WO2023093543A1 - 电池包及电动工具 - Google Patents

电池包及电动工具 Download PDF

Info

Publication number
WO2023093543A1
WO2023093543A1 PCT/CN2022/131275 CN2022131275W WO2023093543A1 WO 2023093543 A1 WO2023093543 A1 WO 2023093543A1 CN 2022131275 W CN2022131275 W CN 2022131275W WO 2023093543 A1 WO2023093543 A1 WO 2023093543A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase change
battery pack
phase
microcapsules
change material
Prior art date
Application number
PCT/CN2022/131275
Other languages
English (en)
French (fr)
Inventor
杨青松
Original Assignee
南京泉峰科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202111414785.3A external-priority patent/CN116169392A/zh
Priority claimed from CN202111487161.4A external-priority patent/CN116321671A/zh
Application filed by 南京泉峰科技有限公司 filed Critical 南京泉峰科技有限公司
Publication of WO2023093543A1 publication Critical patent/WO2023093543A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/06Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/247Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for portable devices, e.g. mobile phones, computers, hand tools or pacemakers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to a battery pack and an electric tool, such as heat dissipation materials in the above-mentioned fields.
  • phase change material is used for thermal management of the battery pack.
  • Phase change materials use the property of absorbing a large amount of heat when a substance undergoes a phase change to store heat, and have the advantages of high heat storage density, small volume, and high thermal efficiency.
  • the phase change materials used for thermal management of battery packs on the market are all soluble in water. During the phase change process and in humid environments, liquid leakage and material loss are prone to occur, which will affect the user's use and experience. The reliability of the battery pack.
  • the purpose of this application is to provide a hand-held electric tool with a smaller size.
  • a battery pack configured to supply power to an electric tool, the battery pack comprising: a casing; a cell assembly disposed in the casing, the cell assembly including a plurality of cell units; wherein, it also includes: A heat absorber made of a composite phase change material, the heat absorber is in thermal contact with at least one of the battery cells, and is used to absorb the heat generated by the battery pack during charging and discharging; the composite phase change material is at least Including main body phase change material and phase change microcapsule.
  • An electric tool comprising: a motor; a circuit board assembly electrically connected to the motor to control the motor; wherein, the electric tool further includes a plastic member made of a composite material, the composite material at least including plastic particles and phase change materials.
  • a battery pack is used to provide electric energy for electric tools, the battery pack includes: a plurality of battery cells; a circuit board assembly electrically connected to the plurality of battery cells; wherein the battery pack also includes a composite A plastic component made of materials, the composite material at least includes plastic particles and phase change materials.
  • a charger comprising: a circuit board assembly; wherein, the charger further comprises a plastic member made of a composite material, and the composite material at least includes plastic particles and a phase change material.
  • a lighting device comprising: a lamp board; a plurality of lamp elements arranged on the lamp board;
  • a power supply device at least for supplying power to the plurality of lamp elements; the lighting device further includes a plastic component made of a composite material, and the composite material includes at least plastic particles and a phase change material.
  • a circuit board assembly comprising: a printed circuit board; a plurality of electronic components soldered on the printed circuit board; wherein, the circuit board assembly also includes a plastic member made of a composite material, and the composite material is at least Including plastic particles and phase change material; the plastic member is at least used to support or accommodate the printed circuit board.
  • Fig. 1 is a perspective view of a battery pack as a specific embodiment in the present application
  • Fig. 2 is an exploded view of the battery pack in Fig. 1;
  • Fig. 3 is a perspective view of the heat absorber of the battery pack in Fig. 2;
  • Fig. 4 is a perspective view of a cell assembly of a battery pack as another specific embodiment in the present application.
  • Fig. 5 is a schematic diagram of the maximum heat dissipation area of the cell unit of the cell assembly in Fig. 4;
  • Fig. 6 is a schematic cross-sectional view of a cell assembly of a battery pack as a specific embodiment in the present application
  • Fig. 7 is a schematic diagram of the positional relationship between bulk phase change material a and phase change microcapsule b in the heat absorber of the present application;
  • Fig. 8 is an exploded view of the battery pack in Fig. 6;
  • Fig. 9 is a perspective view of a charger as another specific embodiment in the present application.
  • Fig. 10 is a perspective view of an electric tool as yet another specific embodiment in the present application.
  • Fig. 11 is a perspective view of a lighting device as another specific embodiment in the present application.
  • Fig. 12 is a partial exploded view of the lighting device in Fig. 11;
  • Fig. 13 is a schematic cross-sectional view of another circuit board assembly as a specific embodiment in the present application.
  • Fig. 14 is a schematic diagram of the positional relationship between the printed circuit board and the support in the circuit board assembly in Fig. 13;
  • FIG. 15 is a schematic cross-sectional view of yet another circuit board assembly as a specific embodiment in the present application.
  • the battery pack in this application can be applied to hand-held electric tools such as electric drills, electric wrenches, electric screwdrivers, electric hammer drills, electric circular saws, sanders, etc., as well as electric lawn mowers, lawn trimmers, electric Garden tools such as branch machines and electric saws, for the convenience of description, hand-held electric power tools and garden tools are collectively referred to as electric tools below.
  • the battery pack is detachably connected to the above-mentioned electric tool, or fixedly arranged in the above-mentioned electric tool.
  • the battery pack of the present application is not limited to the aforementioned electric tools, nor is it limited to the specified nominal voltage. In fact, the teachings of the present application are applicable to any type of battery powered cordless power tool, to any shape of battery pack, and to any nominal voltage rating.
  • the battery pack in this application is a rechargeable lithium chemical battery, such as a lithium-ion battery, especially a cylindrical lithium-ion battery and a pouch battery that are often used in electric tool applications.
  • the battery pack may include at least one rechargeable battery cell, or include multiple rechargeable battery cells, depending on the different nominal values of the battery pack. These battery packs with different nominal values can be realized by connecting multiple rechargeable battery cells in series.
  • the rechargeable cell unit can also be configured as other lithium chemical batteries based on lithium, or rechargeable batteries of other chemical bases such as nickel cadmium and nickel hydrogen.
  • the battery pack in this application may be, but not limited to, square, cylindrical, tower or other shapes.
  • a battery pack includes: a housing; at least one cell unit; electronics for implementing internal and external control and protection measures, battery pack terminals for connection to an external charger or power tool; a cell unit connection mechanism; and A phase change material disposed adjacent to the cell unit.
  • the internal configuration is a general configuration, so it will not be repeated in this specification and the accompanying drawings.
  • a battery pack 100 as a specific embodiment includes a housing 11 assembled from an upper housing 111 and a lower housing 112 , a cell assembly 13 disposed in the housing 11 , and a plurality of The battery cells 131 are closely arranged to form the battery cell assembly 13 .
  • the battery pack 100 also includes a first bracket 121 and a second bracket 122 disposed at both ends of the cell assembly 13 .
  • the first bracket 121 and the second bracket 122 are arranged in a plane extending vertically along the longitudinal direction of the plurality of cell units 131 to support the plurality of cell units 131 and the cell assembly 13 formed therefrom.
  • the battery pack 100 also includes a heat absorber 14 , which is in thermal contact with at least one cell unit 131 to absorb heat generated by the cell assembly 13 during charging and discharging of the battery pack 100 .
  • the heat absorber 14 is in thermal contact with at least one battery unit 131 , which can be understood as that the heat absorber 14 is in contact with the surface of the battery unit 131 , so as to realize heat conduction.
  • the heat absorber 14 is not in direct contact with the surface of the battery cell unit 131 , so as to realize indirect heat conduction.
  • a plurality of battery cells 131 are closely arranged to form a battery cell assembly 13 .
  • a gap 132 is formed between adjacent cell units 131 and between the cell unit 131 and the first bracket 121 and the second bracket 122 , and the heat absorber 14 is partially filled in the gap 132 .
  • the first bracket 121 and the second bracket 122 can be made of thermally conductive materials, such as metal aluminum, silicon carbide, etc., and the first bracket 121 and the second bracket 122 are fixed by mechanical means such as screws, and the cell assembly 13 and the heat absorber 14 for packaging, the first support 121 and the second support 122 are fully in contact with the heat absorber 14, which can well conduct the heat generated by the battery cell assembly 13 to achieve a good heat dissipation effect.
  • FIG. 4 as another embodiment of the battery pack.
  • a plurality of battery cell units 131a are compactly arranged to form a battery cell assembly 13a.
  • the difference from the above-mentioned embodiment is: on the one hand, the arrangement of the battery cells 131a in the battery cell assembly 13a is different; on the other hand, the heat absorber 14a is configured to fit the outer contour of each battery cell 131a
  • the ring structure is set in the largest heat dissipation area of the battery unit 131a. Specifically, as shown in FIG. 5 , the maximum heat dissipation area is defined as the area extending from the middle position A of the outer surface of the battery cell unit 131a to the positive end.
  • the length of the battery unit 131a is about 65mm, and the diameter is about 18mm, and the area where the temperature of the battery unit 131a rises fastest during charging and discharging is located in the middle of the outer surface of the battery unit 131a and is 5mm away from the positive end. From the middle position A (the position of about 32.5mm) in the longitudinal direction of the battery unit 131a, extending 5mm toward the positive end to the area defined by the position B (the position of about 37.5mm), the temperature of the battery unit 131a rises the most. The area that reaches the limit protection temperature easily is also the fastest.
  • this area is identified as the maximum heat dissipation area of the battery unit 131a, and the heat absorber 14a is set on this area.
  • the heat absorber 14a can also be placed in the middle position A (about 32.5 mm) in the longitudinal direction of the battery unit 131a to extend more distance to the positive end to reach the longitudinal direction of the entire battery unit 131a.
  • the area defined by position C position about 43.3 mm) of two-thirds of the length in the longitudinal direction.
  • the heat absorber 14a can also be placed in the middle position A (about 32.5 mm) in the longitudinal direction of the battery unit 131a to extend more distance to the positive end to reach the longitudinal direction of the entire battery unit 131a.
  • the heat absorber 14a is configured in a circular shape, and its specific size can be adjusted according to the size and arrangement of the battery unit 131a, and is fitted on the battery unit 131a by tooling or other methods.
  • the battery pack includes a battery cell assembly 13b composed of a plurality of battery cell units 131b.
  • the battery cell unit 131b is flat, and a plurality of battery cell units 131b are stacked and arranged.
  • the heat sink 14b is disposed between the connected battery cells 131b.
  • the positional relationship between the heat absorber 14b and the battery unit 131b should be arranged according to the actual internal structure of the battery pack. It can be understood that the positional relationship between the heat absorber 14b and the battery unit 131b or the battery assembly 13b cannot be used as a limitation to the present application.
  • the battery pack will generate a lot of heat during the charging process and when it is used to supply power to electric tools. If the heat cannot be dissipated in time, it will affect the output performance of the battery pack, charger and electric tools. Reduce the service life of battery packs, chargers and power tools.
  • the heat absorber in the battery pack in the above embodiments is made of a phase change material capable of absorbing heat through a phase change reaction. Phase change materials are less corrosive, non-toxic, and stable in phase change form, especially a phase change material with polyethylene glycol as a carrier, and a phase change material obtained by adding silica gel solution as a nano-support structure.
  • the phase change enthalpy It can reach 150 to 350J/g.
  • the heat absorber adopts a phase change material with polyethylene glycol as a carrier.
