WO2024099093A1 - 数据传输方法、装置、终端、网络侧设备及系统 - Google Patents

数据传输方法、装置、终端、网络侧设备及系统 Download PDF

Info

Publication number
WO2024099093A1
WO2024099093A1 PCT/CN2023/126756 CN2023126756W WO2024099093A1 WO 2024099093 A1 WO2024099093 A1 WO 2024099093A1 CN 2023126756 W CN2023126756 W CN 2023126756W WO 2024099093 A1 WO2024099093 A1 WO 2024099093A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
transmission
information
path
layer
Prior art date
Application number
PCT/CN2023/126756
Other languages
English (en)
French (fr)
Inventor
刘佳敏
杨晓东
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2024099093A1 publication Critical patent/WO2024099093A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/10Flow control between communication endpoints
    • H04W28/12Flow control between communication endpoints using signalling between network elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/04Terminal devices adapted for relaying to or from another terminal or user

Definitions

  • the present application belongs to the field of communication technology, and specifically relates to a data transmission method, device, terminal, network-side equipment and system.
  • the direct link refers to the wireless link through which the UE transmits data to the base station via its own Uu air interface, and is mainly used for data transmission between the UE and the base station;
  • the SL relay (SideLink relay) refers to the wireless link through which the UE transmits data to the UE via the sidelink (PC5) interface, and is mainly used for data transmission between UEs.
  • the embodiments of the present application provide a data transmission method, apparatus, terminal, network-side equipment and system, which are conducive to improving data transmission effects.
  • a data transmission method comprising:
  • the first terminal receives or generates configuration information of multi-path low-layer aggregate transmission, where the multi-path low-layer aggregate transmission includes: multi-path MAC layer aggregate transmission and/or multi-path PHY layer aggregate transmission;
  • the first terminal performs multi-path lower layer aggregation transmission according to the configuration information of the multi-path lower layer aggregation transmission.
  • a data transmission method comprising:
  • the second terminal receives or generates configuration information of multi-path low-layer aggregate transmission, where the multi-path low-layer aggregate transmission includes: multi-path MAC layer aggregate transmission and/or multi-path PHY layer aggregate transmission;
  • the second terminal performs multi-path low-layer aggregation transmission according to the configuration information of the multi-path low-layer aggregation transmission;
  • the second terminal is a relay terminal between the first terminal and the network side device, or the second terminal is a relay terminal between the first terminal and a third terminal.
  • a data transmission method including:
  • the network side device sends configuration information of multi-path low-layer aggregate transmission, wherein the multi-path low-layer aggregate transmission includes: multi-path MAC layer aggregate transmission and/or multi-path PHY layer aggregate transmission, wherein the multi-path low-layer aggregate transmission includes: multi-path MAC layer aggregate transmission and/or multi-path PHY layer aggregate transmission;
  • the network side device merges different received data and/or deletes duplicate received data.
  • a data transmission device which is applied to a first terminal and includes:
  • a first processing module is configured to receive or generate configuration information of multi-path low-layer aggregate transmission, wherein the multi-path low-layer aggregate transmission includes: multi-path MAC layer aggregate transmission and/or multi-path PHY layer aggregate transmission;
  • the first transmission module is used to perform multi-path low-layer aggregation transmission according to the configuration information of the multi-path low-layer aggregation transmission.
  • a data transmission device which is applied to a second terminal, where the second terminal is a relay terminal between a first terminal and a network side device, or the second terminal is a relay terminal between the first terminal and a third terminal, including:
  • a second processing module is used to receive or generate configuration information of multi-path low-layer aggregate transmission, where the multi-path low-layer aggregate transmission includes: multi-path MAC layer aggregate transmission and/or multi-path PHY layer aggregate transmission;
  • the second transmission module is used to perform multi-path low-layer aggregation transmission according to the configuration information of the multi-path low-layer aggregation transmission.
  • a data transmission device which is applied to a network side device, including:
  • a sending module used to send configuration information of multi-path low-layer aggregate transmission, wherein the multi-path low-layer aggregate transmission includes: multi-path MAC layer aggregate transmission and/or multi-path PHY layer aggregate transmission, wherein the multi-path low-layer aggregate transmission includes: multi-path MAC layer aggregate transmission and/or multi-path PHY layer aggregate transmission;
  • the processing module is used to merge different received data and/or delete duplicate received data.
  • a terminal comprising a processor and a memory, wherein the memory stores a program or instruction that can be run on the processor, and when the program or instruction is executed by the processor, the steps of the data transmission method as described in the first aspect or the second aspect are implemented.
  • a network side device comprising a processor and a memory, wherein the memory stores programs or instructions that can be run on the processor, and when the programs or instructions are executed by the processor, the steps of the data transmission method described in the third aspect are implemented.
  • a data transmission system comprising: a first terminal and a second terminal, the first terminal is used to execute the steps of the data transmission method described in the first aspect, the second terminal is used to execute the steps of the data transmission method described in the second aspect, and the network side device is used to execute the steps of the data transmission method described in the third aspect.
  • a readable storage medium on which a program or instruction is stored.
  • the program or instruction is executed by a processor, the steps of the data transmission method as described in the first aspect are implemented, or the steps of the data transmission method as described in the second aspect are implemented, or the steps of the data transmission method as described in the third aspect are implemented.
  • a chip comprising a processor and a communication interface, wherein the communication interface is coupled to the processor, and the processor is used to run a program or instructions to implement the steps of the data transmission method as described in the first aspect, or the steps of the data transmission method as described in the second aspect, or the steps of the data transmission method as described in the third aspect.
  • a computer program/program product is provided, wherein the computer program/program product is stored in a storage medium, and the computer program/program product is executed by at least one processor to implement the steps of the data transmission method as described in the first aspect, or implement the steps of the data transmission method as described in the second aspect, or implement the steps of the data transmission method as described in the third aspect.
  • the first terminal performs multi-path MAC layer aggregation transmission and/or multi-path PHY layer aggregation transmission according to the configuration information of the multi-path low-layer aggregation transmission received or generated by itself, thereby performing multi-path joint data transmission with the other end at the granularity of low-layer data units, which can improve the transmission effects such as data transmission reliability, latency and throughput.
  • FIG1 is a block diagram of a wireless communication system to which an embodiment of the present application can be applied;
  • FIG2 is a flow chart of a data transmission method in an embodiment of the present application.
  • FIG3 is a schematic diagram of a data transmission scenario in an embodiment of the present application.
  • FIG4 is a schematic diagram of another data transmission scenario in an embodiment of the present application.
  • FIG5 is a schematic diagram of a protocol stack architecture in an embodiment of the present application.
  • FIG6 is a flow chart of another data transmission method in an embodiment of the present application.
  • FIG7 is a flow chart of another data transmission method in an embodiment of the present application.
  • FIG8 is a schematic diagram of the structure of a data transmission device in an embodiment of the present application.
  • FIG9 is a schematic diagram of the structure of another data transmission device in an embodiment of the present application.
  • FIG10 is a schematic diagram of the structure of another data transmission device in an embodiment of the present application.
  • FIG11 is a schematic diagram of the structure of a communication device in an embodiment of the present application.
  • FIG12 is a schematic diagram of the hardware structure of a terminal in an embodiment of the present application.
  • FIG13 is a schematic diagram of the structure of a terminal in an embodiment of the present application.
  • FIG. 14 is a schematic diagram of the structure of a network-side device in an embodiment of the present application.
  • first”, “second”, etc. in the specification and claims of this application are used to distinguish similar objects, and are not used to describe a specific order or sequence. It should be understood that the terms used in this way are interchangeable under appropriate circumstances, so that the embodiments of the present application can be implemented in an order other than those illustrated or described herein, and "first”, “second”, etc. are not used to describe a specific order or sequence.
  • the object distinguished by “second” is usually a category, and the number of objects is not limited.
  • the first object can be one or more.
  • “and/or” in the specification and claims means at least one of the connected objects, and the character “/" generally means that the related objects are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency Division Multiple Access
  • NR new radio
  • FIG1 shows a block diagram of a wireless communication system applicable to an embodiment of the present application.
  • the wireless communication system includes a terminal device 11 and a network side device 12.
  • the terminal device 11 may be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer) or a notebook computer, a personal digital assistant (Personal Digital Assistant, PDA), a handheld computer, a netbook, an ultra-mobile personal computer (ultra-mobile personal computer, UMPC), a mobile Internet device (Mobile Internet Device, MID), an augmented reality (augmented reality, AR)/virtual reality (virtual reality, VR) device, a robot, a wearable device (Wearable Device), a vehicle-mounted device (VUE), a pedestrian terminal (PUE), a smart home (home appliances with wireless communication functions, such as refrigerators, televisions, washing machines or furniture, etc.), a game console, a personal computer (personal computer, PC), a teller machine or a self-service machine and other terminal side devices
  • the network side device 12 may include an access network device or a core network device, wherein the access network device 12 may also be referred to as a radio access network device, a radio access network (RAN), a radio access network function or a radio access network unit.
  • the access network device 12 may include a base station, a WLAN access point or a WiFi node, etc.
  • the base station may be referred to as a node B, an evolved node B (eNB), an access point, a base transceiver station (BTS), a radio base station, a radio transceiver, a basic service set (BSS), an extended service set (ESS), a home B node, a home evolved B node, a transmitting and receiving point (TRP) or other appropriate terms in the field, as long as the same technical effect is achieved, the base station is not limited to a specific technical vocabulary, it should be noted that in the embodiment of the present application, only the base station in the NR system is used as an example for introduction, and the specific type of the base station is not limited.
  • the core network equipment may include but is not limited to at least one of the following: core network node, core network function, mobility management entity (MME), access and mobility management function (AMF), session management function (Session Management Function, SMF), User Plane Function (User Plane Function, UPF), Policy Control Function (Policy Control Function, PCF), Policy and Charging Rules Function (Policy and Charging Rules Function, PCRF), Edge Application Server Discovery Function (Edge Application Server Discovery Function, EASDF), Unified Data Management (Unified Data Management, UDM), Unified Data Repository (Unified Data Repository, UDR), Home Subscriber Server (Home Subscriber Server, HSS), Centralized Network Configuration (CNC), Network Repository Function (NRF), Network Exposure Function (NEF), Local NEF (Local NEF, or L-NEF), Binding Support Function (BSF), Application Function (AF), etc.
  • MME mobility management entity
  • AMF Access and mobility management function
  • Session Management Function SMF
  • User Plane Function User Plane Function
  • this application proposes a multi-path low-layer aggregation data transmission method, which enables the sending end (UE, base station, etc.) to perform multi-path joint data transmission with the other end with the low-layer data unit as the granularity, which can greatly improve the reliability and delay of data transmission, throughput and energy consumption performance, thereby improving the data transmission effect.
  • the data transmission method provided in the embodiment of the present application is described in detail through some embodiments and their application scenarios.
  • FIG. 2 is a flowchart of a data transmission method provided in an embodiment of the present application.
  • the method may include the following steps:
  • Step S201 The first terminal receives or generates configuration information of multi-path lower layer aggregate transmission, where the multi-path lower layer aggregate transmission includes: multi-path MAC layer aggregate transmission and/or multi-path PHY layer aggregate transmission.
  • the first terminal can be a Remote UE (remote terminal), and the first terminal is connected to the receiving end (network side device or UE) through at least one relay UE (relay terminal).
  • the receiving end network side device or UE
  • relay UE relay terminal
  • the first terminal receives configuration information of multi-path low-layer aggregate transmission sent by a network side device; or the first terminal receives configuration information of multi-path low-layer aggregate transmission sent by a second terminal or a third terminal.
  • the second terminal is a relay terminal between the first terminal and the network side device
  • the second terminal is a relay terminal between the first terminal and the third terminal.
  • Step S202 The first terminal performs multi-path lower layer aggregation transmission according to the configuration information of the multi-path lower layer aggregation transmission.
  • Aggregate transmission means that the transmitting end sends data through multiple paths, and the receiving end aggregates the data sent by the transmitting end through multiple paths.
  • the first terminal is configured to perform multi-path transmission in a low-layer aggregation manner of MAC aggregation (Media Access Control aggregation) or PHY aggregation (Physical aggregation)
  • each path of the first terminal corresponds to a low-layer data unit of MAC PDU (MAC protocol data unit) or PHY TB (physical layer transmission block).
  • the data of the first terminal is sent in a joint manner such as split or duplication, and the receiving end processes the low-level data units sent by each path (such as merging or receiving them separately), thereby improving the reception reliability and latency performance of data transmission through multi-path low-layer aggregation, which is conducive to improving throughput and can meet the extremely high QoS requirements of various services.
  • the first terminal performs multi-path MAC layer aggregation transmission and/or multi-path PHY layer aggregation transmission according to the configuration information of the multi-path low-layer aggregation transmission received or generated by itself, thereby performing multi-path joint data transmission with the other end at the granularity of low-layer data units, which can improve data transmission effects such as data transmission reliability, latency and throughput.
  • This implementation describes the configuration of multi-path low-layer aggregation transmission, taking the UE-to-Network relay scenario as an example.
  • the multiple paths may include a direct path and/or an indirect path that is transferred through a relay UE (second terminal), and there may be multiple indirect paths.
  • the interfaces between the remote UE and the relay UE are all ideal backhaul connections.
  • the Primary-UE (P-UE) shown in FIG5 is equivalent to the remote UE in FIG3 or 4
  • the Secondary-UE (P-UE) is equivalent to the relay UE.
  • the data of the remote UE is aggregated at the MAC layer through two or more paths to realize multi-path split or duplication transmission with MAC PDU as the granularity.
  • RRC CONNECTED Radio Resource Control CONNECTED
  • each UE and serving gNB serving base station
  • RRC dedicated signaling the interaction process between the network side device and the terminal (first terminal, second terminal or third terminal) involved in the following text can be implemented using RRC dedicated signaling.
  • the gNB (network side device) needs to first obtain the relevant capabilities and link conditions of the multi-path low-layer aggregation transmission of each UE, and then perform configuration and related scheduling operations on the UE that meets the capability requirements and link requirements of the multi-path low-layer aggregation transmission. Specifically, the gNB needs to know the capability information of the remote UE and relay UE, that is, whether the remote UE and each relay UE involved support MAC aggregation or PHY aggregation. In addition, the network side device can also know whether each UE has the capabilities of split, duplication on the same resources, duplication on different resources, etc. The above capability information can be reported jointly in the reporting process of UE capability, or a separate reporting process can be set for reporting, such as using UE assistance information, UE relay information or other uplink signaling to report the capability information separately.
  • the UE also needs to report the backhaul status between the remote UE and the relay UE, because only ideal backhaul can meet the transmission requirements of MAC or PHY aggregation.
  • the remote UE can uniformly report the backhaul status of itself and each relay UE, or each relay UE can report the backhaul status between itself and the remote UE.
  • the backhaul situation can be reported using backhaul information, and the backhaul information may include: whether a certain backhaul is an ideal backhaul, whether there is an associated backhaul or an ideal backhaul, whether the UE itself or an associated UE supports MAC or PHY aggregation transmission, etc.
  • the backhaul information includes at least one of the following:
  • An identifier of a serving cell of the second terminal An identifier of a serving cell of the second terminal
  • the remote UE can report the ID of the relay UE, which can be S-TMSI (SAE-Temporary Mobile Subscriber Identit), C-RNTII (Cell-Radio Network Temporary Identifier) or RNTI (Radio Network Temporary Identity), etc. It can also report the serving cell ID of the relay UE to let the gNB know whether the relay UE is in the cell that it can schedule. It is understandable that when the second terminal reports the backhaul information, it can also report the ID of the remote UE or the serving cell ID of the remote UE. The reporting process can be reported using UE assistance information, UE relay information or other uplink signaling.
  • S-TMSI SAE-Temporary Mobile Subscriber Identit
  • C-RNTII Cell-Radio Network Temporary Identifier
  • RNTI Radio Network Temporary Identity
  • the first terminal sends first indication information and/or backhaul information, wherein the first indication information is used to indicate whether the first terminal supports multi-path low-layer aggregation transmission, and the backhaul information is used to indicate a backhaul situation between the first terminal and the second terminal.
  • the above-mentioned backhaul situation reporting and capability reporting can be reported independently or jointly.
  • One joint reporting method is that when the UE reports the backhaul situation as ideal backhaul, it is assumed that it supports MAC or PHY aggregation transmission capability; or when the UE reports that it supports MAC or PHY aggregation transmission capability, it carries associated UEs, then it is assumed that the related UEs have ideal backhaul.
  • the above-mentioned reporting of the UE can be divided into the following three modes:
  • Reporting mode 1 (default reporting), in this implementation, regardless of whether the network side device supports low-layer multipath aggregation, the UE will report its capability information whether it supports multipath low-layer aggregation transmission. For example, during the UE capability reporting process, the UE will automatically add a description of whether it supports low-layer multipath aggregation to the existing capability reporting information. If the network side device does not support low-layer multipath aggregation, it will ignore the added description in the capability reporting information.
  • Reporting mode 2 network-side switch reporting
  • the network-side device sends a reporting permission notification to the terminal, and the reporting permission notification indicates that the network-side device allows the terminal to report the first indication information and/or backhaul information.
  • SIB System Information Block
  • dedicated signaling to send a reporting permission notification to the UE, and after receiving the reporting permission notification, the UE reports the first indication information and/or backhaul information.
  • Reporting mode 3 (network-side triggering or request-based reporting), in this implementation, the network-side device sends a reporting request to the terminal, and the reporting request is used to request the terminal to report the first indication information and/or backhaul information.
  • the network side device When the network side device itself supports low-layer multipath aggregation and is about to configure MAC or PHY aggregation transmission for the UE, the network side device sends a reporting request to obtain the UE's low-layer multipath aggregation capability and/or backhaul status. After receiving the request, the UE reports the relevant information.
  • the network-side device After learning about the relevant capabilities and link conditions of the multi-path low-layer aggregation transmission of each UE, the network-side device will select appropriate UEs to participate in MAC or PHY aggregation transmission from UEs that support MAC or PHY aggregation transmission capabilities and associated ideal backhaul (for example, if the network-side device has sufficient resources, it can select all UEs that meet the capability requirements and backhaul requirements to participate in multi-path low-layer aggregation transmission), and take corresponding RRC dedicated signaling procedures for the selected UEs to configure the parameters of MAC or PHY aggregation transmission.
