WO2022062994A1 - 微流控检测系统及其控制方法、冰箱 - Google Patents

微流控检测系统及其控制方法、冰箱 Download PDF

Info

Publication number
WO2022062994A1
WO2022062994A1 PCT/CN2021/118504 CN2021118504W WO2022062994A1 WO 2022062994 A1 WO2022062994 A1 WO 2022062994A1 CN 2021118504 W CN2021118504 W CN 2021118504W WO 2022062994 A1 WO2022062994 A1 WO 2022062994A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample liquid
detection
liquid
sample
driving device
Prior art date
Application number
PCT/CN2021/118504
Other languages
English (en)
French (fr)
Inventor
赵斌堂
费斌
刘浩泉
Original Assignee
青岛海尔电冰箱有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔电冰箱有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔电冰箱有限公司
Priority to US18/246,530 priority Critical patent/US20230375586A1/en
Priority to EP21871365.9A priority patent/EP4206649A4/en
Publication of WO2022062994A1 publication Critical patent/WO2022062994A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1009Characterised by arrangements for controlling the aspiration or dispense of liquids
    • G01N35/1016Control of the volume dispensed or introduced
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/14Process control and prevention of errors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N2035/1027General features of the devices
    • G01N2035/1034Transferring microquantities of liquid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N2035/1027General features of the devices
    • G01N2035/1048General features of the devices using the transfer device for another function
    • G01N2035/1062General features of the devices using the transfer device for another function for testing the liquid while it is in the transfer device
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/02Food

