WO2023093012A1 - Procédé pour un système à triple électrode destiné à électrolyser de l'eau pour produire de l'hydrogène - Google Patents

Procédé pour un système à triple électrode destiné à électrolyser de l'eau pour produire de l'hydrogène Download PDF

Info

Publication number
WO2023093012A1
WO2023093012A1 PCT/CN2022/099672 CN2022099672W WO2023093012A1 WO 2023093012 A1 WO2023093012 A1 WO 2023093012A1 CN 2022099672 W CN2022099672 W CN 2022099672W WO 2023093012 A1 WO2023093012 A1 WO 2023093012A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
plate
circuit
hydrogen
frame
Prior art date
Application number
PCT/CN2022/099672
Other languages
English (en)
Chinese (zh)
Inventor
王凡
王金意
余智勇
刘丽萍
王韬
郭海礁
王鹏杰
任志博
张畅
徐显明
潘龙
Original Assignee
中国华能集团清洁能源技术研究院有限公司
四川华能氢能科技有限公司
华能集团技术创新中心有限公司
四川华能太平驿水电有限责任公司
四川华能宝兴河水电有限责任公司
四川华能嘉陵江水电有限责任公司
四川华能东西关水电股份有限公司
四川华能康定水电有限责任公司
四川华能涪江水电有限责任公司
华能明台电力有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国华能集团清洁能源技术研究院有限公司, 四川华能氢能科技有限公司, 华能集团技术创新中心有限公司, 四川华能太平驿水电有限责任公司, 四川华能宝兴河水电有限责任公司, 四川华能嘉陵江水电有限责任公司, 四川华能东西关水电股份有限公司, 四川华能康定水电有限责任公司, 四川华能涪江水电有限责任公司, 华能明台电力有限责任公司 filed Critical 中国华能集团清洁能源技术研究院有限公司
Publication of WO2023093012A1 publication Critical patent/WO2023093012A1/fr

