“网络”可被互换使用。除非有相反的说明,本申请实施例提及“第一”、“第二”等序数词用于对多个对象进行区分,不用于限定多个对象的顺序、时序、优先级或者重要程度。
在下文的介绍过程中,以该去激活IAB节点的方法应用于图1或图2所示的网络架构为例。该方法可由宿主基站和IAB节点执行。下文中所述的宿主基站可以是图1所示的网络架构中的宿主基站130,也可以是图2所示的网络架构中的宿主基站130,下文中所述的IAB节点可以是图1所示的网络架构中的IAB节点120,也可以是图1所示的网络架构中的IAB节点121、IAB节点122、IAB节点123、IAB节点124或者IAB节点125。当该方法应用于其他网络架构时,对宿主基站和IAB节点的理解可以参照将该方法应用在图1或图2所示的网络架构中的说明,在此不再赘述。
请参见图3,为本申请实施例提供的去激活IAB节点的方法的流程图,该方法包括:
S301,宿主基站向IAB节点发送去激活指示。
如上文所述,宿主基站可以是完整的网元,也可以是CU和DU分离形态的接入网网元。如果宿主基站是完整的网元,则由宿主基站向IAB节点发送去激活指示,如果宿主基站是CU和DU分离形态的接入网网元,则可以由宿主基站的CU向IAB节点发送去激活指示。
在本申请实施例中,如果IAB节点是宿主基站的子节点(即下一跳节点),例如IAB节点为图1中的IAB节点120或者图2中的IAB节点121,则宿主基站可以直接将去激活指示发送给该IAB节点;如果IAB节点不是宿主基站的子节点,则宿主节点可以将去激活指示通过该IAB节点和自身之间的其它网络设备传输给该IAB节点,例如IAB节点为图2中的IAB节点125,则宿主基站可以将去激活指示发送给IAB节点121,由IAB节点121传输给IAB节点122,再由IAB节点122传输给IAB节点125;如果IAB节点不是宿主基站的子节点,但是该IAB节点同时与宿主基站保持着控制面的直接连接,则宿主基站可以直接将去激活指示发送给该IAB节点,例如在宿主基站与该IAB节点可以通过低频进行控制面直接连接。
作为一种可选的实施方式,宿主基站向IAB发送去激活指示之前,先决定需要去激活IAB节点。在本申请实施例中,宿主基站决定需要去激活IAB节点的实现方式可以有多种。
第1种、由宿主基站主动发起。例如,宿主基站根据IAB节点下的小区服务情况,判断IAB节点是否是要进入非激活。可选的,宿主基站在根据IAB节点下的小区服务情况判断IAB节点是否是要进入非激活之前,宿主基站还可以要求IAB节点上报自身的小区服务情况。又如,宿主基站可以根据IAB节点的下属的子节点(包括IAB节点和/或UE)的状态决定需要去激活IAB节点。一种可能情况是,当宿主基站检测到IAB节点下已无连接态的子节点时,决定需要去激活IAB节点。
第2种、由IAB节点请求。例如,宿主基站接收到IAB节点发送的去激活请求,根据该去激活请求决定去激活该IAB节点。
当然,以上两种情况只是对宿主基站决定去激活IAB节点的实现方式进行举例,在具体实施时,宿主基站还可以通过其它实现方式决定去激活IAB节点,本申请实施例对宿主基站如何决定需要去激活IAB节点不做限制。
S302,IAB节点接收该去激活指示,并根据去激活指示进入去激活态。
当IAB节点进入去激活态后,能够暂停或者关闭部分功能,例如IAB节点与网络断开了RRC连接,但是保留有上下文和/或挂起部分功能或者配置,以达到省电的目的。
需要说明的是,本申请实施例对IAB在进入去激活态后的状态名称不做限定。例如可以定义为RRC去激活态/模式、去激活态/模式、RRC非激活态/模式、非激活态/模式、非连续传输态/模式或者省电态/模式等。
上述方案,通过宿主基站向IAB节点下发去激活指示,使得IAB节点可以根据该去激活指示进入去激活态(比如暂停或者关闭部分功能),可以减少IAB节点的功耗浪费,达到IAB节点省电的效果。
如上文所述,由于IAB节点包括MT和DU两部分,鉴于此,本申请实施例中的去激活指示可以仅用于指示IAB节点的MT进入去激活态,也即使MT处于省电模式;也可以仅用于指示IAB节点的DU进入去激活态,也即使DU处于省电模式;当然,还可以用于指示IAB节点的MT和DU均进入去激活态,也即使MT和DU均处于省电模式,本申请实施例不做限制。
下面,通过三个具体方案对上述三种情况分别进行详细说明。
方案1、宿主基站发送的去激活指示用于指示IAB节点的MT进入去激活态。相应的,所述IAB的MT根据该去激活指示进入去激活态。
请参见图4,为IAB节点的MT进入去激活态的流程图,该流程可以包括:
S401、宿主基站决定IAB节点的MT需要进入去激活态。
具体的,宿主基站可以根据以下两种情况决定MT进入去激活态:
1)宿主基站判断IAB节点的情况,决定IAB节点的MT进入去激活态。具体的,宿主基站可以根据MT所在IAB节点的DU下的小区服务情况决定MT进入去激活态,或者根据IAB节点的下属子IAB节点或/和UE的状态判断该IAB节点的MT是否需要进入去激活态。例如,宿主基站检测到IAB节点下已无连接态的子IAB节点和UE时决定该IAB节点的MT需要进入去激活态。
2)宿主基站接收到IAB节点发送的去激活请求,决定MT进入去激活态。
S402、宿主基站向IAB节点的MT发送第一去激活指示,其中第一去激活指示用于指示该MT进入去激活态。
