WO2023092606A1 - 显示基板及其制作方法、显示装置 - Google Patents

显示基板及其制作方法、显示装置 Download PDF

Info

Publication number
WO2023092606A1
WO2023092606A1 PCT/CN2021/134166 CN2021134166W WO2023092606A1 WO 2023092606 A1 WO2023092606 A1 WO 2023092606A1 CN 2021134166 W CN2021134166 W CN 2021134166W WO 2023092606 A1 WO2023092606 A1 WO 2023092606A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
substrate
reflective
display substrate
spacer
Prior art date
Application number
PCT/CN2021/134166
Other languages
English (en)
French (fr)
Inventor
谈耀宏
王泉珺
白锋
李仁佑
孙文
Original Assignee
京东方科技集团股份有限公司
绵阳京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 绵阳京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to PCT/CN2021/134166 priority Critical patent/WO2023092606A1/zh
Priority to CN202180003662.2A priority patent/CN116548090A/zh
Priority to US17/918,256 priority patent/US20240090293A1/en
Publication of WO2023092606A1 publication Critical patent/WO2023092606A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/353Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels characterised by the geometrical arrangement of the RGB subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/856Arrangements for extracting light from the devices comprising reflective means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/352Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels the areas of the RGB subpixels being different
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • H10K59/80518Reflective anodes, e.g. ITO combined with thick metallic layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/871Self-supporting sealing arrangements
    • H10K59/8723Vertical spacers, e.g. arranged between the sealing arrangement and the OLED
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/878Arrangements for extracting light from the devices comprising reflective means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/20Changing the shape of the active layer in the devices, e.g. patterning
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/302Details of OLEDs of OLED structures
    • H10K2102/3023Direction of light emission
    • H10K2102/3026Top emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/166Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using selective deposition, e.g. using a mask

