WO2023093261A1 - 新风设备控制方法、装置、新风设备及存储介质 - Google Patents

新风设备控制方法、装置、新风设备及存储介质 Download PDF

Info

Publication number
WO2023093261A1
WO2023093261A1 PCT/CN2022/121020 CN2022121020W WO2023093261A1 WO 2023093261 A1 WO2023093261 A1 WO 2023093261A1 CN 2022121020 W CN2022121020 W CN 2022121020W WO 2023093261 A1 WO2023093261 A1 WO 2023093261A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchange
fresh air
exchange system
temperature
target
Prior art date
Application number
PCT/CN2022/121020
Other languages
English (en)
French (fr)
Inventor
徐振坤
李金波
刘步东
杜顺开
黄剑云
高卓贤
Original Assignee
广东美的制冷设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美的制冷设备有限公司 filed Critical 广东美的制冷设备有限公司
Publication of WO2023093261A1 publication Critical patent/WO2023093261A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0035Indoor units, e.g. fan coil units characterised by introduction of outside air to the room
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • F24F1/0063Indoor units, e.g. fan coil units characterised by heat exchangers by the mounting or arrangement of the heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0083Indoor units, e.g. fan coil units with dehumidification means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0087Indoor units, e.g. fan coil units with humidification means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/0008Control or safety arrangements for air-humidification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/20Humidity