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/50Processes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present application relates to the technical field of hydrogen production by electrolysis of water, in particular to a method for hydrogen production by electrolysis of water with a three-electrode system.
  • the existing electrolyzer is a combination of many electrolytic chambers, and the main components of each electrolytic chamber are cathode, anode, diaphragm and electrolyte.
  • Conventional water electrolysis technology generates hydrogen and oxygen at the cathode and anode during the electrode process, which will easily lead to the mixing of hydrogen and oxygen, making the prepared gas impure, and the subsequent purification will greatly increase the production cost.
  • Using an ion-selective membrane to separate the hydrogen generated at the hydrogen evolution catalytic electrode and the oxygen generated at the oxygen evolution catalytic electrode is an effective solution, but the use of the ion-selective membrane also greatly increases the cost.
  • the rates of hydrogen and oxygen production are different.
  • the pressure on both sides of the ion-selective membrane is different, the loss of the membrane is also very serious, which further increases the cost.
  • the selective ion exchange membrane further increases the internal resistance of the electrolyzer and increases energy consumption.
  • the current mainstream work is to improve or prepare a new type of diaphragm, in order to reduce the internal resistance while taking into account the hydrophilicity, ion permeability and the ability to completely separate hydrogen and oxygen. Although many new diaphragms have been researched and explored, the effect is still not very significant.
  • This application aims to solve one of the technical problems in the related art at least to a certain extent.
  • the purpose of this application is to propose a method for producing hydrogen by electrolyzing water with a three-electrode system.
  • the two circuits realize the separate preparation of hydrogen and oxygen by controlling the closing and opening of the two circuits, so that the prepared hydrogen and oxygen will not mix, simplify the separation cost, and the control method is simple and easy to operate.
  • a method for producing hydrogen by electrolyzing water with a three-electrode system includes:
  • a first circuit is formed between the hydrogen evolution cathode plate, the auxiliary electrode plate and the external power supply in the electrolytic cell, and a second circuit is formed between the auxiliary electrode plate, the oxygen evolution anode plate and the external power supply, so as to be closed by the first circuit and the second circuit is disconnected so that a reaction occurs on the hydrogen evolution cathode plate: H 2 O+e - ⁇ 1/2H 2 +OH - , hydrogen gas is prepared, and the first circuit is disconnected and the second Closing the circuit causes a reaction to occur on the oxygen evolution anode plate: OH - -e - ⁇ 1/4O 2 +1/2H 2 O, and oxygen is produced.
  • a retaining ring is sealed between the cathode electrode frame and the auxiliary electrode frame and between the auxiliary electrode frame and the anode electrode frame to obtain a three-electrode assembly.
  • it also includes stacking a plurality of three-electrode assemblies sequentially in the order of the cathode electrode frame, the auxiliary electrode frame, and the anode electrode frame to form a three-electrode system.
  • the electrolysis cavity enclosed between the cathode electrode frame, the auxiliary electrode frame and the retaining ring, the auxiliary electrode frame, and the anode in each three-electrode assembly in the three-electrode system through the liquid flow holes on the end pressure plate and the insulating plate.
  • Potassium hydroxide electrolyte is passed into the electrolytic cavity enclosed between the electrode frame and the guard ring.
  • the hydrogen evolution cathode plate is one of nickel-based alloy hydrogen evolution electrode, porous nickel hydrogen evolution electrode, nickel-based noble metal oxide hydrogen evolution electrode and nickel-based dispersion composite hydrogen evolution electrode.
  • oxygen evolution anode plate is an alloy electrode with nickel, cobalt, and iron as effective catalytic components.
  • the auxiliary electrode plate is a nickel hydroxide electrode.
  • a reaction occurs on the auxiliary electrode plate: Ni(OH) 2 +OH - -e - ⁇ NiOOH+ H2O ;
  • the auxiliary electrode plate is an aluminum hydroxide electrode.
  • a reaction occurs on the auxiliary electrode plate: Al(OH) 3 +OH - -e - ⁇ AlO(OH) 2 +H 2 O;
  • Fig. 1 is the flowchart of the method for hydrogen production by electrolysis of water with three-electrode system proposed by an embodiment of the present application;
  • Fig. 2 is the local structure schematic diagram of the electrolyzer of the present application
  • Fig. 3 is the flow chart of the application's assembled electrolyzer
  • Fig. 4 is the schematic diagram of the structure of the electrolytic chamber surrounded by the cathode electrode frame, the retainer and the auxiliary electrode frame provided with the auxiliary electrode plate in the present application;
  • Fig. 5 is a partial structural schematic diagram of Fig. 4 of the present application.
  • Fig. 1 is a flow chart of a method for producing hydrogen by electrolyzing water with a three-electrode system proposed in an embodiment of the present application.
  • Step 1 Assemble the electrolyzer
  • Step 2 form the first circuit between the hydrogen evolution cathode plate 1, the auxiliary electrode plate 2 and the external power supply in the electrolytic cell, and simultaneously form the second circuit between the auxiliary electrode plate 2, the oxygen evolution anode plate 3 and the external power supply, so as to By closing the first circuit and disconnecting the second circuit, a reaction occurs on the hydrogen evolution cathode plate 1: H 2 O+e ⁇ ⁇ 1/2H 2 +OH ⁇ , to prepare hydrogen;
  • Step 3 By opening the first circuit and closing the second circuit, a reaction occurs on the oxygen evolution anode plate 3: OH - -e - ⁇ 1/4O 2 +1/2H 2 O to prepare oxygen , in the same electrolytic cell, connect the three electrodes of the hydrogen evolution cathode plate 1, the auxiliary electrode plate 2 and the oxygen evolution anode plate 3 with the external power supply to form two circuits, and realize the hydrogen gas by controlling the closing and disconnection of the two circuits.
  • the separate preparation of hydrogen and oxygen prevents the mixing of hydrogen and oxygen, which simplifies the cost of separation.