  • polyethylene glycol due to its water-soluble characteristics, it is easy to cause material leakage and material loss in a humid environment, and it is easy to affect the reliability of the battery pack.
  • an encapsulation layer is installed on the coverage area of the phase change material, and the encapsulation layer may only seal the coverage area, or seal the outer cylindrical contour of the entire unit cell.
  • the encapsulation layer is an insulating material, such as a heat-sealed tube.
  • the material of the encapsulation layer can be set to be the same as the encapsulation material of the electric core unit.
  • the composite phase change material at least includes a phase change material constituting at least a part of the body and phase change microcapsules added to the body.
  • the phase change material constituting at least a portion of the host is provided as the host phase change material.
  • the host phase change material includes polyethylene glycol, silica sol and water.
  • polyethylene glycol is used as a carrier, and silica sol and water are added as a nano-support structure to form the main phase change material.
  • polyethylene glycol accounts for 70.4% of the mass of the main phase change material
  • silica sol accounts for 21.6% of the mass of the main phase change material
  • the rest is water, accounting for 8% of the mass of the main phase change material.
  • the capsule shell of the phase change microcapsule is made of polyimide resin, and the capsule shell is filled with n-alkane phase change material.
  • the capsule shell of phase change microcapsules is ultra-thin, good in density, good in mechanical strength and thermal stability, controllable in particle size, and high in latent heat value of phase change. It will not break at extremely low temperature (269°C).
  • the composite phase change material is made by mixing bulk phase change material and phase change microcapsules in a certain proportion.
  • the ratio of the mass of the host phase change material to the mass of the phase change microcapsules is greater than or equal to 2.5 and less than or equal to 5.5. In some embodiments, the ratio of the mass of the host phase change material to the mass of the phase change microcapsules is greater than or equal to 3.5 and less than or equal to 4.5, and the phase change microcapsules account for 15% to 25% of the mass of the composite phase change material. In some embodiments, the ratio of the mass of the host phase change material to the mass of the phase change microcapsules is 4.
  • the phase change microcapsules account for 15% to 25% by mass of the composite phase change material. In some embodiments, the phase change microcapsules account for 15% to 20% of the mass of the composite phase change material. In some embodiments, the phase change microcapsules account for 20% to 25% of the mass of the composite phase change material. In some embodiments, the phase change microcapsules account for 20% by mass of the composite phase change material.
  • the bulk phase change material accounts for 66% to 78% by mass of the composite phase change material. In some embodiments, the bulk phase change material accounts for 66.7% to 77.3% by mass of the composite phase change material. In some embodiments, the bulk phase change material accounts for 66.7% to 71% by mass of the composite phase change material. In some embodiments, the bulk phase change material accounts for 71% by mass of the composite phase change material.
  • the composite phase change material also includes glass fiber and graphite. Specifically, the mass of glass fiber in the composite phase change material is 1% to 5%. In some embodiments, the mass of glass fiber in the composite phase change material is 2.7%.
  • Composite phase change materials also include graphite. In some embodiments, the mass of graphite in the composite phase change material is 5% to 6%. In some embodiments, the mass of graphite in the composite phase change material is 5.6%. It should be noted that the above-mentioned ratio of the composite phase change material is the data obtained after many tests, and it has a good effect in terms of cost and performance for the battery pack.
  • a composite phase change material is formed by adding phase change microcapsules in a certain proportion to the bulk phase change material.
  • Fig. 7 is an effect diagram of adding phase-change microcapsules b into bulk phase-change material a. It can be seen from Fig. 7 that the phase change microcapsules b are uniformly arranged in the bulk phase change material a.
  • phase change microcapsule b When the phase change reaction occurs after the composite phase change material absorbs the heat generated by the battery pack, the combination of phase change microcapsule b and glass fiber is equivalent to adding a network structure to the bulk phase change material a (shown by the dotted line in Figure 7) Thereby, the polyethylene glycol molecule constraint in the bulk phase change material a is increased, and the phenomenon of liquid leakage of polyethylene glycol during the phase change reaction is avoided.
  • the phase-change microcapsule b has an average particle size ranging from 5 microns to 20 microns. In some embodiments, the phase change microcapsule b has an average particle size of 10 microns.
  • the phase change microcapsule itself is also a phase change material, it can absorb the heat generated by the battery pack through the phase change reaction.
  • the moisture resistance of the bulk phase change material can be increased, and no material leakage or material loss will occur in a humid environment.
  • the phase change enthalpy of the composite phase change material is higher.
  • the components capable of phase change reaction in the composite phase change material account for 80-90%, so the composite phase change material has a higher phase change enthalpy , an increase of about 17%.
  • the composite phase change material contains phase change microcapsules, the interior of the composite phase change material presents a network structure after the phase change occurs during the heat absorption process, thereby increasing the resistance to the polyethylene glycol in the bulk phase change material. Molecular confinement avoids the leakage of polyethylene glycol after the phase change reaction, so there is no need to use traditional sealing layers and sealing structures.
  • Table 1 shows the test result table of battery pack 1 and battery pack 2.
  • battery pack 1 in Table 1 indicates a battery pack using only bulk phase change materials
  • battery pack 2 indicates a battery pack using composite phase change materials. It can be seen from Table 1 that under the same output current, it takes longer time for the battery pack 2 to reach the same surface temperature than the battery pack 1. For example, under the condition of 25 degrees Celsius, both battery pack 1 and battery pack 2 are controlled to discharge at a discharge current of 30A, and the time for battery pack 1 and battery pack 2 to reach 65 degrees Celsius is recorded as 378 seconds and 434 seconds respectively. 2 Compared with battery pack 1, its discharge efficiency is increased by 14.8%.
  • a plurality of plastic components made of composite materials are provided in the battery pack for structural support.
  • the plastic components of the battery pack such as the casing of the battery pack 100 b , are made of composite materials containing phase change materials. While achieving structural support, it can dissipate heat for the battery pack.
  • the casing includes an upper casing 111b and a lower casing 112b, so that a heat absorber can be selected not to be arranged inside the battery pack, thereby making the structure of the battery pack more compact and lightweight.
  • the composite material includes at least plastic particles and phase change materials.
  • the phase change material includes phase change microcapsules, and the phase change microcapsules are evenly distributed in the composite material.
  • the phase-change microcapsules include n-alkane phase-change materials arranged in the capsule shell, and the material of the capsule shell is polyimide resin.
  • the plastic component of the battery pack can also be a support plate 16b fixedly connected with the circuit board assembly 15b.
  • the support plate 16b is used to support the circuit board assembly 15b.
  • phase change microcapsules in the upper casing 111b and the lower casing 112b can also quickly absorb the heat generated by the battery cell assembly 13b through the phase change from solid to liquid, and the heat generated by the battery pack 100b stops working or the ambient temperature drops.
  • the phase change from liquid to solid gradually releases heat.
  • the plastic component of the battery pack further includes a housing (not shown) of the circuit board assembly. In some embodiments, the plastic component of the battery pack further includes the first bracket 121 and the second bracket 122 of the battery pack as shown in FIG. 2 .
  • the charger 200 is used to charge the battery pack.
  • the charger 200 includes a plastic member made of the above-mentioned composite material.
  • the plastic member undergoes a phase change upon absorbing at least a portion of the heat released by the charger 200 .
  • the plastic components of the charger 200 include the casing 21 , the fan disposed inside the casing 21 , the casing of the circuit board assembly, and the like. It should be understood that any component in the charger 200 that can be made of plastic can use the above-mentioned composite material.
  • the composite material includes at least plastic particles and phase change materials.
  • the phase change material includes phase change microcapsules, and the phase change microcapsules are evenly distributed in the composite material.
  • the phase-change microcapsules include n-alkane phase-change materials arranged in the capsule shell, and the material of the capsule shell is polyimide resin.
  • the electric tool 300 includes a motor 33 , a circuit board assembly 34 electrically connected to the motor 33 , and plastic components.
  • the plastic component in this application may be the casing 31 .
  • the housing 31 includes a handle housing 312 for the user to hold, and a host housing 311 extending along the direction of the first straight line 101 .
  • the plastic component in the present application may also be a plastic component made of plastic materials such as a gear case housing, a motor housing, a front end cover, and a rear end cover.
  • the motor 33 rotates at a high speed to generate a large amount of heat.
  • a fan is provided near the motor 33 , and the cooling airflow is generated through the air inlet and outlet provided on the casing to dissipate heat from the motor 33 to ensure the normal operation of the electric tool 300 .
  • the heat dissipation airflow generated by the rotation of the fan still cannot ensure that the motor 33 can dissipate heat in time, so that the power tool 300 shuts down due to overheating, which affects the user experience.
  • the plastic component undergoes a phase change while absorbing at least part of the heat released by power tool 300 .
  • the composite material includes at least plastic particles and phase change microcapsules.
  • the volume ratio of the phase change microcapsules to the composite material is greater than or equal to 0.1 and less than or equal to 0.5.
  • the material of the capsule shell of the phase change microcapsule is polyimide resin, and the n-alkane phase change material is installed in the capsule shell.
  • the capsule shell of phase change microcapsules is ultra-thin, good in density, good in mechanical strength and thermal stability, controllable in particle size, and high in latent heat value of phase change. It will not break at extremely low temperature (269°C).
  • the power tool 300 can have better heat dissipation efficiency on the basis of miniaturization and weight reduction.
  • the electric tool 300 also has other components that generate a lot of heat, such as the gear box 35 and the circuit board assembly 34 .
  • the gear box 35 includes a gear box housing and a gear box rear cover.
  • the heat generated by the motor 33 will also be transferred to the gear box 35 , and the gear box 35 itself will generate a lot of heat when it rotates at a high speed.
  • the above-mentioned plastic components made of composite materials are used to form the gear box casing and the gear box rear cover.
  • the gear box 35 When the electric tool 300 is in the running state, the gear box 35 generates a large amount of heat, and the phase change microcapsules in the gear box 35 quickly absorb the heat generated by the gear box 35 through the phase change from solid to liquid, and stop when the electric tool 300 When the working or ambient temperature decreases, the phase change from liquid to solid gradually releases heat.
  • the circuit board assembly 34 is disposed within the space formed by the handle housing 312 . It can be understood that the circuit board assembly 34 includes multiple high-power components such as MOS transistors and capacitors. When the power tool 300 is in operation, a large amount of heat will be generated on the circuit board assembly 34 . In some embodiments, by disposing metal cooling fins on the circuit board assembly 34 , the heat on the circuit board assembly 34 is transferred to the cooling fins, and then discharged through the heat dissipation airflow. Although the heat dissipation effect can be achieved by arranging a large number of heat sinks, it will occupy a relatively large space, making the outer diameter of the handle housing 312 relatively large, which affects the user's grip.
  • the handle housing 312 is formed of a plastic member made of composite material.
  • the circuit board assembly 34 When the power tool 300 is in operation, the circuit board assembly 34 generates a large amount of heat, and the phase-change microcapsules in the handle housing 312 quickly absorb the heat generated by the circuit board assembly 34 through the phase change from solid to liquid, and the When the tool 300 stops working or the ambient temperature drops, a phase transition from liquid to solid occurs and heat is gradually released.
