WO2023093301A1 - 一种多零点信号正交编码器的控制方法 - Google Patents

一种多零点信号正交编码器的控制方法 Download PDF

Info

Publication number
WO2023093301A1
WO2023093301A1 PCT/CN2022/122972 CN2022122972W WO2023093301A1 WO 2023093301 A1 WO2023093301 A1 WO 2023093301A1 CN 2022122972 W CN2022122972 W CN 2022122972W WO 2023093301 A1 WO2023093301 A1 WO 2023093301A1
Authority
WO
WIPO (PCT)
Prior art keywords
zero
phase
pulse
encoder
mode
Prior art date
Application number
PCT/CN2022/122972
Other languages
English (en)
French (fr)
Inventor
张懿
张雪梦
魏海峰
王浩陈
Original Assignee
江苏科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏科技大学 filed Critical 江苏科技大学
Publication of WO2023093301A1 publication Critical patent/WO2023093301A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/14Estimation or adaptation of motor parameters, e.g. rotor time constant, flux, speed, current or voltage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/44Devices characterised by the use of electric or magnetic means for measuring angular speed
    • G01P3/48Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage
    • G01P3/481Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2203/00Indexing scheme relating to controlling arrangements characterised by the means for detecting the position of the rotor
    • H02P2203/03Determination of the rotor position, e.g. initial rotor position, during standstill or low speed operation