作为一种可选的实施方式,在本申请实施例中,宿主基站可以将第一去激活指示携带于无线资源控制释放(RRC Release)消息中发送给IAB节点的MT。当然,宿主基站也可以将第一去激活指示也可以携带于其它消息中发送给MT,本申请实施例不做限制。
S403、IAB节点的MT根据第一去激活指示进入去激活态。
在本申请实施例中,MT可以通过执行如下一种或多种操作进入去激活态:1)保存上下文;2)暂停除SRB0之外的所有信令无线承载SRB及数据无线承载DRB;3)MT挂起MT的回传链路(rackhaul link,BH)无线链路控制(radio link control,RLC)信道;4)MT挂起MT的回传适配协议层(backhaul adaptation protocol,BAP)配置信息。其中,1)、2)为复用现有RRC协议中UE的去激活态,3)、4)为IAB节点在UE的基础上所特有的,目的同样是为了当MT回到RRC连接态时,直接使用之前挂起(suspend)的一些配置或状态,达到快速恢复的目的。更为具体的,BH RLC channel可以包括:用于承载所有DRB和/或SRB0,1,2,3(SRB1,2,3之间也是和/或的关系)所用的BH RLC channel配置,BAP配置信息可以包括BAP层关于承载映射规则与路由表信息等BAP层的配置,以及BAP的地址或ID信息,当IAB节点的MT恢复RRC连接时,可以继续使用之前suspend的BH RLC channel进行数据或信令传输(即不用重新配置并建立),和/或,继续使用原先suspend的BAP配置进行承载映射和数据包路由。
需要说明的是,本申请实施例对IAB的MT在进入去激活态后的状态名称不做限定。例如可以定义MT在进入去激活态后的状态为MT的RRC去激活态/模式、MT的去激活态/模式、MT的RRC非激活态/模式、MT的非激活态/模式、MT的非连续接收态/模式或者MT的省电态/模式等。
进一步的,当MT进入去激活态之后即可定义IAB节点进入去激活态。当然,也可以是MT和DU均进入去激活态之后定义IAB节点进入去激活态,在这种情况下,还需要进一步使DU进入去激活态。
作为一种可选的实施方式,当IAB节点的MT接收第一去激活指示之后,IAB节点还启动DU进入去激活态的流程。
其中,触发DU进入去激活态的具体实现方式包括如下两种:(1)DU可以根据第一去激活指示进入去激活态。也即,上述第一去激活指示还用于指示所述DU进入去激活态。其中,如果DU和MT之间未定义有内部接口,也即MT获得第一去激活指示时DU也获得该第一去激活指示,那么DU直接根据MT接收到的第一去激活指示进入去激活态;如果DU和MT之间定义有内部接口,则MT在接收到第一去激活指示之后,通过内部接口 将第一去激活指示转发给DU,DU根据MT转发的第一去激活指示进入去激活态。(2)MT向DU发送第一指示信息,该第一指示信息用于指示所述DU进入去激活态,DU根据所述MT发送的第一指示信息进入去激活态。
在本申请实施例中,DU进入去激活态时的模式可以有多种,包括但不限于以下:
(1)DU的全部小区停止服务。例如,停止所有小区与下属UE或子节点的所有上下行传输,包括发送同步信号、同步消息等广播信息。
(2)DU的部分小区停止服务,例如DU停止除主小区外的全部小区的服务。
(3)DU停止DU的一个或者多个小区的指定类型的下行传输和指定类型的上行传输,其中该指定类型的下行传输不包括同步信号块(synchronization signal block,SSB)、主信号块(master information block,MIB)和SIB1中的一种或者多种,该指定类型的上行传输不包括从子节点和/或UE接收随机接入导频信号。也即:所述DU的一个或者多个小区仅能够发送SSB、MIB和SIB1中的一种或者多种,接收随机接入导频信号。这样,DU在去激活态时,可以通过所述一个或者多个小区发送SSB/MIB/SIB1,还可以通过所述一个或者多个小区接收子节点/UE发送的随机接入前导码(preamble),进而为提供新子节点/UE的接入可能。
(4)DU调整DU的一个或者多个小区的通信带宽,例如将一个或者多个小区的通信带宽调整至预配置的最小通信带宽。
(5)DU调整DU的一个或者多个小区所使用的带宽部分(bandwidth part,BWP)。例如将一个或者多个小区的BWP调整至初始激活时的BWP,或将一个或者多个小区的BWP调整至带宽最小的BWP,或将一个或者多个小区的同时激活BWP数量降低到1个等。
(6)DU的一个或者多个小区使用最长周期的同步信号块发送配置(SSB transmission configuration,STC)发送同步信号块SSB。在这种模式下,可选的,DU还可以将更新后的STC配置信息通知给宿主基站。需要说明的是,DU在进入去激活态时,可以基于以上6种模式中的任意一种进入去激活态,也可以基于上述(2)~(6)中任意多种模式的组合进入去激活态,本申请实施例不做具体限制。
需要说明的是,本申请实施例对IAB的DU在进入去激活态后的状态名称不做限定。例如,可以将DU在进入去激活态后的状态定义为DU的RRC去激活态/模式、DU的去激活态/模式、DU的RRC非激活态/模式、DU的非激活态/模式、DU的非连续发送态/模式或者DU的省电态/模式等。