  • an end of the handle housing 312 away from the main body housing 311 is formed with a joint portion 312 for combining with the power supply device 32 .
  • the power supply device 32 is detachably connected to the joint part 313 .
  • the PCB disposed in the joint portion 312 will generate a lot of heat.
  • the material of the housing used to fix the PCB can be set as a composite material.
  • the joint part 313 may also be made of composite material.
  • the shell is made of a composite material containing a phase change material to realize heat dissipation.
  • the technical solution of the present application is actually applicable to all plastic components on the electric tool.
  • the lighting device 400 at least includes a lamp board 42 , a plurality of lamp elements 43 and a power supply device (not shown).
  • the power supply device is used to access the power required for the lighting device 400 to work.
  • the power supply device can be set as an AC power supply, which can be connected to 120V or 220V AC mains through an AC plug.
  • the power supply device can also be in the form of direct current, for example, it can be a battery pack that can be detachably combined with the lighting device 400 .
  • a plurality of lamp elements 43 are arranged on the lamp board 42, and the lamp board 42 is electrically connected with the power supply device, at least for supplying power to the plurality of lamp elements 43.
  • the lighting device 400 also includes a plastic component made of a composite material. Therein, the composite material undergoes a phase change upon absorption of at least a portion of the heat released by the plurality of lamp elements 43 .
  • the plastic component in this embodiment may be the housing 41 of the lighting device 400 and the connecting piece 44 provided between the housing 41 .
  • the plurality of lamp elements 43 radiate a large amount of heat and transfer to the lamp board 42 , the casing 41 and the connecting member 44 .
  • phase change microcapsules in the casing 41 and the connecting piece 44 quickly absorb the heat generated on the lighting device 400 through the phase transition from solid to liquid, and delay the overall temperature rise of the lighting device 400 , prolong the service life of the lighting device 400 .
  • the phase-change microcapsules in the housing 41 and the connector 44 gradually release heat through the phase transition from liquid to solid.
  • the housing 41 includes an upper housing 411 and a lower housing 412 fixedly connected by a connecting member 413 , and an accommodation space is formed for accommodating and supporting the lamp panel 42 .
  • the upper shell 411 , the connecting member 413 and the lower shell 412 are all optionally made of composite materials.
  • the lower housing 412 is formed or connected with a cooling fin 414 for increasing the cooling area.
  • the heat sink 414 is also made of composite material.
  • the cooling fins 414 can be separately made of metal materials or other materials with good heat transfer performance, and connected to the lower casing 412 .
  • the lighting device 400 When the lighting device 400 starts to perform the lighting function, a large amount of heat is radiated from the plurality of lamp elements 43 and transferred to at least the lamp board 42 and the lower casing 412 .
  • the phase-change microcapsules in the lower casing 412 quickly absorb the heat generated on the lighting device 400 through the phase transition from solid to liquid, delaying the overall temperature rise of the lighting device 400 and prolonging the lighting. The useful life of the device 400.
  • the phase change microcapsules in the lower casing 412 gradually release heat through the phase change from liquid to solid.
  • the heat sink 414 can dissipate the heat released by the phase change microcapsules quickly.
  • the circuit board assembly 500 includes at least a printed circuit board 51 and a plurality of electronic components 52 .
  • a plurality of electronic components 52 are soldered on the printed circuit board 51 .
  • the circuit board assembly 500 also includes a plastic member made of a composite material that undergoes a phase change upon absorbing at least a portion of the heat released by the plurality of electronic components 52 .
  • the plastic member in this embodiment is at least used to support or accommodate the printed circuit board 51 .
  • the plastic component in this embodiment may be a casing 53 for accommodating a printed circuit board 51 and a plurality of electronic components 52 .
  • the plastic member may also be a support 54 for supporting the printed circuit board 51 .
  • the circuit board assembly 500 When the circuit board assembly 500 starts to work, a large amount of heat is radiated from the plurality of electronic components 52 and transferred to at least the printed circuit 51 and the housing 53 or the supporting member 54 .
  • the phase-change microcapsules in the housing 53 or the support 54 quickly absorb the heat generated on the circuit board assembly 500 through the phase transition from solid to liquid, delaying the heating of the circuit board assembly 500. temperature rise.
  • the phase change microcapsules in the casing 53 or the support member 54 gradually release heat through the phase change from liquid to solid.
  • the circuit board assembly 500 in this embodiment can be used in battery packs, chargers, electric tools and lighting devices.
  • the circuit board assembly 500 is fixedly connected to a battery pack, a charger, an electric tool or a lighting device through the housing 53 or the support member 54 .
  • the circuit board assembly 600 includes a box body 61 and a printed circuit board 62 placed in the box body 61 .
  • the upper side of the printed circuit board 62 is soldered with several electronic components 63 (mainly resistors, capacitors, power components, etc.).
  • the side of the printed circuit board 62 where the electronic components 63 are welded is usually filled with potting.
  • the sealing glue 64 is used to seal the plurality of electronic components 63 .
  • the potting glue also has good thermal conductivity and flame retardancy.
  • the potting glue cures to form a soft rubber-like, good impact resistance, strong adhesion, insulation, moisture-proof, shock resistance, corona resistance, and anti-corrosion. Leakage and chemical resistance function.
  • Most of the potting adhesives used are epoxy resin potting adhesives, silicone resin potting adhesives or polyurethane potting adhesives.
  • the silicone resin encapsulant has stable insulation, which is an effective guarantee to prevent environmental pollution. At the same time, it can eliminate the stress caused by shock and vibration in a large temperature and humidity range, without the need for secondary curing, and can meet Special requirements such as bonding, heat conduction, flame retardant, high transparency, etc., and it will be a flexible elastomer after curing.
  • the curing speed of the silicone resin encapsulant is uniform, and has nothing to do with the thickness of the encapsulation and the airtightness of the environment. It should be noted that those skilled in the art should know the steps of injecting the potting glue into the box body and then sealing the several electronic components 63 on the printed circuit board 62, as well as the amount of injection, and will not be discussed in this application. Let me repeat. In addition, neither the shape of the box body 61 nor the position of the printed circuit board disposed in the box body can be regarded as a limitation to the present application.
  • the potting glue containing the phase change material is used to pot the electronic components on the printed circuit board.
  • a phase change material is added in a certain proportion to the potting compound.
  • the phase change material can absorb the heat generated by the electronic components through its own phase change reaction, and prolong the temperature rise time of the electronic components in the circuit board assembly.
  • the potting compound itself has good impact resistance, insulation, moisture resistance, shock resistance and leakage resistance, etc., when phase change materials are added to the potting compound, it will have both impact resistance, insulation and moisture resistance. At the same time, it can quickly absorb a large amount of heat generated by electronic components, effectively delaying the temperature rise of electronic components.
  • the encapsulant is configured to add a phase change material to the silicone resin encapsulant.
  • the phase change material is set as a phase change material mainly composed of polyethylene glycol.
  • the phase change material is less corrosive, non-toxic, and has a stable phase change shape, and the silica gel solution is added as a nano-support structure, and its phase change enthalpy can reach 150 to 350 J/g.
  • Phase change materials can absorb heat through a phase change reaction, and when the phase change material absorbs heat, a phase change reaction of solid-liquid conversion will occur.
  • the phase change material with polyethylene glycol as the carrier has the characteristics of being soluble in water, and it is easy to cause material leakage and material loss in a humid environment. Therefore, when using the phase change material with polyethylene glycol as the carrier When using materials, it is necessary to seal the potting compound to prevent the leakage and loss of the phase change material after the phase change reaction occurs or after absorbing moisture.
  • the encapsulant 64 is configured to add a phase change material to the silicone resin encapsulant 64 a in a preset ratio.
  • the phase change material is a phase change microcapsule 64b.
  • the material of the capsule shell of the phase change microcapsule is polyimide resin, and the n-alkane phase change material is installed in the capsule shell.
  • the capsule shell of phase change microcapsules is ultra-thin, good in density, good in mechanical strength and thermal stability, controllable in particle size, and high in latent heat value of phase change. It will not break at extremely low temperature (269°C).
  • the mass ratio of the silicone resin potting compound in the potting compound to the phase change microcapsules is greater than or equal to 3 and less than or equal to 5.
  • the mass ratio of the silicone resin encapsulant to the phase change microcapsules is 4.
  • Phase change microcapsules account for 10% to 30% of the mass of the potting compound. Further, the phase change microcapsules account for 10% to 15% of the mass of the encapsulant.
  • the phase change microcapsules account for 15% to 20% of the mass of the encapsulant. In some embodiments, the phase change microcapsules account for 20% to 25% of the mass of the encapsulant. In some embodiments, the phase change microcapsules account for 25% to 30% of the mass of the encapsulant. In some embodiments, the phase change microcapsules account for 20% of the mass of the encapsulant. In this embodiment, the average particle size of the phase change microcapsules is greater than or equal to 5 microns and less than or equal to 20 microns. When the electronic components are working, the heat generated by them will gradually increase as the running time increases.
  • phase-change microcapsules can absorb the heat generated by electronic components through their own phase-transition reaction, and prolong the temperature rise time of electronic components in the circuit board assembly.
  • the phase change microcapsules used in this implementation due to the advantages of its own structure, are not prone to material leakage after the phase change reaction occurs and in a humid environment.
  • the safety factor of the circuit board assembly is improved.
  • phase change materials to the epoxy resin potting compound or the polyurethane potting compound.
  • teaching of the present application can be applied to adding phase change materials in proportion to different forms of encapsulants, so as to slow down the temperature speed of electronic components.
  • an electric wrench is used as an example, and the electric wrench is provided with a BOOST mode of a large torque output gear.
  • the electric wrench is in BOOST mode for nailing operation, high torque must correspond to high current, so the current flowing through the electronic components will be relatively large, and the heat generated by the electronic components will also be high.
  • the temperature of the MOS tube used to drive the motor in the electronic component is mainly monitored.
  • the electric wrench is in the BOOST gear for continuous nailing, the temperature of the MOS tube will gradually increase due to the continuous presence of a large current flowing through the MOS tube.
  • the electric wrench will exit BOOST gear.
  • Table 2 below is the test result table of potting compound 1 and potting compound 2.
  • the potting compound 1 in Table 2 means the silicone resin potting compound
  • the potting compound 2 means that phase-change microcapsules are added to the silicone resin potting compound. From the test data in Table 2, it can be seen that the electric wrench using potting compound 1 in BOOST mode exits BOOST mode 3 times out of 10 nailing operations, and exits BOOST mode 4 out of 9 nailing operations Second-rate. With the electric wrench using potting compound 2 in BOOST mode, 3 out of 12 nailing operations exit BOOST mode, and 2 out of 15 nailing operations exit BOOST mode.
  • 1# and 2# in Table 2 are the labels of the electric wrench. It can be seen from Table 2 that using potting compound 2, that is, adding phase-change microcapsules to the silicone resin potting compound to pot the circuit board components in the electric wrench, can effectively delay the large The temperature rise of the MOS tube of the power electronic component, thereby improving the nailing efficiency of the electric wrench.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Computer Hardware Design (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