Definitions

  • the invention relates to the technical field of quadrature encoder control, in particular to a control method of a multi-zero signal quadrature encoder.
  • the encoder is a sensor installed on the motor to measure the rotation angle and speed of the motor.
  • the commonly used encoder is a quadrature encoder, which judges the direction of rotation of the motor by outputting three sets of square wave pulses A, B and Z phases and Speedometer.
  • there is a 90° phase difference between the two-phase pulse output of A and B so the rotation direction can be judged according to the timing phase relationship of the two signals, and the speed and displacement can be measured according to the number of pulse signals of phase A and B;
  • the phase Z is the zero point signal, that is After a mechanical cycle, it is used for reference point positioning.
  • the Z signal When the encoder rotates to the zero point, the Z signal will send a pulse to indicate that it is now the zero position, which can be used to record the number of encoder rotations, so as to know the running distance. Due to its simple structure, strong anti-interference ability and high reliability, the quadrature encoder is widely used in the field of motors.
  • the traditional quadrature encoder adopts a single-zero control method.
  • the method can only be calibrated once in a mechanical cycle, which will result in inaccurate position reading and large errors; in addition, if the motor has multiple pairs of poles, only the mechanical angle can be corrected instead of the electrical angle during calibration.
  • the few methods on the market that use multi-zero point control have relatively large limitations in the setting method.
  • the invention proposes a control method of a multi-zero-point signal quadrature encoder to realize the adaptation of a multi-pole motor and the dynamic correction of a multi-line motor, including two control modes: a pulse accumulation mode and a pole logarithm mode.
  • the pulse accumulation mode uses multiple zero-point signals and dynamic correction to make the position reading more accurate;
  • the pole logarithm mode can flexibly select the control method according to the number of pole pairs of the motor to realize the angle correspondence of multiple pairs of poles.
  • the present invention provides a control method for multi-zero signal quadrature encoders, including Two control modes: pulse accumulation mode and pole pair digital mode.
  • the pulse accumulation mode uses multiple zero-point signals and dynamic correction to make the position reading more accurate;
  • the pole logarithm mode can flexibly select the control method according to the number of pole pairs of the motor to realize the angle correspondence of multiple pairs of poles.
  • a method for controlling a multi-zero signal quadrature encoder includes the following steps:
  • S1 Select the corresponding pulse accumulation mode and pole logarithm mode according to the number of motor pole pairs, rotation angle and encoder frequency multiplier;
  • the method for judging the frequency multiplication number of the encoder in the step S1 is as follows: when the encoder counts, only the rising edge acts, then there is no frequency multiplication; the rising edge and falling edge of the single-phase pulse act, then it is 2 frequency multiplication; all the rising edges of the quadrature pulse Action, it is 2 times the frequency; all the rising edges of the quadrature pulse, and the falling edge action is 4 times the frequency.
  • the working mode of the pulse accumulation mode in the step S2 is that the quadrature encoder with 1024 lines, in the quadruple frequency mode, selects every 1024 pulses to generate a zero point signal for correction, so as to ensure that the rotation is less than one mechanical cycle, and can generate Multiple zero-point signals are corrected.
  • the working mode of the pole logarithm mode is that the quadrature encoder with 1024 lines is used for n pair of pole motors, and in the 4 frequency multiplication mode, a zero signal is selected to be generated every 1024/n pulse signals, that is, every A zero point signal is generated after 360° electrical cycle, ensuring that multiple zero point signals are generated within one mechanical cycle for correction.
  • step S4 the desired zero point position is set, the initial zero point position of the encoder is set by the quadrature encoder controller, and the zero point signal generation position is set to be consistent with the rising edge of phase A or the direction in which the motor sweeps the ⁇ -axis.
  • the number of pulses per unit time or the rotation angle per unit time is set through the counting mode of the encoder, and a certain speed is set to control the pulse width of the Z-phase zero point signal.
  • a certain speed is set to control the pulse width of the Z-phase zero point signal.
  • the present invention has the following significant advantages:
  • the present invention proposes a multi-zero signal quadrature encoder control method to realize the dynamic correction of multi-wire motors. Compared with the traditional single-zero point control method, multiple corrections can be performed when the motor rotates less than one mechanical cycle when the frequency is multiplied. , making position reading more accurate.
  • the present invention proposes a multi-zero signal quadrature encoder control method to realize the adaptation of multi-pole motors. Compared with the traditional quadrature encoder control method, when the multi-pole motor rotates more than 360° , to ensure that the mechanical angle of the motor corresponds to the electrical angle, to ensure that multiple zero-point signals are generated within one mechanical cycle for correction, and to improve the accuracy of the correction.
  • the Z signal pulse width control method of the present invention within a certain rotational speed, the Z signal pulse width remains unchanged, the accuracy of A phase pulse detection is improved, and the Z phase pulse width stability is ensured.
  • Fig. 1 is a flow chart of the present invention
  • Fig. 2 is an example diagram of A-phase, B-phase and Z-phase pulses in the pulse accumulation mode of the present invention
  • Fig. 3 is an example diagram of A-phase, B-phase and Z-phase pulses in the pole logarithmic mode of the present invention.
  • a kind of control method of multi-zero signal quadrature encoder as shown in Figure 1, comprises the steps:
  • Step S1 Select the corresponding pulse accumulation mode and pole logarithm mode according to the number of pole pairs of the motor, the rotation angle and the frequency multiplication of the encoder;
  • Step S2 Pulse accumulation mode: when the mechanical angle is less than or equal to 360°, it is set to output a calibration zero signal when the pulse accumulation reaches a certain number;
  • Step S3 pole logarithm mode: when the mechanical angle is greater than 360°, obtain the current pole logarithm of the motor, input it into the quadrature encoder controller, and the quadrature encoder will generate the same zero signal as the pole logarithm, and every The number of A-phase and B-phase signal pulses generated between zero-point signals is consistent;
  • Step S4 Set the corresponding desired zero position of the motor through the quadrature encoder controller
  • Step S5 Set the counting mode through the quadrature encoder, and set that when the number of pulses reaches a certain number, the rising edge of the B-phase is no longer used as the action reference for the falling edge of the zero-point signal of the Z-phase.
  • One pulse you can choose to generate a zero signal every 1024 pulses for correction, to ensure that even if the rotation is less than one mechanical cycle, multiple zero signals can be generated for correction, and the position reading accuracy is improved when the rotation angle is small;
  • the expected zero position of the motor is set, and the initial zero position of the encoder is set by setting the quadrature encoder controller.
  • the position where the zero signal occurs is set to be consistent with the rising edge of phase A or the direction of the motor sweeping the ⁇ axis ;
  • step S5 through the timing mode of the encoder, by setting the number of pulses per unit time or the rotation angle per unit time, that is, setting a certain speed to control the pulse width of the Z-phase zero point signal, when the motor speed is less than the set speed , take the rising edge of the A-phase pulse as the reference for the rising edge of the Z-phase pulse, and use the rising edge of the B-phase pulse as the reference for the falling edge of the Z-phase pulse; Reference, the falling edge of the A-phase pulse is used as the falling edge of the Z-phase pulse to ensure that the Z-phase pulse width remains unchanged within a certain speed, so as to ensure that the pulse width is stable;

