WO2023093383A1 - 用于冰箱的微流控检测系统及冰箱 - Google Patents

用于冰箱的微流控检测系统及冰箱 Download PDF

Info

Publication number
WO2023093383A1
WO2023093383A1 PCT/CN2022/126154 CN2022126154W WO2023093383A1 WO 2023093383 A1 WO2023093383 A1 WO 2023093383A1 CN 2022126154 W CN2022126154 W CN 2022126154W WO 2023093383 A1 WO2023093383 A1 WO 2023093383A1
Authority
WO
WIPO (PCT)
Prior art keywords
microfluidic
detection
elastic
detection system
chip
Prior art date
Application number
PCT/CN2022/126154
Other languages
English (en)
French (fr)
Inventor
费斌
赵斌堂
李孟成
Original Assignee
青岛海尔电冰箱有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔电冰箱有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔电冰箱有限公司
Publication of WO2023093383A1 publication Critical patent/WO2023093383A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/12Arrangements of compartments additional to cooling compartments; Combinations of refrigerators with other equipment, e.g. stove
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/02Adapting objects or devices to another
    • B01L2200/026Fluid interfacing between devices or objects, e.g. connectors, inlet details
    • B01L2200/027Fluid interfacing between devices or objects, e.g. connectors, inlet details for microfluidic devices