Definitions

  • the present application relates to the technical field of air treatment equipment, and in particular to a fresh air equipment control method, device, fresh air equipment, and storage medium.
  • the main purpose of this application is to provide a fresh air equipment control method, device, fresh air equipment and storage medium, aiming to solve the technical problems in the prior art that the fresh air temperature adjustment capacity is limited, and dehumidification and energy saving cannot be taken into account at the same time.
  • the present application provides a method for controlling fresh air equipment.
  • the fresh air equipment includes a first heat exchange system and a second heat exchange system.
  • the first heat exchange system is used for heat exchange between the fresh air channel and the outdoor environment.
  • the second heat exchange system is used for heat exchange between the fresh air channel and the exhaust air channel;
  • Fresh air equipment control methods include:
  • the fresh air equipment includes: a humidifying device, the humidifying device is arranged in the fresh air channel, and the moisture content of the fresh air is compared with the target moisture content to obtain a moisture content comparison result After that, include:
  • the humidifying device When the moisture content of the fresh air is greater than or equal to the target moisture content, the humidifying device is controlled to be turned off.
  • the determining the target operation mode of the first heat exchange system and the target operation mode of the second heat exchange system according to the moisture content comparison result and the temperature comparison result includes:
  • the target operation mode of the first heat exchange system is the temperature increase mode
  • the second heat exchange system The target operating mode of the thermal system is the heating mode
  • the target operation mode of the first heat exchange system is a cooling without dehumidification mode
  • the target operation mode of the first heat exchange system is the cooling without dehumidification mode
  • the second The target operation mode of the second heat exchange system is the mode of cooling without dehumidification
  • the determining the target operation mode of the first heat exchange system and the target operation mode of the second heat exchange system according to the moisture content comparison result and the temperature comparison result includes:
  • the target operation mode of the first heat exchange system is the temperature increase mode, and it is determined that the second heat exchange system
  • the target operating mode of the thermal system is the heating mode
  • the target operation mode of the first heat exchange system is a cooling without dehumidification mode
  • determine that the second The target operation mode of the second heat exchange system is the mode of cooling without dehumidification.
  • the determining the target operation mode of the first heat exchange system and the target operation mode of the second heat exchange system according to the moisture content comparison result and the temperature comparison result includes:
  • the target operating mode of the first heat exchange system is the reheating and dehumidification mode
  • the target operation mode of the first heat exchange system is the reheating and dehumidification mode
  • the target operation mode of the first heat exchange system is the cooling and dehumidification mode
  • determine that the second The target operation mode of the heat exchange system is cooling and dehumidification mode
  • the fresh air equipment control method further includes:
  • the first heat exchange system When the first heat exchange system operates in a cooling mode without dehumidification, acquire the first coil temperature corresponding to the heat exchanger in the first heat exchange system;
  • the fresh air equipment further includes an exhaust fan arranged in the exhaust passage and a fresh air fan arranged in the fresh air passage
  • the first heat exchange system includes a first compressor
  • the second heat exchange system includes a second compressor, and after driving the fresh air equipment to operate according to the target operation mode of the first heat exchange system and the target operation mode of the second heat exchange system, it further includes:
  • the operation mode of the first heat exchange system, and the operation mode of the second heat exchange system adjust the rotation speed of the first compressor, the rotation speed of the second compressor, and the rotation speed of the second heat exchange system.
  • the opening degree of the throttling element in the throttling working state in the first heat exchange system, the opening degree of the throttling element in the throttling working state in the second heat exchanging system, the speed of the exhaust fan and the fresh air At least one of the rotational speeds of the fans.
  • the rotation speed of the first compressor and the second heat exchange system are adjusted.
  • the rotation speed of the compressor, the opening degree of the throttling element in the throttling working state in the first heat exchange system, the opening degree of the throttling element in the throttling working state in the second heat exchanging system, the exhaust At least one of the speed of the fan and the speed of the fresh air fan, the throttling element in the throttling working state in the first heat exchange system is the first working throttling element, and the throttling element in the second heat exchange system is
  • the throttling element in the throttling working state is the second working throttling element, which also includes:
  • the first heat exchange system When the current temperature is lower than the target temperature, if the first heat exchange system is in the mode of cooling without dehumidification, and the second heat exchange system is in the mode of cooling without dehumidification, reduce the speed of the first compressor, reduce at least one of the speed of the second compressor, increasing the opening of the first throttling element, and decreasing the opening of the second throttling element;
  • the first heat exchange system When the current temperature is greater than the target temperature, if the first heat exchange system is in the mode of cooling without dehumidification, and the second heat exchange system is in the mode of cooling without dehumidification, increase the speed of the first compressor, increase at least one of the rotation speed of the second compressor, reducing the opening degree of the first operating throttling element, and reducing the opening degree of the second operating throttling element;
  • the first heat exchange system When the current temperature is greater than the target temperature, if the first heat exchange system is in the reheating dehumidification mode and the second heat exchange system is in the temperature raising mode, increase the speed of the first compressor and decrease the at least one of the rotational speed of the second compressor, reducing the opening degree of the first operating throttling element, and increasing the opening degree of the second operating throttling element;
  • the first heat exchange system When the current temperature is lower than the target temperature, if the first heat exchange system is in the cooling and dehumidification mode, and the second heat exchange system is in the cooling and dehumidification mode, reduce the speed of the first compressor and increase the at least one of the opening degree of the first throttling element, reducing the speed of the second compressor, and increasing the opening degree of the second throttling element;
  • the first heat exchange system When the current temperature is lower than the target temperature, if the first heat exchange system is in the cooling and dehumidification mode and the second heat exchange system is in the cooling and dehumidification mode, increase the speed of the first compressor and decrease the At least one of increasing the opening degree of the first throttling element, increasing the rotation speed of the second compressor, and decreasing the opening degree of the second throttling element.
  • the fresh air equipment includes: a humidifying device, the humidifying device is arranged in the fresh air passage, and the driving of the fresh air equipment according to the target operation mode of the first heat exchange system and the second heat exchange system After running the target operating mode of the thermal system also includes:
  • the first heat exchange system When the current moisture content is greater than or equal to the target moisture content, if the humidifier is off, the first heat exchange system is in the reheat dehumidification mode and the second heat exchange system is in the reheat mode In the dehumidification mode, or the first heat exchange system is in the cooling dehumidification mode and the second heat exchange system is in the cooling dehumidification mode, increase the speed of the first compressor and reduce the speed of the first throttling element at least one of opening, increasing the rotational speed of the second compressor, and decreasing the opening of the second throttling element;
  • the first heat exchange system When the current moisture content is less than or equal to the target moisture content, if the humidifier is off, the first heat exchange system is in the reheat dehumidification mode and the second heat exchange system is in the reheat mode In dehumidification mode, or if the first heat exchange system is in cooling dehumidification mode and the second heat exchange system is in cooling dehumidification mode, then reduce the speed of the first compressor and increase the speed of the first throttling element at least one of the opening degree, reducing the rotational speed of the second compressor, and increasing the opening degree of the second throttling element.
  • the acquisition of target temperature and target moisture content includes:
  • the heating target temperature in the heating season is used as the target temperature
  • the excessive target temperature in the transitional season is used as the target temperature
  • the cooling target temperature in the cooling season is used as the target temperature
  • this application also proposes a fresh air equipment control device, which includes:
  • a parameter acquisition module configured to acquire a target temperature and a target moisture content
  • the parameter determination module is used to determine the moisture content of the fresh air according to the fresh air temperature and the fresh air humidity
  • a parameter comparison module configured to compare the moisture content of the fresh air with the target moisture content to obtain a comparison result of the moisture content
  • the parameter comparison module is also used to compare the fresh air temperature with the target temperature to obtain a temperature comparison result
  • a mode determination module configured to determine a target operation mode of the first heat exchange system and a target operation mode of the second heat exchange system according to the moisture content comparison result and the temperature comparison result;
  • the mode driving module is used to drive the fresh air equipment to operate according to the target operation mode of the first heat exchange system and the target operation mode of the second heat exchange system.
  • this application also proposes a fresh air device, including a first heat exchange system, a second heat exchange system, a memory, a processor, and a fresh air system stored in the memory and operable on the processor.
  • the equipment control program the first heat exchange system is used to exchange heat between the fresh air passage and the external environment
  • the second heat exchange system is used to perform heat exchange between the fresh air passage and the exhaust air passage
  • the fresh air equipment control program is When executed by the processor, the above-mentioned fresh air equipment control method is realized.
  • the fresh air equipment has a fresh air channel and an exhaust air channel
  • the first heat exchange system includes a first compressor, a first four-way valve, a first heat exchanger, a first throttling valve connected in sequence element and a second heat exchanger
  • the second heat exchange system includes a second compressor, a second four-way valve, a fourth heat exchanger, a third throttling element and a fifth heat exchanger connected in sequence;
  • the first heat exchanger is arranged in the external environment
  • the second heat exchanger, the fifth heat exchanger, and the fresh air fan are sequentially arranged in the fresh air channel from the outdoor to the indoor direction;
  • the fourth heat exchanger and an exhaust fan are arranged in the exhaust channel.
  • the first heat exchange system further includes a second throttling element and a third heat exchanger, and the second throttling element and the third heat exchanger are sequentially connected to the second throttling element After the heat exchanger, the third heat exchanger is arranged in the fresh air channel and is located upstream of the second heat exchanger; and/or
  • the second heat exchanger also includes a fourth throttling element and a sixth heat exchanger, the third throttling element and the sixth heat exchanger are sequentially connected after the fifth heat exchanger, the The sixth heat exchanger is arranged in the fresh air channel and upstream of the second heat exchanger.
  • the area of the second heat exchanger is less than or equal to 50% of the area of the first heat exchanger, and the area of the fifth heat exchanger is less than or equal to 150% of the area of the fourth heat exchanger.
  • the present application also proposes a storage medium, on which a fresh air equipment control program is stored, and when the fresh air equipment control program is executed by a processor, the above-mentioned fresh air equipment control method is realized.
  • the fresh air equipment has a two-stage heat exchange system, wherein the first heat exchange system is used to realize the heat exchange between the fresh air passage and the outdoor environment; the second heat exchange system is used to realize the heat exchange between the fresh air passage and the exhaust air passage.
  • the target operation mode and the target operation mode of the second heat exchange system drive the fresh air equipment to operate according to the target operation mode of the first heat exchange system and the target operation mode of the second heat exchange system, thereby solving the problem that the single refrigeration cycle system cannot control the temperature separately and humidity problems, reduce excessive temperature or humidity treatment, and automatically realize the high-efficiency and energy-saving operation of fresh air fans under all working conditions throughout the year.
  • Fig. 1 is a schematic structural diagram of a fresh air device in a hardware operating environment involved in the embodiment of the present application;
  • Fig. 2 is a schematic structural diagram of an embodiment of the fresh air equipment of the present application
  • Fig. 3 is a schematic structural view of another embodiment of the fresh air equipment of the present application.
  • FIG. 4 is a schematic flow chart of the first embodiment of the fresh air equipment control method of the present application.
  • Fig. 5 is a schematic diagram of obtaining the target temperature of the automatic operation of the fresh air equipment in the first embodiment of the fresh air equipment control method of the present application;
  • FIG. 6 is a schematic flow chart of the second embodiment of the fresh air equipment control method of the present application.
  • Fig. 7 is a structural block diagram of the first embodiment of the fresh air equipment control device of the present application.
  • FIG. 1 is a schematic structural diagram of a fresh air device in a hardware operating environment involved in the solution of the embodiment of the present application.
  • the fresh air device may include: a processor 1001, such as a central processing unit (Central Processing Unit, CPU), a communication bus 1002, a user interface 1003, a network interface 1004, a memory 1005 and a fresh air device.
  • the communication bus 1002 is used to realize connection and communication between these components.
  • the user interface 1003 may include a display screen (Display).
  • the optional user interface 1003 may also include a standard wired interface and a wireless interface.
  • the wired interface of the user interface 1003 may be a USB interface in this application.
  • the network interface 1004 may include a standard wired interface and a wireless interface (such as a Wireless-Fidelity (Wi-Fi) interface).
  • Wi-Fi Wireless-Fidelity
  • the memory 1005 may be a high-speed random access memory (Random Access Memory, RAM) memory, or a stable memory (Non-volatile Memory, NVM), such as a disk memory.
  • the memory 1005 may also be a storage device independent of the aforementioned processor 1001 .
  • Fresh air equipment is used to extract air from the outdoor environment, process it, and transmit the treated air to the indoor environment as fresh air.
  • FIG. 1 does not constitute a limitation on the fresh air blower, and may include more or less components than shown in the figure, or combine some components, or arrange different components.
  • the memory 1005 identified as a computer storage medium may include an operating system, a network communication module, a user interface module, and a fresh air device control program.
  • the network interface 1004 is mainly used to connect to the background server and perform data communication with the background server; the user interface 1003 is mainly used to connect to user equipment; the fresh air fan calls the memory 1005 through the processor 1001
  • the fresh air equipment control program stored in and execute the fresh air equipment control method provided in the embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of an embodiment of the fresh air equipment of the present application.
  • a fresh air equipment is proposed, and the fresh air equipment control method is executed on the basis of the fresh air equipment.
  • the fresh air equipment may have a first heat exchange system and a second heat exchange system.
  • the first heat exchange system may include a first compressor C1, a first four-way valve V1, a first heat exchanger H1, a first throttling element K1, a second heat exchanger H2, a second throttling element K2 and The third heat exchanger H3.
  • the second heat exchange system may include a second compressor C2, a second four-way valve V2, a fourth heat exchanger H4, a third throttling element K3, a fifth heat exchanger H5, a fourth throttling element K4 and a sixth Heat exchanger H6.
  • the first throttling element K1 , the second throttling element K2 , the third throttling element K3 and the fourth throttling element K4 may be electronic expansion valves.
  • the first heat exchange system and the second heat exchange system may also share a multi-cylinder compressor.
  • the fresh air equipment includes a compressor with two independent cylinders.
  • the second cylinder in the compressor and the second four-way valve V2, the fourth heat exchanger H4, the third throttling element K3, the fifth heat exchanger H5, the fourth throttling element K4 and the sixth heat exchanger H6 connected to form a second heat exchange system.
  • the fresh air device also has a fresh air channel 10 and an exhaust channel 20 , the fresh air channel 10 is used to transport air from the outdoor environment to the indoor environment, and the exhaust channel 20 is used to transport air from the indoor environment to the outdoor environment.
  • first heat exchanger H1 in the first heat exchange system can be in an outdoor environment
  • second heat exchanger H2 and the third heat exchanger H3 can be located in the above-mentioned fresh air channel 10 for realizing the fresh air channel 10 Heat exchange with the outdoor environment.
  • the fourth heat exchanger H4 in the second heat exchange system can be located in the above-mentioned exhaust air passage 20, and the fifth heat exchanger H5 and the sixth heat exchanger H6 can be located in the above-mentioned fresh air passage 10 to realize fresh air ventilation. Heat exchange between the channel 10 and the exhaust channel 20 .
  • the first heat exchange system further includes a first blower Y1 corresponding to the first heat exchanger H1, and the blower is used to realize heat exchange between the refrigerant in the first heat exchanger H1 and the outdoor environment.
  • the fresh air passage 10 is also provided with a second blower Y2, and the second blower Y2 is used to draw air from the outdoor environment into the fresh air passage 10 .
  • a third fan Y3 is also arranged in the exhaust channel 20 , and the third fan Y3 is used to draw air from the indoor environment into the exhaust channel 20 .
  • the humidifying device J1 is arranged next to the second fan Y2 at the entrance of the fresh air passage 10, and is used to adjust the humidity of the fresh air at the entrance of the fresh air inlet passage.
  • the working principle of the above fresh air equipment is: the second fan Y2 draws fresh air from the outdoor environment, the fresh air passes through the humidifier J1 for humidity adjustment, and then passes through the fifth heat exchanger H5, the second heat exchanger H2, and the sixth heat exchanger H6 And the third heat exchanger H3 performs four times of heat exchange and then sends it to the indoor environment.
  • the third blower Y3 extracts exhaust air from the indoor environment, and the exhaust air passes through the fourth heat exchanger H4 for a heat exchange and then is transported to the outside.
  • the fresh air equipment can have 9 kinds of operation requirements of heating, heating and humidification, heating and dehumidification, cooling, cooling and humidification, cooling and dehumidification, isothermal humidification, isothermal dehumidification and direct supply of fresh air.
  • the first heat exchange system and the second heat exchange system The operating modes of the system are combined and controlled, and the operating status is adjusted to achieve their respective effects, so that the system can operate automatically and efficiently, and achieve the control target of room temperature and humidity.
  • Both the first heat exchange system and the second heat exchange system can have a cooling mode (one of cooling mode, dehumidification mode or reheating mode) and a heating mode (or heating mode), the first heat exchange system and the second heat exchange system
  • a cooling mode one of cooling mode, dehumidification mode or reheating mode
  • a heating mode or heating mode
  • the fifth heat exchanger H5, the second heat exchanger H2, the sixth heat exchanger H6 and the third heat exchanger H3 all cool down and/or dehumidify and/or reheat the fresh air delivered to the room;
  • both the first heat exchange system and the second heat exchange system are in heating mode, the fifth heat exchanger H5, the second heat exchanger H2, the sixth heat exchanger H6 and the third heat exchanger H3
  • the fresh air is heated and sent to the room.
  • the fresh air passes through the second heat exchanger H2 and the third heat exchanger H3 of the first heat exchange system, and the fifth heat exchanger H5 and the sixth heat exchanger H6 of the second heat exchange system perform four heat exchanges, and the exhaust air The heat is recovered through the fourth heat exchanger H4 of the second heat exchange system.
  • the first heat exchange system and the second heat exchange system are equipped with four-way valves to switch between cooling and heating modes, so as to realize the recovery of exhaust heat under the cooling and heating modes under all working conditions throughout the year.
  • the heat recovery system of the fresh air machine is in the form of a heat pump
  • the second heat exchange system is sensible heat recovery in cooling mode
  • the second heat exchange system is total heat (sensible heat + latent heat) in heating mode.
  • the fresh air fan is equipped with a plurality of alternate heat exchangers in the first heat exchange system, the second heat exchange system and the fresh air heat exchange channel to realize condensation heat recovery and reheat recovery respectively, and improve the performance of the first heat exchange system respectively. System subcooling with the second heat exchange system.
  • the heat exchanger needs to be restricted as follows: the area of the second heat exchanger H2 is less than or equal to 50% of the area of the first heat exchanger H1.
  • the area of the fifth heat exchanger H5 is ⁇ 150% of the area of the fourth heat exchanger H4.
  • the fresh air equipment may also include more or fewer components than those shown in FIG. 2 , or combine certain components, or arrange different components.
  • FIG. 3 of another embodiment of the fresh air equipment.
  • the second heat exchange system may include a second compressor C2, a second four-way valve V2, a fourth heat exchanger H4, a third throttling element K3, and a fifth heat exchanger H5.
  • the first throttling element K1 and the second throttling element K2 may be electronic expansion valves.
  • FIG. 4 is a schematic flowchart of a first embodiment of a fresh air equipment control method of the present application. This application proposes a first embodiment of a fresh air equipment control method.
  • the fresh air equipment control method can be applied to the above fresh air equipment, and the fresh air equipment control method includes the following steps:
  • Step S10 Obtain the target temperature and target moisture content.
  • the execution subject of this embodiment is the above-mentioned fresh air machine, and the fresh air machine has functions such as data processing, data communication, and program operation.
  • the operation of each component in the fresh air fan can be driven by a core controller, so the execution subject of this embodiment can also be the core controller in the above-mentioned fresh air fan, and the core controller can be the above-mentioned processor.
  • the method describes the core controller as the execution subject.
  • the target moisture content may be a moisture content determined based on the target temperature set by the user and the target humidity set by the user. Comparing the fresh air temperature with the preset fresh air temperature threshold; when the fresh air temperature is less than or equal to the minimum value of the preset fresh air temperature threshold, using the heating target temperature of the heating season (winter) as the target temperature; When the fresh air temperature is in the interval of the preset fresh air temperature threshold, the excessive target temperature of the transition season is used as the target temperature; when the fresh air temperature is greater than or equal to the maximum value of the preset fresh air temperature threshold, the cooling season (summer) The cooling target temperature of is used as the target temperature.
  • a target moisture content is determined according to the target temperature and target humidity.
  • the target temperature can also be determined according to the fresh air temperature and the preset fresh air temperature threshold, where the preset fresh air temperature threshold can range from 10°C to 30°C, or can be a single value or an interval value.
  • the temperature threshold Not limited.
  • Tw is greater than Twy, it is determined that the current season pattern is summer, and the target temperature T1 range is preferably 18-24 ° C.
  • the target temperature T1 value range is preferably 20- 26°C
  • the target temperature T1 is preferably in the range of 24-28°C.
  • the target temperature can be based on the remote control device that the user has established connection with the fresh air blower temperature value set above.
  • the temperature value can be a single value or an interval value, for example: the target temperature can be 19°C or 19°C-25°C. In this embodiment, no specific limitation is imposed on the temperature value.
  • the target humidity may also be the humidity determined according to the target temperature set by the user.
  • the target humidity can be determined by searching a preset temperature and humidity mapping table by the target temperature.
  • Moisture content refers to the mass of water vapor mixed in per kilogram of dry air, that is
  • P air pressure
  • Ps water vapor partial pressure
  • relative humidity (%)
  • d reflects exactly how much water vapor is contained in the air.
  • the target moisture content can be a user-set value, a preset value or a certain range.
  • Humidity can affect temperature, and temperature can change humidity. At different temperatures, the humidity is also different. Therefore, when calculating the target moisture content, it is necessary to determine the temperature and humidity, and then determine the target moisture content. For example: when the fresh air temperature Tx is 30°C and the fresh air moisture content is 20g/kg, it is judged to be summer. At this time, the target temperature T1 is 24-26°C, and the target moisture content d1 is 10-12g/kg.
  • Step S20 Determine the moisture content of the fresh air according to the fresh air temperature and the fresh air humidity.
  • a temperature sensor is provided at the entrance of the fresh air inlet passage or before the heat exchanger of the fresh air inlet passage, and the temperature sensor is connected to the core controller.
  • the temperature sensor can feed back a detection signal to the core controller in real time or intermittently, and the detection signal is used to characterize the temperature of the environment where the temperature sensor is located.
  • the accounting controller analyzes the detection signal after receiving the detection signal, and can obtain the fresh air temperature at the front end of the fresh air inlet channel, and then determine the fresh air humidity by searching the preset fresh air temperature and humidity mapping table through the fresh air temperature, or by checking the fresh air at the entrance of the fresh air inlet channel or
  • a humidity sensor is installed before the heat exchanger of the fresh air inlet channel to collect the humidity of the fresh air. In this embodiment, no limitation is imposed on the acquisition method of the parameters of the fresh air temperature and the fresh air humidity.
  • Fresh air humidity refers to the moisture content at the front end of the fresh air inlet channel.
  • the humidity content is determined by the fresh air temperature and fresh air humidity at the front end of the fresh air inlet channel.
  • the moisture content of the fresh air can be a preset value or a certain range, for example, the threshold value of the moisture content of the fresh air can be [5,18]g/kg.
  • Step S30 Comparing the moisture content of the fresh air with the target moisture content to obtain a moisture content comparison result.
  • the automatic operation mode of the fresh air fan it is necessary to determine the control demand for the fresh air through the comparison result of the humidity content and the temperature, and determine the operation mode of the fresh air fan according to the control demand, so as to control the first replacement according to the control demand.
  • the thermal system is controlled in combination with the operating modes of the second heat exchange system.
  • the demand for humidification and/or dehumidification of the fresh air is determined according to the comparison result of the moisture content, and the temperature of the fresh air is compared with the target temperature, and then the second air temperature is determined.
  • Step S40 Comparing the fresh air temperature with the target temperature to obtain a temperature comparison result.
  • the temperature of the fresh air is compared with the target temperature, the demand for heating and/or cooling of the fresh air is determined according to the temperature comparison result, and then the operation modes corresponding to the first heat exchange system and the second heat exchange system are determined.
  • the fresh air equipment includes: a humidifying device, which is arranged next to the fresh air fan in the fresh air passage, and is used to adjust the humidity of the fresh air at the entrance of the fresh air inlet passage, and the moisture content of the fresh air and the target After the step of comparing the humidity content and obtaining the comparison result of the humidity content, it includes: when the humidity content of the fresh air is less than the target humidity content, controlling the humidification device to be turned on; when the humidity content of the fresh air is greater than or When equal to the target moisture content, the humidifying device is controlled to be turned off.
  • the humidifier when the moisture content of the fresh air is 4 g/kg and the target moisture content d1 is 6-8 g/kg, it is determined that humidification control is required, and thus the humidifier is turned on. When the moisture content of the fresh air is 20g/kg and the target moisture content d1 is 6-8g/kg, it is determined that dehumidification control is required, so the humidifier is turned off.
  • the numerical values of fresh air moisture content and target moisture content are examples, and no specific limitations are set.
  • Step S50 Determine the target operation mode of the first heat exchange system and the target operation mode of the second heat exchange system according to the moisture content comparison result and the temperature comparison result.
  • the first heat exchange system and the second heat exchange system can complete the cooling, heating and/or dehumidification control of fresh air through cooling mode and heating mode.
  • Step S60 Driving the fresh air equipment to operate according to the target operation mode of the first heat exchange system and the target operation mode of the second heat exchange system.
  • the fresh air equipment operates according to the target operation modes to fulfill nine kinds of operation requirements, so that the indoor air conditioner where the fresh air equipment is installed The temperature and humidity of the environment reach the target temperature and humidity.
  • the fresh air temperature Tx is 22°C and the fresh air moisture content is 5g/kg, it is judged to be a transitional season.
  • the target temperature T1 is 20-24°C, and the target moisture content d1 is 7-9g/kg. Therefore, fresh air equipment needs isothermal humidification control.
  • the target mode of the first heat exchange system is cooling without dehumidification and the target mode of the second heat exchange system is heating mode, that is, it operates in heating mode and turns on the humidifier to complete isothermal humidification control.
  • This embodiment is not limited to the above-mentioned isothermal humidification control, and is only used as an example for illustration.
  • the moisture content of the fresh air is compared with the target moisture content
  • the temperature of the fresh air is compared with the target temperature.
  • the operation mode is used to adjust the temperature and humidity of the indoor environment where the fresh air equipment is installed, thereby solving the problem that the single refrigeration cycle system cannot control the temperature and humidity separately, reducing excessive temperature or humidity processing, and automatically realizing full-time work throughout the year
  • the condition of the new fan is efficient and energy-saving operation.
  • FIG. 6 is a schematic flowchart of a second embodiment of a fresh air equipment control method of the present application. Based on the first embodiment above, the present application proposes a second embodiment of the method for controlling fresh air equipment.
  • step S50 may include:
  • Step S501 When the moisture content of the fresh air is less than the target moisture content and the temperature of the fresh air is less than the target temperature, determine that the target operating mode of the first heat exchange system is the warming mode, and determine that the The target operation mode of the second heat exchange system is the temperature raising mode.
  • the target operation mode of the first heat exchange system and the second heat exchange system is a warming mode to humidify and heat the fresh air.
  • the fresh air device can operate in a warming mode by turning on the humidifier and controlling the first heat exchange system and the second heat exchange system, so that the fresh air device can fulfill the control requirements of humidifying and heating the fresh air.
  • the first heat exchange system operates in the temperature-raising mode
  • the first throttling element K1 of the first heat exchange system is controlled to work to throttle and reduce pressure
  • the second throttling element K2 does not work, so that the first heat exchange system
  • Both the second heat exchanger H2 and the third heat exchanger H3 serve as condensers to heat the fresh air.
  • the third throttling element K3 of the second heat exchange system is controlled to work for throttling and pressure reduction, and the fourth throttling element K4 does not work, so that the fifth throttling element K4 in the second heat exchange system
  • Both the heat exchanger H5 and the sixth heat exchanger H6 serve as condensers to heat the fresh air.
  • the operation of the throttling element can be understood as that the throttling element plays a role of throttling and reducing pressure in the refrigerant circuit of the heat exchange system.
  • the throttling element does not work can be understood as:
  • the throttling element is fully opened in the refrigerant circuit of the heat exchange system
  • the throttling element does not mainly play the role of throttling and reducing pressure relative to the throttling element working in the refrigerant circuit
  • the throttling element working in the refrigerant circuit mainly plays the role of throttling Pressure-reducing effect
  • the throttling and pressure-reducing effect of the throttling element in the refrigerant circuit is not obvious or mainly plays the role of regulating flow;
  • the refrigerant in the refrigerant circuit does not pass through the throttling element but passes through a bypass flow path connected in parallel with the throttling element, wherein a switching solenoid valve may be arranged in the bypass flow path.
  • Step S502 When the moisture content of the fresh air is less than the target moisture content and the temperature of the fresh air is equal to the target temperature, determine that the target operation mode of the first heat exchange system is the cooling without dehumidification mode, and determine The target operating mode of the second heat exchange system is the temperature-raising mode; or, when the moisture content of the fresh air is less than the target moisture content and the temperature of the fresh air is equal to the target temperature, it is determined that the first heat exchange system The target operation mode of the thermal system is stop operation, and it is determined that the target operation mode of the second heat exchange system is stop operation.
