WO2023092400A1 - 换热装置、充电桩、换热控制方法和车辆 - Google Patents

换热装置、充电桩、换热控制方法和车辆 Download PDF

Info

Publication number
WO2023092400A1
WO2023092400A1 PCT/CN2021/133219 CN2021133219W WO2023092400A1 WO 2023092400 A1 WO2023092400 A1 WO 2023092400A1 CN 2021133219 W CN2021133219 W CN 2021133219W WO 2023092400 A1 WO2023092400 A1 WO 2023092400A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling source
battery pack
heat exchange
cavity
internal
Prior art date
Application number
PCT/CN2021/133219
Other languages
English (en)
French (fr)
Inventor
杨少波
陈君
Original Assignee
华为数字能源技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为数字能源技术有限公司 filed Critical 华为数字能源技术有限公司
Priority to EP21965135.3A priority Critical patent/EP4369473A1/en
Priority to CN202180050149.9A priority patent/CN116508194A/zh
Priority to PCT/CN2021/133219 priority patent/WO2023092400A1/zh
Publication of WO2023092400A1 publication Critical patent/WO2023092400A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/31Charging columns specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/66Data transfer between charging stations and vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/635Control systems based on ambient temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • H01M10/6568Liquids characterised by flow circuits, e.g. loops, located externally to the cells or cell casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/66Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells
    • H01M10/663Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells the system being an air-conditioner or an engine
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane

Definitions

  • the present application relates to the field of electric vehicles, in particular to a heat exchange device, a charging pile, a heat exchange control method, and a vehicle.
  • the battery pack in an electric vehicle mainly relies on the heat exchange device of the electric vehicle for cooling and heat dissipation.
  • the battery pack in an electric vehicle generates a lot of heat during fast charging, especially when using super-high-power fast charging.
  • Traditional batteries It is difficult for the heat exchange device to meet the temperature control requirements of the battery pack. If the heat exchange device cannot effectively cool the battery pack, the battery pack may have the risk of thermal runaway such as spontaneous combustion and explosion.
  • Embodiments of the present application provide a heat exchange device, a charging pile, a heat exchange control method, and a vehicle, which are used to reduce the risk of thermal runaway of a battery pack in an electric vehicle.
  • a heat exchange device including: a controller, at least one internal cooling source, and a first heat exchanger, the first heat exchanger is used to cool down the battery pack; the first heat exchanger includes an external cavity and at least one internal cavity, the external cavity and the internal cavity are not connected to each other; at least one internal cavity is communicated with at least one internal cooling source to flow internal cooling liquid; the external cavity is used to communicate with the outside of the heat exchange device
  • the cooling source is connected to flow external cooling liquid; the controller is used to obtain the temperature of the battery pack, control the power supply to charge the battery pack according to the temperature of the battery pack, and control the operation of at least one internal cooling source and the external cooling source.
  • the heat exchange device provided by the embodiment of the present application includes at least one internal cooling source and a heat exchanger in contact with the battery pack in the heat exchange device, and the heat exchanger includes an external cavity and at least one internal cavity that are not connected to each other body, at least one internal cavity is communicated with at least one internal cooling source to flow internal cooling fluid, the external cavity is used to communicate with an external cooling source outside the heat exchange device to flow external cooling fluid, and the internal cooling source is assisted by the external cooling source Cool down the battery pack to reduce the risk of thermal runaway of the battery pack.
  • At least one internal cooling source includes at least one of a water cooling source, an air conditioner, and a first water pump; wherein, the water cooling source refers to a device that uses cooling liquid to exchange heat with the outside through heat convection; the air conditioner refers to a device using The compressor is a device that causes the cooling liquid to change from gas to liquid to realize heat exchange.
  • the application does not limit the type and quantity of internal cooling sources.
  • At least one internal cavity includes a first cavity
  • at least one internal cooling source includes a water cooling source, an air conditioner, and a second heat exchanger
  • the water cooling source and the air conditioner are respectively connected to the second heat exchanger through pipes communicated, and the water cooling source is also communicated with the first cavity.
  • the first cavity transfers part of the heat generated by the battery pack to the second heat exchanger, and then transfers the heat to the air conditioner in the second heat exchanger, and the first cavity transfers the other part of the heat generated by the battery pack to the water cooling source.
  • At least one internal cavity includes a first cavity
  • at least one internal cooling source includes a water cooling source, an air conditioner, and a second heat exchanger
  • the water cooling source, the air conditioner, and the first cavity are connected to each other through pipes, respectively.
  • the second heat exchanger communicates.
  • the first cavity transfers the heat generated by the battery pack to the second heat exchanger
  • the second heat exchanger transfers the heat to the water cooling source and the air conditioner.
  • At least one internal cavity includes a first cavity and a second cavity
  • at least one internal cooling source includes a water cooling source and an air conditioner
  • the air conditioner communicates with the first cavity
  • the water cooling source communicates with the second cavity body connected.