Definitions

  • the invention relates to refrigerating and freezing technology, in particular to a microfluidic detection system for a refrigerator and the refrigerator.
  • the detection method using microfluidic biochip is relatively fast and small in size, which is suitable for home use.
  • pneumatic push type In order to promote the movement of the fluid in the chip, there are usually two kinds of pneumatic push type and centrifugal force push type.
  • the centrifugal force pushes the droplet to flow by means of the rotating centrifugal force, and the one-way flow action can only be adjusted by adjusting the rotational speed.
  • the pneumatic push type uses positive and negative air pressure to bidirectionally push the movement of the fluid in the chip, with high precision and strong controllability.
  • An object of the first aspect of the present invention is to overcome at least one defect of the prior art and provide a microfluidic detection system suitable for refrigerators with good sealing performance and precise sample injection control.
  • a further object of the first aspect of the present invention is to completely eliminate a series of adverse effects caused by airtightness problems.
  • the object of the second aspect of the present invention is to provide a refrigerator with the above-mentioned microfluidic detection system.
  • the present invention provides a microfluidic detection system for a refrigerator, which includes:
  • the microfluidic biochip has a chip main body and an elastic airbag part, the chip main body has a sample inlet, a suction port, and a detection pool formed inside it, the sample inlet, the detection pool and the suction port
  • the gas ports are connected sequentially through micro-channels, and the elastic airbag portion is in sealing communication with the suction port;
  • a sample liquid driving device configured to squeeze and release the elastic air bag part in a controlled manner, so as to force the sample liquid in contact with the injection port to enter the micro flow channel during the recovery process of the elastic air bag part; flow to the detection cell through the microfluidic channel;
  • the detection mechanism is used to detect the detection cell to obtain the preset detection parameters of the sample liquid;
  • the chip main body and the elastic airbag part are integrally formed by blow molding.
  • one of the side surfaces of the chip body is provided with a reagent addition hole in communication with the detection cell, so as to add detection reagents to the detection cell through the reagent addition hole;
  • the microfluidic biochip further includes a sealing patch hermetically attached to one of the side surfaces of the chip body to seal the reagent addition hole.
  • the elastic balloon portion has a thread shape or a corrugated shape extending along the length direction of the chip body;
  • the sample liquid driving device is configured to apply a pressing force parallel to the extending direction of the elastic air bag to the elastic air bag in a controlled manner, so as to promote the elastic deformation of the elastic air bag along the extending direction.
  • the sample inlet is located at the bottom of the chip main body, and the elastic airbag part is located at the top of the chip main body;
  • the sample liquid driving device is located above the microfluidic biochip, and is configured to press the elastic air bag part downwards in a controlled manner.
  • the microfluidic detection system also includes:
  • a chip mounting mechanism having a mounting groove for accommodating the microfluidic biochip
  • the microfluidic biochip is configured to be inserted into the installation groove through a notch of the installation groove, and the sample inlet of the chip body is outside the installation groove.
  • the sample inlet is located at the bottom of the chip main body, and the elastic balloon part is located at the top of the chip main body;
  • the installation groove extends vertically, and the microfluidic biochip is configured to be inserted into the installation groove along a direction parallel to the horizontal plane.
  • the mounting groove includes a first groove section for accommodating the chip main body and a second groove section for accommodating the elastic airbag part, and the size of the first groove section is smaller than that of the first groove section. the dimensions of the two slot sections to form a step at the boundary between the first slot section and the second slot section; and
  • the bottom of the elastic airbag portion abuts against the stepped portion.
  • the chip installation mechanism also has at least one clamping member arranged in the installation groove, and the clamping member is configured to clamp the microfluidic biochip after it is inserted into the installation groove. chip body.
  • the clamping member includes two symmetrical and spaced clamping jaws, and the two clamping jaws are configured to face to the sides of the chip body after the microfluidic biochip is installed in the mounting groove. Two opposing side surfaces exert opposing elastic forces.
  • the present invention also provides a refrigerator, which includes the microfluidic detection system described in any of the above solutions.
  • the microfluidic detection system of the present invention includes a microfluidic biochip.
  • the microfluidic biochip has a chip body and an elastic airbag part. A closed space is formed, and only the port for sampling is reserved at the injection port.
  • the sample liquid driving device discharges the air in the main body of the chip by squeezing the elastic air bag. When the sample liquid driving device releases the elastic air bag, the elastic air bag resumes its deformation, thereby promoting the detection of the sample liquid in contact with the injection port entering the chip main body. pool.
  • the microfluidic biochip of the present invention is specially designed with an elastic airbag part. There is no need for a communication pipeline between the sample liquid driving device and the microfluidic biochip.
  • the chip main body and the elastic air bag part are integrally formed by blow molding, that is to say, the microfluidic biochip is a part, and the chip main body and the elastic air bag part are only two different components of the microfluidic biochip. part, the chip main body and the elastic airbag part do not need to be connected, therefore, the microfluidic biochip itself does not have any airtightness problems, which completely eliminates some problems caused by the airtightness problem to the microfluidic detection system. Series adverse effects.
  • the invention integrates the microfluidic detection system on the refrigerator, fully utilizes the storage function of the refrigerator, makes the detection process more convenient, and facilitates the linkage control of the microfluidic detection system and the refrigerator. Smart home needs.
  • Fig. 1 is a schematic structural diagram of a microfluidic detection system for a refrigerator according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of the internal structure of a microfluidic detection system according to an embodiment of the present invention
  • FIG. 3 is a schematic exploded view of a partial structure of a microfluidic detection system according to an embodiment of the present invention.
  • Fig. 4 is a schematic cross-sectional view of a microfluidic biochip according to an embodiment of the present invention.
  • Fig. 5 is a schematic structural exploded view of a microfluidic biochip according to an embodiment of the present invention.
  • FIG. 6 is a schematic cross-sectional view of a microfluidic detection system in a partially decomposed state according to an embodiment of the present invention
  • Fig. 7 is a schematic structural diagram of a refrigerator according to an embodiment of the present invention.
  • the present invention firstly provides a microfluidic detection system for refrigerators.
  • the microfluidic detection system of the present invention is used for qualitative or quantitative detection of the preset detection parameters of the sample liquid.
  • the preset detection parameters can be, for example, used for Pesticide parameters indicating whether the amount of pesticide residues exceeds the standard and/or the specific value of the amount of pesticide residues, nutritional parameters used to indicate whether the nutrient elements are up to the standard and/or the specific content of nutrient elements, and used to indicate whether specific harmful substances (such as specific viruses) Specific substance parameters in excess and/or specified levels, etc.
  • Fig. 1 is a schematic structural diagram of a microfluidic detection system for a refrigerator according to an embodiment of the present invention
  • Fig. 2 is a schematic structural diagram of the internal structure of a microfluidic detection system according to an embodiment of the present invention
  • Fig. 3 It is a schematic exploded view of a part of the structure of a microfluidic detection system according to an embodiment of the present invention.
  • a sample cup 2 is also shown in FIGS. 1 to 3 .
  • the microfluidic detection system 1 of the present invention includes a microfluidic biochip 10 , a sample fluid driving device 40 and a detection mechanism 20 .
  • Fig. 4 is a schematic cross-sectional view of a microfluidic biochip according to an embodiment of the present invention.
  • the microfluidic biochip 10 has a chip main body 11 and an elastic air bag part 12.
  • the chip main body 11 has a sample inlet 111, a suction port 112, and a detection pool 113 formed inside it.
  • the sample inlet 111, the detection pool 113 and the suction port The gas ports 112 are sequentially communicated with each other through the micro-channels 114 to form a main channel.
  • the elastic airbag portion 12 is in airtight communication with the air intake port 112 .
  • the sample liquid driving device 40 is configured to squeeze and release the elastic air bag part 12 in a controlled manner, so as to promote the sample liquid in contact with the injection port 111 to enter the micro-channel 114 and pass through the micro-channel during the recovery process of the elastic air bag part 12. 114 flows to the detection pool 113.
  • the detection mechanism 20 is used to detect the detection cell 113 to obtain preset detection parameters of the sample fluid. Specifically, a detection reagent may be provided in the detection pool 113 to detect the detection pool 113 through the detection mechanism 20 after the sample liquid in the detection pool 113 reacts with the detection reagent in the detection pool 113 .