  • the capabilities and backhaul conditions of all UEs can be reported to the network side equipment, which can be configured uniformly by the network side equipment, or transmitted to a header UE through the interface between UEs, which can be configured uniformly by the header UE.
  • the header UE can be a remote UE or a relay UE.
  • the remote UE and the relay UE transmit the same data or different contents to the opposite UE in an agreed manner, that is, using MAC or PHY aggregation.
  • the remote UE and relay UE1 use the same or different source Layer 2 IDs and the same or different PC5 interface resources, and transmit duplication and split data to the opposite remote UE at the same time.
  • the remote UE, the relay UE and the receiving remote UE need to agree or configure in advance which data needs to be sent in duplication, received in combination, and only one copy of the data is sent to the upper layer after duplication detection, and which data needs to be sent in split, received separately, and all data is delivered to the upper layer.
  • the configuration information of the multi-path low-layer aggregation transmission includes at least one of the following:
  • Information used to indicate duplication transmission or information used to indicate use of the same resources for duplication transmission, or information used to indicate use of different resources for duplication transmission;
  • the logical architecture related to multi-path MAC layer aggregate transmission refers to: the association relationship between a MAC entity and two or more transmission links (for example, each PHY layer (physical layer) of different UEs); the logical architecture related to multi-path PHY layer aggregate transmission refers to: the association relationship between a PHY entity and two or more transmission links (for example, transmission antennas of different UEs, etc.); the data type applicable to multi-path MAC layer aggregate transmission and/or multi-path PHY layer aggregate transmission may be a specific DRB (Data Radio Bearer), QoS (Quality of Service), or all user data of remote UE and other data types.
  • DRB Data Radio Bearer
  • QoS Quality of Service
  • the configuration information of the multi-path low-layer aggregation transmission can be configured only for data transmission in the uplink or downlink, or in one transmission direction between UEs.
  • a set of parameters can be configured for each transmission direction.
  • the configuration information of the multi-path low-layer aggregation transmission can also be applied to both uplink and downlink, or two transmission directions between UEs.
  • a UE needs to transmit uplink data for another UE, or act as an uplink PUCCH (Physical Uplink Control Channel)/HARQ Feedback agent, etc.
  • PUCCH Physical Uplink Control Channel
  • HARQ Feedback agent etc.
  • the network side device can also configure different MAC or PHY aggregation transmission groups.
  • remote UE and relay UE1 form group 1 for MAC or PHY aggregation transmission
  • remote UE and relay UE2 form group 2 for MAC or PHY aggregation transmission
  • remote UE and relay UE1 and relay UE3 form group 3 for MAC or PHY aggregation transmission.
  • the above configuration method can also be adopted to obtain the configuration of different MAC or PHY aggregation transmission groups.
  • each UE or transmission group After receiving the configuration information of multi-path low-layer aggregation transmission, each UE or transmission group immediately applies the relevant configuration and performs MAC or PHY aggregation reception and transmission according to the agreement.
  • a terminal receives or generates configuration update information of multi-path low-layer aggregation transmission; and the terminal stops multi-path low-layer aggregation transmission according to the configuration update information of the multi-path low-layer aggregation transmission.
  • the base station when the base station decides to exit MAC or PHY aggregation transmission based on the algorithm or other input factors (such as fewer resources or processing capabilities), it is necessary to update the configuration of the UE that has been configured, release the previous MAC or PHY aggregation transmission configuration, and end the MAC or PHY aggregation transmission.
  • the terminal sends multi-path low-layer aggregation transmission capacity limitation information to the network side device, and the multi-path low-layer aggregation transmission capacity limitation information is used to indicate that the multi-path low-layer aggregation transmission capacity of the terminal is limited, and/or the first terminal sends backhaul information after the change.
  • the UE may also actively report and update information to the network side device, and report to the network side device the information that it no longer has MAC or PHY aggregation transmission, so that the network side device can remove the UE from the MAC or PHY aggregation transmission range, or end the MAC or PHY aggregation transmission.
  • This implementation describes the situation of performing multi-path low-layer aggregation transmission operations. Taking the UE-to-Network relay scenario as an example, after the configuration of MAC or PHY aggregation transmission has been completed, the relevant UEs involved need to monitor C-RNTI and complete the transmission.
  • the terminal (the first terminal, the second terminal or the third terminal) performs at least one of the following operations:
  • the terminal monitors the scheduling of C-RNTI
  • the terminal generates a MAC layer PDU and/or a PHY layer TB according to the size of the scheduling resources;
  • the terminal performs duplication transmission of the MAC layer PDU and/or the PHY layer TB on the same resource or different resources through different paths according to the configuration information or control signaling of the multi-path lower layer aggregation transmission;
  • control signaling is used to indicate the data transmission mode of each UE through dynamic control.
  • the specific implementation of the dynamic control will be described in Implementation Mode 3.
  • the terminal splits the MAC layer PDU and/or PHY layer TB on different resources and through different paths for transmission according to the configuration information or control signaling;
  • the terminal sends the uplink data and/or uplink feedback that needs to be sent to the network side device to the second terminal according to the configuration information.
  • Case 1 MAC/PHY split transmission.
  • MAC/PHY split transmission it means that each path or each participating UE will obtain different scheduling, that is, each remote UE and relay UE monitors the scheduling of its own C-RNTI, and according to the size of the scheduled resources, the remote UE generates different MAC PDUs or PHY TBs, which are transmitted through the actual wireless links of these remote UEs and relay UEs.
  • These transmissions are received and processed separately at the receiving end, and the successfully received data is submitted to the upper layer for further processing.
  • This method is equivalent to increasing the processing power and bandwidth of the transmission, greatly improving the uplink data rate of the remote UE.
  • the downlink is also processed similarly.
  • the base station can schedule the downlink channels of different remote UEs and relay UEs to meet the requirements of high-speed downlink transmission.
  • Case 2 MAC/PHY duplication transmission.
  • each path or each participating UE will be scheduled, that is, each remote UE and relay UE listens to the scheduling of its own C-RNTI.
  • the remote UE listens to the scheduling of its own C-RNTI, generates a MAC layer PDU and/or a PHY layer TB according to the size of the scheduling resources, and copies multiple copies, and sends the copied MAC layer PDU and/or PHY layer TB to the relay UE to realize MAC/PHY duplication transmission.
  • the receiving end performs combined reception processing, and submits one of the successfully received data to the upper layer for further processing, and the remaining duplicate data can be deleted. This method is equivalent to increasing the reliability and delay characteristics of the transmission.
  • the downlink is also processed in a similar way.
  • the base station can schedule the downlink channels of different remote UEs and relay UEs for duplicate transmission to meet the transmission requirements of the downlink URLLC.
  • the base station can schedule the same resource or different resources for multiple UEs for duplication data transmission. If it is the same resource, the advantage is that the duplication transmission effect is achieved by consuming one resource, so as not to increase resource consumption but obtain the URLLC effect of duplication, but there are higher requirements for synchronous transmission between UEs. If it is different resources, different UEs send the same duplication data in different resources, which is equivalent to using more resource consumption in exchange for the URLLC (Ultra-Reliable Low-Latency Communications) effect of duplication. At this time, each UE can be considered to have sent the same data separately, and there is no additional requirement for synchronous transmission between UEs, which is similar to the existing system where two UEs send uplink data at the same time.
  • URLLC Ultra-Reliable Low-Latency Communications
  • the receiving end can perform HARQ buffer soft merging processing. For example, the receiving end receives 100 bytes transmitted by a UE, and the first 50 bytes are decoded correctly.
  • the receiving end decodes the last 50 bytes of the 100 bytes correctly, then the receiving end can merge the 50 bytes before and after the two transmissions correctly to achieve the correct transmission of the 100 bytes.
  • HARQ feedback is performed at the feedback position corresponding to the resource, and the gNB retransmits or considers the process to be completed; if the resources are different, when the remote UE ultimately determines that the reception is not successful or successful, HARQ feedback is performed at one of the feedback positions corresponding to the different resources or at the feedback positions corresponding to multiple resources, and the gNB retransmits or considers the process to be completed, where the feedback positions of the same resources are the same, and a single UE can feedback a common result (that is, if one UE determines that the reception is successful, it is regarded as all UEs have received the message successfully, and the result of successful reception is fed back to the UE at this time without retransmission), or multiple UEs can feedback a common transmission result.
  • the first terminal sends the uplink data and/or uplink feedback that needs to be sent to the network side device to the second terminal according to the configuration information.
  • the configuration information if it is MAC/PHY uplink separation or PUCCH, HARQ feedback proxy transmission, then according to the configured uplink separation path, for example, when the remote UE has any UL data or UL control PDU (uplink control protocol data unit), such as PDCP control PDU, RLC ARQ feedback, etc., it needs to be transmitted by other relay UEs according to the pre-configured path, and the remote UE itself avoids sending uplink data to overcome insufficient uplink capacity or limited uplink power consumption or pursue uplink energy saving.
  • UL control PDU uplink control protocol data unit
  • the remote UE may also need to avoid sending any uplink signals, for example, its PUCCH or HARQ feedback needs to be configured to one or more other relay UEs, which will perform proxy transmissions for it.
  • the remote UE passes the PUCCH or HARQ feedback information it needs to send to the relay UE, which will send it instead.
  • This embodiment describes the specific implementation of dynamic control.
  • MAC aggregation or PHY aggregation transmission has two most basic transmission modes, namely split or duplication transmission.
  • the essential difference between these two transmission modes is whether the data content sent on different paths is the same.
  • the UE needs to perform the corresponding data transmission mode based on the difference in data content sent by different paths. Therefore, the UE can be informed of the difference in data content sent by different paths through control signaling to dynamically control the data transmission mode of the UE.
  • control signaling can be used to dynamically control the UE data transmission mode:
  • the first type is RRC signaling
  • the content of the RRC signaling is RRC configuration information or RRC reconfiguration information.
  • the RRC configuration information is used to set which low-layer aggregation transmission mode of MAC aggregation or PHY aggregation transmission is currently being executed, and whether the split or duplication mode is specifically adopted.
  • the UE and the network side device subsequently perform the corresponding data transmission operation according to the RRC configuration information. If the current data transmission operation needs to be changed, the data transmission mode is reconfigured through the RRC reconfiguration information, such as reconfiguring the split and duplication modes of the current data transmission.
  • the second type is L1 signaling or L2 signaling used to indicate switching between split transmission mode and duplication transmission mode.
  • the split and duplication modes can be switched or changed semi-dynamically through L2/L1 signaling, i.e., MAC CE (MAC Control Element) or PDCCH DCI (PDCCH Downlink Control Information).
  • L2/L1 signaling i.e., MAC CE (MAC Control Element) or PDCCH DCI (PDCCH Downlink Control Information).
  • the UE After receiving the L2/L1 signaling, the UE performs the data transmission operation corresponding to the signaling according to the instruction. If the current data transmission operation needs to be changed, the UE needs to be notified again through L2/L1 signaling. After receiving the signaling, the UE performs the corresponding data transmission operation.
  • the third type is L1 signaling used to indicate the mode of each multi-path low-layer aggregation transmission.
  • the data transmission mode is fully dynamically indicated by L1 signaling. For example, when scheduling a new UL grant (physical control information), PDCCH will directly indicate whether the current data transmission operation is split or duplication mode, or default split mode and display indication duplication mode, etc., to facilitate the remote UE to perform related data transmission operations. The indication can be given only to the remote UE, or to the participating relay UEs at the same time.
  • the data transmission is independently determined to be split or duplication mode according to the control signaling.
  • Each data transmission of the remote UE is executed according to the corresponding control signaling, such as sending different data or the same data through different paths according to the indication of the control signaling.
  • an embodiment of the present application provides another data transmission method, which includes at least the following steps:
  • Step S301 The second terminal receives or generates configuration information of multi-path low-layer aggregate transmission, where the multi-path low-layer aggregate transmission includes: multi-path MAC layer aggregate transmission and/or multi-path PHY layer aggregate transmission;
  • Step S302 The second terminal performs multipath low layer aggregation transmission according to the configuration information of the multipath low layer aggregation transmission.
  • the second terminal is a relay terminal between the first terminal and the network side device, or the second terminal is a relay terminal between the first terminal and a third terminal.
  • the second terminal receives configuration information of multipath low-layer aggregation transmission, including:
  • the second terminal receives configuration information of multi-path low-layer aggregation transmission sent by the network side device;
  • the second terminal receives configuration information of multi-path lower layer aggregation transmission sent by the first terminal or the third terminal.
  • the method further includes at least one of the following:
  • the second terminal sends first indication information, where the first indication information is used to indicate whether the second terminal supports multi-path low-layer aggregation transmission;
  • the second terminal sends backhaul information, where the backhaul information is used to indicate a backhaul situation between the second terminal and the first terminal.
  • the backhaul information includes at least one of the following:
  • An identifier of a serving cell of the first terminal An identifier of a serving cell of the first terminal
  • the method further includes at least one of the following:
  • the second terminal receives a reporting permission notification sent by the network side device, where the reporting permission notification indicates that the network side device allows the second terminal to report the first indication information and/or the backhaul information;
  • the second terminal receives a reporting request sent by the network side device, where the reporting request is used to request the second terminal to report the first indication information and/or the backhaul information.
  • the configuration information of the multipath low-layer aggregation transmission includes at least one of the following:
  • Information used to indicate duplication transmission or information used to indicate use of the same resources for duplication transmission, or information used to indicate use of different resources for duplication transmission;
  • the method further includes at least one of the following:
  • the second terminal sends second indication information to the network side device, where the second indication information is used to indicate that a multipath low-layer aggregation transmission capability of the second terminal is limited;
  • the second terminal sends the changed backhaul information.
  • the method further includes:
  • the second terminal receives or generates configuration update information of multipath lower layer aggregation transmission
  • the second terminal stops the multi-path lower layer aggregation transmission according to the configuration update information of the multi-path lower layer aggregation transmission.
  • the method further includes:
  • the second terminal determines, according to at least one of the following control signalings, that the mode of the multipath lower layer aggregation transmission is a split transmission mode or a duplication transmission mode:
  • RRC signaling wherein the content of the RRC signaling is RRC configuration information or RRC reconfiguration information
  • L1 signaling or L2 signaling used to indicate switching between split transmission mode and duplication transmission mode
  • L1 signaling used to indicate the mode of each multipath lower layer aggregation transmission.
  • the second terminal performs multipath low-layer aggregation transmission according to the configuration information, including at least one of the following:
  • the second terminal monitors the scheduling of the C-RNTI
  • the second terminal receives the MAC layer PDU and/or PHY layer TB sent by the first terminal according to the size of the scheduling resources;
  • the second terminal performs duplication transmission of the MAC layer PDU and/or the PHY layer TB on the same resource or different resources through different paths according to the configuration information or the control signaling;
  • the second terminal splits the MAC layer PDU and/or the PHY layer TB on different resources through different paths for transmission according to the configuration information or the control signaling;
  • the second terminal receives, according to the configuration information, uplink data and/or uplink feedback sent by the first terminal and needing to be sent to a network side device.
  • the data transmission method provided in the embodiment of the present application can be executed by the relay UE mentioned above. Please see above for details.
  • an embodiment of the present application provides another data transmission method, which includes at least the following steps:
  • Step S401 The network side device sends configuration information of multi-path low-layer aggregate transmission, wherein the multi-path low-layer aggregate transmission includes: multi-path MAC layer aggregate transmission and/or multi-path PHY layer aggregate transmission, wherein the multi-path low-layer aggregate transmission includes: multi-path MAC layer aggregate transmission and/or multi-path PHY layer aggregate transmission;
  • Step S402 The network-side device merges different received data and/or deletes duplicate received data.
  • the method further includes:
  • the network side device receives first indication information sent by the terminal, where the first indication information is used to indicate whether the terminal supports multi-path low-layer aggregation transmission;
  • the network side device receives backhaul information sent by the terminal, where the backhaul information is used to indicate a backhaul situation between the terminals.
  • the backhaul information includes at least one of the following:
  • the identifier of the serving cell of the terminal
  • the method further includes:
  • the network side device sends a reporting permission notification to the terminal, where the reporting permission notification indicates that the network side device allows the terminal to report the first indication information and/or the backhaul information;
  • the network side device sends a reporting request to the terminal, where the reporting request is used to request the terminal to report the first indication information and/or the backhaul information.
  • the configuration information of the multipath low-layer aggregation transmission includes at least one of the following:
  • Information used to indicate duplication transmission or information used to indicate use of the same resources for duplication transmission, or information used to indicate use of different resources for duplication transmission;
  • the method further includes:
  • the network side device receives second indication information and/or changed backhaul information sent by the terminal, where the second indication information is used to indicate that a multipath low-layer aggregation transmission capability of the terminal is limited;
  • the network side device sends configuration update information of multi-path lower layer aggregation transmission to the terminal, where the configuration update information of multi-path lower layer aggregation transmission is used to instruct the terminal to stop multi-path lower layer aggregation transmission.
  • the method further includes:
  • the network side device sends at least one of the following control signaling to the terminal, where the control instruction is used to indicate whether the multipath low layer aggregation transmission mode is a split transmission mode or a duplication transmission mode:
  • RRC signaling wherein the content of the RRC signaling is RRC configuration information or RRC reconfiguration information
  • L1 signaling or L2 signaling used to indicate switching between split transmission mode and duplication transmission mode
  • L1 signaling used to indicate the mode of each multipath lower layer aggregation transmission.
  • the data transmission method provided in the embodiment of the present application can be executed by a network-side device such as a base station in the UE-to-Network relay scenario mentioned above, or a third terminal in the UE-to-UE relay scenario. Please see above for details.
  • an embodiment of the present application provides a data transmission device, which can be applied to a first terminal.
  • the data transmission device 100 includes:
  • the first processing module 101 is used to receive or generate configuration information of multi-path low-layer aggregate transmission, where the multi-path low-layer aggregate transmission includes: multi-path MAC layer aggregate transmission and/or multi-path PHY layer aggregate transmission;
  • the first transmission module 102 is used to perform multi-path low-layer aggregation transmission according to the configuration information of the multi-path low-layer aggregation transmission. Aggregate transmission.
