WO2023092518A1 - 介质滤波器和通信设备 - Google Patents

介质滤波器和通信设备 Download PDF

Info

Publication number
WO2023092518A1
WO2023092518A1 PCT/CN2021/133770 CN2021133770W WO2023092518A1 WO 2023092518 A1 WO2023092518 A1 WO 2023092518A1 CN 2021133770 W CN2021133770 W CN 2021133770W WO 2023092518 A1 WO2023092518 A1 WO 2023092518A1
Authority
WO
WIPO (PCT)
Prior art keywords
groove
dielectric filter
grounding
blind hole
dielectric
Prior art date
Application number
PCT/CN2021/133770
Other languages
English (en)
French (fr)
Inventor
冒晨阳
高艳艳
范功书
杨赫
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN202180104292.1A priority Critical patent/CN118235293A/zh
Priority to EP21965251.8A priority patent/EP4429015A1/en
Priority to PCT/CN2021/133770 priority patent/WO2023092518A1/zh
Publication of WO2023092518A1 publication Critical patent/WO2023092518A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/205Comb or interdigital filters; Cascaded coaxial cavities
    • H01P1/2056Comb filters or interdigital filters with metallised resonator holes in a dielectric block
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering

Definitions

  • the present application relates to the technical field of communication, and in particular to a dielectric filter and communication equipment.
  • Dielectric filters are widely used in wireless communication equipment, such as base stations, satellite communications, navigation systems, electronic countermeasures, and other systems, due to their low insertion loss, small size, and light weight.
  • the dielectric filter is generally placed on a printed circuit board (printed circuit board, PCB), and the PCB and the dielectric body are connected by soldering. Due to the different thermal expansion coefficients between the dielectric body and the PCB, long-term temperature cycle changes will cause cracks in the solder joints between the ceramic dielectric and the PCB, affecting filter performance.
  • PCB printed circuit board
  • the present application provides a dielectric filter and communication equipment, aiming to solve the problem of cracking of solder joints between ceramic dielectric and PCB.
  • a dielectric filter including: a dielectric body; a signal input and output structure, including a metal piece and a blind hole arranged on the dielectric body, the metal piece is inserted into the blind hole, and the metal piece is inserted into the blind hole Parts are elastically deformable.
  • the metal parts in the signal input and output structure are inserted into the blind holes in the dielectric body, and the part of the metal parts inserted into the blind holes can be elastically deformed, so that not only electrical connection and signal transmission can be realized, but also thermal expansion and cooling can be improved. Shrink tolerance.
  • the dielectric body is welded on the PCB. Due to the difference in thermal expansion coefficients between the dielectric body and the PCB, long-term temperature cycle experiments may cause cracks at the solder joint between the dielectric body and the PCB. Based on the embodiments provided in this application, the signal input and output structure is welded on the PCB because it performs signal input and/or output.
  • the part of the metal part inserted into the blind hole in the signal input and output structure can be elastically deformed, so that the deformation of the metal part can absorb the relative movement between the metal part and the PCB that may be caused by the different thermal expansion coefficients of the metal part and the PCB, reducing the The deformation of the solder joint position mismatch between the metal part and the PCB reduces the probability of cracking of the solder joint between the metal part and the PCB, and improves the overall reliability of the dielectric filter.
  • the signal input and output structure includes: a signal input structure and/or a signal output structure. That is, the signal input and output structure can be used for signal input and/or signal output.
  • the metal part in the signal input structure is inserted into the blind hole in the medium body, and the part of the metal part inserted into the blind hole can be elastically deformed.
  • the metal piece in the signal output structure is inserted into the blind hole in the medium body, and the part of the metal piece inserted into the blind hole can be elastically deformed.
  • the surface of the metal part away from the blind hole is flush with the surface of the medium body.
  • the surface of the metal part away from the blind hole is flush with the surface of the dielectric body, so that not only can the metal part be welded on the PCB, but also the size of the metal part can be reduced, and the manufacturing cost of the metal part can be reduced.
  • the surface of the metal part away from the blind hole is higher than the surface of the dielectric body.
  • the surface of the metal part away from the blind hole is higher than the surface of the dielectric body, so that the metal part can be welded on the PCB, and when the dielectric body and the PCB are welded, because the surface of the metal part is higher than the surface of the dielectric body, so Metal parts can be easily soldered on the PCB.
  • the metal piece further includes a limiting structure, and the limiting structure is used to limit the depth at which the metal piece is inserted into the blind hole.
  • the position-limiting structure is a stepped structure.
  • the structure of the metal part is designed as a stepped structure, and the position-limiting function can be realized through the structure of the metal part itself.
  • grooves or holes are provided on the part of the metal part inserted into the blind hole.
  • the metal part is inserted into the part of the opening of the blind hole, that is, the end of the metal part that matches the blind hole is opened, such as a groove or hole is opened at the end of the metal part that matches the blind hole, so that the metal part can be realized through the groove or hole.
  • the elastic deformation of the parts absorbs the relative movement between the metal parts and the PCB that may be caused by the different thermal expansion coefficients, and reduces the deformation of the solder joint position mismatch between the metal parts and the PCB, which in turn can reduce cracking.
  • the open end of the metal part can be deformed outward to adapt to the thermal expansion of the metal part and prevent the solder joint between the metal part and the PCB from cracking; if the metal part shrinks coldly, the metal part will The open end of the metal part can be deformed inwards to adapt to the cold shrinkage of the metal part and prevent the solder joint between the metal part and the PCB from cracking.
  • the outer diameter of the part where the metal part is inserted into the blind hole is larger than the diameter of the blind hole.
  • the outer diameter of the part where the metal part is inserted into the blind hole can be larger than the diameter of the blind hole, that is, the connection between the metal part and the blind hole can be realized by an interference fit, so that after the metal part is inserted into the blind hole, it can prevent the metal pieces fall off.
  • the metal part is interference inserted into the blind hole.
  • the dielectric filter further includes a ground structure, the ground structure is inserted into a groove provided on the dielectric body, and the part of the ground structure inserted into the groove is elastically deformable.
  • the dielectric filter includes a grounding structure, and the grounding structure is inserted into the slot in the dielectric body, and the part where the grounding structure is inserted into the slot can be elastically deformed, thereby improving the tolerance of thermal expansion and contraction.
  • the dielectric body is welded on the PCB. Due to the different thermal expansion coefficients between the dielectric body and the PCB, long-term temperature cycle experiments may cause solder joints (such as ground solder joints) between the dielectric body and the PCB. ) cracked.
  • a grounding structure is provided. The grounding structure is welded on the PCB.
  • the deformation of the grounding structure can absorb the thermal expansion coefficient of the grounding structure and the PCB.
  • the relative movement between the grounding structure and the PCB that may be caused by the difference reduces the deformation of the solder joint position mismatch between the grounding structure and the PCB, reduces the probability of cracking of the solder joints between the grounding structure and the PCB, and improves the dielectric filter overall reliability.
  • the ground structure fully surrounds or half surrounds the periphery of the signal input and output structure.
  • the surface of the grounding structure away from the groove is flush with the surface of the dielectric body.
  • the surface of the grounding structure away from the groove is flush with the surface of the dielectric body, which not only realizes the welding of the grounding structure on the PCB, but also reduces the size of the grounding structure and reduces the manufacturing cost of the grounding structure.
  • the surface of the ground structure away from the groove is higher than the surface of the dielectric body.
  • the surface of the grounding structure away from the groove is higher than the surface of the dielectric body, so that the grounding structure can be welded on the PCB, and when the dielectric body and the PCB are welded, since the surface of the grounding structure is higher than the surface of the dielectric body, the grounding The structure can be easily soldered on the PCB.
  • grooves or holes are provided on the part where the grounding structure is inserted into the groove.
  • the part of the opening where the grounding structure is inserted into the groove that is, the opening at the end where the grounding structure matches the groove, for example, a groove or hole is opened at the end where the grounding structure matches with the groove, so that the elasticity of the grounding structure can be realized through the groove or hole
  • elastic deformation absorbs the relative movement between the grounding structure and the PCB that may be caused by the different thermal expansion coefficients, and reduces the deformation of the solder joint position mismatch between the grounding structure and the PCB, thereby reducing cracking.
  • the open end of the ground structure can be deformed outward to adapt to the thermal expansion of the ground structure and prevent cracking of the solder joints between the ground structure and the PCB; if the ground structure shrinks, the ground structure The open end can be deformed inward to adapt to the cold shrinkage of the ground structure and prevent cracking of the solder joint between the ground structure and the PCB.