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

一种多零点信号正交编码器的控制方法,包括如下步骤:以旋转角度大小选择相应的脉冲累计模式和极对数模式;通过正交编码器控制器设置期望零点位置;最后通过正交编码器计数模式,设置当一定转速内,Z相零点信号脉宽不变,以此保证脉宽稳定性。通过多零点信号正交编码器的控制方法实现多对极电机的适应以及多线数电机的动态校正,针对不同工况提升位置读取精确程度。

Description

一种多零点信号正交编码器的控制方法 技术领域
本发明涉及正交编码器控制技术领域,尤其涉及一种多零点信号正交编码器的控制方法。
背景技术
编码器是安装在电机上用来测量电机转角及转速的一种传感器,目前常使用的编码器为正交编码器,通过输出三组方波脉冲A、B和Z相来判断电机旋转方向以及测速。其中A和B两相脉冲输出存在90°相位差,因此可以根据两个信号时序相位关系判断旋转方向,并且可以根据A、B相脉冲信号数量测得速度,位移;Z相为零点信号,即转一个机械周期后用于基准点定位,当编码器旋转到零点时,Z信号会发出一个脉冲表示现在为零位置,可用来记录编码器旋转圈数,从而知道运行距离。由于正交编码器原理构造简单,抗干扰能力强,可靠性高,在电机领域上被广泛应用。
传统的正交编码器采用单零点控制方法,在单片机处理过程中,脉冲数越多越密集,则对芯片处理能影响越大,即正交计数时,会产生扰动导致丢帧,单零点控制方法在一个机械周期中只可校正一次,会造成位置读取不够精准,误差较大;此外,若电机为多对极,在校正时,只可校正机械角度而非电角度。而市面上少数采用多零点控制的方法在设置方法上存在比较大的局限性。
本发明提出多零点信号正交编码器的控制方法实现多对极电机的适应以及多线数电机的动态校正,包括两种控制模式:脉冲累计模式和极对数模式。脉冲累计模式通过多零点信号,动态校正使得位置读取更精确;极对数模式则可根据电机极对数灵活选择控制方式,实现多对极电极角度对应。
发明内容
发明目的:为了解决目前编码器的控制方法对多对极电机的适应度低以及多线数电机的动态校正不稳定的问题,本发明提供一种多零点信号正交编码器的控制方法,包括两种控制模式:脉冲累计模式和极对数模。脉冲累计模式通过多零点信号,动态校正使得位置读取更精确;极对数模式则可根据电机极对数灵活选择控制方式,实现多对极电极角度对应。
技术方案:一种多零点信号正交编码器的控制方法,使用方法包括如下步骤:
S1:根据电机极对数、旋转角度和编码器倍频数选择相应的脉冲累计模式和极对数模式;
S2:运行脉冲累计模式,当机械角度小于等于360°时,设置当脉冲累计达到一定 数量以后,输出校正零点信号;
S3:运行极对数模式,当机械角度大于360°时,获取电机当前极对数,输入正交编码器控制器中,由正交编码器产生与极对数相同的零点信号,且每个零点信号之间产生的A相B相信号脉冲数一致;
S4:通过正交编码器控制器设置电机期望零点位置;
S5:通过正交编码器计数模式,设置当脉冲数达到一定数量时,不再以B相上升沿作为Z相零点信号下降沿的动作基准。
所述步骤S1中编码器倍频数判断方法为,编码器计数时仅上升沿动作,则无倍频;单相脉冲上升沿,下降沿动作,则为2倍频;正交脉冲所有上跳沿动作,则为2倍频;正交脉冲所有上升沿,下降沿动作,则为4倍频。
所述步骤S2中脉冲累计模式工作方式为,1024线数的正交编码器,在4倍频模式下,选择每隔1024个脉冲产生一个零点信号进行校正,确保旋转不满一个机械周期,可产生多个零点信号进行校正。
所述步骤S3中极对数模式工作方式为,1024线数的正交编码器用于n对极电机,在4倍频模式下,选择每隔1024/n个脉冲信号产生一个零点信号,即每经过360°电周期产生一个零点信号,确保在一个机械周期内产生多个零点信号进行校正。
所述步骤S4中设置期望零点位置,通过正交编码器控制器设置编码器初始零点位置,设置零点信号发生位置与A相上升沿或电机扫过α轴方向一致。