  • the target operation mode of the first heat exchange system can be set to the mode of cooling without dehumidification, and the target operation mode of the second heat exchange system The mode is warming mode.
  • the fresh air device can control the first heat exchange system to operate in a cooling mode without dehumidification by turning on the humidifier, and control the second heat exchange system to operate in a cooling mode without dehumidification.
  • the heating system operates in the heating mode, so that the fresh air equipment can fulfill the control requirement of isothermal humidification of the fresh air.
  • the first throttling element K1 of the first heat exchange system is controlled to work to throttle and reduce pressure, and the second throttling element K2 does not work, so that the first throttling element K2 of the first heat exchange system does not work.
  • Both the second heat exchanger H2 and the third heat exchanger H3 are used as evaporators to cool the fresh air, and the coil temperatures of the second heat exchanger H2 and the third heat exchanger H3 are both higher than the dew point temperature of the fresh air.
  • the fresh air equipment can control the operation of the third throttling element K3 of the second heat exchange system to perform throttling and pressure reduction, and the fourth throttling element K4 does not work, so that the fifth heat exchanger H5 and the sixth heat exchanger in the second heat exchange system Heat exchanger H6 is used as a condenser to heat fresh air.
  • Step S503 When the moisture content of the fresh air is less than the target moisture content and the temperature of the fresh air is greater than the target temperature, determine that the target operation mode of the first heat exchange system is the cooling without dehumidification mode, and determine The target operation mode of the second heat exchange system is a cooling mode without dehumidification.
  • the target operation mode of both the first heat exchange system and the second heat exchange system can be set to the mode of cooling without dehumidification, so as to reduce the temperature of the fresh air.
  • the fresh air device can control the first heat exchange system to operate in a cooling mode without dehumidification by turning on the humidifier, and control the second heat exchange system to operate in a cooling mode without dehumidification.
  • the thermal system operates in the mode of cooling without dehumidification, so that the fresh air equipment can complete the cooling and humidification control requirements of the fresh air.
  • the first throttling element K1 of the first heat exchange system works to throttle and reduce pressure, and the second throttling element K2 does not work, so that the first throttling element K2 of the first heat exchange system does not work.
  • Both the second heat exchanger H2 and the third heat exchanger H3 are used as evaporators to cool the fresh air, and the coil temperatures of the second heat exchanger H2 and the third heat exchanger H3 are both higher than the dew point temperature of the fresh air.
  • the third throttling element K3 of the second heat exchange system works to throttle and reduce pressure, and the fourth throttling element K4 does not work, so that the second throttling element K4 in the second heat exchange system
  • Both the fifth heat exchanger H5 and the sixth heat exchanger H6 are used as evaporators to cool the fresh air, and the coil temperatures of the fifth heat exchanger H5 and the sixth heat exchanger H6 are both higher than the dew point temperature of the fresh air.
  • the step S40 further includes: when the moisture content of the fresh air is equal to the target moisture content, and the temperature of the fresh air is lower than the target temperature, determining The target operation mode of the first heat exchange system is the temperature increase mode, and it is determined that the target operation mode of the second heat exchange system is the temperature increase mode; when the moisture content of the fresh air is equal to the target moisture content, and the When the fresh air temperature is equal to the target temperature, it is determined that the target operation mode of the first heat exchange system is stop operation, and the target operation mode of the second heat exchange system is determined to be stop operation; when the humidity content of the fresh air is equal to When the target moisture content and the fresh air temperature are greater than the target temperature, determine that the target operation mode of the first heat exchange system is the cooling without dehumidification mode, and determine the target operation mode of the second heat exchange system For cooling without dehumidification mode.
  • both the first heat exchange system and the second heat exchange system is the temperature increase mode, that is, the first heat exchange system and the second heat exchange system heat the fresh air through the temperature increase mode.
  • both the first heat exchange system and the second heat exchange system stop running and directly deliver fresh air. It can enter the fresh air channel to humidify and enter the room.
  • the target operation mode of both the first heat exchange system and the second heat exchange system is the cooling mode, that is, the first heat exchange system and the second heat exchange system are cooled by The non-dehumidification mode cools the fresh air.
  • the moisture content of the fresh air Since it is detected that the moisture content of the fresh air is equal to the target moisture content at this time, it is not avoided that when the heat exchangers in the first heat exchange system and the second heat exchange system switch to the evaporator to cool the fresh air, the moisture content of the fresh air will decrease, so it is necessary to The temperature of the refrigerant in the heat exchangers of the first heat exchange system and the second heat exchange system is controlled within the cooling range between the fresh air temperature corresponding to the current fresh air moisture content and the target temperature, so as to cool the fresh air without dehumidification.
  • the humidifier when the moisture content of the fresh air is equal to the target moisture content, the humidifier is turned off, and when the temperature of the fresh air is lower than the target temperature, the target operation mode of the first heat exchange system and the second heat exchange system is heating mode run.
  • the target operation mode of the first heat exchange system and the second heat exchange system is heating mode run.
  • both the first heat exchange system and the second heat exchange system stop running, and the fresh air is directly delivered.
  • the operating mode of the fresh air device is cooling, that is, the target operating mode of the first heat exchange system and the second heat exchange system is the cooling without dehumidification mode.
  • the step S40 further includes: when the moisture content of the fresh air is greater than the target moisture content and the temperature of the fresh air is lower than the target temperature, determining The target operation mode of the first heat exchange system is the reheating and dehumidification mode, and the target operation mode of the second heat exchange system is determined to be the heating mode, or the target operation mode of the first heat exchange system is determined to be the reheating mode.
  • the target operation mode of the first heat exchange system is controlled to be the reheating and dehumidification mode, and the target operation mode of the second heat exchange system is the heating mode.
  • the first throttling element K1 of the first heat exchange system does not work, and the second throttling element K2 works to throttle and reduce pressure so that the third heat exchanger H3 As the evaporator cools the dehumidified fresh air, the second heat exchanger H2 reheats the dehumidified fresh air. At this time, the temperature of the third heat exchanger H3 is lower than the dew point temperature of the fresh air.
  • the third throttling element K3 in the second heat exchange system works, and the fourth throttling element K4 does not work, and it is opened or bypassed to throttle and reduce pressure, so that the fifth throttling element K4 Heater H5 and sixth heat exchanger H6 serve as condensers to reheat fresh air.
  • the fresh air equipment further includes a heating device, and the heating device is arranged downstream of the sixth heat exchanger H6.
  • the fresh air equipment controls the target operation mode of the first heat exchange system to be the reheating and dehumidification mode, and the second heat exchange system.
  • the target operation mode of the heating system is the reheating and dehumidification mode.
  • the heating device operates to make the fresh air equipment meet the temperature rise and dehumidification control requirements.
  • the fresh air equipment controls the target operation mode of the first heat exchange system and the second heat exchange system to be the reheating and dehumidification mode, that is, the first heat exchange system and the second heat exchange system Both the second heat exchange systems are switched to the cooling mode.
  • the first heat exchange system is in the reheating and dehumidification mode
  • the first throttling element K1 of the first heat exchange system does not work
  • the second throttling element K2 works to throttling and reducing pressure, so that the second heat exchanger H2 acts as an overheater.
  • the cooler preheats the fresh air
  • the third heat exchanger H3 acts as an evaporator to cool and dehumidify the fresh air.
  • the temperature of the third heat exchanger H3 is lower than the dew point temperature of the fresh air.
  • the third throttling element K3 of the second heat exchanging system does not work, is opened or bypassed, and the fourth throttling element K4 works, throttling and reducing pressure, so that the fifth throttling element K3
  • the heater H5 acts as a condenser to reheat the fresh air
  • the sixth heat exchanger H6 acts as an evaporator to cool and dehumidify the fresh air.
  • the temperature of the sixth heat exchanger H6 is lower than the dew point temperature of the fresh air.
  • the fresh air equipment also includes a heating device, and the heating device is arranged downstream of the sixth heat exchanger H6. At this time, the heating device operates in heating so that the fresh air equipment can achieve the effect of isothermal dehumidification.
  • the fresh air equipment controls the target operation mode of the first heat exchange system and the second heat exchange system to be the cooling and dehumidification mode, that is, the first heat exchange system and the second heat exchange system switch Run in cooling mode.
  • the first throttling element K1 of the first heat exchange system works to throttle and reduce the pressure of the refrigerant, and the second throttling element K2 does not work, it is opened or bypassed, so that the first Both the second heat exchanger H2 and the third heat exchanger H3 are evaporators to cool the fresh air, and the coil temperatures of the second heat exchanger H2 and the third heat exchanger H3 are both lower than the dew point temperature of the fresh air to dehumidify the fresh air.
  • the third throttling element K3 of the second heat exchange system works to throttle and reduce the pressure of the refrigerant, and the fourth throttling element K4 does not work and is opened or bypassed, so that the first Both the fifth heat exchanger H5 and the sixth heat exchanger H6 are evaporators for cooling the fresh air, and the coil temperatures of the fifth heat exchanger H5 and the sixth heat exchanger H6 are both lower than the dew point temperature of the fresh air to dehumidify the fresh air.
  • the current moisture content of the fresh air is greater than the target moisture content, it is necessary to dehumidify the fresh air, so it is necessary to switch the first heat exchange system and the second heat exchange system to cooling mode to cool the fresh air, that is, in the process of cooling the fresh air , to ensure that both the moisture content of the fresh air and the temperature of the fresh air drop, it is necessary to control the first
  • the refrigerant temperature of the heat exchanger in the heat exchange system and the second heat exchange system is used to cool and dehumidify the fresh air. Therefore, the control parameters of the first heat exchange system and the second heat exchange system are different in the cooling mode without dehumidification and the cooling mode.
  • the target operation mode of the first heat exchange system and the second heat exchange system is determined by comparing the moisture content of the fresh air with the target moisture content and comparing the temperature of the fresh air with the target temperature, and according to the target
  • the control parameters corresponding to the operation mode drive the fresh air equipment to operate according to the target operation mode of the first heat exchange system and the target operation mode of the second heat exchange system to adjust the temperature and humidity of the indoor environment where the fresh air equipment is installed, thereby solving the problem of
  • the single refrigeration cycle system cannot control the temperature and humidity separately, reduce excessive temperature or humidity treatment, and automatically realize the high-efficiency and energy-saving operation of fresh air fans under all working conditions throughout the year.
  • the present application proposes a third embodiment of the fresh air equipment control method.
  • a temperature sensor is installed on the heat exchanger coil to obtain the coil temperature.
  • the first heat exchange system and the second heat exchange system can operate within a suitable coil temperature range to improve cycle efficiency.
  • the fresh air equipment control method further includes:
  • the first heat exchange system When the first heat exchange system operates in a cooling mode without dehumidification, acquire the first coil temperature corresponding to the heat exchanger in the first heat exchange system;
  • the first heat exchange system and/or the second heat exchange mode are in the mode of cooling without dehumidification
  • the first heat exchange system and the second heat exchange system are provided with temperature sensors on the heat exchanger coils to obtain the first 1st coil temperature and 2nd coil temperature. If the temperature of the first coil is higher than the fresh air dew point temperature, increase the compressor speed of the first heat exchange system or reduce the opening of the throttling element in the first heat exchange system to reduce the temperature of the refrigerant in the heat exchanger in the first system.
  • the temperature of the first coil is less than or equal to the fresh air dew point temperature, reduce the speed of the compressor in the first heat exchange system or stop the compressor, or increase the opening degree of the throttling element in the first heat exchange system to increase the temperature in the first system.
  • the temperature of the refrigerant in the heat exchanger so that the coil temperatures of the second heat exchanger H2 and the third heat exchanger H3 are both higher than the dew point temperature of the fresh air, so as to prevent the fresh air from being dehumidified.
  • the temperature of the second coil is higher than the fresh air dew point temperature, increase the compressor speed of the second heat exchange system or reduce the opening degree of the throttling element in the second heat exchange system to reduce the heat exchange rate in the second system.
  • the refrigerant temperature of the device If the temperature of the second coil is less than or equal to the fresh air dew point temperature, reduce the compressor speed of the second heat exchange system, or increase the opening of the throttling element in the second heat exchange system to increase the heat exchanger in the second system.
  • the temperature of the refrigerant so that the coil temperatures of the fifth heat exchanger H5 and the sixth heat exchanger H6 are both greater than the dew point temperature of the fresh air, so as to prevent the fresh air from being dehumidified.
  • the fresh air equipment further includes an exhaust fan arranged in the exhaust passage and a fresh air fan arranged in the fresh air passage
  • the first heat exchange system includes a first compressor
  • the second The heat exchange system includes a second compressor
  • after driving the fresh air equipment to operate according to the target operation mode of the first heat exchange system and the target operation mode of the second heat exchange system further includes: obtaining the indoor The current temperature of the environment; according to the current temperature, the operation mode of the first heat exchange system, and the operation mode of the second heat exchange system, adjust the speed of the first compressor and the speed of the second compressor rotation speed, the opening degree of the throttling element in the throttling working state in the first heat exchange system, the opening degree of the throttling element in the throttling working state in the second heat exchanging system, the exhaust fan At least one of the rotation speed and the rotation speed of the fresh air fan.
  • the current temperature of the indoor environment can be obtained by the return air temperature sensor, or by a temperature sensor somewhere in the indoor environment.
  • the indoor temperature acquisition method is not limited to the temperature sensor.
  • the speed of the first compressor and the speed of the second compressor are adjusted.
  • rotation speed, the opening degree of the throttling element in the throttling working state in the first heat exchange system, the opening degree of the throttling element in the throttling working state in the second heat exchanging system, the exhaust fan At least one of the rotation speed and the rotation speed of the fresh air fan, the throttling element in the throttling working state in the first heat exchange system is the first working throttling element, and the throttling element in the throttling working state in the second heat exchange system
  • the throttling element in the state is the second working throttling element, including:
  • the first heat exchange system When the current temperature is lower than the target temperature, if the first heat exchange system is in the mode of cooling without dehumidification, and the second heat exchange system is in the mode of cooling without dehumidification, reduce the speed of the first compressor, reduce at least one of the speed of the second compressor, increasing the opening of the first throttling element, and decreasing the opening of the second throttling element;
  • the first heat exchange system When the current temperature is greater than the target temperature, if the first heat exchange system is in the mode of cooling without dehumidification, and the second heat exchange system is in the mode of cooling without dehumidification, increase the speed of the first compressor, increase at least one of the rotation speed of the second compressor, reducing the opening degree of the first operating throttling element, and reducing the opening degree of the second operating throttling element;
  • the first heat exchange system When the current temperature is greater than the target temperature, if the first heat exchange system is in the reheating dehumidification mode and the second heat exchange system is in the temperature raising mode, increase the speed of the first compressor and decrease the at least one of the rotational speed of the second compressor, reducing the opening degree of the first operating throttling element, and increasing the opening degree of the second operating throttling element;
  • the first heat exchange system When the current temperature is lower than the target temperature, if the first heat exchange system is in the cooling and dehumidification mode, and the second heat exchange system is in the cooling and dehumidification mode, reduce the speed of the first compressor and increase the at least one of the opening degree of the first throttling element, reducing the speed of the second compressor, and increasing the opening degree of the second throttling element;
  • the first heat exchange system When the current temperature is lower than the target temperature, if the first heat exchange system is in the cooling and dehumidification mode and the second heat exchange system is in the cooling and dehumidification mode, increase the speed of the first compressor and decrease the At least one of increasing the opening degree of the first throttling element, increasing the rotation speed of the second compressor, and decreasing the opening degree of the second throttling element.
  • the first working throttling element can be the throttling elements K1 and K2 in the throttling working state in the first heat exchange system;
  • the second working throttling element can be the throttling elements in the second heat exchanging system State throttle elements K3, K4.
  • the throttling element When the throttling element is in the throttling working state, the throttling element has a certain throttling effect, and the smaller the opening of the throttling element, the better the throttling effect; The element is fully open or bypassed.
  • the control requirements for the fresh air can be determined by comparing the fresh air temperature and humidity with the preset temperature and humidity, which can be divided into heating, heating and humidification, heating and dehumidification, cooling, cooling and humidification, cooling and dehumidification , isothermal humidification, isothermal dehumidification, and 9 kinds of operation requirements of direct fresh air supply, corresponding to the 9 kinds of requirements, the operation modes of the first heat exchange system and the second heat exchange system are combined and controlled, and the operation status is adjusted to achieve their respective effects, so that the system Automatic and efficient operation, and achieve the control target of room temperature and humidity.
  • the preset temperature and humidity which can be divided into heating, heating and humidification, heating and dehumidification, cooling, cooling and humidification, cooling and dehumidification , isothermal humidification, isothermal dehumidification, and 9 kinds of operation requirements of direct fresh air supply, corresponding to the 9 kinds of requirements, the operation modes of the first heat exchange system and the second heat exchange system are combined and controlled, and the operation
  • the fresh air equipment includes: a humidifying device, the humidifying device is arranged in the fresh air passage, and the driving of the fresh air equipment according to the target operation mode of the first heat exchange system and the target operation mode of the second heat exchange system After running the target run mode also includes:
  • the first heat exchange system When the current moisture content is greater than or equal to the target moisture content, if the humidifier is off, the first heat exchange system is in the reheat dehumidification mode and the second heat exchange system is in the reheat mode In the dehumidification mode, or the first heat exchange system is in the cooling dehumidification mode and the second heat exchange system is in the cooling dehumidification mode, increase the speed of the first compressor and reduce the speed of the first throttling element at least one of opening, increasing the rotational speed of the second compressor, and decreasing the opening of the second throttling element;
  • the first heat exchange system When the current moisture content is less than or equal to the target moisture content, if the humidifier is off, the first heat exchange system is in the reheat dehumidification mode and the second heat exchange system is in the reheat mode In dehumidification mode, or if the first heat exchange system is in cooling dehumidification mode and the second heat exchange system is in cooling dehumidification mode, then reduce the speed of the first compressor and increase the speed of the first throttling element at least one of the opening degree, reducing the rotational speed of the second compressor, and increasing the opening degree of the second throttling element.
  • the current moisture content can be calculated according to the current temperature of the indoor environment, and the current temperature of the indoor environment can be obtained through the return air temperature sensor, or can be obtained from a temperature sensor somewhere in the indoor environment.
  • the indoor temperature acquisition The ways are not limited to temperature sensors.
  • the first throttling element refers to the throttling element in the throttling working state in the first heat exchange system.
  • the first throttling element is the second A throttling element K1; when the first heat exchange system is in the mode of cooling without dehumidification, the first working throttling element is the first throttling element K1; when the first heat exchange system is in the mode of reheating and dehumidification, the first working section
  • the flow element is the second throttling element K2; when the first heat exchange system is in the refrigeration and dehumidification mode, the first working throttling element is the first throttling element K1.
  • the second throttling element refers to the throttling element in the throttling working state in the second heat exchange system, for example, when the second heat exchange system is in the heating mode, the second throttling element is the third throttling element K3 ;
  • the second working throttling element is the third throttling element K3;
  • the second throttling element is the fourth The throttling element K4 works; when the second heat exchange system is in the refrigeration and dehumidification mode, the first working throttling element is the third throttling element K3.
  • the first heat exchange system when the current moisture content is greater than or equal to the target moisture content, if the humidifier is off, the first heat exchange system is in the reheating and dehumidification mode and the second heat exchange system is in the reheating and dehumidification mode. If the thermal system is in the reheating and dehumidification mode, or the first heat exchange system is in the cooling and dehumidification mode and the second heat exchange system is in the cooling and dehumidification mode, then increase the speed of the first compressor C1 and decrease the speed of the first compressor C1. At least one of the opening degrees of K1 and K2 in a working throttling element, increasing the speed of the second compressor C2 and reducing the opening degrees of K3 and K4 of the second working throttling element.
  • the first heat exchange system when the current moisture content is less than or equal to the target moisture content, if the humidifier is off, the first heat exchange system is in the reheating and dehumidification mode and the second heat exchange system is in the reheating and dehumidification mode. If the heat system is in the reheating and dehumidification mode, or the first heat exchange system is in the cooling and dehumidification mode and the second heat exchange system is in the cooling and dehumidification mode, then reduce the speed of the first compressor C1 and increase the speed of the first compressor C1. At least one of the opening degrees of K1 and K2 in a working throttling element, reducing the rotation speed of the second compressor C2 and increasing the opening degrees of K3 and K4 of the second working throttling element.
  • the first coil temperature is compared with the second coil temperature and the fresh air dew point temperature, and the refrigerant temperature of the heat exchanger in the first heat exchange system and the second heat exchange system is adjusted according to the comparison result, so that It improves the problem of high energy consumption of conventional fresh air fans, reduces excessive temperature or humidity processing, and automatically realizes the high-efficiency and energy-saving operation of fresh air fans under all working conditions throughout the year.
  • the embodiment of the present application also proposes a storage medium, on which a fresh air equipment control program is stored, and when the fresh air equipment control program is executed by a processor, the steps of the fresh air equipment control method as described above are implemented. Since the storage medium can adopt the technical solutions of all the above-mentioned embodiments, it has at least the beneficial effects brought by the technical solutions of the above-mentioned embodiments, which will not be repeated here.
  • FIG. 7 is a structural block diagram of an embodiment of a fresh air equipment control device according to the present application.
  • the embodiment of the present application also proposes a fresh air equipment control device.
  • the fresh air equipment control device is used to control the fresh air equipment, and the specific structure of the fresh air equipment can refer to the foregoing, and the fresh air equipment control device includes:
  • the parameter acquiring module 100 is used to acquire the target temperature and the target moisture content.
  • the target moisture content may be a moisture content determined based on the target temperature set by the user and the target humidity set by the user.
  • the target temperature can also be determined according to the fresh air temperature and the preset fresh air temperature threshold, where the preset fresh air temperature threshold can range from 10°C to 30°C, or can be a single value or an interval value.
  • the temperature threshold Not limited.
  • the target temperature T1 range is preferably 18-24°C.
  • the target temperature T1 value range is preferably 20-24°C. 26°C, when Tw is greater than Twy, it is determined that the current season mode is winter, and the target temperature T1 is preferably in the range of 24-28°C.
  • the target temperature can be based on the remote control device that the user has established connection with the fresh air blower temperature value set above.
  • the temperature value can be a single value or an interval value, for example: the target temperature can be 19°C or 19°C-25°C. In this embodiment, no specific limitation is imposed on the temperature value.
  • the target humidity may also be the humidity determined according to the target temperature set by the user.
  • the target humidity can be determined by searching a preset temperature and humidity mapping table by the target temperature.
  • Moisture content refers to the mass of water vapor mixed in per kilogram of dry air, that is
  • P air pressure
  • Ps water vapor partial pressure
  • relative humidity (%).
  • d exactly reflects the amount of water vapor in the air.
  • the target moisture content can be a user-set value, a preset value or a certain range.
  • Humidity can affect temperature, and temperature can change humidity. At different temperatures, the humidity is also different. Therefore, when calculating the target moisture content, it is necessary to determine the temperature and humidity, and then determine the target moisture content. For example: when the fresh air temperature Tx is 30°C and the fresh air moisture content is 20g/kg, it is judged to be summer. At this time, the target temperature T1 is 24-26°C, and the target moisture content d1 is 10-12g/kg.
  • the parameter determination module 200 is configured to determine the moisture content of the fresh air according to the fresh air temperature and the fresh air humidity.
  • a temperature sensor is provided at the entrance of the fresh air inlet passage or before the heat exchanger of the fresh air inlet passage, and the temperature sensor is connected to the core controller.
  • the temperature sensor can feed back a detection signal to the core controller in real time or intermittently, and the detection signal is used to characterize the temperature of the environment where the temperature sensor is located.
  • the accounting controller analyzes the detection signal after receiving the detection signal, and can obtain the fresh air temperature at the front end of the fresh air inlet channel, and then determine the fresh air humidity by searching the preset fresh air temperature and humidity mapping table through the fresh air temperature, or by checking the fresh air at the entrance of the fresh air inlet channel or
  • a humidity sensor is installed before the heat exchanger of the fresh air inlet channel to collect the humidity of the fresh air. In this embodiment, no limitation is imposed on the acquisition method of the parameters of the fresh air temperature and the fresh air humidity.
  • Fresh air humidity refers to the moisture content at the front end of the fresh air inlet channel.
  • the humidity content is determined by the fresh air temperature and fresh air humidity at the front end of the fresh air inlet channel.
  • the moisture content of the fresh air can be a preset value or a certain range, for example, the threshold value of the moisture content of the fresh air can be [5,18]g/kg.
  • the parameter comparison module 300 is configured to compare the moisture content of the fresh air with the target moisture content to obtain a moisture content comparison result.
  • the automatic operation mode of the fresh air fan it is necessary to determine the control demand for the fresh air through the comparison result of the humidity content and the temperature, and determine the operation mode of the fresh air fan according to the control demand, so as to control the first replacement according to the control demand.
  • the thermal system is controlled in combination with the operating modes of the second heat exchange system.
  • the demand for humidification and/or dehumidification of the fresh air is determined according to the comparison result of the moisture content, and the temperature of the fresh air is compared with the target temperature, and then the second air temperature is determined.
  • the parameter comparison module 300 is further configured to compare the fresh air temperature with the target temperature to obtain a temperature comparison result.
  • the temperature of the fresh air is compared with the target temperature, the demand for heating and/or cooling of the fresh air is determined according to the temperature comparison result, and then the operation modes corresponding to the first heat exchange system and the second heat exchange system are determined.
  • a mode determination module 400 configured to determine a target operation mode of the first heat exchange system and a target operation mode of the second heat exchange system according to the moisture content comparison result and the temperature comparison result.
  • the first heat exchange system and the second heat exchange system can complete the cooling, heating and/or dehumidification control of fresh air through cooling mode and heating mode.
  • the mode driving module 500 is configured to drive the fresh air equipment to operate according to the target operation mode of the first heat exchange system and the target operation mode of the second heat exchange system.
  • the fresh air equipment operates according to the target operation modes to fulfill nine kinds of operation requirements, so that the indoor air conditioner where the fresh air equipment is installed The temperature and humidity of the environment reach the target temperature and humidity.
  • the fresh air temperature Tx is 22°C and the fresh air moisture content is 5g/kg, it is judged to be a transitional season.
  • the target temperature T1 is 20-24°C, and the target moisture content d1 is 7-9g/kg. Therefore, fresh air equipment needs isothermal humidification control.
  • the target mode of the first heat exchange system is cooling without dehumidification and the target mode of the second heat exchange system is heating mode, that is, it operates in heating mode and turns on the humidifier to complete isothermal humidification control.
  • This embodiment is not limited to the above-mentioned isothermal humidification control, and is only used as an example for illustration.
  • the fresh air equipment includes a first heat exchange system and a second heat exchange system.
  • the parameter acquisition module 100 acquires the target moisture content; the parameter determination module 200 determines the fresh air moisture content according to the fresh air temperature and fresh air humidity, and the parameter comparison module 300 by comparing the moisture content of the fresh air with the target moisture content, and comparing the temperature of the fresh air with the target temperature; the mode determination module 400 determines the temperature of the first heat exchange system according to the comparison result of the humidity content and the temperature comparison result.
  • the mode drive module 500 drives the fresh air equipment to operate according to the target operation mode of the first heat exchange system and the target operation mode of the second heat exchange system, thereby solving the problem of single refrigeration cycle system
  • the problem of being unable to control temperature and humidity separately can reduce excessive temperature or humidity processing, and automatically realize the high-efficiency and energy-saving operation of fresh air fans under all working conditions throughout the year.
  • the methods of the above embodiments can be implemented by means of software plus a necessary general-purpose hardware platform, and of course also by hardware, but in many cases the former is better implementation.
  • the technical solution of the present application can be embodied in the form of a software product in essence or the part that contributes to the prior art, and the computer software product is stored in a storage medium (such as a read-only memory image (Read Only Memory image, ROM)/random access memory (Random Access Memory, RAM), magnetic disk, optical disk), including several instructions to make a terminal device (which can be a mobile phone, computer, server, or network device, etc.) execute The methods described in various embodiments of the present application.
  • a storage medium such as a read-only memory image (Read Only Memory image, ROM)/random access memory (Random Access Memory, RAM), magnetic disk, optical disk
  • a terminal device which can be a mobile phone, computer, server, or network device, etc.