  • the width of the part where the grounding structure is inserted into the groove is greater than the width of the groove.
  • the width of the part where the grounding structure is inserted into the groove can be greater than the width of the groove, that is, the connection between the grounding structure and the groove can be realized by an interference fit, so that after the grounding structure is inserted into the groove, the grounding structure can be prevented from falling off.
  • the grounding structure is interference inserted into the groove.
  • a dielectric filter including: a dielectric body; a grounding structure, the grounding structure is inserted into a groove provided on the dielectric body, and the part of the grounding structure inserted into the groove can be elastically deformed.
  • the dielectric filter includes a grounding structure, and the grounding structure is inserted into the slot in the dielectric body, and the part where the grounding structure is inserted into the slot can be elastically deformed, thereby improving the tolerance of thermal expansion and contraction.
  • the dielectric body is welded on the PCB. Due to the different thermal expansion coefficients between the dielectric body and the PCB, long-term temperature cycle experiments may cause solder joints (such as ground solder joints) between the dielectric body and the PCB. ) cracked.
  • a grounding structure is provided. The grounding structure is welded on the PCB.
  • the deformation of the grounding structure can absorb the thermal expansion coefficient of the grounding structure and the PCB.
  • the relative movement between the grounding structure and the PCB that may be caused by the difference reduces the deformation of the solder joint position mismatch between the grounding structure and the PCB, reduces the probability of cracking of the solder joints between the grounding structure and the PCB, and improves the dielectric filter overall reliability.
  • the filter further includes a signal input and output structure, and the grounding structure fully or half surrounds the periphery of the signal input and output structure.
  • the surface of the grounding structure away from the groove is flush with the surface of the dielectric body, or the surface of the grounding structure away from the groove is higher than the surface of the dielectric body.
  • grooves or holes are provided on the part where the grounding structure is inserted into the groove.
  • the width of the part where the grounding structure is inserted into the groove is greater than the width of the groove.
  • the grounding structure is interference inserted into the groove.
  • a communication device in a third aspect, includes the dielectric filter provided in the first aspect or the second aspect above.
  • the communication device is a network device.
  • the communication device is a terminal device.
  • Fig. 1 shows a schematic structural diagram of a ceramic dielectric filter in the prior art.
  • Fig. 2 shows a schematic perspective view of a dielectric filter proposed according to an embodiment of the present application.
  • Fig. 3 shows a schematic front view of a dielectric filter proposed according to an embodiment of the present application.
  • Fig. 4 shows a schematic top view of a dielectric filter proposed according to an embodiment of the present application.
  • Fig. 5 shows a schematic diagram of a metal piece proposed according to an embodiment of the present application.
  • Fig. 6 shows another schematic diagram of a metal piece proposed according to an embodiment of the present application.
  • Fig. 7 shows another schematic diagram of a metal piece proposed according to an embodiment of the present application.
  • FIG. 8 shows a schematic diagram of a grounding structure proposed according to an embodiment of the present application.
  • FIG. 9 shows another schematic diagram of a grounding structure proposed according to an embodiment of the present application.
  • the dielectric filter provided by the embodiment of the present application can be applied to a network device or a terminal device in a wireless communication system, such as a fifth generation (5th generation, 5G) system or a new radio (new radio, NR) system network device or Terminal equipment, such as base station, baseband unit (baseband unit, BU), distributed unit (distributed unit, DU), radio frequency unit (radio unit, RU), etc., can also be applied to communication equipment in future communication systems, such as the sixth Communication equipment of the 6th generation (6G) mobile communication system, etc.
  • 5G fifth generation
  • NR new radio
  • Terminal equipment such as base station, baseband unit (baseband unit, BU), distributed unit (distributed unit, DU), radio frequency unit (radio unit, RU), etc.
  • 6G 6th generation
  • Fig. 1 shows a schematic structural diagram of a ceramic dielectric filter in the prior art.
  • the ceramic dielectric filter includes: a ceramic dielectric body and a printed circuit board (PCB), the ceramic dielectric body is placed on the PCB, and the PCB and the ceramic dielectric body are connected by soldering.
  • a gasket can also be arranged between the PCB and the ceramic dielectric body, and the gasket can weld the PCB and the ceramic dielectric body together through a welding clip.
  • the thermal expansion coefficients of the ceramic medium and the PCB are different, for example, the thermal expansion coefficient of the ceramic medium is about 9, and the thermal expansion coefficient of the PCB is about 15-17. Due to the thermal expansion coefficient mismatch between the ceramic dielectric and the PCB, it may lead to solder joints between the dielectric body and the PCB (such as ground solder joints, and solder joints for signal input and output) during long-term temperature cycle changes. ) cracking, affecting the life of the filter.
  • the present application provides a solution that can solve the problem of cracking of solder joints between the dielectric body and the PCB during long-term temperature cycle changes.
  • FIG. 2 shows a schematic perspective view of a dielectric filter proposed according to an embodiment of the present application.
  • FIG. 2 is only a schematic diagram for easy understanding, and the specific structure of the actual product is not limited by FIG. 2 .
  • the dielectric filter includes a dielectric body 1 .
  • the dielectric body 1 can be integrally pressed and formed with ceramic material. In this way, the process maturity is higher and the difficulty is lower. It can be understood that there is no limitation on the material used and the manufacturing process of the medium body 1 .
  • the dielectric filter includes a dielectric body 1 and a signal input and output structure
  • the signal input and output structure includes metal parts and blind holes arranged on the dielectric body 1, such as metal parts 21 and metal parts 22 , the metal piece is inserted into the blind hole, and the part of the metal piece inserted into the blind hole can be elastically deformed.
  • the metal parts in the signal input and output structure are inserted into the blind holes in the dielectric body 1, and the part of the metal parts inserted into the blind holes can be elastically deformed, so that not only electrical connection and signal transmission can be realized, but also thermal expansion can be improved. Shrinkage tolerance.
  • the dielectric body is welded on the PCB. Due to the difference in thermal expansion coefficients between the dielectric body and the PCB, long-term temperature cycle experiments may cause cracks at the solder joint between the dielectric body and the PCB. Based on the embodiments provided in this application, the signal input and output structure is welded on the PCB because it performs signal input and/or output.
  • the part of the metal part inserted into the blind hole in the signal input and output structure can be elastically deformed, so that the deformation of the metal part can absorb the relative movement between the metal part and the PCB that may be caused by the different thermal expansion coefficients of the metal part and the PCB, reducing the The deformation of the solder joint position mismatch between the metal part and the PCB reduces the probability of cracking of the solder joint between the metal part and the PCB, and improves the overall reliability of the dielectric filter.
  • the signal input and output structure may include a structure formed by inserting metal parts into blind holes.
  • the part of the metal part inserted into the blind hole can be elastically deformed, which means that the part of the metal part inserted into the blind hole can realize deformation.
  • the shape of the metal piece (such as the shape of the part of the metal piece inserted into the blind hole) can be designed so that the part of the metal piece inserted into the blind hole can be elastically deformed.
  • the metal material for preparing the metal part may be any one or more of the following: silver paste, silver, tin, copper, nickel, alloy (such as sheet metal), which is not limited in this application.
  • the metal member is a pin (PIN).
  • the signal input and output structure refers to a structure that can realize signal input and/or output.
  • two signal input and output structures are included (that is, metal piece 21 and the blind hole where it is located, and metal piece 22 and the blind hole where it is located), one for signal input and one for signal input Output.
  • the embodiments described in the present application can also be used for a dielectric filter including only one signal input and output structure, and in this case, the signal input and output structure can be used for signal input and output.
  • FIG. 3 shows a schematic front view of a dielectric filter according to an embodiment of the present application
  • FIG. 4 shows a schematic top view of a dielectric filter according to an embodiment of the present application
  • FIG. 3 is a front view of the dielectric filter shown in FIG. 2
  • FIG. 4 is a top view of the dielectric filter shown in FIG. 2 . It can be seen from FIG. 3 or FIG. 4 that the metal piece 21 (such as the metal piece in the signal input structure) is inserted in a blind hole in the dielectric body 1, and the metal piece 22 (such as the metal piece in the signal output structure) is inserted into the In another blind hole in the medium body 1.
  • the surface of the metal piece away from the blind hole is flush with the surface of the medium body, or the surface of the metal piece away from the blind hole is higher than the surface of the medium body.
  • the surface (i.e. the lower surface) of the metal part 21 away from the blind hole is higher than the surface (i.e. the lower surface) of the medium body 1, and the surface (i.e. the lower surface) of the metal part 22 away from the blind hole is higher than the medium body 1