  • the hydrogen evolution cathode plate 1 is connected to the negative pole of the power supply, and the auxiliary electrode plate 2 is connected to the positive pole of the power supply.
  • Hydrogen gas is prepared on the hydrogen evolution cathode plate 1 in the alkaline electrolyte, and the first circuit is electrolyzed in the alkaline electrolyte to obtain hydrogen gas.
  • the auxiliary electrode plate 2 and the oxygen evolution anode plate 3 are electrolyzed to generate oxygen by opening the first circuit and closing the second circuit, that is to say, the auxiliary electrode plate 2 is connected to the negative pole of the power supply, and the oxygen evolution anode plate 3 is connected to The positive pole of the power supply is used to produce oxygen by electrolysis on the oxygen evolution anode plate 3 in the alkaline electrolyte. Since the oxygen evolution anode plate 3 is disconnected during the hydrogen production process, no oxygen will be generated. At the same time, the hydrogen evolution cathode plate 1 is in the process of preparing oxygen. In the off state, hydrogen will not be generated. Therefore, in the process of electrolyzing water, the separate preparation of hydrogen and oxygen can be realized by controlling the on-off of the first circuit and the second circuit. Not only is the operation simple, but also the oxygen and hydrogen are prepared separately, and no oxygen will appear. mixed with hydrogen.
  • the specific process of assembling the electrolyzer is as follows:
  • Step 11 Fix the hydrogen evolution cathode plate 1, the auxiliary electrode plate 2 and the oxygen evolution anode plate 3 on the cathode electrode frame 4, the auxiliary electrode frame 5 and the anode electrode frame 6 respectively, that is to say, on the cathode electrode frame 4, the auxiliary electrode frame Installation holes are opened on frame 5 and anode electrode frame 6 respectively, and then hydrogen evolution cathode plate 1, auxiliary electrode plate 2 and oxygen evolution anode plate 3 are respectively installed on cathode electrode frame 4, auxiliary electrode frame 5 and anode electrode frame 6 in the hole;
  • Step 12 Then seal and install retaining rings 7 between the cathode electrode frame 4 and the auxiliary electrode frame 5 and between the auxiliary electrode frame 5 and the anode electrode frame 6 to obtain a three-electrode assembly.
  • it also includes stacking a plurality of three-electrode assemblies sequentially in the order of the cathode electrode frame 4, the auxiliary electrode frame 5, and the anode electrode frame 6 to form a three-electrode system, specifically, each of the three-electrode assemblies Two adjacent electrode frames 5 are spaced by retaining rings 7, and two adjacent electrode frames between adjacent two three-electrode assemblies are also spaced and compressed by retaining rings 7, for example, there are two three-electrode assemblies At this time, the arrangement between the two three-electrode assemblies is cathode electrode frame 4-retaining ring 7-auxiliary electrode frame 5-retaining ring 7-anode electrode frame 6-retaining ring 7-pole electrode frame 4-retaining ring 7 - the structural arrangement of auxiliary electrode frame 5-retainer ring 7-anode electrode frame 6, in addition, the cathode electrode frame 4, auxiliary electrode frame 5 and retainer ring 7 form an electrolytic chamber, auxiliary electrode frame 5, anode electrode frame 6 The electrolytic chamber that is also surrounded
  • connecting rods are used to sequentially pass through the end pressure plate 8, the insulating plate 9, the cathode electrode frame 4 in the three-electrode system, the auxiliary electrode frame 5, the anode electrode frame 6 and the retaining ring 7, the insulation plate 9 and the end pressure plate After 8, connect the nuts at both ends of the connecting rod, and press them on the two end pressure plates 8 through the nuts, so as to realize the compression and fixation between each electrolytic frame and the retaining ring in the three-electrode system, which can prevent the electrolyte from overflowing.
  • the connecting rod passes through the cathode electrode frame 4-retaining ring 7-auxiliary electrode frame 5-retaining ring 7-anode electrode frame 6-retaining ring 7 - Pole electrode frame 4 - Guard ring 7 - Auxiliary electrode frame 5 - Guard ring 7 - Anode electrode frame 6.
  • the electrolytic cavity enclosed between the cathode electrode frame 4, the auxiliary electrode frame 5 and the retaining ring 7 in each three-electrode assembly in the three-electrode system And the potassium hydroxide electrolyte is passed into the electrolytic cavity enclosed between the auxiliary electrode frame 5, the anode electrode frame 6 and the retaining ring 7, and then an environment for electrolysis is provided.
  • the oxygen or hydrogen generated in the electrolysis chamber flows out through the gas flow hole for collection, that is to say, a connected gas flow hole can be opened on one of the end pressure plates 8 and one of the insulating plates 9, so that the generated hydrogen gas Or oxygen flows out through the gas flow holes for collection. Since the generated oxygen or hydrogen may carry part of the electrolyte during the outflow process, the electrolyte may be lost.
  • one of the end pressure plates 8 and one of the insulating plates 9 Connected liquid flow holes are opened on the top, and then the electrolyte can be passed into the three-electrode assembly through the liquid flow holes, and the electrolyte can enter the electrolysis chamber through the pores of the porous material on the electrode plate of the three-electrode assembly to realize the Electrolyte stability.
  • the hydrogen evolution cathode plate 1 can be one of nickel-based alloy hydrogen evolution electrode, porous nickel hydrogen evolution electrode, nickel-based noble metal oxide hydrogen evolution electrode and nickel-based dispersion composite hydrogen evolution electrode.
  • oxygen evolution anode plate can be an alloy electrode with nickel, cobalt, and iron as effective catalytic components.
  • auxiliary electrode plates 2 there may be various types of auxiliary electrode plates 2 .
  • the auxiliary electrode plate 2 may be a nickel hydroxide electrode.
  • a reaction occurs on the auxiliary electrode plate 2: Ni(OH) 2 + OH ⁇ -e ⁇ ⁇ NiOOH+H 2 O; when the first circuit is opened and the second circuit is closed, a reaction occurs on the auxiliary electrode plate 2: NiOOH+H 2 O+e ⁇ ⁇ Ni(OH) 2 +OH ⁇ .
  • the auxiliary electrode plate 2 can be an aluminum hydroxide electrode.
  • a reaction occurs on the auxiliary electrode plate 2: Al(OH) 3 +OH - -e - ⁇ AlO(OH) 2 +H 2 O;
  • a reaction occurs on the auxiliary electrode plate 2: AlO(OH) 2 +H 2 O+e - ⁇ Al(OH) 3 + OH - .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