  • the first processing module 101 includes:
  • the first processing submodule is used to receive configuration information of multi-path low-layer aggregate transmission sent by a network side device; or to receive configuration information of multi-path low-layer aggregate transmission sent by a second terminal or a third terminal.
  • the device further comprises at least one of the following:
  • a first sending module used to send first indication information, where the first indication information is used to indicate whether the first terminal supports multi-path low-layer aggregation transmission;
  • the second sending module is used to send backhaul information, where the backhaul information is used to indicate a backhaul situation between the first terminal and the second terminal.
  • the backhaul information includes at least one of the following:
  • the device further comprises at least one of the following:
  • a first receiving module configured to receive a reporting permission notification sent by the network side device, wherein the reporting permission notification indicates that the network side device allows the first terminal to report the first indication information and/or the backhaul information;
  • the second receiving module is used to receive a reporting request sent by the network side device, where the reporting request is used to request the first terminal to report the first indication information and/or the backhaul information.
  • the configuration information of the multipath low-layer aggregation transmission includes at least one of the following:
  • Information used to indicate duplication transmission or information used to indicate use of the same resources for duplication transmission, or information used to indicate use of different resources for duplication transmission;
  • the device further comprises at least one of the following:
  • a third sending module configured to send second indication information to the network side device, where the second indication information is used to indicate that the multi-path low-layer aggregation transmission capability of the first terminal is limited;
  • the fourth sending module is used to send the changed backhaul information.
  • the device further comprises:
  • a third receiving module used to receive or generate configuration update information of multi-path low-layer aggregation transmission
  • the first terminal processing module is used to stop the multi-path low-layer aggregation transmission according to the configuration update information of the multi-path low-layer aggregation transmission.
  • the device further comprises:
  • the second terminal processing module is configured to determine whether the multipath low-layer aggregation transmission mode is a split transmission mode or a duplication transmission mode according to at least one of the following control signalings:
  • RRC signaling wherein the content of the RRC signaling is RRC configuration information or RRC reconfiguration information
  • L1 signaling or L2 signaling used to indicate switching between split transmission mode and duplication transmission mode
  • L1 signaling used to indicate the mode of each multipath lower layer aggregation transmission.
  • the first transmission module 102 includes at least one of the following:
  • a first transmission submodule configured to monitor the scheduling of C-RNTI
  • a second transmission submodule used for generating a MAC layer PDU and/or a PHY layer TB according to the size of the scheduling resources
  • a third transmission submodule is used to perform duplication transmission of the MAC layer PDU and/or the PHY layer TB on the same resource or different resources through different paths according to the configuration information or the control signaling;
  • a fourth transmission submodule configured to split the MAC layer PDU and/or the PHY layer TB for transmission through different paths on different resources according to the configuration information or the control signaling;
  • the fifth transmission submodule is used to send the uplink data and/or uplink feedback that needs to be sent to the network side device to the second terminal according to the configuration information.
  • the data transmission device provided in the embodiment of the present application can implement the various processes implemented by the data transmission method embodiment described in the first aspect and achieve the same technical effect. To avoid repetition, it will not be repeated here.
  • an embodiment of the present application provides another data transmission device, which can be applied to a second terminal, where the second terminal is a relay terminal between the first terminal and the network side device, or the second terminal is a relay terminal between the first terminal and the third terminal.
  • the data transmission device 200 includes:
  • the second processing module 201 is used to receive or generate configuration information of multi-path low-layer aggregate transmission, where the multi-path low-layer aggregate transmission includes: multi-path MAC layer aggregate transmission and/or multi-path PHY layer aggregate transmission;
  • the second transmission module 202 is configured to perform multi-path lower layer aggregation transmission according to the configuration information of the multi-path lower layer aggregation transmission.
  • the second processing module 201 includes:
  • the second processing submodule is used to receive the configuration information of the multi-path low-layer aggregate transmission sent by the network side device; or to receive the configuration information of the multi-path low-layer aggregate transmission sent by the first terminal or the third terminal.
  • the device further comprises at least one of the following:
  • a fifth sending module configured to send first indication information, where the first indication information is used to indicate whether the second terminal supports multi-path low-layer aggregation transmission;
  • the sixth sending module is used to send backhaul information, where the backhaul information is used to indicate a backhaul situation between the second terminal and the first terminal.
  • the backhaul information includes at least one of the following:
  • An identifier of a serving cell of the first terminal An identifier of a serving cell of the first terminal
  • the device further comprises at least one of the following:
  • a fourth receiving module configured to receive a reporting permission notification sent by the network side device, wherein the reporting permission notification indicates that the network side device allows the second terminal to report the first indication information and/or the backhaul information;
  • a fifth receiving module is used to receive a reporting request sent by the network side device, where the reporting request is used to request the second terminal to report the first indication information and/or the backhaul information.
  • the configuration information of the multipath low-layer aggregation transmission includes at least one of the following:
  • Information used to indicate duplication transmission or information used to indicate use of the same resources for duplication transmission, or information used to indicate use of different resources for duplication transmission;
  • the device further comprises at least one of the following:
  • a seventh sending module configured to send second indication information to the network side device, where the second indication information is used to indicate that the multipath low-layer aggregation transmission capability of the second terminal is limited;
  • the eighth sending module is used to send the changed backhaul information.
  • the device further comprises:
  • a sixth receiving module configured to receive or generate configuration update information of multi-path low-layer aggregation transmission
  • the third terminal processing module is used to stop the multi-path low-layer aggregation transmission according to the configuration update information of the multi-path low-layer aggregation transmission.
  • the device further comprises:
  • the fourth terminal processing module is used to determine whether the multipath low-layer aggregation transmission mode is a split transmission mode or a duplication transmission mode according to at least one of the following control signalings:
  • RRC signaling wherein the content of the RRC signaling is RRC configuration information or RRC reconfiguration information
  • L1 signaling or L2 signaling used to indicate switching between split transmission mode and duplication transmission mode
  • L1 signaling used to indicate the mode of each multipath lower layer aggregation transmission.
  • the second transmission module 202 includes at least one of the following:
  • a sixth transmission submodule configured to monitor the scheduling of C-RNTI
  • a seventh transmission submodule configured to receive a MAC layer PDU and/or a PHY layer TB sent by the first terminal according to the size of the scheduling resources
  • an eighth transmission submodule configured to perform duplication transmission of the MAC layer PDU and/or the PHY layer TB on the same resource or different resources through different paths according to the configuration information or the control signaling;
  • a ninth transmission submodule configured to split the MAC layer PDU and/or the PHY layer TB for transmission through different paths on different resources according to the configuration information or the control signaling;
  • the tenth transmission submodule is used to receive uplink data and/or uplink feedback sent by the first terminal that needs to be sent to the network side device according to the configuration information.
  • the data transmission device provided in the embodiment of the present application can implement the various processes implemented by the data transmission method embodiment described in the second aspect and achieve the same technical effect. To avoid repetition, it will not be repeated here.
  • an embodiment of the present application provides another data transmission device, which can be applied to a network side device.
  • the data transmission device 300 includes:
  • the sending module 301 is used to send configuration information of multi-path low-layer aggregate transmission, wherein the multi-path low-layer aggregate transmission includes: multi-path MAC layer aggregate transmission and/or multi-path PHY layer aggregate transmission, wherein the multi-path low-layer aggregate transmission includes: multi-path MAC layer aggregate transmission and/or multi-path PHY layer aggregate transmission;
  • the processing module 302 is used to merge different received data and/or delete duplicate received data.
  • the device further comprises:
  • a first network receiving module used to receive first indication information sent by a terminal, where the first indication information is used to indicate whether the terminal supports multi-path low-layer aggregation transmission;
  • the second network receiving module is used to receive backhaul information sent by the terminal, where the backhaul information is used to indicate the backhaul status between the terminals.
  • the backhaul information includes at least one of the following:
  • the identifier of the serving cell of the terminal
  • the device further comprises:
  • a first network sending module configured to send a reporting permission notification to the terminal, wherein the reporting permission notification indicates that the network side device allows the terminal to report the first indication information and/or the backhaul information;
  • the second network sending module is used to send a reporting request to the terminal, where the reporting request is used to request the terminal to report the first indication information and/or the backhaul information.
  • the configuration information of the multipath low-layer aggregation transmission includes at least one of the following:
  • Information used to indicate duplication transmission or information used to indicate use of the same resources for duplication transmission, or information used to indicate use of different resources for duplication transmission;
  • the device further comprises:
  • a third network receiving module used to receive second indication information and/or changed backhaul information sent by the terminal, wherein the second indication information is used to indicate that the multi-path low-layer aggregation transmission capability of the terminal is limited;
  • the third network sending module is used to send configuration update information of multi-path low-layer aggregation transmission to the terminal, and the configuration update information of multi-path low-layer aggregation transmission is used to instruct the terminal to stop multi-path low-layer aggregation transmission.
  • the device further comprises:
  • a fourth network sending module is used to send at least one of the following control signaling to the terminal, where the control instruction is used to indicate that the mode of the multipath low-layer aggregation transmission is a split transmission mode or a duplication transmission mode:
  • RRC signaling wherein the content of the RRC signaling is RRC configuration information or RRC reconfiguration information
  • L1 signaling or L2 signaling used to indicate switching between split transmission mode and duplication transmission mode
  • L1 signaling used to indicate the mode of each multipath lower layer aggregation transmission.
  • the data transmission device provided in the embodiment of the present application can implement the various processes implemented by the data transmission method embodiment described in the third aspect and achieve the same technical effect. To avoid repetition, it will not be repeated here.
  • an embodiment of the present application further provides a communication device 900, including a processor 901 and a memory 902, wherein the memory 902 stores a program or instruction that can be run on the processor 901.
  • the communication device 900 is a terminal
  • the program or instruction is executed by the processor 901 to implement the various steps of the data transmission method embodiment described in the first aspect or the second aspect, and can achieve the same technical effect.
  • the communication device 900 is a network side device
  • the program or instruction is executed by the processor 901 to implement the various steps of the data transmission method embodiment described in the third aspect, and can achieve the same technical effect. To avoid repetition, it will not be repeated here.
  • FIG12 it is a schematic diagram of the hardware structure of a terminal implementing an embodiment of the present application.
  • the terminal 1000 is used to execute the various steps of the data transmission method embodiment described in the first aspect or the second aspect, and can achieve the same technical effect.
  • the terminal 1000 includes but is not limited to: at least some of the components of the radio frequency unit 1001, the network module 1002, the audio output unit 1003, the input unit 1004, the sensor 1005, the display unit 1006, the user input unit 1007, the interface unit 1008, the memory 1009 and the processor 1010.
  • the terminal 1000 may also include a power source (such as a battery) for supplying power to each component, and the power source may be logically connected to the processor 1010 through a power management system, so as to manage charging, discharging, and power consumption management through the power management system.
  • a power source such as a battery
  • the terminal structure shown in FIG12 does not constitute a limitation on the terminal, and the terminal may include more or fewer components than shown in the figure, or combine certain components, or arrange components differently, which will not be described in detail here.
  • the input unit 1004 may include a graphics processing unit (GPU) 10041 and a microphone 10042, and the graphics processor 10041 processes the image data of a static picture or video obtained by an image capture device (such as a camera) in a video capture mode or an image capture mode.
  • the display unit 1006 may include a display panel 10061, and the display panel 10061 may be configured in the form of a liquid crystal display, an organic light emitting diode, etc.
  • the user input unit 1007 includes a touch panel 10071 and at least one of the other input devices 10072.
  • the touch panel 10071 is also called a touch screen.
  • the touch panel 10071 may include a touch detection
  • Other input devices 10072 may include, but are not limited to, a physical keyboard, function keys (such as volume control keys, switch keys, etc.), a trackball, a mouse, and a joystick, which will not be described in detail here.
  • the RF unit 1001 can transmit the data to the processor 1010 for processing; in addition, the RF unit 1001 can send uplink data to the network side device.
  • the RF unit 1001 includes but is not limited to an antenna, an amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, etc.
  • the memory 1009 can be used to store software programs or instructions and various data.
  • the memory 1009 may mainly include a first storage area for storing programs or instructions and a second storage area for storing data, wherein the first storage area may store an operating system, an application program or instruction required for at least one function (such as a sound playback function, an image playback function, etc.), etc.
  • the memory 1009 may include a volatile memory or a non-volatile memory, or the memory 1009 may include both volatile and non-volatile memories.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read-only memory (PROM), an erasable programmable read-only memory (EPROM), an electrically erasable programmable read-only memory (EEPROM), or a flash memory.
  • the volatile memory may be a random access memory (RAM), a static random access memory (SRAM), a dynamic random access memory (DRAM), a synchronous dynamic random access memory (SDRAM), a double data rate synchronous dynamic random access memory (DDRSDRAM), an enhanced synchronous dynamic random access memory (ESDRAM), a synchronous link dynamic random access memory (SLDRAM) and a direct memory bus random access memory (DRRAM).
  • the memory 1009 in the embodiment of the present application includes but is not limited to these and any other suitable types of memory.
  • the processor 1010 may include one or more processing units; optionally, the processor 1010 integrates an application processor and a modem processor, wherein the application processor mainly processes operations related to an operating system, a user interface, and application programs, and the modem processor mainly processes wireless communication signals, such as a baseband processor. It is understandable that the modem processor may not be integrated into the processor 1010.
  • the terminal 1100 includes: an antenna 111, a radio frequency device 112, a baseband device 113, a processor 114 and a memory 115.
  • the antenna 111 is connected to the radio frequency device 112.
  • the radio frequency device 112 receives information through the antenna 111 and sends the received information to the baseband device 113 for processing.
  • the baseband device 113 processes the information to be sent and sends it to the radio frequency device 112, and the radio frequency device 112 processes the received information and sends it out through the antenna 111.
  • the data transmission method executed by the terminal in the above embodiments may be implemented in the baseband device 113, which includes a baseband processor.
  • the baseband device 113 may include, for example, at least one baseband board, on which a plurality of chips are arranged, as shown in FIG13 , wherein one of the chips is, for example, a baseband processor, which is connected to the memory 115 through a bus interface to call a program in the memory 115 and execute the network device operations shown in the data transmission method embodiments of the first or second aspect above.
  • the terminal may also include a network interface 116, which may be, for example, a Common Public Radio Interface (CPRI). Radio Interface, CPRI).
  • CPRI Common Public Radio Interface
  • the terminal 1100 of an embodiment of the present invention also includes: instructions or programs stored in the memory 115 and executable on the processor 114.
  • the processor 114 calls the instructions or programs in the memory 115 to execute the data transmission method shown in the first aspect or the second aspect and achieve the same technical effect. To avoid repetition, it will not be repeated here.
  • the embodiment of the present application also provides a network side device.
  • the network side device 1200 includes: a processor 1201, a network interface 1202, and a memory 1203.
  • the network interface 1202 is, for example, a Common Public Radio Interface (CPRI).
  • CPRI Common Public Radio Interface
  • the network side device 1200 of an embodiment of the present invention also includes: instructions or programs stored in the memory 1203 and executable on the processor 1201.
  • the processor 1201 calls the instructions or programs in the memory 1203 to execute the data transmission method shown in the third aspect and achieve the same technical effect. To avoid repetition, it will not be repeated here.
  • An embodiment of the present application also provides a readable storage medium, on which a program or instruction is stored.
  • a program or instruction is stored.
  • the various processes of the above-mentioned data transmission method embodiment are implemented, and the same technical effect can be achieved. To avoid repetition, it will not be repeated here.
  • the processor is the processor in the terminal device described in the above embodiment.
  • the readable storage medium includes a computer readable storage medium, such as a computer read-only memory ROM, a random access memory RAM, a magnetic disk or an optical disk.
  • the readable storage medium may be a non-transient readable storage medium.
  • An embodiment of the present application further provides a chip, which includes a processor and a communication interface, wherein the communication interface is coupled to the processor, and the processor is used to run programs or instructions to implement the various processes of the above-mentioned data transmission method embodiment, and can achieve the same technical effect. To avoid repetition, it will not be repeated here.
  • the chip mentioned in the embodiments of the present application can also be called a system-level chip, a system chip, a chip system or a system-on-chip chip, etc.
  • the embodiments of the present application further provide a computer program/program product, which is stored in a storage medium and is executed by at least one processor to implement the various processes of the above-mentioned data transmission method embodiment and can achieve the same technical effect. To avoid repetition, it will not be repeated here.
  • An embodiment of the present application also provides a data transmission system, including: a network side device, a first terminal, and a second terminal, wherein the first terminal is used to execute the steps of the data transmission method as described in the first aspect above, the second terminal is used to execute the steps of the data transmission method as described in the second aspect above, and the network side device is used to execute the steps of the data transmission method as described in the third aspect above.
  • the technical solution of the present application can be embodied in the form of a computer software product, which is stored in a storage medium (such as ROM/RAM, a magnetic disk, or an optical disk), and includes a number of instructions for enabling a terminal (which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) to execute the methods described in each embodiment of the present application.
  • a storage medium such as ROM/RAM, a magnetic disk, or an optical disk
  • a terminal which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种数据传输方法、装置、终端、网络侧设备及系统。属于通信技术领域,所述数据传输方法,包括:第一终端接收或生成多路径低层聚合传输的配置信息,所述多路径低层聚合传输包括:多路径MAC层聚合传输和/或多路径PHY层聚合传输;所述第一终端根据所述多路径低层聚合传输的配置信息,执行多路径低层聚合传输。