Definitions

  • the present disclosure relates to the field of display technology, in particular to a display substrate, a manufacturing method thereof, and a display device.
  • the manufacturing process of the organic light-emitting diode display includes: forming a plurality of spacers, using the plurality of spacers to support the evaporation mask, and then evaporating to form a light-emitting functional layer.
  • a light-emitting functional layer In the evaporation process, particles are inevitably produced, and these particles will fall on the light-emitting functional layer or stick to the mask.
  • the reticle contacts with the spacer, and the particles will be transferred to other structures of the display screen except the light-emitting functional layer.
  • the purpose of the present disclosure is to provide a display substrate, a manufacturing method thereof, and a display device.
  • a first aspect of the present disclosure provides a display substrate, including:
  • a pixel defining layer is located on the substrate, the pixel defining layer includes a plurality of pixel openings, and the area where the pixel openings are located is the effective light emitting area of the corresponding sub-pixel;
  • a plurality of spacers are located on the side of the pixel defining layer facing away from the substrate, and the spacers are used to support the mask during the evaporation process of the display substrate;
  • a reflective layer the reflective layer is located between the spacer and the base, the orthographic projection of the spacer on the base at least partially intersects the orthographic projection of the reflective layer on the base overlapping; the orthographic projection of the spacer on the substrate and the orthographic projection of the reflective layer on the substrate are at least partially non-overlapping.
  • the reflective layer includes at least one protrusion protruding away from the substrate.
  • the reflective layer includes one or more of the following structures:
  • the light-reflecting layer includes a first light-transmitting layer, an intermediate light-reflecting layer and a second light-transmitting layer that are sequentially stacked in a direction away from the substrate;
  • the reflective layer includes a third light-transmitting layer and a top reflective layer sequentially stacked along a direction away from the substrate;
  • the light-reflecting layer includes a bottom light-reflecting layer and a fourth light-transmitting layer sequentially stacked along a direction away from the substrate;
  • the reflective layer includes a single reflective film layer.
  • the reflective layer includes a non-metallic material, and the reflective layer is located between the spacer and the pixel defining layer.
  • the reflective layer includes a plurality of reflective patterns; the orthographic projection of the spacer on the substrate is located inside the orthographic projection of the corresponding reflective pattern on the substrate.
  • the reflective pattern is strip-shaped, and the maximum length L of the orthographic projection of the reflective pattern on the substrate along the first direction satisfies: 16 microns ⁇ L ⁇ 20 microns, and the reflective pattern is in the The maximum width d of the orthographic projection on the substrate along the second direction satisfies: 11 microns ⁇ d ⁇ 15 microns, the first direction is the length direction of the strip, and the second direction is the width direction of the strip.
  • the orthographic projection of the reflective figure on the substrate satisfies any one or more of the following dimensions:
  • the maximum length of the orthographic projection of the spacer on the substrate along the first direction is less than or equal to 15 microns, and the orthographic projection of the spacer on the substrate is along the The maximum width in the second direction is less than or equal to 10 microns.
  • the display substrate further includes an anode layer, and the reflective layer is provided on the same layer as the anode layer.
  • the reflective pattern is made of reflective non-metallic material; or, the reflective pattern and the anode pattern are made of the same material.
  • the anode layer includes a plurality of mutually independent anode patterns, and the anode patterns and the reflective patterns are mutually independent.
  • the display substrate further includes a cathode layer located on the side of the plurality of spacers facing away from the substrate; the reflective layer is formed in a grid structure, and the reflective layer and the cathode layer coupling.
  • the anode layer includes a plurality of mutually independent anode patterns, and at least part of the light-reflecting pattern and an adjacent anode pattern form an integral structure.
  • the display substrate includes a plurality of sub-pixels; the sub-pixels corresponding to the anode pattern formed as an integral structure with the reflective pattern have the same luminescent color.
  • the display substrate further includes:
  • a second planarization layer at least partially between the pixel defining layer and the substrate
  • a second source-drain metal layer, the second source-drain metal layer is located between the second planar layer and the substrate; the reflective pattern is set in the same layer and material as the second source-drain metal layer.
  • the display substrate further includes:
  • a second planarization layer at least partially between the pixel defining layer and the substrate
  • first planar layer is located between the second planar layer and the substrate;
  • a first source-drain metal layer, the first source-drain metal layer is located between the first planar layer and the substrate; the reflective pattern is set in the same layer and material as the first source-drain metal layer.
  • a second aspect of the present disclosure provides a display device, including the above-mentioned display substrate.
  • the third aspect of the present disclosure provides a method for manufacturing the above-mentioned display substrate, the display substrate includes a base and a plurality of sub-pixels, and the manufacturing method includes:
  • the pixel defining layer includes a plurality of openings, and the area where the openings are located is the effective light-emitting area of the corresponding sub-pixel;
  • the orthographic projection of the spacer on the substrate at least partially overlaps the orthographic projection of the reflective layer on the substrate; the orthographic projection of the spacer on the substrate overlaps with the reflective layer
  • the orthographic projections on the base are at least partially non-overlapping.
  • the step of making a reflective layer on the substrate specifically includes:
  • the reflective layer and the anode layer in the display substrate are formed simultaneously.
  • the step of making a reflective layer on the substrate specifically includes:
  • the reflective layer and the second source-drain metal layer in the display substrate are formed simultaneously.
  • the step of making a reflective layer on the substrate specifically includes:
  • the reflective layer and the first source-drain metal layer in the display substrate are formed simultaneously.
  • FIG. 1 is a partial cross-sectional schematic diagram showing a substrate in the related art
  • FIG. 2 is a first cross-sectional schematic diagram of a display substrate provided by an embodiment of the present disclosure
  • FIG. 3 is a first schematic top view of a display substrate provided by an embodiment of the present disclosure
  • FIG. 4 is a second schematic top view of a display substrate provided by an embodiment of the present disclosure.
  • FIG. 5 is a third schematic top view of a display substrate provided by an embodiment of the present disclosure.
  • FIG. 6 is a fourth schematic top view of a display substrate provided by an embodiment of the present disclosure.
  • FIG. 7 is a fifth schematic top view of a display substrate provided by an embodiment of the present disclosure.
  • FIG. 8 is a sixth schematic top view of a display substrate provided by an embodiment of the present disclosure.
  • FIG. 9 is a partial top electron micrograph of a display substrate provided by an embodiment of the present disclosure.
  • FIG. 10 is a partial cross-sectional electron microscope view of a display substrate provided by an embodiment of the present disclosure.
  • FIG. 11 is a seventh schematic top view of a display substrate provided by an embodiment of the present disclosure.
  • FIG. 12 is an eighth schematic plan view of a display substrate provided by an embodiment of the present disclosure.
  • FIG. 13 is a second schematic cross-sectional view of a display substrate provided by an embodiment of the present disclosure.
  • FIG. 14 is a third schematic cross-sectional view of a display substrate provided by an embodiment of the present disclosure.
  • FIG. 15 is a fourth schematic cross-sectional view of a display substrate provided by an embodiment of the present disclosure.
  • FIG. 16 is a fifth cross-sectional schematic diagram of a display substrate provided by an embodiment of the present disclosure.
  • FIG. 17 is a sixth cross-sectional schematic diagram of a display substrate provided by an embodiment of the present disclosure.
  • FIG. 18 is a seventh cross-sectional schematic diagram of a display substrate provided by an embodiment of the present disclosure.
  • FIG. 19 is an eighth cross-sectional schematic diagram of a display substrate provided by an embodiment of the present disclosure.
  • FIG. 20 is a ninth schematic cross-sectional view of a display substrate provided by an embodiment of the present disclosure.
  • FIG. 21 is a tenth cross-sectional schematic diagram of a display substrate provided by an embodiment of the present disclosure.
  • FIG. 22 is an eleventh cross-sectional schematic diagram of a display substrate provided by an embodiment of the present disclosure.
  • FIG. 23 is a schematic twelfth cross-sectional view of a display substrate provided by an embodiment of the present disclosure.
  • an automatic optical inspection (AOI) camera is usually used to take pictures of the display screen to detect the particles on the display screen, and screen out larger particles for elimination to ensure the display quality of the display screen.
  • the particles in the normal position can be detected by adjusting the algorithm and threshold of the AOI optical camera, but there are certain difficulties in the detection of the particles on the spacer, which leads to a high quality risk of the display.
  • Particles located on the spacer are not easily detected for the following reasons:
  • an embodiment of the present disclosure provides a display substrate, including: a substrate, a plurality of sub-pixels, a pixel defining layer PDL, a plurality of spacers PS and a reflective layer (including a reflective pattern 20);
  • the pixel defining layer PDL is located on the substrate, the pixel defining layer PDL includes a plurality of pixel openings, and the area where the pixel openings are located is the effective light emitting area of the corresponding sub-pixel; the plurality of spacers PS are located on the pixel
  • the side of the defining layer PDL facing away from the substrate, the spacer PS is used to support the mask during the evaporation process of the display substrate;
  • the reflective layer is located between the spacer PS and the substrate , the orthographic projection of the spacer PS on the substrate at least partially overlaps with the orthographic projection of the reflective layer on the substrate; the orthographic projection of the spacer on the substrate overlaps with the Orthographic projections of the reflective layer on the substrate are at
  • the pixel defining layer PDL defines a plurality of pixel openings, the plurality of pixel openings are in one-to-one correspondence with the plurality of sub-pixels in the display substrate, and the pixel openings are the effective light emission of the corresponding sub-pixels. district.
  • the spacer PS is located on the surface of the pixel defining layer PDL facing away from the substrate.
  • the spacer PS and the pixel defining layer PDL form an integral structure.
  • the spacer PS and the pixel defining layer PDL can be formed simultaneously through a patterning process.
  • the top of the spacer PS is configured as an arched protrusion, and the highest point of the arched protrusion is brought into contact with the mask during the evaporation process to support the mask. Setting the top of the spacer PS as an arched protrusion can better prevent the mask plate and evaporation material from scratching the spacer PS.
  • the reflective layer is located between the pixel defining layer PDL and the substrate.
  • the orthographic projection of the spacer PS on the substrate partly overlaps the orthographic projection of the reflective layer on the substrate.
  • the orthographic projection of the spacer PS on the substrate overlaps with the orthographic projection of the reflective layer on the substrate.
  • the orthographic projection of the spacer PS on the substrate is surrounded by the orthographic projection of the reflective layer on the substrate.
  • the reflective layer is located between the pixel defining layer PDL and the substrate.
  • the light emitted by the AOI optical lens when taking pictures illuminates the spacer PS from the side of the spacer PS facing away from the substrate, and the light passes through the spacer PS and the pixel defining layer PDL below the spacer PS to the reflective layer.
  • the reflective layer can reflect the incident light back to the AOI optical lens.
  • a reflective layer is provided between the pixel defining layer PDL and the substrate, and the spacer PS is provided on the substrate.
  • the orthographic projection of the reflective layer overlaps at least partially the orthographic projection of the reflective layer on the substrate; so that when the foreign matter detection is performed on the film layer of the display substrate, the light emitted by the AOI optical lens when taking pictures passes through the spacer After the object PS, it can be reflected back to the AOI optical lens by the reflective layer between the spacer PS and the substrate, which effectively improves the photo effect of the AOI optical lens on the spacer PS.
  • the image of the spacer PS taken by the AOI optical lens The image can well identify whether there are particles on the spacer PS.
  • the display substrate provided by the embodiments of the present disclosure, it is possible to ensure high pixel resolution, low spacer PS scratch probability, and the spacer PS design and manufacturing process are unchanged, effectively Improving the detection rate of particles or other foreign matter above the spacer PS can increase the foreign matter detection rate to nearly 100%, and better ensure the quality of the display substrate.
  • the reflective layer includes at least one protrusion protruding away from the substrate.
  • the section of the protrusion in a direction perpendicular to the base may be a triangle, or a semicircle, or a part of a circle.
  • the height of the protrusion in a direction perpendicular to the base is larger or smaller than a radius of the circle.
  • the reflective layer includes a plurality of protrusions.
  • the above arrangement can increase the range of reflected light and improve the recognition rate.
  • the reflective layer includes one or more of the following structures:
  • the reflective layer 20 includes a first light-transmitting layer 201, an intermediate light-reflecting layer 202 and a second light-transmitting layer 203 that are sequentially stacked in a direction away from the substrate; exemplary
  • the first light-transmitting layer 201 , the middle light-reflecting layer 202 and the second light-transmitting layer 203 are set with the same material as the corresponding film layers in the anode pattern 30 .
  • the anode pattern 30 includes ITO/Ag/ITO stacked.
  • the first light-transmitting layer 201 and the second light-transmitting layer 203 are made of ITO (indium tin oxide), and the middle reflective layer 202 is made of Ag (metallic silver).
  • the reflective layer 20 includes a third light-transmitting layer 204 and a top reflective layer 205 sequentially stacked along a direction away from the substrate;
  • the reflective layer 20 includes a bottom reflective layer 206 and a fourth light-transmitting layer 207 that are sequentially stacked along a direction away from the substrate;
  • the reflective layer 20 includes a single reflective film layer.
  • the reflective layer 20 includes a non-metallic material, and the reflective layer 20 is located between the spacer PS and the pixel defining layer PDL.
  • the orthographic projection of the spacer PS on the substrate is set inside the orthographic projection of the reflective layer on the substrate.
  • the orthographic projection of the spacer PS on the substrate coincides with the orthographic projection of at least part of the reflective layer on the substrate.
  • the above arrangement makes it possible for the light emitted by the AOI optical lens to be better reflected by the light between the spacer PS and the substrate when the foreign matter is detected on the film layer of the display substrate.
  • the layer is reflected back to the AOI optical lens, thereby more effectively improving the photographic effect of the AOI optical lens on the spacer PS.
  • According to the image of the spacer PS taken by the AOI optical lens it is possible to better identify whether the There are grains.
  • the reflective layer includes a plurality of reflective patterns 20; the orthographic projection of the spacer PS on the substrate is located on the corresponding reflective pattern 20 on the substrate. The interior of the orthographic projection on .
  • the plurality of reflective patterns 20 are independent of each other; or, the plurality of reflective patterns 20 are formed into an integrated structure.
  • the plurality of spacers PS are in one-to-one correspondence with at least part of the reflective patterns 20, and the orthographic projection of the spacers PS on the substrate is located on the corresponding reflective pattern 20 on the substrate The interior of the orthographic projection.
  • the orthographic projection of the spacer PS on the substrate coincides with the orthographic projection of the corresponding reflective pattern 20 on the substrate.
  • the orthographic projection of the spacer PS on the substrate is surrounded by the orthographic projection of the corresponding reflective pattern 20 on the substrate.
  • the above arrangement makes it possible for the light emitted by the AOI optical lens to be better reflected by the light between the spacer PS and the substrate when the foreign matter is detected on the film layer of the display substrate.
  • the layer is reflected back to the AOI optical lens, thereby more effectively improving the photographic effect of the AOI optical lens on the spacer PS.
  • According to the image of the spacer PS taken by the AOI optical lens it is possible to better identify whether the There are grains.