一种可选的实施方式中,宿主基站可以指示DU进入去激活态所采用的模式。具体的,上述第一去激活指示或者上述第一指示信息还可以用于指示DU进入去激活态所采用的模式,或者在携带所述第一去激活指示的RRC Release消息中携带模式指示信息,该模式指示信息用于指示DU进入去激活态所采用的模式,或者宿主基站可以单独发送一条消息用来指示DU进入去激活态所采用的模式,本申请实施例对此不做限制。
一些可能的设计中,宿主基站和IAB节点可以预配置有多种让DU进入去激活态时的模式,另外可以使用不同的标识来表示不同的模式。以上述(1)~(6)中的6种模式为例,宿主基站和IAB节点预配置有上述6种模式,并以第一模式标识表示上述第(1)种模式、以第二模式标识来表示上述第(2)种模式、以第三模式标识来表示上述第(3)种模式、以第四模式标识来表示上述第(4)种模式、以第五模式标识来表示上述第(5)种 模式、以第六模式标识来表示上述第(6)种模式。相应的,宿主基站在指示DU进入去激活态所采用的模式时,可通过发送标识来指示采用的模式。
例如,在MT和DU之间未定义有内部接口的情况下,第一去激活指示中携带有第一模式标识,相应的,DU在从宿主基站获得第一激活指示后,采用第一模式标识对应的模式(即上述第(1)种模式)进入去激活态,即停止全部小区的服务以进入去激活态。
例如,在MT和DU之间定义有内部接口的情况下,MT通过该内部接口发送给DU的第一指示信息中携带第二模式标识。相应的,DU在获得第一指示信息之后,采用第二模式标识对应的模式(即及上述第(2)种模式)进入去激活态,即停止DU的部分小区服务以进入去激活态。
例如,宿主基站单独发送一条消息用来指示DU进入去激活态所采用的模式,其中该消息中携带有第三模式标识。相应的,DU在获得该消息之后,采用该消息中的第三模式标识对应的模式(即上述第(3)种模式)进入去激活态,即DU的一个或者多个小区仅能够发送SSB、MIB和SIB1中的一种或者多种,且仅接收随机接入导频信号,以进入去激活态。
另一种可选的实施方式中,宿主基站也可以不指示DU进入去激活态所采用的模式,而是由DU主动选择进入去激活态所采用的模式。在这种实施方式下,可选的,DU还可以将选择的模式上报给宿主基站。
又一种可选的实施方式中,宿主基站可以向DU下发模式对应相关配置参数,比如直接下发需要停止服务的小区的标识、需要被调整通信带宽的小区的标识以及对应的通信带宽值、需要被调整BWP的小区的标识以及对应的BWP值、需要被调整SSB发送周期的小区的标识以及对应的周期值等。相应的,DU直接根据宿主基站下发的相关配置参数对自身进行配置,进入去激活态。
作为一种可选的实施方式,在DU进入去激活态之前,宿主基站还可以先将DU下的连接态UE以及子节点先切换至其他IAB节点,以保证这些子节点以及UE能够在其他IAB节点下正常通信不受影响。一种具体的示例,宿主基站在决定IAB节点的MT需要进入去激活态(即步骤S401)之后,且向IAB节点的MT发送第一去激活指示(即步骤S402)之前,向IAB节点下的连接态UE以及子节点下发切换消息,使得这些连接态UE以及子节点切换至其他IAB节点。
上述方案,给出了先让MT进入去激活态的方案再让DU进入去激活态的方案,可以实现IAB节点省电的效果。MT进入去激活态时,可以挂起部分功能或者配置(比如挂起MT的BH RLC信道和/或BAP配置信息等),使得当MT回到RRC连接态时,可以直接使用之前挂起的一些配置或状态,达到快速恢复的目的,提高用户体验。DU进入去激活态时,可以停止所有小区的服务来达到省电的目的,也可以是保留一个或多个小区的服务并通过调整保留服务的小区下/行传输、通信带宽、BWP或SSB发送周期等,来达到省电的目的同时,为子节点或UE提供接入可能。
方案2、宿主基站发送的去激活指示用于指示IAB节点的DU进入去激活态。相应的,所述IAB的DU根据该去激活指示进入去激活态。
请参见图5,为IAB节点的DU进入去激活态的流程图,该流程可以包括:
S501、宿主基站决定IAB节点的DU需要进入去激活态。
具体的,宿主基站可以根据以下两种情况决定IAB节点的DU进入去激活态:
1)宿主基站判断IAB节点的情况,决定IAB节点的DU进入去激活态。具体的,宿主基站可以根据IAB节点的DU下的小区服务情况决定该IAB节点的DU进入去激活态,或者根据IAB节点的下属子IAB节点或/和UE的状态判断该IAB节点的DU是否需要进入去激活态。例如,宿主基站检测到IAB节点下已无连接态的子IAB节点和UE时决定该IAB节点的DU需要进入去激活态。
2)宿主基站接收到IAB节点发送的去激活请求,决定DU进入去激活态。
S502、宿主基站向IAB节点的DU发送第二去激活指示。
在本申请实施例中,第二去激活指示可以用于直接指示IAB节点的DU进入去激活态,也可以用于指示去激活IAB节点的DU的小区,以此间接地指示IAB节点的DU进入去激活态。
一种示例,当第二去激活指示直接指示IAB节点的DU进入去激活态时,宿主基站可以将第二去激活指示携带于宿主基站与IAB节点之间F1接口上的F1-AP消息发送给DU。
另一种示例,当第二去激活指示间接指示IAB节点的DU进入去激活态时,所述去激活指示可以用于指示所述DU去激活所述DU的一个或者多个小区。例如,第二去激活指示可以复用现有的gNB-CU配置更新消息(GNB-CU configuration update)消息,该消息中携带有所述DU的一个或者多个小区的小区标识。这种情况下,DU在收到GNB-CU configuration update消息后,根据GNB-CU configuration update消息去激活自身的所述一个或者多个小区,当自身的去激活的小区达到第一数量后(例如去激活全部小区后,或者去激活除主小区之外的所有小区后),DU确定自身进入去激活态。