  • the first cavity transfers the heat generated by the battery pack to the air conditioner
  • the second cavity transfers the heat generated by the battery pack to the water cooling source.
  • At least one internal cavity further includes a third cavity, and the first water pump communicates with the third cavity.
  • the first water pump is used to drive the cooling liquid to flow in the first heat exchanger to achieve uniform temperature of the battery pack.
  • the first heat exchanger includes a first plate-shaped structure in contact with the battery pack, at least one internal cavity and an external cavity are located in the first plate-shaped structure, and at least one internal cavity and an external cavity are located in the first plate-shaped structure.
  • the cavities can be distributed at intervals so as to cool down the battery pack evenly.
  • At least one of the inner cavity and the outer cavity is a honeycomb structure, which can increase the heat exchange area while ensuring the strength of the first plate structure.
  • the first heat exchanger includes a first plate-shaped structure and a second plate-shaped structure in contact with the battery pack, at least one internal cavity is located in the first plate-shaped structure, and the external cavity is located in the second plate-shaped structure.
  • the structural design is simpler.
  • At least one of the inner cavity and the outer cavity can be a honeycomb structure, which can increase the heat exchange area while ensuring the strength of the first plate structure and the second plate structure.
  • At least one internal cavity is used for accommodating a battery pack. Since the battery pack is directly immersed in at least one internal cavity of the internal coolant, the internal coolant conducts heat better than air, thus enabling better heat dissipation.
  • the controller is specifically configured to: when the maximum temperature of the battery pack is greater than or equal to a first threshold, control the power supply to stop charging the battery pack, and control the operation of at least one internal cooling source and the external cooling source; Or, when the maximum temperature of the battery pack is greater than or equal to the second threshold and less than the first threshold, control the power supply to charge the battery pack, and control at least one internal cooling source and external cooling source to run; or, when the maximum temperature of the battery pack is less than When the second threshold is reached, the power supply is controlled to charge the battery pack, at least one internal cooling source is controlled to stop running, and the external cooling source is controlled to run. That is, the battery pack is preferentially cooled by an external cooling source to reduce the load of at least one internal cooling source.
  • the controller is specifically configured to: when the maximum temperature of the battery pack is greater than or equal to a first threshold, control the power supply to stop charging the battery pack, and control at least one internal cooling source and an external cooling source to operate, And obtain the calorific value of the battery pack; or, when the calorific value of the battery pack is greater than the cooling capacity of the external cooling source, control at least one internal cooling source and the operation of the external cooling source; or, when the calorific value of the battery pack is less than or equal to the external cooling source
  • the cooling capacity of the source is controlled, at least one internal cooling source is controlled to stop running, and the external cooling source is controlled to run. That is, the battery pack is preferentially cooled by an external cooling source to reduce the load of at least one internal cooling source.
  • the second aspect provides a heat exchange control method, which is applied to the heat exchange device described in the first aspect and any one of its implementations.
  • the method includes: obtaining the temperature of the battery pack, and controlling the power supply pair according to the temperature of the battery pack.
  • the battery pack is charged and the operation of at least one internal cooling source in the heat exchange device and an external cooling source outside the heat exchange device is controlled.
  • the power supply is controlled to charge the battery pack according to the temperature of the battery pack, and the operation of at least one internal cooling source in the heat exchange device and an external cooling source other than the heat exchange device is controlled, including: when the battery pack When the highest temperature of the battery pack is greater than or equal to the first threshold, control the power supply to stop charging the battery pack, and control at least one internal cooling source and external cooling source to run; or, when the highest temperature of the battery pack is greater than or equal to the second threshold and less than the first threshold threshold, control the power supply to charge the battery pack, and control at least one internal cooling source and external cooling source to operate; or, when the maximum temperature of the battery pack is less than the second threshold, control the power supply to charge the battery pack, and control at least one internal cooling source The source stops running, and the external cooling source is controlled to run.
  • the power supply is controlled to charge the battery pack according to the temperature of the battery pack, and the operation of at least one internal cooling source in the heat exchange device and an external cooling source other than the heat exchange device is controlled, including: when the battery pack When the highest temperature is greater than or equal to the first threshold, control the power supply to stop charging the battery pack, and control at least one internal cooling source and external cooling source to run, and obtain the heat generation of the battery pack; or, when the heat generation of the battery pack is greater than the external
  • the cooling capacity of the cooling source is controlled, at least one internal cooling source and external cooling source are controlled to operate; or, when the calorific value of the battery pack is less than or equal to the cooling capacity of the external cooling source, at least one internal cooling source is controlled to stop running, and the external cooling source is controlled source run.