  • the microfluidic detection system 1 of the present invention includes a microfluidic biochip 10, the microfluidic biochip 10 has a chip body 11 and an elastic airbag part 12, and the elastic airbag part 12 is in sealing communication with the suction port 112 of the chip body 11, Therefore, a closed space is formed inside the microfluidic biochip 10 , and only a port for sample injection is reserved at the sample inlet 111 .
  • the sample solution driving device 40 discharges the air in the chip body 11 by squeezing the elastic air bag part 12.
  • the sample liquid driving device 40 releases the elastic air bag part 12, the elastic air bag part 12 resumes its deformation, thereby prompting the sample in contact with the injection port 111 to The liquid enters the detection pool 113 in the chip main body 11 and reacts with the detection reagent in the detection pool 113 . Furthermore, the sample liquid driving device 40 can repeatedly squeeze and release the elastic air bag part 12 to fully mix the sample liquid and the detection reagent, thereby improving the accuracy of the detection result.
  • the microfluidic biochip 10 of the present invention is specially designed with an elastic air bag part 12. There is no need for a communication pipeline between the sample liquid driving device 40 and the microfluidic biochip 10, and only a simple mechanical extrusion is performed. By controlling the elastic The amount of deformation of the air bag part 12 controls the amount of liquid suction and discharge, which not only eliminates the problem of air tightness between the sample liquid driving device 40 and the microfluidic biochip 10, but also maintains the accuracy of sample injection control.
  • the microfluidic biochip 10 when the preset detection parameters used by the microfluidic detection system are different, the specific selection of the microfluidic biochip 10 and the detection mechanism 20 used therein may also be different.
  • the microfluidic detection system when used for pesticide residue detection, the microfluidic biochip 10 it has can be a microfluidic pesticide detection chip that can provide detection conditions for the pesticide residue liquid, and the detection mechanism 20 it has can be It is a pesticide residue detection mechanism that can detect the pesticide residue parameters of the pesticide residue liquid.
  • the enzyme inhibition rate method can be used to quickly determine whether the pesticide residue in the sample liquid exceeds the standard. detection.
  • the chip main body 11 also includes a reaction pool 115 formed inside it.
  • the reaction pool 115 is located on the main channel formed by connecting the sample inlet 111, the detection pool 113, and the suction port 112 in sequence, and communicates with the sample inlet 111. and the detection pool 113 , so that the sample liquid first reacts with the reaction reagent in the reaction pool 115 and then flows into the detection pool 113 .
  • Both the reaction pool 115 and the sample inlet 111 , and the reaction pool 115 and the detection pool 113 are communicated through microchannels 114 .
  • the reaction reagent and detection reagent used for pesticide residue detection can be enzyme reagent and chromogenic reagent respectively.
  • the reaction pool 115 is used for reacting the sample liquid with the enzyme reagent therein, and the sample liquid reacted with the enzyme reagent flows into the detection pool 113 to react with the color developer in the detection pool 113 .
  • the detection mechanism 20 can be selected as a photoelectric detection mechanism, which can include structures such as a light source, a photosensitive element, a heating plate, and a temperature controller.
  • the chip body 11 and the elastic airbag portion 12 are integrally formed by blow molding. That is to say, the microfluidic biochip 10 is a component, the chip body 11 and the elastic airbag part 12 are only two different parts of the microfluidic biochip 10, and the chip main body 11 and the elastic airbag part 12 do not need to be connected. Therefore, there is no airtightness problem in the microfluidic biochip 10 itself, that is, the increase of the elastic airbag part 12 will not bring the airtightness problem to the microfluidic biochip 10 itself, thereby completely eliminating the airtightness problem caused by The air tightness problem brings a series of adverse effects to the microfluidic detection system 1 .
  • Fig. 5 is a schematic exploded view of a microfluidic biochip according to an embodiment of the present invention. Since the chip main body 11 and the elastic airbag part 12 are integrally formed by blow molding, it is not convenient to pre-add detection reagents to the detection pool 113 formed in the chip main body 11 . For this reason, in some embodiments, after the chip body 11 and the elastic airbag part 12 are blow-molded, a reagent addition hole 116 communicating with the detection pool 113 can be opened on one of the side surfaces 11a of the chip body 11 to pass through The reagent adding hole 116 adds a detection reagent into the detection cell 113 .
  • the reaction reagent can be added to the reaction pool 115 in the same way (that is, a reagent addition hole 117 communicating with the reaction pool 115 is opened on the side surface of the chip body 11).
  • the two reagent addition holes can be opened on the same side surface of the chip body 11, so as to seal the two reagent addition holes.
  • the microfluidic biochip 10 also includes a sealing patch 13 that is hermetically attached to one of the side surfaces 11a of the chip body 11 (that is, the side surface with the reagent addition hole), so as to seal the reagent addition hole 116 and the other side surface.
  • a reagent addition hole 117 .
  • the above-mentioned side surface 11a of the chip main body 11 may be a side surface parallel to its width direction and length direction. This is because, due to the large surface area of the side surface parallel to the width direction and length direction of the chip main body 11, it is convenient to form a larger bonding surface between the chip main body 11 and the sealing patch 13, and improve the bonding surface between the two. Sealing effect.
  • the bonding of the chip body 11 and the sealing patch 13 is completed before the installation of the microfluidic biochip 10, there is no restriction on the operating space and the sealing method, therefore, the chip body 11 and the sealing patch 13 can be realized Effective, good seal.
  • the materials of the chip body 11 and the elastic air bag 12 and the shape of the elastic air bag 12 are set so that after the sample solution driving device 40 releases the elastic air bag 12, the elastic air bag 12 can act on its own elastic deformation restoring force. Recover deformation.
  • the elastic balloon part 12 has a thread shape or a corrugated shape extending along the length direction of the chip body 11, and the sample solution driving device 40 is configured to apply a squeeze parallel to the extending direction to the elastic balloon part 12 in a controlled manner.
  • the pressing force is used to promote the elastic deformation of the elastic airbag portion 12 along its extending direction. That is to say, the direction of the extrusion force applied by the sample solution driving device 40 to the elastic air bag 12 is consistent with the extending direction of the elastic air bag 12 .
  • the elastic airbag 12 can elastically shrink along the length direction of the chip body 11 under the extrusion of the sample solution driving device 40 , and after the sample liquid driving device 40 releases the elastic airbag 12 , the elastic airbag 12 can be reset by its own elasticity.
  • the elastic airbag part 12 may be a threaded tube or a corrugated tube extending along the length direction of the chip main body 11 .
  • the sample inlet 111 is located at the bottom of the chip body 11
  • the elastic airbag part 12 is located at the top of the chip body 11 .
  • the sample fluid driving device 40 is located above the microfluidic biochip 10 and is configured to press the elastic air bag 12 downward in a controlled manner. That is to say, after the microfluidic biochip 10 is installed, the length direction of the chip body 11 is vertical, which not only facilitates the contact between the sample inlet 111 and the sample solution, but also facilitates the arrangement of the sample solution driving device 40 .
  • the microfluidic detection system 1 further includes a chip mounting mechanism 30 .
  • a chip mounting mechanism 30 The applicant realized that since there is no airtight problem between the microfluidic biochip 10 and the sample solution driving device 40, that is, there is no need to consider the connection between the microfluidic biochip 10 and the sample solution driving device 40 when the microfluidic biochip 10 is installed.
  • the sealed docking structure only needs to ensure that the microfluidic biochip 10 remains stable and reliable after installation. Therefore, the chip installation mechanism 30 of the present invention does not need to design a very complicated structure, but only needs to be able to hold the microfluidic biochip 10 .
  • the chip mounting mechanism 30 of the present invention has a mounting groove 31 for accommodating the microfluidic biochip 10 .
  • the microfluidic biochip 10 is configured to be inserted into the installation groove 31 through the notch of the installation groove 31, which not only realizes the effective installation of the microfluidic biochip 10, but also greatly simplifies the installation of the microfluidic detection system 1. structure.
  • sample inlet 111 of the chip main body 11 is located outside the installation groove 31, so that the sample inlet 111 can absorb the sample liquid when the microfluidic biochip 10 is in the installed state.
  • the sample inlet 111 is located at the bottom of the chip body 11
  • the elastic airbag part 12 is located at the top of the chip body 11 . Since the elastic airbag part 12 is elastically shrinkable and deformable, the microfluidic biochip 10 is not easy to be installed from bottom to top.
  • the present invention further arranges the installation groove 31 to extend vertically, and the microfluidic biochip 10 is configured to be inserted into the installation groove 31 along a direction parallel to the horizontal plane. That is to say, the elastic airbag part 12 is installed parallel to the chip main body 11, the elastic airbag part 12 will not produce any hindrance or influence on the assembly of the chip main body 11, and the structural design of the mounting groove 31 can only make the chip main body 11 remain in the The installation groove 31 does not move, allowing the elastic airbag part 12 to produce elastic deformation without hindrance in the installation groove 31 .