La présente invention concerne un procédé pour un système à triple électrode destiné à électrolyser de l'eau pour produire de l'hydrogène. Le procédé comprend le processus suivant comprenant les étapes consistant à : monter une cellule électrolytique ; et former un premier circuit entre une plaque de cathode d'évolution d'hydrogène, une plaque d'électrode auxiliaire et une source d'alimentation externe dans la cellule électrolytique et former également un second circuit entre la plaque d'électrode auxiliaire, une plaque d'anode d'évolution d'oxygène et la source d'alimentation externe, de manière à permettre, au moyen de la connexion du premier circuit et de la déconnexion du second circuit, une réaction sur la plaque de cathode d'évolution d'hydrogène pour préparer de l'hydrogène et permettre, au moyen de la déconnexion du premier circuit et de la connexion du second circuit, une réaction sur la plaque d'anode d'évolution d'oxygène pour préparer de l'oxygène. Dans la même cellule électrolytique, trois électrodes, c'est-à-dire une plaque de cathode d'évolution d'hydrogène, une plaque d'électrode auxiliaire et une plaque d'anode d'évolution d'oxygène, et une source d'alimentation externe sont connectées pour former deux circuits, de telle sorte qu'une préparation séparée d'hydrogène et d'oxygène est réalisée au moyen de la commande de la connexion et de la déconnexion des deux circuits et par conséquent le phénomène du mélange d'hydrogène et d'oxygène préparé est évité, ce qui permet de réduire le coût de séparation.
PCT/CN2022/099672 2021-11-23 2022-06-20 Procédé pour un système à triple électrode destiné à électrolyser de l'eau pour produire de l'hydrogène WO2023093012A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111394216.7 2021-11-23
CN202111394216.7A CN114232007B (zh) 2021-11-23 2021-11-23 一种三电极体系电解水制氢方法