Abstract

本申请公开了一种新风设备控制方法、装置、新风设备及存储介质,涉及空气处理设备技术领域;新风设备具有两级换热系统,包括第一换热系统和第二换热系统;通过将新风含湿量和目标含湿量进行比较,并将所述新风温度和所述目标温度进行比较;根据含湿量比较结果和温度比较结果确定第一换热系统的目标运行模式和第二换热系统的目标运行模式,驱动新风设备按照第一换热系统的目标运行模式及第二换热系统的目标运行模式运行。

Description

新风设备控制方法、装置、新风设备及存储介质
相关申请
本申请要求于2021年11月24日申请的、申请号为202111417550.X的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及空气处理设备技术领域,尤其涉及一种新风设备控制方法、装置、新风设备及存储介质。
背景技术
随着人们生活品质的提高,对于室内热环境的要求不在仅仅是冷热,而且上升到健康的需求,对新鲜度、洁净度以及湿度提出了更高的要求,新风作为有效而重要解决方案越来越多的被应用。目前,市面上的产品大多为全热回收或一级再热回收,一级再热回收的新风的调温能力有限,并且全热回收时采用的全热回收器的阻力大、易堵并且容易受到季节影响,此外虽然还涉及辅热调温技术,但是辅热调温的温度调节与节能无法同时兼顾。
发明内容
本申请的主要目的在于提供一种新风设备控制方法、装置、新风设备及存储介质,旨在解决现有技术中新风调温能力有限,除湿与节能无法同时兼顾的技术问题。
为实现上述目的,本申请提供一种新风设备控制方法,新风设备包括第一换热系统和第二换热系统,第一换热系统用于在新风通道与室外环境之间的进行换热,第二换热系统用于在新风通道与排风通道之间的进行换热;
新风设备控制方法包括:
获取目标温度和目标含湿量;
根据新风温度及新风湿度确定新风含湿量;
将所述新风含湿量和所述目标含湿量进行比较,获得含湿量比较结果;
将所述新风温度和所述目标温度进行比较,获得温度比较结果;
根据所述含湿量比较结果和所述温度比较结果确定所述第一换热系统的目标运行模式和所述第二换热系统的目标运行模式;以及
驱动所述新风设备按照所述第一换热系统的目标运行模式及所述第二换热系统的目标运行模式运行。
在一实施例中,所述新风设备包括:加湿装置,所述加湿装置设置于新风通道中,所述将所述新风含湿量和所述目标含湿量进行比较,获得含湿量比较结果之后,包括:
在所述新风含湿量小于所述目标含湿量时,控制所述加湿装置开启;以及
在所述新风含湿量大于或等于所述目标含湿量时,控制所述加湿装置关闭。
在一实施例中,所述根据所述含湿量比较结果和所述温度比较结果确定所述第一换热系统的目标运行模式和所述第二换热系统的目标运行模式,包括:
在所述新风含湿量小于所述目标含湿量,并且所述新风温度小于所述目标温度时,确定所述第一换热系统的目标运行模式为升温模式,并确定所述第二换热系统的目标运行模式为升温模式;
在所述新风含湿量小于所述目标含湿量,并且所述新风温度等于所述目标温度时,确定所述第一换热系统的目标运行模式为降温不除湿模式,并确定所述第二换热系统的目标运行模式为升温模式,或者,确定所述第一换热系统的目标运行模式为停止运行,并确定所述第二换热系统的目标运行模式为停止运行;以及
在所述新风含湿量小于所述目标含湿量,并且所述新风温度大于所述目标温度时,确定所述第一换热系统的目标运行模式为降温不除湿模式,并确定所述第二换热系统的目标运行模式为降温不除湿模式。
在一实施例中,所述根据所述含湿量比较结果和所述温度比较结果确定所述第一换热系统的目标运行模式和所述第二换热系统的目标运行模式,包括:
在所述新风含湿量等于所述目标含湿量,并且所述新风温度小于所述目标温度时,确定所述第一换热系统的目标运行模式为升温模式,并确定所述第二换热系统的目标运行模式为升温模式;
在所述新风含湿量等于所述目标含湿量,并且所述新风温度等于所述目标温度时,确定所述第一换热系统停止运行,并确定所述第二换热系统停止运行;以及
在所述新风含湿量等于所述目标含湿量,并且所述新风温度大于所述目标温度时,确定所述第一换热系统的目标运行模式为降温不除湿模式,并确定所述第二换热系统的目标运行模式为降温不除湿模式。
在一实施例中,所述根据所述含湿量比较结果和所述温度比较结果确定所述第一换热系统的目标运行模式和所述第二换热系统的目标运行模式,包括:
在所述新风含湿量大于所述目标含湿量,并且所述新风温度小于所述目标温度时,确定所述第一换热系统的目标运行模式为再热除湿模式,并确定所述第二换热系统的目标运行模式为升温模式,或者,确定所述第一换热系统的目标运行模式为再热除湿模式,并确定所述第二换热系统的目标运行模式为再热除湿模式;
在所述新风含湿量大于所述目标含湿量,并且所述新风温度等于所述目标温度时,确定所述第一换热系统的目标运行模式为再热除湿模式,并确定所述第二换热系统的目标运行模式为再热除湿模式;以及
在所述新风含湿量大于所述目标含湿量,并且所述新风温度大于所述目标温度时,确定所述第一换热系统的目标运行模式为制冷除湿模式,并确定所述第二换热系统的目标运行模式为制冷除湿模式。
在一实施例中,所述新风设备控制方法,还包括:
在所述第一换热系统以降温不除湿模式运行时,获取所述第一换热系统中换热器对应的第一盘管温度;
在所述第一盘管温度小于新风露点温度时,降低所述第一换热系统中压缩机转速或增大所述第一换热系统中节流部件开度;和/或
在所述第二换热系统以降温不除湿模式运行时,获取所述第二换热系统中换热器对应的第二盘管温度;
在所述第二盘管温度小于新风露点温度时,降低所述第二换热系统中压缩机转速或增大所述第二换热系统中节流部件开度。
在一实施例中,所述新风设备还包括设置在所述排风通道中的排风风机和设置在所述新风通道中的新风风机,所述第一换热系统包括第一压缩机,所述第二换热系统包括第二压缩机,所述驱动所述新风设备按照所述第一换热系统的目标运行模式及所述第二换热系统的目标运行模式运行之后,还包括:
获取所述室内环境的当前温度;
根据所述当前温度、所述第一换热系统的运行模式及所述第二换热系统的运行模式,调节所述第一压缩机的转速、所述第二压缩机的转速、所述第一换热系统中处于节流工作状态的节流元件的开度、所述第二换热系统中处于节流工作状态的节流元件的开度、所述排风风机的转速和所述新风风机的转速中的至少一个。
在一实施例中,所述根据所述当前温度、所述第一换热系统的运行模式及所述第二换热系统的运行模式,调节所述第一压缩机的转速、所述第二压缩机的转速、所述第一换热系统中处于节流工作状态的节流元件的开度、所述第二换热系统中处于节流工作状态的节流元件的开度、所述排风风机的转速和所述新风风机的转速中的至少一个,所述第一换热系统中处于节流工作状态的节流元件为第一工作节流元件,所述第二换热系统中处于节流工作状态的节流元件为第二工作节流元件,还包括:
在所述当前温度小于目标温度时,若所述第一换热系统处于升温模式,且所述第二换热系统处于升温模式,则提高所述第一压缩机的转速、提高所述第二压缩机的转速、减小所述第一工作节流元件的开度和减小所述第二工作节流元件的开度中的至少一个;
在所述当前温度大于目标温度时,若所述第一换热系统处于升温模式,且所述第二换热系统处于升温模式,则降低所述第一压缩机的转速、降低所述第二压缩机的转速、增大所述第一工作节流元件的开度和增大所述第二工作节流元件的开度中的至少一个;
在所述当前温度小于目标温度时,若所述第一换热系统处于降温不除湿模式,且所述第二换热系统处于升温模式,则提高所述第二压缩机的转速、和减小所述第二工作节流元件的开度中的至少一个;
在所述当前温度大于目标温度时,若所述第一换热系统处于降温不除湿模式,且所述第二换热系统处于升温模式,则降低所述第二压缩机的转速、和增大所述第二工作节流元件的开度中的至少一个;
在所述当前温度小于目标温度时,若所述第一换热系统处于降温不除湿模式,且所述第二换热系统处于降温不除湿模式,则降低所述第一压缩机的转速、降低所述第二压缩机的转速、增大所述第一工作节流元件的开度和减增大所述第二工作节流元件的开度中的至少一个;
在所述当前温度大于目标温度时,若所述第一换热系统处于降温不除湿模式,且所述第二换热系统处于降温不除湿模式,则提高所述第一压缩机的转速、提高所述第二压缩机的转速、减小所述第一工作 节流元件的开度和减小所述第二工作节流元件的开度中的至少一个;
在所述当前温度小于目标温度时,若所述第一换热系统处于再热除湿模式,且所述第二换热系统处于升温模式,则提高所述第二压缩机的转速和减小所述第二工作节流元件的开度中的至少一个;
在所述当前温度大于目标温度时,若所述第一换热系统处于再热除湿模式,且所述第二换热系统处于升温模式,则提高所述第一压缩机的转速、降低所述第二压缩机的转速、减小所述第一工作节流元件的开度和增大所述第二工作节流元件的开度中的至少一个;
在所述当前温度小于目标温度时,若所述第一换热系统处于再热除湿模式,且所述第二换热系统处于再热除湿模式,则降低所述排风风机的转速、提高所述第二压缩机的转速和减小所述第二工作节流元件的开度中的至少一个;
在所述当前温度大于目标温度时,若所述第一换热系统处于再热除湿模式,且所述第二换热系统处于再热除湿模式,则提高所述排风风机的转速、降低所述第二压缩机的转速和增大所述第二工作节流元件的开度中的至少一个;
在所述当前温度小于目标温度时,若所述第一换热系统处于制冷除湿模式,且所述第二换热系统处于制冷除湿模式,则降低所述第一压缩机的转速、增大所述第一工作节流元件的开度、降低所述第二压缩机的转速和增大所述第二工作节流元件的开度中的至少一个;
在所述当前温度小于目标温度时,若所述第一换热系统处于制冷除湿模式,且所述第二换热系统处于制冷除湿模式,则提高所述第一压缩机的转速、减小所述第一工作节流元件的开度、提高所述第二压缩机的转速和减小所述第二工作节流元件的开度中的至少一个。
在一实施例中,所述新风设备包括:加湿装置,所述加湿装置设置于新风通道中,所述驱动所述新风设备按照所述第一换热系统的目标运行模式及所述第二换热系统的目标运行模式运行之后还包括:
获取所述室内环境的当前含湿量;
当所述当前含湿量大于或等于所述目标含湿量时,若所述加湿装置处于开启状态,则关闭所述加湿装置;
当所述当前含湿量大于或等于所述目标含湿量时,若所述加湿装置处于关闭状态,所述第一换热系统处于再热除湿模式且所述第二换热系统处于再热除湿模式,或者所述第一换热系统处于制冷除湿模式且所述第二换热系统处于制冷除湿模式,则提高所述第一压缩机的转速、减小所述第一工作节流元件的开度、提高所述第二压缩机的转速和减小所述第二工作节流元件的开度中的至少一个;
当所述当前含湿量小于或等于所述目标含湿量时,若所述加湿装置处于关闭状态,所述第一换热系统处于再热除湿模式且所述第二换热系统处于再热除湿模式,或者所述第一换热系统处于制冷除湿模式且所述第二换热系统处于制冷除湿模式,则降低所述第一压缩机的转速、增大所述第一工作节流元件的开度、降低所述第二压缩机的转速和增大所述第二工作节流元件的开度中的至少一个。
在一实施例中,所述获取目标温度和目标含湿量,包括:
将新风温度与预设新风温度阈值进行比较;
在所述新风温度小于等于所述预设新风温度阈值的最小值时,将制热季的制热目标温度作为目标温度;
在所述新风温度处于所述预设新风温度阈值的区间时,将过度季的过度目标温度作为目标温度;
在所述新风温度大于等于所述预设新风温度阈值的最大值时,将制冷季的制冷目标温度作为目标温度;
根据所述目标温度和预设温湿度映射表确定目标湿度;
根据所述目标温度和所述目标湿度确定目标含湿量
此外,为实现上述目的,本申请还提出一种新风设备控制装置,新风设备控制装置包括:
参数获取模块,用于获取目标温度和目标含湿量;
参数确定模块,用于根据新风温度及新风湿度确定新风含湿量;
参数比较模块,用于将所述新风含湿量和所述目标含湿量进行比较,获得含湿量比较结果;
所述参数比较模块,还用于将所述新风温度和所述目标温度进行比较,获得温度比较结果;
模式确定模块,用于根据所述含湿量比较结果和所述温度比较结果确定所述第一换热系统的目标运行模式和所述第二换热系统的目标运行模式;
模式驱动模块,用于驱动所述新风设备按照所述第一换热系统的目标运行模式及所述第二换热系统的目标运行模式运行。
此外,为实现上述目的,本申请还提出一种新风设备,第一换热系统、第二换热系统、存储器、处理器及存储在所述存储器上并可在所述处理器上运行的新风设备控制程序,第一换热系统用于在新风通 道与外部环境之间进行换热,第二换热系统用于在所述新风通道与排风通道之间进行换热,新风设备控制程序被处理器执行时实现如上述的新风设备控制方法。
在一实施例中,所述新风设备具有新风通道和排风通道,所述第一换热系统包括依次连接的第一压缩机、第一四通阀、第一换热器、第一节流元件和第二换热器;所述第二换热系统包括依次连接的第二压缩机、第二四通阀、第四换热器、第三节流元件以及第五换热器;其中,
所述第一换热器设置于外部环境;
所述新风通道中从室外向室内方向依次设置有所述第二换热器、所述第五换热器和新风风机;以及
所述排风通道中设置有所述第四换热器和排风风机。
在一实施例中,所述第一换热系统还包括第二节流元件和第三换热器,所述第二节流元件和所述第三换热器依次连接在所述第二换热器之后,所述第三换热器设置在所述新风通道中并位于所述第二换热器的上游;和/或
所述第二换热器还包括第四节流元件和第六换热器,所述第三节流元件和所述第六换热器依次连接在所述第五换热器之后,所述第六换热器设置在所述新风通道中并位于所述第二换热器的上游。
在一实施例中,所述第二换热器的面积小于或等于第一换热器面积的50%,第五换热器的面积小于或等于第四换热器面积的150%。
此外,为实现上述目的,本申请还提出一种存储介质,存储介质上存储有新风设备控制程序,新风设备控制程序被处理器执行时实现如上述的新风设备控制方法。
本申请中,新风设备具有两级换热系统,其中,第一换热系统用于实现新风通道与室外环境之间的换热;第二换热系统用于实现新风通道与排风通道之间的进行换热;通过将新风含湿量和目标含湿量进行比较,并将所述新风温度和所述目标温度进行比较;根据含湿量比较结果和温度比较结果确定第一换热系统的目标运行模式和第二换热系统的目标运行模式,驱动新风设备按照第一换热系统的目标运行模式及第二换热系统的目标运行模式运行,从而解决了单制冷循环系统无法分别控制温度和湿度的问题,减少过度的温度或湿度处理,自动实现全年全工况的新风机高效节能运行。
附图说明
图1是本申请实施例方案涉及的硬件运行环境的新风设备的结构示意图;
图2本申请新风设备一实施方式的结构示意图;
图3为本申请新风设备另一实施方式的结构示意图;
图4为本申请新风设备控制方法第一实施例的流程示意图;
图5为本申请新风设备控制方法第一实施例的新风设备自动运行目标温度获取示意图;
图6为本申请新风设备控制方法第二实施例的流程示意图;
图7为本申请新风设备控制装置第一实施例的结构框图。
附图标号说明:
标号 名称 标号 名称
1001 处理器 C1~C2 第一至第二压缩机
1002 通信总线 V1~V2 第一至第二四通阀
1003 用户接口 H1~H6 第一至第六换热器
1004 网络接口 K1~K4 第一至第四节流元件
1005 存储器 Y1~Y3 第一至第三风机
10 新风通道 100 参数获取模块
20 排风通道 200 参数确定模块
300 参数比较模块 400 模式确定模块
500 模式驱动模块 J1 加湿装置
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
参照图1,图1为本申请实施例方案涉及的硬件运行环境的新风设备结构示意图。
如图1所示,该新风设备可以包括:处理器1001,例如中央处理器(Central Processing Unit,CPU),通信总线1002、用户接口1003,网络接口1004,存储器1005和新风设备。其中,通信总线1002用于实现这些组件之间的连接通信。用户接口1003可以包括显示屏(Display),可选用户接口1003还可以包括标准的有线接口、无线接口,对于用户接口1003的有线接口在本申请中可为USB接口。网络接口1004在一实施例中可以包括标准的有线接口、无线接口(如无线保真(Wireless-Fidelity,Wi-Fi)接口)。存储器1005可以是高速的随机存取存储器(Random Access Memory,RAM)存储器,也可以是稳定的存储器(Non-volatile Memory,NVM),例如磁盘存储器。存储器1005在一实施例中还可以是独立于前述处理器1001的存储装置。新风设备用于从室外环境抽取空气,并进行处理再将处理后的空气作为新风传输至室内环境。
本领域技术人员可以理解,图1中示出的结构并不构成对新风机的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
如图1所示,认定为一种计算机存储介质的存储器1005中可以包括操作系统、网络通信模块、用户接口模块以及新风设备控制程序。
在图1所示的新风设备中,网络接口1004主要用于连接后台服务器,与所述后台服务器进行数据通信;用户接口1003主要用于连接用户设备;所述新风机通过处理器1001调用存储器1005中存储的新风设备控制程序,并执行本申请实施例提供的新风设备控制方法。
参照图2,图2本申请新风设备一实施方式的结构示意图。为更清楚地说明本申请的新风设备控制方法,提出一种新风设备,并在该新风设备的基础上执行新风设备控制方法。
如图2所示,该新风设备可以具有第一换热系统与第二换热系统。其中,第一换热系统可以包括第一压缩机C1、第一四通阀V1、第一换热器H1、第一节流元件K1、第二换热器H2、第二节流元件K2以及第三换热器H3。
第二换热系统可以包括第二压缩机C2、第二四通阀V2、第四换热器H4、第三节流元件K3、第五换热器H5、第四节流元件K4以及第六换热器H6。其中,第一节流元件K1、第二节流元件K2、第三节流元件K3及第四节流元件K4可以为电子膨胀阀。
此外,第一换热系统与第二换热系统还可以共用一多缸压缩机。具体的,新风设备包括一具有两个独立气缸的压缩机。该压缩机中的第一气缸与第一四通阀V1、第一换热器H1、第一节流元件K1、第二换热器H2、第二节流元件K2以及第三换热器H3连接,形成第一换热系统。该压缩机中的第二气缸与第二四通阀V2、第四换热器H4、第三节流元件K3、第五换热器H5、第四节流元件K4以及第六换热器H6连接,形成第二换热系统。
需要说明的是,新风设备还具有新风通道10和排风通道20,新风通道10用于从室外环境向室内环境输送空气,排风通道20用于从室内环境向室外环境输送空气。
可以理解的是,第一换热系统中的第一换热器H1可以为处于室外环境,第二换热器H2和第三换热器H3可以处于上述新风通道10内,用于实现新风通道10与室外环境之间的换热。
相应地,第二换热系统中的第四换热器H4可以为处于上述排风通道20,第五换热器H5和第六换热器H6可以处于上述新风通道10内,用于实现新风通道10与排风通道20之间的换热。
需要说明的是,第一换热系统中还包括与第一换热器H1对应的第一风机Y1,该风机用于实现第一换热器H1中的冷媒与室外环境之间的换热。新风通道10中还设置有第二风机Y2,第二风机Y2用于从室外环境向新风通道10内抽取空气。排风通道20中还设置有第三风机Y3,第三风机Y3用于从室内环境向排风通道20内抽取空气。加湿装置J1设置于新风通道10入口处第二风机Y2旁,用于调节新风进风通道入口的新风湿度。