  • the reflective pattern 20 is strip-shaped, and the maximum length L of the orthographic projection of the reflective pattern 20 on the substrate along the first direction satisfies: 16 Micron ⁇ L ⁇ 20 microns, the maximum width d of the orthographic projection of the reflective pattern on the substrate along the second direction satisfies: 11 microns ⁇ d ⁇ 15 microns, the first direction is the length direction of the strip, and the second The direction is the width direction of the strip shape, and the first direction intersects the second direction.
  • the first direction is perpendicular to the second direction.
  • the first direction includes the horizontal direction
  • the second direction includes the longitudinal direction.
  • the orthographic projection of the reflective pattern 20 on the substrate includes a strip pattern, the first direction is the extending direction of the long side of the strip pattern, and the second direction is the short side of the strip pattern direction of extension.
  • the above arrangement makes the size of the orthographic projection of the reflective pattern 20 on the base larger than the size of the orthographic projection of the small-sized spacer PS on the base, so that the film layer of the display substrate When detecting foreign matter, the light emitted by the AOI optical lens when taking pictures passes through the spacer PS, and can be better reflected back to the AOI optical lens by the reflective layer between the spacer PS and the substrate, thereby more effectively improving the According to the photographic effect of the spacer PS taken by the AOI optical lens, whether there are particles on the spacer PS can be better identified according to the image of the spacer PS taken by the AOI optical lens.
  • the orthographic projection of the reflective pattern 20 on the substrate satisfies any one or more of the following dimensions:
  • the above arrangement makes the size of the orthographic projection of the reflective pattern 20 on the base larger than the size of the orthographic projection of the small-sized spacer PS on the base, so that the film layer of the display substrate When detecting foreign matter, the light emitted by the AOI optical lens when taking pictures passes through the spacer PS, and can be better reflected back to the AOI optical lens by the reflective layer between the spacer PS and the substrate, thereby more effectively improving the According to the photographic effect of the spacer PS taken by the AOI optical lens, whether there are particles on the spacer PS can be better identified according to the image of the spacer PS taken by the AOI optical lens.
  • the maximum length of the orthographic projection of the spacer PS on the substrate along the first direction is less than or equal to 15 microns
  • the spacer PS The maximum width of the orthographic projection on the substrate along the second direction is less than or equal to 10 microns.
  • the spacer PS has a height of 1 micron in a direction perpendicular to the substrate.
  • the above arrangement makes the size of the orthographic projection of the spacer PS on the base smaller than the size of the orthographic projection of the reflective pattern 20 on the base, so that the film layer of the display substrate When detecting foreign matter, the light emitted by the AOI optical lens when taking pictures passes through the spacer PS, and can be better reflected back to the AOI optical lens by the reflective layer between the spacer PS and the substrate, thereby more effectively improving the According to the photographic effect of the spacer PS taken by the AOI optical lens, whether there are particles on the spacer PS can be better identified according to the image of the spacer PS taken by the AOI optical lens.
  • the display substrate further includes an anode layer (including an anode pattern 30 ), and the reflective layer and the anode layer are arranged in the same layer.
  • the anode layer includes a plurality of mutually independent anode patterns 30 , and there is a certain gap between adjacent anode patterns 30 . At least part of the light-emitting layer is located in the gap.
  • the reflective layer and the anode layer are arranged in the same layer, so that only the pixel defining layer PDL is included between the reflective layer and the spacer PS, after the light passes through the pixel defining layer PDL, it can directly enter the
  • the reflective layer minimizes the loss of light and improves the photographing effect of the spacer PS by the AOI optical lens.
  • the reflective pattern 20 is made of reflective non-metallic material.
  • the reflective pattern 20 is made of reflective metal material; or, the reflective pattern 20 and the anode pattern 30 are made of the same material.
  • the reflective pattern 20 and the anode pattern 30 are arranged in the same layer and the same material, so that the reflective pattern 20 and the anode pattern 30 can be formed simultaneously in the same patterning process, which is conducive to simplifying the manufacturing process of the display substrate. , reducing the manufacturing cost of the display substrate.
  • the anode layer includes a plurality of mutually independent anode patterns 30 , and the anode patterns 30 and the reflective patterns 20 are mutually independent.
  • the anode pattern 30 and the reflective pattern 20 are insulated from each other.
  • the anode pattern 30 and the reflective pattern 20 are set independently of each other, so as to avoid the influence of the reflective pattern 20 on the signal of the anode pattern 30 .
  • the display substrate further includes a cathode layer 60 located on the side of the plurality of spacers PS facing away from the base; the reflective layer is formed into a grid structure , the reflective layer is coupled to the cathode layer 60 .
  • the reflective layer is formed as a grid structure, at least part of the anode pattern 30 is located in the grid included in the grid structure, at least part of the anode pattern 30 is surrounded by the grid structure .
  • the above arrangement of coupling the reflective layer to the cathode layer 60 enables the reflective layer to have a stable potential, thereby better ensuring the stability of the display substrate.
  • the anode layer includes a plurality of mutually independent anode patterns 30 , and at least part of the reflective pattern 20 and an adjacent anode pattern 30 form an integral structure.
  • the above arrangement enables the reflective pattern 20 to have the same potential as the anode pattern 30, and will not be in a floating state, which is beneficial to the stability of the display substrate.
  • the display substrate includes a plurality of sub-pixels; the sub-pixels corresponding to the anode pattern 30 formed as an integral structure with the reflective pattern 20 emit the same color of light.
  • the display substrate includes a plurality of sub-pixels, and the plurality of sub-pixels include sub-pixels of at least three different colors.
  • the plurality of sub-pixels includes a plurality of red sub-pixels, a plurality of green sub-pixels and a plurality of blue sub-pixels.
  • the shapes of the anode patterns 30 corresponding to the red sub-pixels are substantially the same.
  • the shapes of the anode patterns 30 corresponding to the green sub-pixels are substantially the same.
  • the shapes of the anode patterns 30 corresponding to the blue sub-pixels are substantially the same.
  • the above setting is the same as the luminescent color of the sub-pixel corresponding to the anode pattern 30 which is formed as an integral structure of the reflective pattern 20, not only enables the reflective pattern 20 to have the same potential as the anode pattern 30, but will not be in a floating state, and has It is beneficial to the working stability of the display substrate; moreover, it ensures the uniformity of the anode patterns 30 corresponding to the sub-pixels of the same color in the display substrate, thereby well ensuring the display quality of the display substrate.
  • the display substrate further includes:
  • a second planar layer 10 at least part of which is located between the pixel defining layer PDL and the substrate 70;
  • the second source-drain metal layer SD2, the second source-drain metal layer SD2 is located between the second planar layer 10 and the substrate 70; the reflective pattern 20 is on the same layer as the second source-drain metal layer SD2 Same material setting.
  • the display substrate includes a buffer layer Buf, an active layer Poly, a first gate insulating layer GI1, a first gate metal layer Gat1, and a second gate insulating layer sequentially stacked along a direction away from the substrate 70 Layer GI2, second gate metal layer Gat2, interlayer insulating layer ILD, first source-drain metal layer SD1, first passivation layer PVX1, first planarization layer PLN1, second source-drain metal layer SD2, second passivation layer PVX2, second planar layer 10, anode layer (including anode pattern 30), pixel definition layer PDL, light emitting function layer EL, cathode layer 60, package structure.
  • the display substrate may not include the first passivation layer PVX1 and/or the second passivation layer PVX2.
  • the sub-pixel includes a sub-pixel driving circuit
  • the sub-pixel driving circuit includes a plurality of transistors and storage capacitors
  • the sub-pixel driving circuit is used to provide a driving signal for the corresponding anode pattern 30 .
  • the active layer to the first source-drain metal layer are used to form the sub-pixel driving circuit.
  • the first source-drain metal layer and the second source-drain metal layer are used to form some signal lines and conductive connection parts in the display substrate.
  • the reflective pattern 20 and the second source-drain metal layer are arranged in the same layer and material, so that the reflective layer and the second source-drain metal layer in the display substrate can be formed simultaneously through the same patterning process, avoiding the Adding an additional patterning process specially used for making the reflective layer effectively simplifies the manufacturing process of the display substrate and reduces the manufacturing cost of the display substrate.
  • the display substrate further includes:
  • a second planar layer 10 at least part of which is located between the pixel defining layer PDL and the substrate 70;
  • first flat layer PLN1 is located between the second flat layer 10 and the substrate 70;
  • the first source-drain metal layer SD1, the first source-drain metal layer SD1 is located between the first flat layer PLN1 and the substrate 70; the reflective pattern 20 is on the same layer as the first source-drain metal layer SD1 Same material setting.
  • the reflective pattern 20 and the first source-drain metal layer SD1 are arranged in the same layer and material, so that the reflective layer and the first source-drain metal layer SD1 in the display substrate can be formed simultaneously through the same patterning process, It avoids adding an additional patterning process specially used for making the reflective layer, effectively simplifies the manufacturing process of the display substrate, and reduces the manufacturing cost of the display substrate.
  • the display substrate further includes:
  • an anode layer located between the pixel defining layer PDL and the substrate
  • a pixel circuit array layer at least part of which is located between the anode layer and the substrate;
  • a light-emitting functional layer at least part of the light-emitting functional layer is located on the side of the plurality of spacers PS facing away from the substrate;
  • the cathode layer is located on the side of the luminescent functional layer facing away from the substrate;
  • An encapsulation layer is located on the side of the cathode layer facing away from the substrate.
  • the pixel circuit array layer includes a plurality of sub-pixel driving circuits distributed in an array.
  • the light-emitting functional layer includes an electron injection layer, an electron transport layer, an organic light-emitting material layer, a hole transport layer and a hole injection layer that are stacked.
  • the encapsulation layer includes a first inorganic encapsulation layer, an organic encapsulation layer and a second inorganic encapsulation layer which are stacked.
  • Embodiments of the present disclosure also provide a display device, including the display substrate provided in the above embodiments.
  • the display device can be any product or component with a display function such as a TV, a monitor, a digital photo frame, a mobile phone, a tablet computer, etc., wherein the display device also includes a flexible circuit board, a printed circuit board and a back panel. board etc.
  • the display substrate provided by the above-mentioned embodiment, by setting the reflective layer between the pixel defining layer PDL and the substrate, and setting the orthographic projection of the spacer PS on the substrate, the light-reflective layer and the reflective layer
  • the orthographic projections on the base are at least partially overlapped; so that when detecting foreign matter on the film layer of the display substrate, the light emitted by the AOI optical lens when taking pictures can be detected by the spacer after passing through the spacer PS
  • the reflective layer between the PS and the substrate is reflected back to the AOI optical lens, which effectively improves the photo effect of the AOI optical lens on the spacer PS.
  • the spacer can be well identified Whether there are particles on the material PS. Therefore, in the display substrate provided by the above-mentioned embodiments, it is possible to effectively improve the pixel resolution, lower the scratch probability of the spacer PS, and keep the design and manufacturing process of the spacer PS unchanged.
  • the detection rate of particles or other foreign matter above the spacer PS can be increased to nearly 100%, which better ensures the quality of the display substrate.
  • the display device provided by the embodiments of the present disclosure includes the above-mentioned display substrate, it also has the above-mentioned beneficial effects, which will not be repeated here.
  • An embodiment of the present disclosure also provides a method for manufacturing a display substrate, which is used to manufacture the display substrate provided in the above embodiments, the display substrate includes a base and a plurality of sub-pixels, and the manufacturing method includes:
  • the pixel defining layer includes a plurality of openings, and the area where the openings are located is the effective light-emitting area of the corresponding sub-pixel;
  • the spacers PS Used to support the mask plate in the evaporation process of the display substrate; the orthographic projection of the spacer PS on the substrate at least partially overlaps the orthographic projection of the reflective layer on the substrate; The orthographic projection of the spacer on the substrate is at least partially non-overlapping with the orthographic projection of the reflective layer on the substrate.
  • the display substrate produced by the production method provided by the embodiment of the present disclosure by providing a reflective layer between the pixel defining layer PDL and the base, and setting the orthographic projection of the spacer PS on the base, At least partially overlap with the orthographic projection of the reflective layer on the substrate; so that when the foreign matter detection is performed on the film layer of the display substrate, the light emitted by the AOI optical lens when taking pictures passes through the spacer PS, It can be reflected back to the AOI optical lens by the reflective layer between the spacer PS and the substrate, which effectively improves the photographing effect of the spacer PS by the AOI optical lens.
  • the image of the spacer PS taken by the AOI optical lens can be very good The identification of whether there are particles on the spacer PS.
  • the display substrate manufactured by adopting the manufacturing method provided by the embodiment of the present disclosure it is possible to ensure higher pixel resolution, lower probability of scratching the spacer PS, and the design and manufacturing process of the spacer PS remain unchanged.
  • the detection rate of particles or other foreign matter above the spacer PS can be effectively improved, and the foreign matter detection rate can be increased to nearly 100%, which better ensures the quality of the display substrate.
  • the step of making a reflective layer on the substrate specifically includes:
  • the reflective layer and the anode layer in the display substrate are formed simultaneously.
  • the aforementioned reflective layer and the anode layer in the display substrate are simultaneously formed through the same patterning process, which avoids adding an additional patterning process dedicated to making the reflective layer, effectively simplifies the manufacturing process of the display substrate, and reduces the cost of the display substrate. production cost.
  • the step of making a reflective layer on the substrate specifically includes:
  • the reflective layer and the second source-drain metal layer in the display substrate are formed simultaneously.
  • Forming the light-reflecting layer and the second source-drain metal layer in the display substrate simultaneously through the same patterning process avoids adding an additional patterning process dedicated to making the light-reflecting layer, and effectively simplifies the production process of the display substrate.
  • the manufacturing cost of the display substrate is reduced.
  • the step of making a reflective layer on the substrate specifically includes:
  • the reflective layer and the first source-drain metal layer in the display substrate are formed simultaneously.
  • the above-mentioned simultaneous formation of the reflective layer and the first source-drain metal layer in the display substrate through the same patterning process avoids adding an additional patterning process dedicated to making the reflective layer and effectively simplifies the manufacturing process of the display substrate.
  • the manufacturing cost of the display substrate is reduced.
  • “same layer” in the embodiments of the present disclosure may refer to film layers on the same structural layer.
  • the film layers in the same layer can be formed by using the same film-forming process to form a film layer for forming a specific pattern, and then use the same mask to pattern the film layer through a patterning process to form a layer structure.
  • one patterning process may include multiple exposure, development or etching processes, and the specific pattern in the formed layer structure may be continuous or discontinuous. These specific graphics may also be at different heights or have different thicknesses.
  • each embodiment in this specification is described in a progressive manner, the same and similar parts of each embodiment can be referred to each other, and each embodiment focuses on the differences from other embodiments.
  • the description is relatively simple, and for relevant parts, please refer to part of the description of the product embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种显示基板及其制作方法、显示装置,其中显示基板包括:基底和多个子像素,像素界定层(PDL),多个隔垫物(PS)和反光层(20),像素界定层(PDL)位于基底上,像素界定层(PDL)包括多个像素开口,像素开口所在区域为对应的子像素的有效发光区;多个隔垫物(PS)位于像素界定层(PDL)背向基底的一侧,隔垫物(PS)用于在显示基板的蒸镀工艺中支撑掩膜版;反光层(20)位于隔垫物(PS)和基底之间,隔垫物(PS)在基底上的正投影,与反光层(20)在基底上的正投影至少部分交叠。