  • a charging pile including a controller, a power supply, an external cooling source, a power supply interface, a communication interface, and a heat exchange interface
  • the controller is used to receive control commands from the vehicle through the communication interface, and control the power supply according to the control commands Charge the battery pack of the vehicle through the power supply interface, and control the external cooling source to exchange coolant with the vehicle through the heat exchange interface according to the control command, and the coolant is used to cool the battery pack.
  • the charging pile provided in the embodiment of the present application helps cool down the battery pack through an external cooling source, reducing the risk of thermal runaway of the battery pack.
  • the controller is further configured to send the cooling capacity of the external cooling source to the vehicle through the communication interface. In order for the vehicle to determine whether the external cooling source is required to operate and whether the external cooling source is required to run at full capacity.
  • At least one of the power supply interface, the communication interface and the heat exchange interface are located in different connectors. It can prevent the coolant flowing out of the heat exchange interface from contacting the power supply interface or communication interface, making the charging process safer.
  • a heat exchange control method which is applied to the charging pile as described in the third aspect and any one of its implementation manners.
  • the method includes: receiving a control command from the vehicle through a communication interface; controlling the power supply through the The power supply interface charges the battery pack of the vehicle, and controls the external cooling source to exchange coolant with the vehicle through the heat exchange interface according to the control command, and the coolant is used to cool down the battery pack.
  • the method further includes: sending the cooling capacity of the external cooling source to the vehicle.
  • a vehicle comprising the heat exchange device and the battery pack as described in the first aspect and any embodiment thereof, the first heat exchanger in the heat exchange device is in contact with the battery pack.
  • a computer-readable storage medium In a sixth aspect, a computer-readable storage medium is provided. Instructions are stored in the computer-readable storage medium. When the instructions are executed on the controller, the controller executes the instructions described in the second aspect and any implementation thereof. or, perform the method as described in the fourth aspect and any implementation manner thereof.
  • a computer program product containing instructions.
  • the controller executes the method as described in the second aspect and any implementation manner thereof, or executes the method described in the fourth aspect. Aspects and methods described in any embodiment thereof.
  • the fifth aspect and any implementation thereof refer to the technical effects of the first aspect and any implementation thereof.
  • the technical effect of the fourth aspect refer to the technical effect of the third aspect and any implementation thereof.
  • the technical effect of the sixth aspect and any implementation thereof and the technical effect of the seventh aspect and any implementation thereof refer to the technical effect of the first aspect and any implementation thereof, or refer to the third aspect and any implementation thereof The technical effect of the implementation manner will not be repeated here.
  • FIG. 1 is a schematic structural diagram of a heat exchange system provided in an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of a heat exchange device provided in an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a first heat exchanger provided in an embodiment of the present application.
  • Fig. 4 is a schematic structural diagram of another first heat exchanger provided in the embodiment of the present application.
  • Fig. 5 is a schematic structural diagram of another first heat exchanger provided in the embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of at least one internal cooling source provided by an embodiment of the present application.
  • Fig. 7 is a schematic structural diagram of another at least one internal cooling source provided by the embodiment of the present application.
  • FIG. 8 is a schematic diagram of a conduction pipeline of at least one internal cooling source provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of another conduction pipeline of at least one internal cooling source provided by the embodiment of the present application.
  • Fig. 10 is a schematic structural diagram of another at least one internal cooling source provided by the embodiment of the present application.
  • Fig. 11 is a schematic structural diagram of another at least one internal cooling source provided by the embodiment of the present application.
  • Fig. 12 is a schematic flow chart of a heat exchange control method provided in an embodiment of the present application.
  • Fig. 13 is a schematic flow chart of another heat exchange control method provided by the embodiment of the present application.
  • Words such as “exemplary” or “for example” involved in the embodiments of the present application are used to represent examples, illustrations or descriptions. Any embodiment or design described herein as “exemplary” or “for example” is not to be construed as preferred or advantageous over other embodiments or designs. Rather, the use of words such as “exemplary” or “such as” is intended to present related concepts in a concrete manner.
  • Coupled and “connection” involved in the embodiments of the present application should be understood in a broad sense, for example, they can refer to physical direct connections, or they can refer to indirect connections realized through electronic devices, such as through resistance, inductance, capacitance or other electronic devices. device-implemented connections.
  • the heat exchange device of the traditional battery pack mainly relies on the air conditioner to cool the battery pack, which increases the noise of the air conditioner and reduces the cooling effect of the passenger compartment.
  • the heat exchange device of the traditional battery pack has limited heat dissipation capacity under severe working conditions, and the battery pack tends to accumulate heat. To ensure safety, the charging power will be reduced, resulting in long charging time and affecting the driving experience.
  • the heat exchange device, charging pile, heat exchange control method, and vehicle provided in the embodiments of the present application help cool the battery pack in the electric vehicle by externally connecting the cooling source in the charging pile when charging the battery pack. , thereby reducing the risk of thermal runaway of the battery pack in electric vehicles.