Definitions

  • the invention relates to refrigeration and freezing technology, in particular to a control method of a microfluidic detection system, a microfluidic detection system and a refrigerator.
  • the detection method using a microfluidic biochip is relatively fast and small in size, which is suitable for home use.
  • a driving device can be used to drive the sample liquid into the microfluidic biochip.
  • the mixing between the sample liquid and the reagents in the microfluidic biochip is very uneven, resulting in an insufficient reaction between the two, which affects the accuracy of the detection results.
  • One object of the first aspect of the present invention is to overcome at least one defect of the prior art, and to provide a microfluidic detection system capable of improving the mixing uniformity between the sample liquid entering the microfluidic biochip and the reagents therein control methods to ensure the accuracy of test results.
  • a further object of the first aspect of the present invention is to avoid the problem of contamination caused by part of the sample liquid flowing out of the sample inlet when the sample liquid driving device performs the liquid pushing action.
  • Another further object of the first aspect of the present invention is to further improve the accuracy of the detection result.
  • the object of the second aspect of the present invention is to provide a microfluidic detection system that operates according to any of the above control methods.
  • the object of the third aspect of the present invention is to provide a refrigerator with a microfluidic detection system operating according to any of the above methods.
  • the present invention provides a control method for a microfluidic detection system
  • the microfluidic detection system includes a microfluidic biological chip, a sample liquid driving device and a detection mechanism, the microfluidic biological
  • the chip has a sample inlet for receiving the sample liquid, a communication port communicated with the sample liquid driving device, and a detection pool formed inside the microfluidic biochip, the sample inlet, the detection pool, and the communication ports are connected in sequence;
  • the control method includes:
  • the detection cell is detected by the detection mechanism, and the sample liquid driving device is controlled to periodically and repeatedly perform a first liquid pushing operation.
  • the first liquid pushing action for flowing out in the direction of the sample inlet and the first liquid suction action for promoting the inflow of the sample liquid toward the direction of the detection cell.
  • the microfluidic biochip further has a reaction cell connected between the detection cell and the injection port, the injection port, the reaction cell, the detection cell and the communication port
  • the ports are sequentially connected through the microchannels
  • control method Before driving the sample liquid to flow into the detection cell, the control method further includes:
  • the sample liquid driving device is activated when the sample inlet is in contact with the sample liquid, so as to drive the sample liquid to flow into the reaction cell through the sample liquid driving device.
  • control method after driving the sample liquid to flow into the reaction cell and before driving the sample liquid to flow into the detection cell, the control method further includes:
  • the sample liquid driving device is controlled to periodically and repeatedly perform the second pushing and aspiration operation until the number of times the second pushing and aspiration operation is performed reaches a second preset number of times; wherein, the second pushing and aspiration operation includes using
  • the second liquid pushing action is used to promote the sample liquid to flow in the direction toward the sample inlet
  • the second liquid suction action is used to promote the sample liquid to flow in the direction toward the reaction cell.
  • control method further includes:
  • control method further includes:
  • the sample liquid driving device is controlled to periodically and repeatedly perform the second liquid pushing and aspiration operation.
  • the step of judging whether the amount of the sample liquid in the reaction tank reaches a preset sample liquid volume value includes:
  • the detection mechanism includes a light source and a photosensitive element respectively disposed on two opposite sides of the detection cell; wherein, the step of detecting the detection cell by the detection mechanism includes:
  • the preset detection parameters of the sample liquid are calculated according to the light intensity signal.
  • control method further includes:
  • the light intensity signal If the light intensity signal is stable, stop the first pumping operation of the sample liquid driving device, and calculate the preset detection parameters of the sample liquid according to the light intensity signal; if the light intensity signal is unstable, then judging whether the number of times of the first pushing and aspirating operation performed by the sample liquid driving device reaches a first preset number of times;
  • control method further includes:
  • the heating module is stopped when the temperature of the detection pool is higher than a preset temperature upper limit value, and the heating module is restarted when the temperature in the detection pool is lower than a preset temperature lower limit value.
  • control method further includes:
  • the amount of the sample liquid pushed out by the sample liquid driving device by performing the first pushing action is the same as the amount sucked by the first pushing action. the same amount of sample fluid;
  • controlling the sample liquid driving device to periodically and repeatedly perform the first pushing and aspiration operation includes:
  • the sample liquid driving device After waiting for a second preset time period, the sample liquid driving device is controlled again to perform the first liquid pushing action, and the process is repeated.
  • the present invention further provides a microfluidic detection system, the microfluidic detection system operates according to any one of the above control methods.
  • the present invention further provides a refrigerator, which includes a microfluidic detection system operating according to any one of the above control methods.
  • the sample liquid driving device is controlled to periodically and repeatedly perform the first liquid pushing and suction operation including the first liquid pushing action and the first liquid suction action.
  • the driving force of a suction action on the sample liquid is opposite, so it can promote the sample liquid to flow back and forth repeatedly in the microfluidic biochip, thereby promoting the mixing between the sample liquid and the reagent, and improving the mixing effect of the two. It is convenient for the sufficient reaction between the sample liquid and the reagent, and the accuracy of the detection result is improved.
  • the sample liquid driving device first performs a liquid suction action (ie, the third liquid suction action), so that at least a part of the microfluidic channel connected between the reaction cell and the sample inlet is made.
  • the sample liquid flows into the reaction tank, so that a preset space margin is formed in the microfluidic channel for accommodating the sample liquid pushed out when the sample liquid driving device performs the second liquid pushing action. Therefore, the problem of contamination caused by pushing out a small amount of sample liquid from the injection port when the sample liquid driving device performs the second liquid pushing action can be avoided.
  • the present application also precisely controls the amount of the sample liquid entering the reaction pool to match the amount of the reagents in the chip, so as to avoid the influence of too much or too little sample liquid on the detection results, and further improve the performance of the test results. Accuracy of test results.
  • the present application also makes the amount of the sample liquid pushed out and the amount of the sample liquid sucked in the same push and suction operation to be the same, so as to avoid the accumulation of large errors after performing the push and suction operation for many times and affect the test results. accuracy.
  • FIG. 1 is a schematic structural diagram of a microfluidic detection system according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of a microfluidic biochip according to an embodiment of the present invention
  • FIG. 3 is a schematic flowchart of a control method of a microfluidic detection system according to the first embodiment of the present invention
  • FIG. 4 is a schematic flowchart of a control method of a microfluidic detection system according to a second embodiment of the present invention.
  • FIG. 5 is a schematic flowchart of a control method of a microfluidic detection system according to a third embodiment of the present invention.
  • FIG. 6 is a schematic flowchart of a control method of a microfluidic detection system according to a fourth embodiment of the present invention.
  • FIG. 7 is a schematic flowchart of a control method of a microfluidic detection system according to a fifth embodiment of the present invention.
  • FIG. 8 is a schematic flow chart of detecting a detection cell by a detection mechanism according to an embodiment of the present invention.
  • FIG. 9 is a schematic flow chart of detecting a detection cell by a detection mechanism according to another embodiment of the present invention.
  • FIG. 10 is a schematic flow chart of controlling the sample liquid driving device to periodically and repeatedly perform the first pushing and aspiration operation according to an embodiment of the present invention
  • FIG. 11 is a schematic flowchart of a sample adding process of a microfluidic detection system according to an embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of a refrigerator according to an embodiment of the present invention.
  • the present application first provides a control method for a microfluidic detection system, which is used to qualitatively or quantitatively detect preset detection parameters of a sample liquid.
  • the preset detection parameters may be, for example, a pesticide residue parameter used to indicate whether the pesticide residue level exceeds the standard and/or a specific value of the pesticide residue amount, a nutritional parameter used to indicate whether the nutrient element meets the standard and/or the specific content of the nutrient element, a Specific substance parameters indicating whether a specific harmful substance (such as a specific virus) exceeds the standard and/or a specific content, etc.
  • control method of the microfluidic detection system can be divided into two parts: sample addition and detection.
  • the present application first specifically describes the detection part.
  • FIG. 1 is a schematic structural diagram of a microfluidic detection system according to an embodiment of the present invention.
  • a sample cup 2 is also shown in FIG. 1 .
  • the microfluidic detection system 1 involved in the present invention includes a microfluidic biochip 10 , a sample liquid driving device 40 and a detection mechanism 20 .
  • 2 is a schematic cross-sectional view of a microfluidic biochip according to an embodiment of the present invention.
  • the microfluidic biochip 10 has a sample inlet 111 for receiving a sample liquid, a communication port 112 communicating with the sample liquid driving device 40, and a detection cell 121 formed inside the microfluidic biochip 10, and the detection cell 121 is used for The detection reagent is contained, and the sample inlet 111, the detection cell 121, and the communication port 112 are connected in sequence.
  • the microfluidic biochip 10 is usually fixed, and the sample liquid driving device 40 and the microfluidic biochip 10 are usually in sealed communication, and when the microfluidic detection system 1 is integrated
  • the microfluidic biochip 10 is preferably placed vertically with the injection port at the bottom. Therefore, it is not suitable to promote uniform mixing between the sample liquid and the reagent by means of oscillation, because the oscillation amplitude of the microfluidic biochip 10 is It is very limited, and a series of problems such as gas leakage at the connection between the sample liquid driving device 40 and the microfluidic biochip 10 and liquid leakage at the sample inlet 111 may occur during the oscillation process.
  • FIG. 3 is a schematic flowchart of a control method for a microfluidic detection system according to the first embodiment of the present invention.
  • Control methods include:
  • Step S70 driving the sample liquid to flow into the detection cell 121 through the sample liquid driving device 40;