  • the surface (that is, the lower surface) so that when the dielectric filter is welded on the PCB, the metal piece 21 and the metal piece 22 can also be welded on the PCB, so that electrical connection and signal transmission can be realized.
  • the above description is an example, and as long as the metal part can be welded on the PCB, the surface of the metal part away from the blind hole can also be lower than the surface of the dielectric body.
  • the metal piece is inserted into the blind hole, including: an interference fit between the metal piece and the blind hole. That is, the metal parts are interference inserted into the blind hole, and the metal parts can be closely matched with the blind holes through the interference fit (or interference insertion), so as to prevent the metal parts from falling off.
  • interference fit is a technology used to realize the connection between two parts.
  • a possible way to achieve an interference fit between the metal part and the blind hole is: use the elasticity of the metal part to shrink the metal part and then insert it into the blind hole; when the metal part recovers Generate clamping force to connect metal parts and blind holes.
  • a low-temperature assembly method may be used, or a heating assembly method may be used, which is not limited in this embodiment of the present application.
  • the outer diameter of the part where the metal piece is inserted into the blind hole can be greater than the diameter of the blind hole, that is, the connection between the metal piece and the blind hole can be realized by an interference fit, so that after the metal piece is inserted into the blind hole, the metal piece can be prevented from falling off.
  • the metal piece includes a limiting structure. Through the limit structure, it can be used to limit the depth of the metal piece inserted into the blind hole.
  • the limiting structure is a stepped structure, such as a stepped column structure.
  • a metal piece is inserted into a partial opening of the blind hole.
  • Part of the opening where the metal part is inserted into the blind hole that is, the opening at one end of the metal part that matches the blind hole.
  • a groove or hole is opened at the end of the metal part that cooperates with the blind hole, so that the deformation of the metal part can be realized through the groove or hole.
  • the deformation can absorb the relative movement between the metal part and the PCB that may be caused by the difference in coefficient of thermal expansion, and reduces the deformation of the solder joint position mismatch between the metal part and the PCB, thereby reducing cracking.
  • the open end of the metal part can be deformed outward to adapt to the thermal expansion of the metal part and prevent the solder joint between the metal part and the PCB from cracking; if the metal part shrinks coldly, the metal part will The open end of the metal part can be deformed inwards to adapt to the cold shrinkage of the metal part and prevent the solder joint between the metal part and the PCB from cracking.
  • the shape of the groove may be, for example, one or more of a bar-shaped groove, a circular groove, a cross groove, a T-shaped groove, and an L-shaped groove.
  • the shape of the hole may be, for example, one or more of a cylindrical hole, a regular polygonal hole, an ellipse, a rectangular hole, and an irregular hole.
  • Fig. 5 shows a schematic diagram of a metal piece proposed according to an embodiment of the present application.
  • FIG. 5 As shown in FIG. 5 , (a) in FIG. 5 is a perspective view of a metal piece (eg, metal piece 21 or metal piece 22 ), and (b) in FIG. 5 is a top view of the metal piece.
  • a metal piece eg, metal piece 21 or metal piece 22
  • b) in FIG. 5 is a top view of the metal piece.
  • the metal piece is designed as a stepped column structure, that is, a layer of boss 111 can be provided between the lower end and the upper end of the metal piece, and the boss can be used to limit the depth of the metal piece inserted into the blind hole.
  • the boss 111 due to the design of the boss 111, the connection between the metal part and the blind hole can be tightened To avoid falling off and skewing of metal parts as much as possible, and to improve the product quality of the dielectric filter.
  • a groove 112 is opened on the upper end of the metal piece (ie, the part inserted into the blind hole), and the lower end of the metal piece (ie, the part not inserted into the blind hole) is closed.
  • the lower end of the metal piece can be a solid structure.
  • the surface of the solid structure may be a plane, or may also be arc-shaped, for example, a sphere, an ellipsoid, a cylinder, a cube, an irregularly shaped three-dimensional structure, and the like. This will not be repeated below.
  • Fig. 6 shows another schematic diagram of a metal piece proposed according to an embodiment of the present application.
  • FIG. 6 As shown in FIG. 6 , (a) in FIG. 6 is a top view of a metal piece (such as metal piece 21 or metal piece 22 ), and (b) in FIG. 6 is a cross-sectional view of the metal piece.
  • a metal piece such as metal piece 21 or metal piece 22
  • a cross-sectional view of the metal piece is a cross-sectional view of the metal piece.
  • the difference between Fig. 6 and Fig. 5 is that, in the design of Fig. 6, a cylindrical hole is opened at the upper end of the metal part (that is, the part inserted into the blind hole).
  • Fig. 7 shows another schematic diagram of a metal piece proposed according to an embodiment of the present application.
  • Fig. 7 is the front view of metal part (as metal part 21 or metal part 22),
  • Fig. 7 is the side view of metal part,
  • Fig. 7 is the top view of the metal part.
  • the difference between Fig. 7 and Fig. 5 is that, in the design of Fig. 7, the metal piece comprises two parts, and the outer diameter of the upper part (i.e. the part inserted into the blind hole) is smaller than the diameter of the lower part (i.e. the part not inserted into the blind hole), This can also improve the connection between the metal parts and the blind holes, avoid falling off and skewing of the metal parts as much as possible, and improve the product quality of the dielectric filter.
  • the edges of the surface of the metal part are chamfered.
  • the edge of the metal part surface is provided with chamfering, such as the edge of the upper surface of the opening part of the metal part is provided with chamfering 113 and chamfering 114, and the edge of the lower surface of the opening part of the metal part is provided Chamfering 115 and chamfering 116, when metal piece is inserted in the blind hole like this, because the edge of the surface of metal piece opening part (being the part that inserts blind hole) is set to chamfering, can reduce metal piece when inserting blind hole like this Bump damage.
  • the above mainly introduces the first solution, which is to improve the tolerance of thermal expansion and contraction by improving the metal parts, and reduce the probability of cracking of the solder joints of the metal parts.
  • the second solution provided by the embodiment of the present application is introduced below.
  • the dielectric filter includes a dielectric body 1 and a grounding structure, such as a grounding structure 31 and a grounding structure 32, and the grounding structure is inserted into the dielectric body 1.
  • the groove (for ease of understanding, the groove is marked as the grounding groove), and the part where the grounding structure is inserted into the grounding groove can be elastically deformed.
  • the dielectric filter includes a grounding structure, and the grounding structure is inserted into a groove in the dielectric body 1 (such as a grounding groove), and the part of the grounding structure inserted into the grounding groove can be elastically deformed, thereby improving thermal expansion and contraction. tolerance.
  • the dielectric body is welded on the PCB. Due to the different thermal expansion coefficients between the dielectric body and the PCB, long-term temperature cycle experiments may cause solder joints (such as ground solder joints) between the dielectric body and the PCB. ) cracked.
  • a grounding structure is provided. The grounding structure is welded on the PCB.
  • the deformation of the grounding structure can absorb the thermal expansion coefficient of the grounding structure and the PCB.
  • the relative movement between the grounding structure and the PCB that may be caused by the difference reduces the deformation of the solder joint position mismatch between the grounding structure and the PCB, reduces the probability of cracking of the solder joints between the grounding structure and the PCB, and improves the dielectric filter overall reliability.
  • the grounding structure is a metal structure
  • the metal material for preparing the grounding structure may be, for example, any one or more of the following: silver paste, silver, tin, copper, nickel, alloy (such as sheet alloy), which is not limited in this application.
  • the grounding structure may include a structure made of a metal material, or may include a structure formed by inserting a structure made of a metal material into a ground slot, which is not limited in this embodiment of the present application.
  • the grounding structure may be in various shapes, such as column, cylinder, ring, arch, etc., which is not limited in the present application.
  • the ground groove can also be in various shapes, such as columnar, cylindrical, annular, arched, etc., which is not limited in the present application.
  • the ring structure may be, for example, U-shaped, circular, square, triangular, or irregular, etc., which is not limited in the present application.
  • the part where the grounding structure is inserted into the grounding groove can be elastically deformed, which means that the part of the grounding structure inserted into the grounding groove can realize deformation.
  • the shape of the grounding structure such as the shape of the part of the grounding structure inserted into the grounding groove
  • the part of the grounding structure inserted into the grounding groove can be elastically deformed, and the elastic deformation absorbs the possible grounding due to different thermal expansion coefficients.
  • the relative movement between the structure and the PCB reduces the deformation of the solder joint position mismatch between the ground structure and the PCB, which in turn can reduce cracking.
  • the open end of the ground structure can be deformed outward to adapt to the thermal expansion of the ground structure and prevent cracking of the solder joints between the ground structure and the PCB; if the ground structure shrinks, the ground structure The open end can be deformed inward to adapt to the cold shrinkage of the ground structure and prevent cracking of the solder joint between the ground structure and the PCB.