  • the design specifications of the heat exchange device in the electric vehicle are reduced, the production cost is reduced, and the heat dissipation requirements of future fast charging are met.
  • the battery pack is cooled mainly by the cooling source in the charging pile, the noise of the air conditioner on the electric vehicle can be reduced, and the influence on the cooling effect of the air conditioner during charging can be reduced.
  • the cooling effect of the cooling source in the charging pile is better than that of the heat exchange device installed on the car, the charging power will not be reduced, thereby shortening the charging time and improving the driving experience.
  • the embodiment of the present application provides a heat exchange system 10 including a vehicle 11 and a charging pile 12 .
  • the vehicle 11 includes a battery pack 112 and a heat exchange device 111 in contact with the battery pack 112 .
  • the charging post 12 includes a first controller 120 , a power source 121 , an external cooling source 122 and at least one connector 123 .
  • the external cooling source 122 may be a water cooling source or an air conditioner.
  • the charging pile 12 can be connected to the vehicle 11 through at least one connector 123.
  • At least one connector 123 includes a power supply interface 1231, a communication interface 1232, and a heat exchange interface 1233.
  • At least one of the power supply interface 1231 and the communication interface 1232 is connected to the heat exchange interface 1233. It can be located in the same connector 123 or in different connectors 123.
  • the power supply interface 1231 or the communication interface 1232 are in contact, making the charging process safer.
  • the first controller 120 in the charging pile 12 is connected to the power supply 121 and the external cooling source 122 respectively, and the first controller 120 is also connected to the heat exchange device 111 through the communication interface 1232; the power supply 121 in the charging pile 12 is connected through the power supply interface 1231 is connected to the battery pack 112 ; the external cooling source 122 in the charging pile 12 is connected to the heat exchange device 111 in the vehicle 11 through the heat exchange interface 1233 .
  • the first controller 120 can execute the heat exchange control method of the embodiment of the present application, receive a control command from the heat exchange device 111 in the vehicle 11 through the communication interface 1232, and control the power supply 121 to supply power to the vehicle 11 through the power supply interface 1231 according to the control command,
  • the battery pack 112 of the vehicle 11 is charged, and, according to the control command, the external cooling source 122 is controlled to exchange coolant with the heat exchange device 111 in the vehicle 11 through the heat exchange interface 1233, thereby helping the battery pack 112 when charging the battery pack 112 112 cooling down.
  • the heat exchange device 111 includes: a second controller 23 , at least one internal cooling source 22 and a first heat exchanger 21 in contact with the battery pack 112 .
  • the at least one internal cooling source 22 may include at least one of an air conditioner 221 , a water cooling source 222 and a first water pump 223 .
  • the water-cooling source 222 refers to a device that uses cooling fluid to exchange heat with the outside through heat convection (absorbs heat at a high temperature and releases heat at a low temperature), and is suitable for scenarios where the temperature of the battery pack 112 is higher than the ambient temperature;
  • the air conditioner 221 refers to a device that uses compression It is a device that makes the cooling liquid produce gas-liquid changes to realize heat exchange (absorb heat at low temperature and release heat at high temperature), which is not only applicable to the scene where the temperature of the battery pack 112 is higher than the ambient temperature, but also applicable to the scenario where the ambient temperature is higher than The scene of the temperature of the battery pack 112 ; the first water pump 223 is used to drive the cooling liquid to flow in the first heat exchanger 21 to achieve uniform temperature of the battery pack 112 .
  • the first heat exchanger 21 includes at least one set of internal interfaces (such as the first inlet IN1 and the first outlet OUT1), external interfaces (such as the second inlet IN2 and the second outlet OUT2), and external chambers that are not connected to each other.
  • Body 212 and at least one internal cavity 211 that is, there is no communication between the at least one internal cavity 211, and there is no communication between the external cavity 212 and at least one internal cavity 211, that is to say, each cavity is independent of.
  • the interfaces involved in this application (including imports and exports) have no direction, that is, imports can be used as exports, and exports can be used as imports.
  • At least one internal cavity 211 communicates with at least one internal cooling source 22 through at least one set of internal ports to flow internal cooling liquid, that is, at least one internal cooling source 22 communicates with at least one internal cooling liquid of the first heat exchanger 21 through the flowing internal cooling liquid.
  • the cavity 211 performs heat exchange, so as to reduce the temperature of the battery pack 112 .
  • the external cavity 212 communicates with the external cooling source 122 outside the heat exchange device 111 (located in the charging pile 12 ) through the external interface and the one-way valve 24 to flow the external cooling liquid, that is, the external cooling source 122 communicates with the external cooling liquid through the flowing external cooling liquid.
  • the cavity 212 performs heat exchange to cool down the battery pack 112 .