  • step S80 the detection cell 121 is detected by the detection mechanism 20, and the sample liquid driving device 40 is controlled to periodically and repeatedly perform the first liquid pushing operation; The first liquid pushing action for outflow in the direction of the sample port 111 and the first liquid suction action for prompting the inflow of the sample liquid in the direction of the detection cell 121 .
  • the microfluidic detection system of the present invention drives the sample liquid to automatically flow into the microfluidic biochip through the sample liquid driving device, which does not require manual operation by the user, and is convenient for precise control.
  • the control method of the present application controls the sample liquid driving device 40 to periodically and repeatedly perform the first liquid pushing and suction operation including the first liquid pushing action and the first liquid suction action after the sample liquid flows into the detection cell 121.
  • the driving force of the liquid action and the first suction action to the sample liquid is opposite, so the sample liquid can be urged to flow back and forth repeatedly in the microfluidic biochip 10, thereby promoting the mixing between the sample liquid and the detection reagent, and improving the performance of the sample liquid.
  • the mixing effect of the two facilitates sufficient reaction between the sample liquid and the detection reagent, and improves the accuracy of the detection result.
  • the amount of sample liquid pushed out by the sample liquid driving device 40 by performing the first liquid pushing action is the same as the amount of sample liquid sucked by the first liquid pushing action. In this way, it can be ensured that the final amount of the sample liquid in the detection cell 121 remains unchanged, and the accuracy of the detection result can be prevented due to the accumulation of large errors caused by the multiple execution of the first liquid pushing and aspiration operation.
  • the microfluidic biochip 10 further has a reaction cell 122 connected between the detection cell 121 and the injection port 111 , and the injection port 111 , the reaction cell 122 , the detection cell 121 and the communication port 112 pass through the microchannel 14 are connected in sequence to form a main channel.
  • a reaction cell 122 connected between the detection cell 121 and the injection port 111 , and the injection port 111 , the reaction cell 122 , the detection cell 121 and the communication port 112 pass through the microchannel 14 are connected in sequence to form a main channel.
  • the detection reagent For a specific sample solution or some specific detection parameters of the sample solution, it may be necessary to make the sample solution react with the reaction reagent first, and then react with the detection reagent. Setting the detection parameters can avoid the reaction or mutual influence between the reaction reagent and the detection reagent, and improve the accuracy of the detection result.
  • the enzyme inhibition rate method is preferred, because it can qualitatively detect the pesticide residue content, the detection speed is faster, and it is more suitable for household use.
  • the reaction reagents and detection reagents used for the microfluidic biochip 10 may be enzyme reagents and color developing reagents, respectively.
  • the reaction cell 122 is used for reacting the sample liquid with the enzyme reagent therein, and the sample liquid reacted with the enzyme reagent flows into the detection cell 121 to react with the color developing agent in the detection cell 121 .
  • FIG. 4 is a schematic flowchart of a control method of a microfluidic detection system according to a second embodiment of the present invention. Referring to FIG. 4 , in these embodiments, before the step S70 of driving the sample liquid to flow into the detection cell 121, this The invented control method also includes:
  • step S30 the sample liquid driving device 40 is activated when the sample inlet 111 is in contact with the sample liquid, so as to drive the sample liquid to flow into the reaction cell 122 through the sample liquid driving device 40 .
  • FIG. 5 is a schematic flowchart of a control method of a microfluidic detection system according to a third embodiment of the present invention.
  • the control method of the present invention further includes:
  • step S60 the sample liquid driving device 40 is controlled to periodically and repeatedly execute the second liquid pushing and aspiration operation until the number of times of the second pushing and aspiration operation reaches a second preset number of times.
  • the second liquid pushing operation includes a second liquid pushing action for promoting the sample liquid to flow in the direction toward the sample inlet 111 and a second liquid aspirating action for promoting the sample liquid to flow in the direction toward the reaction cell 122 .
  • the second preset number of times is a preset number of times that the sample liquid and the reaction reagent can be uniformly mixed according to the experimental verification.
  • the sample liquid can be urged to flow back and forth in the microfluidic biochip 10 repeatedly, thereby promoting the interaction between the sample liquid and the reaction reagent. Mixing improves the mixing effect of the two and facilitates a sufficient reaction between the two.
  • the amount of sample liquid pushed out by the sample liquid driving device 40 by performing the second liquid pushing action is the same as the amount of the sample liquid sucked by the second liquid pushing action. In this way, it can be ensured that the final amount of the sample liquid in the reaction cell 122 remains unchanged, so as to avoid the accumulation of large errors caused by the multiple execution of the second liquid pumping operation, which will affect the amount of the sample liquid flowing to the detection cell 121, thereby affecting the amount of the sample liquid flowing to the detection cell 121. Accuracy of test results.
  • FIG. 6 is a schematic flowchart of a control method of a microfluidic detection system according to a fourth embodiment of the present invention.
  • the Control methods after the step S30 of driving the sample liquid to flow into the reaction cell 122 and before the step S60 of controlling the sample liquid driving device 40 to periodically and repeatedly perform the second pumping and pipetting operation, the Control methods also include:
  • Step S51 switching the microfluidic biochip 10 to a state where the sample inlet is separated from the sample liquid
  • Step S52 control the sample liquid driving device 40 to perform a third suction action for causing the sample liquid to flow in the direction of the reaction cell 122, so that at least the liquid in the microfluidic channel connected between the reaction cell 122 and the injection port 111 is at least A part of the sample liquid flows into the reaction tank 122 , thereby forming a preset space margin in the microfluidic channel for accommodating the sample liquid pushed out when the sample liquid driving device 40 performs the second liquid pushing action.
  • the sample liquid driving device 40 first performs a liquid suction action (ie, the third liquid suction action), so that the sample liquid can be placed in the microfluidic channel connected between the reaction cell and the sample inlet. At least a part of the sample liquid of the sample liquid flows into the reaction tank 122, thereby forming a preset space margin in the microfluidic channel for accommodating the sample liquid pushed out when the sample liquid driving device 40 performs the second liquid pushing action. In this way, the problem of contamination caused by pushing out a small amount of sample liquid from the sample inlet 111 when the sample liquid driving device 40 performs the second liquid pushing action can be avoided.
  • a liquid suction action ie, the third liquid suction action
  • control method of the present invention may not include step S52, and it is only necessary to first perform the second liquid suction operation when the sample liquid driving device 40 performs the second liquid pushing operation, and then perform the second pushing operation. liquid action.
  • a preset space margin can also be left in the micro-flow channel between the reaction cell and the injection port, so as to prevent the sample liquid driving device 40 from pushing out a small amount of sample liquid from the injection port 111 when the sample liquid driving device 40 performs the second liquid pushing action Dirty problem.
  • FIG. 7 is a schematic flowchart of a control method of a microfluidic detection system according to a fifth embodiment of the present invention.
  • the control Methods after the step S30 of driving the sample liquid to flow into the reaction cell 122 and before the step S60 of controlling the sample liquid driving device 40 to periodically and repeatedly perform the second pumping and pipetting operation, the control Methods also include:
  • Step S40 judging whether the amount of the sample liquid in the reaction tank 122 reaches a preset sample liquid volume value
  • step S60 control the sample liquid driving device 40 to periodically and repeatedly perform the second pumping and aspiration operation.
  • the present application also accurately detects and controls the amount of the sample liquid entering the reaction tank 122, so that it matches the amount of the reaction reagents and detection reagents in the chip, so as to avoid too much or too little of the sample liquid. It affects the detection results and further improves the accuracy of the detection results.
  • the sample liquid driving device 40 may form a negative pressure in the main channel of the microfluidic biochip 10 by drawing air outward, so that the sample liquid in contact with the sample inlet 111 is under the action of negative pressure Enter the main channel.
  • the sample liquid driving device 40 can be a micro-syringe pump, and also includes structures such as a driving motor, a syringe, a screw, a slider, and a piston.
  • the displacement amount of the piston in the syringe is positively related to the amount of the sample liquid entering the microfluidic biochip 10 . Therefore, the amount of the sample liquid entering the microfluidic biochip 10 can be determined by detecting the position of the piston by the position sensor.
  • the step S40 of judging whether the amount of the sample liquid in the reaction tank 122 reaches the preset sample liquid volume value may specifically include:
  • control method shown in FIG. 7 may also include steps S51 and S52 in the method shown in FIG. 6 . Specifically, steps S51 and S52 may occur between steps S40 and S60.
  • FIG. 8 is a schematic flowchart of detecting a detection cell by a detection mechanism according to an embodiment of the present invention.
  • the detection mechanism 20 may include a light source and a photosensitive element respectively disposed on two opposite sides of the detection cell 121; wherein, the step of detecting the detection cell 121 by the detection mechanism 20 includes:
  • Step S812 start the light source, so that the light emitted by the light source is irradiated to the detection cell 121;
  • Step S814 obtaining a light intensity signal representing the intensity of light passing through the detection cell 121 through the photosensitive element
  • Step S819 calculating preset detection parameters of the sample liquid according to the light intensity signal.
  • the reaction reagent contained in the reaction cell 122 may be an enzyme reagent
  • the detection reagent contained in the detection cell 121 may be a chromogenic reagent.
  • FIG. 9 is a schematic flowchart of detecting a detection cell by a detection mechanism according to another embodiment of the present invention. Further, after the step S814 of acquiring the light intensity signal and before the step S818 of calculating the preset detection parameters of the sample liquid according to the light intensity signal, the control method of the present application further includes:
  • Step S815 judge whether the light intensity signal is stable; if yes, go to step S816, if not, go to step S817;
  • step S817 it is determined whether the number of times of the first pushing and aspiration operation performed by the sample liquid driving device 40 reaches the first preset number of times; if yes, go to step S818; sex;
  • Step S818, stop the first pushing and aspiration operation, and issue a prompt message indicating that the current detection fails or fails.
  • a relatively stable light intensity signal can be received only after the sample liquid and the detection reagent are fully reacted, and the preset detection parameters of the sample liquid calculated according to the stable light intensity signal are relatively accurate. Therefore, it can be judged whether the sample liquid and the detection reagent are sufficiently reacted by judging whether the light intensity signal is stable. If the two have fully reacted, the sample area driving device 40 does not need to continue to perform the first pushing and aspiration operation, and can stop the first pushing and aspiration operation in time to reduce energy consumption.