其中,DU去激活某个小区的方式可以是停止该小区的服务,也可以是以下几种方式中的一种或者多种的组合:控制该小区仅发送SSB、MIB和SIB1中的一种或者多种,且仅接收随机接入导频信号;调整该小区的通信带宽;调整该小区所使用的BWP;该小区使用最长周期的STC发送SSB。当然,在具体实施时还可以有其它实现,本申请实施例不做限制。
当然,在具体实施时,宿主基站第二去激活指示的是实现方式不限于以上两种,还可以有其它实现方式,本申请实施例对此不做限制。
S503、IAB节点的DU根据第二去激活指示进入去激活态。
和实施例一类似,在本实施例中,DU进入去激活态的模式可以有多种,包括但不限于以下:
(1)DU的全部小区停止服务。
(2)DU的部分小区停止服务。例如DU停止除主小区外的全部小区的服务。
(3)DU停止DU的一个或者多个小区的指定类型的下行传输和指定类型的上行传输,其中该指定类型的下行传输不包括SSB、MIB和SIB1中的一种或者多种,该指定类型的上行传输不包括从子节点和/或UE接收随机接入导频信号。也即:所述DU的一个或者多个小区仅能够发送SSB、MIB和SIB1中的一种或者多种,接收随机接入导频信号。这样,DU在去激活态时,可以通过所述一个或者多个小区发送SSB/MIB/SIB1,还可以通过所述一个或者多个小区接收子节点/UE发送的preamble,进而为提供新子节点/UE的接入可能。
(4)DU调整DU的一个或者多个小区的通信带宽。例如将一个或者多个小区的通信带宽调整至预配置的最小通信带宽。
(5)DU调整DU的一个或者多个小区所使用的BWP。例如将一个或者多个小区的 BWP调整至初始激活时的BWP,或将一个或者多个小区的BWP调整至带宽最小的BWP,或将一个或者多个小区的同时激活BWP数量降低到1个等。
(6)DU的一个或者多个小区使用最长周期的STC发送同步信号块SSB。在这种模式下,可选的,DU还可以将更新后的STC配置信息通知给宿主基站。
需要说明的是,DU在进入去激活态时,可以基于以上6种模式中的任意一种进入去激活态,也可以基于上述(2)~(6)中任意多种模式的组合进入去激活态,本申请实施例不做具体限制。
需要说明的是,本申请实施例对IAB的DU在进入去激活态后的状态名称不做限定。例如可以将DU在进入去激活态后的状态定义为DU的RRC去激活态/模式、DU的去激活态/模式、DU的RRC非激活态/模式、DU的非激活态/模式、DU的非连续发送态/模式或者DU的省电态/模式等。
一种可选的实施方式中,宿主基站可以指示DU进入去激活态所采用的模式。具体的,上述第二去激活指示还用于指示DU进入去激活态所采用的模式,或者在携带所述第二去激活指示的F1-AP消息中携带模式指示信息,该模式指示信息用于指示DU进入去激活态所采用的模式,或者宿主基站可以单独发送一条消息用来指示DU进入去激活态所采用的模式,本申请实施例对此不做限制。例如,第二去激活指示中携带有第三模式标识,该第三模式标识用于指示DU进入去激活态所采用的模式为DU的全部小区停止服务,则DU在从宿主基站获得第二激活指示后,停止全部小区的服务,以进入去激活态。
另一种可选的实施方式中,宿主基站也可以不指示DU进入去激活态所采用的模式,而是由DU主动选择进入去激活态所采用的模式。在这种实施方式下,可选的,DU还可以将选择的模式上报给宿主基站。
又一种可选的实施方式中,宿主基站可以向DU下发模式对应相关配置参数,比如直接下发需要停止服务的小区的标识、需要被调整通信带宽的小区的标识以及对应的通信带宽值、需要被调整BWP的小区的标识以及对应的BWP值、需要被调整SSB发送周期的小区的标识以及对应的周期值等。相应的,DU直接根据宿主基站下发的相关配置参数对自身进行配置,进入去激活态。
进一步的,当DU进入去激活态之后即可定义IAB节点进入去激活态。当然,也可以是MT和DU均进入去激活态之后定义IAB节点进入去激活态,在这种情况下,还需要进一步使MT进入去激活态。
作为一种可选的实施方式,当IAB节点的DU接收第二去激活指示之后,IAB节点还启动MT进入去激活态的流程。
其中,触发MT进入去激活态的具体实现方式包括如下三种:(1)MT可以根据第二去激活指示进入去激活态。也即,上述第二去激活指示还用于指示所述MT进入去激活态。其中,如果DU和MT之间未定义有内部接口,也即DU获得第二去激活指示时MT也获得该第二去激活指示,那么MT直接根据DU接收到的第二去激活指示进入去激活态;如果DU和MT之间定义有内部接口,则DU在接收到第二去激活指示之后,通过内部接口将第二去激活指示转发给MT,MT根据DU转发的第二去激活指示进入去激活态。(2)DU向MT发送第二指示信息,该第二指示信息用于指示所述MT进入去激活态,MT根据所述DU发送的第二指示信息进入去激活态。(3)MT检测到DU进入去激活态或者的DU去激活的小区达到第一数量后(例如去激活全部小区后,或者去激活除主小区之外的所有 小区后),MT进入去激活态。
在本实施例中,MT进入去激活态所执行的操作可以参照上述实施例一种步骤S403的具体实现方式,此处不再赘述。