Description

数据传输方法、装置、终端、网络侧设备及系统
相关申请的交叉引用
本申请要求在2022年11月09日提交中国专利局、申请号为202211399198.6、名称为“数据传输方法、装置、终端、网络侧设备及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于通信技术领域,具体涉及一种数据传输方法、装置、终端、网络侧设备及系统。
背景技术
直连链路指UE通过自己的Uu空口与基站进行数据传输的无线链路,主要用于UE与基站之间的数据传输;SL relay(SideLink relay,侧链路中继)指UE通过sidelink(PC5)接口与UE进行数据传输的无线链路,主要用于UE与UE之间的数据传输。
目前,现有技术方案仅支持SL relay或者直连链路的单路径通信,以致数据传输的可靠性、时延和吞吐量等传输效果较差。
发明内容
本申请实施例提供一种数据传输方法、装置、终端、网络侧设备及系统,有利于提升数据传输效果。
第一方面,提供了一种数据传输方法,包括:
第一终端接收或生成多路径低层聚合传输的配置信息,所述多路径低层聚合传输包括:多路径MAC层聚合传输和/或多路径PHY层聚合传输;
所述第一终端根据所述多路径低层聚合传输的配置信息,执行多路径低层聚合传输。
第二方面,提供了一种数据传输方法,包括:
第二终端接收或生成多路径低层聚合传输的配置信息,所述多路径低层聚合传输包括:多路径MAC层聚合传输和/或多路径PHY层聚合传输;
所述第二终端根据所述多路径低层聚合传输的配置信息,执行多路径低层聚合传输;
其中,所述第二终端为第一终端与网络侧设备之间的中继终端,或,所述第二终端为所述第一终端与第三终端之间的中继终端。
第三方面,提供了一种数据传输方法,包括:
网络侧设备发送多路径低层聚合传输的配置信息,所述多路径低层聚合传输包括:多路径MAC层聚合传输和/或多路径PHY层聚合传输,所述多路径低层聚合传输包括:多路径MAC层聚合传输和/或多路径PHY层聚合传输;
所述网络侧设备对接收到不同的数据合并和/或删除接收到的重复的数据。
第四方面,提供了一种数据传输装置,应用于第一终端,包括:
第一处理模块,用于接收或生成多路径低层聚合传输的配置信息,所述多路径低层聚合传输包括:多路径MAC层聚合传输和/或多路径PHY层聚合传输;
第一传输模块,用于根据所述多路径低层聚合传输的配置信息,执行多路径低层聚合传输。
第五方面,提供了一种数据传输装置,应用于第二终端,所述第二终端为第一终端与网络侧设备之间的中继终端,或,所述第二终端为所述第一终端与第三终端之间的中继终端,包括:
第二处理模块,用于接收或生成多路径低层聚合传输的配置信息,所述多路径低层聚合传输包括:多路径MAC层聚合传输和/或多路径PHY层聚合传输;
第二传输模块,用于根据所述多路径低层聚合传输的配置信息,执行多路径低层聚合传输。
第六方面,提供了一种数据传输装置,应用于网络侧设备,包括:
发送模块,用于发送多路径低层聚合传输的配置信息,所述多路径低层聚合传输包括:多路径MAC层聚合传输和/或多路径PHY层聚合传输,所述多路径低层聚合传输包括:多路径MAC层聚合传输和/或多路径PHY层聚合传输;
处理模块,用于对接收到不同的数据合并和/或删除接收到的重复的数据。
第七方面,提供了一种终端,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面或第二方面所述的数据传输方法的步骤。
第八方面,提供了一种网络侧设备,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第三方面所述的数据传输方法的步骤。
第九方面,提供了一种数据传输系统,包括:第一终端以及第二终端,所述第一终端用于执行上述第一方面所述的数据传输方法的步骤,所述第二终端用于执行上述第二方面所述的数据传输方法的步骤,所述网络侧设备用于执行上述第三方面所述的数据传输方法的步骤。
第十方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的数据传输方法的步骤,或者实现如第二方面所述的数据传输方法的步骤,或者实现如第三方面所述的数据传输方法的步骤。
第十一方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的数据传输方法的步骤,或者实现如第二方面所述的数据传输方法的步骤,或者实现如第三方面所述的数据传输方法的步骤。
第十二方面,提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现如第一方面所述的数据传输方法的步骤,或者实现如第二方面所述的数据传输方法的步骤,或者实现如第三方面所述的数据传输方法的步骤。
在本申请实施例中,第一终端根据自身接收或生成的多路径低层聚合传输的配置信息,执行多路径MAC层聚合传输和/或多路径PHY层聚合传输,从而以低层数据单元为粒度,与对端进行多路径的联合数据传输,能够提升数据传输的可靠性、时延和吞吐量等传输效果。
附图说明
为了更清楚地说明本申请实施例,下面将对实施例中所需要使用的附图做简单的介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例可应用的一种无线通信系统的框图;
图2是本申请实施例中的一种数据传输方法的流程图;
图3是本申请实施例中的一种数据传输场景的示意图;
图4是本申请实施例中的另一种数据传输场景的示意图;
图5是本申请实施例中的一种协议栈架构的示意图;
图6是本申请实施例中的另一种数据传输方法的流程图;
图7是本申请实施例中的另一种数据传输方法的流程图;
图8是本申请实施例中的一种数据传输装置的结构示意图;
图9是本申请实施例中的另一种数据传输装置的结构示意图;
图10是本申请实施例中的另一种数据传输装置的结构示意图;
图11是本申请实施例中的一种通信设备的结构示意图;
图12是本申请实施例中的一种终端的硬件结构示意图;
图13是本申请实施例中的一种终端的结构示意图;
图14是本申请实施例中的一种网络侧设备的结构示意图。
具体实施例
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、 “第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency Division Multiple Access,SC-FDMA)或其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统以外的系统,如第6代(6th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端设备11和网络侧设备12。其中,终端设备11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、机器人、可穿戴式设备(Wearable Device)、车载设备(VUE)、行人终端(PUE)、智能家居(具有无线通信功能的家居设备,如冰箱、电视、洗衣机或者家具等)、游戏机、个人计算机(personal computer,PC)、柜员机或者自助机等终端侧设备,可穿戴式设备包括:智能手表、智能手环、智能耳机、智能眼镜、智能首饰(智能手镯、智能手链、智能戒指、智能项链、智能脚镯、智能脚链等)、智能腕带、智能服装等。需要说明的是,在本申请实施例并不限定终端设备11的具体类型。网络侧设备12可以包括接入网设备或核心网设备,其中,接入网设备12也可以称为无线接入网设备、无线接入网(Radio Access Network,RAN)、无线接入网功能或无线接入网单元。接入网设备12可以包括基站、WLAN接入点或WiFi节点等,基站可被称为节点B、演进节点B(eNB)、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、家用B节点、家用演进型B节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例进行介绍,并不限定基站的具体类型。核心网设备可以包含但不限于如下至少一项:核心网节点、核心网功能、移动管理实体(Mobility Management Entity,MME)、接入移动管理功能(Access and Mobility Management Function,AMF)、会话管理功能 (Session Management Function,SMF)、用户平面功能(User Plane Function,UPF)、策略控制功能(Policy Control Function,PCF)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)、边缘应用服务发现功能(Edge Application Server Discovery Function,EASDF)、统一数据管理(Unified Data Management,UDM),统一数据仓储(Unified Data Repository,UDR)、归属用户服务器(Home Subscriber Server,HSS)、集中式网络配置(Centralized network configuration,CNC)、网络存储功能(Network Repository Function,NRF),网络开放功能(Network Exposure Function,NEF)、本地NEF(Local NEF,或L-NEF)、绑定支持功能(Binding Support Function,BSF)、应用功能(Application Function,AF)等。需要说明的是,在本申请实施例中仅以NR系统中的核心网设备为例进行介绍,并不限定核心网设备的具体类型。
针对相关技术中单路径通信的数据传输方式,存在的可靠性、时延和吞吐量等传输效果较差的问题,本申请提出了一种多路径低层聚合的数据传输方式,使得发送端(UE、基站等)能够以低层数据单元为粒度,与对端进行多路径的联合数据传输,能够极大提升数据传输的可靠性和时延,吞吐量以及能耗性能,从而提升传输数据传输效果。下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的数据传输方法进行详细地说明。
第一方面,参见图2所示,为本申请实施例所提供的一种数据传输方法的流程图,该方法可以包括以下步骤:
步骤S201:第一终端接收或生成多路径低层聚合传输的配置信息,所述多路径低层聚合传输包括:多路径MAC层聚合传输和/或多路径PHY层聚合传输。
其中,第一终端可以为Remote UE(远端终端),第一终端通过至少一个relay UE(中继终端)与接收端(网络侧设备或UE)连接。
作为一种可能的实施方式,所述第一终端接收网络侧设备发送的多路径低层聚合传输的配置信息;或所述第一终端接收第二终端或第三终端发送的多路径低层聚合传输的配置信息。
其中,在UE-to-Network relay(UE到网络侧设备的中继)场景,第二终端为第一终端与网络侧设备之间的中继终端,在UE-to-UE relay(UE到UE的中继)场景,第二终端为第一终端与第三终端之间的中继终端。
步骤S202:所述第一终端根据所述多路径低层聚合传输的配置信息,执行多路径低层聚合传输。
其中,聚合传输是指:发送端通过多条路径发送数据,由接收端聚合发送端通过多条路径发送的数据。在具体实施时,当第一终端被配置为以MAC aggregation(Media Access Control aggregation,媒体介入控制聚合)或者PHY aggregation(Physical aggregation,物理聚合)的低层聚合方式进行多路径传输时,第一终端的每个路径对应按照MAC PDU(MAC协议数据单元)或者PHY TB(物理层传输块)的低层数据单元为 粒度,对第一终端的数据进行split(分裂)或者duplication(复制)等联合方式发送,由接收端对每个路径发送的低层数据单元进行处理(如合并或者分别接收),从而以多路径低层聚合的数据传输方式,提升数据传输的接收可靠性和时延性能,有利于吞吐量提升,能够满足各种业务的极高QoS需求。
由上述步骤可知,第一终端根据自身接收或生成的多路径低层聚合传输的配置信息,执行多路径MAC层聚合传输和/或多路径PHY层聚合传输,从而以低层数据单元为粒度,与对端进行多路径的联合数据传输,能够提升数据传输的可靠性、时延和吞吐量等数据传输效果。
实施方式一
本实施方式描述的是多路径低层聚合传输的配置情况,以UE-to-Network relay场景为例进行说明。
remote UE(第一终端)和gNB(网络侧设备)之间通过多路径进行通信,例如,该多路径可以包含直连路径和/或经过relay UE(第二终端)中转的非直连路径,并且非直连路径可以有多条,remote UE和relay UE之间的接口均为ideal backhaul(理想回程)连接。如图3或4所示的数据传输场景,以及图5举例示意的协议栈架构的示意图,其中,图5所示的Primary-UE(P-UE,初级UE)相当于图3或4中的remote UE,Secondary-UE(P-UE,次级UE)相当于relay UE,如图5所示,remote UE的数据通过两个或者更多的路径在MAC层进行聚合,实现以MAC PDU为粒度进行多路径的split或者duplication传输。
可以理解的是,在UE-to-Network relay多路径的场景中,为了支持多路径的配置,涉及的各个节点,包括remote UE和各个relay UE都需要处于RRC CONNECTED(Radio Resource Control CONNECTED,无线资源控制连接)状态,也即是说,每个UE和serving gNB(服务基站)之间都可以通过RRC专用信令进行交互,故下文中涉及的网络侧设备与终端(第一终端、第二终端或第三终端)的交互过程均可以使用RRC专用信令实现。
在该实施例中,gNB(网络侧设备)需要先获取各个UE的多路径低层聚合传输的相关能力和链路情况,再对符合多路径低层聚合传输的能力要求和链路要求的UE,进行配置和相关调度操作。具体地,gNB需要获知remote UE和relay UE的能力信息,即remote UE和涉及的每个relay UE,是否支持MAC aggregation或者PHY aggregation。此外,网络侧设备还可以获知各个UE是否具备split、在相同资源上的duplication、在不同资源上的duplication等能力。上述能力信息可以联合在UE capability(UE能力)的上报过程中上报,也可以设置单独的上报过程进行上报,如使用UE assistance information(UE辅助信息)、UE relay information(UE中继信息)或者其它上行信令单独上报能力信息。
同时,UE还需要上报remote UE和relay UE之间的backhaul情况,因为只有ideal backhaul才能满足MAC或者PHY aggregation的传输要求。可以由remote UE统一上报自己和每个relay UE的backhaul情况,也可以每个relay UE上报自己和remote UE之间 的backhaul情况。该backhaul情况可以使用back haul信息进行上报,该back haul信息可以包括:某一backhaul是否ideal backhaul、自身是否存在关联的backhaul或ideal backhaul、自身或关联的UE是否支持MAC或者PHY aggregation传输等。
具体地,上述backhaul信息包括以下至少一项:
第二终端的标识;
第二终端的服务小区的标识;
第一终端与所述第二终端之间的backhaul是否为理想backhaul。
在该实施例中,第一终端在对backhaul信息上报时,需要携带对端(即第二终端)的标识(如ID),例如,remote UE可以上报relay UE的ID,其可以是S-TMSI(SAE-Temporary Mobile Subscriber Identit,SAE临时移动用户标识)、C-RNTII(Cell-RadioNetworkTemporaryIdentifier,小区无线网络临时标识)或RNTI(Radio Network Temporary Identity,无线网络临时标识)等,也可以上报relay UE的serving cell ID(服务小区),以使gNB知晓该relay UE是否在自己所能调度的小区内。可以理解的是,第二终端在对backhaul信息上报时,也可以上报remote UE的ID或remote UE的serving cell ID。上报过程可以使用UE assistance information,UE relay information或者其它上行信令进行上报。
作为一种可能的实施方式,第一终端发送第一指示信息和/或backhaul信息,所述第一指示信息用于指示所述第一终端是否支持多路径低层聚合传输,所述backhaul信息用于指示所述第一终端与第二终端之间的backhaul情况。
可以理解的是,上述backhaul情况上报和能力上报可以独立上报也可以联合上报,一种联合上报方式是,当UE上报了backhaul情况为ideal backhaul时,默认其支持MAC或者PHY aggregation传输能力,或者当UE上报了支持MAC或者PHY aggregation传输能力时,携带关联的UE,则默认相关UE之间具有ideal backhaul。
其中,UE(第一终端或第二终端)的上述上报可以分为以下三种方式:
上报方式1(默认上报),在该实施方式中,无论网络侧设备是否支持低层多路径聚合,UE都会上报自身是否支持多路径低层聚合传输的能力信息。例如,UE在UE capability的上报过程中,会自动在现有的能力上报信息中增加自身是否支持低层多路径聚合的描述,网络侧设备若不支持低层多路径聚合,则会忽略能力上报信息中增加的该部分描述。
上报方式2(网络侧开关式上报),在该实施方式中,网络侧设备向终端发送允许上报通知,所述允许上报通知指示所述网络侧设备允许所述终端上报第一指示信息和/或backhaul信息。例如,网络侧设备在自身支持低层多路径聚合时,可以使用SIB(System Information Block,系统信息块)或者专用信令向UE发送允许上报通知,UE收到该允许上报通知之后,进行第一指示信息和/或backhaul信息的上报。
上报方式3(网络侧触发或者请求式上报),在该实施方式中,网络侧设备向终端发送上报请求,所述上报请求用于请求终端上报第一指示信息和/或backhaul信息。例如, 当网络侧设备自身支持低层多路径聚合,且即将为UE配置MAC或者PHY aggregation传输时,网络侧设备通过发送上报请求,以获取UE的低层多路径聚合能力情况和/或backhaul情况,UE在接收到该请求后,才进行相关信息的上报。
网络侧设备在获知各个UE的多路径低层聚合传输的相关能力和链路情况之后,会在支持MAC或者PHY aggregation传输能力和关联ideal backhaul的UE中,选择合适的UE参与MAC或者PHY aggregation传输(例如,网络侧设备在自身资源充足的情况下,可以选择所有的符合能力要求和backhaul要求的UE参与多路径低层聚合传输),并对选中的UE采取对应的RRC专用信令过程,以配置MAC或者PHY aggregation传输的参数。