Description

显示基板及其制作方法、显示装置 技术领域
本公开涉及显示技术领域,尤其涉及一种显示基板及其制作方法、显示装置。
背景技术
有机发光二极管显示屏的制作过程包括:形成多个隔垫物,利用多个隔垫物支撑蒸镀掩膜版,然后蒸镀形成发光功能层。而在蒸镀过程中,不可避免的会产生颗粒(Particle),这些颗粒会掉落在发光功能层上,或者粘到掩膜版上。在掩膜版再次使用时,掩膜版和隔垫物接触,又会将颗粒转移到显示屏除发光功能层之外的其他结构上。
发明内容
本公开的目的在于提供一种显示基板及其制作方法、显示装置。
为了实现上述目的,本公开提供如下技术方案:
本公开的第一方面提供一种显示基板,包括:
基底和多个子像素;
像素界定层,所述像素界定层位于所述基底上,所述像素界定层包括多个像素开口,所述像素开口所在区域为对应的子像素的有效发光区;
多个隔垫物,所述多个隔垫物位于所述像素界定层背向所述基底的一侧,所述隔垫物用于在显示基板的蒸镀工艺中支撑掩膜版;
反光层,所述反光层位于所述隔垫物和所述基底之间,所述隔垫物在所述基底上的正投影,与所述反光层在所述基底上的正投影至少部分交叠;所述隔垫物在所述基底上的正投影与所述反光层在所述基底上的正投影至少部分不交叠。
可选的,所述反光层包括至少一个向远离所述基板的方向突出的凸起。
可选的,所述反光层包括如下一种或多种结构:
第一种结构,所述反光层包括沿远离所述基底的方向依次层叠设置的第 一透光层,中间反光层和第二透光层;
第二种结构,所述反光层包括沿远离所述基底的方向依次层叠设置的第三透光层和顶反光层;
第三种结构,所述反光层包括沿远离所述基底的方向依次层叠设置的底反光层和第四透光层;
第四种结构,所述反光层包括单层反射膜层。
可选的,所述反光层包括非金属材料,所述反光层位于所述隔垫物和所述像素界定层之间。
可选的,所述反光层包括多个反光图形;所述隔垫物在所述基底上的正投影,位于对应的反光图形在所述基底上的正投影的内部。
可选的,所述反光图形为长条形,所述反光图形在所述基底上的正投影沿第一方向的最大长度L满足:16微米≤L≤20微米,所述反光图形在所述基底上的正投影沿第二方向的最大宽度d满足:11微米≤d≤15微米,第一方向为长条形的长度方向,第二方向为长条形的宽度方向。
可选的,所述反光图形在所述基底上的正投影满足如下尺寸中的任意一种或多种:
d=11微米,L=16微米;
d=12微米,L=17微米;
d=13微米,L=18微米;
d=14微米,L=19微米;
d=15微米,L=20微米。
可选的,所述隔垫物的在所述基底上的正投影沿所述第一方向的最大长度小于或等于15微米,所述隔垫物的在所述基底上的正投影沿所述第二方向的最大宽度小于或等于10微米。
可选的,所述显示基板还包括阳极层,所述反光层与所述阳极层同层设置。
可选的,所述反光图形采用反光非金属材料制作;或者,所述反光图形与所述阳极图形采用相同材料制作。
可选的,所述阳极层包括多个相互独立的阳极图形,所述阳极图形与所 述反光图形相互独立。
可选的,所述显示基板还包括位于所述多个隔垫物背向所述基底的一侧的阴极层;所述反光层形成为网格状结构,所述反光层与所述阴极层耦接。
可选的,所述阳极层包括多个相互独立的阳极图形,至少部分所述反光图形与其相邻的一个阳极图形形成为一体结构。
可选的,所述显示基板包括多个子像素;与所述反光图形形成为一体结构的阳极图形对应的子像素的发光颜色相同。
可选的,所述显示基板还包括:
第二平坦层,所述第二平坦层的至少部分位于所述像素界定层和所述基底之间;
第二源漏金属层,所述第二源漏金属层位于所述第二平坦层与所述基底之间;所述反光图形与所述第二源漏金属层同层同材料设置。
可选的,所述显示基板还包括:
第二平坦层,所述第二平坦层的至少部分位于所述像素界定层和所述基底之间;
第一平坦层,所述第一平坦层位于所述第二平坦层和所述基底之间;
第一源漏金属层,所述第一源漏金属层位于所述第一平坦层与所述基底之间;所述反光图形与所述第一源漏金属层同层同材料设置。
基于上述显示基板的技术方案,本公开的第二方面提供一种显示装置,包括上述显示基板。
基于上述显示基板的技术方案,本公开的第三方面提供一种显示基板的制作方法,用于制作上述显示基板,所述显示基板包括基底和多个子像素,所述制作方法包括:
在基底上制作反光层和像素界定层;所述像素界定层包括多个开口,所述开口所在区域为对应的子像素的有效发光区;
在所述反光层背向所述基底的一侧制作多个隔垫物,所述多个隔垫物位于所述像素界定层背向所述基底的一侧;所述隔垫物用于在显示基板的蒸镀工艺中支撑掩膜版;
所述隔垫物在所述基底上的正投影,与所述反光层在所述基底上的正投 影至少部分交叠;所述隔垫物在所述基底上的正投影与所述反光层在所述基底上的正投影至少部分不交叠。
可选的,所述在基底上制作反光层的步骤具体包括:
通过同一次构图工艺,同时形成所述反光层和所述显示基板中的阳极层。
可选的,所述在基底上制作反光层的步骤具体包括:
通过同一次构图工艺,同时形成所述反光层和所述显示基板中的第二源漏金属层。
可选的,所述在基底上制作反光层的步骤具体包括:
通过同一次构图工艺,同时形成所述反光层和所述显示基板中的第一源漏金属层。
附图说明
此处所说明的附图用来提供对本公开的进一步理解,构成本公开的一部分,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1为相关技术中显示基板的部分截面示意图;
图2为本公开实施例提供的显示基板的第一截面示意图;
图3为本公开实施例提供的显示基板的第一俯视示意图;
图4为本公开实施例提供的显示基板的第二俯视示意图;
图5为本公开实施例提供的显示基板的第三俯视示意图;
图6为本公开实施例提供的显示基板的第四俯视示意图;
图7为本公开实施例提供的显示基板的第五俯视示意图;
图8为本公开实施例提供的显示基板的第六俯视示意图;
图9为本公开实施例提供的显示基板的部分俯视电镜图;
图10为本公开实施例提供的显示基板的部分截面电镜图;
图11为本公开实施例提供的显示基板的第七俯视示意图;
图12为本公开实施例提供的显示基板的第八俯视示意图;
图13为本公开实施例提供的显示基板的第二截面示意图;
图14为本公开实施例提供的显示基板的第三截面示意图;
图15为本公开实施例提供的显示基板的第四截面示意图;
图16为本公开实施例提供的显示基板的第五截面示意图;
图17为本公开实施例提供的显示基板的第六截面示意图;
图18为本公开实施例提供的显示基板的第七截面示意图;
图19为本公开实施例提供的显示基板的第八截面示意图;
图20为本公开实施例提供的显示基板的第九截面示意图;
图21为本公开实施例提供的显示基板的第十截面示意图;
图22为本公开实施例提供的显示基板的第十一截面示意图;
图23为本公开实施例提供的显示基板的第十二截面示意图。
具体实施方式
为了进一步说明本公开实施例提供的显示基板及其制作方法、显示装置,下面结合说明书附图进行详细描述。
在蒸镀过程中,不可避免的会产生颗粒,这些颗粒会掉落在发光功能层上,或者粘到掩膜版上。在掩膜版再次使用时,掩膜版和隔垫物接触,又会将颗粒转移到显示屏除发光功能层之外的其他结构上。
这些掉落的颗粒中,尺寸较大的颗粒极易造成信赖性风险,容易在显示屏中形成增长型暗点(GDS)。为了解决的这些问题,通常会采用自动光学检测(AOI)相机对显示屏进行拍照,以检测显示屏上的颗粒,筛选出尺寸较大的颗粒进行消除,确保显示屏的显示品质。
目前正常位置的颗粒能够通过AOI光学相机调整算法及阈值实现检出,但是在隔垫物上的颗粒在检出上存在一定的困难,导致显示屏存在较高的品质风险。
因此,亟需解决在对显示产品进行颗粒检测时,位于隔垫物上的颗粒不容易被检测出,导致显示产品存在较高的品质风险的问题。
基于上述问题的存在,经研究发现:
位于隔垫物上的颗粒不容易被检出的原因如下:
原因一:为保证较高的像素分辨率,同时降低隔垫物划伤概率,会将隔垫物的尺寸设计的较小,这样会导致隔垫物无法形成光滑平整的上表面,AOI 光学相机无法有效区分衬度。值得注意,隔垫物的尺寸较小,会使得隔垫物与其支撑的掩膜版的接触面积较小,这样能够降低隔垫物的划伤概率。
原因二:隔垫物的上表面呈现拱形分布,没有光滑平整的上表面,AOI光学相机无法有效区分衬度。
原因三:如图1所示,隔垫物PS的正下方没有能够反光的膜层,导致利用AOI镜头对隔垫物拍照时,拍出的图像为黑画面,无法区分颗粒所在位置和其他位置之间的衬度差异,从而无法识别是否存在颗粒。
请参阅图2至图8,本公开实施例提供了一种显示基板,包括:基底,多个子像素,像素界定层PDL,多个隔垫物PS和反光层(包括反光图形20);所述像素界定层PDL位于所述基底上,所述像素界定层PDL包括多个像素开口,所述像素开口所在区域为对应的子像素的有效发光区;所述多个隔垫物PS位于所述像素界定层PDL背向所述基底的一侧,所述隔垫物PS用于在显示基板的蒸镀工艺中支撑掩膜版;所述反光层位于所述隔垫物PS和所述基底之间,所述隔垫物PS在所述基底上的正投影,与所述反光层在所述基底上的正投影至少部分交叠;所述隔垫物在所述基底上的正投影与所述反光层在所述基底上的正投影至少部分不交叠。
示例性的,所述像素界定层PDL限定出多个像素开口,所述多个像素开口与所述显示基板中的多个子像素一一对应,所述像素开口为其对应的子像素的有效发光区。
示例性的,所述隔垫物PS位于所述像素界定层PDL背向所述基底的表面。所述隔垫物PS与所述像素界定层PDL形成为一体结构。所述隔垫物PS能够与所述像素界定层PDL通过一次构图工艺同时形成。
示例性的,所述隔垫物PS的顶部设置为拱形凸起,蒸镀工艺时使拱形凸起的最高处与掩膜版接触,起到对掩膜版的支撑作用。将所述隔垫物PS的顶部设置为拱形凸起,能够更好的避免掩膜版和蒸镀材料刮伤隔垫物PS。