  • the one-way valve 24 is used to adjust the flow of the external cooling liquid, which is not shown in other drawings for simplification of the drawings. Since the external cavity 212 and the at least one internal cavity 211 are not connected to each other, the internal cooling liquids and the internal cooling liquid and the external cooling liquid are physically isolated, and the cooling liquids will not pollute each other.
  • the second controller 23 can execute the heat exchange control method of the embodiment of the present application, communicate with the first controller 120 (for example, send a control command to the first controller 120), and control the power supply 121 to the battery pack 112 through the first controller 120. Charging is performed, the operation of at least one internal cooling source 22 is controlled, and the operation of the external cooling source 122 is controlled by the first controller 120 , so as to cool down the temperature of the battery pack 112 .
  • FIG. 3 shows a structure of a first heat exchanger 21, the first heat exchanger 21 includes a first plate structure 31 in contact with the battery pack 112, at least one set of internal interfaces (such as a first inlet IN1 and the first outlet OUT1) and external interfaces (such as the second inlet IN2 and the second outlet OUT2) are arranged on the first plate structure 31, and at least one internal cavity 211 and external cavity 212 are located on the first plate structure 31 Among them, at least one inner cavity 211 and outer cavity 212 may be distributed at intervals so as to cool down the battery pack 112 evenly. At least one of the inner cavity 211 and the outer cavity 212 shown in FIG. 3 can be a honeycomb structure, which can increase the heat exchange area while ensuring the strength of the first plate structure 31 .
  • FIG. 4 shows another structure of the first heat exchanger 21, the first heat exchanger 21 includes a first plate structure 41 and a second plate structure 42 in contact with the battery pack 112, at least one The internal cavity 211 is located in the first plate-shaped structure 41, at least one set of internal interfaces (such as the first inlet IN1 and the first outlet OUT1) is arranged on the first plate-shaped structure 41, and the external cavity 212 is located in the second plate-shaped structure In 42 , the external interfaces (such as the second inlet IN2 and the second outlet OUT2 ) are arranged on the second plate structure 42 . At least one of the inner cavity 211 and the outer cavity 212 shown in FIG.
  • the structure of the first heat exchanger 21 shown in FIG. Simple can be a honeycomb structure, which can increase the heat exchange area while ensuring the strength of the first plate structure 31 and the second plate structure 42 .
  • the structure of the first heat exchanger 21 shown in FIG. Simple can be a honeycomb structure, which can increase the heat exchange area while ensuring the strength of the first plate structure 31 and the second plate structure 42 .
  • FIG. 5 shows yet another structure of the first heat exchanger 21, the first heat exchanger 21 is a box-shaped shell hollow structure, and the shell of the first heat exchanger 21 includes side plates 51, The bottom plate 52 and the top plate (not shown in the figure), and the side plate 51 , the bottom plate 52 and the top plate are closed to form at least one internal cavity 211 .
  • At least one set of internal interfaces (such as the first inlet IN1 and the first outlet OUT1 ) communicate with at least one internal cavity 211 through any side of the casing (such as the side plate 51 , the bottom plate 52 or the top plate).
  • the battery pack 112 (including the battery cell 53 , the tab 54 and the copper plate 55 ) is located in at least one internal cavity 211 and immersed in an internal cooling liquid, which is an insulating liquid. At least one side of the housing (ie at least one of the side plate 51, the bottom plate 52 and the top plate) is hollow, thereby forming an external cavity 212, and the external interface (such as the second inlet IN2 and the second outlet OUT2) is connected through the housing External cavity 212 . Since the battery pack 112 is directly immersed in the internal cooling liquid, the heat conduction effect of the internal cooling liquid is better than that of air, so better heat dissipation can be achieved.
  • At least one internal cooling source 22 Several possible structures of the at least one internal cooling source 22 are described below as examples. It should be noted that any structure of the following at least one internal cooling source 22 can be combined with any structure of the first heat exchanger 21 described above:
  • FIG. 6 shows a structure of at least one internal cooling source 22 , including a water cooling source, an air conditioner, a second heat exchanger 64 and a second water pump 68 .
  • At least one inner cavity of the first heat exchanger 21 includes a first cavity 2111 .
  • the water cooling source, the air conditioner and the first cavity 2111 communicate with the second heat exchanger 64 through pipes, wherein the first cavity 2111 communicates with the second heat exchanger 64 through at least one set of internal interfaces (such as the first inlet IN1 and the first outlet OUT1).
  • the heat exchanger 64 communicates.
  • the first cavity 2111 transfers the heat generated by the battery pack 112 to the second heat exchanger 64 , and transfers the heat to the water cooling source and the air conditioner in the second heat exchanger 64 .
  • the first heat exchanger 21 may adopt the structure shown in FIG. 5 .
  • the structure of the at least one internal cooling source 22 and the first heat exchanger 21 can avoid mutual contamination between various cooling liquids.