所述步骤S5中通过编码器自带的计数模式,设置单位时间内脉冲数量或单位时间内旋转角度,设置一定转速来控制Z相零点信号脉宽,当电机转速小于所设转速时,以A相脉冲上升沿作为Z相脉冲上升沿基准,以B相脉冲上升沿作为Z相脉冲下降沿基准;当电机转速大于所设转速时,以A相脉冲上升沿作为Z相脉冲上升沿基准,以A相脉冲下降沿沿作为Z相脉冲下降沿基准,保证Z相脉宽在一定速度内不变。
有益效果:与现有技术相比,本发明具有如下显著优点:
1、本发明提出多零点信号正交编码器控制方法实现多线数电机的动态校正,与传统单零点控制方式相比倍频的情况下当电机旋转不足一个机械周期时也可进行多次校正,使得位置读取更加精确。
2、本发明提出多零点信号正交编码器控制方法实现多对极电机的适应,与传统的正交编码器控制方式相比在保证角度精度的情况下,当多对极电机旋转超过360°时,确保电机机械角度与电角度对应,确保在一个机械周期内产生多个零点信号进行校正,提升校正准确性。
3、本发明在Z信号脉宽控制方法中,设置一定转速以内,Z信号脉宽不变,提高 A相脉冲检测准确程度,保证Z相脉宽稳定性。
附图说明
图1为本发明的流程图;
图2为本发明脉冲累计模式下A相,B相,Z相脉冲示例图;
图3为本发明极对数模式下A相,B相,Z相脉冲示例图。
具体实施方式
下面结合附图对本发明的技术方案作进一步说明。
一种多零点信号正交编码器的控制方法,如图1所示,包括如下步骤:
步骤S1:根据电机极对数、旋转角度和编码器倍频数选择相应的脉冲累计模式和极对数模式;
步骤S2:脉冲累计模式:当机械角度小于等于360°时,设置当脉冲累计达到一定数量以后,则输出校正零点信号;
步骤S3:极对数模式:当机械角度角度大于360°时,获取电机当前极对数,输入正交编码器控制器中,由正交编码器产生与极对数相同的零点信号,且每个零点信号之间产生的A相B相信号脉冲数一致;
步骤S4:通过正交编码器控制器设置电机相应期望零点位置;
步骤S5:通过正交编码器设置计数模式,设置当脉冲数达到一定数量时,不再以B相上升沿作为Z相零点信号下降沿的动作基准。
进一步地,所述步骤S1中编码器倍频数判断方法,编码器计数时仅上升沿动作,则无倍频;单相脉冲上升沿,下降沿动作,则为2倍频;正交脉冲所有上跳沿动作,则为2倍频;正交脉冲所有上升沿,下降沿动作,则为4倍频;
进一步地,所述步骤S2中脉冲累计模式具体工作方式为,例如:1024线数的正交编码器,在4倍频模式下线数为1024×4=4096,即旋转一个机械周期时产生4096个脉冲,可选择每隔1024个脉冲产生一个零点信号进行校正,确保即使旋转不满一个机械周期,也可产生多个零点信号进行校正,提升旋转角度较小情况下的位置读取精确度;
进一步地,所述步骤S3中极对数模式具体工作方式为,例如:两对极电机,1024线数编码器,4倍频模式下线数为1024×4=4096,即旋转一个机械周期时产生4096个脉冲,可选择每隔512个脉冲信号产生一个零点信号,即每经过360°电周期产生一个零点信号,确保在多个机械周期内产生多个零点信号进行校正;
进一步地,所述步骤S4中设置电机期望零点位置,通过设置正交编码器控制器设置编码器初始零点位置,通常情况下设置零点信号发生位置与A相上升沿或电机扫过α轴方向一致;
进一步地所述步骤S5中通过编码器自带的计时模式,通过设置单位时间内脉冲数量或单位时间内旋转角度,即设置一定转速控制Z相零点信号脉宽,当电机转速小于所设转速时,以A相脉冲上升沿作为Z相脉冲上升沿基准,以B相脉冲上升沿作为Z相脉冲下降沿基准;当电机转速大于所设转速时,以A相脉冲上升沿作为Z相脉冲上升沿基准,以A相脉冲下降沿沿作为Z相脉冲下降沿基准,以保证Z相脉宽在一定速度内不变,以此保证脉宽稳定;
如图2所示脉冲累计模式,1024线数的正交编码器,在4倍频模式下线数为1024×4=4096,若电机仅旋转180°则可以设置每经过256个脉冲产生一个零点校正信号,以确保在机械周期未满一周情况下,也可进行多零点校正,提高位置读取精度。
如图3所示极对数模式,两对极电机,1024线数编码器,4倍频模式下线数为1024×4=4096(即旋转一个机械周期时产生4096个脉冲),可选择每隔512个脉冲信号产生一个零点信号,保在多个机械周期内产生多个零点信号进行校正。