本申请公开了一种电池包,设置为给电动工具供电,电池包包括:壳体;电芯组件,设置在壳体内,电芯组件包括多个电芯单元;其中,还包括:由复合相变材料制成的吸热体,吸热体与至少一个电芯单元热接触,用于吸收电池包在充放电过程中产生的热量;复合相变材料包括构成主体的至少一部分的相变材料和添加至所述主体的相变微胶囊。采用以上技术方案能够提供一种结构紧凑、有效抑制温升且在高温下具有稳定性能的电池包。

Description

电池包及电动工具
本申请要求在2021年11月25日提交中国专利局、申请号为202111414785.3的中国专利申请的优先权,要求在2021年12月07日提交中国专利局、申请号为202111487161.4的中国专利申请的优先权,要求在2022年01月26日提交中国专利局、申请号为202210096642.0的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及一种电池包及电动工具,例如涉及上述领域的散热材料。
背景技术
相关技术中,采用相变材料对电池包进行热管理。相变材料是利用物质发生相变时需要吸收大量热量的性质来储热的,具有储热密度高、体积小、热效率高等优点。但是,市面上出现的用于对电池包进行热管理的相变材料,均具有溶于水的特性,在相变过程以及潮湿的环境中容易发生漏液与材料流失,会影响用户的使用与电池包的可靠性。
发明内容
为解决相关技术的不足,本申请的目的在于提供一种尺寸更小的手持式电动工具。
为了实现上述目标,本申请采用如下的技术方案:
一种电池包,设置为给电动工具供电,所述电池包包括:壳体;电芯组件,设置在所述壳体内,所述电芯组件包括多个电芯单元;其中,还包括:由复合相变材料制成的吸热体,所述吸热体与至少一个所述电芯单元热接触,用于吸收所述电池包在充放电过程中产生的热量;所述复合相变材料至少包括主体相变材料和相变微胶囊。
一种电动工具,包括:马达;电路板组件,与所述马达电连接以控制所述马达;其中,所述电动工具还包括由复合材料制成的塑料构件,所述复合材料至少包括塑料粒子和相变材料。
一种电池包,用于为电动工具提供电能,所述电池包包括:多个电芯单元;电路板组件,与所述多个电芯单元电连接;其中,所述电池包还包括由复合材料制成的塑料构件,所述复合材料至少包括塑料粒子和相变材料。
一种充电器,包括:电路板组件;其中,所述充电器还包括由复合材料制成的塑料构件,所述复合材料至少包括塑料粒子和相变材料。
一种照明装置,包括:灯板;多个灯元件,设置在所述灯板上;
电源装置,至少用于给所述多个灯元件供电;所述照明装置还包括由复合材料制成的塑料构件,所述复合材料至少包括塑料粒子和相变材料。
一种电路板组件,包括:印刷电路板;多个电子元件,焊装在所述印刷电路板上;其中,所述电路板组件还包括由复合材料制成的塑料构件,所述复合材料至少包括塑料粒子和相变材料;所述塑料构件至少用于支撑或容纳所述印刷电路板。
附图说明
图1是本申请中作为一种具体实施例的电池包的立体图;
图2是图1的电池包的爆炸图;
图3是图2中的电池包的吸热体的立体图;
图4是本申请中作为另一种具体实施例的电池包的电芯组件的立体图;
图5是图4中的电芯组件的电芯单元的最大散热区域的示意图;
图6是本申请中作为有一种具体实施例的电池包的电芯组件的剖面示意图;
图7是本申请中的吸热体中的本体相变材料a和相变微胶囊b的位置关系示意图;
图8是图6中的电池包的爆炸图;
图9是本申请中作为另一种具体实施例的充电器的立体图;
图10是本申请中作为又一种具体实施例的电动工具的立体图;
图11是本申请中作为又一种具体实施例的照明装置的立体图;
图12是图11中的照明装置的局部爆炸图;
图13是本申请中作为具体实施例的又一种电路板组件的剖面示意图;
图14是图13中的电路板组件中的印刷电路板与支撑件的位置关系的示意图;
图15是本申请中作为具体实施例的又一种电路板组件的剖面示意图。
具体实施方式
以下结合附图和具体实施例对本申请作具体的介绍。
本申请中的电池包可适用于电钻、电动扳手、电动螺丝批、电锤钻、电圆锯、砂光机等手持式电动工具机,以及电动割草机、打草机、电剪刀、修枝机、电锯等园林工具,为方便描述,以下将手持式电动工具机及园林工具统称为电动工具。电池包可拆卸地连接在上述的电动工具上,或固定设置在上述的电动工具内。很显然,本申请的电池包不局限于上述的电动工具,也不限于指定的标称电压。事实上,本申请的教导可适用于任何类型的由电池供电的无绳电动工具,任何形状的电池包,以及任何额定标称值的电压。
本申请中的电池包为可充电的锂化学电池,如锂离子电池,尤其是电动工具场合经常使用的圆柱形锂离子电池以及软包电池。在一些实施例中,电池包可包括至少一个可充电的电芯单元,或者包括多个可充电的电芯单元,这取决于电池包的不同额定标称值。这些不同标称值的电池包,可通过串联多个可充电的电芯单元来实现。当然,可充电的电芯单元也可以配置为其他以锂为基质的锂化学电池,或者镍镉、镍氢之类的其他化学基质的可充电电池。
本申请中的电池包可以是但不限于方形、筒形、塔形或其他形状等。总体而言,电池包包括:壳体;至少一个电芯单元;用于执行内外部控制和保护措施的电子器件,与外部充电器或电动工具连接的电池包端子;电芯单元连接机构;以及与电芯单元邻接地设置的相变材料。显然地,上述的电池包的壳体,至少一个电芯单元,用于执行内外部控制和保护措施的电子器件,与外部充电器或电动工具连接的电池包端子,以及电芯单元连接机构等内部配置为通用配置,因此在本说明书及附图中将不再赘述。下面将结合附图详述本申请中的电池包的内部散热结构及用于对电芯单元散热的相变材料的配置。该配置可解决电池包在充放电时,尤其是在用于为电动工具提供电能而放电时的散热问题,以及解决使用相变材料在潮湿环境下易漏液,还包括电池包内的电芯单元的分布及电池包的紧凑性问题
参见图1至图3所示,作为具体实施例的电池包100,包括由上壳体111和下壳体112组装形成的壳体11,设置在壳体11内的电芯组件13,多个电芯单元131彼此紧凑排列形成电芯组件13。电池包100还包括设置在电芯组件13的两端的第一支架121和第二支架122。具体地,第一支架121和第二支架122在多个电芯单元131的纵长方向垂直延伸的平面内设置,用以支撑多个电芯单元131及其所形成的电芯组件13。在一些实施例中,第一支架121和第二支架122通过螺钉、卡扣等机械方式固定结构,将电芯组件13形成一个紧凑的结构。电池包100还包括吸热体14,吸热体14与至少一个电芯单元131热接触,以吸收电池包100在充放电过程中电芯组件13产生的热量。此处要说明的是,吸热体14 与至少一个电芯单元131热接触,可以理解为吸热体14与电芯单元131的表面接触,从而实现热传导。当然也可以理解为,吸热体14与电芯单元131的表面不直接接触,从而实现间接的热传导。
在一些实施例中,多个电芯单元131彼此紧凑地排列,形成一个电芯组件13。相邻的电芯单元131之间以及电芯单元131与第一支架121、第二支架122之间形成有空隙132,吸热体14部分地填充在空隙132内。第一支架121和第二支架122可以由导热材料制成,如金属铝、碳化硅等,第一支架121和第二支架122通过螺钉等机械方式配合固定,将电芯组件13以及吸热体14进行封装,第一支架121和第二支架122与吸热体14充分接触,可以很好的将电芯组件13产生的热传导出去,达到良好的散热效果。
参见图4所示,作为另一个实施例的电池包。多个电芯单元131a通过紧凑排列组成电芯组件13a。与上述的实施方式不同之处在于:一方面,电芯组件13a中的电芯单元131a的排列方式不同;另一方面,吸热体14a被构造成适配每一个电芯单元131a的外轮廓的环形结构,并套装在电芯单元131a的最大散热区域。具体地,如图5所示,最大散热区域被定义在由电芯单元131a的外表面中间位置A向正极端部分延伸的区域。例如,电芯单元131a的长度约为65mm,直径约为18mm,而电芯单元131a在充放电时温升最快的区域位于电芯单元131a的外表面中间且偏向正极端5mm的区域。从电芯单元131a的纵长方向的中间位置A(约32.5mm的位置),向正极端延伸5mm到位置B(约37.5mm的位置)所定义的区域,为电芯单元131a的温度上升最容易也是最快地达到极限保护温度的区域。因此,在一些实施例中,该区域被认定为电芯单元131a的最大散热区域,吸热体14a套装在该区域上。在一些实施例中,吸热体14a还可以套装在从电芯单元131a的纵长方向的中间位置A(约32.5mm的位置)向正极端延伸更多的距离到达整个电芯单元131a的纵长方向长度三分之二的位置C(约43.3mm的位置)所定义的区域。在一些实施例中,吸热体14a还可以套装在从电芯单元131a的纵长方向的中间位置A(约32.5mm的位置)向正极端延伸更多的距离到达整个电芯单元131a的纵长方向长度四分之三的位置D(约48.75mm的位置)所定义的区域。在本实施例中,吸热体14a被构造为圆环形,具体的尺寸可根据电芯单元131a的尺寸以及排布方式进行调整,通过工装或其他方式套装在电芯单元131a上。
参见图6所示,作为又一种实施例的电池包,包括多个电芯单元131b构成的电芯组件13b。与上述的实施方式不同之处在于电芯单元131b呈扁平状,多个电芯单元131b层叠排放。在一些实施例中,吸热体14b设置在相连的电芯单元131b之间。当然,吸热体14b与电芯单元131b之间的位置关系,应根据电池包的实际内部结构进行排布。可以理解,吸热体14b与电芯单元131b或电芯 组件13b之间的位置关系并不能作为对本申请的限制。
众所周知,电池包在充电过程中以及在用于给电动工具供电时,会产生大量的热量,若这些热量无法及时散发出去,则会影响电池包、充电器以及电动工具的输出性能,同时还会降低电池包、充电器以及电动工具的使用寿命。为了提高电池包的散热能力,上述实施例中电池包中的吸热体由能够通过相变反应吸收热量的相变材料制成。相变材料的腐蚀性小、无毒、相变形态稳定,尤其是一种聚乙二醇为载体的相变材料,并添加硅胶溶液作为纳米支撑结构所得到的相变材料,其相变焓可达到150到350J/g。
相关技术中,吸热体采用以聚乙二醇为载体的相变材料。但由于其具有溶于水的特性,容易在潮湿的环境中发生材料漏液与材料流失,容易影响电池包的可靠性。为了解决上述的问题,通常情况下,会在相变材料的覆盖区域上安装有封装层,该封装层可以是仅密封覆盖区域,或者密封整个单元电池的外圆柱轮廓。具体地,封装层是一种绝缘材料,如热封管。当然,封装层的材料可以设置为与电芯单元的封装材料相同。