上述新风设备的工作原理为:第二风机Y2从室外环境抽取新风,新风经过加湿装置J1进行湿度调节,并依次经过第五换热器H5、第二换热器H2、第六换热器H6以及第三换热器H3进行四次换热然后输送至室内环境。第三风机Y3从室内环境抽取排风,排风经过第四换热器H4进行一次换热后输送至室外。新风设备可以具有升温、升温加湿、升温除湿、降温、降温加湿、降温除湿、等温加湿、等温除湿及直接送新风的9种运行需求,根据9种需求对第一换热系统与第二换热系统的运行模式进行组合控制,并调整运行状态实现各自的效果,使系统自动高效运行,并实现房间温湿度达成控制目标。第一换热系统与第二换热系统均可以具有制冷模式(降温模式、除湿模式或再热模式中的一个)和制热模式(或升温模式),第一换热系统与第二换热系统均为制冷模式时,第五换热器H5、第二换热器H2、第六换热器H6以及第三换热器H3均对新风进行降温和/或降湿和/或再热之后输送至室内;第一换热系 统与第二换热系统均为制热模式时,第五换热器H5、第二换热器H2、第六换热器H6以及第三换热器H3对均新风进行加热之后输送至室内。即新风经过第一换热系统的第二换热器H2与第三换热器H3,第二换热系统的第五换热器H5与第六换热器H6进行4次换热,排风经过第二换热系统的第四换热器H4进行热回收。
其中,第一换热系统与第二换热系统中均设有四通阀进行制冷与制热模式切换,从而可以实现全年全工况下的制冷与制热模式下的排放热回收,该新风机的热回收系统由于为热泵形态,第二换热系统为制冷模式下热的回收为显热回收,第二换热系统为制热模式下的热回收为全热(显热+潜热)回收。该新风机在第一换热系统与第二换热系统与新风热交换通道中设置了多个交替的换热器,来分别实现冷凝热回收与再热回收,分别提高了第一换热系统与第二换热系统的系统过冷度。
为防止保证不同出风温度与节能的需要,需要对换热器进行如下限制:第二换热器H2的面积≤第一换热器H1面积的50%。第五换热器H5的面积≤第四换热器H4面积的150%。
需要说明的是,通过配置双向流的直膨式的双热泵热回收,双再热过冷系统结构形态,形成2套直膨式空气源热泵循环,使新风机组具备两组不同的冷凝温度和蒸发温度(压比),压比检测方式可以通过压力传感器或换热器盘管上的温度传感器,在此系统结构基础上,针对新风的全年四季的自动运行的节能需求,通过切换四通阀与控制节流元件,可实现双系统的制冷、制热、除湿再热循环模式组合。
可以理解的是,新风设备还可以包括比图2所述示更多或更少的部件,或者组合某些部件,或者不同的部件布置,为进一步说明可以参考图3新风设备另一实施方式的结构示意图,如图3所示,其中所述设备可以包括第一换热系统与第二换热系统,其中,第一换热系统可以包括第一压缩机C1、第一四通阀V1、第一换热器H1、第一节流元件K1以及第二换热器H2。
第二换热系统可以包括第二压缩机C2、第二四通阀V2、第四换热器H4、第三节流元件K3及第五换热器H5。其中,第一节流元件K1、第二节流元件K2可以为电子膨胀阀。
基于上述硬件结构,提出本申请新风设备控制方法的实施例。
参照图4,图4为本申请新风设备控制方法第一实施例的流程示意图。本申请提出新风设备控制方法的第一实施例。
在第一实施例中,新风设备控制方法可以应用于如上述的新风设备,该新风设备控制方法包括以下步骤:
步骤S10:获取目标温度和目标含湿量。
应理解的是,本实施例的执行主体是为上述新风机,该新风机具有数据处理、数据通信及程序运行等功能。通常,新风机中各组件的运行可以由一核心控制器进行驱动,故本实施例的执行主体还可以为上述新风机内的核心控制器,该核心控制器可以为上述的处理器,本实施方式对核心控制器作为执行主体进行说明。
需要说明的是,目标含湿量可以为基于用户设定的目标温度及用户设定的目标湿度所确定的含湿量。将新风温度与预设新风温度阈值进行比较;在所述新风温度小于等于所述预设新风温度阈值的最小值时,将制热季(冬季)的制热目标温度作为目标温度;在所述新风温度处于所述预设新风温度阈值的区间时,将过度季的过度目标温度作为目标温度;在所述新风温度大于等于所述预设新风温度阈值的最大值时,将制冷季(夏季)的制冷目标温度作为目标温度。根据所述目标温度和目标湿度确定目标含湿量。目标温度也可以根据新风温度与预设新风温度阈值进行判断确定,其中预设新风温度阈值的范围可以是10~30℃之间,也可以是单值或区间值,本实施例中对温度阈值不加以限制。为进一步说明,可以参考图5新风设备自动运行目标温度获取示意图,其中,通过检测新风温度Tw,并将新风温度Tw与新风温度预设阈值Twy进行比较,根据比较结果确定目标温度取值范围。在Tw大于Twy时,判定当前季节模式为夏季,目标温度T 1取值范围优选18-24℃,在Tw等于Twy时,判定当前季节模式为过渡季,目标温度T 1取值范围优选20-26℃,在Tw小于Twy时,判定当前季节模式为冬季,目标温度T 1取值范围优选24-28℃,本实施例中,目标温度可以是基于用户通过与新风机已构建连接的遥控设备上设定的温度值。温度值可以是单值也可以是区间值,如:目标温度可以是19℃或19℃-25℃。本实施例对温度值不做具体限制。
可以理解的是,目标湿度也可以是根据用户设定的目标温度所确定的湿度。所述目标湿度可以通过目标温度查找预设温湿度映射表所确定。含湿量是指每千克质量的干空气中所混合的水蒸气的质量,即
含湿量的计算公式是
Figure PCTCN2022121020-appb-000001
其中:P表示空气压力(Pa);Ps表示水蒸气分压力(Pa);φ表示相对湿度(%)。d确切反映 了空气中含有水蒸气量的多少。目标含湿量可以是用户设定值,可以是预设某个值或某个范围。
湿度可以影响温度,温度可以改变湿度。在不同的温度下,湿度也有不同,因此在对目标含湿量进行计算时,需要对温度与湿度进行确定,进而确定目标含湿量。如:当新风温度Tx为30℃,新风含湿量20g/kg,判断为夏季,此时目标温度T1取24~26℃,目标含湿量d1取10~12g/kg。
步骤S20:根据新风温度及新风湿度确定新风含湿量。
可以理解的是,在新风进风通道入口或者新风进风通道的换热器之前设置温度传感器,温度传感器与核心控制器连接。温度传感器可以实时或者间断性地向核心控制器反馈检测信号,该检测信号用于表征温度传感器所处环境的温度。核算控制器在接收到该检测信号后进行解析,可以获得新风进风通道前端的新风温度,进而通过新风温度查找预设新风温湿度映射表确定新风湿度,也可以通过在新风进风通道入口或者新风进风通道的换热器之前设置湿度传感器采集新风湿度。本实施例中对新风温度及新风湿度的参数采集方式不加以限制。
新风含湿量是指新风进风通道前端的含湿量。含湿量通过新风进风通道前端的新风温度与新风湿度所确定。新风含湿量可以是预设某个值或某个范围,如:新风含湿量阈值可以是[5,18]g/kg。
步骤S30:将所述新风含湿量和所述目标含湿量进行比较,获得含湿量比较结果。
需要说明的是,针对新风机的自动运行模式,需要通过含湿量比较结果与温度比较结果确定对新风的控制需求,并根据控制需求确定新风机的运行模式,从而根据控制需求对第一换热系统与第二换热系统的运行模式进行组合控制。
在一实施例中,主要通过将新风含湿量与目标含湿量进行比较,根据含湿量比较结果确定对新风加湿和/或除湿的需求,将新风温度与目标温度进行比较,进而确定第一换热系统与第二换热系统对应的运行模式。
步骤S40:将所述新风温度和所述目标温度进行比较,获得温度比较结果。
可以理解的是,将新风温度与目标温度进行比较,根据温度比较结果确定对新风升温和/或降温的需求,进而确定第一换热系统与第二换热系统对应的运行模式。
进一步地,所述新风设备包括:加湿装置,所述加湿装置设置于新风通道中新风风机旁,用于调节新风进风通道入口的新风湿度,所述将所述新风含湿量和所述目标含湿量进行比较,获得含湿量比较结果的步骤之后,包括:在所述新风含湿量小于所述目标含湿量时,控制所述加湿装置开启;在所述新风含湿量大于或等于所述目标含湿量时,控制所述加湿装置关闭。
可以理解的是,为了满足加湿需求,可以通过比较新风含湿量与目标含湿量,从而确定是否开启加湿装置对新风进行加湿。
在一实施例中,当新风含湿量4g/kg,目标含湿量d1取6~8g/kg时,确定需要进行加湿控制,因此开启加湿装置。当新风含湿量20g/kg,目标含湿量d1取6~8g/kg时,确定需要进行除湿控制,因此关闭加湿装置。本实施例中对新风含湿量与目标含湿量的数值均为举例说明,不做具体限制。
步骤S50:根据所述含湿量比较结果和所述温度比较结果确定所述第一换热系统的目标运行模式和所述第二换热系统的目标运行模式。
需要说明的是,为了实现系统自动高效运行,需要根据含湿量比较结果与温度比较结果对第一换热系统与第二换热系统各自对应的目标运行模式进行确定。第一换热系统与第二换热系统可以通过制冷模式与制热模式完成对新风的降温、升温和/或降湿等控制。
步骤S60:驱动所述新风设备按照所述第一换热系统的目标运行模式及所述第二换热系统的目标运行模式运行。
可以理解的是,在确定第一换热系统与第二换热系统各自对应的目标运行模式后,新风设备根据目标运行模式运行以完成9种运行需求,以使所述新风设备所安装的室内环境的温度及含湿量达到目标温度及含湿量。
在一实施例中,当新风温度Tx为22℃,新风含湿量5g/kg,判断为过渡季节,此时目标温度T1取20~24℃,目标含湿量d1取7~9g/kg,因此新风设备需要进行等温加湿控制,第一换热系统的目标模式为降温不除湿和第二换热系统的目标模式为升温模式,即通过制热模式运行,并开启加湿装置完成等温加湿控制。本实施例中不仅限于上述等温加湿控制,仅做举例说明。
在第一实施例中,通过将新风含湿量与目标含湿量进行比较,并将新风温度与目标温度进行比较。根据含湿量比较结果与温度比较结果以确定第一换热系统与第二换热系统的目标运行模式,并驱动新风设备按照第一换热系统的目标运行模式与第二换热系统的目标运行模式运行,以调节新风设备所安装的室内环境的温度及含湿量,从而解决了单制冷循环系统无法分别控制温度和湿度的问题,减少过度的温度或湿度处理,自动实现全年全工况的新风机高效节能运行。
参照图6,图6为本申请新风设备控制方法第二实施例的流程示意图。基于上述第一实施例,本申请提出新风设备控制方法的第二实施例。
在第二实施例中,步骤S50可以包括:
步骤S501:在所述新风含湿量小于所述目标含湿量,并且所述新风温度小于所述目标温度时,确定所述第一换热系统的目标运行模式为升温模式,并确定所述第二换热系统的目标运行模式为升温模式。
需要说明的是,在新风含湿量小于目标含湿量时,可以判定需要对新风进行加湿,因此需要开启加湿装置运行加湿模式,在新风温度小于目标温度时,可以判定需要对新风加热,将第一换热系统与第二换热系统的目标运行模式为升温模式,以对新风进行加湿和加热。
在一实施例中,新风设备可以通过开启加湿装置、控制第一换热系统与第二换热系统以升温模式运行,以使新风设备完成对新风进行加湿和加热的控制需求。具体的,第一换热系统以升温模式运行时,控制第一换热系统的第一节流元件K1工作,进行节流降压,第二节流元件K2不工作,使得第一换热系统中第二换热器H2和第三换热器H3均作为冷凝器对新风进行加热。第二换热系统以升温模式运行时,控制第二换热系统的第三节流元件K3工作,进行节流降压,第四节流元件K4不工作,使得第二换热系统中第五换热器H5和第六换热器H6均作为冷凝器对新风进行加热。
在本申请实施例中,节流元件工作可以理解为节流元件在换热系统的冷媒回路中起到节流降压的作用。
节流元件不工作可以理解为:
该节流元件在换热系统的冷媒回路中全开;
或者,该节流元件(不工作的节流元件)相对于冷媒回路中工作的节流元件不主要起到节流降压的作用,例如,冷媒回路中工作的节流元件主要起到节流降压作用,该节流元件在冷媒回路中起到的节流降压作用不明显或者主要起到调节流量的作用;
或者,冷媒回路中的冷媒不经过该节流元件而是经过与该节流元件并联的旁通流路,其中,旁通流路中可设置有开关电磁阀。
步骤S502:在所述新风含湿量小于所述目标含湿量,并且所述新风温度等于所述目标温度时,确定所述第一换热系统的目标运行模式为降温不除湿模式,并确定所述第二换热系统的目标运行模式为升温模式;或者,在所述新风含湿量小于所述目标含湿量,并且所述新风温度等于所述目标温度时,确定所述第一换热系统的目标运行模式为停止运行,并确定所述第二换热系统的目标运行模式为停止运行。
可以理解的是,在新风温度等于目标温度时,为了满足开启加湿装置后对温度的影响,可以通过将第一换热系统的目标运行模式为降温不除湿模式,第二换热系统的目标运行模式为升温模式。
在一实施例中,在新风含湿量小于目标含湿量,并且新风温度等于目标温度时,新风设备可以通过开启加湿装置,控制第一换热系统以降温不除湿模式运行,控制第二换热系统以升温模式运行,以使新风设备完成对新风进行等温加湿的控制需求。第一换热系统处于降温不除湿模式时,控制第一换热系统的第一节流元件K1工作,进行节流降压,第二节流元件K2不工作,使得第一换热系统中第二换热器H2和第三换热器H3均作为蒸发器冷却新风,并且第二换热器H2和第三换热器H3的盘管温度均大于新风露点温度。新风设备可以通过控制第二换热系统的第三节流元件K3工作,进行节流降压,第四节流元件K4不工作,使得第二换热系统中第五换热器H5和第六换热器H6均作为冷凝器加热新风。
在所述新风含湿量小于所述目标含湿量,并且所述新风温度等于所述目标温度时,控制所述第一换热系统停止运行,并控制所述第二换热系统停止运行,此时,第二风机和第三风机均运行,以使室外新风能够进入到新风通道加湿并进入到室内。
步骤S503:在所述新风含湿量小于所述目标含湿量,并且所述新风温度大于所述目标温度时,确定所述第一换热系统的目标运行模式为降温不除湿模式,并确定所述第二换热系统的目标运行模式为降温不除湿模式。
需要说明的是,在新风温度大于目标温度时,可以通过将第一换热系统与第二换热系统均的目标运行模式为降温不除湿模式,以使新风温度降低。
在一实施例中,在新风含湿量小于目标含湿量,并且新风温度大于目标温度时,新风设备可以通过开启加湿装置,控制第一换热系统以降温不除湿模式运行,制第二换热系统以降温不除湿模式运行,以使新风设备完成对新风进行制冷和加湿控制需求。第一换热系统以降温不除湿模式运行时,第一换热系统的第一节流元件K1工作,进行节流降压,第二节流元件K2不工作,使得第一换热系统中第二换热器H2和第三换热器H3均作为蒸发器冷却新风,并且第二换热器H2和第三换热器H3的盘管温度均大 于新风露点温度。第二换热系统以降温不除湿模式运行时,第二换热系统的第三节流元件K3工作,进行节流降压,第四节流元件K4不工作,使得第二换热系统中第五换热器H5和第六换热器H6均作为蒸发器冷却新风,并且第五换热器H5和第六换热器H6的盘管温度均大于新风露点温度。
进一步地,在新风含湿量等于目标含湿量时,所述步骤S40还包括:在所述新风含湿量等于所述目标含湿量,并且所述新风温度小于所述目标温度时,确定所述第一换热系统的目标运行模式为升温模式,并确定所述第二换热系统的目标运行模式为升温模式;在所述新风含湿量等于所述目标含湿量,并且所述新风温度等于所述目标温度时,确定所述第一换热系统的目标运行模式为停止运行,并确定所述第二换热系统的目标运行模式为停止运行;在所述新风含湿量等于所述目标含湿量,并且所述新风温度大于所述目标温度时,确定所述第一换热系统的目标运行模式为降温不除湿模式,并确定所述第二换热系统的目标运行模式为降温不除湿模式。
可以理解的是,在新风含湿量等于目标含湿量时,此时不需要开启加湿装置对新风进行加湿,因此关闭加湿装置,在确定不需要加湿后,当新风温度小于目标温度时,将第一换热系统与第二换热系统均的目标运行模式为升温模式,即第一换热系统与第二换热系统通过升温模式对新风进行加热。在确定不需要加湿后,新风温度等于目标温度时,第一换热系统与第二换热系统均停止运行并直接输送新风,此时,第二风机和第三风机均运行,以使室外新风能够进入到新风通道加湿并进入到室内。在确定不需要加湿后,新风温度高于目标温度时,将第一换热系统与第二换热系统均的目标运行模式为降温模式,即第一换热系统与第二换热系统通过降温不除湿模式对新风进行冷却。由于此时检测到新风含湿量等于目标含湿量,未避免第一换热系统与第二换热系统中的换热器切换成蒸发器冷却新风时,导致新风含湿量降低,因此需要根据当前新风含湿量对应的新风温度与目标温度之间的降温范围内控制第一换热系统与第二换热系统的换热器中冷媒温度,以对新风进行降温不除湿。
在一实施例中,在新风含湿量等于目标含湿量时,关闭加湿装置,并在新风温度小于目标温度时,第一换热系统与第二换热系统的目标运行模式为制热模式运行。在新风温度等于目标温度时,第一换热系统与第二换热系统均停止运行,直接输送新风。在新风温度大于目标温度时,新风设备的运行模式为降温,即第一换热系统与第二换热系统的目标运行模式为降温不除湿模式运行。
进一步地,在新风含湿量大于目标含湿量时,所述步骤S40还包括:在所述新风含湿量大于所述目标含湿量,并且所述新风温度小于所述目标温度时,确定所述第一换热系统的目标运行模式为再热除湿模式,并确定所述第二换热系统的目标运行模式为升温模式,或者,确定所述第一换热系统的目标运行模式为再热除湿模式,并确定所述第二换热系统的目标运行模式为再热除湿模式;在所述新风含湿量大于所述目标含湿量,并且所述新风温度等于所述目标温度时,确定所述第一换热系统的目标运行模式为再热除湿模式,并确定所述第二换热系统的目标运行模式为再热除湿模式;在所述新风含湿量大于所述目标含湿量,并且所述新风温度大于所述目标温度时,确定所述第一换热系统的目标运行模式为制冷除湿模式,并确定所述第二换热系统的目标运行模式为制冷除湿模式。
需要说明的是,在新风含湿量大于目标含湿量时,此时不需要开启加湿装置对新风进行加湿,因此关闭加湿装置,在确定不需要加湿后,新风温度小于目标温度时,新风设备控制第一换热系统的目标运行模式为再热除湿模式、第二换热系统的目标运行模式为升温模式。在第一换热系统处于再热除湿模式时,第一换热系统的第一节流元件K1不工作,第二节流元件K2工作,进行节流降压,以使第三换热器H3作为蒸发器冷却除湿新风,第二换热器H2对除湿后的新风进行再热,此时,第三换热器H3的温度小于新风露点温度。在第二换热系统处于升温模式时,第二换热系统中的第三节流元件K3工作,第四节流元件K4不工作,打开或者旁通,进行节流降压,使得第五换热器H5和第六换热器H6作为冷凝器再热新风。以使新风设备达到升温除湿控制需求。或者,新风设备还包括加热装置,加热装置设置在第六换热器H6的下游,新风温度小于目标温度时,新风设备控制第一换热系统的目标运行模式为再热除湿模式、第二换热系统的目标运行模式为再热除湿模式,此时,加热装置制热运行以使新风设备达到升温除湿控制需求。
可以理解的是,在确定不需要加湿后,新风温度等于目标温度时,新风设备控制第一换热系统与第二换热系统的目标运行模式为再热除湿模式,即第一换热系统与第二换热系统均切换为制冷模式运行。第一换热系统处于再热除湿模式时,第一换热系统的第一节流元件K1不工作,第二节流元件K2工作,进行节流降压,使得第二换热器H2作为过冷器预热新风,第三换热器H3作为蒸发器冷却除湿新风,此时,第三换热器H3的温度小于新风露点温度。在第二换热系统处于再热除湿模式时,第二换热系统的第三节流元件K3不工作,打开或旁通,第四节流元件K4工作,节流降压,使得第五换热器H5作为冷凝器再热新风,第六换热器H6作为蒸发器冷却除湿新风,此时,第六换热器H6的温度小于新风露点温度。进一步的,新风设备还包括加热装置,加热装置设置在第六换热器H6的下游,此时,加热 装置制热运行以使新风设备实现等温除湿的效果。