  • the sample liquid and the detection reagent may not be able to fully react, for example, the detection reagent fails, or other reasons, etc.
  • the energy consumption can be reduced, and a prompt message is issued to remind the user that the detection is invalid or failed, so that the user can take corresponding measures in a timely manner.
  • control method of the present invention further includes:
  • the heating module is stopped when the temperature of the detection cell 121 is higher than the preset temperature upper limit value, and the heating module is restarted when the temperature in the detection cell 121 is lower than the preset temperature lower limit value.
  • the trigger signal for instructing to start the detection function of the microfluidic detection system may be a power-on signal of the microfluidic detection system, or it may be a signal received by the main switch of the microfluidic detection system for enabling the detection function of the microfluidic detection system. the turn-on signal.
  • control method of the present invention after stopping the first pushing operation of the sample liquid driving device 40, the control method of the present invention further includes:
  • step may occur before step S819 or after step S819.
  • the startup and operation of the heating module, the temperature acquisition of the heating module, and the temperature control of the heating module are continuously performed during the entire detection process to ensure that the detection cell 121 always has a relatively constant temperature range throughout the detection process.
  • control method of the present invention further includes:
  • Step S820 displaying the detection result including the calculated preset detection parameter information on the display device.
  • the display device may be, for example, a display screen or a color indicator light, and may also include a display screen and a color indicator light.
  • FIG. 10 is a schematic flowchart of controlling the sample liquid driving device to periodically and repeatedly perform the first pumping and aspiration operation according to an embodiment of the present invention.
  • controlling the sample liquid driving device 40 to periodically and repeatedly perform the first liquid pushing and aspiration operation specifically includes:
  • Step S822 controlling the sample liquid driving device 40 to perform the first liquid pushing action to push a preset amount of the sample liquid out of the detection cell 121;
  • Step S826 controlling the sample liquid driving device 40 to perform the first suction action, so that the preset amount of sample liquid pushed out of the detection cell 121 flows back into the detection cell 121;
  • Step S828, wait for the second preset time period and then go to step S822.
  • the amount of sample liquid pushed out by the first liquid pushing action and the amount of sample liquid sucked in by the first liquid suction action can be monitored and controlled by the displacement of the piston of the sample liquid driving device 40 in its syringe.
  • the piston moves down a preset distance in the syringe, it is considered that the sample liquid pushed out reaches the preset amount
  • the piston moves up the preset distance in the syringe, it is considered that the sample liquid sucked reaches the preset amount.
  • the first preset duration and the second preset duration may or may not be equal. After each push action or aspiration action, wait for a period of time before executing the next action, which can give the sample liquid and the detection reagent sufficient time to mix and react.
  • the sample liquid needs to be added to the microfluidic biochip 10, that is, the control method of the present invention further includes a sample adding part, which will be described in detail below.
  • FIG. 11 is a schematic flowchart of a sample adding process of a microfluidic detection system according to an embodiment of the present invention.
  • the microfluidic detection system 1 further includes a sample stage 70 for placing the sample cup, a lifting mechanism 60 for driving the sample stage 70 to move, and a buffer driving device 30 for driving the buffer to flow into the sample cup.
  • the control method of the present invention before starting the sample liquid driving device 40, the control method of the present invention further includes:
  • Step S11 detecting the total weight of the articles carried by the sample stage 70;
  • Step S12 judging whether the total weight of the articles carried by the sample table 70 is greater than or equal to the first preset weight value; if so, go to step S13; if not, go to step S14;
  • Step S13 sending out a prompt message for instructing to empty the sample stage 70;
  • Step S14 determine whether the microfluidic biochip 10 has been inserted into its installation position; if yes, go to Step S16, if not, go to Step S15;
  • Step S15 sending out a prompt message for instructing to insert the microfluidic biochip 10;
  • Step S16 determine whether the sample cup has been placed on the sample table 70; if yes, go to step S18, if not, go to step S17;
  • Step S17 sending out a prompt message for instructing to place the sample cup
  • Step S18 detecting the weight of the sample in the sample cup
  • Step S19 calculating the target amount of buffer to be added according to the weight of the sample in the sample cup;
  • step S20 the buffer driving device 30 is activated, and the buffer driving device 30 drives the buffer to flow into the sample cup, so as to generate the sample liquid after mixing with the sample in the sample cup; specifically, the buffer driving device 30 can be combined with the buffer bottle 36 connected to supply buffer to the buffer drive 30 through the buffer bottle 36 .
  • Step S21 when the amount of buffer flowing into the sample cup reaches the above target amount, turn off the buffer driving device 30;
  • Step S22 turning on the oscillating device to oscillate the sample cup by the oscillating device
  • Step S23 when the oscillating device is turned on for a third preset time period, the oscillating device is stopped.
  • Step S24 Activate the lift mechanism 60 , and control the lift mechanism 60 to move the sample stage 70 from the initial position to the detection position where the sample liquid in the sample cup contacts the sample inlet 111 .
  • the user only needs to place the sample cup on the sample table, and no other operations are required.
  • the sample adding operation is very convenient, the degree of automation is high, time and effort are saved, and the user experience is improved.
  • the buffer solution is automatically injected into the sample cup when the sample cup containing the sample is placed on the sample stage 70, so that the sample liquid is mixed with the sample to generate the sample solution, which saves the user manual operation.
  • the process of preparing the sample solution also avoids the problem of poor control of the amount or concentration of the sample solution that may be caused by the manual preparation of the sample solution, improves the accuracy of the concentration and amount of the sample solution, and lays the foundation for the accuracy of the test results.
  • the application can also automatically obtain the weight of the sample, and automatically calculate and output the target amount of buffer according to the weight of the sample, which is convenient for users to take samples at will, and can ensure the accuracy of the test results.
  • the substance to be tested on the sample is promoted to be fully dissolved in the buffer solution by the oscillating device, so as to form a sample solution of a suitable concentration, so as to avoid the problem of inaccurate detection results caused by too low concentration of the sample solution.
  • the present application also automatically detects whether the microfluidic biochip 10 is installed before detecting whether the sample cup is placed on the sample stage 70.
  • a prompt message is sent to prompt the user to install the microfluidic biochip, which is convenient for the user to install the microfluidic biochip before placing the sample cup. Easy installation of microfluidic biochips.
  • the present application also automatically detects whether there are other items on the sample table before detecting whether the microfluidic biochip 10 is installed, such as sample cups left over from the previous detection or other items placed on the sample table by the user, etc. If yes, it will send out an empty
  • the prompt information of the sample stage is convenient for users to operate according to the prompt information, which improves the automation degree of the microfluidic detection system and improves the user experience.
  • control method of the present invention further includes:
  • the lifting mechanism 60 is controlled, and the sample stage 70 is returned to its initial position by controlling the lifting mechanism 60 .
  • the present invention further provides a microfluidic detection system 1, and the microfluidic detection system 1 operates according to the control method described in any of the above embodiments.
  • the microfluidic detection system 1 may include a microfluidic biochip 10 for providing detection conditions and a detection environment, a sample stage 70 for placing the sample cup, a lifting mechanism 60 for driving the movement of the sample stage 70, a The sample liquid driving device 40 for driving the flow of the sample liquid, the buffer liquid driving device 30 for driving the buffer liquid to flow into the sample cup, the detection mechanism 20 for performing the detection operation, and the buffer solution bottle 36 for storing the buffer solution.
  • the sample stage 70 can be located below the microfluidic biochip 10 , so that the sample liquid in the sample cup thereon can contact the sample inlet 111 located at the bottom of the microfluidic biochip 10 .
  • the elevating mechanism 60 is disposed adjacent to the lateral side of the sample stage 70 so as to drive the sample stage 70 to move up and down.
  • the buffer driving device 30 can be arranged on one side of the microfluidic biochip 10 in the lateral direction, and is above the lifting mechanism 60, and the sample liquid driving device 40 can be arranged on the other side of the microfluidic biochip 10 in the lateral direction , the buffer bottle 36 is located on the side of the sample liquid driving device 40 away from the microfluidic biochip 10 . Therefore, the dimensional characteristics of each module in the vertical direction and the lateral direction can be fully utilized, so that the layout of each module is more compact, and the occupied space is reduced as much as possible. Moreover, the modules are only arranged side by side in the vertical direction and the lateral direction, and the thickness of the microfluidic detection system 1 in the front and rear directions is reduced as much as possible, so that it is more suitable for being integrated on a refrigerator.
  • FIG. 12 is a schematic structural diagram of a refrigerator according to an embodiment of the present invention.
  • the refrigerator 100 of the present invention includes a microfluidic detection system 1 that operates according to the control method described in any of the above embodiments. , to integrate the microfluidic detection system 1 on the refrigerator 100 .
  • the refrigerator 100 is used frequently in daily life, and the refrigerator 100 is mainly used to store food materials.
  • the microfluidic detection system 1 is integrated on the refrigerator 100, it is convenient for users to use the microfluidic detection system 1 to perform the detection of food samples. Detection operation.
  • the refrigerator 100 further includes a box body 200 and a door body 300, a storage space is defined in the box body 200, and the door body 300 is connected to the box body 200 and used to open and/or close the storage space.
  • the microfluidic detection system 1 is preferably arranged on the door body 300 , which is not only convenient to operate, but also does not occupy the original storage space in the box body 200 and will not affect the storage capacity of the refrigerator 100 itself.
  • the microfluidic detection system 1 may be electrically connected with the electronic control device of the refrigerator 100 to provide power for the microfluidic detection system 1 through the electronic control device and/or allow signal transmission between the electronic control device and the microfluidic detection system 1 .
  • the refrigerator 100 of the present application is a refrigerator in a broad sense, which includes not only a refrigerator in a narrow sense, but also a storage device with refrigeration, freezing or other storage functions, such as a refrigerator, a freezer, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Dispersion Chemistry (AREA)
  • Hematology (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