作为一种可选的实施方式,所述DU在进入去激活态之后,所述DU还可以指示所述宿主基站释放所述宿主基站与所述DU的F1连接。具体的,DU可以直接向宿主基站发送指示,以请求宿主基站释放所述宿主基站与所述DU的F1连接的指示,另外,DU可以是从MT收到请求宿主基站释放所述宿主基站与所述DU的F1连接的指示后,再将该指示转发给宿主基站。
作为一种可选的实施方式,在DU进入去激活态之前,宿主基站还可以先将DU下的连接态UE以及子节点先切换至其他IAB节点,以保证这些子节点以及UE能够在其他IAB节点下正常通信不受影响。一种具体的示例,宿主基站在决定IAB节点的DU需要进入去激活态(即步骤S501)之后,且向IAB节点的DU发送第二去激活指示(即步骤S502)之前,向IAB节点下的连接态UE以及子节点下发切换消息,使得这些连接态UE以及子节点切换至其他IAB节点。
上述方案,给出了先让DU进入去激活态的方案再让MT进入去激活态的方案,可以实现IAB节点省电的效果。DU进入去激活态时,可以停止所有小区的服务来达到省电的目的,也可以是保留一个或多个小区的服务并通过调整保留服务的小区下/行传输、通信带宽、BWP或SSB发送周期等,来达到省电的目的同时,为子节点或UE提供接入可能。MT进入去激活态时,可以挂起部分功能或者配置(比如挂起MT的BH RLC信道和/或BAP配置信息等),使得当MT回到RRC连接态时,可以直接使用之前挂起的一些配置或状态,达到快速恢复的目的,提高用户体验。
方案3、宿主基站发送的去激活指示用于指示IAB节点整体(包括MT和DU)进入去激活态。相应的,IAB节点整体根据该去激活指示进入去激活态。
请参见图6,为IAB节点的DU进入去激活态的流程图,该流程可以包括:
S601、宿主基站决定IAB节点需要进入去激活态。
具体的,宿主基站决定IAB节点需要进入去激活态的具体实施方式可以结合参照上述方案1中的步骤401的具体实施方式和上述方案2中的步骤502的具体实施方式,此处不再赘述。
S602、宿主基站向IAB节点的DU发送第三去激活指示,该第三激活指示用于IAB节点整体(包括MT和DU)进入去激活态。
具体的,该第三去激活指示可以携带于无线资源控制释放RRC Release消息中、或者是携带于IAB节点DU与donor CU之间的F1-AP消息中,或者是复用现有的GNB-CU configuration update消息,本申请实施例不做具体限制。
第三激活指示的具体实现方式可以结合参照上述方案1中的第一去激活指示的具体实施方式和上述方案2中的第二去激活指示的具体实施方式,此处不再赘述。
S603、IAB节点根据第三去激活指示进入去激活态。
具体的,IAB节点根据第三去激活指示进入去激活态的具体实现方式可以结合参照上述方案1中的步骤403的具体实施方式和上述方案2中的步骤503的具体实施方式,此处不再赘述。
上述方案,给出了让IAB节点整体(包括DU和MT)进入去激活态的方案,可以实 现IAB节点更好的省电效果。
基于相同的技术构思,本申请实施例还提供一种去激活IAB节点的装置。请参见图7,该装置包括:
接收单元701,用于从宿主基站接收去激活指示;
处理单元702,用于根据所述去激活指示控制所述装置进入去激活态。
在一个可能的设计中,所述装置包括移动终端MT部分和分布式单元DU部分;所述处理单元702用于:根据所述去激活指示控制所述MT进入去激活态。
在一个可能的设计中,所述去激活指示还用于指示所述DU进入去激活态;所述处理单元702还用于:根据所述去激活指示控制所述DU进入去激活态。
在一个可能的设计中,所述处理单元702用于:在所述接收单元701从宿主基站接收去激活指示之后,控制所述MT向所述DU发送第一指示信息;其中,所述第一指示信息用于指示所述DU进入去激活态;所述处理单元702还用于:根据所述第一指示信息控制所述DU进入去激活态。
在一个可能的设计中,所述去激活指示携带于无线资源控制释放RRC Release消息。
在一个可能的设计中,所述IAB包括移动终端MT部分和分布式单元DU部分;所述去激活指示用于指示所述DU进入去激活态;所述处理单元702用于:根据所述去激活指示控制所述DU进入去激活态。
在一个可能的设计中,所述去激活指示还用于指示所述MT进入去激活态;所述处理单元702还用于:根据所述去激活指示控制所述MT进入去激活态。
在一个可能的设计中,所述处理单元702还用于:在所述接收单元701从宿主基站接收去激活指示之后,控制所述DU向所述MT发送第二指示信息;其中,所述第二指示信息用于指示所述MT进入去激活态;所述处理单元702还用于:控制所述MT根据所述第二指示信息进入去激活态。
在一个可能的设计中,所述去激活指示携带于所述宿主基站与所述装置之间F1接口上的F1-AP消息。
在一个可能的设计中,所述去激活指示用于指示所述DU去激活所述DU的一个或者多个小区;所述处理单元702用于:去激活所述DU的所述一个或者多个小区;当所述DU的去激活的小区达到第一数量后,确定所述DU进入去激活态。
在一个可能的设计中,所述处理单元702还用于:在所述接收单元701从宿主基站接收去激活指示之后,在确定所述DU的去激活的小区达到所述第一数量时,控制所述MT进入去激活态。
在一个可能的设计中,所述处理单元702在去激活一个或者多个小区时,具体用于:停止所述一个或者多个小区的服务;或者控制所述一个或者多个小区仅发送SSB、MIB和SIB1中的一种或者多种,且仅接收随机接入导频信号;或者调整所述一个或者多个小区的通信带宽;或者调整所述一个或者多个小区所使用的带宽部分BWP;或者控制所述一个或者多个小区使用最长周期的同步信号块发送配置STC发送同步信号块SSB。