  • the ground structure is located at the periphery of the signal input and output structure.
  • the ground structure fully surrounds or half surrounds the periphery of the signal input and output structure.
  • the grounding structure 31 can be, for example, a U-shaped structure.
  • the grounding structure 31 is inserted into a U-shaped slot (ie, a grounding slot) in the dielectric body 1 and half surrounds the periphery of the signal input structure.
  • the grounding structure 32 can be, for example, a U-shaped structure.
  • the grounding structure 32 is inserted into a U-shaped groove (ie, a grounding groove) in the dielectric body 1 and half surrounds the periphery of the signal output structure.
  • the surface of the grounding structure away from the grounding slot is flush with the surface of the dielectric body, or the surface of the grounding structure away from the grounding slot is higher than the surface of the dielectric body.
  • the surface (i.e. the lower surface) of the grounding structure 31 away from the grounding groove is higher than the surface (i.e. the lower surface) of the dielectric body 1, and the surface (i.e. the lower surface) of the grounding structure 32 away from the grounding groove is higher than the dielectric body 1 surface (ie the lower surface), so that when the dielectric filter is welded on the PCB, the grounding structure 31 and the grounding structure 32 can also be welded on the PCB.
  • the grounding structure is inserted into the grounding groove, including: the grounding structure is interference-fitted with the grounding groove.
  • the grounding structure and the grounding groove can be closely matched to prevent the grounding structure from falling off.
  • a possible way to achieve an interference fit between the grounding structure and the grounding slot is: use the elasticity of the grounding structure to shrink the grounding structure and then insert it into the grounding slot; when the grounding structure recovers, A clamping force is generated to connect the grounding structure and the grounding slot.
  • a low-temperature assembly method may be used, or a heating assembly method may be used, which is not limited in this embodiment of the present application.
  • the outer diameter of the part of the grounding structure inserted into the grounding slot is larger than the diameter of the grounding slot, that is, the grounding structure and the grounding slot are connected by an interference fit, so that the grounding structure can be prevented from falling off after being inserted into the grounding slot.
  • the grounding structure (such as the grounding structure 31 or the grounding structure 32 ) is in the shape of a U-shaped ring, the shape of the grounding groove is a U-shaped groove, and the arm width of the U-shaped ring is larger than that of the U-shaped groove.
  • the above description is an example, and as long as the grounding structure can be soldered on the PCB, the surface of the grounding structure away from the grounding groove can also be lower than the surface of the dielectric body.
  • the ground structure is inserted into a part of the opening of the ground slot.
  • the shape of the groove may be, for example, one or more of a bar-shaped groove, a circular groove, a cross groove, a T-shaped groove, and an L-shaped groove.
  • the shape of the hole may be, for example, one or more of a cylindrical hole, a regular polygonal hole, an ellipse, a rectangular hole, and an irregular hole.
  • FIG. 8 shows a schematic diagram of a grounding structure proposed according to an embodiment of the present application.
  • FIG. 8 As shown in FIG. 8 , (a) in FIG. 8 is a front view of the grounding structure, and (b) in FIG. 8 is a bottom view of the grounding structure.
  • the shape of the grounding structure can be a U-shaped ring, the upper end of the grounding structure (that is, the part inserted into the grounding groove) has a groove 311, and the lower end of the grounding structure (that is, the part that is not inserted into the grounding groove) is closed.
  • the lower end of the grounding structure may be a solid structure.
  • the surface of the solid structure may be a plane, or may also be arc-shaped, for example, a sphere, an ellipsoid, a cylinder, a cube, an irregularly shaped three-dimensional structure, and the like. This will not be repeated below.
  • FIG. 9 shows another schematic diagram of a grounding structure proposed according to an embodiment of the present application.
  • FIG. 9 As shown in FIG. 9 , (a) in FIG. 9 is a front view of the grounding structure, and (b) in FIG. 9 is a bottom view of the grounding structure.
  • the difference between Fig. 9 and Fig. 8 is that in the design of Fig. 9, the shape of the grounding structure is a ring shape.
  • the edges of the surface of the grounding structure are chamfered.
  • the edges of the surface of the grounding structure are provided with chamfers. In this way, it is beneficial to reduce the difficulty of the process, which is convenient for pressing and forming, and is also beneficial to reduce bump damage.
  • the first scheme and the second scheme have been introduced above respectively. It can be understood that the above two schemes can be used alone. For example, the signal input and output structure of the dielectric filter is improved, and the grounding structure is in accordance with the existing method; for another example, The grounding structure of the dielectric filter is improved, and the signal input and output structure follows the existing method. Alternatively, the above two solutions can also be used in combination, for example, improving both the grounding structure and the signal input and output structure of the dielectric filter.
  • the dielectric filter may be in a shape such as a rectangular block, which is not limited thereto.
  • the adjacent surfaces of the dielectric filter are provided with arc chamfer transitions.
  • the arc chamfer transition on the adjacent surface of the dielectric filter the general performance of the product can be optimized, and the probability of scratch damage can be reduced.
  • the dielectric filter 2 further includes one or more resonant cavities, through which a resonant frequency and a filter pole can be generated.
  • the dielectric filter can also include resonant cavities 41 and 42, resonant cavity 41 and resonant cavity 42 can be considered as the first and last two resonant cavities on the dielectric filter, and the signal input and output structure can be the same as the first and last two resonant cavities coupling.
  • the signal input structure includes the metal piece 21 and the blind hole in which the metal piece 21 is inserted, and the signal input structure is used for coupling with the resonant cavity 41;
  • the signal output structure includes the metal piece 22 and the blind hole inserted in the metal piece 22, and the signal output structure is used for coupling with the resonator Cavities 41 are coupled.
  • the dielectric body 1 is welded on the PCB.
  • the dielectric body 1 and the PCB can be connected through evenly arranged solder joints.
  • a spacer is provided between the dielectric body 1 and the PCB.
  • the spacers are silver plated copper.
  • the coefficient of thermal expansion of the spacer is close to that of the PCB.
  • the number of gaskets is not limited, for example, there may be 4 gaskets.
  • the thickness of the gasket is not limited, for example, it is 0.3 mm.
  • the dimensional values mentioned in the embodiments of the present application are all exemplary illustrations, and the requirements for the dimensions may include a certain tolerance range.
  • the thickness of the gasket (0.3mm+ ⁇ 1).
  • the specific values of ⁇ 1 and ⁇ 2 are not limited.
  • An embodiment of the present application further provides a communication device, where the communication device includes the dielectric filter in the foregoing embodiment.
  • the communication device may be a network device, for example, the network device may be a base station.
  • the base station can broadly cover various names in the following, or replace with the following names, such as: Node B (NodeB), evolved base station (evolved NodeB, eNB), next generation base station (next generation NodeB, gNB), relay station, Access point, transmission point (transmitting and receiving point, TRP), transmitting point (transmitting point, TP), primary station, secondary station, multi-standard wireless (motor slide retainer, MSR) node, home base station, network controller, access point Ingress node, wireless node, access point (access point, AP), transmission node, transceiver node, baseband unit (BU), radio frequency unit (RU), remote radio unit (RRU), active antenna unit (active antenna unit, AAU), radio head (remote radio head, RRH), central unit (central unit, CU), distributed unit (DU), positioning nodes, etc.
  • NodeB Node B
  • eNB
  • a base station may be a macro base station, a micro base station, a relay node, a donor node, or the like, or a combination thereof.
  • a base station may also refer to a communication module, modem or chip used to be set in the aforementioned equipment or device.
  • the base station can also be a mobile switching center and a device that undertakes the base station function in device to device (device to device, D2D), vehicle to everything (vehicle-to-everything, V2X), machine to machine (machine to machine, M2M) communication, Network-side equipment in 6G networks, equipment that assumes base station functions in future communication systems, etc.
  • Base stations can support networks of the same or different access technologies. The embodiment of the present application does not limit the specific technology and specific device form adopted by the network device.
  • the communication device may also be a terminal device.
  • terminal devices are: mobile phone (mobile phone), tablet computer, notebook computer, palmtop computer, mobile internet device (mobile internet device, MID), wearable device, virtual reality (virtual reality, VR) device, enhanced Augmented reality (AR) equipment, wireless terminals in industrial control, wireless terminals in self driving, wireless terminals in remote medical surgery, smart grid Wireless terminals in transportation safety, wireless terminals in smart city, wireless terminals in smart home, cellular phones, cordless phones, session initiation protocols protocol, SIP) telephone, wireless local loop (wireless local loop, WLL) station, personal digital assistant (personal digital assistant, PDA), handheld device with wireless communication function, computing device or other processing device connected to a wireless modem, Wearable devices, terminal devices in a 5G network, or terminal devices in a future evolving public land mobile network (PLMN), etc., are not limited in this embodiment of the present application.
  • PLMN public land mobile network