微流控检测系统(1)及其控制方法、冰箱(100)。微流控检测系统(1)包括微流控生物芯片(10)、样本液驱动装置(40)和检测机构(20),微流控生物芯片(10)具有进样口(111)、连通端口(112)、以及检测池(121),进样口(111)、检测池(121)、以及连通端口(112)依次连通。控制方法包括:通过样本液驱动装置(40)驱动样本液流入检测池(121)内(S70);通过检测机构(20)对检测池(121)进行检测,并控制样本液驱动装置(40)周期性地反复执行第一推吸液操作,第一推吸液操作包括用于促使样本液向朝向进样口(111)的方向流出的第一推液动作和用于促使样本液朝向检测池(121)的方向流入的第一吸液动作(S80)。由此,可促使样本液在微流控生物芯片(10)内反复地往复流动,促进了样本液与试剂之间的混合,便于二者充分的反应,提高了检测结果的准确性。

Description

微流控检测系统及其控制方法、冰箱 技术领域
本发明涉及冷藏冷冻技术,特别是涉及一种微流控检测系统的控制方法、微流控检测系统及冰箱。
背景技术
随着人们生活水平的提高,日常生活中通常需要对食用的一些食材的农残、病毒、营养元素或其他方面进行检测,以定性或定量地获取食材的状况。例如,由于农药滥用问题,我们日常买到的果蔬和农副产品有可能出现农残含量超标的问题,如果不能及时发现这些食品的农残含量超标问题,人体摄入后会造成极大危害。再如,目前提倡的母乳喂养,只有在母乳具有正常营养价值的情况下才是对婴儿最好的喂养,然而在乳母生病、吃药、手术或其他情况下可能导致其分泌的乳汁中的营养元素含量降低甚至产生病毒,从而影响婴儿的生长发育和健康。
在众多检测方法中,利用微流控生物芯片进行检测的方法比较快速,且体积较小,适宜于家庭使用。为了使微流控生物芯片的进样更加精确、且便于控制,可采用一种驱动装置驱动样本液进入微流控生物芯片。然而,样本液与微流控生物芯片内的试剂之间的混合非常不均匀,导致二者之间的反应不够充分,影响检测结果的准确性。
发明内容
本发明第一方面的一个目的旨在克服现有技术的至少一个缺陷,提供一种能够提高进入微流控生物芯片内的样本液和其内的试剂之间混合均匀性的微流控检测系统的控制方法,以确保检测结果的准确性。
本发明第一方面的一个进一步的目的是避免样本液驱动装置在执行推液动作时部分样本液从进样口流出导致脏污的问题。
本发明第一方面的另一个进一步的目的是进一步提高检测结果的准确性。
本发明第二方面的目的是提供一种按照上述任一控制方法运行的微流控检测系统。
本发明第三方面的目的是提供一种具有按照上述任一方法运行的微流控检测系统的冰箱。
根据本发明的第一方面,本发明提供一种微流控检测系统的控制方法,所述微流控检测系统包括微流控生物芯片、样本液驱动装置和检测机构,所述微流控生物芯片具有用于接收样本液的进样口、与所述样本液驱动装置连通的连通端口、以及形成在所述微流控生物芯片内部的检测池,所述进样口、所述检测池、以及所述连通端口依次连通;其中,所述控制方法包括:
通过所述样本液驱动装置驱动样本液流入所述检测池内;
通过所述检测机构对所述检测池进行检测,并控制所述样本液驱动装置周期性地反复执行第一推吸液操作,所述第一推吸液操作包括用于促使样本液向朝向所述进样口的 方向流出的第一推液动作和用于促使样本液朝向所述检测池的方向流入的第一吸液动作。
可选地,所述微流控生物芯片还具有连接在所述检测池和所述进样口之间的反应池,所述进样口、所述反应池、所述检测池和所述连通端口通过微通道依次连通;且
在驱动样本液流入所述检测池之前,所述控制方法还包括:
在所述进样口与样本液接触的状态下启动所述样本液驱动装置,以通过所述样本液驱动装置驱动样本液流入所述反应池。
可选地,在驱动样本液流入所述反应池之后、且在驱动样本液流入所述检测池之前,所述控制方法还包括:
控制所述样本液驱动装置周期性地反复执行第二推吸液操作,直至所述第二推吸液操作执行的次数达到第二预设次数;其中,所述第二推吸液操作包括用于促使样本液向朝向所述进样口的方向流动的第二推液动作和用于促使样本液朝向所述反应池的方向流动的第二吸液动作。
可选地,在驱动样本液流入所述反应池之后、且在控制所述样本液驱动装置周期性地反复执行第二推吸液操作之前,所述控制方法还包括:
将所述微流控生物芯片切换至使其进样口与样本液分离的状态;和
控制所述样本液驱动装置执行用于促使样本液朝向所述反应池的方向流动的第三吸液动作,以使得处于连接在所述反应池和所述进样口之间的微流道内的至少部分样本液流入所述反应池,从而在该微流道内形成预设空间余量,用于容纳所述样本液驱动装置执行所述第二推液动作时推出的样本液。
可选地,在驱动样本液流入所述反应池之后、且在控制所述样本液驱动装置周期性地反复执行第二推吸液操作之前,所述控制方法还包括:
判断所述反应池内的样本液的量是否达到预设样本液容积值;
若是,则控制所述样本液驱动装置周期性地反复执行第二推吸液操作。
可选地,判断所述反应池内的样本液的量是否达到预设样本液容积值的步骤包括:
判断是否接收到用于指示所述样本液驱动装置的活塞运动至预设位置的触发信号;
若是,则判定所述反应池内的样本液的量达到预设样本液容积值。
可选地,所述检测机构包括分别设置在所述检测池的两个相对的侧部的光源和光敏元件;其中,通过所述检测机构对所述检测池进行检测的步骤包括:
启动所述光源,使得所述光源发出的光线照射至所述检测池;
通过所述光敏元件获取用于表示透过所述检测池的光线强度的光强信号;
根据所述光强信号计算样本液的预设检测参数。
可选地,在获取所述光强信号之后、且在根据所述光强信号计算样本液的预设检测参数之前,所述控制方法还包括:
判断所述光强信号是否稳定;
若所述光强信号稳定,则停止所述样本液驱动装置的第一推吸液操作,并根据所述光强信号计算样本液的预设检测参数;若所述光强信号不稳定,则判断所述样本液驱动 装置执行的第一推吸液操作的次数是否达到第一预设次数;
若是,则停止所述第一推吸液操作,并发出用于表示本次检测失败或失效的提示信息。
可选地,所述控制方法还包括:
在接收到用于指示启动所述微流控检测系统的检测功能的触发信号后,启动所述微流控检测系统的加热模块,通过所述加热模块对所述检测池进行加热;
周期性地或实时地获取所述检测池的温度;
在所述检测池的温度高于预设温度上限值时停止所述加热模块,在所述检测池内的温度低于预设温度下限值时重新启动所述加热模块。
可选地,在停止所述样本液驱动装置的第一推吸液操作后,所述控制方法还包括:
关闭所述光源,停止所述加热模块。
可选地,在同一次所述第一推吸液操作中,所述样本液驱动装置执行所述第一推液动作所推出的样本液的量与其执行所述第一吸液动作所吸入的样本液的量相同;且
在同一次所述第二推吸液操作中,所述样本液驱动装置执行所述第二推液动作所推出的样本液的量与其执行所述第二吸液动作所吸入的样本液的量相同。
可选地,控制所述样本液驱动装置周期性地反复执行第一推吸液操作包括:
控制所述样本液驱动装置执行所述第一推液动作,以将预设量的样本液推出所述检测池;
等待第一预设时长后控制所述样本液驱动装置执行所述第一吸液动作,以使得被推出所述检测池的样本液流回所述检测池;
等待第二预设时长后再次控制所述样本液驱动装置执行所述第一推液动作,如此反复。
根据本发明的第二方面,本发明还提供一种微流控检测系统,所述微流控检测系统按照上述任一所述的控制方法运行。
根据本发明的第三方面,本发明还提供一种冰箱,其包括按照上述任一所述的控制方法运行的微流控检测系统。
本申请的控制方法在样本液流入检测池后控制样本液驱动装置周期性地反复执行包括第一推液动作和第一吸液动作的第一推吸液操作,由于第一推液动作和第一吸液动作对样本液的驱动力方向相反,因此可促使样本液在微流控生物芯片内反复地往复流动,从而促进了样本液与试剂之间的混合,提高了二者的混合效果,便于样本液与试剂之间进行充分的反应,提高了检测结果的准确性。
进一步地,在样本液进入反应池后,样本液驱动装置首先进行一次吸液动作(即第三吸液动作),可使得处于连接在反应池和进样口之间的微流道内的至少部分样本液流入反应池,从而在该微流道内形成预设空间余量,用于容纳样本液驱动装置执行第二推液动作时推出的样本液。由此,可避免样本液驱动装置执行第二推液动作时将少量样本液从进样口推出从而造成脏污的问题。
进一步地,本申请还对进入反应池的样本液的量进行精确地控制,使其与芯片中试 剂的量相匹配,避免样本液的量过多或过少对检测结果造成影响,进一步提高了检测结果的准确性。
进一步地,本申请还将同一次推吸液操作中推出的样本液的量与吸入的样本液的量是相同的,避免多次执行推吸液操作后造成较大的误差积累而影响检测结果的准确性。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1是根据本发明一个实施例的微流控检测系统的示意性结构图;
图2是根据本发明一个实施例的微流控生物芯片的示意性剖视图;
图3是根据本发明第一个实施例的微流控检测系统的控制方法的示意性流程图;
图4是根据本发明第二个实施例的微流控检测系统的控制方法的示意性流程图;
图5是根据本发明第三个实施例的微流控检测系统的控制方法的示意性流程图;
图6是根据本发明第四个实施例的微流控检测系统的控制方法的示意性流程图;
图7是根据本发明第五个实施例的微流控检测系统的控制方法的示意性流程图;
图8是根据本发明一个实施例的通过检测机构对检测池进行检测的示意性流程图;
图9是根据本发明另一个实施例的通过检测机构对检测池进行检测的示意性流程图;
图10是根据本发明一个实施例的控制样本液驱动装置周期性地反复执行第一推吸液操作的示意性流程图;
图11是根据本发明一个实施例的微流控检测系统的加样过程的示意性流程图;