  • the water-cooling source includes a radiator 62, a first fan 66 and a third water pump 69, and the radiator 62 communicates with the second heat exchanger 64 through the third water pump 69 to flow cooling liquid (such as water), thereby realizing that the radiator 62 and the second heat exchanger 64 communicate with each other.
  • the heat exchange of the second heat exchanger 64 and the first fan 66 are used to accelerate the heat dissipation of the radiator 62 by accelerating air convection.
  • the air conditioner includes a condenser 61, a compressor 65, a first expansion valve 70, and optionally an evaporator 63, a second expansion valve 71, and a second fan 67.
  • the evaporator 63 and the second fan 67 are usually located at The cockpit is used to cool the cockpit.
  • the condenser 65 communicates with the evaporator 63 through the compressor 65 and the second expansion valve 71 to flow cooling liquid (refrigerant at this time), and the condenser 65 also communicates with the second heat exchanger through the compressor 65 and the first expansion valve 70 64 is connected to flow coolant, a part of the refrigerant absorbs heat and vaporizes in the evaporator 63, and the other part of the refrigerant absorbs heat and vaporizes in the second heat exchanger 64, and the vaporized refrigerant is compressed by the compressor 65 and then in the condenser 61 is liquefied to release heat, and flows back to the evaporator 63 and the second heat exchanger 64 again.
  • the second heat exchanger 64 is also communicated with the first cavity 2111 through the second water pump 68 to flow cooling liquid.
  • FIG. 7 shows another structure of at least one internal cooling source 22 , including a water cooling source, an air conditioner, and a second heat exchanger 64 .
  • At least one inner cavity of the first heat exchanger 21 includes a first cavity 2111 .
  • the water-cooling source and the air conditioner are respectively communicated with the second heat exchanger 64 through pipes, and the water-cooling source is also communicated with the first cavity 2111, wherein the first cavity 2111 passes through at least one set of internal interfaces (such as the first inlet IN1 and the first outlet OUT1) is connected to the water cooling source.
  • the first cavity 2111 transfers part of the heat generated by the battery pack 112 to the second heat exchanger 64 , and transfers the heat to the air conditioner in the second heat exchanger 64 , and the first cavity 2111 transfers the other part of the heat generated by the battery pack 112 Passed to the water cooling source.
  • the water cooling source includes a radiator 62, a first fan 66, a second water pump 68 and a three-way valve 72, and the radiator 62 and the first cavity 2111 are connected to the second heat exchanger 64 through the three-way valve 72 and the second water pump 68. communicated to flow cooling liquid, so as to realize the heat exchange between the radiator 62 , the second heat exchanger 64 and the first heat exchanger 21 , and the first fan 66 is used to accelerate the heat dissipation of the radiator 62 through air convection.
  • the air conditioner please refer to the relevant description in FIG. 6 , and will not be repeated here.
  • the second controller 23 controls the three-way valve 72 to connect the pipeline between the second heat exchanger 64 and the first heat exchanger 21, and controls the first expansion valve 70 to connect the condenser 61
  • the pipeline between the second heat exchanger 64 and the second heat exchanger 64 can form two loops as shown by the thick solid line in FIG.
  • the load of at least one internal cooling source 22 is reduced, for example, the load and noise of the air conditioner are reduced, so as to improve the comfort of the passenger compartment.
  • the second controller 23 controls the three-way valve 72 to connect the pipeline between the second heat exchanger 64 and the first heat exchanger 21, and controls the first expansion valve 70 to connect the condenser 61 If the pipeline between the second heat exchanger 64 and the second heat exchanger 64 is closed, a loop as shown by the thick solid line in FIG.
  • the cooling of the passenger compartment by the air conditioner can reduce the load and noise of the air conditioner and improve the comfort of the passenger compartment.
  • Fig. 10 shows another structure of at least one internal cooling source 22, including a water cooling source and an air conditioner.
  • At least one inner cavity of the first heat exchanger 21 includes a first cavity 2111 and a second cavity 2112 .
  • the air conditioner communicates with the first cavity 2111 through at least one set of internal interfaces (such as the first inlet IN1 and the first outlet OUT1), and the water cooling source communicates with the second cavity through at least one set of internal interfaces (such as the third inlet IN3 and the third outlet OUT3).
  • the cavities 2112 communicate.
  • the first cavity 2111 transfers the heat generated by the battery pack 112 to the air conditioner
  • the second cavity 2112 transfers the heat generated by the battery pack 112 to the water cooling source.
  • the water cooling source includes a radiator 62, a first fan 66, a second water pump 68 and a three-way valve 72, and the radiator 62 and the first cavity 2111 communicate with the second cavity 2112 through the three-way valve 72 and the second water pump 68
  • the cooling fluid flows to realize the heat exchange between the radiator 62 and the first heat exchanger 21 , and the first fan 66 is used to accelerate the heat dissipation of the radiator 62 through air convection.