Claims (6)

  1. 一种多零点信号正交编码器的控制方法,使用方法包括如下步骤:
    S1:根据电机极对数、旋转角度和编码器倍频数选择相应的脉冲累计模式和极对数模式;
    S2:运行脉冲累计模式,当机械角度小于等于360°时,设置当脉冲累计达到一定数量以后,输出校正零点信号;
    S3:运行极对数模式,当机械角度大于360°时,获取电机当前极对数,输入正交编码器控制器中,由正交编码器产生与极对数相同的零点信号,且每个零点信号之间产生的A相B相信号脉冲数一致;
    S4:通过正交编码器控制器设置电机期望零点位置;
    S5:通过正交编码器计数模式,设置当脉冲数达到一定数量时,不再以B相上升沿作为Z相零点信号下降沿的动作基准。
  2. 根据权利要求1所述的一种多零点信号正交编码器的控制方法,其特征在于,所述步骤S1中编码器倍频数判断方法为,编码器计数时仅上升沿动作,则无倍频;单相脉冲上升沿,下降沿动作,则为2倍频;正交脉冲所有上跳沿动作,则为2倍频;正交脉冲所有上升沿,下降沿动作,则为4倍频。
  3. 根据权利要求1所述的一种多零点信号正交编码器的控制方法,其特征在于,所述步骤S2中脉冲累计模式工作方式为,1024线数的正交编码器,在4倍频模式下,选择每隔1024个脉冲产生一个零点信号进行校正,确保旋转不满一个机械周期,可产生多个零点信号进行校正。
  4. 根据权利要求1所述的一种多零点信号正交编码器的控制方法,其特征在于,所述步骤S3中极对数模式工作方式为,1024线数的正交编码器用于n对极电机,在4倍频模式下,选择每隔1024/n个脉冲信号产生一个零点信号,即每经过360°电周期产生一个零点信号,确保在一个机械周期内产生多个零点信号进行校正。
  5. 根据权利要求1所述的一种多零点信号正交编码器的控制方法,其特征在于,所述步骤S4中设置期望零点位置,通过正交编码器控制器设置编码器初始零点位置,设置零点信号发生位置与A相上升沿或电机扫过α轴方向一致。
  6. 根据权利要求1所述的一种多零点信号正交编码器的控制方法,其特征在于,所述步骤S5中通过编码器自带的计数模式,设置单位时间内脉冲数量或单位时间内旋转角度,设置一定转速来控制Z相零点信号脉宽,当电机转速小于所设转速时,以A相脉冲上升沿作为Z相脉冲上升沿基准,以B相脉冲上升沿作为Z相脉冲下降沿基准;当电机转速大于所设转速时,以A相脉冲上升沿作为Z相脉冲上升沿基准,以A相脉冲下降沿沿作为Z相脉冲下降沿基准,保证Z相脉宽在一定速度内不变。
PCT/CN2022/122972 2021-11-26 2022-09-30 一种多零点信号正交编码器的控制方法 WO2023093301A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111420551.XA CN114070161A (zh) 2021-11-26 2021-11-26 一种多零点信号正交编码器的控制方法
CN202111420551.X 2021-11-26