图12是根据本发明一个实施例的冰箱的示意性结构图。
具体实施方式
本申请首先提供一种微流控检测系统的控制方法,用于对样本液的预设检测参数进行定性或定量地检测。该预设检测参数例如可以为用于表示农残量是否超标和/或农残量的具体数值的农残参数、用于表示营养元素是否达标和/或营养元素具体含量的营养参数、用于表示特定有害物质(例如特定病毒)是否超标和/或具体含量的特定物质参数等等。
微流控检测系统的控制方法总体上可分为加样和检测两个部分。本申请首先对检测部分进行具体说明。
图1是根据本发明一个实施例的微流控检测系统的示意性结构图,为了便于理解,图1中还示出了样本杯2。本发明所涉及的微流控检测系统1包括微流控生物芯片10、样本液驱动装置40和检测机构20。图2是根据本发明一个实施例的微流控生物芯片的示意性剖视图。微流控生物芯片10具有用于接收样本液的进样口111、与样本液驱动装置 40连通的连通端口112、以及形成在微流控生物芯片10内部的检测池121,检测池121用于容装检测试剂,进样口111、检测池121、以及连通端口112依次连通。
申请人认识到,在实际应用时,微流控生物芯片10通常是固定的,样本液驱动装置40与微流控生物芯片10之间通常是密封连通的,且当微流控检测系统1集成在冰箱上时,微流控生物芯片10优选竖向放置、且进样口处于其底部,因此不宜通过振荡的方式促使样本液与试剂之间混合均匀,因为微流控生物芯片10的振荡幅度非常有限,并且,其振荡过程中可能会导致样本液驱动装置40与微流控生物芯片10之间的连接处产生漏气现象、进样口111处产生漏液现象等一系列问题。
为此,本申请提供一种微流控检测系统的控制方法,图3是根据本发明第一个实施例的微流控检测系统的控制方法的示意性流程图,参见图3,本发明的控制方法包括:
步骤S70,通过样本液驱动装置40驱动样本液流入检测池121内;
步骤S80,通过检测机构20对检测池121进行检测,并控制样本液驱动装置40周期性地反复执行第一推吸液操作;其中,第一推吸液操作包括用于促使样本液向朝向进样口111的方向流出的第一推液动作和用于促使样本液朝向检测池121的方向流入的第一吸液动作。
本发明的微流控检测系统通过样本液驱动装置驱动样本液自动地流入微流控生物芯片,无需用户手动操作,且便于精确控制。且,本申请的控制方法在样本液流入检测池121后控制样本液驱动装置40周期性地反复执行包括第一推液动作和第一吸液动作的第一推吸液操作,由于第一推液动作和第一吸液动作对样本液的驱动力方向相反,因此可促使样本液在微流控生物芯片10内反复地往复流动,从而促进了样本液与检测试剂之间的混合,提高了二者的混合效果,便于样本液与检测试剂之间进行充分的反应,提高了检测结果的准确性。
进一步地,在同一次第一推吸液操作中,样本液驱动装置40执行第一推液动作所推出的样本液的量与其执行第一吸液动作所吸入的样本液的量相同。由此,可确保检测池121中最终的样本液的量保持不变,避免多次执行第一推吸液操作后造成较大的误差积累而影响检测结果的准确性。
在一些实施例中,微流控生物芯片10还具有连接在检测池121和进样口111之间的反应池122,进样口111、反应池122、检测池121和连通端口112通过微通道14依次连通,形成主通道。对于特定的样本液或对于样本液的一些特定检测参数,可能需要先令样本液与反应试剂反应,然后再与检测试剂反应,检测机构对最终反应后的溶液进行检测来获取特定样本液的预设检测参数,可避免反应试剂与检测试剂之间产生反应或相互影响,提高了检测结果的准确性。例如,当需要利用微流控检测系统1对样本液的农残参数进行检测时,优选酶抑制率法,因其定性检测农残含量,检测速度较快,更加适用于家庭使用。此时,用于微流控生物芯片10的反应试剂和检测试剂可以分别为酶试剂和显色剂。反应池122用于供样本液和其内的酶试剂反应,与酶试剂反应后的样本液流入检测池121,与检测池121内的显色剂进行反应。
图4是根据本发明第二个实施例的微流控检测系统的控制方法的示意性流程图,参 见图4,在这些实施例中,在驱动样本液流入检测池121的步骤S70之前,本发明的控制方法还包括:
步骤S30,在进样口111与样本液接触的状态下启动样本液驱动装置40,以通过样本液驱动装置40驱动样本液流入反应池122。
图5是根据本发明第三个实施例的微流控检测系统的控制方法的示意性流程图。参见图5,进一步地,为了提高样本液与反应试剂之间的混合效果,在一些实施例中,在驱动样本液流入反应池122的步骤S30之后、且在驱动样本液流入检测池121的步骤S70之前,本发明的控制方法还包括:
步骤S60,控制样本液驱动装置40周期性地反复执行第二推吸液操作,直至第二推吸液操作执行的次数达到第二预设次数。其中,第二推吸液操作包括用于促使样本液向朝向进样口111的方向流动的第二推液动作和用于促使样本液朝向反应池122的方向流动的第二吸液动作。第二预设次数为预先设置的根据实验验证能够使得样本液与反应试剂混合均匀的次数。
由于第二推液动作和第二吸液动作对样本液的驱动力方向相反,因此可促使样本液在微流控生物芯片10内反复地往复流动,从而促进了样本液与反应试剂之间的混合,提高了二者的混合效果,便于二者之间充分地反应。
进一步地,在同一次第二推吸液操作中,样本液驱动装置40执行第二推液动作所推出的样本液的量与其执行第二吸液动作所吸入的样本液的量相同。由此,可确保反应池122内最终的样本液的量保持不变,避免多次执行第二推吸液操作后造成较大的误差积累而影响流向检测池121的样本液的量,进而影响检测结果的准确性。
图6是根据本发明第四个实施例的微流控检测系统的控制方法的示意性流程图。参见图6,在一些实施例中,在驱动样本液流入反应池122的步骤S30之后、且在控制样本液驱动装置40周期性地反复执行第二推吸液操作的步骤S60之前,本发明的控制方法还包括:
步骤S51,将微流控生物芯片10切换至使其进样口与样本液分离的状态;和
步骤S52,控制样本液驱动装置40执行用于促使样本液朝向反应池122的方向流动的第三吸液动作,以使得处于连接在反应池122和进样口111之间的微流道内的至少部分样本液流入反应池122,从而在该微流道内形成预设空间余量,用于容纳样本液驱动装置40执行第二推液动作时推出的样本液。
也就是说,在样本液进入反应池122后,样本液驱动装置40首先进行一次吸液动作(即第三吸液动作),可使得处于连接在反应池和进样口之间的微流道内的至少部分样本液流入反应池122,从而在该微流道内形成预设空间余量,用于容纳样本液驱动装置40执行第二推液动作时推出的样本液。由此,可避免样本液驱动装置40执行第二推液动作时将少量样本液从进样口111推出从而造成脏污的问题。
当然,在另一些实施例中,本发明的控制方法也可以不包括步骤S52,只需要在样本液驱动装置40执行第二推吸液操作时首先执行第二吸液动作,再执行第二推液动作即可。这样,同样能够在反应池和进样口之间的微流道内留有预设空间余量,避免样本液 驱动装置40执行第二推液动作时将少量样本液从进样口111推出从而造成脏污的问题。
图7是根据本发明第五个实施例的微流控检测系统的控制方法的示意性流程图。参见图7,在一些实施例中,在驱动样本液流入反应池122的步骤S30之后、且在控制样本液驱动装置40周期性地反复执行第二推吸液操作的步骤S60之前,所述控制方法还包括:
步骤S40,判断反应池122内的样本液的量是否达到预设样本液容积值;
若是,则转步骤S60,控制样本液驱动装置40周期性地反复执行第二推吸液操作。
也就是说,本申请还对进入反应池122的样本液的量进行精确地检测和控制,使其与芯片中的反应试剂和检测试剂的量相匹配,避免样本液的量过多或过少对检测结果造成影响,进一步提高了检测结果的准确性。
在一些实施例中,样本液驱动装置40可以通过向外抽空气的方式在微流控生物芯片10的主通道内形成负压,从而使得与进样口111接触的样本液在负压作用下进入主通道。具体地,样本液驱动装置40可以为微型注射泵,且还包括驱动电机、注射器、丝杆、滑块和活塞等结构。活塞在注射器内的位移量与进入微流控生物芯片10中的样本液的量正向相关。因此,可通过位置传感器检测活塞的位置来判定进入微流控生物芯片10中的样本液的量。
在这些实施例中,判断反应池122内的样本液的量是否达到预设样本液容积值的步骤S40具体可包括:
判断是否接收到用于指示样本液驱动装置40的活塞运动至预设位置的触发信号;
若是,则判定反应池122内的样本液的量已达到预设样本液容积值;若否,则认为反应池122内的样本液的量尚未达到预设样本液容积值。
可以理解的是,在一些实施例中,图7所示的控制方法中也可以包含图6所示方法中的步骤S51和步骤S52。具体地,步骤S51和步骤S52可以发生在步骤S40和步骤S60之间。
图8是根据本发明一个实施例的通过检测机构对检测池进行检测的示意性流程图。在一些实施例中,检测机构20可包括分别设置在检测池121的两个相对的侧部的光源和光敏元件;其中,通过检测机构20对检测池121进行检测的步骤包括:
步骤S812,启动光源,使得光源发出的光线照射至检测池121;
步骤S814,通过光敏元件获取用于表示透过检测池121的光线强度的光强信号;
步骤S819,根据光强信号计算样本液的预设检测参数。
以微流控检测系统1用于检测样本液的农残参数为例,反应池122内容装的反应试剂可以为酶试剂,检测池121容装的检测试剂可以为显色剂。当样本液进入反应池122后,利用农药会抑制酶的活性的原理使得样本液中的残留农药与酶试剂反应。反应后的溶液进入检测池121。光源发出的光照射至检测池121,透过检测池121的光导入光敏元件。利于通过光敏元件接收到的光强信号判断检测池121内的吸光度变化,进而计算农残抑制率。