在一个可能的设计中,所述处理单元702还用于:在控制所述DU进入去激活态之后,控制所述DU指示所述宿主基站释放所述宿主基站与所述DU的F1连接。
在一个可能的设计中,所述处理单元702在控制所述MT进入去激活态时,具体用于:控制所述MT挂起所述MT的回传链路BH无线链路控制RLC信道和/或回传适配协议层 BAP配置信息。
在一个可能的设计中,所述处理单元702在控制所述DU进入去激活态时,具体用于:控制所述DU采用第一模式进入去激活态,所述第一模式为:所述DU的一个或者多个小区停止服务;或者,控制所述DU采用第二模式进入去激活态,所述第二模式包括以下一种或者多种:所述DU仅发送SSB、MIB和SIB1中的一种或者多种,且仅接收随机接入导频信号;所述DU调整所述DU的一个或者多个小区的通信带宽;所述DU调整所述DU的一个或者多个小区所使用的带宽部分BWP;所述DU的一个或者多个小区使用最长周期的同步信号块发送配置STC发送同步信号块SSB。
在一个可能的设计中,所述去激活指示还用于指示所述DU进入去激活态所采用的所述第一模式或所述第二模式。
本申请所述方法和装置基于同一技术构思,由于方法及装置解决问题的原理相似,以上各个单元所执行操作的具体实现方式可以参照本申请实施例上述去激活IAB节点方法中IAB执行对应步骤的具体实现方式,因此装置与方法的实施可以相互参见,重复之处不再赘述。
基于相同的技术构思,本申请实施例还提供一种去激活IAB节点的装置。请参见图8,该装置包括:
处理单元801,用于确定需要去激活IAB节点;
发送单元802,用于向所述IAB发送的去激活指示,以使所述IAB节点进入去激活态。
在一个可能的设计中,该装置还包括接收单元,用于在所述处理单元801在确定需要去激活IAB节点之前,从所述IAB节点接收去激活请求;所述处理单元801具体用于:根据所述去激活请求,确定需要去激活所述IAB节点。
在一个可能的设计中,所述IAB节点包括移动终端MT部分和分布式单元DU部分;所述去激活指示携带于无线资源控制释放RRC Release消息,用于指示所述MT进入去激活态;或者所述去激活指示携带于所述装置与所述IAB节点之间F1接口上的F1-AP消息,用于指示所述DU进入去激活态。
本申请所述方法和装置基于同一技术构思,由于方法及装置解决问题的原理相似,以上各个单元所执行操作的具体实现方式可以参照本申请实施例上述去激活IAB节点方法中宿主基站执行对应步骤的具体实现方式,因此装置与方法的实施可以相互参见,重复之处不再赘述。
基于相同的技术构思,本申请实施例还提供一种通信装置。请参见图9,该装置包括:
至少一个处理器901;以及
与所述至少一个处理器901通信连接的存储器902、通信接口903;其中,所述存储器902存储有可被所述至少一个处理器901执行的指令,所述至少一个处理器901通过执行所述存储器902存储的指令,执行本申请实施例上述去激活IAB节点的方法。
其中,通信接口903可以是其他装置交互的接口。可选的,图9的装置可以是IAB节点,此时903可以是收发器,可以通过收发器从宿主基站接收去激活指示。可选的,图9的装置可以是IAB节点中的芯片,此时图9的装置中的通信接口903可以理解为输入或者输出接口、管脚或者电路等。
作为一种可选的实施方式,在本申请实施例中,处理器901具体可以包括中央处理器(central processing unit,CPU)、特定应用集成电路(application specific integrated circuit, ASIC),可以是一个或多个用于控制程序执行的集成电路,可以是使用现场可编程门阵列(field programmable gate array,FPGA)开发的硬件电路,可以是基带处理器。
作为一种可选的实施方式,在本申请实施例中,处理器901可以包括至少一个处理核心。
作为一种可选的实施方式,在本申请实施例中,存储器902可以包括只读存储器(read only memory,ROM)、随机存取存储器(random access memory,RAM)和磁盘存储器。存储器902用于存储处理器901运行时所需的数据。
本申请所述方法和装置基于同一技术构思,由于方法及装置解决问题的原理相似,以上至少一个处理器901所执行操作的具体实现方式可以参照本申请实施例上述去激活IAB节点方法中对应的步骤,因此装置与方法的实施可以相互参见,重复之处不再赘述。
基于相同的技术构思,本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序包括程序指令,所述程序指令在被计算机执行时,使所述计算机执行本申请实施例上述去激活IAB节点的方法。
基于相同的技术构思,本申请实施例还提供一种计算机程序产品,所述计算机程序产品包含有指令,当所述指令在计算机上运行时,使得所述计算机执行本申请实施例上述去激活IAB节点的方法。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请实 施例的精神和范围。这样,倘若本申请实施例的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (22)