  • the mounting groove 31 includes a first groove section 311 for accommodating the chip body 11 and a second groove section 312 for accommodating the elastic airbag portion 12, that is, the first groove section 311 is located in the second groove section 312 below.
  • the size of the first slot section 311 is smaller than that of the second slot section 312 to form a step portion 32 at the boundary between the first slot section 311 and the second slot section 312 .
  • the bottom of the elastic airbag part 12 abuts against the step part 32 to prevent the microfluidic biochip 10 from falling down.
  • the present invention utilizes the simple design of the structural size of the mounting groove 31 to position the microfluidic biochip 10 in the vertical direction, and the structure is very simple.
  • Fig. 6 is a schematic cross-sectional view of a microfluidic detection system in a partially decomposed state according to an embodiment of the present invention.
  • the chip installation mechanism 30 also has at least one clamping member 33 disposed in the installation groove 31, and the clamping member 33 is configured to clamp the chip body 11 after the microfluidic biochip 10 is inserted into the installation groove 31,
  • the microfluidic biochip 10 can be adjusted in the horizontal direction. limit.
  • an accommodating space for accommodating the clamping member 33 may be formed in the installation groove 31, and the clamping member 33 is limited in the accommodating space and can be elastically deformed within a certain range to maintain its alignment with the chip main body. 11 Better clamping force.
  • the clamping member 33 may include two symmetrical and spaced clamping jaws 331, and the two clamping jaws 331 are configured to face to two opposite sides of the chip body 11 after the microfluidic biochip 10 is installed in the installation groove 31.
  • the side surfaces exert opposing elastic force, so as to hold the microfluidic biochip 10 more stably.
  • the sample liquid driving device 40 includes a driving motor 41 and a push rod 42 .
  • the push rod 42 is connected with the drive motor 41 and configured to translate along the output shaft of the drive motor 41 when the drive motor 41 rotates.
  • the output shaft of the driving motor 41 can be parallel to the extending direction of the elastic airbag 12 , so that the push rod 42 can be used to squeeze the elastic airbag 12 or release the elastic airbag 12 when the driving motor 41 rotates.
  • the microfluidic detection system 1 further includes a weighing platform 81 and a bracket 82 .
  • the weighing platform 81 is fixedly arranged on a supporting frame 83 and is used for measuring the weight of the sample contained in the sample cup 2 placed on it. It can be understood that the weighing platform 81 can measure the sum of the weight of the sample cup 2 and the sample contained therein, and subtract the weight of the sample cup 2 itself to obtain the weight of the sample.
  • the weighing platform 81 can also be set to directly detect the weight of the sample contained in the sample cup 2, such as tare measurement.
  • the carriage 82 is configured to move in a controlled or operable manner to drive the sample cup 2 to the highest position allowing the sample liquid in the sample cup 2 to contact the sample inlet 111 of the microfluidic biochip 10 .
  • the microfluidic detection system 1 further includes a buffer bottle 51 and a buffer driving device 52 .
  • the buffer bottle 51 is used for containing the buffer.
  • the buffer driving device 52 communicates with the buffer bottle 51 to controlly drive the buffer in the buffer bottle 51 into the sample cup 2 placed on the weighing platform 81, so that the buffer is mixed with the sample in the sample cup 2 A sample fluid is then produced.
  • the buffer driving device 52 may be a peristaltic pump, a diaphragm pump or other suitable driving devices.
  • the microfluidic detection system 1 further includes a housing 90 .
  • the housing 90 is formed with an operating platform open towards its front side, and the weighing platform 81 is at least partially located in the operating platform, so that it is convenient for the user to perform operations such as placing the sample cup 2 and taking out the sample cup 2 in the operating platform.
  • the microfluidic detection system 1 of the present invention is particularly provided with a weighing table 81 fixed on a support frame 83 and a bracket 82 capable of driving the sample cup 2 to move.
  • a weighing table 81 fixed on a support frame 83 and a bracket 82 capable of driving the sample cup 2 to move.
  • the user only needs to place the sample cup 2 on the weighing platform 81, the weighing platform 81 measures the weight of the sample, and the buffer drive device 52 adds an appropriate amount of buffer solution to the sample cup 2, and the bracket 82 can automatically
  • the ground drives the sample cup 2 to move to add the sample to the microfluidic biochip 10, the sample adding operation is very convenient, saves time and effort, and the user experience is better.
  • the weighing platform 81 of the present invention is fixed, and it will not move with the movement of the bracket 82, therefore, the movement of the bracket 82 will not produce any impact on the weighing accuracy of the weighing platform 81.
  • the impact ensures high-precision measurement of the weight of the sample, thereby improving the accuracy of the detection results of the microfluidic biochip 10 .
  • the bracket 82 when the sample cup 2 is placed on the weighing platform 81 for weighing, the bracket 82 should be completely separated from the sample cup 2 and not in contact, so as to avoid affecting the weighing of the sample. After the weight of the sample is measured, the bracket 82 needs to hold the sample cup 2 to drive it to move together. That is to say, the bracket 82 needs to have two states of releasing the sample cup and holding the sample cup, and can automatically switch between these two states according to the detection process. In order to achieve this purpose, prior to this application, those skilled in the art generally adopted a design idea of providing a clamping mechanism for the bracket, and by controlling the action of the clamping mechanism, the bracket can release the sample cup and hold the sample cup. automatically switch between the states.
  • the clamping mechanism increases the structural complexity of the bracket, and it is necessary to reserve space for the action switching of the clamping mechanism to avoid interference or collision with other structures, which will lead to an increase in the volume of the microfluidic detection system. Not suitable for refrigerators with limited space.
  • the retention of the sample cup, especially the release of the sample cup needs to be highly consistent with the testing process, that is, when the weighing platform needs to measure the weight of the sample, it must be ensured that the clamping mechanism is in the state of releasing the sample cup; The clamping mechanism can only clamp the sample cup after the weight of the sample is measured by the platform.
  • the bracket 82 is disposed above the weighing platform 81 and includes an annular frame 821 sheathed on the outside of the sample cup 2 .
  • the bracket 82 is configured to move up and down in a controlled or operable manner, and when moving upwards, the annular frame 821 is used to hold the sample cup 2 so that the sample cup 2 leaves the weighing platform 81, and moves downward to the lowest position.
  • the sample cup 2 is supported on the weighing platform 81 and the contact between the sample cup 2 and the weighing platform 81 is used to promote the separation of the sample cup 2 from the ring frame 821 .
  • the annular frame 821 can naturally hold up the sample cup 2 so that it leaves the weighing platform 81; when the bracket 82 moves downward to a certain position, the sample cup 2 supports On the weighing platform 81, when the bracket 82 continues to move downward to the lowest position, the abutment between the sample cup 2 and the weighing platform 81 is used to promote the separation of the sample cup 2 from the ring frame 821, thus, the bracket 82 The rack 82 will not have any influence on the weight detection of the sample.
  • bracket 82 of the present invention has completed the natural switching between the holding and releasing of the sample cup 2 in its lifting process, and there is no need to design any control program for holding up or releasing, not only the structure of the bracket 82 is very Simple, and the control logic of the bracket 82 is also very simple.
  • the present invention also provides a refrigerator, and Fig. 7 is a schematic structural diagram of a refrigerator according to an embodiment of the present invention.
  • the refrigerator 100 of the present invention includes the microfluidic detection system 1 involved in any of the above embodiments, so that the microfluidic detection system 1 is integrated on the refrigerator 100 .
  • the refrigerator 100 is frequently used in daily life, and the refrigerator 100 is mainly used to store food materials.
  • the microfluidic detection system 1 is integrated on the refrigerator 100, it is convenient for users to use the microfluidic detection system 1 to carry out the detection of food samples. Detect operation.
  • the present invention integrates the microfluidic detection system 1 on the refrigerator 100, fully utilizes the storage function of the refrigerator 100, makes the detection process more convenient, and facilitates the linkage control between the microfluidic detection system 1 and the refrigerator 100, and the degree of intelligence Higher, meeting the needs of smart families.
  • the refrigerator 100 further includes a box body 200 and a door body 300 , a storage space is defined in the box body 200 , and the door body 300 is connected to the box body 200 and used to open and/or close the storage space.
  • the microfluidic detection system 1 is preferably installed on the door body 300 , which is not only convenient to operate, but also does not occupy the original storage space in the box body 200 and does not affect the storage capacity of the refrigerator 100 itself.
  • the refrigerator 100 of the present application is a refrigerator in a broad sense, which includes not only the so-called refrigerator in the narrow sense, but also storage devices with refrigeration, freezing or other storage functions, such as refrigerators, freezers and so on.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Biochemistry (AREA)
  • Combustion & Propulsion (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Dispersion Chemistry (AREA)
  • Hematology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