本申请中提出采用一种复合相变材料制成用于给电池包散热的吸热体。具体地,复合相变材料至少包括构成主体的至少一部分的相变材料和添加至主体的相变微胶囊。构成主体的至少一部分的相变材料设置为主体相变材料。
在一些实施例中,主体相变材料包括聚乙二醇,硅溶胶和水。具体地,以聚乙二醇为载体,添加硅溶胶和水作为纳米支撑结构,构成主体相变材料。在一些实施例中,聚乙二醇占主体相变材料质量的70.4%,硅溶胶占主体相变材料质量的21.6%,剩余为水,占主体相变材料质量的8%。
在一些实施中,相变微胶囊的胶囊壳体的材质为聚酰亚胺树脂,胶囊壳体内装有正烷烃类相变材料。相变微胶囊的胶囊壳体超薄、密性好、机械强度及热稳定性好、粒径可控、相变潜热值高,同时相变微胶囊耐低温、耐高温、热稳定性好,在极低的温度(269℃)下不会破裂。
具体地,复合相变材料为本体相变材料与相变微胶囊的按一定配比混合制成。在一些实施例中,主体相变材料的质量与相变微胶囊的质量的比值大于或等于2.5且小于或等于5.5。在一些实施例中,主体相变材料的质量与相变微胶囊的质量的比值大于或等于3.5且小于或等于4.5,相变微胶囊占复合相变材料质量的15%至25%。在一些实施例中,主体相变材料的质量与相变微胶囊的质量的比值为4。
在一些实施例中,相变微胶囊占复合相变材料质量的15%至25%。在一些实施例中,相变微胶囊占复合相变材料质量的15%至20%。在一些实施例中, 相变微胶囊占复合相变材料质量的20%至25%。在一些实施例中,相变微胶囊占复合相变材料质量的20%。
在一些实施例中,本体相变材料占复合相变材料质量的66%至78%。在一些实施例中,本体相变材料占复合相变材料质量的66.7%至77.3%。在一些实施例中,本体相变材料占复合相变材料质量的66.7%至71%。在一些实施例中,本体相变材料占复合相变材料质量的71%。
在一些实施例中,复合相变材料中还包括有玻璃纤维和石墨。具体地,复合相变材料中的玻璃纤维的质量为1%至5%。在一些实施例中,复合相变材料中的玻璃纤维的质量为2.7%。复合相变材料中还包括有石墨。在一些实施例中,复合相变材料中的石墨的质量为5%至6%。在一些实施例中,复合相变材料的石墨质量为5.6%。需要说明的是,上述的复合相变材料中的配比是多次试验后获得的数据,对于电池包而言,从成本和性能而言均具有较好的效果。
这样,通过在本体相变材料中按一定的比例添加相变微胶囊形成复合相变材料。图7为在本体相变材料a中加入相变微胶囊b的效果图。从图7中可以看出,相变微胶囊b在均匀排布在本体相变材料a中。当复合相变材料吸收电池包所产生的热量后而发生相变反应后,相变微胶囊b与玻璃纤维组合相当于在本体相变材料a中增加网状结构(图7中虚线所示)从而增加了对本体相变材料a中的聚乙二醇分子约束,避免聚乙二醇在相变反应时发生漏液现象。在一些实施例中,相变微胶囊b的平均粒径范围为5微米至20微米。在一些实施例中,相变微胶囊b的平均粒径为10微米。
上述实施例中,由于相变微胶囊自身也是一种相变材料,能够通过相变反应吸收电池包所产生热量。通过将本体相变材料与相变微胶囊按合理的配比进行混合,一方面,可增加了本体相变材料的抗湿能力,在潮湿的环境中不发生材料漏液与材料流失。另一方面,相同质量的本体相变材料和复合相变材料相比,复合相变材料的相变焓更高。换而言之,同质量的复合相变材料和本体相变材料相比,复合相变材料中能发生相变反应的成分占80-90%,因而复合相变材料具有更高的相变焓,提升约17%。
采用上述的复合相变材料制成用于吸收电池包在充放电过程中产生的热量的吸热体,能使得电池包的散热效果更好,结构更加紧凑且装配更简易。具体地,由于复合相变材料中含有相变微胶囊,使得复合相变材料在吸热过程中发生相变后其内部呈现网状结构,从而增加了对本体相变材料中的聚乙二醇分子约束,避免聚乙二醇在相变反应后发生泄漏的现象,因而无需采用传统的密封层和密封结构。
表1示出了电池包1和电池包2的测试结果表。其中,表1中的电池包1 表示仅采用本体相变材料的电池包,电池包2表示采用复合相变材料的电池包。从表1中可以看出:相同输出电流下,使电芯单元达到相同的表面温度,电池包2比电池包1需要更长的时间。例如,在25摄氏度的条件下,控制电池包1和电池包2均以30A的放电电流进行放电,并记录电池包1和电池包2达到65摄氏度的时间分别为378秒和434秒,电池包2相比较电池包1而言,其放电效率提升14.8%。
表1电池包1与电池包2的测试结果表
Figure PCTCN2022131275-appb-000001
从表1中还可以看出,当电池包1和电池包2以约50A的放电电流进行放电时,电池包2相对电池包1的放电效率能提升21%,具有明显的效果。从表1的试验数据,可以很明显看出,采用复合相变材料的电池包的散热效果更加明显。
电池包中设置有多个由复合材料制成塑料构件,用于实现结构的支撑作用。在一些实施例中,参见图8所示,采用包含相变材料的复合材料制成的电池包的塑料构件,例如电池包100b的壳体。实现结构支撑的同时,给电池包进行散热。具体地,壳体包括上壳体111b和下壳体112b,这样,可以选择不在电池包的内部设置吸热体,从而使得电池包的结构更加小型化和轻便化。
具体地,复合材料至少包括塑料粒子和相变材料。在一些实施例中,相变材料包括相变微胶囊,相变微胶囊均匀分布在复合材料中。其中,相变微胶囊包括设置在胶囊壳体内的正烷烃类相变材料,胶囊壳体的材质为聚酰亚胺树脂。
在一些实施例中,电池包的塑料构件还可以是与电路板组件15b固定连接的支撑板16b。支撑板16b用于支撑电路板组件15b。当电池包100b处于充电或放电的过程中,电芯组件13b会产生大量的热量,支撑板16b中的相变微胶囊通过由固态转成液态的相变快速吸收电芯组件13b产生的热量,并在电池包100b停止工作或环境温度降低发生由液态转成固态的相变逐渐释放出热量。同时,上壳体111b以及下壳体112b中的相变微胶囊也可以通过由固态转成液态的相变快速吸收电芯组件13b产生的热量,并在电池包100b停止工作或环境温度 降低发生由液态转成固态的相变逐渐释放出热量。
在一些实施例中,电池包的塑料构件还包括电路板组件的壳体(图未示)。在一些实施例中,电池包的塑料构件还包括如图2所示的电池包的第一支架121和第二支架122。
在一些实施例中,如图9所示,充电器200用于给电池包充电。充电器200包括由上述的复合材料制成的塑料构件。塑料构件在吸收由充电器200释放的热量的至少一部分的情况下经历相变。具体地,充电器200的塑料构件包括壳体21、设置在壳体21内部的风扇、电路板组件的壳体等。应当理解,充电器200中的任何可以由塑料制成的部件均可以采用上述的复合材料。具体地,复合材料至少包括塑料粒子和相变材料。在一些实施例中,相变材料包括相变微胶囊,相变微胶囊均匀分布在复合材料中。其中,相变微胶囊包括设置在胶囊壳体内的正烷烃类相变材料,胶囊壳体的材质为聚酰亚胺树脂。
在一些实施例中,如图10所示,电动工具300包括马达33、与马达33电性连接的电路板组件34以及塑料构件。本申请中的塑料构件可以为壳体31。其中,壳体31包括供用户握持的把手壳体312、沿第一直线101方向延伸的主机壳体311。当然,本申请中的塑料构件还可以是由塑料材质制成的齿轮箱壳体、马达壳体、前端盖、后端盖等塑料材质制成的塑料构件。
当电动工具300处于运行状态时,马达33高速旋转从而产生大量的热量。在一些实施例中,在马达33的附近设置风扇,并通过设置在壳体上的进风口和出风以产生散热气流从而对马达33进行散热,保证电动工具300的正常运行。但在一些工况下,通过风扇旋转产生的散热气流仍然无法保证马达33能够及时散热,从而使得电动工具300因过热停机,影响用户的体验感。
为了进一步地解决马达33的散热问题,提出采用由复合材料制成的塑料构件构成电动工具300的主机壳体311。其中,塑料构件在吸收由电动工具300释放的热量的至少一部分的情况下经历相变。具体而言,复合材料至少包括塑料粒子和相变微胶囊。复合材料中,相变微胶囊占复合材料的体积比大于或等于0.1且小于或等于0.5。在制作塑料构件时,将相变微胶囊按照预设比例加入塑料粒子中。其中,相变微胶囊的胶囊壳体的材质为聚酰亚胺树脂,胶囊壳体内装有正烷烃类相变材料。相变微胶囊的胶囊壳体超薄、密性好、机械强度及热稳定性好、粒径可控、相变潜热值高,同时相变微胶囊耐低温、耐高温、热稳定性好,在极低的温度(269℃)下不会破裂。
这样,无需增加马达33的散热空间,或在主机壳体311形成的空间内增设额外的吸热物质,便能使得电动工具300在小型化、轻量化的基础上具有较好的散热效率。
当然,电动工具300还具有其他会产生大量的热量的组件,例如,齿轮箱35、电路板组件34。其中,齿轮箱35包括齿轮箱壳体以及齿轮箱后盖。当电动工具300在运行时,马达33上产生的热量也会传递至齿轮箱35,以及齿轮箱35自身在高速旋转时也会产生大量的热量。为了提高齿轮箱35的寿命,例如采用上述的复合材料制成的塑料构件构成齿轮箱壳体以及齿轮箱后盖。当电动工具300处于运行状态时,齿轮箱35产生大量的热量,齿轮箱35中的相变微胶囊通过由固态转成液态的相变快速吸收齿轮箱35产生的热量,并在电动工具300停止工作或环境温度降低发生由液态转成固态的相变逐渐释放出热量。
在一些实施例中,电路板组件34设置在由把手壳体312形成的空间内。可以理解的是电路板组件34包括如MOS管、电容等多个大功率元件,当电动工具300处于运行状态时,电路板组件34上会产生大量的热量。在一些实施例中,通过在电路板组件34上设置金属材质的散热片,将电路板组件34上的热量传递至散热片后,在通过散热气流排出去。通过设置大量散热片的方法虽然能够实现散热效果,但其会占用比较大空间,使得把手壳体312的外径比较大,影响用户握持的手感。本实施例中,将由复合材料构成的塑料构件构成把手壳体312。当电动工具300处于运行状态时,电路板组件34产生大量的热量,把手壳体312中的相变微胶囊通过由固态转成液态的相变快速吸收电路板组件34产生的热量,并在电动工具300停止工作或环境温度降低发生由液态转成固态的相变逐渐释放出热量。
在一些实施例中,把手壳体312的远离主机壳体311的一端形成有用于与电源装置32结合的结合部312。其中,电源装置,32可拆卸地连接至结合部313。当电源装置32给电动工具300进行供电时,设置在结合部312内的PCB板会产生大量的热量。为了将PCB板上的热量快速散发出去,可以将用于固定PCB板的壳体的材料设置成复合材料。进一步地,也可以将结合部313设置为复合材料制成。