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

本申请提供了一种介质滤波器和通信设备。该介质滤波器包括介质本体和信号输入输出结构;信号输入输出结构包括金属件和设置在介质本体上的盲孔,金属件插于盲孔内,且金属件插入盲孔的部分可弹性变形。通过本申请,由于金属件插入盲孔的部分可弹性变形,这样可以通过金属件的变形来降低金属件与介质本体中的盲孔之间的应力,从而可降低金属件焊点发生开裂的概率,提升介质滤波器的整体可靠性。

Description

介质滤波器和通信设备 技术领域
本申请涉及通信技术领域,尤其涉及一种介质滤波器和通信设备。
背景技术
介质滤波器因其插入损耗低、尺寸小、重量轻等优点,被广泛应用在无线通信设备,例如基站、卫星通信、导航系统、电子对抗等系统中。
目前,介质滤波器一般是通过将介质本体放置于印制电路板(printed circuit board,PCB)上,PCB和介质本体之间通过锡焊连接。由于介质本体和PCB之间的热膨胀系数不同,长期温度循环变化会导致陶瓷介质和PCB之间的焊点开裂,影响滤波器性能。
发明内容
本申请提供一种介质滤波器和通信设备,旨在解决致陶瓷介质和PCB之间的焊点开裂的问题。
第一方面,提供了一种介质滤波器,包括:介质本体;信号输入输出结构,包括金属件和设置在介质本体上的盲孔,金属件插于盲孔内,且金属件插入盲孔的部分可弹性变形。
通过该方案,信号输入输出结构中的金属件插于介质本体中的盲孔内,且金属件插入盲孔的部分可弹性变形,从而不仅可以实现电气连接和信号传输,还可以提升热胀冷缩的容忍度。举例来说,在现有技术中,介质本体焊接在PCB上,由于介质本体和PCB之间的热膨胀系数不同,长期温度循环实验可能会导致介质本体与PCB之间的焊点发生开裂。基于本申请所提供的实施例,信号输入输出结构因为进行信号的输入和/或输出,故焊接在PCB上。信号输入输出结构中的金属件插入盲孔的部分可弹性变形,这样可以通过金属件的变形,来吸收因金属件和PCB热膨胀系数不同可能导致的金属件和PCB之间的相对运动,减少了金属件和PCB之间的焊点位置不匹配的形变,降低金属件与PCB之间的焊点发生开裂的概率,提升介质滤波器的整体可靠性。
结合第一方面,在第一方面的某些实现方式中,信号输入输出结构包括:信号输入结构和/或信号输出结构。即,该信号输入输出结构可以用于信号的输入和/或信号的输出。
通过该方案,信号输入结构中的金属件插于介质本体中的盲孔内,且金属件插入盲孔的部分可弹性变形。或者,信号输出结构中的金属件插于介质本体中的盲孔内,且金属件插入盲孔的部分可弹性变形。
结合第一方面,在第一方面的某些实现方式中,金属件远离盲孔的表面与介质本体的表面平齐。
通过该方案,金属件远离盲孔的表面与介质本体的表面平齐,这样不仅可以实现金属件焊接在PCB上,还可以减小金属件的尺寸,降低金属件的制造成本。
结合第一方面,在第一方面的某些实现方式中,金属件远离盲孔的表面高于介质本体 的表面。
通过该方案,金属件远离盲孔的表面高于介质本体的表面,这样可以实现金属件焊接在PCB上,且在焊接介质本体与PCB时,由于金属件的表面高于介质本体的表面,所以金属件可以较容易的焊接在PCB上。
结合第一方面,在第一方面的某些实现方式中,金属件还包括限位结构,限位结构用于对金属件插入盲孔的深度进行限位。
结合第一方面,在第一方面的某些实现方式中,限位结构为台阶状结构。
通过该方案,设计金属件的结构为台阶状结构,可以通过金属件本身的结构实现限位的作用。
结合第一方面,在第一方面的某些实现方式中,金属件插入盲孔的部分设有凹槽或孔。
通过该方案,金属件插入盲孔的部分开口,即金属件与盲孔配合的一端开口,如金属件与盲孔配合的一端开一个凹槽或者孔,这样可以通过该凹槽或孔实现金属件的弹性形变,弹性形变吸收了因为热膨胀系数不同可能导致的金属件和PCB之间的相对运动,减少了金属件和PCB之间的焊点位置不匹配的形变,进而可以减少开裂。举例来说,若金属件发生热膨胀,则金属件的开口端可向外变形,以适应金属件的热膨胀,防止金属件与PCB之间的焊点开裂;若金属件发生冷缩,则金属件的开口端可向内变形,以适应金属件的冷缩,防止金属件与PCB之间的焊点开裂。
结合第一方面,在第一方面的某些实现方式中,金属件插入盲孔的部分的外径大于盲孔的直径。
通过该方案,金属件插入盲孔的部分的外径可大于盲孔的直径,即金属件和盲孔之间可以采用过盈配合的方式实现连接,这样金属件插入盲孔后,可防止金属件脱落。
结合第一方面,在第一方面的某些实现方式中,金属件过盈插接于盲孔内。
结合第一方面,在第一方面的某些实现方式中,介质滤波器还包括接地结构,接地结构插于设置在介质本体上的槽内,且接地结构插入槽的部分可弹性变形。
通过该方案,介质滤波器包括接地结构,且接地结构插于介质本体中的槽内,且接地结构插入槽的部分可弹性变形,从而可以提升热胀冷缩的容忍度。举例来说,在现有技术中,介质本体焊接在PCB上,由于介质本体和PCB之间的热膨胀系数不同,长期温度循环实验可能会导致介质本体与PCB之间的焊点(如接地焊点)发生开裂。基于本申请所提供的实施例,提供一接地结构,该接地结构焊接在PCB上,由于接地结构插入槽的部分可弹性变形,这样可以通过接地结构的变形,来吸收因接地结构和PCB热膨胀系数不同可能导致的接地结构和PCB之间的相对运动,减少了接地结构和PCB之间的焊点位置不匹配的形变,降低接地结构与PCB之间的焊点发生开裂的概率,提升介质滤波器的整体可靠性。
结合第一方面,在第一方面的某些实现方式中,接地结构全包围或半包围于信号输入输出结构的外围。
结合第一方面,在第一方面的某些实现方式中,接地结构远离槽的表面与介质本体的表面平齐。
通过该方案,接地结构远离槽的表面与介质本体的表面平齐,这样不仅可以实现接地结构焊接在PCB上,还可以减小接地结构的尺寸,降低接地结构的制造成本。
结合第一方面,在第一方面的某些实现方式中,接地结构远离槽的表面高于介质本体的表面。
通过该方案,接地结构远离槽的表面高于介质本体的表面,这样可以实现接地结构焊接在PCB上,且在焊接介质本体与PCB时,由于接地结构的表面高于介质本体的表面,所以接地结构可以较容易的焊接在PCB上。
结合第一方面,在第一方面的某些实现方式中,接地结构插入槽的部分设有凹槽或孔。
通过该方案,接地结构插入槽的部分开口,即接地结构与槽配合的一端开口,如接地结构与槽配合的一端开一个凹槽或者孔,这样可以通过该凹槽或孔实现接地结构的弹性形变,弹性形变吸收了因为热膨胀系数不同可能导致的接地结构和PCB之间的相对运动,减少了接地结构和PCB之间的焊点位置不匹配的形变,进而可以减少开裂。举例来说,若接地结构发生热膨胀,则接地结构的开口端可向外变形,以适应接地结构的热膨胀,防止接地结构与PCB之间的焊点开裂;若接地结构发生冷缩,则接地结构的开口端可向内变形,以适应接地结构的冷缩,防止接地结构与PCB之间的焊点开裂。
结合第一方面,在第一方面的某些实现方式中,接地结构插入槽的部分的宽度大于槽的宽度。
通过该方案,接地结构插入槽的部分的宽度可大于槽的宽度,即接地结构和槽之间可以采用过盈配合的方式实现连接,这样接地结构插入槽后,可防止接地结构脱落。
结合第一方面,在第一方面的某些实现方式中,接地结构过盈插接于槽内。
第二方面,提供了一种介质滤波器,包括:介质本体;接地结构,接地结构插于设置在介质本体上的槽内,且接地结构插入槽的部分可弹性变形。
通过该方案,介质滤波器包括接地结构,且接地结构插于介质本体中的槽内,且接地结构插入槽的部分可弹性变形,从而可以提升热胀冷缩的容忍度。举例来说,在现有技术中,介质本体焊接在PCB上,由于介质本体和PCB之间的热膨胀系数不同,长期温度循环实验可能会导致介质本体与PCB之间的焊点(如接地焊点)发生开裂。基于本申请所提供的实施例,提供一接地结构,该接地结构焊接在PCB上,由于接地结构插入槽的部分可弹性变形,这样可以通过接地结构的变形,来吸收因接地结构和PCB热膨胀系数不同可能导致的接地结构和PCB之间的相对运动,减少了接地结构和PCB之间的焊点位置不匹配的形变,降低接地结构与PCB之间的焊点发生开裂的概率,提升介质滤波器的整体可靠性。
结合第二方面,在第二方面的某些实现方式中,滤波器还包括信号输入输出结构,接地结构全包围或半包围于信号输入输出结构的外围。
结合第二方面,在第二方面的某些实现方式中,接地结构远离槽的表面与介质本体的表面平齐,或者,接地结构远离槽的表面高于介质本体的表面。
结合第二方面,在第二方面的某些实现方式中,接地结构插入槽的部分设有凹槽或孔。
结合第二方面,在第二方面的某些实现方式中,接地结构插入槽的部分的宽度大于槽的宽度。
结合第二方面,在第二方面的某些实现方式中,接地结构过盈插接于槽内。
第三方面,提供了一种通信设备,该通信设备包括上文第一方面或第二方面提供的介质滤波器。
结合第三方面,在第三方面的某些实现方式中,该通信设备为网络设备。
结合第三方面,在第三方面的某些实现方式中,该通信设备为终端设备。
附图说明
图1示出了现有技术中的陶瓷介质滤波器的结构示意图。
图2示出了根据本申请实施例提出的介质滤波器的一示意性立体图。
图3示出了根据本申请实施例提出的介质滤波器的一示意性正视图。
图4示出了根据本申请实施例提出的介质滤波器的一示意性俯视图。
图5示出了根据本申请实施例提出的金属件的一示意图。
图6示出了根据本申请实施例提出的金属件的另一示意图。
图7示出了根据本申请实施例提出的金属件的另一示意图。