示例性的,所述反光层位于所述像素界定层PDL和所述基底之间。
示例性的,所述隔垫物PS在所述基底上的正投影,与所述反光层在所述基底上的正投影部分交叠。
示例性的,所述隔垫物PS在所述基底上的正投影,与所述反光层在所述 基底上的正投影重叠。
示例性的,所述隔垫物PS在所述基底上的正投影,被所述反光层在所述基底上的正投影包围。
示例性的,所述反光层位于所述像素界定层PDL和所述基底之间。AOI光学镜头拍照时发出的光线从隔垫物PS背向所述基底的一侧照射所述隔垫物PS,光线穿过所述隔垫物PS和位于隔垫物PS下方的像素界定层PDL射向反光层。反光层能够将射入的光线反射回AOI光学镜头。
根据上述显示基板的具体结构可知,本公开实施例提供的显示基板中,通过在所述像素界定层PDL和所述基底之间设置反光层,并设置所述隔垫物PS在所述基底上的正投影,与所述反光层在所述基底上的正投影至少部分交叠;使得在对所述显示基板的膜层进行异物检出时,AOI光学镜头拍照时发出的光线在经过隔垫物PS后,能够被隔垫物PS与基底之间的反光层反射回AOI光学镜头,有效提升了AOI光学镜头对隔垫物PS的拍照效果,根据该AOI光学镜头拍摄的隔垫物PS的图像能够很好的识别出隔垫物PS上是否有颗粒。
因此,本公开实施例提供的显示基板中,能够在保证较高的像素分辨率,较低的隔垫物PS划伤概率,以及隔垫物PS设计和制作工艺均不变的情况下,有效提升对隔垫物PS上方的颗粒或其他异物的检出率,能够将异物检出率提升至接近100%,更好的确保了显示基板的品质。
如图15至图18所示,在一些实施例中,设置所述反光层包括至少一个向远离所述基板的方向突出的凸起。
如图15和图17所示,示例性的,所述凸起在垂直于所述基底的方向上的截面可以为三角形,也可以为半圆形,也可以为圆形的一部分。当所述凸起为圆形的一部分时,所述凸起在垂直于所述基底的方向上的高度大于或者小于圆形的半径。
如图16和图18所示,示例性的,所述反光层包括多个所述凸起。
上述设置方式能够增加反射光的范围,提高识别率。
在一些实施例中,所述反光层包括如下一种或多种结构:
如图20所示,第一种结构,所述反光层20包括沿远离所述基底的方向依次层叠设置的第一透光层201,中间反光层202和第二透光层203;示例性 的,所述第一种结构中第一透光层201,中间反光层202和第二透光层203,与阳极图形30中相应膜层同材料设置。示例性的,阳极图形30包括层叠设置的ITO/Ag/ITO。第一透光层201和第二透光层203采用ITO(氧化铟锡)制作,中间反光层202采用Ag(金属银)制作。
如图21所示,第二种结构,所述反光层20包括沿远离所述基底的方向依次层叠设置的第三透光层204和顶反光层205;
如图22所示,第三种结构,所述反光层20包括沿远离所述基底的方向依次层叠设置的底反光层206和第四透光层207;
如图23所示,第四种结构,所述反光层20包括单层反射膜层。
如图19所示,在一些实施例中,所述反光层20包括非金属材料,所述反光层20位于所述隔垫物PS和所述像素界定层PDL之间。
请参阅图2至图8,在一些实施例中,设置所述隔垫物PS在所述基底上的正投影,位于所述反光层在所述基底上的正投影的内部。
示例性的,所述隔垫物PS在所述基底上的正投影,与所述反光层的至少部分在所述基底上的正投影重合。
上述设置方式使得在对所述显示基板的膜层进行异物检出时,AOI光学镜头拍照时发出的光线在经过隔垫物PS后,能够更好的被隔垫物PS与基底之间的反光层反射回AOI光学镜头,从而更有效的提升了AOI光学镜头对隔垫物PS的拍照效果,根据该AOI光学镜头拍摄的隔垫物PS的图像能够更好的识别出隔垫物PS上是否有颗粒。
请参阅图2至图8,在一些实施例中,所述反光层包括多个反光图形20;所述隔垫物PS在所述基底上的正投影,位于对应的反光图形20在所述基底上的正投影的内部。
示例性的,所述多个反光图形20相互独立;或者,所述多个反光图形20形成为一体结构。
示例性的,所述多个隔垫物PS与至少部分所述反光图形20一一对应,所述隔垫物PS在所述基底上的正投影,位于对应的反光图形20在所述基底上的正投影的内部。
示例性的,所述隔垫物PS在所述基底上的正投影,与对应的反光图形 20在所述基底上的正投影重合。
示例性的,所述隔垫物PS在所述基底上的正投影,被对应的反光图形20在所述基底上的正投影包围。
上述设置方式使得在对所述显示基板的膜层进行异物检出时,AOI光学镜头拍照时发出的光线在经过隔垫物PS后,能够更好的被隔垫物PS与基底之间的反光层反射回AOI光学镜头,从而更有效的提升了AOI光学镜头对隔垫物PS的拍照效果,根据该AOI光学镜头拍摄的隔垫物PS的图像能够更好的识别出隔垫物PS上是否有颗粒。
如图9和图10所示,在一些实施例中,所述反光图形20为长条形,设置所述反光图形20在所述基底上的正投影沿第一方向的最大长度L满足:16微米≤L≤20微米,所述反光图形在所述基底上的正投影沿第二方向的最大宽度d满足:11微米≤d≤15微米,第一方向为长条形的长度方向,第二方向为长条形的宽度方向,所述第一方向与所述第二方向相交。
需要说明,图9和图10中的箭头所指均为隔垫物PS。
示例性的,所述第一方向与所述第二方向垂直。示例性的,所述第一方向包括横向,所述第二方向包括纵向。
示例性的,所述反光图形20在所述基底上的正投影包括条状图形,所述第一方向为条状图形的长边的延伸方向,所述第二方向为条状图形的短边的延伸方向。
上述设置方式使得所述反光图形20在所述基底上的正投影的尺寸,能够大于小尺寸的隔垫物PS在所述基底上的正投影的尺寸,这样在对所述显示基板的膜层进行异物检出时,AOI光学镜头拍照时发出的光线在经过隔垫物PS后,能够更好的被隔垫物PS与基底之间的反光层反射回AOI光学镜头,从而更有效的提升了AOI光学镜头对隔垫物PS的拍照效果,根据该AOI光学镜头拍摄的隔垫物PS的图像能够更好的识别出隔垫物PS上是否有颗粒。
在一些实施例中,所述反光图形20在所述基底上的正投影满足如下尺寸中的任意一种或多种:
d=11微米,L=16微米;
d=12微米,L=17微米;
d=13微米,L=18微米;
d=14微米,L=19微米;
d=15微米,L=20微米。
上述设置方式使得所述反光图形20在所述基底上的正投影的尺寸,能够大于小尺寸的隔垫物PS在所述基底上的正投影的尺寸,这样在对所述显示基板的膜层进行异物检出时,AOI光学镜头拍照时发出的光线在经过隔垫物PS后,能够更好的被隔垫物PS与基底之间的反光层反射回AOI光学镜头,从而更有效的提升了AOI光学镜头对隔垫物PS的拍照效果,根据该AOI光学镜头拍摄的隔垫物PS的图像能够更好的识别出隔垫物PS上是否有颗粒。
请参阅图2至图8,在一些实施例中,所述隔垫物PS的在所述基底上的正投影沿所述第一方向的最大长度小于或等于15微米,所述隔垫物PS的在所述基底上的正投影沿所述第二方向的最大宽度小于或等于10微米。
示例性的,所述隔垫物PS在垂直于所述基底的方向上的高度为1微米。
将所述隔垫物PS设置为上述尺寸,能够保证较高的像素分辨率,同时能够降低隔垫物PS划伤概率。
而且,上述设置方式使得所述隔垫物PS在所述基底上的正投影的尺寸,小于所述反光图形20在所述基底上的正投影的尺寸,这样在对所述显示基板的膜层进行异物检出时,AOI光学镜头拍照时发出的光线在经过隔垫物PS后,能够更好的被隔垫物PS与基底之间的反光层反射回AOI光学镜头,从而更有效的提升了AOI光学镜头对隔垫物PS的拍照效果,根据该AOI光学镜头拍摄的隔垫物PS的图像能够更好的识别出隔垫物PS上是否有颗粒。
请参阅图2至图8,在一些实施例中,所述显示基板还包括阳极层(包括阳极图形30),所述反光层与所述阳极层同层设置。
示例性的,所述阳极层包括多个相互独立的阳极图形30,相邻的阳极图形30之间具有一定的间隙。所述发光层的至少部分位于该间隙中。
由于相邻的所述阳极图形30之间具有较大的空间,将所述反光层与所述阳极层同层设置,不仅能够避免所述反光层与显示基板中的其他导电结构之间发生短路,还能够降低所述反光层的布局难度。
而且,将所述反光层与所述阳极层同层设置,使得所述反光层与所述隔 垫物PS之间仅包括像素界定层PDL,光线穿过像素界定层PDL后,可以直接射入所述反光层,最大限度的降低了光线的损失,提升了AOI光学镜头对隔垫物PS的拍照效果。
在一些实施例中,所述反光图形20采用反光非金属材料制作。
请参阅图2至图8,在一些实施例中,所述反光图形20采用反光金属材料制作;或者,所述反光图形20与所述阳极图形30采用相同材料制作。
上述采用反光金属材料制作反光图形20,或者采用与阳极图形30相同的材料制作反光层,均能够很好的保证反光层的反光效果。
上述将所述反光图形20与所述阳极图形30同层同材料设置,使得所述反光图形20能够与所述阳极图形30在同一次构图工艺中同时形成,有利于简化显示基板的制作工艺流程,降低显示基板的制作成本。
请参阅图2至图8,在一些实施例中,所述阳极层包括多个相互独立的阳极图形30,所述阳极图形30与所述反光图形20相互独立。
示例性的,所述阳极图形30与所述反光图形20相互绝缘。
上述设置所述阳极图形30与所述反光图形20相互独立,避免了所述反光图形20对所述阳极图形30的信号产生影响。
如图11所示,在一些实施例中,所述显示基板还包括位于所述多个隔垫物PS背向所述基底的一侧的阴极层60;所述反光层形成为网格状结构,所述反光层与所述阴极层60耦接。
示例性的,所述反光层形成为网格状结构,至少部分所述阳极图形30位于所述网格状结构包括的网格中,至少部分所述阳极图形30被所述网格状结构包围。