  1. 一种去激活接入回传一体化IAB节点的方法,其特征在于,所述方法包括:
    所述IAB节点从宿主基站接收去激活指示;
    所述IAB节点根据所述去激活指示进入去激活态。
  2. 如权利要求1所述的方法,其特征在于,所述IAB节点包括移动终端MT部分和分布式单元DU部分;所述去激活指示用于指示所述MT进入去激活态;
    所述IAB节点根据所述去激活指示进入去激活态,包括:
    所述MT根据所述去激活指示进入去激活态。
  3. 如权利要求2所述的方法,其特征在于,所述去激活指示还用于指示所述DU进入去激活态;
    所述IAB节点根据所述去激活指示进入去激活态,还包括:
    所述DU根据所述去激活指示进入去激活态。
  4. 如权利要求2所述的方法,其特征在于,所述MT从宿主基站接收去激活指示之后,还包括:
    所述MT向所述DU发送第一指示信息;其中,所述第一指示信息用于指示所述DU进入去激活态;
    所述IAB节点根据所述去激活指示进入去激活态,还包括:
    所述DU根据所述第一指示信息进入去激活态。
  5. 如权利要求2-4任一项所述的方法,其特征在于,所述去激活指示携带于无线资源控制释放RRC Release消息。
  6. 如权利要求1所述的方法,其特征在于,所述IAB节点包括移动终端MT部分和分布式单元DU部分;所述去激活指示用于指示所述DU进入去激活态;
    所述IAB节点根据所述去激活指示进入去激活态,包括:
    所述DU根据所述去激活指示进入去激活态。
  7. 如权利要求6所述的方法,其特征在于,所述去激活指示还用于指示所述MT进入去激活态;
    所述IAB节点根据所述去激活指示进入去激活态,还包括:
    所述MT根据所述去激活指示进入去激活态。
  8. 如权利要求6所述的方法,其特征在于,所述DU从宿主基站接收去激活指示之后,还包括:
    所述DU向所述MT发送第二指示信息;其中,所述第二指示信息用于指示所述MT进入去激活态;
    所述IAB节点根据所述去激活指示进入去激活态,还包括:
    所述MT根据所述第二指示信息进入去激活态。
  9. 如权利要求6-8任一项所述的方法,其特征在于,所述去激活指示携带于所述宿主基站与所述IAB节点之间F1接口上的F1-AP消息。
  10. 如权利要求6所述的方法,其特征在于,所述去激活指示用于指示所述DU去激活所述DU的一个或者多个小区;
    所述DU根据所述去激活指示进入去激活态,包括:
    所述DU去激活所述DU的所述一个或者多个小区;当所述DU的去激活的小区达到第一数量后,所述DU进入去激活态。
  11. 如权利要求10所述的方法,其特征在于,在所述DU从宿主基站接收去激活指示之后,所述方法还包括:
    所述MT确定所述DU的去激活的小区达到所述第一数量时,所述MT进入去激活态。
  12. 如权利要求10所述的方法,其特征在于,所述DU去激活一个或者多个小区,包括:
    停止所述一个或者多个小区的服务;或者
    所述一个或者多个小区仅发送SSB、MIB和SIB1中的一种或者多种,且仅接收随机接入导频信号;或者
    调整所述一个或者多个小区的通信带宽;或者
    调整所述一个或者多个小区所使用的带宽部分BWP;或者
    所述一个或者多个小区使用最长周期的同步信号块发送配置STC发送同步信号块SSB。
  13. 如权利要求10所述的方法,其特征在于,在所述DU进入去激活态之后,所述方法还包括:
    所述DU指示所述宿主基站释放所述宿主基站与所述DU的F1连接。
  14. 如权利要求2-5、7-8、11中任一项所述的方法,其特征在于,所述MT进入去激活态,包括:
    所述MT挂起所述MT的回传链路BH无线链路控制RLC信道和/或回传适配协议层BAP配置信息。
  15. 如权利要求3-4、6-13所述的方法,其特征在于,所述DU进入去激活态,包括:
    所述DU采用第一模式进入去激活态,所述第一模式为:所述DU的一个或者多个小区停止服务;或者
    所述DU采用第二模式进入去激活态,所述第二模式包括以下一种或者多种:
    所述DU仅发送SSB、MIB和SIB1中的一种或者多种,且仅接收随机接入导频信号;
    所述DU调整所述DU的一个或者多个小区的通信带宽;
    所述DU调整所述DU的一个或者多个小区所使用的带宽部分BWP;
    所述DU的一个或者多个小区使用最长周期的同步信号块发送配置STC发送同步信号块SSB。
  16. 如权利要求15所述的方法,其特征在于,所述去激活指示还用于指示所述DU进入去激活态所采用的所述第一模式或所述第二模式。
  17. 一种去激活IAB节点的方法,其特征在于,所述方法包括:
    宿主基站确定需要去激活IAB节点;
    所述宿主基站向所述IAB发送的去激活指示,以使所述IAB节点进入去激活态。
  18. 如权利要求17所述的方法,其特征在于,所述宿主基站在确定需要去激活IAB节点之前,还包括:
    所述宿主基站从所述IAB节点接收去激活请求;
    所述宿主基站确定需要去激活IAB节点,包括:
    所述宿主基站根据所述去激活请求,确定需要去激活所述IAB节点。
  19. 如权利要求17或18所述的方法,其特征在于,所述IAB节点包括移动终端MT部分和分布式单元DU部分;
    所述去激活指示携带于无线资源控制释放RRC Release消息,用于指示所述MT进入去激活态;或者
    所述去激活指示携带于所述宿主基站与所述IAB节点之间F1接口上的F1-AP消息,用于指示所述DU进入去激活态。
  20. 一种通信装置,其特征在于,包括:
    至少一个处理器;以及
    与所述至少一个处理器通信连接的存储器和/或通信接口;
    其中,所述存储器存储有可被所述至少一个处理器执行的指令,所述至少一个处理器通过执行所述存储器存储的指令,执行如权利要求1-16或17-19任一项所述的方法。
  21. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序包括程序指令,所述程序指令在被计算机执行时,使所述计算机执行如权利要求1-16或17-19任一项所述的方法。
  22. 一种计算机程序产品,其特征在于,所述计算机程序产品包含有指令,当所述指令在计算机上运行时,使得所述计算机执行如权利要求1-16或17-19任一项所述的方法。
PCT/CN2019/100097 2019-08-09 2019-08-09 一种去激活iab节点的方法及装置 WO2021026707A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980096385.7A CN113826410B (zh) 2019-08-09 2019-08-09 一种去激活iab节点的方法及装置
PCT/CN2019/100097 WO2021026707A1 (zh) 2019-08-09 2019-08-09 一种去激活iab节点的方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/100097 WO2021026707A1 (zh) 2019-08-09 2019-08-09 一种去激活iab节点的方法及装置