所有UE的能力和backhaul情况可以都上报给网络侧设备,由网络侧设备统一进行配置,或者通过UE之间的接口传输给一个header UE,由header UE进行统一配置,header UE可以是remote UE也可以是一个relay UE。当UE之间为ideal backhaul情况,remote UE和relay UE之间以约定好的方式,即以MAC或者PHY aggregation传输相同的数据或者不同内容给对端UE,例如remote UE和relay UE1使用相同或者不同的source Layer 2ID以及相同或者不同的PC5接口资源,同时传输duplication、split数据给对端remote UE。也即,remote UE和relay UE以及接收端remote UE需要提前约定或者配置好,哪些数据需要duplication发送、合并接收且进行重复检测后只发送一份数据给高层,以及哪些数据需要split发送、分别接收且将所有数据递给高层。
其中,多路径低层聚合传输的配置信息包括以下至少一项:
与多路径MAC层聚合传输相关的逻辑架构;
与多路径PHY层聚合传输相关的逻辑架构;
用于指示进行split传输的信息;
用于指示进行duplication传输的信息,或,用于指示使用相同资源进行duplication传输的信息,或,用于指示使用不同资源进行duplication传输的信息;
多路径MAC层聚合传输和/或多路径PHY层聚合传输适用的数据类型;
多路径低层聚合传输适用的传输方向;
与所述第二终端代替所述第一终端发送上行数据和/或上行反馈相关的信息。
在该实施例中,多路径MAC层聚合传输相关的逻辑架构是指:一个MAC实体与两个或者多个传输链路(例如不同UE的各个PHY layer(物理层))的关联关系;多路径PHY层聚合传输相关的逻辑架构是指:一个PHY实体与两个或者多个传输链路(例如不同UE的传输天线等)的关联关系;多路径MAC层聚合传输和/或多路径PHY层聚合传输适用的数据类型,可以是特定的DRB(Data Radio Bearer,数据无线承载)、QoS(Quality of Service,服务质量)、或者remote UE的全部用户数据等数据类型。
可以理解的是,上述多路径低层聚合传输的配置信息,可以只针对上行或者下行,或者UE之间的一个传输方向的数据传输进行配置。当一套参数(即多路径低层聚合传 输的配置信息)只针对一个方向时,可以为各个传输方向分别配置一套参数。上述多路径低层聚合传输的配置信息,也可以同时适用于上行和下行,或者UE之间的两个传输方向。
此外,如果是一个UE需要为另一个UE传输上行数据,或者上行PUCCH(Physical Uplink Control Channel,物理上行链路控制信道)/HARQ Feedback(HARQ反馈)代理等,则需要为被替代传输的UE配置上行和下行不同的传输路径,或者配置专门的PUCCH/HARQ Feedback资源绑定,由用于替代传输的UE根据被替代传输的UE所配置的对应路径或资源,执行代理传输。
当UE个数较多时,网络侧设备也可以配置不同的MAC或者PHY aggregation传输组,例如remote UE和relay UE1组成group 1进行MAC或者PHY aggregation传输,remote UE和relay UE2组成group 2进行MAC或者PHY aggregation传输,remote UE和relay UE1、relay UE3组成group 3进行MAC或者PHY aggregation传输。在UE-to-UE的场景中,也可以采取上述配置方式,获得不同的MAC或者PHY aggregation传输组的配置。
每个UE或传输组在接收到多路径低层聚合传输的配置信息之后,立即应用相关的配置,并按照约定进行MAC或者PHY aggregation接收和传输。
作为一种可能的实施方式,终端(第一终端、第二终端或第三终端)接收或生成多路径低层聚合传输的配置更新信息;终端根据所述多路径低层聚合传输的配置更新信息,停止多路径低层聚合传输。
在多路径低层聚合传输的过程中,当基站根据算法或者其它输入因素(如自身拥有的资源或处理能力较少),决定退出MAC或者PHY aggregation传输时,则需要向已经获得配置的UE进行配置更新,释放之前MAC或者PHY aggregation传输配置,结束MAC或者PHY aggregation传输。
作为一种可能的实施方式,终端向网络侧设备发送多路径低层聚合传输能力受限信息,多路径低层聚合传输能力受限信息用于指示终端的多路径低层聚合传输能力受限,和/或第一终端发送发生变化后的backhaul信息。
在该实施例中,当remote UE或者relay UE的情况发生变化,例如处理能力受限,或者backhaul不再满足ideal backhaul,则UE也可以主动向网络侧设备进行信息上报更新,将自己不再具备MAC或者PHY aggregation传输的信息上报给网络侧设备,便于网络侧设备将该UE从MAC或者PHY aggregation传输范围内去除,或者结束MAC或者PHY aggregation传输。
实施方式二
本实施方式描述的是执行多路径低层聚合传输操作的情况,以UE-to-Network relay场景为例,当已经完成了MAC或者PHY aggregation传输的配置之后,相关涉及的UE就需要监听C-RNTI并完成传输。
在该实施例中,终端(第一终端、第二终端或第三终端)执行以下至少一项操作:
终端监听C-RNTI的调度;
终端根据调度资源的大小,生成MAC层PDU和/或PHY层TB;
终端根据多路径低层聚合传输的配置信息或控制信令,将MAC层PDU和/或PHY层TB,在相同资源或者不同资源上通过不同路径进行duplication传输;
其中,控制信令用于通过动态控制的方式指示各UE的数据传输方式,对于动态控制的具体实施方式将在实施方式三中进行说明。
终端根据配置信息或控制信令,将MAC层PDU和/或PHY层TB,在不同资源上通过不同路径进行split传输;
终端根据配置信息,将需要发送给网络侧设备的上行数据和/或上行反馈发送给第二终端。
下面分不同的情况进行介绍:
情况一、MAC/PHY split传输。在具体实施时,如果是MAC/PHY split传输,则意味着每条路径或者每个参与的UE,都会获得不同的调度,即每个remote UE、relay UE监听自己的C-RNTI的调度,并根据调度的资源大小,由remote UE生成不同的MAC PDU或者PHY TB,通过这些remote UE和relay UE的实际无线链路进行传输。这些传输在接收端,进行分别接收处理,并将成功接收的数据递交给高层继续处理。这样的方式相当于增加了传输的处理能力和带宽,极大的提升了remote UE的上行数据速率。下行也是类似处理,基站可以调度不同remote UE和relay UE的下行通道,以达到下行高速率传输的需求。
情况二、MAC/PHY duplication传输。在具体实施时,如果是MAC/PHY duplication传输,则意味着每条路径或者每个参与的UE,都会获得调度,即每个remote UE、relay UE监听自己的C-RNTI的调度。remote UE监听自己的C-RNTI的调度,根据调度资源的大小,生成MAC层PDU和/或PHY层TB,并复制多份,将复制的MAC层PDU和/或PHY层TB发给relay UE,以实现MAC/PHY duplication传输。接收端进行合并接收处理,并将其中一份成功接收的数据递交给高层继续处理,其余重复数据可以删除。这样的方式相当于增加了传输的可靠性和时延特性。下行也是类似处理,基站可以调度不同remote UE和relay UE的下行通道进行复制传输,以达到下行URLLC的传输需求。
一般来说,为了进行duplication传输,调度的资源能传输的数据大小需要是相同的,基站可以对多个UE调度同一个资源或者不同资源用以duplication数据传输。如果是相同资源,好处是消耗一块资源达到了duplication传输的效果,以不增加资源消耗但获得了duplication的URLLC效果,但对UE之间的同步发送有较高的要求。如果是不同资源,则不同UE在不同资源发送相同的duplication数据,相当于利用更多资源消耗来换取duplication的URLLC(Ultra-Reliable Low-Latency Communications,低时延高可靠通信)效果,此时每个UE可以认为分别发送了相同数据,其对UE之间的同步发送没有额外要求,类似于现有系统中两个UE同时发送上行数据。
如果是相同资源,则不同UE之间最好使用相同的HARQ process ID(HARQ进程ID)和HARQ process(HARQ进程ID)处理,便于接收端进行HARQ同步接收。如果是不同的资源,则不同UE之间可以使用相同或者不同的HARQ process ID和HARQ process处理。其中,在使用相同资源、HARQ process ID和HARQ process的情况下,接收端可以进行HARQ buffer软合并处理,例如,接收端收到了某一UE传输的100个字节,且前50个字节解码正确,则在该UE的第二次HARQ重传,或者使用相同HARQ process的另外一个UE帮它再次传这100个字节,此时接收端对这100个字节的后50个字节解码正确,则接收端可以将两次传输正确的前后50个字节进行合并,实现这100个字节的正确传输。
可以理解的是,以UL(上行)角度来讲,如果是相同资源,当gNB没有接收成功,则在另一块相同资源进行重传调度,由UE进行重传;如果是不同资源,当gNB没有接收成功,则在其它的不同资源进行重传调度,由UE进行重传。在两种分支中,如果gNB接收成功,则调度新传即可结束前一次传输,gNB无需进行HARQ反馈。以DL(下行角度)来讲,如果是相同资源,当remote UE最终判断没有接收成功或者接收成功,则在该资源对应的反馈位置进行HARQ反馈,由gNB进行重传或者认为进程结束;如果是不同资源,当remote UE最终判断没有接收成功或者接收成功,则在不同资源其中一个对应的反馈位置或者在多个资源对应的反馈位置都进行HARQ反馈,由gNB进行重传或者认为进程结束,其中,相同资源的反馈位置相同,可以由单个UE反馈共同的结果(即一个UE判断接收成功,则视作所有UE均接收成功,此时反馈UE接收成功的结果,无需重传),也可以由多个UE反馈共同的传输结果。
情况三、上下行分离传输。第一终端根据配置信息,将需要发送给网络侧设备的上行数据和/或上行反馈发送给第二终端。在该实施例中,如果是MAC/PHY上行分离或者PUCCH、HARQ feedback代理传输,则根据配置好的上行分离的路径,例如当remote UE有任何UL数据或者UL control PDU(上行控制协议数据单元),如PDCP control PDU,RLC ARQ feedback等,需要按照事先配置好的路径,由其它relay UE为其进行传输,remote UE自己避免发送上行数据,以克服上行能力不足或者上行功耗受限或者追求上行能量节省的情况。
同理的,remote UE也有可能需要避免发送任何上行信号,例如它的PUCCH或者HARQ feedback都需要配置到其它一个或者多个relay UE,由这些relay UE为它进行代理传输。在这种情况下,remote UE将它需要发送PUCCH或者HARQ feedback信息传递给relay UE,由relay UE代替发送。
实施方式三
本实施方式描述的是动态控制的具体实施情况,基于实施方式一和二的介绍可知,MAC aggregation或者PHY aggregation等传输具有两个最基本的传输方式,即split或者duplication传输,这两种传输方式的本质差别是在不同路径发送的数据内容究竟是相同的 还是不同的,UE需要在知道不同路径发送的数据内容差别的基础上执行相应的数据传输方式。故可以通过控制信令告知UE当前不同路径发送的数据内容差别,以对UE的数据传输方式进行动态控制。
其中,可以使用以下三种控制信令,动态控制UE的数据传输方式:
第一种,RRC信令,所述RRC信令的内容为RRC配置信息或RRC重配置信息。在该实施例中,RRC配置信息用于设定当前执行的是MAC aggregation或者PHY aggregation传输中的哪一种低层聚合传输方式,以及具体采用的是split还是duplication模式,UE和网络侧设备后续按照该RRC配置信息,执行对应的数据传输操作,如果需要变更当前的数据传输操作,则通过RRC重配置信息对数据传输方式进行重配置,如对当前数据传输的split和duplication的模式进行重配置。
第二种,用于指示对split传输模式和duplication传输模式进行切换的L1信令或L2信令。在该实施例中,可以通过L2/L1信令,即MAC CE(MAC Control Element,MAC控制元素)或者PDCCH DCI(PDCCH Downlink Control Information,PDCCH下行链路控制信息)方式,半动态地对split和duplication的模式进行切换或者变化,UE在收到L2/L1信令之后,按照指示执行该信令对应的数据传输操作,如果需要变更当前的数据传输操作,则需要再次通过L2/L1信令通知UE,UE收到该信令之后,执行对应的数据传输操作。
第三种,用于指示每次进行多路径低层聚合传输的模式的L1信令。在该实施例中,由L1信令完全动态地指示数据传输方式,例如,PDCCH在调度一个新的UL grant(物理控制信息)时,会直接指示当前的数据传输操作是split或者duplication模式、或者默认split模式以及显示指示duplication模式等,便于remote UE进行相关的数据传输操作,该指示可以只给remote UE,或者同时指示给参与的relay UE。在每一个新调度(即进行一次新的多路径低层聚合传输)时,根据该控制信令独立决定本次的数据传输为split或duplication模式,remote UE每次的数据传输都按照对应控制信令的指示执行,如按照该控制信令的指示通过不同路径发送不同数据或者相同数据。
可以理解的是,对于数据的重传,由于本身就是重传HARQ buffer中的数据,可以不视作一次新的数据传输,故数据重传的传输方式可以沿用原数据传输方式,也可以使用控制信令进行模式切换,本申请对此不作限制。此外,对于MAC/PHY上行分离或者PUCCH、HARQ feedback代理传输等情况,也可以采取上述三种控制信令进行类似地模式切换或者数据传输方式的动态控制。
第二方面,如图6所示,本申请实施例提供了另一种数据传输方法,该方法至少包括以下步骤:
步骤S301:第二终端接收或生成多路径低层聚合传输的配置信息,所述多路径低层聚合传输包括:多路径MAC层聚合传输和/或多路径PHY层聚合传输;
步骤S302:所述第二终端根据所述多路径低层聚合传输的配置信息,执行多路径低 层聚合传输;
其中,所述第二终端为第一终端与网络侧设备之间的中继终端,或,所述第二终端为所述第一终端与第三终端之间的中继终端。
作为一种可能的实施方式,第二终端接收多路径低层聚合传输的配置信息,包括:
所述第二终端接收所述网络侧设备发送的多路径低层聚合传输的配置信息;或
所述第二终端接收所述第一终端或所述第三终端发送的多路径低层聚合传输的配置信息。
作为一种可能的实施方式,所述方法还包括以下至少一者:
所述第二终端发送第一指示信息,所述第一指示信息用于指示所述第二终端是否支持多路径低层聚合传输;
所述第二终端发送backhaul信息,所述backhaul信息用于指示所述第二终端与所述第一终端之间的backhaul情况。
作为一种可能的实施方式,所述backhaul信息包括以下至少一项:
所述第一终端的标识;
所述第一终端的服务小区的标识;
所述第二终端与所述第一终端之间的backhaul是否为理想backhaul。
作为一种可能的实施方式,所述方法还包括以下至少一项:
所述第二终端接收所述网络侧设备发送的允许上报通知,所述允许上报通知指示所述网络侧设备允许所述第二终端上报所述第一指示信息和/或所述backhaul信息;
所述第二终端接收所述网络侧设备发送的上报请求,所述上报请求用于请求所述第二终端上报所述第一指示信息和/或所述backhaul信息。
作为一种可能的实施方式,所述多路径低层聚合传输的配置信息包括以下至少一项:
与多路径MAC层聚合传输相关的逻辑架构;
与多路径PHY层聚合传输相关的逻辑架构;
用于指示进行split传输的信息;
用于指示进行duplication传输的信息,或,用于指示使用相同资源进行duplication传输的信息,或,用于指示使用不同资源进行duplication传输的信息;
多路径MAC层聚合传输和/或多路径PHY层聚合传输适用的数据类型;
多路径低层聚合传输适用的传输方向;
与所述第二终端代替所述第一终端发送上行数据和/或上行反馈相关的信息。
作为一种可能的实施方式,所述方法还包括以下至少一者:
所述第二终端向所述网络侧设备发送第二指示信息,所述第二指示信息用于指示所述第二终端的多路径低层聚合传输能力受限;
所述第二终端发送发生变化后的backhaul信息。
作为一种可能的实施方式,所述方法还包括:
所述第二终端接收或生成多路径低层聚合传输的配置更新信息;
所述第二终端根据所述多路径低层聚合传输的配置更新信息,停止多路径低层聚合传输。
作为一种可能的实施方式,所述方法还包括:
所述第二终端根据以下控制信令中的至少一者确定所述多路径低层聚合传输的模式是split传输模式或duplication传输模式:
RRC信令,所述RRC信令的内容为RRC配置信息或RRC重配置信息;
用于指示对split传输模式和duplication传输模式进行切换的L1信令或L2信令;
用于指示每次进行多路径低层聚合传输的模式的L1信令。
作为一种可能的实施方式,所述第二终端根据所述配置信息,执行多路径低层聚合传输,包括以下至少一项:
所述第二终端监听C-RNTI的调度;
所述第二终端根据调度资源的大小,接收所述第一终端发送的MAC层PDU和/或PHY层TB;
所述第二终端根据所述配置信息或所述控制信令,将所述MAC层PDU和/或所述PHY层TB,在相同资源或者不同资源上通过不同路径进行duplication传输;
所述第二终端根据所述配置信息或所述控制信令,将所述MAC层PDU和/或所述PHY层TB,在不同资源上通过不同路径进行split传输;
所述第二终端根据所述配置信息,接收所述第一终端发送的需要发送给网络侧设备的上行数据和/或上行反馈。
本申请实施例提供的数据传输方法,执行主体可以为上文中的relay UE,具体说明请见上文。
第三方面,如图7所示,本申请实施例提供了另一种数据传输方法,该方法至少包括以下步骤:
步骤S401:网络侧设备发送多路径低层聚合传输的配置信息,所述多路径低层聚合传输包括:多路径MAC层聚合传输和/或多路径PHY层聚合传输,所述多路径低层聚合传输包括:多路径MAC层聚合传输和/或多路径PHY层聚合传输;
步骤S402:所述网络侧设备对接收到不同的数据合并和/或删除接收到的重复的数据。
作为一种可能的实施方式,所述方法还包括:
所述网络侧设备接收终端发送的第一指示信息,所述第一指示信息用于指示所述终端是否支持多路径低层聚合传输;
所述网络侧设备接收所述终端发送的backhaul信息,所述backhaul信息用于指示所述终端之间的backhaul情况。
作为一种可能的实施方式,所述backhaul信息包括以下至少一项:
终端的标识;
终端的服务小区的标识;
终端之间的backhaul是否为理想backhaul。
作为一种可能的实施方式,所述方法还包括:
所述网络侧设备向所述终端发送允许上报通知,所述允许上报通知指示所述网络侧设备允许所述终端上报所述第一指示信息和/或所述backhaul信息;
所述网络侧设备向所述终端发送上报请求,所述上报请求用于请求所述终端上报所述第一指示信息和/或所述backhaul信息。