一种用于冰箱(100)的微流控检测系统(1)及冰箱(100)。微流控检测系统(1)包括:微流控生物芯片(10),具有通过吹塑方式一体成型的芯片主体(11)和弹性气囊部(12),芯片主体(11)具有进样口(111)、吸气口(112)、以及检测池(113),进样口(111)、检测池(113)和吸气口(112)之间通过微流道(114)依次连通,弹性气囊部(12)与吸气口(112)密封地连通;样本液驱动装置(40),配置成受控地挤压和释放弹性气囊部(12),以在弹性气囊部(12)恢复形变的过程中促使与进样口(111)接触的样本液进入微流道(114)并经微流道(114)流向检测池(113);以及检测机构(20),用于对检测池(113)进行检测,以获取样本液的预设检测参数。

Description

用于冰箱的微流控检测系统及冰箱 技术领域
本发明涉及冷藏冷冻技术,特别是涉及一种用于冰箱的微流控检测系统及冰箱。
背景技术
随着人们生活水平的提高,日常生活中通常需要对食用的一些食材的农残、病毒、营养元素或其他方面进行检测,以定性或定量地获取食材的状况。例如,由于农药滥用问题,我们日常买到的果蔬和农副产品有可能出现农残含量超标的问题,如果不能及时发现这些食品的农残含量超标问题,人体摄入后会造成极大危害。再如,目前提倡的母乳喂养,只有在母乳具有正常营养价值的情况下才是对婴儿最好的喂养,然而在乳母生病、吃药、手术或其他情况下可能导致其分泌的乳汁中的营养元素含量降低甚至产生病毒,从而影响婴儿的生长发育和健康。现有家用电器的功能较为单一,当需要对食用的一些食材的农残、病毒、营养元素或其他方面进行检测时,需要另外购置单独的检测装置,导致家用电器的数量和种类繁多、占用空间较大,不符合智慧家庭的发展趋势。
在众多检测方法中,利用微流控生物芯片进行检测的方法比较快速,且体积较小,适宜于家庭使用。为了推动流体在芯片中的运动,通常有气压推动式和离心力推动式两种。其中,离心力推动借助旋转离心力推动液滴流动,只能通过调节转速来调节单向流动动作。气压推动式利用正负气压来双向推动流体在芯片中的运动,精度高,可控性强。但是,芯片的吸气口与推动机构的吸气管对接时,难免会因为压合面积不足、压合面不平整、压合力不足、注射泵活塞精度不足等各种原因导致气密性不稳定、不可靠的问题。迄今为止,气压推动式的气密性仍然是没有得到彻底有效解决的技术难题。
发明内容
本发明第一方面的一个目的旨在克服现有技术的至少一个缺陷,提供一种适用于冰箱的密封性能较好、进样控制精确的微流控检测系统。
本发明第一方面的一个进一步的目的是彻底地排除由于气密性问题带来的一系列不良影响。
本发明第二方面的目的是提供一种具有上述微流控检测系统的冰箱。
根据本发明的第一方面,本发明提供一种用于冰箱的微流控检测系统,其包括:
微流控生物芯片,具有芯片主体和弹性气囊部,所述芯片主体具有进样口、吸气口、以及形成在其内部的检测池,所述进样口、所述检测池和所述吸气口之间通过微流道依次连通,所述弹性气囊部与所述吸气口密封地连通;
样本液驱动装置,配置成受控地挤压和释放所述弹性气囊部,以在所述弹性气囊部恢复形变的过程中促使与所述进样口接触的样本液进入所述微流道并经所述微流道流向所述检测池;以及
检测机构,用于对所述检测池进行检测,以获取所述样本液的预设检测参数;其中
所述芯片主体和所述弹性气囊部通过吹塑成型的方式一体成型。
可选地,所述芯片主体的其中一个侧表面开设有与所述检测池相连通的试剂添加孔,以通过所述试剂添加孔向所述检测池内添加检测试剂;且
所述微流控生物芯片还包括密封地贴附在所述芯片主体的所述其中一个侧表面的密封贴片,以封闭所述试剂添加孔。
可选地,所述弹性气囊部具有沿所述芯片主体的长度方向延伸的螺纹形状或波纹形状;且
所述样本液驱动装置配置成受控地向所述弹性气囊部施加平行于其延伸方向上的挤压作用力,以促使所述弹性气囊部沿其延伸方向产生弹性变形。
可选地,所述进样口位于所述芯片主体的底部,所述弹性气囊部位于所述芯片主体的顶部;且
所述样本液驱动装置位于所述微流控生物芯片的上方,且配置成受控地向下挤压所述弹性气囊部。
可选地,所述微流控检测系统还包括:
芯片安装机构,具有用于容置所述微流控生物芯片的安装槽;且
所述微流控生物芯片配置成通过所述安装槽的槽口插入所述安装槽内,所述芯片主体的进样口处于所述安装槽外部。
可选地,所述进样口位于所述芯片主体的底部,所述弹性气囊部位于所 述芯片主体的顶部;且
所述安装槽沿竖向延伸,所述微流控生物芯片配置成沿平行于水平面的方向插入所述安装槽内。
可选地,所述安装槽包括用于容置所述芯片主体的第一槽段和用于容置所述弹性气囊部的第二槽段,所述第一槽段的尺寸小于所述第二槽段的尺寸,以在所述第一槽段和所述第二槽段的分界处形成台阶部;且
所述弹性气囊部的底部抵接于所述台阶部。
可选地,所述芯片安装机构还具有设置于所述安装槽内的至少一个卡紧件,所述卡紧件配置成在所述微流控生物芯片插入所述安装槽后卡紧所述芯片主体。
可选地,所述卡紧件包括两个对称且间隔设置的夹爪,两个所述夹爪配置成在所述微流控生物芯片安装至所述安装槽后分别向所述芯片主体的两个相对的侧表面施加相向的弹性作用力。
根据本发明的第二方面,本发明还提供一种冰箱,其包括上述任一方案所述的微流控检测系统。
本发明的微流控检测系统包括微流控生物芯片,微流控生物芯片具有芯片主体和弹性气囊部,弹性气囊部与芯片主体的吸气口密封地连通,从而在微流控生物芯片内部形成封闭空间,只在进样口处保留进样用的通口。样本液驱动装置通过挤压弹性气囊部排出芯片主体内的空气,当样本液驱动装置释放弹性气囊部时,弹性气囊部恢复形变,从而促使与进样口接触的样本液进入芯片主体内的检测池。本发明的微流控生物芯片特别地设计有弹性气囊部,样本液驱动装置与微流控生物芯片之间不再需要连通管路,只是做简单的机械挤压,通过控制弹性气囊部的变形量控制吸液与排气量,不但排除了样本液驱动装置与微流控生物芯片之间的气密性问题,而且还保持了进样控制的精确性。
进一步地,芯片主体和弹性气囊部通过吹塑成型的方式一体成型,也就是说,微流控生物芯片是一个部件,其芯片主体和弹性气囊部仅仅是微流控生物芯片的两个不同的部分,芯片主体和弹性气囊部不需要进行连接,因此,微流控生物芯片本身也不存在任何气密性的问题,彻底地排除了由于气密性问题给微流控检测系统带来的一系列不良影响。
本发明将微流控检测系统集成在冰箱上,充分地利用了冰箱的储物功 能,使得检测过程更加便捷,且便于微流控检测系统与冰箱进行联动控制,智能化程度较高,满足了智慧家庭的需求。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1是根据本发明一个实施例的用于冰箱的微流控检测系统的示意性结构图;
图2是根据本发明一个实施例的微流控检测系统内部结构的示意性结构图;
图3是根据本发明一个实施例的微流控检测系统的部分结构示意性分解图;
图4是根据本发明一个实施例的微流控生物芯片的示意性剖视图;
图5是根据本发明一个实施例的微流控生物芯片的示意性结构分解图;
图6是根据本发明一个实施例的微流控检测系统在部分结构分解状态下的示意性剖视图;
图7是根据本发明一个实施例的冰箱的示意性结构图。
具体实施方式
本发明首先提供一种用于冰箱的微流控检测系统,本发明的微流控检测系统用于对样本液的预设检测参数进行定性或定量检测,该预设检测参数例如可以为用于表示农残量是否超标和/或农残量的具体数值的农残参数、用于表示营养元素是否达标和/或营养元素具体含量的营养参数、用于表示特定有害物质(例如特定病毒)是否超标和/或具体含量的特定物质参数等等。