在确定不需要加湿后,新风温度大于目标温度时,新风设备控制第一换热系统与第二换热系统的目标运行模式为制冷除湿模式,即第一换热系统与第二换热系统切换为制冷模式运行。当第一换热系统以制冷除湿模式时,第一换热系统的第一节流元件K1工作,对冷媒进行节流降压,第二节流元件K2不工作,打开或者旁通,使得第二换热器H2与第三换热器H3均为蒸发器冷却新风,并且第二换热器H2和第三换热器H3的盘管温度均小于新风露点温度,以对新风进行除湿。当第二换热系统以制冷除湿模式时,第二换热系统的第三节流元件K3工作,对冷媒进行节流降压,第四节流元件K4不工作,打开或旁通,使得第五换热器H5与第六换热器H6均为蒸发器冷却新风,并且第五换热器H5与第六换热器H6的盘管温度均小于新风露点温度,以对新风进行除湿。由于当前新风含湿量大于目标含湿量,因此需要对新风进行除湿,因此需要将第一换热系统与第二换热系统切换成制冷模式对新风进行冷却,即在对新风进行冷却过程中,要确保新风含湿量及新风温度都下降,因此需要根据当前新风含湿量与目标含湿量之间的含湿量差值和当前新风温度与目标温度之间的温度差值控制第一换热系统与第二换热系统中换热器的冷媒温度,以对新风进行降温除湿。因此,第一换热系统与第二换热系统在降温不除湿模式与降温模式的控制参数不同。
在第二实施例中,通过将新风含湿量与目标含湿量进行比较并将新风温度与目标温度进行比较,以确定第一换热系统与第二换热系统的目标运行模式并根据目标运行模式对应的控制参数驱动新风设备按照第一换热系统的目标运行模式与第二换热系统的目标运行模式运行,以调节新风设备所安装的室内环境的温度及含湿量,从而解决了单制冷循环系统无法分别控制温度和湿度的问题,减少过度的温度或湿度处理,自动实现全年全工况的新风机高效节能运行。
基于上述第二实施例,本申请提出新风设备控制方法的第三实施例。
为了使新风设置更节能,通过在换热器盘管上设置温度传感器获取盘管温度。由此,第一换热系统与第二换热系统可以在合适盘管温度范围内运行提高循环效率。
在第三实施例中,新风设备控制方法还包括:
在所述第一换热系统以降温不除湿模式运行时,获取所述第一换热系统中换热器对应的第一盘管温度;
在所述第一盘管温度小于新风露点温度时,降低所述第一换热系统中压缩机转速或增大所述第一换热系统中节流部件开度;和/或
在所述第二换热系统以降温不除湿模式运行时,获取所述第二换热系统中换热器对应的第二盘管温度;
在所述第二盘管温度小于新风露点温度时,降低所述第二换热系统中压缩机转速或增大所述第二换热系统中节流部件开度。
需要说明的是,在第一换热系统和/或第二换热模式以降温不除湿模式时,通过第一换热系统与第二换热系统中换热器盘管上设置温度传感器获取第一盘管温度和第二盘管温度。若第一盘管温度大于新风露点温度,提高第一换热系统的压缩机转速或减小第一换热系统中的节流元件开度,以降低第一系统中换热器的冷媒温度。若第一盘管温度小于或等于新风露点温度,降低第一换热系统的压缩机转速或停止压缩机,或增大第一换热系统中的节流元件开度,以提升第一系统中换热器的冷媒温度,从而使第二换热器H2和第三换热器H3的盘管温度均大于新风露点温度,以避免新风被除湿。
可以理解的是,若第二盘管温度大于新风露点温度,提高第二换热系统的压缩机转速或减小第二换热系统中的节流元件开度,以降低第二系统中换热器的冷媒温度。若第二盘管温度小于或等于新风露点温度,降低第二换热系统的压缩机转速,或增大第二换热系统中的节流元件开度,以提升第二系统中换热器的冷媒温度,从而使第五换热器H5与第六换热器H6的盘管温度均大于新风露点温度,以避免新风被除湿。
进一步地,所述新风设备还包括设置在所述排风通道中的排风风机和设置在所述新风通道中的新风风机,所述第一换热系统包括第一压缩机,所述第二换热系统包括第二压缩机,所述驱动所述新风设备按照所述第一换热系统的目标运行模式及所述第二换热系统的目标运行模式运行之后,还包括:获取所述室内环境的当前温度;根据所述当前温度、所述第一换热系统的运行模式及所述第二换热系统的运行模式,调节所述第一压缩机的转速、所述第二压缩机的转速、所述第一换热系统中处于节流工作状态的节流元件的开度、所述第二换热系统中处于节流工作状态的节流元件的开度、所述排风风机的转速和所述新风风机的转速中的至少一个。
需说明的是,室内环境的当前温度可以通过回风温度传感器获得,也可以由室内环境某处温度传感 器获得,本实施例对室内温度获取方式不仅限于温度传感器。
进一步地,所述根据所述当前温度、所述第一换热系统的运行模式及所述第二换热系统的运行模式,调节所述第一压缩机的转速、所述第二压缩机的转速、所述第一换热系统中处于节流工作状态的节流元件的开度、所述第二换热系统中处于节流工作状态的节流元件的开度、所述排风风机的转速和所述新风风机的转速中的至少一个,所述第一换热系统中处于节流工作状态的节流元件为第一工作节流元件,所述第二换热系统中处于节流工作状态的节流元件为第二工作节流元件,包括:
在所述当前温度小于目标温度时,若所述第一换热系统处于升温模式,且所述第二换热系统处于升温模式,则提高所述第一压缩机的转速、提高所述第二压缩机的转速、减小所述第一工作节流元件的开度和减小所述第二工作节流元件的开度中的至少一个;
在所述当前温度大于目标温度时,若所述第一换热系统处于升温模式,且所述第二换热系统处于升温模式,则降低所述第一压缩机的转速、降低所述第二压缩机的转速、增大所述第一工作节流元件的开度和增大所述第二工作节流元件的开度中的至少一个;
在所述当前温度小于目标温度时,若所述第一换热系统处于降温不除湿模式,且所述第二换热系统处于升温模式,则提高所述第二压缩机的转速、和减小所述第二工作节流元件的开度中的至少一个;
在所述当前温度大于目标温度时,若所述第一换热系统处于降温不除湿模式,且所述第二换热系统处于升温模式,则降低所述第二压缩机的转速、和增大所述第二工作节流元件的开度中的至少一个;
在所述当前温度小于目标温度时,若所述第一换热系统处于降温不除湿模式,且所述第二换热系统处于降温不除湿模式,则降低所述第一压缩机的转速、降低所述第二压缩机的转速、增大所述第一工作节流元件的开度和减增大所述第二工作节流元件的开度中的至少一个;
在所述当前温度大于目标温度时,若所述第一换热系统处于降温不除湿模式,且所述第二换热系统处于降温不除湿模式,则提高所述第一压缩机的转速、提高所述第二压缩机的转速、减小所述第一工作节流元件的开度和减小所述第二工作节流元件的开度中的至少一个;
在所述当前温度小于目标温度时,若所述第一换热系统处于再热除湿模式,且所述第二换热系统处于升温模式,则提高所述第二压缩机的转速和减小所述第二工作节流元件的开度中的至少一个;
在所述当前温度大于目标温度时,若所述第一换热系统处于再热除湿模式,且所述第二换热系统处于升温模式,则提高所述第一压缩机的转速、降低所述第二压缩机的转速、减小所述第一工作节流元件的开度和增大所述第二工作节流元件的开度中的至少一个;
在所述当前温度小于目标温度时,若所述第一换热系统处于再热除湿模式,且所述第二换热系统处于再热除湿模式,则降低所述排风风机的转速、提高所述第二压缩机的转速和减小所述第二工作节流元件的开度中的至少一个;
在所述当前温度大于目标温度时,若所述第一换热系统处于再热除湿模式,且所述第二换热系统处于再热除湿模式,则提高所述排风风机的转速、降低所述第二压缩机的转速和增大所述第二工作节流元件的开度中的至少一个;
在所述当前温度小于目标温度时,若所述第一换热系统处于制冷除湿模式,且所述第二换热系统处于制冷除湿模式,则降低所述第一压缩机的转速、增大所述第一工作节流元件的开度、降低所述第二压缩机的转速和增大所述第二工作节流元件的开度中的至少一个;
在所述当前温度小于目标温度时,若所述第一换热系统处于制冷除湿模式,且所述第二换热系统处于制冷除湿模式,则提高所述第一压缩机的转速、减小所述第一工作节流元件的开度、提高所述第二压缩机的转速和减小所述第二工作节流元件的开度中的至少一个。
需说明的是,第一工作节流元件可以是第一换热系统中处于节流工作状态的节流元件K1、K2;第二工作节流元件可以是第二换热系统中处于节流工作状态的节流元件K3、K4。节流元件在处于节流工作状态时,节流元件具有一定的节流作用,处于节流元件的节流元件开度越小节流效果越好;同理不处于节流工作状态的节流元件处于全开或旁通的状态。
可理解的是,针对新风机的自动运行模式,通过新风温湿度与预设温湿度比较判断,确定对新风的控制需求,可以分为升温、升温加湿,升温除湿,降温,降温加湿,降温除湿,等温加湿,等温除湿,直接送新风的9种运行需求,对应9种需求对第一换热系统与第二换热系统的运行模式进行组合控制,并调整运行状态实现各自的效果,使系统自动高效运行,并实现房间温湿度达成控制目标。
进一步地,所述新风设备包括:加湿装置,所述加湿装置设置于新风通道中,所述驱动所述新风设备按照所述第一换热系统的目标运行模式及所述第二换热系统的目标运行模式运行之后还包括:
获取所述室内环境的当前含湿量;
当所述当前含湿量大于或等于所述目标含湿量时,若所述加湿装置处于开启状态,则关闭所述加湿 装置;
当所述当前含湿量大于或等于所述目标含湿量时,若所述加湿装置处于关闭状态,所述第一换热系统处于再热除湿模式且所述第二换热系统处于再热除湿模式,或者所述第一换热系统处于制冷除湿模式且所述第二换热系统处于制冷除湿模式,则提高所述第一压缩机的转速、减小所述第一工作节流元件的开度、提高所述第二压缩机的转速和减小所述第二工作节流元件的开度中的至少一个;
当所述当前含湿量小于或等于所述目标含湿量时,若所述加湿装置处于关闭状态,所述第一换热系统处于再热除湿模式且所述第二换热系统处于再热除湿模式,或者所述第一换热系统处于制冷除湿模式且所述第二换热系统处于制冷除湿模式,则降低所述第一压缩机的转速、增大所述第一工作节流元件的开度、降低所述第二压缩机的转速和增大所述第二工作节流元件的开度中的至少一个。
需说明的是,当前含湿量可以根据室内环境的当前温度计算得到,室内环境的当前温度可以通过回风温度传感器获得,也可以由室内环境某处温度传感器获得,本实施例对室内温度获取方式不仅限于温度传感器。
需要说明的是,第一工作节流元件是指第一换热系统中处于节流工作状态的节流元件,例如,当第一换热系统处于升温模式时,第一工作节流元件为第一节流元件K1;当第一换热系统处于降温不除湿模式时,第一工作节流元件为第一节流元件K1;当第一换热系统处于再热除湿模式时,第一工作节流元件为第二节流元件K2;当第一换热系统处于制冷除湿模式时,第一工作节流元件为第一节流元件K1。第二工作节流元件是指第二换热系统中处于节流工作状态的节流元件,例如,当第二换热系统处于升温模式时,第二工作节流元件为第三节流元件K3;当第二换热系统处于降温不除湿模式时,第二工作节流元件为第三节流元件K3;当第二换热系统处于再热除湿模式时,第二工作节流元件为第四节流元件K4工作;当第二换热系统处于制冷除湿模式时,第一工作节流元件为第三节流元件K3。
可理解的是,当所述当前含湿量大于或等于所述目标含湿量时,若所述加湿装置处于关闭状态,所述第一换热系统处于再热除湿模式且所述第二换热系统处于再热除湿模式,或者所述第一换热系统处于制冷除湿模式且所述第二换热系统处于制冷除湿模式,则提高所述第一压缩机C1的转速、减小所述第一工作节流元件中K1、K2的开度、提高所述第二压缩机C2的转速和减小所述第二工作节流元件的K3、K4开度中的至少一个。
应理解的是,当所述当前含湿量小于或等于所述目标含湿量时,若所述加湿装置处于关闭状态,所述第一换热系统处于再热除湿模式且所述第二换热系统处于再热除湿模式,或者所述第一换热系统处于制冷除湿模式且所述第二换热系统处于制冷除湿模式,则降低所述第一压缩机C1的转速、增大所述第一工作节流元件中K1、K2的开度、降低所述第二压缩机C2的转速和增大所述第二工作节流元件的K3、K4开度中的至少一个。
在第三实施例中,通过第一盘管温度与第二盘管温度与新风露点温度进行比较,根据比较结果调整第一换热系统与第二换热系统中换热器的冷媒温度,从而改善了常规新风机能耗大的问题,减少过度的温度或湿度处理,自动实现全年全工况的新风机高效节能运行。
此外,本申请实施例还提出一种存储介质,所述存储介质上存储有新风设备控制程序,所述新风设备控制程序被处理器执行时实现如上文所述的新风设备控制方法的步骤。由于本存储介质可以采用上述所有实施例的技术方案,因此至少具有上述实施例的技术方案所带来的有益效果,在此不再一一赘述。
此外,参照图7,图7为本申请新风设备控制装置一实施例的结构框图。本申请实施例还提出一种新风设备控制装置。
在本实施例中,新风设备控制装置用于控制新风设备,该新风设备的具体结构可以参照前述,新风设备控制装置包括:
参数获取模块100,用于获取目标温度和目标含湿量。
需要说明的是,目标含湿量可以为基于用户设定的目标温度及用户设定的目标湿度所确定的含湿量。目标温度也可以根据新风温度与预设新风温度阈值进行判断确定,其中预设新风温度阈值的范围可以是10~30℃之间,也可以是单值或区间值,本实施例中对温度阈值不加以限制。为进一步说明,可以参考图4新风设备自动运行目标温度获取示意图,其中,通过检测新风温度Tw,并将新风温度Tw与新风温度预设阈值Twy进行比较,根据比较结果确定目标温度取值范围。在Tw小于Twy时,判定当前季节模式为夏季,目标温度T 1取值范围优选18-24℃,在Tw等于Twy时,判定当前季节模式为过渡季,目标温度T 1取值范围优选20-26℃,在Tw大于Twy时,判定当前季节模式为冬季,目标温度T 1取值范围优选24-28℃,本实施例中,目标温度可以是基于用户通过与新风机已构建连接的遥控设备上设定的温度值。温度值可以是单值也可以是区间值,如:目标温度可以是19℃或19℃-25℃。本实施例对温度值不做具体限制。
可以理解的是,目标湿度也可以是根据用户设定的目标温度所确定的湿度。所述目标湿度可以通过目标温度查找预设温湿度映射表所确定。含湿量是指每千克质量的干空气中所混合的水蒸气的质量,即
含湿量的计算公式是
Figure PCTCN2022121020-appb-000002
其中:P表示空气压力(Pa);Ps表示水蒸气分压力(Pa);φ表示相对湿度(%)。d确切反映了空气中含有水蒸气量的多少。目标含湿量可以是用户设定值,可以是预设某个值或某个范围。
湿度可以影响温度,温度可以改变湿度。在不同的温度下,湿度也有不同,因此在对目标含湿量进行计算时,需要对温度与湿度进行确定,进而确定目标含湿量。如:当新风温度Tx为30℃,新风含湿量20g/kg,判断为夏季,此时目标温度T1取24~26℃,目标含湿量d1取10~12g/kg。
参数确定模块200,用于根据新风温度及新风湿度确定新风含湿量。
可以理解的是,在新风进风通道入口或者新风进风通道的换热器之前设置温度传感器,温度传感器与核心控制器连接。温度传感器可以实时或者间断性地向核心控制器反馈检测信号,该检测信号用于表征温度传感器所处环境的温度。核算控制器在接收到该检测信号后进行解析,可以获得新风进风通道前端的新风温度,进而通过新风温度查找预设新风温湿度映射表确定新风湿度,也可以通过在新风进风通道入口或者新风进风通道的换热器之前设置湿度传感器采集新风湿度。本实施例中对新风温度及新风湿度的参数采集方式不加以限制。
新风含湿量是指新风进风通道前端的含湿量。含湿量通过新风进风通道前端的新风温度与新风湿度所确定。新风含湿量可以是预设某个值或某个范围,如:新风含湿量阈值可以是[5,18]g/kg。
参数比较模块300,用于将所述新风含湿量和所述目标含湿量进行比较,获得含湿量比较结果。
需要说明的是,针对新风机的自动运行模式,需要通过含湿量比较结果与温度比较结果确定对新风的控制需求,并根据控制需求确定新风机的运行模式,从而根据控制需求对第一换热系统与第二换热系统的运行模式进行组合控制。
在一实施例中,主要通过将新风含湿量与目标含湿量进行比较,根据含湿量比较结果确定对新风加湿和/或除湿的需求,将新风温度与目标温度进行比较,进而确定第一换热系统与第二换热系统对应的运行模式。
所述参数比较模块300,还用于将所述新风温度和所述目标温度进行比较,获得温度比较结果。
可以理解的是,将新风温度与目标温度进行比较,根据温度比较结果确定对新风升温和/或降温的需求,进而确定第一换热系统与第二换热系统对应的运行模式。
模式确定模块400,用于根据所述含湿量比较结果和所述温度比较结果确定所述第一换热系统的目标运行模式和所述第二换热系统的目标运行模式。
需要说明的是,为了实现系统自动高效运行,需要根据含湿量比较结果与温度比较结果对第一换热系统与第二换热系统各自对应的目标运行模式进行确定。第一换热系统与第二换热系统可以通过制冷模式与制热模式完成对新风的降温、升温和/或降湿等控制。
模式驱动模块500,用于驱动所述新风设备按照所述第一换热系统的目标运行模式及所述第二换热系统的目标运行模式运行。
可以理解的是,在确定第一换热系统与第二换热系统各自对应的目标运行模式后,新风设备根据目标运行模式运行以完成9种运行需求,以使所述新风设备所安装的室内环境的温度及含湿量达到目标温度及含湿量。
在一实施例中,当新风温度Tx为22℃,新风含湿量5g/kg,判断为过渡季节,此时目标温度T1取20~24℃,目标含湿量d1取7~9g/kg,因此新风设备需要进行等温加湿控制,第一换热系统的目标模式为降温不除湿和第二换热系统的目标模式为升温模式,即通过制热模式运行,并开启加湿装置完成等温加湿控制。本实施例中不仅限于上述等温加湿控制,仅做举例说明。
在本实施例中,新风设备包括第一换热系统与第二换热系统,参数获取模块100获取目标含湿量;参数确定模块200根据新风温度与新风湿度确定新风含湿量,参数比较模块300通过将新风含湿量与目标含湿量进行比较,并将所述新风温度与所述目标温度进行比较;模式确定模块400根据含湿量比较结果与温度比较结果确定第一换热系统的目标运行模式与第二换热系统的目标运行模式,模式驱动模块500驱动新风设备按照第一换热系统的目标运行模式及第二换热系统的目标运行模式运行,从而解决了单制冷循环系统无法分别控制温度和湿度的问题,减少过度的温度或湿度处理,自动实现全年全工况的新风机高效节能运行。
本申请所述新风设备控制装置的其他实施例或具体实现方式可参照上述各方法实施例,因此至少具 有上述实施例的技术方案所带来的所有有益效果,此处不再赘述。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者系统不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者系统所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者系统中还存在另外的相同要素。
上述本申请实施例序号仅仅为了描述,不代表实施例的优劣。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。词语第一、第二、以及第三等的使用不表示任何顺序,可将这些词语解释为名称。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如只读存储器镜像(Read Only Memory image,ROM)/随机存取存储器(Random Access Memory,RAM)、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本申请各个实施例所述的方法。
以上仅为本申请的优选实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (16)