作为一种可能的实施方式,所述多路径低层聚合传输的配置信息包括以下至少一项:
与多路径MAC层聚合传输相关的逻辑架构;
与多路径PHY层聚合传输相关的逻辑架构;
用于指示进行split传输的信息;
用于指示进行duplication传输的信息,或,用于指示使用相同资源进行duplication传输的信息,或,用于指示使用不同资源进行duplication传输的信息;
多路径MAC层聚合传输和/或多路径PHY层聚合传输适用的数据类型;
多路径低层聚合传输适用的传输方向;
与第二终端代替第一终端发送上行数据和/或上行反馈相关的信息。
作为一种可能的实施方式,所述方法还包括:
所述网络侧设备接收终端发送的第二指示信息和/或发生变化后的backhaul信息,所述第二指示信息用于指示所述终端的多路径低层聚合传输能力受限;
所述网络侧设备向所述终端发送多路径低层聚合传输的配置更新信息,所述多路径低层聚合传输的配置更新信息用于指示所述终端停止多路径低层聚合传输。
作为一种可能的实施方式,所述方法还包括:
所述网络侧设备向所述终端发送以下控制信令中的至少一者,所述控制指令用于指示所述多路径低层聚合传输的模式是split传输模式或duplication传输模式:
RRC信令,所述RRC信令的内容为RRC配置信息或RRC重配置信息;
用于指示对split传输模式和duplication传输模式进行切换的L1信令或L2信令;
用于指示每次进行多路径低层聚合传输的模式的L1信令。
本申请实施例提供的数据传输方法,执行主体可以为上文中UE-to-Network relay场景的基站等网络侧设备,或者,UE-to-UE relay场景中的第三终端,具体说明请见上文。
第四方面,本申请实施例提供了一种数据传输装置,该装置可以应用于第一终端,如图8所示,该数据传输装置100包括:
第一处理模块101,用于接收或生成多路径低层聚合传输的配置信息,所述多路径低层聚合传输包括:多路径MAC层聚合传输和/或多路径PHY层聚合传输;
第一传输模块102,用于根据所述多路径低层聚合传输的配置信息,执行多路径低层 聚合传输。
可选地,所述第一处理模块101包括:
第一处理子模块,用于接收网络侧设备发送的多路径低层聚合传输的配置信息;或用于接收第二终端或第三终端发送的多路径低层聚合传输的配置信息。
可选地,所述装置还包括以下至少一项:
第一发送模块,用于发送第一指示信息,所述第一指示信息用于指示所述第一终端是否支持多路径低层聚合传输;
第二发送模块,用于发送backhaul信息,所述backhaul信息用于指示所述第一终端与第二终端之间的backhaul情况。
可选地,所述backhaul信息包括以下至少一项:
所述第二终端的标识;
所述第二终端的服务小区的标识;
所述第一终端与所述第二终端之间的backhaul是否为理想backhaul。
可选地,所述装置还包括以下至少一项:
第一接收模块,用于接收所述网络侧设备发送的允许上报通知,所述允许上报通知指示所述网络侧设备允许所述第一终端上报所述第一指示信息和/或所述backhaul信息;
第二接收模块,用于接收所述网络侧设备发送的上报请求,所述上报请求用于请求所述第一终端上报所述第一指示信息和/或所述backhaul信息。
可选地,所述多路径低层聚合传输的配置信息包括以下至少一项:
与多路径MAC层聚合传输相关的逻辑架构;
与多路径PHY层聚合传输相关的逻辑架构;
用于指示进行split传输的信息;
用于指示进行duplication传输的信息,或,用于指示使用相同资源进行duplication传输的信息,或,用于指示使用不同资源进行duplication传输的信息;
多路径MAC层聚合传输和/或多路径PHY层聚合传输适用的数据类型;
多路径低层聚合传输适用的传输方向;
与所述第二终端代替所述第一终端发送上行数据和/或上行反馈相关的信息。
可选地,所述装置还包括以下至少一项:
第三发送模块,用于向所述网络侧设备发送第二指示信息,所述第二指示信息用于指示所述第一终端的多路径低层聚合传输能力受限;
第四发送模块,用于发送发生变化后的backhaul信息。
可选地,所述装置还包括:
第三接收模块,用于接收或生成多路径低层聚合传输的配置更新信息;
第一终端处理模块,用于根据所述多路径低层聚合传输的配置更新信息,停止多路径低层聚合传输。
可选地,所述装置还包括:
第二终端处理模块,用于根据以下控制信令中的至少一者确定所述多路径低层聚合传输的模式是split传输模式或duplication传输模式:
RRC信令,所述RRC信令的内容为RRC配置信息或RRC重配置信息;
用于指示对split传输模式和duplication传输模式进行切换的L1信令或L2信令;
用于指示每次进行多路径低层聚合传输的模式的L1信令。
可选地,第一传输模块102包括以下至少一项:
第一传输子模块,用于监听C-RNTI的调度;
第二传输子模块,用于根据调度资源的大小,生成MAC层PDU和/或PHY层TB;
第三传输子模块,用于根据所述配置信息或所述控制信令,将所述MAC层PDU和/或所述PHY层TB,在相同资源或者不同资源上通过不同路径进行duplication传输;
第四传输子模块,用于根据所述配置信息或所述控制信令,将所述MAC层PDU和/或所述PHY层TB,在不同资源上通过不同路径进行split传输;
第五传输子模块,用于根据所述配置信息,将需要发送给网络侧设备的上行数据和/或上行反馈发送给第二终端。
本申请实施例提供的数据传输装置能够实现第一方面所述的数据传输方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
第五方面,本申请实施例提供了另一种数据传输装置,该装置可以应用于第二终端,所述第二终端为第一终端与网络侧设备之间的中继终端,或,所述第二终端为所述第一终端与第三终端之间的中继终端,如图9所示,该数据传输装置200包括:
第二处理模块201,用于接收或生成多路径低层聚合传输的配置信息,所述多路径低层聚合传输包括:多路径MAC层聚合传输和/或多路径PHY层聚合传输;
第二传输模块202,用于根据所述多路径低层聚合传输的配置信息,执行多路径低层聚合传输。
可选地,所述第二处理模块201,包括:
第二处理子模块,用于接收所述网络侧设备发送的多路径低层聚合传输的配置信息;或用于接收所述第一终端或所述第三终端发送的多路径低层聚合传输的配置信息。
可选地,所述装置还包括以下至少一项:
第五发送模块,用于发送第一指示信息,所述第一指示信息用于指示所述第二终端是否支持多路径低层聚合传输;
第六发送模块,用于发送backhaul信息,所述backhaul信息用于指示所述第二终端与所述第一终端之间的backhaul情况。
可选地,所述backhaul信息包括以下至少一项:
所述第一终端的标识;
所述第一终端的服务小区的标识;
所述第二终端与所述第一终端之间的backhaul是否为理想backhaul。
可选地,所述装置还包括以下至少一项:
第四接收模块,用于接收所述网络侧设备发送的允许上报通知,所述允许上报通知指示所述网络侧设备允许所述第二终端上报所述第一指示信息和/或所述backhaul信息;
第五接收模块,用于接收所述网络侧设备发送的上报请求,所述上报请求用于请求所述第二终端上报所述第一指示信息和/或所述backhaul信息。
可选地,所述多路径低层聚合传输的配置信息包括以下至少一项:
与多路径MAC层聚合传输相关的逻辑架构;
与多路径PHY层聚合传输相关的逻辑架构;
用于指示进行split传输的信息;
用于指示进行duplication传输的信息,或,用于指示使用相同资源进行duplication传输的信息,或,用于指示使用不同资源进行duplication传输的信息;
多路径MAC层聚合传输和/或多路径PHY层聚合传输适用的数据类型;
多路径低层聚合传输适用的传输方向;
与所述第二终端代替所述第一终端发送上行数据和/或上行反馈相关的信息。
可选地,所述装置还包括以下至少一项:
第七发送模块,用于向所述网络侧设备发送第二指示信息,所述第二指示信息用于指示所述第二终端的多路径低层聚合传输能力受限;
第八发送模块,用于发送发生变化后的backhaul信息。
可选地,所述装置还包括:
第六接收模块,用于接收或生成多路径低层聚合传输的配置更新信息;
第三终端处理模块,用于根据所述多路径低层聚合传输的配置更新信息,停止多路径低层聚合传输。
可选地,所述装置还包括:
第四终端处理模块,用于根据以下控制信令中的至少一者确定所述多路径低层聚合传输的模式是split传输模式或duplication传输模式:
RRC信令,所述RRC信令的内容为RRC配置信息或RRC重配置信息;
用于指示对split传输模式和duplication传输模式进行切换的L1信令或L2信令;
用于指示每次进行多路径低层聚合传输的模式的L1信令。
可选地,所述第二传输模块202包括以下至少一项:
第六传输子模块,用于监听C-RNTI的调度;
第七传输子模块,用于根据调度资源的大小,接收所述第一终端发送的MAC层PDU和/或PHY层TB;
第八传输子模块,用于根据所述配置信息或所述控制信令,将所述MAC层PDU和/或所述PHY层TB,在相同资源或者不同资源上通过不同路径进行duplication传输;
第九传输子模块,用于根据所述配置信息或所述控制信令,将所述MAC层PDU和/或所述PHY层TB,在不同资源上通过不同路径进行split传输;
第十传输子模块,用于根据所述配置信息,接收所述第一终端发送的需要发送给网络侧设备的上行数据和/或上行反馈。
本申请实施例提供的数据传输装置能够实现第二方面所述的数据传输方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
第六方面,本申请实施例提供了另一种数据传输装置,该装置可以应用于网络侧设备,如图10所示,该数据传输装置300包括:
发送模块301,用于发送多路径低层聚合传输的配置信息,所述多路径低层聚合传输包括:多路径MAC层聚合传输和/或多路径PHY层聚合传输,所述多路径低层聚合传输包括:多路径MAC层聚合传输和/或多路径PHY层聚合传输;
处理模块302,用于对接收到不同的数据合并和/或删除接收到的重复的数据。
可选地,所述装置还包括:
第一网络接收模块,用于接收终端发送的第一指示信息,所述第一指示信息用于指示所述终端是否支持多路径低层聚合传输;
第二网络接收模块,用于接收所述终端发送的backhaul信息,所述backhaul信息用于指示所述终端之间的backhaul情况。
可选地,所述backhaul信息包括以下至少一项:
终端的标识;
终端的服务小区的标识;
终端之间的backhaul是否为理想backhaul。
可选地,所述装置还包括:
第一网络发送模块,用于向所述终端发送允许上报通知,所述允许上报通知指示所述网络侧设备允许所述终端上报所述第一指示信息和/或所述backhaul信息;
第二网络发送模块,用于向所述终端发送上报请求,所述上报请求用于请求所述终端上报所述第一指示信息和/或所述backhaul信息。
可选地,所述多路径低层聚合传输的配置信息包括以下至少一项:
与多路径MAC层聚合传输相关的逻辑架构;
与多路径PHY层聚合传输相关的逻辑架构;
用于指示进行split传输的信息;
用于指示进行duplication传输的信息,或,用于指示使用相同资源进行duplication传输的信息,或,用于指示使用不同资源进行duplication传输的信息;
多路径MAC层聚合传输和/或多路径PHY层聚合传输适用的数据类型;
多路径低层聚合传输适用的传输方向;
与第二终端代替第一终端发送上行数据和/或上行反馈相关的信息。
可选地,所述装置还包括:
第三网络接收模块,用于接收终端发送的第二指示信息和/或发生变化后的backhaul信息,所述第二指示信息用于指示所述终端的多路径低层聚合传输能力受限;
第三网络发送模块,用于向所述终端发送多路径低层聚合传输的配置更新信息,所述多路径低层聚合传输的配置更新信息用于指示所述终端停止多路径低层聚合传输。
可选地,所述装置还包括:
第四网络发送模块,用于向所述终端发送以下控制信令中的至少一者,所述控制指令用于指示所述多路径低层聚合传输的模式是split传输模式或duplication传输模式:
RRC信令,所述RRC信令的内容为RRC配置信息或RRC重配置信息;
用于指示对split传输模式和duplication传输模式进行切换的L1信令或L2信令;
用于指示每次进行多路径低层聚合传输的模式的L1信令。
本申请实施例提供的数据传输装置能够实现第三方面所述的数据传输方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选的,如图11所示,本申请实施例还提供一种通信设备900,包括处理器901和存储器902,存储器902上存储有可在所述处理器901上运行的程序或指令,例如,该通信设备900为终端时,该程序或指令被处理器901执行时实现上述第一方面或第二方面所述的数据传输方法实施例的各个步骤,且能达到相同的技术效果,该通信设备900为网络侧设备时,该程序或指令被处理器901执行时实现上述第三方面所述的数据传输方法实施例的各个步骤,且能达到相同的技术效果。为避免重复,这里不再赘述。
如图12所示,为实现本申请实施例的一种终端的硬件结构示意图。
该终端1000用于执行上述第一方面或第二方面所述的数据传输方法实施例的各个步骤,且能达到相同的技术效果。该终端1000包括但不限于:射频单元1001、网络模块1002、音频输出单元1003、输入单元1004、传感器1005、显示单元1006、用户输入单元1007、接口单元1008、存储器1009以及处理器1010等中的至少部分部件。
本领域技术人员可以理解,终端1000还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器1010逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图12中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元1004可以包括图形处理单元(Graphics Processing Unit,GPU)10041和麦克风10042,图形处理器10041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元1006可包括显示面板10061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板10061。用户输入单元1007包括触控面板10071以及其他输入设备10072中的至少一种。触控面板10071,也称为触摸屏。触控面板10071可包括触摸检测 装置和触摸控制器两个部分。其他输入设备10072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元1001接收来自网络侧设备的下行数据后,可以传输给处理器1010进行处理;另外,射频单元1001可以向网络侧设备发送上行数据。通常,射频单元1001包括但不限于天线、放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器1009可用于存储软件程序或指令以及各种数据。存储器1009可主要包括存储程序或指令的第一存储区和存储数据的第二存储区,其中,第一存储区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器1009可以包括易失性存储器或非易失性存储器,或者,存储器1009可以包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请实施例中的存储器1009包括但不限于这些和任意其它适合类型的存储器。
处理器1010可包括一个或多个处理单元;可选的,处理器1010集成应用处理器和调制解调处理器,其中,应用处理器主要处理涉及操作系统、用户界面和应用程序等的操作,调制解调处理器主要处理无线通信信号,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器1010中。
本申请实施例还提供一种终端,如图13所示,该终端1100包括:天线111、射频装置112、基带装置113、处理器114和存储器115。天线111与射频装置112连接。在上行方向上,射频装置112通过天线111接收信息,将接收的信息发送给基带装置113进行处理。在下行方向上,基带装置113对要发送的信息进行处理,并发送给射频装置112,射频装置112对收到的信息进行处理后经过天线111发送出去。
以上实施例中终端执行的数据传输方法可以在基带装置113中实现,该基带装置113包括基带处理器。
基带装置113例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图13所示,其中一个芯片例如为基带处理器,通过总线接口与存储器115连接,以调用存储器115中的程序,执行以上第一方面或第二方面的数据传输方法实施例中所示的网络设备操作。
该终端还可以包括网络接口116,该接口例如为通用公共无线接口(Common Public  Radio Interface,CPRI)。
具体地,本发明实施例的终端1100还包括:存储在存储器115上并可在处理器114上运行的指令或程序,处理器114调用存储器115中的指令或程序执行第一方面或第二方面所示的数据传输方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供了一种网络侧设备。如图14所示,该网络侧设备1200包括:处理器1201、网络接口1202和存储器1203。其中,网络接口1202例如为通用公共无线接口(Common Public Radio Interface,CPRI)。
具体地,本发明实施例的网络侧设备1200还包括:存储在存储器1203上并可在处理器1201上运行的指令或程序,处理器1201调用存储器1203中的指令或程序执行第三方面所示的数据传输方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述数据传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端设备中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等。在一些示例中,可读存储介质可以是非瞬态的可读存储介质。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述数据传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
本申请实施例另提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现上述数据传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供了一种提供了一种数据传输系统,包括:网络侧设备、第一终端和第二终端,所述第一终端用于执行如上述第一方面所述的数据传输方法的步骤,所述第二终端用于执行如上述第二方面所述的数据传输方法的步骤,所述网络侧设备用于执行如上述第三方面所述的数据传输方法的步骤。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以 按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (32)