上述设置所述反光层与所述阴极层60耦接,使得所述反光层具有稳定的电位,从而更好的保证了显示基板的工作稳定性。
如图12所示,在一些实施例中,设置所述阳极层包括多个相互独立的阳极图形30,至少部分所述反光图形20与其相邻的一个阳极图形30形成为一体结构。
上述设置方式使得所述反光图形20能够具有与阳极图形30相同的电位,不会处于浮接状态,有利于显示基板的工作稳定性。
在一些实施例中,所述显示基板包括多个子像素;与所述反光图形20形成为一体结构的阳极图形30对应的子像素的发光颜色相同。
示例性的,上述显示基板包括多个子像素,上述多个子像素包括至少三种不同颜色的子像素。示例性的,上述多个子像素包括多个红色子像素,多个绿色子像素和多个蓝色子像素。所述红色子像素对应的阳极图形30的形状大致相同。所述绿色子像素对应的阳极图形30的形状大致相同。所述蓝色子像素对应的阳极图形30的形状大致相同。
上述设置与所述反光图形20形成为一体结构的阳极图形30对应的子像素的发光颜色相同,不仅使得所述反光图形20能够具有与阳极图形30相同的电位,不会处于浮接状态,有利于显示基板的工作稳定性;而且保证了显示基板中相同颜色的子像素对应的阳极图形30的均一性,从而很好的保证了显示基板的显示品质。
如图14所示,在一些实施例中,所述显示基板还包括:
第二平坦层10,所述第二平坦层10的至少部分位于所述像素界定层PDL和所述基底70之间;
第二源漏金属层SD2,所述第二源漏金属层SD2位于所述第二平坦层10与所述基底70之间;所述反光图形20与所述第二源漏金属层SD2同层同材料设置。
示例性的,所述显示基板包括沿远离所述基底70的方向依次层叠设置的缓冲层Buf,有源层Poly,第一栅极绝缘层GI1,第一栅金属层Gat1,第二栅极绝缘层GI2,第二栅金属层Gat2,层间绝缘层ILD,第一源漏金属层SD1,第一钝化层PVX1,第一平坦层PLN1,第二源漏金属层SD2,第二钝化层PVX2,第二平坦层10,阳极层(包括阳极图形30),像素界定层PDL,发光功能层EL,阴极层60,封装结构。示例性的,所述显示基板也可以不包括所述第一钝化层PVX1和/或所述第二钝化层PVX2。
示例性的,所述子像素包括子像素驱动电路,所述子像素驱动电路包括多个晶体管和存储电容,所述子像素驱动电路用于为对应的阳极图形30提供驱动信号。
示例性的,所述有源层至所述第一源漏金属层用于形成所述子像素驱动 电路。所述第一源漏金属层和所述第二源漏金属层用于形成显示基板中的一些信号线和导电连接部。
上述将所述反光图形20与所述第二源漏金属层同层同材料设置,能够通过同一次构图工艺同时形成所述反光层和所述显示基板中的第二源漏金属层,避免了增加额外的专门用于制作反光层的构图工艺,有效简化了显示基板的制作流程,降低了显示基板的制作成本。
如图13所示,在一些实施例中,所述显示基板还包括:
第二平坦层10,所述第二平坦层10的至少部分位于所述像素界定层PDL和所述基底70之间;
第一平坦层PLN1,所述第一平坦层PLN1位于所述第二平坦层10和所述基底70之间;
第一源漏金属层SD1,所述第一源漏金属层SD1位于所述第一平坦层PLN1与所述基底70之间;所述反光图形20与所述第一源漏金属层SD1同层同材料设置。
上述将所述反光图形20与所述第一源漏金属层SD1同层同材料设置,能够通过同一次构图工艺同时形成所述反光层和所述显示基板中的第一源漏金属层SD1,避免了增加额外的专门用于制作反光层的构图工艺,有效简化了显示基板的制作流程,降低了显示基板的制作成本。
在一些实施例中,所述显示基板还包括:
阳极层,所述阳极层位于所述像素界定层PDL与所述基底之间;
像素电路阵列层,所述像素电路阵列层的至少部分位于所述阳极层与所述基底之间;
发光功能层,所述发光功能层的至少部分位于所述多个隔垫物PS背向所述基底的一侧;
阴极层,所述阴极层位于所述发光功能层背向所述基底的一侧;
封装层,所述封装层位于所述阴极层背向所述基底的一侧。
示例性的,所述像素电路阵列层包括呈阵列分布的多个子像素驱动电路。
示例性的,所述发光功能层包括层叠设置的电子注入层,电子传输层,有机发光材料层,空穴传输层和空穴注入层。
示例性的,所述封装层包括层叠设置的第一无机封装层,有机封装层和第二无机封装层。
本公开实施例还提供了一种显示装置,包括上述实施例提供的显示基板。
需要说明的是,所述显示装置可以为:电视、显示器、数码相框、手机、平板电脑等任何具有显示功能的产品或部件,其中,所述显示装置还包括柔性电路板、印刷电路板和背板等。
由于上述实施例提供的显示基板中,通过在所述像素界定层PDL和所述基底之间设置反光层,并设置所述隔垫物PS在所述基底上的正投影,与所述反光层在所述基底上的正投影至少部分交叠;使得在对所述显示基板的膜层进行异物检出时,AOI光学镜头拍照时发出的光线在经过隔垫物PS后,能够被隔垫物PS与基底之间的反光层反射回AOI光学镜头,有效提升了AOI光学镜头对隔垫物PS的拍照效果,根据该AOI光学镜头拍摄的隔垫物PS的图像能够很好的识别出隔垫物PS上是否有颗粒。因此,上述实施例提供的显示基板中,能够在保证较高的像素分辨率,较低的隔垫物PS划伤概率,以及隔垫物PS设计和制作工艺均不变的情况下,有效提升对隔垫物PS上方的颗粒或其他异物的检出率,能够将异物检出率提升至接近100%,更好的确保了显示基板的品质。
因此,本公开实施例提供的显示装置在包括上述显示基板时,同样具有上述有益效果,此处不再赘述。
本公开实施例还提供了一种显示基板的制作方法,用于制作上述实施例提供的显示基板,所述显示基板包括基底和多个子像素,所述制作方法包括:
在基底上制作反光层和像素界定层;所述像素界定层包括多个开口,所述开口所在区域为对应的子像素的有效发光区;
在所述反光层背向所述基底的一侧制作多个隔垫物PS,所述多个隔垫物PS位于所述像素界定层PDL背向所述基底的一侧;所述隔垫物用于在显示基板的蒸镀工艺中支撑掩膜版;所述隔垫物PS在所述基底上的正投影,与所述反光层在所述基底上的正投影至少部分交叠;所述隔垫物在所述基底上的正投影与所述反光层在所述基底上的正投影至少部分不交叠。
采用本公开实施例提供的制作方法制作的显示基板中,通过在所述像素 界定层PDL和所述基底之间设置反光层,并设置所述隔垫物PS在所述基底上的正投影,与所述反光层在所述基底上的正投影至少部分交叠;使得在对所述显示基板的膜层进行异物检出时,AOI光学镜头拍照时发出的光线在经过隔垫物PS后,能够被隔垫物PS与基底之间的反光层反射回AOI光学镜头,有效提升了AOI光学镜头对隔垫物PS的拍照效果,根据该AOI光学镜头拍摄的隔垫物PS的图像能够很好的识别出隔垫物PS上是否有颗粒。因此,采用本公开实施例提供的制作方法制作的显示基板中,能够在保证较高的像素分辨率,较低的隔垫物PS划伤概率,以及隔垫物PS设计和制作工艺均不变的情况下,有效提升对隔垫物PS上方的颗粒或其他异物的检出率,能够将异物检出率提升至接近100%,更好的确保了显示基板的品质。
在一些实施例中,所述在基底上制作反光层的步骤具体包括:
通过同一次构图工艺,同时形成所述反光层和所述显示基板中的阳极层。
上述通过同一次构图工艺同时形成所述反光层和所述显示基板中的阳极层,避免了增加额外的专门用于制作反光层的构图工艺,有效简化了显示基板的制作流程,降低了显示基板的制作成本。
在一些实施例中,所述在基底上制作反光层的步骤具体包括:
通过同一次构图工艺,同时形成所述反光层和所述显示基板中的第二源漏金属层。
上述通过同一次构图工艺同时形成所述反光层和所述显示基板中的第二源漏金属层,避免了增加额外的专门用于制作反光层的构图工艺,有效简化了显示基板的制作流程,降低了显示基板的制作成本。
在一些实施例中,所述在基底上制作反光层的步骤具体包括:
通过同一次构图工艺,同时形成所述反光层和所述显示基板中的第一源漏金属层。
上述通过同一次构图工艺同时形成所述反光层和所述显示基板中的第一源漏金属层,避免了增加额外的专门用于制作反光层的构图工艺,有效简化了显示基板的制作流程,降低了显示基板的制作成本。
需要说明的是,本公开实施例的“同层”可以指的是处于相同结构层上的膜层。或者例如,处于同层的膜层可以是采用同一成膜工艺形成用于形成 特定图形的膜层,然后利用同一掩模板通过一次构图工艺对该膜层图案化所形成的层结构。根据特定图形的不同,一次构图工艺可能包括多次曝光、显影或刻蚀工艺,而形成的层结构中的特定图形可以是连续的也可以是不连续的。这些特定图形还可能处于不同的高度或者具有不同的厚度。
在本公开各方法实施例中,所述各步骤的序号并不能用于限定各步骤的先后顺序,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,对各步骤的先后变化也在本公开的保护范围之内。
需要说明,本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于方法实施例而言,由于其基本相似于产品实施例,所以描述得比较简单,相关之处参见产品实施例的部分说明即可。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”、“耦接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
可以理解,当诸如层、膜、区域或基板之类的元件被称作位于另一元件“上”或“下”时,该元件可以“直接”位于另一元件“上”或“下”,或者可以存在中间元件。
在上述实施方式的描述中,具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (21)