Publications (1)

Publication Number Publication Date
WO2021026707A1 true WO2021026707A1 (zh) 2021-02-18

Family

ID=74570424

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/100097 WO2021026707A1 (zh) 2019-08-09 2019-08-09 一种去激活iab节点的方法及装置

Country Status (2)

Country Link
CN (1) CN113826410B (zh)
WO (1) WO2021026707A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022245273A1 (en) * 2021-05-19 2022-11-24 Telefonaktiebolaget Lm Ericsson (Publ) Handling configurations in source integrated access backhaul (iab) donor during temporary topology adaptations
WO2023001022A1 (zh) * 2021-07-19 2023-01-26 维沃移动通信有限公司 节点状态控制方法、装置及相关设备
WO2023237046A1 (zh) * 2022-06-09 2023-12-14 华为技术有限公司 一种iab节点的移动性管理方法及相关设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190052339A1 (en) * 2017-08-10 2019-02-14 Comcast Cable Communications, Llc Priority of Beam Failure Recovery Request and Uplink Channels
CN110035042A (zh) * 2018-01-12 2019-07-19 华为技术有限公司 一种数据传输方法及装置
CN110062406A (zh) * 2018-01-19 2019-07-26 成都华为技术有限公司 一种链路测量方法及设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11191108B2 (en) * 2016-11-14 2021-11-30 Qualcomm Incorporated Two step random-access channel (RACH) procedure in millimeter wave (MMW)
GB2574875B (en) * 2018-06-21 2021-04-14 Tcl Communication Ltd Route selection and QoS support in a wireless access network
GB2580589B (en) * 2019-01-11 2021-08-18 Samsung Electronics Co Ltd Method for integrated access backhaul resource multiplexing

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190052339A1 (en) * 2017-08-10 2019-02-14 Comcast Cable Communications, Llc Priority of Beam Failure Recovery Request and Uplink Channels
CN110035042A (zh) * 2018-01-12 2019-07-19 华为技术有限公司 一种数据传输方法及装置
CN110062406A (zh) * 2018-01-19 2019-07-26 成都华为技术有限公司 一种链路测量方法及设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "IAB architecture", 3GPP DRAFT; R3-190351 - IAB CR TO TS 38.401, vol. RAN WG3, 15 February 2019 (2019-02-15), Athens, Greece, pages 1 - 13, XP051604292 *
SAMSUNG: "IAB Topology Adaptation and Route Management", 3GPP DRAFT; R2-1809919 IAB TOPOLOGY ADAPTATION AND ROUTE MANAGEMENT, vol. RAN WG2, 1 July 2018 (2018-07-01), Montreal, pages 1 - 3, XP051467163 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022245273A1 (en) * 2021-05-19 2022-11-24 Telefonaktiebolaget Lm Ericsson (Publ) Handling configurations in source integrated access backhaul (iab) donor during temporary topology adaptations
WO2023001022A1 (zh) * 2021-07-19 2023-01-26 维沃移动通信有限公司 节点状态控制方法、装置及相关设备
WO2023237046A1 (zh) * 2022-06-09 2023-12-14 华为技术有限公司 一种iab节点的移动性管理方法及相关设备

Also Published As

Publication number Publication date
CN113826410B (zh) 2022-10-28
CN113826410A (zh) 2021-12-21

Similar Documents

Publication Publication Date Title
JP2017153121A (ja) 移動通信システム、制御装置、基地局及びユーザ端末
TWI531264B (zh) The method of device-to-device communication, and the corresponding control method
WO2021213470A1 (zh) 通信方法、装置及系统
JP2019527977A (ja) 無線アクセス技術を使用するワイヤレスネットワークにおけるシグナリングおよびリソース割振りの協調
EP3917272B1 (en) Control methods, apparatus and computer program product for a radio backhaul link
CN104349389A (zh) 用于建立无线承载的方法和装置
WO2021026707A1 (zh) 一种去激活iab节点的方法及装置
WO2017166300A1 (zh) 一种无线资源管理方法和装置
WO2020216132A1 (zh) 传输信息的方法和装置
WO2022016473A1 (zh) 一种用于接入回传一体化iab系统中的通信方法和通信装置
WO2019201245A1 (zh) 一种通信方法及装置
WO2019137511A1 (zh) 一种数据量报告的发送方法和装置
CN112166646A (zh) 减少无线通信系统中的终端功耗的方法和设备
CA3108478A1 (en) Tunnel setup for split bearers in multi-rat dual connectivity (mr-dc) and nr-nr dual connectivity (nr-dc)
WO2019062746A1 (zh) 通信方法、装置和系统
WO2021026706A1 (zh) 一种f1接口管理方法及装置
WO2021088006A1 (zh) 通信方法和通信装置
WO2022022673A1 (zh) 一种通信方法及装置
WO2021217379A1 (zh) 中继装置的状态转换方法及装置
WO2021000818A1 (zh) 通信方法、装置和系统
WO2020156185A1 (zh) 一种调度请求处理方法及装置
WO2021026936A1 (zh) 一种处理回传链路发生链路失败的方法及装置
WO2021043386A1 (en) Communication of terminal with multiple access nodes
WO2024066947A1 (zh) 一种通信方法及相关设备
WO2023185466A1 (zh) 一种通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19941509

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19941509

Country of ref document: EP

Kind code of ref document: A1