图9是根据本发明另一个实施例的通过检测机构对检测池进行检测的示意性流程图。 进一步地,在获取光强信号的步骤S814之后、且在根据光强信号计算样本液的预设检测参数的步骤S818之前,本申请的控制方法还包括:
步骤S815,判断光强信号是否稳定;若是,则转步骤S816,若否,则转步骤S817;
步骤S816,停止样本液驱动装置40的第一推吸液操作,并转步骤S819;
步骤S817,判断样本液驱动装置40执行的第一推吸液操作的次数是否达到第一预设次数;若是,则转步骤S818;若否,则转步骤S815,以继续判断光强信号的稳定性;
步骤S818,停止第一推吸液操作,并发出用于表示本次检测失败或失效的提示信息。
可以理解的是,只有在样本液与检测试剂充分反应后,才能够接收到比较稳定的光强信号,依据稳定的光强信号计算出的样本液的预设检测参数才比较准确。因此,可通过判断光强信号是否稳定来判断样本液与检测试剂是否充分反应。若二者已经充分反应,则样本区驱动装置40无需继续执行第一推吸液操作,可及时地停止第一推吸液操作,以减少能耗。若第一推吸液操作的次数达到第一预设次数后仍然未接收到比较稳定的光强信号,则样本液与检测试剂可能无法充分反应,比如,检测试剂失效、或者其他原因等,此时,及时地停止第一推吸液操作,可减少能耗,并且发出提示信息,提示用户本次检测失效或失败,便于用户及时地做出相应措施。
在一实施例中,本发明的控制方法还包括:
在接收到用于指示启动微流控检测系统的检测功能的触发信号后,启动微流控检测系统的加热模块,通过加热模块对检测池121进行加热;
周期性地或实时地获取检测池121的温度;
在检测池121的温度高于预设温度上限值时停止加热模块,在检测池121内的温度低于预设温度下限值时重新启动加热模块。
由此,可在检测操作执行之前确保检测池121始终具有相对恒定的温度,便于样本液与检测试剂的充分反应。具体地,用于指示启动微流控检测系统的检测功能的触发信号可以为微流控检测系统的上电信号,也可以为微流控检测系统的总开关接收到的用于开启其检测功能的开启信号。
在一些实施例中,在停止样本液驱动装置40的第一推吸液操作后,本发明的控制方法还包括:
关闭光源,停止加热模块。该步骤可发生在步骤S819之前,也可以发生在步骤S819之后。
需要说明的是,加热模块的启动运行、加热模块的温度获取、以及加热模块的温度控制是在整个检测过程中持续进行的,以确保整个检测过程中检测池121始终具有相对恒定的温度范围。
在一些实施例中,在根据光强信号计算样本液的预设检测参数的步骤S819之后,本发明的控制方法还包括:
步骤S820,将包含有计算出的预设检测参数信息的检测结果显示在显示设备上。该显示设备例如可以为显示屏,也可以为颜色指示灯,还可以同时包含显示屏和颜色指示灯。
图10是根据本发明一个实施例的控制样本液驱动装置周期性地反复执行第一推吸液操作的示意性流程图。在一些实施例中,控制样本液驱动装置40周期性地反复执行第一推吸液操作具体包括:
步骤S822,控制样本液驱动装置40执行第一推液动作,以将预设量的样本液推出检测池121;
步骤S824,等待第一预设时长;
步骤S826,控制样本液驱动装置40执行第一吸液动作,以使得被推出检测池121的预设量的样本液流回检测池121;
步骤S828,等待第二预设时长后转步骤S822。
具体地,第一推液动作推出的样本液的量、以及第一吸液动作吸入的样本液的量均可以通过样本液驱动装置40的活塞在其注射器内的位移量来监测和控制。例如,当活塞在注射器内下移预设距离时认为推出的样本液达到预设量,当活塞在注射器内上移预设距离时认为吸入的样本液达到预设量。第一预设时长与第二预设时长可以相等,也可以不等。每次执行推液动作或吸液动作后都等待一段时间后再执行下一动作,可以给样本液和检测试剂进行充分混合和反应的时间。
需要说明的是,控制样本液驱动装置40周期性地反复执行第二推吸液操作的具体过程与控制样本液驱动装置40周期性地反复执行第一推吸液操作的过程非常类似,因此,这里不再赘述。
在对微流控生物芯片10进行检测之前,还需要将样本液加入到微流控生物芯片10中,即本发明的控制方法还包括加样部分,下面对加样部分进行具体说明。
图11是根据本发明一个实施例的微流控检测系统的加样过程的示意性流程图。微流控检测系统1还包括用于搁置样本杯的样品台70、用于驱动样品台70运动的升降机构60和用于驱动缓冲液流入样本杯的缓冲液驱动装置30。参见图11,在启动样本液驱动装置40之前,在本发明的控制方法还包括:
步骤S11,检测样品台70所承载的物品的总重量;
步骤S12,判断样品台70所承载的物品的总重量是否大于等于第一预设重量值;若是,则转步骤S13;若否,则转步骤S14;
步骤S13,发出用于指示清空样品台70的提示信息;
步骤S14,判断微流控生物芯片10是否已插入其安装位置;若是,则转步骤S16,若否,步骤S15;
步骤S15,发出用于指示插入微流控生物芯片10的提示信息;
步骤S16,判断样品台70上是否已放置样本杯;若是,则转步骤S18,若否,则转步骤S17;
步骤S17,发出用于指示放置样本杯的提示信息;
步骤S18,检测样本杯中样本的重量;
步骤S19,根据样本杯中样本的重量计算需要添加的缓冲液的目标量;
步骤S20,启动缓冲液驱动装置30,通过缓冲液驱动装置30驱动缓冲液流入样本杯, 从而与样本杯中的样本混合后产生样本液;具体地,缓冲液驱动装置30可以与缓冲液瓶36连通,以通过缓冲液瓶36向缓冲液驱动装置30供给缓冲液。
步骤S21,当流入样本杯中的缓冲液的量达到上述目标量时,关闭缓冲液驱动装置30;
步骤S22,开启振荡装置,以通过振荡装置振荡样本杯;
步骤S23,当振荡装置开启第三预设时长后停止振荡装置。
步骤S24:启动升降机构60,控制升降机构60将样品台70由初始位置移动至使得样本杯中的样本液与进样口111接触的检测位置。
由此,用户只需要将样本杯放置在样品台上即可,无需其他操作,加样操作非常便捷,自动化程度较高,省时省力,提高了用户的使用体验。并且,在控制样品台70移动之前,还在样品台70上已放置存放有样本的样本杯时自动地向样本杯中注入缓冲液,使其与样本混合后产生样本液,省去了用户手动制备样本液的过程,并且还避免手动制备样本液可能产生的样本液的量或浓度把控不好的问题,提高了样本液浓度和量的精确性,为检测结果的准确性奠定基础。本申请还可以自动地获取样本的重量,并根据样本的重量自动地计算并输出目标量的缓冲液,既便于用户随意取样本,又能够确保检测结果的准确性。本申请还通过振荡装置促使促进样本上的待测物质充分地溶解到缓冲液中,从而形成合适浓度的样本液,避免样本液浓度过低导致检测结果不准确的问题。本申请在检测样品台70上是否放置样本杯之前还自动地检测微流控生物芯片10是否安装,若没有安装,则发出提示信息提示用户安装微流控生物芯片,便于用户在放置样本杯之前便捷地安装微流控生物芯片。本申请还在检测微流控生物芯片10是否安装之前自动地检测样品台上是否有其他物品,例如前次检测遗留的样本杯或用户搁置在样品台上的其他物品等,若是,则发出清空样品台的提示信息,便于用户按照提示信息操作,提高了微流控检测系统的自动化程度,提升了用户的使用体验。
进一步地,当反应池122内的样本液的量是否达到预设样本液容积值时,本发明的控制方法还包括:
控制升降机构60,通过控制升降机构60使得样品台70返回其初始位置。
本发明还提供一种微流控检测系统1,微流控检测系统1按照上述任一实施例所描述的控制方法运行。
具体地,微流控检测系统1可包括用于提供检测条件和检测环境的微流控生物芯片10、用于放置样本杯的样品台70、用于驱动样品台70运动的升降机构60、用于驱动样本液流动的样本液驱动装置40、用于驱动缓冲液流入样本杯的缓冲液驱动装置30、用于执行检测操作的检测机构20以及用于储存缓冲液的缓冲液瓶36。样品台70可处于微流控生物芯片10的下方,以便于其上的样本杯中的样本液与位于微流控生物芯片10底部的进样口111接触。升降机构60邻近地设置在样品台70在横向上的旁侧,以便于驱动样品台70上下移动。缓冲液驱动装置30可设置在微流控生物芯片10在横向上的一侧,并处于升降机构60的上方,样本液驱动装置40可设置在微流控生物芯片10在横向上的另一侧,缓冲液瓶36处于样本液驱动装置40的背离微流控生物芯片10的一侧。由此, 可充分地利用各个模块在竖直方向和横向上的尺寸特征,使得各个模块的布局更加紧凑,尽可能地减小占用空间。并且,各个模块之间仅在竖直方向上和横向上并排设置,尽可能地缩小了微流控检测系统1在前后方向上的厚度,以使其更加适宜于集成在冰箱上。
本发明还提供一种冰箱,图12是根据本发明一个实施例的冰箱的示意性结构图,本发明的冰箱100包括按照上述任一实施例所描述的控制方法运行的微流控检测系统1,以将微流控检测系统1集成在冰箱100上。冰箱100在日常生活中的使用频率较高,并且冰箱100主要用来储存食材,当将微流控检测系统1集成在冰箱100上后,可以便于用户利用微流控检测系统1执行食材样本的检测操作。
进一步地,冰箱100还包括箱体200和门体300,箱体200内限定有储物空间,门体300连接于箱体200,且用于打开和/或关闭储物空间。微流控检测系统1优选设置在门体300上,不但操作起来比较方便,而且还不会占用箱体200内原有的储物空间,不会对冰箱100本身的储物能力产生影响。微流控检测系统1可与冰箱100的电控装置电连接,以通过电控装置为微流控检测系统1提供电源和/或允许电控装置与微流控检测系统1之间传输信号。
本申请的冰箱100为广义上的冰箱,其不但包括通常所说的狭义上的冰箱,而且还包括具有冷藏、冷冻或其他储物功能的储物装置,例如,冷藏箱、冷柜等等。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。