图8示出了根据本申请实施例提出的接地结构的一示意图。
图9示出了根据本申请实施例提出的接地结构的另一示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信设备中,如包括滤波器的无线通信设备。例如本申请实施例所提供的介质滤波器可以应用于无线通信系统中的网络设备或者终端设备,例如第五代(5th generation,5G)系统或新无线(new radio,NR)系统的网络设备或者终端设备,如基站、基带单元(baseband unit,BU)、分布式单元(distributed unit,DU)、射频单元(radio unit,RU)等,也可以应用于未来的通信系统的通信设备,如第六代(6th generation,6G)移动通信系统的通信设备等。
图1示出了现有技术中的陶瓷介质滤波器的结构示意图。
如图1所示,陶瓷介质滤波器包括:陶瓷介质本体和印制电路板(printed circuit board,PCB),陶瓷介质本体放置在PCB上,PCB和陶瓷介质本体之间通过锡焊连接。PCB和陶瓷介质本体之间还可以设置垫片,该垫片可通过焊接夹将PCB和陶瓷介质本体焊接在一起。
一般地,陶瓷介质和PCB的热膨胀系数不同,例如,陶瓷介质的热膨胀系数约为9,PCB的热膨胀系数约为15~17。由于陶瓷介质和PCB的热膨胀系数失配,因此可能会导致,在长期温度循环变化中,出现介质本体与PCB之间的焊点(如接地焊点,又如用于信号输入和输出的焊点)开裂,影响滤波器寿命。
有鉴于此,本申请提供一种方案,可以解决在长期温度循环变化中,出现的介质本体与PCB之间的焊点开裂的问题。
下面将结合附图详细说明本申请提供的各个实施例。
应理解,本申请实施例中,“上”、“下”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
图2示出了根据本申请实施例提出的介质滤波器的一示意性立体图。图2仅是为便于理解作的示意图,实际产品的具体结构不受图2限定。
如图2所示,介质滤波器包括介质本体1。作为示例,介质本体1可采用陶瓷材料一 体化压制成型。通过该方式,工艺成熟度较高,难度较低。可以理解,关于介质本体1所使用的材料以及制作工艺,不予限制。
本申请实施例提供的一种方案中,介质滤波器包括介质本体1和信号输入输出结构,信号输入输出结构包括金属件和设置在介质本体1上的盲孔,如金属件21和金属件22,金属件插于盲孔内,且金属件插入盲孔的部分可弹性变形。
通过该方案,信号输入输出结构中的金属件插于介质本体1中的盲孔内,且金属件插入盲孔的部分可弹性变形,从而不仅可以实现电气连接和信号传输,还可以提升热胀冷缩的容忍度。举例来说,在现有技术中,介质本体焊接在PCB上,由于介质本体和PCB之间的热膨胀系数不同,长期温度循环实验可能会导致介质本体与PCB之间的焊点发生开裂。基于本申请所提供的实施例,信号输入输出结构因为进行信号的输入和/或输出,故焊接在PCB上。信号输入输出结构中的金属件插入盲孔的部分可弹性变形,这样可以通过金属件的变形,来吸收因金属件和PCB热膨胀系数不同可能导致的金属件和PCB之间的相对运动,减少了金属件和PCB之间的焊点位置不匹配的形变,降低金属件与PCB之间的焊点发生开裂的概率,提升介质滤波器的整体可靠性。
可以理解,信号输入输出结构可包括金属件插入盲孔后组成的结构。
其中,金属件插入盲孔的部分可弹性变形,即表示金属件插入盲孔的部分,能够实现变形。例如可以通过对金属件的形状(如对金属件插入盲孔的部分的形状)进行设计,进而可以使得金属件插入盲孔的部分可弹性变形。
可选地,制备金属件的金属材料可以为以下任一种或多种:银浆、银、锡、铜、镍、合金(如钣合金),本申请对此不作限定。作为示例,金属件如为引脚(PIN)针。
其中,信号输入输出结构,即可以实现信号输入和/或输出的结构。图2所示的实例中,包括了两个信号输入输出结构(即金属件21及其所在的盲孔,和金属件22及其所在的盲孔),一个用于信号的输入一个用于信号的输出。可以理解的,本申请所述的实施例也可以用于仅包含一个信号输入输出结构的介质滤波器,此时该信号输入输出结构可以用于信号的输入和输出。
图3示出了根据本申请实施例提出的介质滤波器的一示意性正视图,图4示出了根据本申请实施例提出的介质滤波器的一示意性俯视图。图3为图2所示的介质滤波器的正视图,图4为图2所示的介质滤波器的俯视图。从图3或图4可看出,金属件21(如信号输入结构中的金属件)插于介质本体1中的一盲孔内,金属件22(如信号输出结构中的金属件)插于介质本体1中的另一盲孔内。
可选地,金属件远离盲孔的表面与介质本体的表面平齐,或者,金属件远离盲孔的表面高于介质本体的表面。
如图3所示,金属件21远离盲孔的表面(即下表面)高于介质本体1的表面(即下表面),金属件22远离盲孔的表面(即下表面)高于介质本体1的表面(即下表面),这样介质滤波器焊接在PCB上时,金属件21和金属件22也可以焊接在PCB上,从而可以实现电气连接和信号传输。
可以理解,上述为示例性说明,只要可以实现金属件能够焊接在PCB上,金属件远离盲孔的表面也可以低于介质本体的表面。
可选地,金属件插于盲孔内,包括:金属件与盲孔过盈配合(interference fit)。即金 属件过盈插接于盲孔中,通过过盈配合(或者过盈插接),可以使得金属件与盲孔紧密配合,防止金属件脱落。
其中,过盈配合,是用于实现两零件之间连接的一种技术。以金属件和盲孔为例,一种可能的实现金属件和盲孔之间过盈配合的方式为:利用金属件的弹性,使得金属件缩小,进而插入盲孔内;当金属件复原时产生箍紧力,使金属件和盲孔连接。实现过盈配合的方式有很多,例如可以通过低温装配法,或者也可以用加热装配法,本申请实施例对此不予限制。
金属件插入盲孔的部分的外径可大于盲孔的直径,即金属件和盲孔之间可以采用过盈配合的方式实现连接,这样金属件插入盲孔后,可防止金属件脱落。
可选地,金属件包括限位结构。通过限位结构,可用于对金属件插入盲孔的深度进行限位。
一种可能的设计方式,限位结构为台阶状结构,如台阶状柱体结构。
可选地,金属件插入盲孔的部分开口。
金属件插入盲孔的部分开口,即金属件与盲孔配合的一端开口,如金属件与盲孔配合的一端开一个凹槽或者孔,这样可以通过该凹槽或孔实现金属件的变形,该变形可以吸收因为热膨胀系数不同可能导致的金属件和PCB之间的相对运动,减少了金属件和PCB之间的焊点位置不匹配的形变,进而可以减少开裂。举例来说,若金属件发生热膨胀,则金属件的开口端可向外变形,以适应金属件的热膨胀,防止金属件与PCB之间的焊点开裂;若金属件发生冷缩,则金属件的开口端可向内变形,以适应金属件的冷缩,防止金属件与PCB之间的焊点开裂。
其中,凹槽的形状,例如可以为条形槽、圆形槽、十字槽、T型槽、L型槽中的一种或多种。
其中,孔的形状,例如可以为圆柱孔、正多边形孔、椭圆形、矩形孔、不规则形孔中的一种或多种。
下面结合图5至图7示例性说明。
图5示出了根据本申请实施例提出的金属件的一示意图。
如图5所示,图5中的(a)为金属件(如金属件21或金属件22)的立体图,图5中的(b)为金属件的俯视图。
如图5所示,金属件设计为台阶状柱体结构,即金属件的下端与上端之间可以设有一层凸台111,该凸台可用于对金属件插入盲孔的深度进行限位。此外,当金属件由于弹性变形缩小时,金属件可能会在盲孔内歪斜,甚至可能会发生金属件脱落的情况,由于凸台111的设计,可以紧固金属件与盲孔之间的连接性,尽可能地避免金属件出现脱落、歪斜,提高介质滤波器的产品质量。
如图5所示,金属件的上端(即插入盲孔的部分)开一个凹槽112,金属件的下端(即未插入盲孔的部分)封闭。金属件的下端可以为实心结构。作为示例,该实心结构的表面可以为平面,或者也可以呈弧形,例如,球体、椭球体、圆柱体、立方体、不规则形状的立体结构等等。对此下文不再赘述。
图6示出了根据本申请实施例提出的金属件的另一示意图。
如图6所示,图6中的(a)为金属件(如金属件21或金属件22)的俯视图,图6 中的(b)为金属件的截面图。图6与图5的区别在于,在图6的设计中,金属件的上端(即插入盲孔的部分)开一个圆柱孔。
图7示出了根据本申请实施例提出的金属件的另一示意图。
如图7所示,图7中的(a)为金属件(如金属件21或金属件22)的正视图,图7中的(b)为金属件的侧视图,图7中的(c)为金属件的俯视图。图7与图5的区别在于,在图7的设计中,金属件包括两部分,上部分(即插入盲孔的部分)的外径小于下部分(即未插入盲孔的部分)的直径,这样也可以提高金属件与盲孔的连接性,尽可能地避免金属件出现脱落、歪斜,提高介质滤波器的产品质量。
可选地,金属件表面的棱边设置倒角。这样,有利于降低工艺难度,便于压制成形,同时利于减少磕碰损伤。如图6或图7,金属件表面的棱边设置倒角,如金属件开口部分的上表面的棱边设置倒角113和倒角114,又如金属件开口部分的下表面的棱边设置倒角115和倒角116,这样金属件插入盲孔中时,由于金属件开口部分(即插入盲孔的部分)的表面的棱边设置成倒角,这样可以减少金属件插入盲孔时的磕碰损伤。
以上主要介绍了第一种方案,即通过对金属件进行改进,提升热胀冷缩的容忍度,降低金属件焊点开裂的概率。下面介绍本申请实施例提供的第二种方案。
在本申请实施例提供的第二种方案中,如图2所示,介质滤波器包括介质本体1和接地结构,如接地结构31和接地结构32,接地结构插于设置在介质本体1上的槽(为便于理解,将该槽记为接地槽)内,且接地结构插入接地槽的部分可弹性变形。