图1是根据本发明一个实施例的用于冰箱的微流控检测系统的示意性结构图,图2是根据本发明一个实施例的微流控检测系统内部结构的示意性结构图,图3是根据本发明一个实施例的微流控检测系统的部分结构示意性分解图,为了便于理解,图1至图3中还示出了样本杯2。
参见图1至图3,本发明的微流控检测系统1包括微流控生物芯片10、 样本液驱动装置40和检测机构20。
图4是根据本发明一个实施例的微流控生物芯片的示意性剖视图。微流控生物芯片10具有芯片主体11和弹性气囊部12,芯片主体11具有进样口111、吸气口112、以及形成在其内部的检测池113,进样口111、检测池113和吸气口112之间通过微流道114依次连通,从而形成主通道。弹性气囊部12与吸气口112密封地连通。样本液驱动装置40配置成受控地挤压和释放弹性气囊部12,以在弹性气囊部12恢复形变的过程中促使与进样口111接触的样本液进入微流道114并经微流道114流向检测池113。检测机构20用于对检测池113进行检测,以获取样本液的预设检测参数。具体地,检测池113内可设有检测试剂,以在检测池113内的样本液和其内的检测试剂反应后通过检测机构20对检测池113进行检测。
本发明的微流控检测系统1包括微流控生物芯片10,微流控生物芯片10具有芯片主体11和弹性气囊部12,弹性气囊部12与芯片主体11的吸气口112密封地连通,从而在微流控生物芯片10内部形成封闭空间,只在进样口111处保留进样用的通口。样本液驱动装置40通过挤压弹性气囊部12排出芯片主体11内的空气,当样本液驱动装置40释放弹性气囊部12时,弹性气囊部12恢复形变,从而促使与进样口111接触的样本液进入芯片主体11内的检测池113内,与检测池113内的检测试剂进行反应。进一步地,还可以通过样本液驱动装置40反复多次地挤压和释放弹性气囊部12使得样本液与检测试剂充分混匀,提高了检测结果的准确性。
本发明的微流控生物芯片10特别地设计有弹性气囊部12,样本液驱动装置40与微流控生物芯片10之间不再需要连通管路,只是做简单的机械挤压,通过控制弹性气囊部12的变形量控制吸液与排气量,不但排除了样本液驱动装置40与微流控生物芯片10之间的气密性问题,而且还保持了进样控制的精确性。
本领域技术人员可以理解的是,当微流控检测系统用于检测的预设检测参数不同时,其所使用的微流控生物芯片10和检测机构20的具体选择可能也有所不同。例如,当微流控检测系统用于农残检测时,其具有的微流控生物芯片10可以是能够为农残液提供检测条件的微流控农残检测芯片,其具有的检测机构20可以是能够对农残液的农残参数进行检测的农残检测机构。
在一个具体的实施例中,当检测机构20为用于对农残液的农残参数进 行检测的农残检测机构时,可使用酶抑制率法对样本液的农残是否超标进行快速的定性检测。此时,芯片主体11还包括形成在其内部的反应池115,反应池115位于进样口111、检测池113、以及吸气口112依次连通形成的主通道上,并连通在进样口111和检测池113之间,以使得样本液先与反应池115内的反应试剂反应后再流入检测池113。反应池115与进样口111之间、以及反应池115与检测池113之间均通过微通道114连通。用于农残检测的反应试剂和检测试剂可以分别为酶试剂和显色剂。反应池115用于供样本液和其内的酶试剂反应,与酶试剂反应后的样本液流入检测池113,与检测池113内的显色剂进行反应。检测机构20可以选择为光电检测机构,其可以包括光源、光敏元件、加热片和温控器等结构。
在一些实施例中,芯片主体11和弹性气囊部12通过吹塑成型的方式一体成型。也就是说,微流控生物芯片10是一个部件,其芯片主体11和弹性气囊部12仅仅是微流控生物芯片10的两个不同的部分,芯片主体11和弹性气囊部12不需要进行连接,因此,微流控生物芯片10本身也不存在任何气密性的问题,即弹性气囊部12的增加不会给微流控生物芯片10本身带来气密性问题,从而彻底地排除了由于气密性问题给微流控检测系统1带来的一系列不良影响。
图5是根据本发明一个实施例的微流控生物芯片的示意性结构分解图。由于芯片主体11和弹性气囊部12通过吹塑成型的方式一体成型,因此,不便于向芯片主体11内形成的检测池113中预先添加检测试剂。为此,在一些实施例中,当芯片主体11和弹性气囊部12吹塑成型后,可以在芯片主体11的其中一个侧表面11a上开设与检测池113相连通的试剂添加孔116,以通过试剂添加孔116向检测池113内添加检测试剂。当芯片主体11内还形成有反应池115时,可以通过同样的方式(即在芯片主体11的侧表面开设与反应池115连通的试剂添加孔117)向反应池115内添加反应试剂。优选地,两个试剂添加孔可以开设在芯片主体11的同一侧表面,以便于密封两个试剂添加孔。
进一步地,微流控生物芯片10还包括密封地贴附在芯片主体11的其中一个侧表面11a(即开设有试剂添加孔的侧表面)的密封贴片13,以封闭试剂添加孔116和另一试剂添加孔117。优选地,芯片主体11的上述侧表面11a可以为平行于其宽度方向和长度方向的侧表面。这是因为,由于平行于 芯片主体11宽度方向和长度方向的侧表面的表面积较大,便于在芯片主体11和密封贴片13之间形成面积较大的贴合面,提高二者之间的密封效果。并且,由于芯片主体11与密封贴片13的贴合是在微流控生物芯片10安装之前完成的,没有操作空间及密封方式的限制,因此,芯片主体11与密封贴片13之间可以实现有效的、良好的密封。
需要指出的是,芯片主体11和弹性气囊部12的材料以及弹性气囊部12的形状设置成使得样本液驱动装置40释放弹性气囊部12后,弹性气囊部12能够在自身的弹性形变恢复力作用下恢复形变。
在一些实施例中,弹性气囊部12具有沿芯片主体11的长度方向延伸的螺纹形状或波纹形状,样本液驱动装置40配置成受控地向弹性气囊部12施加平行于其延伸方向上的挤压作用力,以促使弹性气囊部12沿其延伸方向产生弹性变形。也就是说,样本液驱动装置40向弹性气囊部12施加的挤压作用力的方向与弹性气囊部12的延伸方向一致。弹性气囊部12可以在样本液驱动装置40的挤压下沿芯片主体11的长度方向弹性收缩,样本液驱动装置40释放弹性气囊部12后,弹性气囊部12能够依靠自身的弹性复位。
具体地,弹性气囊部12可以为沿芯片主体11的长度方向延伸的螺纹管或波纹管等。
在一些实施例中,进样口111位于芯片主体11的底部,弹性气囊部12位于芯片主体11的顶部。样本液驱动装置40位于微流控生物芯片10的上方,且配置成受控地向下挤压弹性气囊部12。也就是说,当微流控生物芯片10安装完毕后,芯片主体11的长度方向为竖直方向,既便于进样口111与样本液接触,又便于样本液驱动装置40的布置。
在一些实施例中,微流控检测系统1还包括芯片安装机构30。申请人认识到,由于微流控生物芯片10与样本液驱动装置40之间不存在气密性问题,即在微流控生物芯片10安装时不需要再考虑其与样本液驱动装置40之间的密封对接结构,只需要确保微流控生物芯片10安装后保持稳定可靠即可。因此,本发明的芯片安装机构30不需要设计非常复杂的结构,只需要能够保持微流控生物芯片10即可。
为此,本发明的芯片安装机构30具有用于容置微流控生物芯片10的安装槽31。微流控生物芯片10配置成通过安装槽31的槽口插入安装槽31内,不但实现了微流控生物芯片10的有效安装,而且还在很大程度上简化了微 流控检测系统1的结构。
进一步地,芯片主体11的进样口111处于安装槽31外部,以在微流控生物芯片10处于安装状态时便于进样口111吸取样本液。
在一些实施例中,进样口111位于芯片主体11的底部,弹性气囊部12位于芯片主体11的顶部。由于弹性气囊部12是弹性可收缩变形的,因此,微流控生物芯片10不易采用从下往上的安装方式。