Claims (14)

  1. 一种微流控检测系统的控制方法,所述微流控检测系统包括微流控生物芯片、样本液驱动装置和检测机构,所述微流控生物芯片具有用于接收样本液的进样口、与所述样本液驱动装置连通的连通端口、以及形成在所述微流控生物芯片内部的检测池,所述进样口、所述检测池、以及所述连通端口依次连通;其中,所述控制方法包括:
    通过所述样本液驱动装置驱动样本液流入所述检测池内;
    通过所述检测机构对所述检测池进行检测,并控制所述样本液驱动装置周期性地反复执行第一推吸液操作,所述第一推吸液操作包括用于促使样本液向朝向所述进样口的方向流出的第一推液动作和用于促使样本液朝向所述检测池的方向流入的第一吸液动作。
  2. 根据权利要求1所述的控制方法,其中,所述微流控生物芯片还具有连接在所述检测池和所述进样口之间的反应池,所述进样口、所述反应池、所述检测池和所述连通端口通过微通道依次连通;且
    在驱动样本液流入所述检测池之前,所述控制方法还包括:
    在所述进样口与样本液接触的状态下启动所述样本液驱动装置,以通过所述样本液驱动装置驱动样本液流入所述反应池。
  3. 根据权利要求2所述的控制方法,其中,在驱动样本液流入所述反应池之后、且在驱动样本液流入所述检测池之前,所述控制方法还包括:
    控制所述样本液驱动装置周期性地反复执行第二推吸液操作,直至所述第二推吸液操作执行的次数达到第二预设次数;其中,所述第二推吸液操作包括用于促使样本液向朝向所述进样口的方向流动的第二推液动作和用于促使样本液朝向所述反应池的方向流动的第二吸液动作。
  4. 根据权利要求3所述的控制方法,其中,在驱动样本液流入所述反应池之后、且在控制所述样本液驱动装置周期性地反复执行第二推吸液操作之前,所述控制方法还包括:
    将所述微流控生物芯片切换至使其进样口与样本液分离的状态;和
    控制所述样本液驱动装置执行用于促使样本液朝向所述反应池的方向流动的第三吸液动作,以使得处于连接在所述反应池和所述进样口之间的微流道内的至少部分样本液流入所述反应池,从而在该微流道内形成预设空间余量,用于容纳所述样本液驱动装置执行所述第二推液动作时推出的样本液。
  5. 根据权利要求3所述的控制方法,其中,
    在驱动样本液流入所述反应池之后、且在控制所述样本液驱动装置周期性地反复执 行第二推吸液操作之前,所述控制方法还包括:
    判断所述反应池内的样本液的量是否达到预设样本液容积值;
    若是,则控制所述样本液驱动装置周期性地反复执行第二推吸液操作。
  6. 根据权利要求5所述的控制方法,其中,
    判断所述反应池内的样本液的量是否达到预设样本液容积值的步骤包括:
    判断是否接收到用于指示所述样本液驱动装置的活塞运动至预设位置的触发信号;
    若是,则判定所述反应池内的样本液的量达到预设样本液容积值。
  7. 根据权利要求3所述的控制方法,其中,所述检测机构包括分别设置在所述检测池的两个相对的侧部的光源和光敏元件;其中,通过所述检测机构对所述检测池进行检测的步骤包括:
    启动所述光源,使得所述光源发出的光线照射至所述检测池;
    通过所述光敏元件获取用于表示透过所述检测池的光线强度的光强信号;
    根据所述光强信号计算样本液的预设检测参数。
  8. 根据权利要求7所述的控制方法,其中,在获取所述光强信号之后、且在根据所述光强信号计算样本液的预设检测参数之前,所述控制方法还包括:
    判断所述光强信号是否稳定;
    若所述光强信号稳定,则停止所述样本液驱动装置的第一推吸液操作,并根据所述光强信号计算样本液的预设检测参数;若所述光强信号不稳定,则判断所述样本液驱动装置执行的第一推吸液操作的次数是否达到第一预设次数;
    若是,则停止所述第一推吸液操作,并发出用于表示本次检测失败或失效的提示信息。
  9. 根据权利要求7所述的控制方法,还包括:
    在接收到用于指示启动所述微流控检测系统的检测功能的触发信号后,启动所述微流控检测系统的加热模块,通过所述加热模块对所述检测池进行加热;
    周期性地或实时地获取所述检测池的温度;
    在所述检测池的温度高于预设温度上限值时停止所述加热模块,在所述检测池内的温度低于预设温度下限值时重新启动所述加热模块。
  10. 根据权利要求9所述的控制方法,其中,
    在停止所述样本液驱动装置的第一推吸液操作后,所述控制方法还包括:
    关闭所述光源,停止所述加热模块。
  11. 根据权利要求3所述的控制方法,其中,
    在同一次所述第一推吸液操作中,所述样本液驱动装置执行所述第一推液动作所推出的样本液的量与其执行所述第一吸液动作所吸入的样本液的量相同;且
    在同一次所述第二推吸液操作中,所述样本液驱动装置执行所述第二推液动作所推出的样本液的量与其执行所述第二吸液动作所吸入的样本液的量相同。
  12. 根据权利要求1所述的控制方法,其中,控制所述样本液驱动装置周期性地反复执行第一推吸液操作包括:
    控制所述样本液驱动装置执行所述第一推液动作,以将预设量的样本液推出所述检测池;
    等待第一预设时长后控制所述样本液驱动装置执行所述第一吸液动作,以使得被推出所述检测池的样本液流回所述检测池;
    等待第二预设时长后再次控制所述样本液驱动装置执行所述第一推液动作,如此反复。
  13. 一种微流控检测系统,所述微流控检测系统按照权利要求1-12任一所述的控制方法运行。
  14. 一种冰箱,包括按照权利要求1-12任一所述的控制方法运行的微流控检测系统。
PCT/CN2021/118504 2020-09-27 2021-09-15 微流控检测系统及其控制方法、冰箱 WO2022062994A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/246,530 US20230375586A1 (en) 2020-09-27 2021-09-15 Microfluidic detection system, control method therefor, and refrigerator
EP21871365.9A EP4206649A4 (en) 2020-09-27 2021-09-15 MICROFLUIDIC DETECTION SYSTEM, CONTROL METHOD THEREOF AND REFRIGERATOR

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011029746.7 2020-09-27
CN202011029746.7A CN114324907A (zh) 2020-09-27 2020-09-27 微流控检测系统及其控制方法、冰箱

Publications (1)

Publication Number Publication Date
WO2022062994A1 true WO2022062994A1 (zh) 2022-03-31

Family

ID=80846228

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/118504 WO2022062994A1 (zh) 2020-09-27 2021-09-15 微流控检测系统及其控制方法、冰箱

Country Status (4)

Country Link
US (1) US20230375586A1 (zh)
EP (1) EP4206649A4 (zh)
CN (1) CN114324907A (zh)
WO (1) WO2022062994A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116375790A (zh) * 2023-06-05 2023-07-04 厦门胜泽泰医药科技有限公司 一种微流控芯片固相肽合成方法及装置
WO2023185937A1 (zh) * 2022-04-02 2023-10-05 青岛海尔电冰箱有限公司 冰箱及其控制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070122819A1 (en) * 2005-11-25 2007-05-31 Industrial Technology Research Institute Analyte assay structure in microfluidic chip for quantitative analysis and method for using the same
US20120003725A1 (en) * 2007-11-22 2012-01-05 Digital Bio Technology Co., Ltd. Microfluidic chip for analysis for fluid sample
CN108801929A (zh) * 2018-06-26 2018-11-13 杭州霆科生物科技有限公司 一种能够检测食品安全的智能家居
CN208526655U (zh) * 2018-04-27 2019-02-22 广州万孚生物技术股份有限公司 一种化学发光微流控芯片及具有其的分析仪器
CN109420531A (zh) * 2017-08-31 2019-03-05 厦门大学 微流控芯片及其试剂的储存和释放方法
CN109499634A (zh) * 2018-12-13 2019-03-22 迪亚莱博(张家港)生物科技有限公司 一种微流控芯片及其制备方法和检测方法
CN109499633A (zh) * 2018-12-13 2019-03-22 迪亚莱博(张家港)生物科技有限公司 床旁诊断微流控芯片及其制备方法和检测方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202007007707U1 (de) * 2007-05-30 2007-08-09 Mti Medtech Innovation Gmbh Messkassette
GB2525679A (en) * 2014-05-02 2015-11-04 Univ Singapore A disposable measurement tip and method for use thereof
CN209570508U (zh) * 2019-02-14 2019-11-01 杭州霆科生物科技有限公司 一种农药残留检测笔

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070122819A1 (en) * 2005-11-25 2007-05-31 Industrial Technology Research Institute Analyte assay structure in microfluidic chip for quantitative analysis and method for using the same
US20120003725A1 (en) * 2007-11-22 2012-01-05 Digital Bio Technology Co., Ltd. Microfluidic chip for analysis for fluid sample
CN109420531A (zh) * 2017-08-31 2019-03-05 厦门大学 微流控芯片及其试剂的储存和释放方法
CN208526655U (zh) * 2018-04-27 2019-02-22 广州万孚生物技术股份有限公司 一种化学发光微流控芯片及具有其的分析仪器
CN108801929A (zh) * 2018-06-26 2018-11-13 杭州霆科生物科技有限公司 一种能够检测食品安全的智能家居
CN109499634A (zh) * 2018-12-13 2019-03-22 迪亚莱博(张家港)生物科技有限公司 一种微流控芯片及其制备方法和检测方法
CN109499633A (zh) * 2018-12-13 2019-03-22 迪亚莱博(张家港)生物科技有限公司 床旁诊断微流控芯片及其制备方法和检测方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4206649A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023185937A1 (zh) * 2022-04-02 2023-10-05 青岛海尔电冰箱有限公司 冰箱及其控制方法
CN116375790A (zh) * 2023-06-05 2023-07-04 厦门胜泽泰医药科技有限公司 一种微流控芯片固相肽合成方法及装置
CN116375790B (zh) * 2023-06-05 2023-08-18 厦门胜泽泰医药科技有限公司 一种微流控芯片固相肽合成方法及装置

Also Published As

Publication number Publication date
EP4206649A4 (en) 2024-02-28
US20230375586A1 (en) 2023-11-23
CN114324907A (zh) 2022-04-12
EP4206649A1 (en) 2023-07-05

Similar Documents

Publication Publication Date Title
WO2022062994A1 (zh) 微流控检测系统及其控制方法、冰箱
CN214041434U (zh) 用于冰箱的微流控检测系统及冰箱
CN214039110U (zh) 冰箱
CN214039171U (zh) 用于冰箱的微流控检测系统及冰箱
CN214039111U (zh) 冰箱
CN214039172U (zh) 用于冰箱的农残检测系统及冰箱
CN214039173U (zh) 用于冰箱的微流控检测系统及冰箱
US20230366906A1 (en) Microfluidic detection system for refrigerator and refrigerator
JP2014092427A (ja) 自動分析装置
WO2022062995A1 (zh) 微流控检测系统及其控制方法、冰箱
WO2023093383A1 (zh) 用于冰箱的微流控检测系统及冰箱
CN114324904A (zh) 用于冰箱的微流控检测系统及冰箱
JP2000206123A (ja) 分注装置
US20220205996A1 (en) Immunoblotting instrument and control method for controlling the same
CN114324909A (zh) 用于冰箱的微流控检测系统及冰箱
CN114324913A (zh) 用于冰箱的微流控检测系统及冰箱
WO2023045438A1 (zh) 用于冰箱的微流控检测系统及冰箱
JP2004177308A (ja) 吸引状態判定方法及び自動化学分析装置
CN114324903A (zh) 用于冰箱的微流控检测系统及其控制方法、冰箱
WO2022062919A1 (zh) 冰箱
JPWO2019123746A1 (ja) 温調システム
CN116203264A (zh) 样本分析仪及其液路温度控制方法
CN116953266A (zh) 微流控检测系统及其控制方法、冰箱
CN108713146B (zh) 溶液排出装置及溶液的排出控制方法
CN116928972A (zh) 微流控检测系统及其控制方法、冰箱

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21871365

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021871365

Country of ref document: EP

Effective date: 20230330

NENP Non-entry into the national phase

Ref country code: DE