  1. 一种显示基板,包括:
    基底和多个子像素;
    像素界定层,所述像素界定层位于所述基底上,所述像素界定层包括多个像素开口,所述像素开口所在区域为对应的子像素的有效发光区;
    多个隔垫物,所述多个隔垫物位于所述像素界定层背向所述基底的一侧,所述隔垫物用于在显示基板的蒸镀工艺中支撑掩膜版;
    反光层,所述反光层位于所述隔垫物和所述基底之间,所述隔垫物在所述基底上的正投影,与所述反光层在所述基底上的正投影至少部分交叠;所述隔垫物在所述基底上的正投影与所述反光层在所述基底上的正投影至少部分不交叠。
  2. 根据权利要求1所述的显示基板,其中,所述反光层包括至少一个向远离所述基板的方向突出的凸起。
  3. 根据权利要求1所述的显示基板,其中,所述反光层包括如下一种或多种结构:
    第一种结构,所述反光层包括沿远离所述基底的方向依次层叠设置的第一透光层,中间反光层和第二透光层;
    第二种结构,所述反光层包括沿远离所述基底的方向依次层叠设置的第三透光层和顶反光层;
    第三种结构,所述反光层包括沿远离所述基底的方向依次层叠设置的底反光层和第四透光层;
    第四种结构,所述反光层包括单层反射膜层。
  4. 根据权利要求1所述的显示基板,其中,所述反光层包括非金属材料,所述反光层位于所述隔垫物和所述像素界定层之间。
  5. 根据权利要求1所述的显示基板,其中,所述反光层包括多个反光图形;所述隔垫物在所述基底上的正投影,位于对应的反光图形在所述基底上的正投影的内部。
  6. 根据权利要求5所述的显示基板,其中,所述反光图形为长条形,所 述反光图形在所述基底上的正投影沿第一方向的最大长度L满足:16微米≤L≤20微米,所述反光图形在所述基底上的正投影沿第二方向的最大宽度d满足:11微米≤d≤15微米,第一方向为长条形的长度方向,第二方向为长条形的宽度方向。
  7. 根据权利要求6所述的显示基板,其中,所述反光图形在所述基底上的正投影满足如下尺寸中的任意一种或多种:
    d=11微米,L=16微米;
    d=12微米,L=17微米;
    d=13微米,L=18微米;
    d=14微米,L=19微米;
    d=15微米,L=20微米。
  8. 根据权利要求6所述的显示基板,其中,所述隔垫物的在所述基底上的正投影沿所述第一方向的最大长度小于或等于15微米,所述隔垫物的在所述基底上的正投影沿所述第二方向的最大宽度小于或等于10微米。
  9. 根据权利要求5所述的显示基板,其中,所述显示基板还包括阳极层,所述反光层与所述阳极层同层设置。
  10. 根据权利要求9所述的显示基板,其中,所述反光图形采用反光非金属材料制作;或者,所述反光图形与所述阳极图形采用相同材料制作。
  11. 根据权利要求9所述的显示基板,其中,所述阳极层包括多个相互独立的阳极图形,所述阳极图形与所述反光图形相互独立。
  12. 根据权利要求9所述的显示基板,其中,所述显示基板还包括位于所述多个隔垫物背向所述基底的一侧的阴极层;所述反光层形成为网格状结构,所述反光层与所述阴极层耦接。
  13. 根据权利要求9所述的显示基板,其中,所述阳极层包括多个相互独立的阳极图形,至少部分所述反光图形与其相邻的一个阳极图形形成为一体结构。
  14. 根据权利要求13所述的显示基板,其中,所述显示基板包括多个子像素;与所述反光图形形成为一体结构的阳极图形对应的子像素的发光颜色相同。
  15. 根据权利要求5所述的显示基板,其中,所述显示基板还包括:
    第二平坦层,所述第二平坦层的至少部分位于所述像素界定层和所述基底之间;
    第二源漏金属层,所述第二源漏金属层位于所述第二平坦层与所述基底之间;所述反光图形与所述第二源漏金属层同层同材料设置。
  16. 根据权利要求5所述的显示基板,其中,所述显示基板还包括:
    第二平坦层,所述第二平坦层的至少部分位于所述像素界定层和所述基底之间;
    第一平坦层,所述第一平坦层位于所述第二平坦层和所述基底之间;
    第一源漏金属层,所述第一源漏金属层位于所述第一平坦层与所述基底之间;所述反光图形与所述第一源漏金属层同层同材料设置。
  17. 一种显示装置,包括如权利要求1至16中任一项所述的显示基板。
  18. 一种显示基板的制作方法,用于制作如权利要求1至16中任一项所述的显示基板,所述显示基板包括基底和多个子像素,所述制作方法包括:
    在基底上制作反光层和像素界定层;所述像素界定层包括多个开口,所述开口所在区域为对应的子像素的有效发光区;
    在所述反光层背向所述基底的一侧制作多个隔垫物,所述多个隔垫物位于所述像素界定层背向所述基底的一侧;所述隔垫物用于在显示基板的蒸镀工艺中支撑掩膜版;
    所述隔垫物在所述基底上的正投影,与所述反光层在所述基底上的正投影至少部分交叠;所述隔垫物在所述基底上的正投影与所述反光层在所述基底上的正投影至少部分不交叠。
  19. 根据权利要求18所述的显示基板的制作方法,其中,所述在基底上制作反光层的步骤具体包括:
    通过同一次构图工艺,同时形成所述反光层和所述显示基板中的阳极层。
  20. 根据权利要求18所述的显示基板的制作方法,其中,所述在基底上制作反光层的步骤具体包括:
    通过同一次构图工艺,同时形成所述反光层和所述显示基板中的第二源漏金属层。
  21. 根据权利要求18所述的显示基板的制作方法,其中,所述在基底上制作反光层的步骤具体包括:
    通过同一次构图工艺,同时形成所述反光层和所述显示基板中的第一源漏金属层。
PCT/CN2021/134166 2021-11-29 2021-11-29 显示基板及其制作方法、显示装置 WO2023092606A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2021/134166 WO2023092606A1 (zh) 2021-11-29 2021-11-29 显示基板及其制作方法、显示装置
CN202180003662.2A CN116548090A (zh) 2021-11-29 2021-11-29 显示基板及其制作方法、显示装置
US17/918,256 US20240090293A1 (en) 2021-11-29 2021-11-29 Display substrate, manufacturing method thereof and display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/134166 WO2023092606A1 (zh) 2021-11-29 2021-11-29 显示基板及其制作方法、显示装置