  1. 一种新风设备控制方法,其中,所述新风设备包括第一换热系统和第二换热系统,所述第一换热系统用于在新风通道与室外环境之间的进行换热,所述第二换热系统用于在所述新风通道与排风通道之间的进行换热;
    所述新风设备控制方法包括:
    获取目标温度和目标含湿量;
    根据新风温度及新风湿度确定新风含湿量;
    将所述新风含湿量和所述目标含湿量进行比较,获得含湿量比较结果;
    将所述新风温度和所述目标温度进行比较,获得温度比较结果;
    根据所述含湿量比较结果和所述温度比较结果确定所述第一换热系统的目标运行模式和所述第二换热系统的目标运行模式;以及
    驱动所述新风设备按照所述第一换热系统的目标运行模式及所述第二换热系统的目标运行模式运行。
  2. 如权利要求1所述的新风设备控制方法,其中,所述新风设备包括:加湿装置,所述加湿装置设置于新风通道中,所述将所述新风含湿量和所述目标含湿量进行比较,获得含湿量比较结果之后,包括:
    在所述新风含湿量小于所述目标含湿量时,控制所述加湿装置开启;以及
    在所述新风含湿量大于或等于所述目标含湿量时,控制所述加湿装置关闭。
  3. 如权利要求1或2所述的新风设备控制方法,其中,所述根据所述含湿量比较结果和所述温度比较结果确定所述第一换热系统的目标运行模式和所述第二换热系统的目标运行模式,包括:
    在所述新风含湿量小于所述目标含湿量,并且所述新风温度小于所述目标温度时,确定所述第一换热系统的目标运行模式为升温模式,并确定所述第二换热系统的目标运行模式为升温模式;
    在所述新风含湿量小于所述目标含湿量,并且所述新风温度等于所述目标温度时,确定所述第一换热系统的目标运行模式为降温不除湿模式,并确定所述第二换热系统的目标运行模式为升温模式,或者,确定所述第一换热系统的目标运行模式为停止运行,并确定所述第二换热系统的目标运行模式为停止运行;以及
    在所述新风含湿量小于所述目标含湿量,并且所述新风温度大于所述目标温度时,确定所述第一换热系统的目标运行模式为降温不除湿模式,并确定所述第二换热系统的目标运行模式为降温不除湿模式。
  4. 如权利要求1或2所述的新风设备控制方法,其中,所述根据所述含湿量比较结果和所述温度比较结果确定所述第一换热系统的目标运行模式和所述第二换热系统的目标运行模式,包括:
    在所述新风含湿量等于所述目标含湿量,并且所述新风温度小于所述目标温度时,确定所述第一换热系统的目标运行模式为升温模式,并确定所述第二换热系统的目标运行模式为升温模式;
    在所述新风含湿量等于所述目标含湿量,并且所述新风温度等于所述目标温度时,确定所述第一换热系统的目标运行模式为停止运行,并确定所述第二换热系统的目标运行模式为停止运行;以及
    在所述新风含湿量等于所述目标含湿量,并且所述新风温度大于所述目标温度时,确定所述第一换热系统的目标运行模式为降温不除湿模式,并确定所述第二换热系统的目标运行模式为降温不除湿模式。
  5. 如权利要求1或2所述的新风设备控制方法,其中,所述根据所述含湿量比较结果和所述温度比较结果确定所述第一换热系统的目标运行模式和所述第二换热系统的目标运行模式,包括:
    在所述新风含湿量大于所述目标含湿量,并且所述新风温度小于所述目标温度时,确定所述第一换热系统的目标运行模式为再热除湿模式,并确定所述第二换热系统的目标运行模式为升温模式,或者,确定所述第一换热系统的目标运行模式为再热除湿模式,并确定所述第二换热系统的目标运行模式为再热除湿模式;
    在所述新风含湿量大于所述目标含湿量,并且所述新风温度等于所述目标温度时,确定所述第一换热系统的目标运行模式为再热除湿模式,并确定所述第二换热系统的目标运行模式为再热除湿模式;以及
    在所述新风含湿量大于所述目标含湿量,并且所述新风温度大于所述目标温度时,确定所述第一换热系统的目标运行模式为制冷除湿模式,并确定所述第二换热系统的目标运行模式为制冷除湿模式。
  6. 如权利要求3或4所述的新风设备控制方法,其中,所述新风设备控制方法还包括:
    在所述第一换热系统以降温不除湿模式运行时,获取所述第一换热系统中换热器对应的第一盘管温度;
    在所述第一盘管温度小于新风露点温度时,降低所述第一换热系统中压缩机转速或增大所述第一换热系统中节流部件开度;和/或
    在所述第二换热系统以降温不除湿模式运行时,获取所述第二换热系统中换热器对应的第二盘管温度;
    在所述第二盘管温度小于新风露点温度时,降低所述第二换热系统中压缩机转速或增大所述第二换热系统中节流部件开度。
  7. 如权利要求2-6任一项所述的新风设备控制方法,其中,所述新风设备还包括设置在所述排风通道中的排风风机和设置在所述新风通道中的新风风机,所述第一换热系统包括第一压缩机,所述第二换热系统包括第二压缩机,所述驱动所述新风设备按照所述第一换热系统的目标运行模式及所述第二换热系统的目标运行模式运行之后,还包括:
    获取所述室内环境的当前温度;
    根据所述当前温度、所述第一换热系统的运行模式及所述第二换热系统的运行模式,调节所述第一压缩机的转速、所述第二压缩机的转速、所述第一换热系统中处于节流工作状态的节流元件的开度、所述第二换热系统中处于节流工作状态的节流元件的开度、所述排风风机的转速和所述新风风机的转速中的至少一个。
  8. 如权利要求7所述的新风设备控制方法,其中,所述根据所述当前温度、所述第一换热系统的运行模式及所述第二换热系统的运行模式,调节所述第一压缩机的转速、所述第二压缩机的转速、所述第一换热系统中处于节流工作状态的节流元件的开度、所述第二换热系统中处于节流工作状态的节流元件的开度、所述排风风机的转速和所述新风风机的转速中的至少一个,所述第一换热系统中处于节流工作状态的节流元件为第一工作节流元件,所述第二换热系统中处于节流工作状态的节流元件为第二工作节流元件,包括:
    在所述当前温度小于目标温度时,若所述第一换热系统处于升温模式,且所述第二换热系统处于升温模式,则提高所述第一压缩机的转速、提高所述第二压缩机的转速、减小所述第一工作节流元件的开度和减小所述第二工作节流元件的开度中的至少一个;
    在所述当前温度大于目标温度时,若所述第一换热系统处于升温模式,且所述第二换热系统处于升温模式,则降低所述第一压缩机的转速、降低所述第二压缩机的转速、增大所述第一工作节流元件的开度和增大所述第二工作节流元件的开度中的至少一个;
    在所述当前温度小于目标温度时,若所述第一换热系统处于降温不除湿模式,且所述第二换热系统处于升温模式,则提高所述第二压缩机的转速、和减小所述第二工作节流元件的开度中的至少一个;
    在所述当前温度大于目标温度时,若所述第一换热系统处于降温不除湿模式,且所述第二换热系统处于升温模式,则降低所述第二压缩机的转速、和增大所述第二工作节流元件的开度中的至少一个;
    在所述当前温度小于目标温度时,若所述第一换热系统处于降温不除湿模式,且所述第二换热系统处于降温不除湿模式,则降低所述第一压缩机的转速、降低所述第二压缩机的转速、增大所述第一工作节流元件的开度和减增大所述第二工作节流元件的开度中的至少一个;
    在所述当前温度大于目标温度时,若所述第一换热系统处于降温不除湿模式,且所述第二换热系统处于降温不除湿模式,则提高所述第一压缩机的转速、提高所述第二压缩机的转速、减小所述第一工作节流元件的开度和减小所述第二工作节流元件的开度中的至少一个;
    在所述当前温度小于目标温度时,若所述第一换热系统处于再热除湿模式,且所述第二换热系统处于升温模式,则提高所述第二压缩机的转速和减小所述第二工作节流元件的开度中的至少一个;
    在所述当前温度大于目标温度时,若所述第一换热系统处于再热除湿模式,且所述第二换热系统处于升温模式,则提高所述第一压缩机的转速、降低所述第二压缩机的转速、减小所述第一工作节流元件的开度和增大所述第二工作节流元件的开度中的至少一个;
    在所述当前温度小于目标温度时,若所述第一换热系统处于再热除湿模式,且所述第二换热系统处于再热除湿模式,则降低所述排风风机的转速、提高所述第二压缩机的转速和减小所述第二工作节流元件的开度中的至少一个;
    在所述当前温度大于目标温度时,若所述第一换热系统处于再热除湿模式,且所述第二换热系统处于再热除湿模式,则提高所述排风风机的转速、降低所述第二压缩机的转速和增大所述第二工作节流元件的开度中的至少一个;
    在所述当前温度小于目标温度时,若所述第一换热系统处于制冷除湿模式,且所述第二换热系统 处于制冷除湿模式,则降低所述第一压缩机的转速、增大所述第一工作节流元件的开度、降低所述第二压缩机的转速和增大所述第二工作节流元件的开度中的至少一个;
    在所述当前温度大于目标温度时,若所述第一换热系统处于制冷除湿模式,且所述第二换热系统处于制冷除湿模式,则提高所述第一压缩机的转速、减小所述第一工作节流元件的开度、提高所述第二压缩机的转速和减小所述第二工作节流元件的开度中的至少一个。
  9. 如权利要求8所述的新风设备控制方法,其中,所述新风设备包括:加湿装置,所述加湿装置设置于新风通道中,所述驱动所述新风设备按照所述第一换热系统的目标运行模式及所述第二换热系统的目标运行模式运行之后还包括:
    获取所述室内环境的当前含湿量;
    当所述当前含湿量大于或等于所述目标含湿量时,若所述加湿装置处于开启状态,则关闭所述加湿装置;
    当所述当前含湿量大于或等于所述目标含湿量时,若所述加湿装置处于关闭状态,所述第一换热系统处于再热除湿模式且所述第二换热系统处于再热除湿模式,或者所述第一换热系统处于制冷除湿模式且所述第二换热系统处于制冷除湿模式,则提高所述第一压缩机的转速、减小所述第一工作节流元件的开度、提高所述第二压缩机的转速和减小所述第二工作节流元件的开度中的至少一个;
    当所述当前含湿量小于或等于所述目标含湿量时,若所述加湿装置处于关闭状态,所述第一换热系统处于再热除湿模式且所述第二换热系统处于再热除湿模式,或者所述第一换热系统处于制冷除湿模式且所述第二换热系统处于制冷除湿模式,则降低所述第一压缩机的转速、增大所述第一工作节流元件的开度、降低所述第二压缩机的转速和增大所述第二工作节流元件的开度中的至少一个。
  10. 如权利要求1所述的新风设备控制方法,其中,所述获取目标温度和目标含湿量,包括:
    将新风温度与预设新风温度阈值进行比较;
    在所述新风温度小于等于所述预设新风温度阈值的最小值时,将制热季的制热目标温度作为目标温度;
    在所述新风温度处于所述预设新风温度阈值的区间时,将过度季的过度目标温度作为目标温度;
    在所述新风温度大于等于所述预设新风温度阈值的最大值时,将制冷季的制冷目标温度作为目标温度;
    根据所述目标温度和预设温湿度映射表确定目标湿度;
    根据所述目标温度和所述目标湿度确定目标含湿量。
  11. 一种新风设备控制装置,其中,所述新风设备控制装置包括:
    参数获取模块,用于获取目标含湿量;
    参数确定模块,用于根据新风进风通道入口的新风温度及新风湿度确定新风含湿量;
    参数比较模块,用于将所述新风含湿量和所述目标含湿量进行比较,获得含湿量比较结果;
    所述参数比较模块,还用于将所述新风温度和所述目标温度进行比较,获得温度比较结果;
    模式确定模块,用于根据所述含湿量比较结果和所述温度比较结果确定所述第一换热系统的目标运行模式和所述第二换热系统的目标运行模式;
    模式驱动模块,用于驱动所述新风设备按照所述第一换热系统的目标运行模式及所述第二换热系统的目标运行模式运行。
  12. 一种新风设备,其中,所述新风设备包括:第一换热系统、第二换热系统、存储器、处理器及存储在所述存储器上并可在所述处理器上运行的新风设备控制程序,第一换热系统用于在新风通道与外部环境之间进行换热,第二换热系统用于在所述新风通道与排风通道之间进行换热,所述新风设备控制程序被所述处理器执行时实现如权利要求1-9中任一项所述的新风设备控制方法。
  13. 如权利要求12所述的新风设备,其中,所述新风设备具有新风通道和排风通道,所述第一换热系统包括依次连接的第一压缩机、第一四通阀、第一换热器、第一节流元件和第二换热器;所述第二换热系统包括依次连接的第二压缩机、第二四通阀、第四换热器、第三节流元件以及第五换热器;其中,
    所述第一换热器设置于外部环境;
    所述新风通道中从室外向室内方向依次设置有所述第二换热器、所述第五换热器和新风风机;以及
    所述排风通道中设置有所述第四换热器和排风风机。
  14. 如权利要求13所述的新风设备,其中,所述第一换热系统还包括第二节流元件和第三换热器,所述第二节流元件和所述第三换热器依次连接在所述第二换热器之后,所述第三换热器设置在所述新 风通道中并位于所述第二换热器的上游;和/或
    所述第二换热器还包括第四节流元件和第六换热器,所述第三节流元件和所述第六换热器依次连接在所述第五换热器之后,所述第六换热器设置在所述新风通道中并位于所述第二换热器的上游。
  15. 如权利要求13所述的新风设备,其中,所述第二换热器的面积小于或等于第一换热器面积的50%,第五换热器的面积小于或等于第四换热器面积的150%。
  16. 一种存储介质,其中,所述存储介质上存储有新风设备控制程序,所述新风设备控制程序被处理器执行时实现如权利要求1-10中任一项所述的新风设备控制方法。
PCT/CN2022/121020 2021-11-24 2022-09-23 新风设备控制方法、装置、新风设备及存储介质 WO2023093261A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111417550.X 2021-11-24
CN202111417550.XA CN114061095B (zh) 2021-11-24 2021-11-24 新风设备控制方法、装置、新风设备及存储介质