Publications (1)

Publication Number Publication Date
WO2023093012A1 true WO2023093012A1 (fr) 2023-06-01

Family

ID=80750606

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/099672 WO2023093012A1 (fr) 2021-11-23 2022-06-20 Procédé pour un système à triple électrode destiné à électrolyser de l'eau pour produire de l'hydrogène

Country Status (2)

Country Link
CN (1) CN114232007B (fr)
WO (1) WO2023093012A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114232007B (zh) * 2021-11-23 2023-03-24 中国华能集团清洁能源技术研究院有限公司 一种三电极体系电解水制氢方法
CN114892182A (zh) * 2022-05-10 2022-08-12 上海嘉氢源科技有限公司 基于三电极体系的两步法电解水制氢的电解槽及其应用
CN114774946A (zh) * 2022-05-10 2022-07-22 上海嘉氢源科技有限公司 一种基于三电极体系的两步法电解水制氢装置及其应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105420748A (zh) * 2015-11-18 2016-03-23 复旦大学 一种基于三电极体系的两步法电解水制氢的方法及装置
CN105463497A (zh) * 2015-11-18 2016-04-06 复旦大学 一种可以电解水制取氢气的电池装置
CN105734600A (zh) * 2016-03-19 2016-07-06 复旦大学 一种三电极体系双电解槽两步法电解水制氢的装置及方法
JP2016204743A (ja) * 2015-04-24 2016-12-08 エクセルギー・パワー・システムズ株式会社 第3電極を備えた水素製造装置および水素製造方法
CN111534830A (zh) * 2020-05-20 2020-08-14 南京工业大学 一种电解水产生高纯氢的装置及方法
CN114232007A (zh) * 2021-11-23 2022-03-25 中国华能集团清洁能源技术研究院有限公司 一种三电极体系电解水制氢方法
CN217052429U (zh) * 2021-11-23 2022-07-26 中国华能集团清洁能源技术研究院有限公司 一种基于三电极体系的电解水装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016204743A (ja) * 2015-04-24 2016-12-08 エクセルギー・パワー・システムズ株式会社 第3電極を備えた水素製造装置および水素製造方法
CN105420748A (zh) * 2015-11-18 2016-03-23 复旦大学 一种基于三电极体系的两步法电解水制氢的方法及装置
CN105463497A (zh) * 2015-11-18 2016-04-06 复旦大学 一种可以电解水制取氢气的电池装置
CN105734600A (zh) * 2016-03-19 2016-07-06 复旦大学 一种三电极体系双电解槽两步法电解水制氢的装置及方法
CN111534830A (zh) * 2020-05-20 2020-08-14 南京工业大学 一种电解水产生高纯氢的装置及方法
CN114232007A (zh) * 2021-11-23 2022-03-25 中国华能集团清洁能源技术研究院有限公司 一种三电极体系电解水制氢方法
CN217052429U (zh) * 2021-11-23 2022-07-26 中国华能集团清洁能源技术研究院有限公司 一种基于三电极体系的电解水装置

Also Published As

Publication number Publication date
CN114232007A (zh) 2022-03-25
CN114232007B (zh) 2023-03-24

Similar Documents

Publication Publication Date Title
WO2023093012A1 (fr) Procédé pour un système à triple électrode destiné à électrolyser de l'eau pour produire de l'hydrogène
WO2017084589A1 (fr) Procédé et dispositif pour produire de l'hydrogène par électrolyse de l'eau avec un procédé en deux étapes basé sur un système à trois électrodes
JP2008536015A (ja) 電気化学セル構造
CN113373477A (zh) 动态制氢电解槽的电解液流量、压力控制方法及系统
CN2900553Y (zh) 新型电解槽
CN113235110A (zh) 一种新型水电解制氢电解槽装置
CN114892182A (zh) 基于三电极体系的两步法电解水制氢的电解槽及其应用
CN113774417B (zh) 一种双极电容代替离子隔膜分离产氢产氧的电解水装置
WO2024098910A1 (fr) Cadre de pôle de bain électrolytique pour la production d'hydrogène par électrolyse de l'eau et bain électrolytique
WO2024001709A1 (fr) Système et procédé permettant de réaliser en alternance une production d'hydrogène à base d'électrolyse d'urée et une réduction de carbone, et système d'application
CN217052429U (zh) 一种基于三电极体系的电解水装置
CN217628644U (zh) 基于三电极体系的两步法电解水制氢的电解槽
CN219409921U (zh) 一种电解液单腔循环水电解槽
WO2023202017A1 (fr) Dispositif d'électrolyseur d'eau alcaline pourvu de montants de liaison d'entrée à courants multiples
CN114774946A (zh) 一种基于三电极体系的两步法电解水制氢装置及其应用
CN215103586U (zh) 一种新型水电解制氢电解槽装置
CN201942756U (zh) 一种扩散电极制碱装置
CN220685252U (zh) 一种新型碱性水电解槽
CN216237301U (zh) 一种高效的质子交换膜电解槽
CN204898090U (zh) 一种电解槽结构
CN220952094U (zh) 一种碱性水电解槽的极板流道装置及相应极板
CN218561638U (zh) 一种电解水制氢膜电极结构及电解水制氢装置
CN220034680U (zh) 低成本的高效能电解水制氢模块
CN218812124U (zh) 可高电流密度运行的次氯酸钠电解生产装置
CN219508035U (zh) 石墨极板、碱性电解槽和电解水制氢设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22897109

Country of ref document: EP

Kind code of ref document: A1