需要说明的是,以上只是介绍了作为具体实施例的电动工具中部分易产生热量的组件,并采用含有相变材料制成的复合材料制成外壳用于实现散热。本领域的技术人员应当理解,本申请的技术方案实际上可适用于电动工具上所有的塑料构件。
在一些实施例中,如图11所示,照明装置400至少包括灯板42、多个灯元件43以及电源装置(图未示)。其中,电源装置用于接入照明装置400工作所需的电源。电源装置可设置为交流电源,通过交流电插头接入120V或220V的交流市电。电源装置也可采用直流电的形式,例如可以为能可拆卸的结合照明装置400的电池包。多个灯元件43布置在灯板42上,灯板42与电源装置电连 接,至少用于给多个灯元件43供电。
照明装置400还包括由复合材料制成的塑料构件。其中,复合材料在吸收由多个灯元件43释放的热量的至少一部分的情况下经历相变。本实施例中的塑料构件可以为照明装置400的壳体41以及壳体41之间设置的连接件44。当照明装置400开始执行照明功能时,多个灯元件43辐射出大量的热量传递至灯板42、壳体41以及连接件44。当照明装置400的热量逐渐上升时,壳体41以及连接件44中的相变微胶囊通过由固态转成液态的相变快速吸收照明装400上产生的热量,延缓照明装置400整体的温升,延长照明装置400的使用寿命。当照明装置400停止工作或环境温度降低后,壳体41以及连接件44中的相变微胶囊又通过由液态转成固态的相变逐渐释放出热量。
在一些实施例中,如图12所示,壳体41包括上壳体411与下壳体412通过连接构件413固定连接,并形成有容纳空间用于容纳和支撑灯板42。其中,上壳体411、连接构件413以及下壳体412均可选地设置为由复合材料制成。
在一些实施例中,下壳体412形成或连接有散热片414,用于增大散热面积。其中,散热片414也由复合材料制成。当然,散热片414可以单独设置成金属材料或其他均有良好热传递性能的材料,并连接至下壳体412上。
当照明装置400开始执行照明功能时,多个灯元件43辐射出大量的热量至少传递至灯板42以及下壳体412上。当照明装置400的热量逐渐上升时,下壳体412中的相变微胶囊通过由固态转成液态的相变快速吸收照明装置400上产生的热量,延缓照明装置400整体的温升,延长照明装置400的使用寿命。当照明装置400停止工作或环境温度降低后,下壳体412中的相变微胶囊又通过由液态转成固态的相变逐渐释放出热量。散热片414能够使得相变微胶囊释放出来的热量快速散发出去。
在一些实施例中,如图13和图14所示,电路板组件500至少包括印刷电路板51和多个电子元件52。多个电子元件52焊装在印刷电路板51上。电路板组件500还包括由复合材料制成的塑料构件,复合材料在吸收由多个电子元件52释放的热量的至少一部分的情况下经历相变。本实施例中的塑料构件至少用于支撑或容纳印刷电路板51。具体而言,如图13所示,本实施例中的塑料构件可以为用于容纳印刷电路板51和多个电子元件52的壳体53。如图14所示,塑料构件还可以为用于支撑印刷电路板51的支撑件54。
当电路板组件500开始工作时,多个电子元件52辐射出大量的热量至少传递至印刷电路51以及壳体53或支撑件54上。当电路板组件500的热量逐渐上升时,壳体53或支撑件54中的相变微胶囊通过由固态转成液态的相变快速吸收电路板组件500上产生的热量,延缓电路板组件500的温升。当电路板组件 500停止工作或环境温度降低后,壳体53或支撑件54中的相变微胶囊又通过由液态转成固态的相变逐渐释放出热量。
本实施例中的电路板组件500可用于电池包、充电器、电动工具以及照明装置。通过电路板组件500的壳体53或者支撑件54固定连接至电池包、充电器、电动工具或者照明装置上。
在一些实施例中,参见图15所示,电路板组件600包括盒体61以及置于盒体61内的印刷电路板62。其中,印刷电路板62的上侧焊装有若干电子元件63(主要是电阻、电容、功率元件等)。为了保证焊装在印刷电路板63上的若干个电子元件之间的绝缘性,以及电路板组件600整体的防水防潮性能,通常会在印刷电路板62的焊接有电子元件63的一侧填充灌封胶64,以将若干各电子元件63进行密封处理。除此之外,灌封胶还具有较好的导热性和阻燃性,灌封胶固化构成柔软的橡胶状,抗冲击性好,附着力强,绝缘,防潮,抗震,耐电晕,抗漏电和耐化学介质功能。采用的大多数的灌封胶为环氧树脂灌封胶、有机硅树脂灌封胶或聚氨酯灌封胶等。其中,有机硅树脂灌封胶具有稳定的绝缘性,是防止环境污染的有效保障,同时在较大的温度和湿度范围内能消除冲击和震动所产生的应力,无需要二次固化,能满足粘接、导热、阻燃、高透明等特别要求,且固化后为柔性弹性体。有机硅树脂灌封胶的固化速度均匀,且与灌封的厚度和环境的密闭程度无关。需要说明的是,将灌封胶注入盒体进而对印刷电路板62上的若干电子元件63进行密封处理的步骤,以及注入的量等,本领域的技术人员应均知晓,本申请中将不再赘述。另外,盒体61的形状以及印刷电路板设置在盒体中的位置等均不能作为对本申请的限制。
常用的灌封胶虽然具有良好的导热性能,但需要额外设置一个散热装置,例如金属散热片等。但是在一些特定的情况下,印刷电路板62上布置有例如传感器等关键器件,且需要对关键器件的温度进行监控,当温度到达设定值后,会采取例如断电等的保护措施。上述的保护措施容易出现电路板组件600的散热条件并未达到温度平衡,关键器件就已经达到保护温度的现象,从而影响电子设备的正常运行。
本申请中采用含有相变材料的灌封胶对印刷电路板上的电子元件进行灌胶处理。具体而言,在灌封胶中按一定的比例加入相变材料。当电子元件在工作过程中,随着运行时间的增加,其产生的热量也逐渐增加。相变材料能够通过自身的相变反应吸收电子元件产生的热量,延长电路板组件中电子元件的温升时间。同时,由于灌封胶本身具有较好的抗冲击性,绝缘,防潮,抗震抗漏电等性能,当在灌封胶中加入了相变材料后,其将兼备抗冲击,绝缘以及防潮等性能的同时,还能快速吸收电子元件产生的大量热量,有效延缓电子元件的温 升速度。
在一些实施例中,灌封胶设置为在有机硅树脂灌封胶中加入相变材料。其中,相变材料设置为以聚乙二醇为主的相变材料。相变材料其腐蚀性小、无毒、相变形态稳定,并添加硅胶溶液作为纳米支撑结构,其相变焓可达到150到350J/g。相变材料能通过相变反应吸收热量,当相变材料吸收热量时,会发生固液转换的相变反应。然而,以聚乙二醇为载体的相变材料,其具有溶于水的特性,容易在潮湿的环境中发生材料漏液与材料流失,因此,当选用以聚乙二醇为载体的相变材料时,需要对灌封胶进行密封处理,以防止相变材料在发生相变反应后或吸收水分后出现漏液与流失的现象。
在一些实施例中,参见图15所示,灌封胶64设置为在有机硅树脂灌封胶64a中按预设比例加入相变材料。其中,相变材料为相变微胶囊64b。其中,相变微胶囊的胶囊壳体的材质为聚酰亚胺树脂,胶囊壳体内装有正烷烃类相变材料。相变微胶囊的胶囊壳体超薄、密性好、机械强度及热稳定性好、粒径可控、相变潜热值高,同时相变微胶囊耐低温、耐高温、热稳定性好,在极低的温度(269℃)下不会破裂。常温下,将有机硅树脂与相变微胶囊进行混合后,搅拌均匀后进行加热并脱水,冷却后加入从处理剂,最后再与固化剂以及各种交联剂、偶联剂、催化剂等按比例进行混合处理,从而得到本申请的需要保护的灌封胶。本实施例中,灌封胶中的有机硅树脂灌封胶与相变微胶囊的质量的比值大于或等于3且小于或等于5。在一些实施例中,有机硅树脂灌封胶与相变微胶囊的质量比值为4。相变微胶囊占灌封胶质量的10%至30%。进一步地,相变微胶囊占灌封胶质量的10%至15%。在一些实施例中,相变微胶囊占灌封胶质量的15%至20%。在一些实施例中,相变微胶囊占灌封胶质量的20%至25%。在一些实施例中,相变微胶囊占灌封胶质量的25%至30%。在一些实施例中,相变微胶囊占灌封胶质量的20%。本实施例中,相变微胶囊的平均粒径大于或等于5微米且小于或等于20微米。当电子元件在工作过程中,随着运行时间的增加,其产生的热量也逐渐增加。相变微胶囊能够通过自身的相变反应吸收电子元件产生的热量,延长电路板组件中电子元件的温升时间。与上述实施例中相变材料不同的是,本实施中采用的相变微胶囊,由于其自身结构的优势,在发生相变反应后以及在潮湿的环境中不易出现材料漏出的现象,进一步地提升了电路板组件的安全系数。当然,也可以采用在有机硅树脂灌封胶中同时加入以聚乙二醇为载体的相变材料和相变微胶囊,或加入其它形式的相变材料。当然,也可以采用在环氧树脂灌封胶或聚氨酯灌封胶中加入相变材料。事实上,本申请的教导可适用于不同形式的灌封胶中按照比例加入相变材料,从而延缓电子元件的温度速度。
本申请中以电动扳手作为实施例,电动扳手中设置有大扭力输出档位 BOOST模式。试验过程中当电动扳手处于BOOST模式进行打钉操作时,大扭矩必然对应着大电流,因而流经电子元件上的电流也会比较大,电子元件产生的热量也会很高。本实施例中,主要针对电子元件中用于驱动电机的MOS管的温度进行监控。当电动扳手处于BOOST档位进行持续打钉时,由于流经MOS管中的大电流的持续存在,MOS管的温度会逐渐增加,当检测到MOS管的温度大于80摄氏度时,电动扳手会退出BOOST档位。
如下表2,是灌封胶1和灌封胶2的测试结果表。其中,表2中的灌封胶1表示有机硅树脂灌封胶,灌封胶2表示有机硅树脂灌封胶中加入相变微胶囊。从表2中的试验数据可以看出,采用灌封胶1的电动扳手在BOOST模式下,进行打钉操作10次中退出BOOST模式为3次,进行打钉操作9次中退出BOOST模式为4次。采用灌封胶2的电动扳手在BOOST模式下,进行打钉操作12次中退出BOOST模式为3次,进行打钉操作15次中退出BOOST模式为2次。
表2灌封胶1与灌封胶2的测试结果表
Figure PCTCN2022131275-appb-000002
其中,表2中的1#和2#为电动扳手的标号。从表2中可以看出,采用灌封胶2,即有机硅树脂灌封胶中加入相变微胶囊,对电动扳手中的电路板组件进行灌胶处理,能够有效地延缓电路板上的大功率电子元件MOS管的温升,从而提高电动扳手的打钉效率。
需要说明的是,上述的对电子元件MOS管的温度进行监控,仅仅为一具体实施例,本领域的技术人员应该理解,本申请的教导应该适用于解决包括但不限于电动工具、电池包以及充电器等电子设备中的电子元件的延缓温升的技术问题。