Publications (1)

Publication Number Publication Date
WO2023093261A1 true WO2023093261A1 (zh) 2023-06-01

Family

ID=80276379

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/121020 WO2023093261A1 (zh) 2021-11-24 2022-09-23 新风设备控制方法、装置、新风设备及存储介质

Country Status (2)

Country Link
CN (2) CN114061095B (zh)
WO (1) WO2023093261A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114061095B (zh) * 2021-11-24 2023-09-26 广东美的制冷设备有限公司 新风设备控制方法、装置、新风设备及存储介质
WO2023093286A1 (zh) * 2021-11-24 2023-06-01 广东美的制冷设备有限公司 新风设备控制方法、装置、存储介质及新风设备
CN114623509A (zh) * 2022-03-15 2022-06-14 青岛海信日立空调系统有限公司 光伏新风除湿一体机
CN117469751A (zh) * 2023-12-28 2024-01-30 珠海格力电器股份有限公司 一种新风系统的控制方法、装置、新风系统及存储介质

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106196472A (zh) * 2016-07-25 2016-12-07 广东美的制冷设备有限公司 空调器的温湿度控制方法及装置
US20190056134A1 (en) * 2016-01-08 2019-02-21 Mitsubishi Electric Corporation Ventilator, and defrosting method
CN110017564A (zh) * 2019-03-28 2019-07-16 青岛海尔空调电子有限公司 双冷源新风机组及其控制方法
CN211011666U (zh) * 2019-09-02 2020-07-14 上海朗绿建筑科技股份有限公司 一种余热回收型高送风温度新风除湿机组
CN112097330A (zh) * 2020-09-29 2020-12-18 南京天加环境科技有限公司 一种两管制冷凝再热加热回收新风系统及其控制方法
CN112268356A (zh) * 2020-10-22 2021-01-26 北京小米移动软件有限公司 一种新风温湿度控制方法、系统、装置和存储介质
CN113390134A (zh) * 2021-06-21 2021-09-14 广东美的暖通设备有限公司 一种新风装置、控制方法、电子设备及存储介质
CN113432210A (zh) * 2021-06-16 2021-09-24 青岛海信日立空调系统有限公司 新风除湿一体机
CN113669860A (zh) * 2021-07-29 2021-11-19 中洁环境科技(西安)集团有限公司 热泵型新风一体除湿机及其控制方法和装置
CN114061095A (zh) * 2021-11-24 2022-02-18 广东美的制冷设备有限公司 新风设备控制方法、装置、新风设备及存储介质

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4849095B2 (ja) * 2008-05-12 2011-12-28 三菱電機株式会社 空気調和装置
CN103673107B (zh) * 2013-12-13 2017-04-12 Tcl空调器(中山)有限公司 空调器及其控制方法、控制装置
CN105526672B (zh) * 2015-12-11 2018-12-18 珠海格力电器股份有限公司 一种再热除湿系统温湿度控制方法
JP6618388B2 (ja) * 2016-02-26 2019-12-11 清水建設株式会社 空調システム
CN106546028B (zh) * 2016-09-29 2019-12-27 同济大学 一种无霜型制冷剂双循环新风空调机组
JP7072426B2 (ja) * 2018-03-30 2022-05-20 日本ピーマック株式会社 空気調和装置及び空気調和システム、並びに空気調和設備
CN109595703B (zh) * 2018-12-10 2023-11-10 江苏致远高科能源科技有限公司 一种多级冷源泳池热泵除湿机及其工作方法
CN111365773A (zh) * 2020-04-15 2020-07-03 江苏致远高科能源科技有限公司 一种温湿度独立控制空调系统的末端装置及其控制方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190056134A1 (en) * 2016-01-08 2019-02-21 Mitsubishi Electric Corporation Ventilator, and defrosting method
CN106196472A (zh) * 2016-07-25 2016-12-07 广东美的制冷设备有限公司 空调器的温湿度控制方法及装置
CN110017564A (zh) * 2019-03-28 2019-07-16 青岛海尔空调电子有限公司 双冷源新风机组及其控制方法
CN211011666U (zh) * 2019-09-02 2020-07-14 上海朗绿建筑科技股份有限公司 一种余热回收型高送风温度新风除湿机组
CN112097330A (zh) * 2020-09-29 2020-12-18 南京天加环境科技有限公司 一种两管制冷凝再热加热回收新风系统及其控制方法
CN112268356A (zh) * 2020-10-22 2021-01-26 北京小米移动软件有限公司 一种新风温湿度控制方法、系统、装置和存储介质
CN113432210A (zh) * 2021-06-16 2021-09-24 青岛海信日立空调系统有限公司 新风除湿一体机
CN113390134A (zh) * 2021-06-21 2021-09-14 广东美的暖通设备有限公司 一种新风装置、控制方法、电子设备及存储介质
CN113669860A (zh) * 2021-07-29 2021-11-19 中洁环境科技(西安)集团有限公司 热泵型新风一体除湿机及其控制方法和装置
CN114061095A (zh) * 2021-11-24 2022-02-18 广东美的制冷设备有限公司 新风设备控制方法、装置、新风设备及存储介质

Also Published As

Publication number Publication date
CN117190428A (zh) 2023-12-08
CN114061095A (zh) 2022-02-18
CN114061095B (zh) 2023-09-26

Similar Documents

Publication Publication Date Title
WO2023093261A1 (zh) 新风设备控制方法、装置、新风设备及存储介质
US11293655B2 (en) Air-conditioning apparatus and air-conditioning system
CN206459291U (zh) 模块化节能制冷装置
EP3396264B1 (en) Air-source heat pump air conditioner
CN106369718A (zh) 用于数据中心的模块化节能制冷装置
CN110671744A (zh) 一种空调器及其恒温除湿的控制方法
WO2023020060A1 (zh) 一种具有除湿功能的热泵空调
CN204345961U (zh) 温湿度独立控制制冷系统
CN112178778B (zh) 一种空调辐射末端及多房屋空间辐射末端防结露方法
CN209763409U (zh) 一种可冬夏季调温的新风机
CN114110982B (zh) 新风设备控制方法、装置、存储介质及新风设备
CN209819742U (zh) 一种变频多联辐射供暖制冷空调系统
CN208475494U (zh) 一种新风除湿机
CN114001433B (zh) 新风设备的控制方法、装置、设备及存储介质
US20230250982A1 (en) Heat Pump System, Control Method and Apparatus Thereof, Air Conditioning Device and Storage Medium
CN109506311A (zh) 一种复叠式双冷源温湿度独立控制空调系统
WO2023093286A1 (zh) 新风设备控制方法、装置、存储介质及新风设备
CN114087735B (zh) 新风设备的控制方法、装置、设备及存储介质
CN114110980B (zh) 新风设备控制方法、装置、新风设备及存储介质
CN114001437B (zh) 新风设备的控制方法、装置、设备及存储介质
CN220379894U (zh) 一种全工况节能型直膨式恒温恒湿空调机组
CN114087739B (zh) 新风设备控制方法、装置、新风设备及存储介质
CN217082770U (zh) 无水地暖空调装置及其安装结构
CN211060239U (zh) 一种空调器
CN216897677U (zh) 新风机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22897347

Country of ref document: EP

Kind code of ref document: A1