  1. 一种数据传输方法,其中,包括:
    第一终端接收或生成多路径低层聚合传输的配置信息,所述多路径低层聚合传输包括:多路径媒体介入控制MAC层聚合传输和/或多路径物理层PHY层聚合传输;
    所述第一终端根据所述多路径低层聚合传输的配置信息,执行多路径低层聚合传输。
  2. 根据权利要求1所述的方法,其中,第一终端接收多路径低层聚合传输的配置信息,包括:
    所述第一终端接收网络侧设备发送的多路径低层聚合传输的配置信息;或
    所述第一终端接收第二终端或第三终端发送的多路径低层聚合传输的配置信息;
    其中,所述第二终端为所述第一终端与所述网络侧设备之间的中继终端,或,所述第二终端为所述第一终端与所述第三终端之间的中继终端。
  3. 根据权利要求1所述的方法,其中,所述方法还包括以下至少一者:
    所述第一终端发送第一指示信息,所述第一指示信息用于指示所述第一终端是否支持多路径低层聚合传输;
    所述第一终端发送回程backhaul信息,所述backhaul信息用于指示所述第一终端与第二终端之间的backhaul情况。
  4. 根据权利要求3所述的方法,其中,所述backhaul信息包括以下至少一项:
    所述第二终端的标识;
    所述第二终端的服务小区的标识;
    所述第一终端与所述第二终端之间的backhaul是否为理想backhaul。
  5. 根据权利要求3所述的方法,其中,所述方法还包括以下至少一项:
    所述第一终端接收所述网络侧设备发送的允许上报通知,所述允许上报通知指示所述网络侧设备允许所述第一终端上报所述第一指示信息和/或所述backhaul信息;
    所述第一终端接收所述网络侧设备发送的上报请求,所述上报请求用于请求所述第一终端上报所述第一指示信息和/或所述backhaul信息。
  6. 根据权利要求1所述的方法,其中,所述多路径低层聚合传输的配置信息包括以下至少一项:
    与多路径MAC层聚合传输相关的逻辑架构;
    与多路径PHY层聚合传输相关的逻辑架构;
    用于指示进行分裂split传输的信息;
    用于指示进行复制duplication传输的信息,或,用于指示使用相同资源进行duplication传输的信息,或,用于指示使用不同资源进行duplication传输的信息;
    多路径MAC层聚合传输和/或多路径PHY层聚合传输适用的数据类型;
    多路径低层聚合传输适用的传输方向;
    与所述第二终端代替所述第一终端发送上行数据和/或上行反馈相关的信息。
  7. 根据权利要求1所述的方法,其中,所述方法还包括以下至少一者:
    所述第一终端向所述网络侧设备发送第二指示信息,所述第二指示信息用于指示所述第一终端的多路径低层聚合传输能力受限;
    所述第一终端发送发生变化后的backhaul信息。
  8. 根据权利要求1所述的方法,其中,所述方法还包括:
    所述第一终端接收或生成多路径低层聚合传输的配置更新信息;
    所述第一终端根据所述多路径低层聚合传输的配置更新信息,停止多路径低层聚合传输。
  9. 根据权利要求1所述的方法,其中,所述方法还包括:
    所述第一终端根据以下控制信令中的至少一者确定所述多路径低层聚合传输的模式是split传输模式或duplication传输模式:
    无线资源控制RRC信令,所述RRC信令的内容为RRC配置信息或RRC重配置信息;
    用于指示对split传输模式和duplication传输模式进行切换的L1信令或L2信令;
    用于指示每次进行多路径低层聚合传输的模式的L1信令。
  10. 根据权利要求9所述的方法,其中,所述第一终端根据所述配置信息,执行多路径低层聚合传输,包括以下至少一项:
    所述第一终端监听小区无线网络临时标识C-RNTI的调度;
    所述第一终端根据调度资源的大小,生成MAC层协议数据单元PDU和/或PHY层物理层传输块TB;
    所述第一终端根据所述配置信息或所述控制信令,将所述MAC层PDU和/或所述PHY层TB,在相同资源或者不同资源上通过不同路径进行duplication传输;
    所述第一终端根据所述配置信息或所述控制信令,将所述MAC层PDU和/或所述PHY层TB,在不同资源上通过不同路径进行split传输;
    所述第一终端根据所述配置信息,将需要发送给网络侧设备的上行数据和/或上行反馈发送给第二终端。
  11. 一种数据传输方法,其中,包括:
    第二终端接收或生成多路径低层聚合传输的配置信息,所述多路径低层聚合传输包括:多路径MAC层聚合传输和/或多路径PHY层聚合传输;
    所述第二终端根据所述多路径低层聚合传输的配置信息,执行多路径低层聚合传输;
    其中,所述第二终端为第一终端与网络侧设备之间的中继终端,或,所述第二终端为所述第一终端与第三终端之间的中继终端。
  12. 根据权利要求11所述的方法,其中,第二终端接收多路径低层聚合传输的配置信息,包括:
    所述第二终端接收所述网络侧设备发送的多路径低层聚合传输的配置信息;或
    所述第二终端接收所述第一终端或所述第三终端发送的多路径低层聚合传输的配置信息。
  13. 根据权利要求11所述的方法,其中,所述方法还包括以下至少一者:
    所述第二终端发送第一指示信息,所述第一指示信息用于指示所述第二终端是否支持多路径低层聚合传输;
    所述第二终端发送backhaul信息,所述backhaul信息用于指示所述第二终端与所述第一终端之间的backhaul情况。
  14. 根据权利要求13所述的方法,其中,所述backhaul信息包括以下至少一项:
    所述第一终端的标识;
    所述第一终端的服务小区的标识;
    所述第二终端与所述第一终端之间的backhaul是否为理想backhaul。
  15. 根据权利要求13所述的方法,其中,所述方法还包括以下至少一项:
    所述第二终端接收所述网络侧设备发送的允许上报通知,所述允许上报通知指示所述网络侧设备允许所述第二终端上报所述第一指示信息和/或所述backhaul信息;
    所述第二终端接收所述网络侧设备发送的上报请求,所述上报请求用于请求所述第二终端上报所述第一指示信息和/或所述backhaul信息。
  16. 根据权利要求11所述的方法,其中,所述多路径低层聚合传输的配置信息包括以下至少一项:
    与多路径MAC层聚合传输相关的逻辑架构;
    与多路径PHY层聚合传输相关的逻辑架构;
    用于指示进行split传输的信息;
    用于指示进行duplication传输的信息,或,用于指示使用相同资源进行duplication传输的信息,或,用于指示使用不同资源进行duplication传输的信息;
    多路径MAC层聚合传输和/或多路径PHY层聚合传输适用的数据类型;
    多路径低层聚合传输适用的传输方向;
    与所述第二终端代替所述第一终端发送上行数据和/或上行反馈相关的信息。
  17. 根据权利要求11所述的方法,其中,所述方法还包括以下至少一者:
    所述第二终端向所述网络侧设备发送第二指示信息,所述第二指示信息用于指示所述第二终端的多路径低层聚合传输能力受限;
    所述第二终端发送发生变化后的backhaul信息。
  18. 根据权利要求11所述的方法,其中,所述方法还包括:
    所述第二终端接收或生成多路径低层聚合传输的配置更新信息;
    所述第二终端根据所述多路径低层聚合传输的配置更新信息,停止多路径低层聚合传输。
  19. 根据权利要求11所述的方法,其中,所述方法还包括:
    所述第二终端根据以下控制信令中的至少一者确定所述多路径低层聚合传输的模式是split传输模式或duplication传输模式:
    RRC信令,所述RRC信令的内容为RRC配置信息或RRC重配置信息;
    用于指示对split传输模式和duplication传输模式进行切换的L1信令或L2信令;
    用于指示每次进行多路径低层聚合传输的模式的L1信令。
  20. 根据权利要求19所述的方法,其中,所述第二终端根据所述配置信息,执行多路径低层聚合传输,包括以下至少一项:
    所述第二终端监听C-RNTI的调度;
    所述第二终端根据调度资源的大小,接收所述第一终端发送的MAC层PDU和/或PHY层TB;
    所述第二终端根据所述配置信息或所述控制信令,将所述MAC层PDU和/或所述PHY层TB,在相同资源或者不同资源上通过不同路径进行duplication传输;
    所述第二终端根据所述配置信息或所述控制信令,将所述MAC层PDU和/或所述PHY层TB,在不同资源上通过不同路径进行split传输;
    所述第二终端根据所述配置信息,接收所述第一终端发送的需要发送给网络侧设备的上行数据和/或上行反馈。
  21. 一种数据传输方法,其中,包括:
    网络侧设备发送多路径低层聚合传输的配置信息,所述多路径低层聚合传输包括:多路径MAC层聚合传输和/或多路径PHY层聚合传输,所述多路径低层聚合传输包括:多路径MAC层聚合传输和/或多路径PHY层聚合传输;
    所述网络侧设备对接收到不同的数据合并和/或删除接收到的重复的数据。
  22. 根据权利要求21所述的方法,其中,所述方法还包括:
    所述网络侧设备接收终端发送的第一指示信息,所述第一指示信息用于指示所述终端是否支持多路径低层聚合传输;
    所述网络侧设备接收所述终端发送的backhaul信息,所述backhaul信息用于指示所述终端之间的backhaul情况。
  23. 根据权利要求22所述的方法,其中,所述backhaul信息包括以下至少一项:
    终端的标识;
    终端的服务小区的标识;
    终端之间的backhaul是否为理想backhaul。
  24. 根据权利要求22所述的方法,其中,所述方法还包括:
    所述网络侧设备向所述终端发送允许上报通知,所述允许上报通知指示所述网络侧设备允许所述终端上报所述第一指示信息和/或所述backhaul信息;
    所述网络侧设备向所述终端发送上报请求,所述上报请求用于请求所述终端上报所述第一指示信息和/或所述backhaul信息。
  25. 根据权利要求21所述的方法,其中,所述多路径低层聚合传输的配置信息包括以下至少一项:
    与多路径MAC层聚合传输相关的逻辑架构;
    与多路径PHY层聚合传输相关的逻辑架构;
    用于指示进行split传输的信息;
    用于指示进行duplication传输的信息,或,用于指示使用相同资源进行duplication传输的信息,或,用于指示使用不同资源进行duplication传输的信息;
    多路径MAC层聚合传输和/或多路径PHY层聚合传输适用的数据类型;
    多路径低层聚合传输适用的传输方向;
    与第二终端代替第一终端发送上行数据和/或上行反馈相关的信息。
  26. 根据权利要求21所述的方法,其中,所述方法还包括:
    所述网络侧设备接收终端发送的第二指示信息和/或发生变化后的backhaul信息,所述第二指示信息用于指示所述终端的多路径低层聚合传输能力受限;
    所述网络侧设备向所述终端发送多路径低层聚合传输的配置更新信息,所述多路径低层聚合传输的配置更新信息用于指示所述终端停止多路径低层聚合传输。
  27. 根据权利要求21所述的方法,其中,所述方法还包括:
    所述网络侧设备向所述终端发送以下控制信令中的至少一者,所述控制指令用于指示所述多路径低层聚合传输的模式是split传输模式或duplication传输模式:
    RRC信令,所述RRC信令的内容为RRC配置信息或RRC重配置信息;
    用于指示对split传输模式和duplication传输模式进行切换的L1信令或L2信令;
    用于指示每次进行多路径低层聚合传输的模式的L1信令。
  28. 一种数据传输装置,其中,应用于第一终端,包括:
    第一处理模块,用于接收或生成多路径低层聚合传输的配置信息,所述多路径低层聚合传输包括:多路径MAC层聚合传输和/或多路径PHY层聚合传输;
    第一传输模块,用于根据所述多路径低层聚合传输的配置信息,执行多路径低层聚合传输。
  29. 一种数据传输装置,其中,应用于第二终端,所述第二终端为第一终端与网络侧设备之间的中继终端,或,所述第二终端为所述第一终端与第三终端之间的中继终端,包括:
    第二处理模块,用于接收或生成多路径低层聚合传输的配置信息,所述多路径低层聚合传输包括:多路径MAC层聚合传输和/或多路径PHY层聚合传输;
    第二传输模块,用于根据所述多路径低层聚合传输的配置信息,执行多路径低层聚合传输。
  30. 一种数据传输装置,其中,应用于网络侧设备,包括:
    发送模块,用于发送多路径低层聚合传输的配置信息,所述多路径低层聚合传输包 括:多路径MAC层聚合传输和/或多路径PHY层聚合传输,所述多路径低层聚合传输包括:多路径MAC层聚合传输和/或多路径PHY层聚合传输;
    处理模块,用于对接收到不同的数据合并和/或删除接收到的重复的数据。
  31. 一种终端,其中,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1-10任一所述的数据传输方法的步骤,或,权利要求11-20任一所述的数据传输方法的步骤。
  32. 一种网络侧设备,其中,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求21-27任一所述的数据传输方法的步骤。
PCT/CN2023/126756 2022-11-09 2023-10-26 数据传输方法、装置、终端、网络侧设备及系统 WO2024099093A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211399198.6A CN118055451A (zh) 2022-11-09 2022-11-09 数据传输方法、装置、终端、网络侧设备及系统
CN202211399198.6 2022-11-09