通过该方案,介质滤波器包括接地结构,且接地结构插于介质本体1中的槽(如记为接地槽)内,且接地结构插入接地槽的部分可弹性变形,从而可以提升热胀冷缩的容忍度。举例来说,在现有技术中,介质本体焊接在PCB上,由于介质本体和PCB之间的热膨胀系数不同,长期温度循环实验可能会导致介质本体与PCB之间的焊点(如接地焊点)发生开裂。基于本申请所提供的实施例,提供一接地结构,该接地结构焊接在PCB上,由于接地结构插入槽的部分可弹性变形,这样可以通过接地结构的变形,来吸收因接地结构和PCB热膨胀系数不同可能导致的接地结构和PCB之间的相对运动,减少了接地结构和PCB之间的焊点位置不匹配的形变,降低接地结构与PCB之间的焊点发生开裂的概率,提升介质滤波器的整体可靠性。
其中,接地结构为金属结构,制备接地结构的金属材料例如可以为以下任一种或多种:银浆、银、锡、铜、镍、合金(如钣合金),本申请对此不作限定。
可以理解,接地结构可以包括通过金属材料制成的结构,或者可以包括通过金属材料制成的结构插入接地槽后组成的结构,本申请实施例对此不予限制。
其中,接地结构可以为多种形状,例如柱状、筒状,环状、拱形等等,本申请对此不作限定。接地槽也可以为多种形状,例如柱状、筒状,环状、拱形等等,本申请对此不作限定。其中,环状结构例如可以是:U型、圆环形、方形、三角形、或不规则形状等等,本申请对此不作限定。
其中,接地结构插入接地槽的部分可弹性变形,即表示接地结构插入接地槽的部分,能够实现变形。例如可以通过对接地结构的形状(如对接地结构插入接地槽的部分的形状)进行设计,进而可以使得接地结构插入接地槽的部分可弹性变形,弹性形变吸收了因为热膨胀系数不同可能导致的接地结构和PCB之间的相对运动,减少了接地结构和PCB之间 的焊点位置不匹配的形变,进而可以减少开裂。举例来说,若接地结构发生热膨胀,则接地结构的开口端可向外变形,以适应接地结构的热膨胀,防止接地结构与PCB之间的焊点开裂;若接地结构发生冷缩,则接地结构的开口端可向内变形,以适应接地结构的冷缩,防止接地结构与PCB之间的焊点开裂。
可选地,接地结构位于信号输入输出结构的外围。例如,接地结构全包围或半包围于信号输入输出结构的外围。如图2或图4所示,假设金属件21为信号输入结构中的金属件,金属件22为信号输出结构中的金属件。接地结构31例如可以为U型结构,接地结构31插于介质本体1中的U型槽(即接地槽)中,且半包围于信号输入结构的外围。接地结构32例如可以为U型结构,接地结构32插于介质本体1中的U型槽(即接地槽)中,且半包围于信号输出结构的外围。
可选地,接地结构远离接地槽的表面与介质本体的表面平齐,或者,接地结构远离接地槽的表面高于介质本体的表面。
如图3所示,接地结构31远离接地槽的表面(即下表面)高于介质本体1的表面(即下表面),接地结构32远离接地槽的表面(即下表面)高于介质本体1的表面(即下表面),这样介质滤波器焊接在PCB上时,接地结构31和接地结构32也可以焊接在PCB上。
可选地,接地结构插于接地槽内,包括:接地结构与接地槽过盈配合。通过过盈配合,可以使得接地结构与接地槽紧密配合,防止接地结构脱落。以金属件和盲孔为例,一种可能的实现接地结构与接地槽之间过盈配合的方式为:利用接地结构的弹性,使得接地结构缩小,进而插入接地槽内;当接地结构复原时产生箍紧力,使接地结构和接地槽连接。实现过盈配合的方式有很多,例如可以通过低温装配法,或者也可以用加热装配法,本申请实施例对此不予限制。
接地结构插入接地槽的部分的外径大于接地槽的直径,即接地结构和接地槽之间采用过盈配合的方式实现连接,这样接地结构插入接地槽后,可防止接地结构脱落。如图2所示,接地结构(如接地结构31或接地结构32)的形状为U型环,接地槽的形状为U型槽,U型环的臂宽大于U型槽的臂宽。
可以理解,上述为示例性说明,只要可以实现接地结构能够焊接在PCB上,接地结构远离接地槽的表面也可以低于介质本体的表面。
可选地,接地结构插入接地槽的部分开口。
接地结构插入接地槽的部分开口,即接地结构与接地槽配合的一端开口,如接地结构与接地槽配合的一端开一个凹槽或者孔,这样可以通过该凹槽或孔实现接地结构的变形。其中,凹槽的形状,例如可以为条形槽、圆形槽、十字槽、T型槽、L型槽中的一种或多种。其中,孔的形状,例如可以为圆柱孔、正多边形孔、椭圆形、矩形孔、不规则形孔中的一种或多种。
下面结合图8至图9示例性说明。
图8示出了根据本申请实施例提出的接地结构的一示意图。
如图8所示,图8中的(a)为接地结构的正视图,图8中的(b)为接地结构的仰视图。
如图8所示,接地结构的形状可以为U型环形状,接地结构的上端(即插入接地槽的 部分)开一个凹槽311,接地结构的下端(即未插入接地槽的部分)封闭。接地结构的下端可以为实心结构。作为示例,该实心结构的表面可以为平面,或者也可以呈弧形,例如,球体、椭球体、圆柱体、立方体、不规则形状的立体结构等等。对此下文不再赘述。
图9示出了根据本申请实施例提出的接地结构的另一示意图。
如图9所示,图9中的(a)为接地结构的正视图,图9中的(b)为接地结构的仰视图。图9与图8的区别在于,在图9的设计中,接地结构的形状为圆环形状。
可选地,接地结构表面的棱边设置倒角。如图8或图9,接地结构表面的棱边设置倒角。这样,有利于降低工艺难度,便于压制成形,同时利于减少磕碰损伤。
以上分别介绍了第一种方案和第二种方案,可以理解,上述两种方案可以单独使用,例如,对介质滤波器的信号输入输出结构进行改进,接地结构按照现有的方式;再例如,对介质滤波器的接地结构进行改进,信号输入输出结构按照现有的方式。或者,上述两种方案也可以结合使用,例如对介质滤波器的接地结构和信号输入输出结构均进行改进。
此外,关于介质滤波器,还可以有一些其他的设计。
可选地,介质滤波器可以呈矩形块状等形状,对此不予限制。
可选地,介质滤波器的相邻表面设有圆弧倒角过渡。通过在介质滤波器的相邻表面设置圆弧倒角过渡,可以优化产品通性指性能,并可降低刮碰损伤的概率。
可选地,介质滤波器2还包括一个或多个谐振腔,通过该一个或多个谐振腔可产生共振频率和滤波器极点。
如图2所示,介质滤波器还可以包括谐振腔41和42,谐振腔41和谐振腔42可认为是介质滤波器上的首尾两个谐振腔,信号输入输出结构可以与首尾两个谐振腔耦合。信号输入结构包括金属件21和金属件21插入的盲孔,信号输入结构用于与谐振腔41耦合;信号输出结构包括金属件22和金属件22插入的盲孔,信号输出结构用于与谐振腔41耦合。
可选地,介质本体1焊接在PCB上。例如,介质本体1和PCB之间可通过均匀排列的锡焊点连接。
可选地,介质本体1和PCB之间设置有垫片。作为示例,垫片为镀银铜片。垫片的热膨胀系数接近于PCB的热膨胀系数。垫片的数量不予限制,如可以为4个垫片。垫片的厚度不予限制,例如为0.3mm。
应理解,本申请实施例中提及的尺寸数值均是示例性说明,对尺寸的要求可以包括一定的公差范围,例如,在设计垫片的厚度时,可以使得垫片的厚度(0.3mm+Δ1)。关于的Δ1和Δ2具体值,不作限定。
还应理解,本申请实施例中提出的介质滤波器、金属件、接地结构的具体结构图,仅是示例性说明,任何属于上述结构的变形,都适用于本申请。
本申请实施例还提供一种通信设备,该通信设备包括上文实施例中的介质滤波器。
应理解,该通信设备可以是网络设备,如网络设备可以是基站。基站可以广义的覆盖如下中的各种名称,或与如下名称进行替换,比如:节点B(NodeB)、演进型基站(evolved NodeB,eNB)、下一代基站(next generation NodeB,gNB)、中继站、接入点、传输点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、主站、辅站、多制式无线(motor slide retainer,MSR)节点、家庭基站、网络控制器、接入节点、无线 节点、接入点(access point,AP)、传输节点、收发节点、基带单元(BU)、射频单元(RU)、射频拉远单元(remote radio unit,RRU)、有源天线单元(active antenna unit,AAU)、射频头(remote radio head,RRH)、中心单元(central unit,CU)、分布式单元(DU)、定位节点等。基站可以是宏基站、微基站、中继节点、施主节点或类似物,或其组合。基站还可以指用于设置于前述设备或装置内的通信模块、调制解调器或芯片。基站还可以是移动交换中心以及设备到设备(device to device,D2D)、车到万物(vehicle-to-everything,V2X)、机器到机器(machine to machine,M2M)通信中承担基站功能的设备、6G网络中的网络侧设备、未来的通信系统中承担基站功能的设备等。基站可以支持相同或不同接入技术的网络。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。
该通信设备还可以是终端设备。目前,一些终端设备的举例为:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、可穿戴设备,5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等,本申请实施例对此并不限定。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求和说明书的保护范围为准。