为此,本发明进一步将安装槽31设置成沿竖向延伸,微流控生物芯片10配置成沿平行于水平面的方向插入安装槽31内。也就是说,弹性气囊部12与芯片主体11平行安装,弹性气囊部12不会对芯片主体11的装配产生任何阻碍或影响,同时还可以通过安装槽31的结构设计仅使得芯片主体11保持在安装槽31内不动,允许弹性气囊部12在安装槽31内毫无阻碍地产生弹性形变。
在一些实施例中,安装槽31包括用于容置芯片主体11的第一槽段311和用于容置弹性气囊部12的第二槽段312,即第一槽段311位于第二槽段312的下方。第一槽段311的尺寸小于第二槽段312的尺寸,以在第一槽段311和第二槽段312的分界处形成台阶部32。弹性气囊部12的底部抵接于台阶部32,以避免微流控生物芯片10往下掉落。由此,整个微流控生物芯片10可支撑在安装槽31内,实现了微流控生物芯片10在竖直方向上的定位。本发明利用安装槽31结构尺寸的简单设计在竖直方向上对微流控生物芯片10进行定位,结构非常简单。
图6是根据本发明一个实施例的微流控检测系统在部分结构分解状态下的示意性剖视图。在一些实施例中,芯片安装机构30还具有设置于安装槽31内的至少一个卡紧件33,卡紧件33配置成在微流控生物芯片10插入安装槽31后卡紧芯片主体11,以避免样本液驱动装置40挤压或释放弹性气囊部12的过程中导致微流控生物芯片10产生倾斜、晃动或从安装槽31中脱离,从而在水平方向上对微流控生物芯片10进行限位。
具体地,安装槽31内可形成有用于容置卡紧件33的容置空间,卡紧件33限制在该容置空间中,并能够在一定范围内产生弹性形变,以保持其对芯片主体11较佳的卡紧作用力。
进一步地,卡紧件33可包括两个对称且间隔设置的夹爪331,两个夹爪331配置成在微流控生物芯片10安装至安装槽31后分别向芯片主体11的两 个相对的侧表面施加相向的弹性作用力,从而更加平稳地保持微流控生物芯片10。
在一些实施例中,样本液驱动装置40包括驱动电机41和推杆42。推杆42与驱动电机41相连,且配置成在驱动电机41转动时沿驱动电机41的输出轴平移。具体地,驱动电机41的输出轴可平行于弹性气囊部12的延伸方向,以在驱动电机41转动时利用推杆42挤压弹性气囊部12或释放弹性气囊部12。
在一些实施例中,微流控检测系统1还包括称重台81和托架82。称重台81固定设置在一支撑架83上,且用于测量置于其上的样本杯2中容装的样本的重量。可以理解的是,称重台81可以测量样本杯2和其内容装的样本的重量之和,再减去样本杯2本身的重量,得到样本的重量。称重台81也可以设置成直接检测样本杯2中容装的样本的重量,例如去皮测量。托架82配置成受控地或可操作地运动,以带动样本杯2运动至允许样本杯2中的样本液与微流控生物芯片10的进样口111相接触的最高位置。
在一些实施例中,微流控检测系统1还包括缓冲液瓶51和缓冲液驱动装置52。缓冲液瓶51用于容装缓冲液。缓冲液驱动装置52与缓冲液瓶51连通,以受控地驱动缓冲液瓶51内的缓冲液进入放置在称重台81上的样本杯2,从而使缓冲液与样本杯2中的样本混合后产生样本液。具体地,缓冲液驱动装置52可以为蠕动泵、隔膜泵或其他合适类型的驱动装置。
在一些实施例中,微流控检测系统1还包括壳体90。壳体90上形成有朝向其前侧敞开的操作台,称重台81至少部分地位于操作台中,从而便于用户在操作台中实施放置样本杯2、取出样本杯2等操作。
本发明的微流控检测系统1特别地设有固定在支撑架83上的称重台81和能够带动样本杯2运动的托架82。在检测时,用户只需要将样本杯2放置在称重台81上,称重台81测量样本的重量,缓冲液驱动装置52向样本杯2中加入适量的缓冲液,托架82即可自动地带动样本杯2移动以向微流控生物芯片10加样,加样操作非常便捷,省时省力,用户使用体验较好。更为重要的是,本发明的称重台81是固定的,其不会随着托架82的运动而运动,因此,托架82的运动不会对称重台81的称重精度产生任何的影响,确保了对样本重量的高精度测量,进而提高了微流控生物芯片10检测结果的准确性。
发明人认识到,当样本杯2置于称重台81上称重时,托架82应当与样本杯2完全脱离、不接触,以避免对样本的称重产生影响。对样本的重量测量完毕后,托架82需要对样本杯2具有保持作用,以带动其一起运动。也就是说,托架82需要具备释放样本杯和保持样本杯这两种状态,并能够根据检测进程自动地在这两种状态之间切换。为了达到这一目的,在本申请之前,本领域技术人员普遍采用的设计思路是为托架设置夹持机构,通过对夹持机构的动作控制使托架在释放样本杯和保持样本杯的两种状态之间自动切换。然而,申请人认识到,这种传统的设计思路比较落后,且存在诸多缺点。例如,夹持机构增加了托架的结构复杂程度,且需要为夹持机构的动作切换保留空间,以避免与其他结构产生干涉或碰撞,这都将导致微流控检测系统的体积增大,不适用于空间有限的冰箱。再如,样本杯的保持,尤其是样本杯的释放需要与检测进程保持高度一致,即当称重台需要测量样本的重量时,必须确保夹持机构处于释放样本杯的状态;只有在称重台测量完样本的重量后,夹持机构才能夹持样本杯,这些对夹持机构的状态切换的时间控制精度要求非常高,若稍有偏差或者出现误差积累很容易导致整个检测流程紊乱从而得不到正确的检测结果。
为此,发明人尝试突破传统的设计思路,设计出了一种全新的托架结构。在一些实施例中,托架82设置于称重台81的上方,且包括套设在样本杯2外部的环形框821。托架82配置成受控地或可操作地沿上下方向运动,并在向上运动时利用环形框821将样本杯2托起使得样本杯2离开称重台81、在向下运动至最低位置的过程中使得样本杯2支撑在称重台81上并利用样本杯2与称重台81之间的抵接作用促使样本杯2与环形框821脱离。
也就是说,在托架82向上运动时,环形框821可自然地将样本杯2托起以使其离开称重台81;在托架82向下运动至某一位置时,样本杯2支撑在称重台81上,托架82继续向下运动至最低位置的过程中,利用样本杯2与称重台81之间的抵接作用促使样本杯2与环形框821脱离,由此,托架82不会对样本的重量检测产生任何影响。可见,本发明的托架82是在其升降过程中完成了对样本杯2的托起和释放之间的自然切换,不需要设计任何托起或释放的控制程序,不但托架82的结构非常简单,而且托架82的控制逻辑也非常简单。
本发明还提供一种冰箱,图7是根据本发明一个实施例的冰箱的示意性 结构图。本发明的冰箱100包括上述任一实施例所涉及的微流控检测系统1,以将微流控检测系统1集成在冰箱100上。冰箱100在日常生活中的使用频率较高,并且冰箱100主要用来储存食材,当将微流控检测系统1集成在冰箱100上后,可以便于用户利用微流控检测系统1执行食材样本的检测操作。
本发明将微流控检测系统1集成在冰箱100上,充分地利用了冰箱100的储物功能,使得检测过程更加便捷,且便于微流控检测系统1与冰箱100进行联动控制,智能化程度较高,满足了智慧家庭的需求。
进一步地,冰箱100还包括箱体200和门体300,箱体200内限定有储物空间,门体300连接于箱体200,且用于打开和/或关闭储物空间。微流控检测系统1优选设置在门体300上,不但操作起来比较方便,而且还不会占用箱体200内原有的储物空间,不会对冰箱100本身的储物能力产生影响。
本申请的冰箱100为广义上的冰箱,其不但包括通常所说的狭义上的冰箱,而且还包括具有冷藏、冷冻或其他储物功能的储物装置,例如,冷藏箱、冷柜等等。
本领域技术人员还应理解,本发明实施例中所称的“上”、“下”、“前”、“后”、“顶”、“底”等用于表示方位或位置关系的用语是以微流控检测系统1和冰箱100的实际使用状态为基准而言的,这些用语仅是为了便于描述和理解本发明的技术方案,而不是指示或暗示所指的装置或不见必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。