Publications (1)

Publication Number Publication Date
WO2023093301A1 true WO2023093301A1 (zh) 2023-06-01

Family

ID=80276699

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/122972 WO2023093301A1 (zh) 2021-11-26 2022-09-30 一种多零点信号正交编码器的控制方法

Country Status (2)

Country Link
CN (1) CN114070161A (zh)
WO (1) WO2023093301A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114070161A (zh) * 2021-11-26 2022-02-18 江苏科技大学 一种多零点信号正交编码器的控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6556153B1 (en) * 2002-01-09 2003-04-29 Anorad Corporation System and method for improving encoder resolution
CN103048012A (zh) * 2012-08-10 2013-04-17 深圳市正弦电气股份有限公司 一种正余弦编码器的零点校正方法、系统及电梯
CN106773897A (zh) * 2016-11-18 2017-05-31 中国电子科技集团公司第四十研究所 一种绝对编码器信号转换为增量编码器信号的方法
CN111224679A (zh) * 2020-01-21 2020-06-02 上海雷智电机有限公司 一种z相信号产生电路及编码器
CN114070161A (zh) * 2021-11-26 2022-02-18 江苏科技大学 一种多零点信号正交编码器的控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6556153B1 (en) * 2002-01-09 2003-04-29 Anorad Corporation System and method for improving encoder resolution
CN103048012A (zh) * 2012-08-10 2013-04-17 深圳市正弦电气股份有限公司 一种正余弦编码器的零点校正方法、系统及电梯
CN106773897A (zh) * 2016-11-18 2017-05-31 中国电子科技集团公司第四十研究所 一种绝对编码器信号转换为增量编码器信号的方法
CN111224679A (zh) * 2020-01-21 2020-06-02 上海雷智电机有限公司 一种z相信号产生电路及编码器
CN114070161A (zh) * 2021-11-26 2022-02-18 江苏科技大学 一种多零点信号正交编码器的控制方法

Also Published As

Publication number Publication date
CN114070161A (zh) 2022-02-18

Similar Documents

Publication Publication Date Title
WO2023093301A1 (zh) 一种多零点信号正交编码器的控制方法
CN106655959A (zh) 一种无刷直流电机转速测量方法
CN112304211B (zh) 一种通过反电动势校准电机霍尔扇区的方法
CN106089598B (zh) 一种风力发电机转子检测方法及系统
JP2001165707A (ja) レゾルバの位相誤差補正方法及び装置
CN109842329A (zh) 用于电动转向器直流无刷电机转子偏移角测量的方法
JP4782434B2 (ja) 回転検出装置の信号処理装置
CN109039198A (zh) 永磁电机霍尔位置的校正方法及装置
CN113067505A (zh) 在永磁同步电机控制过程中对电压矢量进行补偿的方法
EP3852264B1 (en) Method, system, and motor for measuring motor rotor logic level
Chunyang et al. Error analysis and compensation for inductosyn-based position measuring system
JP2001336951A (ja) 回転位置検出装置及び方法
CN110672873A (zh) 无刷直流电机转速测量装置及其使用方法
CN109428455B (zh) 开关磁阻电机及其控制方法
CN111987958B (zh) 一种永磁同步电机转子位置检测方法及系统
CN114157186A (zh) 一种永磁同步电机的电角度标定方法、评价方法及其系统
WO1982004129A1 (en) Speed detecting device
JP2963019B2 (ja) 速度検出装置
KR102077362B1 (ko) 모터제어기의 개선
JP3860324B2 (ja) モータ速度制御装置
CN115951219B (zh) 伺服电机力常数测量方法、测量设备及测量装置
CN109687776A (zh) 电动工具及其校准方法
CN111948537B (zh) 凸极式永磁同步电机最大转矩磁链比工作点的标定方法
CN111030545B (zh) 一种基于改进m/t法改善电动叉车低速性能的控制方法
JPH04355326A (ja) 電気角出力機能付きロータリエンコーダ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22897386

Country of ref document: EP

Kind code of ref document: A1