Publications (1)

Publication Number Publication Date
WO2023092606A1 true WO2023092606A1 (zh) 2023-06-01

Family

ID=86538788

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/134166 WO2023092606A1 (zh) 2021-11-29 2021-11-29 显示基板及其制作方法、显示装置

Country Status (3)

Country Link
US (1) US20240090293A1 (zh)
CN (1) CN116548090A (zh)
WO (1) WO2023092606A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105826357A (zh) * 2016-05-16 2016-08-03 京东方科技集团股份有限公司 一种显示基板及oled显示装置
KR20170128741A (ko) * 2016-05-13 2017-11-23 엘지디스플레이 주식회사 플렉서블 유기전계발광표시 장치
CN108470845A (zh) * 2018-04-09 2018-08-31 京东方科技集团股份有限公司 一种oled发光器件及其制备方法、显示装置
CN109728183A (zh) * 2017-10-31 2019-05-07 乐金显示有限公司 有机发光二极管显示设备
CN111952335A (zh) * 2019-05-17 2020-11-17 乐金显示有限公司 发光显示装置
CN113658988A (zh) * 2021-08-17 2021-11-16 京东方科技集团股份有限公司 显示面板及其制作方法、显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170128741A (ko) * 2016-05-13 2017-11-23 엘지디스플레이 주식회사 플렉서블 유기전계발광표시 장치
CN105826357A (zh) * 2016-05-16 2016-08-03 京东方科技集团股份有限公司 一种显示基板及oled显示装置
CN109728183A (zh) * 2017-10-31 2019-05-07 乐金显示有限公司 有机发光二极管显示设备
CN108470845A (zh) * 2018-04-09 2018-08-31 京东方科技集团股份有限公司 一种oled发光器件及其制备方法、显示装置
CN111952335A (zh) * 2019-05-17 2020-11-17 乐金显示有限公司 发光显示装置
CN113658988A (zh) * 2021-08-17 2021-11-16 京东方科技集团股份有限公司 显示面板及其制作方法、显示装置

Also Published As

Publication number Publication date
US20240090293A1 (en) 2024-03-14
CN116548090A (zh) 2023-08-04

Similar Documents

Publication Publication Date Title
US20220123094A1 (en) Display substrate and display device
CN109065582B (zh) 一种阵列基板及显示面板、显示装置
US9761641B2 (en) Color filter substrate and method for manufacturing the same, OLED display panel and display apparatus
US20220029125A1 (en) Light-transmitting display panel, display panel, and display device
KR20220053677A (ko) 화소 배열 최적화 방법, 투광 표시 패널 및 표시 패널
US20220352292A1 (en) Display substrate and display device
US20220310721A1 (en) Display panel, manufacturing method thereof and display device
US10522602B1 (en) Organic light-emitting display panel and display device
CN112186019B (zh) 显示面板及显示装置
WO2021134985A1 (zh) 显示面板以及显示装置
CN109461838B (zh) 一种显示基板及其制备方法、显示面板和显示装置
US11257868B2 (en) Display substrate, fabricating method thereof and display device
US11737304B2 (en) Display substrates, display panels and display devices
US20240023398A1 (en) Display panel and display apparatus
US20240016015A1 (en) Display panel and display apparatus
US20210343805A1 (en) Array substrate, display device, and method for fabricating an array substrate
WO2021035545A1 (zh) 显示基板、显示面板及显示基板的制备方法
WO2021104050A1 (zh) 显示基板、显示面板及显示装置
US20230337494A1 (en) Display panel and display apparatus
US11569270B2 (en) Drive backboard, manufacturing method thereof, display panel and display device
WO2022247180A1 (zh) 显示面板及显示装置
WO2024017343A1 (zh) 显示面板及其制作方法、显示装置
WO2023092606A1 (zh) 显示基板及其制作方法、显示装置
CN112310328B (zh) 一种发光面板及发光装置
US11930665B2 (en) Display substrate and manufacturing method thereof, and display apparatus

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202180003662.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 17918256

Country of ref document: US