Claims (10)

  1. 一种用于冰箱的微流控检测系统,包括:
    微流控生物芯片,具有芯片主体和弹性气囊部,所述芯片主体具有进样口、吸气口、以及形成在其内部的检测池,所述进样口、所述检测池和所述吸气口之间通过微流道依次连通,所述弹性气囊部与所述吸气口密封地连通;
    样本液驱动装置,配置成受控地挤压和释放所述弹性气囊部,以在所述弹性气囊部恢复形变的过程中促使与所述进样口接触的样本液进入所述微流道并经所述微流道流向所述检测池;以及
    检测机构,用于对所述检测池进行检测,以获取所述样本液的预设检测参数;其中
    所述芯片主体和所述弹性气囊部通过吹塑成型的方式一体成型。
  2. 根据权利要求1所述的微流控检测系统,其中,
    所述芯片主体的其中一个侧表面开设有与所述检测池相连通的试剂添加孔,以通过所述试剂添加孔向所述检测池内添加检测试剂;且
    所述微流控生物芯片还包括密封地贴附在所述芯片主体的所述其中一个侧表面的密封贴片,以封闭所述试剂添加孔。
  3. 根据权利要求1所述的微流控检测系统,其中,
    所述弹性气囊部具有沿所述芯片主体的长度方向延伸的螺纹形状或波纹形状;且
    所述样本液驱动装置配置成受控地向所述弹性气囊部施加平行于其延伸方向上的挤压作用力,以促使所述弹性气囊部沿其延伸方向产生弹性变形。
  4. 根据权利要求3所述的微流控检测系统,其中,
    所述进样口位于所述芯片主体的底部,所述弹性气囊部位于所述芯片主体的顶部;且
    所述样本液驱动装置位于所述微流控生物芯片的上方,且配置成受控地向下挤压所述弹性气囊部。
  5. 根据权利要求1-4中任一所述的微流控检测系统,还包括:
    芯片安装机构,具有用于容置所述微流控生物芯片的安装槽;且
    所述微流控生物芯片配置成通过所述安装槽的槽口插入所述安装槽内,所述芯片主体的进样口处于所述安装槽外部。
  6. 根据权利要求5所述的微流控检测系统,其中,
    所述进样口位于所述芯片主体的底部,所述弹性气囊部位于所述芯片主体的顶部;且
    所述安装槽沿竖向延伸,所述微流控生物芯片配置成沿平行于水平面的方向插入所述安装槽内。
  7. 根据权利要求6所述的微流控检测系统,其中,
    所述安装槽包括用于容置所述芯片主体的第一槽段和用于容置所述弹性气囊部的第二槽段,所述第一槽段的尺寸小于所述第二槽段的尺寸,以在所述第一槽段和所述第二槽段的分界处形成台阶部;且
    所述弹性气囊部的底部抵接于所述台阶部。
  8. 根据权利要求5所述的微流控检测系统,其中,
    所述芯片安装机构还具有设置于所述安装槽内的至少一个卡紧件,所述卡紧件配置成在所述微流控生物芯片插入所述安装槽后卡紧所述芯片主体。
  9. 根据权利要求8所述的微流控检测系统,其中,
    所述卡紧件包括两个对称且间隔设置的夹爪,两个所述夹爪配置成在所述微流控生物芯片安装至所述安装槽后分别向所述芯片主体的两个相对的侧表面施加相向的弹性作用力。
  10. 一种冰箱,包括权利要求1-9任一所述的微流控检测系统。
PCT/CN2022/126154 2021-11-25 2022-10-19 用于冰箱的微流控检测系统及冰箱 WO2023093383A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111414254.4 2021-11-25
CN202111414254.4A CN116159606A (zh) 2021-11-25 2021-11-25 用于冰箱的微流控检测系统及冰箱

Publications (1)

Publication Number Publication Date
WO2023093383A1 true WO2023093383A1 (zh) 2023-06-01

Family

ID=86415071

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/126154 WO2023093383A1 (zh) 2021-11-25 2022-10-19 用于冰箱的微流控检测系统及冰箱

Country Status (2)

Country Link
CN (1) CN116159606A (zh)
WO (1) WO2023093383A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117214453A (zh) * 2023-11-07 2023-12-12 长春迈克赛德医疗科技有限公司 一种吸样针系统及吸样方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102671729A (zh) * 2012-05-07 2012-09-19 博奥生物有限公司 一种用于多指标生化检测的微流控芯片
CN204514801U (zh) * 2015-04-01 2015-07-29 杭州霆科生物科技有限公司 一种用于农药残留现场检测的可抛型微流控芯片
CA3017978A1 (en) * 2015-04-24 2016-10-27 Mesa Biotech, Inc. Fluidic test cassette
CN205731290U (zh) * 2015-12-23 2016-11-30 杭州霆科生物科技有限公司 一种预存储反应试剂的食品安全检测用微流控芯片
CN214041434U (zh) * 2020-09-27 2021-08-24 青岛海尔电冰箱有限公司 用于冰箱的微流控检测系统及冰箱
CN214039171U (zh) * 2020-09-27 2021-08-24 青岛海尔电冰箱有限公司 用于冰箱的微流控检测系统及冰箱

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207393445U (zh) * 2017-11-10 2018-05-22 威海波斯顿游艇股份有限公司 一种基于汽艇的手自一体化充气装置
CN208031626U (zh) * 2017-12-07 2018-11-02 李刚 一种便携式简易呼吸器
CN212674733U (zh) * 2020-07-01 2021-03-09 江西远东生物科技有限公司 一种用于医用一次性口罩生产的检测设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102671729A (zh) * 2012-05-07 2012-09-19 博奥生物有限公司 一种用于多指标生化检测的微流控芯片
CN204514801U (zh) * 2015-04-01 2015-07-29 杭州霆科生物科技有限公司 一种用于农药残留现场检测的可抛型微流控芯片
CA3017978A1 (en) * 2015-04-24 2016-10-27 Mesa Biotech, Inc. Fluidic test cassette
CN205731290U (zh) * 2015-12-23 2016-11-30 杭州霆科生物科技有限公司 一种预存储反应试剂的食品安全检测用微流控芯片
CN214041434U (zh) * 2020-09-27 2021-08-24 青岛海尔电冰箱有限公司 用于冰箱的微流控检测系统及冰箱
CN214039171U (zh) * 2020-09-27 2021-08-24 青岛海尔电冰箱有限公司 用于冰箱的微流控检测系统及冰箱

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117214453A (zh) * 2023-11-07 2023-12-12 长春迈克赛德医疗科技有限公司 一种吸样针系统及吸样方法
CN117214453B (zh) * 2023-11-07 2024-04-05 长春迈克赛德医疗科技有限公司 一种吸样针系统及吸样方法

Also Published As

Publication number Publication date
CN116159606A (zh) 2023-05-26

Similar Documents

Publication Publication Date Title
CN214039111U (zh) 冰箱
US11987842B2 (en) Sequencing device
WO2022062909A1 (zh) 冰箱
WO2023093383A1 (zh) 用于冰箱的微流控检测系统及冰箱
CN214039171U (zh) 用于冰箱的微流控检测系统及冰箱
CN214039173U (zh) 用于冰箱的微流控检测系统及冰箱
CN214039172U (zh) 用于冰箱的农残检测系统及冰箱
WO2021196742A1 (zh) Poct血细胞分析仪及其检测方法
WO2022062905A1 (zh) 用于冰箱的微流控检测系统及冰箱
WO2022062994A1 (zh) 微流控检测系统及其控制方法、冰箱
CN114324904A (zh) 用于冰箱的微流控检测系统及冰箱
WO2023093382A1 (zh) 用于冰箱的微流控检测系统及冰箱
EP3572816B1 (en) Automated analyzer, liquid discharge method for automated analyzer, and three-way solenoid valve
WO2023045438A1 (zh) 用于冰箱的微流控检测系统及冰箱
CN114324909A (zh) 用于冰箱的微流控检测系统及冰箱
CN114324913A (zh) 用于冰箱的微流控检测系统及冰箱
WO2022062919A1 (zh) 冰箱
WO2023045439A1 (zh) 用于冰箱的微流控检测系统及冰箱
JP3776236B2 (ja) 検体検査装置における試薬容器の口部密閉装置
CN115248328A (zh) Poct血细胞分析仪及其使用方法
CN211996634U (zh) 一种定量取液真空生物试剂储存瓶
CN213600715U (zh) 一种质控品检测卡
CN114324903A (zh) 用于冰箱的微流控检测系统及其控制方法、冰箱
CN219278316U (zh) 一种便于存取样本的农药检测仪
CN216525869U (zh) Poct血细胞分析仪、检测座

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22897466

Country of ref document: EP

Kind code of ref document: A1