  • the air conditioner includes a condenser 61, a compressor 65, a first expansion valve 70, and optionally an evaporator 63, a second expansion valve 71, and a second fan 67.
  • the evaporator 63 and the second fan 67 are usually located at The cockpit is used to cool the cockpit.
  • the condenser 65 communicates with the evaporator 63 through the compressor 65 and the second expansion valve 71 to flow cooling liquid (refrigerant at this time), and the condenser 65 also communicates with the first cavity 2111 through the compressor 65 and the first expansion valve 70 Connected to flow cooling liquid, a part of the refrigerant absorbs heat and vaporizes in the evaporator 63, and another part of the refrigerant absorbs heat and vaporizes in the first cavity 2111, and the vaporized refrigerant is compressed by the compressor 65 and then liquefied in the condenser 61 To dissipate heat, it flows back to the evaporator 63 and the first cavity 2111 again.
  • FIG. 11 shows yet another structure of at least one internal cooling source 22 , including a water cooling source, an air conditioner and a first water pump 223 .
  • At least one internal cavity of the first heat exchanger 21 includes a first cavity 2111 , a second cavity 2112 and a third cavity 2113 .
  • the air conditioner communicates with the first cavity 2111 through at least one set of internal interfaces (such as the first inlet IN1 and the first outlet OUT1), and the water cooling source communicates with the second cavity through at least one set of internal interfaces (such as the third inlet IN3 and the third outlet OUT3).
  • the cavity 2112 communicates, and the first water pump 223 communicates with the third cavity 2113 through at least one set of internal interfaces (for example, a fourth inlet IN4 and a fourth outlet OUT4 ).
  • the first cavity 2111 transfers the heat generated by the battery pack 112 to the air conditioner
  • the second cavity 2112 transfers the heat generated by the battery pack 112 to the water cooling source
  • the first water pump 223 drives the cooling liquid to flow in the first heat exchanger 21 to The uniform temperature of the battery pack 112 is realized.
  • the water-cooling source includes a radiator 62, a first fan 66, and a second water pump 68.
  • the radiator 62 and the first cavity 2111 communicate with the second cavity 2112 through the second water pump 68 to flow cooling liquid, thereby realizing the cooling of the radiator 62.
  • Exchange heat with the first heat exchanger 21 , and the first fan 66 is used to accelerate heat dissipation of the radiator 62 through air convection.
  • the air conditioner refer to the related description in FIG. 10 , which will not be repeated here.
  • the first water pump 223 in FIG. 11 is also applicable to the scenarios in FIGS. 6-10 .
  • the following exemplarily describes how the second controller 23 controls the power supply 121 to charge the battery pack 112 through the first controller 120, controls the operation of at least one internal cooling source 22, and controls the external cooling source 122 through the first controller 120. run to cool down the battery pack 112.
  • the second controller 23 and the first controller 120 can implement the following heat exchange control method:
  • the second controller 23 controls the power supply 121 to stop charging the battery pack 112, and controls at least one internal cooling source 22 and external cooling source 122 to operate.
  • Temperature sensors are installed at multiple positions of the battery pack 112 , and the second controller 23 can acquire the maximum temperature of the battery pack 112 in real time through these sensors.
  • the second controller 23 controls at least one internal cooling source 22, and send a control command to the first controller 120 in the charging pile 12, and the first controller 120 controls the operation of the external cooling source 122 according to the control command.
  • the second controller 23 can control at least one internal cooling source 22 to run at full load, and send a control command to the first controller 120 in the charging pile 12, and the first controller 120 controls the external cooling source according to the control command. 122 at full capacity.
  • the second controller 23 controlling at least one internal cooling source 22 to operate at full load may include at least one of the following: for example, the second controller 23 controls the air conditioner, the water cooling source and the first water pump to all operate, and controls the air conditioner to operate at maximum power, Control the three-way valve of the water-cooling source to the maximum opening, control the first water pump, the second water pump, and the third water pump mentioned above to the maximum speed, and control the full-load operation of the external cooling source 122 includes controlling the maximum opening of the one-way valve.
  • the external cooling source 122 operates at maximum power, etc., so as to cool down the battery pack 112 as soon as possible.
  • the second controller 23 controls the power supply 121 to charge the battery pack 112, and controls at least one internal cooling source 22 and an external cooling source 122 run.
  • the second controller 23 sends a control command to the first controller 120 in the charging pile 12, and the first controller 120 controls the power supply 121 to charge the battery according to the control command. Group 112 is charged.
  • the second controller 23 determines (for example, looks up a table) the maximum charging power allowed at the current moment according to the current maximum temperature of the battery pack 112, and sends a control command to the first controller 120 in the charging pile 12, and the first controller 120 The controller 120 controls the charging power of the power source 121 according to the control command.