Claims (54)

  1. 一种电池包,设置为给电动工具供电,所述电池包包括:
    壳体;
    电芯组件,设置在所述壳体内,所述电芯组件包括多个电芯单元;
    其中,还包括:
    由复合相变材料制成的吸热体,所述吸热体与至少一个所述电芯单元热接触,用于吸收所述电池包在充放电过程中产生的热量;
    所述复合相变材料包括构成主体的至少一部分的相变材料和添加至所述主体的相变微胶囊。
  2. 根据权利要求1所述的电池包,其中,所述复合相变材料中,所述主体相变材料的质量与所述相变微胶囊的质量的比值大于或等于2.5且小于或等于5.5。
  3. 根据权利要求1所述的电池包,其中,所述相变微胶囊占所述复合相变材料质量的15%至25%。
  4. 根据权利要求1所述的电池包,其中,所述相变微胶囊均匀分布在所述主体相变材料中。
  5. 根据权利要求1所述的电池包,其中,所述相变微胶囊的平均粒径大于或等于5微米且小于或等于20微米。
  6. 根据权利要求1所述的电池包,其中,所述主体相变材料包括聚乙二醇、硅溶胶和水;所述复合相变材料还包括玻璃纤维和石墨。
  7. 根据权利要求6所述的电池包,其中,所述玻璃纤维占所述复合相变材料质量的1%至5%。
  8. 根据权利要求1所述的电池包,其中,所述相变微胶囊包括设置在胶囊壳体内的正烷烃类相变材料,所述胶囊壳体的材质为聚酰亚胺树脂。
  9. 根据权利要求1所述的电池包,其中,所述吸热体至少填充在所述多个电芯单元之间的空隙内。
  10. 根据权利要求9所述的电池包,其中,多个所述电芯单元层叠排布,所述吸热体设置相连的两个所述电芯单元之间。
  11. 根据权利要求9所述的电池包,其中,所述电芯单元设置为柱状,所述吸热体被构造为环形,并套装在至少一个所述电芯单元的外表面。
  12. 根据权利要求1所述的电池包,其中,所述壳体包括由复合材料制成的塑料构件,所述复合材料至少包括塑料粒子和相变材料。
  13. 根据权利要求12所述的电池包,其中,所述相变微胶囊均匀分布在所述复合材料中。
  14. 根据权利要求12所述的电池包,其中,所述塑料构件至少包括所述电池包的壳体、所述多个电芯单元的支架。
  15. 根据权利要求12所述的电池包,其中,所述相变材料包括相变微胶囊。
  16. 根据权利要求1所述的电池包,其中,所述电池包还形成有结合部,所述结合部与所述电动工具可拆卸地连接。
  17. 一种电池包,设置为给电动工具供电,所述电池包包括:
    壳体;
    电芯组件,设置在所述壳体内,所述电芯组件包括多个电芯单元;
    其中,还包括:
    由复合相变材料制成的吸热体,所述吸热体与至少一个所述电芯单元热接触,用于吸收所述电池包在充放电过程中产生的热量;
    所述复合材料至少包括主体相变材料和与所述主体相变材料不同的第一相变材料;
    所述第一相变材料占所述复合相变材料质量的15%至25%。
  18. 根据权利要求17所述的电池包,其中,所述第一相变材料包括相变微胶囊。
  19. 根据权利要求18所述的电池包,其中,所述相变微胶囊的平均粒径大于或等于5微米且小于或等于20微米。
  20. 根据权利要求18所述的电池包,其中,所述相变微胶囊包括设置在胶囊壳体内的正烷烃类相变材料,所述胶囊壳体的材质为聚酰亚胺树脂。
  21. 一种电动工具,包括:
    马达;
    电路板组件,与所述马达电连接以控制所述马达;
    其中,
    所述电动工具还包括由复合材料制成的塑料构件,所述复合材料至少包括塑料粒子和相变材料。
  22. 根据权利要求21所述的电动工具,其中,所述复合材料的至少一部分在吸收由所述电动工具释放的热量的情况下经历相变;所述相变材料至少包括相 变微胶囊。
  23. 根据权利要求22所述的电动工具,其中,所述相变微胶囊包括设置在胶囊壳体内的正烷烃类相变材料,所述胶囊壳体的材质为聚酰亚胺树脂。
  24. 根据权利要求23所述的电动工具,其中,所述相变微胶囊均匀分布在所述复合材料中。
  25. 根据权利要求21所述的电动工具,其中,所述塑料构件至少包括所述电动工具的外壳、所述电路板组件的壳体、马达壳体或齿轮箱壳体。
  26. 根据权利要求21所述的电动工具,其中,所述电动工具还包括电源装置,所述电源装置可拆卸地连接至所述电动工具。
  27. 一种电池包,用于为电动工具提供电能,所述电池包包括:
    多个电芯单元;
    电路板组件,与所述多个电芯单元电连接;
    其中,
    所述电池包还包括由复合材料制成的塑料构件,所述复合材料至少包括塑料粒子和相变材料。
  28. 根据权利要求27所述的电池包,其中,
    所述复合材料的至少一部分在吸收由所述电池包释放的热量的情况下经历相变;所述相变材料至少包括相变微胶囊。
  29. 根据权利要求28所述的电池包,其中,所述相变微胶囊包括设置在胶囊壳体内的正烷烃类相变材料,所述胶囊壳体的材质为聚酰亚胺树脂。
  30. 根据权利要求29所述的电池包,其中,所述相变微胶囊均匀分布在所述复合材料中。
  31. 根据权利要求27所述的电池包,其中,所述塑料构件至少包括所述电池包的外壳、所述多个电芯单元的支架或所述电路板组件的壳体。
  32. 根据权利要求27所述的电池包,其中,所述电池包还形成有结合部,所述结合部与所述电动工具可拆卸地连接。
  33. 一种充电器,包括:
    电路板组件;
    其中,
    所述充电器还包括由复合材料制成的塑料构件,所述复合材料至少包括塑 料粒子和相变材料。
  34. 根据权利要求33所述的充电器,其中,所述复合材料的至少一部分在吸收由所述充电器释放的热量的情况下经历相变;所述相变材料至少包括相变微胶囊。
  35. 根据权利要求34所述的充电器,其中,所述相变微胶囊包括设置在胶囊壳体内的正烷烃类相变材料,所述胶囊壳体的材质为聚酰亚胺树脂。
  36. 根据权利要求35所述的充电器,其中,所述相变微胶囊均匀分布在所述复合材料中。
  37. 根据权利要求33所述的充电器,其中,所述塑料构件至少包括所述充电器的外壳、所述电路板组件的壳体。
  38. 根据权利要求33所述的充电器,其中,所述充电器用于对电池包或电动工具进行充电。
  39. 一种照明装置,包括:
    灯板;
    多个灯元件,设置在所述灯板上;
    电源装置,至少用于给所述多个灯元件供电;
    其中,
    所述照明装置还包括由复合材料制成的塑料构件,所述复合材料至少包括塑料粒子和相变材料。
  40. 根据权利要求39所述的照明装置,其中,所述塑料构件至少用于容纳或支撑所述灯板。
  41. 根据权利要求40所述的照明装置,其中,所述复合材料的至少一部分在吸收由所述照明装置释放的热量的情况下经历相变;所述相变材料至少包括相变微胶囊。
  42. 根据权利要求41所述的照明装置,其中,所述相变微胶囊包括设置在胶囊壳体内的正烷烃类相变材料,所述胶囊壳体的材质为聚酰亚胺树脂。
  43. 根据权利要求42所述的照明装置,其中,所述相变微胶囊均匀分布在所述复合材料中。
  44. 根据权利要求39所述的照明装置,其中,所述塑料构件至少包括所述照明装置的壳体、散热件以及连接件。
  45. 一种电路板组件,包括:
    印刷电路板;
    多个电子元件,焊装在所述印刷电路板上;
    其中,
    所述电路板组件还包括由复合材料制成的塑料构件,所述复合材料至少包括塑料粒子和相变材料;
    所述塑料构件至少用于支撑或容纳所述印刷电路板。
  46. 根据权利要求45所述的电路板组件,其中,所述复合材料的至少一部分在吸收由所述电路板组件释放的热量的情况下经历相变;所述相变材料至少包括相变微胶囊。
  47. 根据权利要求46所述的电路板组件,其中,所述相变微胶囊包括设置在胶囊壳体内的正烷烃类相变材料,所述胶囊壳体的材质为聚酰亚胺树脂。
  48. 根据权利要求47所述的电路板组件,其中,所述相变微胶囊均匀分布在所述复合材料中。
  49. 根据权利要求45所述的电路板组件,其中,所述电路板组件可用于电池包、充电器、电动工具以及照明装置。
  50. 一种由复合材料制成的塑料构件,所述塑料构件可用于电动工具系统,
    其中,所述复合材料至少包括塑料粒子和相变材料。
  51. 根据权利要求50所述的塑料构件,其中,所述复合材料的至少一部分在吸收由所述电动工具系统释放的热量的情况下经历相变;所述相变材料至少包括相变微胶囊。
  52. 根据权利要求51所述的塑料构件,其中,所述相变微胶囊包括设置在胶囊壳体内的正烷烃类相变材料,所述胶囊壳体的材质为聚酰亚胺树脂。
  53. 根据权利要求52所述的塑料构件,其中,所述相变微胶囊均匀分布在所述复合材料中。
  54. 根据权利要求50所述的塑料构件,其中,所述电动工具系统包括电动工具、电池包和充电器。
PCT/CN2022/131275 2021-11-25 2022-11-11 电池包及电动工具 WO2023093543A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN202111414785.3 2021-11-25
CN202111414785.3A CN116169392A (zh) 2021-11-25 2021-11-25 电池包及电动工具
CN202111487161.4 2021-12-07
CN202111487161.4A CN116321671A (zh) 2021-12-07 2021-12-07 电路板组件
CN202210096642.0 2022-01-26
CN202210096642 2022-01-26