Publications (1)

Publication Number Publication Date
WO2024099093A1 true WO2024099093A1 (zh) 2024-05-16

Family

ID=91031899

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/126756 WO2024099093A1 (zh) 2022-11-09 2023-10-26 数据传输方法、装置、终端、网络侧设备及系统

Country Status (2)

Country Link
CN (1) CN118055451A (zh)
WO (1) WO2024099093A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1725761A (zh) * 2005-06-10 2006-01-25 杭州华为三康技术有限公司 网络设备实现链路聚合的方法
CN101841487A (zh) * 2010-05-24 2010-09-22 中兴通讯股份有限公司 聚合链路服务流的配置方法及包交换装置
US20150163100A1 (en) * 2013-12-10 2015-06-11 Red Hat, Inc. Link-layer level link aggregation autoconfiguration
CN110199494A (zh) * 2017-01-19 2019-09-03 高通股份有限公司 用于链路聚合建立和重新配置的信令

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1725761A (zh) * 2005-06-10 2006-01-25 杭州华为三康技术有限公司 网络设备实现链路聚合的方法
CN101841487A (zh) * 2010-05-24 2010-09-22 中兴通讯股份有限公司 聚合链路服务流的配置方法及包交换装置
US20150163100A1 (en) * 2013-12-10 2015-06-11 Red Hat, Inc. Link-layer level link aggregation autoconfiguration
CN110199494A (zh) * 2017-01-19 2019-09-03 高通股份有限公司 用于链路聚合建立和重新配置的信令

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Adaptation layer based L2 relaying and light L2 relaying", 3GPP DRAFT; R2-1806126 ADAPTATION LAYER BASED L2 RELAYING AND LIGHT L2 RELAYING, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Sanya, China; 20180416 - 20180420, 6 April 2018 (2018-04-06), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051416444 *

Also Published As

Publication number Publication date
CN118055451A (zh) 2024-05-17

Similar Documents

Publication Publication Date Title
US11184886B2 (en) Method, base station, and user equipment for implementing carrier aggregation
WO2020215335A1 (zh) 天线面板的应用方法、装置及存储介质
WO2021051402A1 (zh) 传输配置状态激活方法、装置及存储介质
WO2022184044A1 (zh) 多播业务的接收方法、配置方法、终端及网络侧设备
JP2023547257A (ja) Pdcp重複の配置、アクティブ化又は非アクティブ化方法と端末
US20230171645A1 (en) Method for splitting end-to-end qos requirement information, terminal, and network side device
WO2022012583A1 (zh) 数据处理方法、数据处理装置及第一终端
US20230254749A1 (en) Multicast service transmission method and apparatus, and communications device
CN113938977A (zh) 数据传输方法、数据传输装置、网络侧设备及第一终端
WO2023093635A1 (zh) 数据传输方法、配置方法、装置、终端及网络侧设备
WO2024099093A1 (zh) 数据传输方法、装置、终端、网络侧设备及系统
CN114071380B (zh) 多播业务的接收方法、配置方法、终端及网络侧设备
WO2024067383A1 (zh) 连接建立方法、终端及网络侧设备
WO2024093777A1 (zh) 终端聚合建立方法、配置方法、装置及通信设备
WO2023241539A1 (zh) 波束指示方法、装置及终端
WO2024093712A1 (zh) 中继通信链路处理方法、中继通信链路配置方法、中继终端处理方法及相关设备
WO2024099143A1 (zh) 数据传输方法、装置、终端设备及网络侧设备
WO2024120320A1 (zh) 传输控制方法、装置、网络侧设备及终端设备
WO2024131715A1 (zh) 条件切换方法、装置、终端设备及网络侧设备
WO2024093921A1 (zh) 持续lbt失败的处理方法、装置、终端及存储介质
WO2024088177A1 (zh) 波束增益设定方法、装置、中继设备及网络侧设备
WO2024067475A1 (zh) 数据传输方法和通信装置
US20230089037A1 (en) Mode switching method, terminal, and network-side device
WO2023236931A1 (zh) 中继通信方法、装置和终端
WO2024160240A1 (zh) 多播业务传输方法、装置、终端及网络侧设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23887784

Country of ref document: EP

Kind code of ref document: A1