Claims (21)

  1. 一种介质滤波器,其特征在于,包括:
    介质本体;和
    信号输入输出结构,所述信号输入输出结构包括金属件和设置在所述介质本体上的盲孔,所述金属件插于所述盲孔内,且所述金属件插入所述盲孔的部分可弹性变形。
  2. 根据权利要求1所述的介质滤波器,其中,所述信号输入输出结构用于信号的输入和/或信号的输出。
  3. 根据权利要求1或2所述的介质滤波器,其中,
    所述金属件远离所述盲孔的表面与所述介质本体的表面平齐,或者,所述金属件远离所述盲孔的表面高于所述介质本体的表面。
  4. 根据权利要求1至3中任一项所述的介质滤波器,其中,所述金属件还包括限位结构,所述限位结构用于对所述金属件插入所述盲孔的深度进行限位。
  5. 根据权利要求4所述的介质滤波器,其中,所述限位结构为台阶状结构。
  6. 根据权利要求1至5中任一项所述的介质滤波器,其中,
    所述金属件插入所述盲孔的部分设有凹槽或孔。
  7. 根据权利要求1至6中任一项所述的介质滤波器,其中,所述金属件插入所述盲孔的部分的外径大于所述盲孔的直径。
  8. 根据权利要求1至7中任一项所述的介质滤波器,其中,所述金属件过盈插接于所述盲孔内。
  9. 根据权利要求1至8中任一项所述的介质滤波器,还包括:
    接地结构,所述接地结构插于设置在所述介质本体上的槽内,且所述接地结构插入所述槽的部分可弹性变形。
  10. 根据权利要求9所述的介质滤波器,其中,所述接地结构全包围或半包围于所述信号输入输出结构的外围。
  11. 根据权利要求9或10所述的介质滤波器,其中,
    所述接地结构远离所述槽的表面与所述介质本体的表面平齐,或者,所述接地结构远离所述槽的表面高于所述介质本体的表面。
  12. 根据权利要求9至11中任一项所述的介质滤波器,其中,
    所述接地结构插入所述槽的部分设有凹槽或孔。
  13. 根据权利要求9至12中任一项所述的介质滤波器,其中,所述接地结构插入所述槽的部分的宽度大于所述槽的宽度。
  14. 根据权利要求9至13中任一项所述的介质滤波器,其中,所述接地结构过盈插接于所述槽内。
  15. 一种介质滤波器,其特征在于,包括:
    介质本体;和
    接地结构,所述接地结构插于设置在所述介质本体上的槽内,且所述接地结构插入所述槽的部分可弹性变形。
  16. 根据权利要求15所述的介质滤波器,其中,所述滤波器还包括信号输入输出结构,所述接地结构全包围或半包围于所述信号输入输出结构的外围。
  17. 根据权利要求15或16所述的介质滤波器,其中,
    所述接地结构远离所述槽的表面与所述介质本体的表面平齐,或者,所述接地结构远离所述槽的表面高于所述介质本体的表面。
  18. 根据权利要求15至17中任一项所述的介质滤波器,其中,
    所述接地结构插入所述槽的部分设有凹槽或孔。
  19. 根据权利要求15至18中任一项所述的介质滤波器,其中,所述接地结构插入所述槽的部分的宽度大于所述槽的宽度。
  20. 根据权利要求15至19中任一项所述的介质滤波器,其中,所述接地结构过盈插接于所述槽内。
  21. 一种通信设备,其特征在于,所述通信设备包括权利要求1至20中任一项所述的介质滤波器。
PCT/CN2021/133770 2021-11-27 2021-11-27 介质滤波器和通信设备 WO2023092518A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180104292.1A CN118235293A (zh) 2021-11-27 2021-11-27 介质滤波器和通信设备
EP21965251.8A EP4429015A1 (en) 2021-11-27 2021-11-27 Dielectric filter and communication device
PCT/CN2021/133770 WO2023092518A1 (zh) 2021-11-27 2021-11-27 介质滤波器和通信设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/133770 WO2023092518A1 (zh) 2021-11-27 2021-11-27 介质滤波器和通信设备

Publications (1)

Publication Number Publication Date
WO2023092518A1 true WO2023092518A1 (zh) 2023-06-01

Family

ID=86538723

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/133770 WO2023092518A1 (zh) 2021-11-27 2021-11-27 介质滤波器和通信设备

Country Status (3)

Country Link
EP (1) EP4429015A1 (zh)
CN (1) CN118235293A (zh)
WO (1) WO2023092518A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07176909A (ja) * 1993-12-16 1995-07-14 Murata Mfg Co Ltd 誘電体フィルタ
CN109167129A (zh) * 2018-08-22 2019-01-08 京信通信系统(中国)有限公司 谐振器、介质波导滤波器的端口耦合装置及其调节方法
CN210130003U (zh) * 2019-06-17 2020-03-06 深圳国人科技股份有限公司 一种端口隔离结构
CN210576350U (zh) * 2019-09-27 2020-05-19 宜宾红星电子有限公司 探针及滤波器
CN111293387A (zh) * 2020-03-27 2020-06-16 深圳顺络电子股份有限公司 一种具有cte补偿的陶瓷滤波器
WO2020259097A1 (zh) * 2019-06-28 2020-12-30 中兴通讯股份有限公司 介质单腔、介质波导滤波器
CN112436250A (zh) * 2020-11-13 2021-03-02 石家庄市鹿泉区麦特思电子科技有限公司 一种微波介质波导滤波器的端口耦合结构

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07176909A (ja) * 1993-12-16 1995-07-14 Murata Mfg Co Ltd 誘電体フィルタ
CN109167129A (zh) * 2018-08-22 2019-01-08 京信通信系统(中国)有限公司 谐振器、介质波导滤波器的端口耦合装置及其调节方法
CN210130003U (zh) * 2019-06-17 2020-03-06 深圳国人科技股份有限公司 一种端口隔离结构
WO2020259097A1 (zh) * 2019-06-28 2020-12-30 中兴通讯股份有限公司 介质单腔、介质波导滤波器
CN210576350U (zh) * 2019-09-27 2020-05-19 宜宾红星电子有限公司 探针及滤波器
CN111293387A (zh) * 2020-03-27 2020-06-16 深圳顺络电子股份有限公司 一种具有cte补偿的陶瓷滤波器
CN112436250A (zh) * 2020-11-13 2021-03-02 石家庄市鹿泉区麦特思电子科技有限公司 一种微波介质波导滤波器的端口耦合结构

Also Published As

Publication number Publication date
CN118235293A (zh) 2024-06-21
EP4429015A1 (en) 2024-09-11

Similar Documents

Publication Publication Date Title
TWI587582B (zh) 端子、電連接器、以及電連接器組件
US20140378072A1 (en) Radio frequency transistor and matching circuit grounding and thermal management apparatus
US20210280998A1 (en) Pcb-pinout based packaged module and method for preparing pcb-pinout based packaged module
WO2023092518A1 (zh) 介质滤波器和通信设备
EP1929645A2 (en) Enhanced dls and hcca principles
CN113594731B (zh) 连接器及电池组件
CN110919119A (zh) 5g介质滤波器装配线工装夹具及方法
CN211404696U (zh) 通信装置及低通滤波器
WO2020133181A1 (zh) Tm模滤波器及其制造方法
CN211404695U (zh) 通信装置、介质滤波器及谐振块
CN215771469U (zh) 滤波器和通信基站
CN214254841U (zh) 一种大功率盲插连接器
CN219246899U (zh) 一种耐高温大功率快插式smp负载
WO2017185237A1 (zh) 介质谐振器及应用其的介质滤波器、收发信机及基站
US20200137206A1 (en) Housing, preparation method, housing assembly, and terminal
CN211125956U (zh) 一种滤波器
JP3800998B2 (ja) 電子部品用パッケージと、それを用いた電子パッケージ部品及び電子機器
US8525730B2 (en) Multi-band printed circuit board antenna and method of manufacturing the same
US20070285496A1 (en) System and method for fast video call setup based upon earlier provided information
WO2020132915A1 (zh) 一种介质双工器
CN204857909U (zh) 一种t型介质双工器
CN204989555U (zh) 一种超薄光通讯精密连接器
US20240206129A1 (en) Heat dissipation component and associated electrical device
CN213584102U (zh) 一种小型化陶瓷介质通带滤波器
CN220895823U (zh) 一种射频通讯700m高互调低损耗小型表贴隔离器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21965251

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180104292.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2021965251

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021965251

Country of ref document: EP

Effective date: 20240606

NENP Non-entry into the national phase

Ref country code: DE