Publications (1)

Publication Number Publication Date
WO2023093543A1 true WO2023093543A1 (zh) 2023-06-01

Family

ID=86538842

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/131275 WO2023093543A1 (zh) 2021-11-25 2022-11-11 电池包及电动工具

Country Status (1)

Country Link
WO (1) WO2023093543A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1905266A (zh) * 2005-07-26 2007-01-31 比亚迪股份有限公司 电池充电器盒
CN101408299A (zh) * 2007-10-10 2009-04-15 富准精密工业(深圳)有限公司 带有散热装置的发光二极管灯具
CN102070845A (zh) * 2010-12-24 2011-05-25 金发科技股份有限公司 一种相变储能热塑性复合材料及其制备方法
CN105655666A (zh) * 2016-03-25 2016-06-08 浙江大学 一种用于智慧能源网的储能式新能源电池保护系统及其方法
CN107732038A (zh) * 2017-11-15 2018-02-23 江苏华富储能新技术股份有限公司 一种含有相变储能材料的蓄电池外壳
CN108084970A (zh) * 2017-12-20 2018-05-29 上海叹止新材料科技有限公司 一种相变储热缓冲材料及其制备方法与应用
CN110294895A (zh) * 2019-07-03 2019-10-01 力王新材料(惠州)有限公司 相变储热塑料、制备方法及其应用
CN111082185A (zh) * 2019-12-09 2020-04-28 全球能源互联网欧洲研究院 复合二元相变材料及其在电池热管理系统中的应用
CN211265564U (zh) * 2019-12-13 2020-08-14 苏州宝时得电动工具有限公司 电池包
CN112592696A (zh) * 2020-12-17 2021-04-02 合肥瑞雪新材料科技有限公司 一种相变储能微胶囊及其制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1905266A (zh) * 2005-07-26 2007-01-31 比亚迪股份有限公司 电池充电器盒
CN101408299A (zh) * 2007-10-10 2009-04-15 富准精密工业(深圳)有限公司 带有散热装置的发光二极管灯具
CN102070845A (zh) * 2010-12-24 2011-05-25 金发科技股份有限公司 一种相变储能热塑性复合材料及其制备方法
CN105655666A (zh) * 2016-03-25 2016-06-08 浙江大学 一种用于智慧能源网的储能式新能源电池保护系统及其方法
CN107732038A (zh) * 2017-11-15 2018-02-23 江苏华富储能新技术股份有限公司 一种含有相变储能材料的蓄电池外壳
CN108084970A (zh) * 2017-12-20 2018-05-29 上海叹止新材料科技有限公司 一种相变储热缓冲材料及其制备方法与应用
CN110294895A (zh) * 2019-07-03 2019-10-01 力王新材料(惠州)有限公司 相变储热塑料、制备方法及其应用
CN111082185A (zh) * 2019-12-09 2020-04-28 全球能源互联网欧洲研究院 复合二元相变材料及其在电池热管理系统中的应用
CN211265564U (zh) * 2019-12-13 2020-08-14 苏州宝时得电动工具有限公司 电池包
CN112592696A (zh) * 2020-12-17 2021-04-02 合肥瑞雪新材料科技有限公司 一种相变储能微胶囊及其制备方法

Similar Documents

Publication Publication Date Title
EP1879243B1 (en) Battery pack and power tool using the same
US20070292751A1 (en) Battery Apparatus with Heat Absorbing Body
WO2016197797A1 (zh) 电池模组和具有该电池模组的基站
TW201115812A (en) Battery set with heat conducting jelly
CN104241730A (zh) 具有散热系统的电池包
CN108428816A (zh) 相变和风冷结合的高效散热动力电池包
WO2022205790A1 (zh) 一种散热器、电池包及用电设备
CN113906611A (zh) 电池模块
AU2019451585A1 (en) Battery pack and combination of a power tool and the battery pack
US11495844B2 (en) Charging device
CN111370603A (zh) 一种散热性能良好的电动汽车电池组
WO2023093543A1 (zh) 电池包及电动工具
JP3812260B2 (ja) 二次電池パック
CN215451594U (zh) 一种电池模组和两轮车
JP2000285873A (ja) 二次電池および電池パック
JP3955226B2 (ja) 電池パック
CN114709544A (zh) 一种电池包及用电设备
CN116494187A (zh) 电动工具、电池包、充电器、照明装置以及电路板组件
WO2024021894A1 (zh) 电池包
KR20220018124A (ko) 상변화 물질에 의해 온도가 관리되는 배터리
WO2024083143A1 (zh) 电池包及电动工具系统
CN116169392A (zh) 电池包及电动工具
CN220652107U (zh) 一种软包电池组散热组件及电池箱
CN217306598U (zh) 电池模块及电动交通工具
CN219226399U (zh) 一种锂电池安装包

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22897626

Country of ref document: EP

Kind code of ref document: A1