  • the second controller 23 After starting to charge the battery pack 112, if the maximum temperature of the battery pack 112 is still high, the second controller 23 still controls the operation of at least one internal cooling source 22 and the external cooling source 122 to cool down the battery pack 112.
  • the second controller 23 controls at least one internal cooling source 22 and the external cooling source 122 to run at full load, so as to cool the battery as soon as possible. Group 112 is cooling down.
  • the second controller 23 controls the at least one internal cooling source 22 and the external cooling source 122 to run at full load, refer to the description of step S101.
  • the second controller 23 controls at least one internal cooling source 22 to operate at a partial load, and controls the external cooling source 122 to operate at full load, which can
  • the load of at least one internal cooling source 22 is reduced, for example, the load and noise of the air conditioner are reduced, so as to improve the comfort of the passenger compartment.
  • the second controller 23 controlling at least one internal cooling source 22 to operate at part load may include at least one of the following: Load operation, control the air conditioner to operate at a non-maximum power, control the three-way valve of the water cooling source to not be at the maximum opening, and control at least one of the first water pump, the second water pump, and the third water pump to not be at the maximum speed, etc.
  • the second controller 23 controls the power source 121 to charge the battery pack 112, controls at least one internal cooling source 22 to stop running, and controls the external cooling source 122 to run.
  • the second controller 23 can control at least one internal cooling source 22 to stop running, and control the external cooling source 122 to run at part load, and the second controller 23 can send
  • the first controller 120 in the charging pile 12 sends a control command, and the first controller 120 controls the external cooling source 122 to operate at a partial load according to the control command, for example, controls the external cooling source 122 not to operate at maximum power, and controls the external cooling source 122 to operate at a partial load. 122 intervals to run, control the one-way valve not to the maximum opening, etc., so as to achieve the purpose of energy saving.
  • This step can release the load of at least one internal cooling source 22, and the at least one internal cooling source 22 can stop running to reduce noise, or the load of at least one internal cooling source 22 can be completely used for the cooling of the passenger compartment to improve the comfort of the passenger compartment.
  • step S101 again after step S103 is executed.
  • the second controller 23 may execute the following heat exchange control method:
  • the second controller 23 controls the power supply 121 to stop charging the battery pack 112, controls the operation of at least one internal cooling source 22 and the external cooling source 122, and obtains The calorific value q of the battery pack 112 .
  • the calorific value of the battery pack 112 is also different.
  • the relationship between the charging power and the calorific value is calibrated to obtain a table.
  • the second controller 23 can determine the battery pack 112 at different charging powers by looking up the table. of calorific value. Refer to step S101 for other content.
  • the second controller 23 controls the power supply 121 to charge the battery pack 112, and controls at least one internal cooling source 22 and the external cooling source 122 to operate.
  • the operating state and refrigerating capacity of at least one internal cooling source 22 can be calibrated to obtain a table when the electric vehicle is generated, and the second controller 23 can determine that at least one internal cooling source 22 is in different operating states (for example, full capacity) by looking up the table. load or part load).
  • the second controller 23 can obtain the cooling capacity of the external cooling source 122 under different operating states by communicating with the first controller 120 in the charging post 12 .
  • the second controller 23 sends a control command to the first controller 120 in the charging pile 12, and the first controller 120 controls the power supply according to the control command 121 charges the battery pack 112 .
  • the second controller 23 determines (for example, looks up a table) the maximum charging power allowed at the current moment according to the current maximum temperature of the battery pack 112, and sends a control command to the first controller 120 in the charging pile 12, and the first controller 120 The controller 120 controls the charging power of the power source 121 according to the control command.
  • the second controller 23 may control at least One internal cooling source 22 runs at full capacity and controls the external cooling source 122 to run at full capacity.
  • the second control The controller 23 can control at least one internal cooling source 22 to operate at partial load, and control the external cooling source 122 to operate at full load.
  • the battery pack 112 is cooled preferentially by the external cooling source 122 to reduce the load of at least one internal cooling source 22 . Refer to step S102 for other content.
  • the second controller 23 may control at least one internal cooling source 22 to stop operating, and control the external cooling source 122 to operate at partial load. For this step, refer to step S103.
  • the heat exchange device, the charging pile, the heat exchange control method, and the vehicle provided in the embodiments of the present application include at least one internal cooling source and a heat exchanger in contact with the battery pack in the heat exchange device.
  • a connected external cavity and at least one internal cavity, the at least one internal cavity communicates with at least one internal cooling source to flow the internal cooling liquid, and the external cavity is used to communicate with the external cooling source outside the heat exchange device to flow the external cooling liquid , through the external cooling source to help the internal cooling source to cool down the battery pack, reducing the risk of thermal runaway of the battery pack.
  • the embodiment of the present application also provides a computer-readable storage medium, where instructions are stored in the computer-readable storage medium, and when the instructions are executed on the controller, the controller executes the method in FIG. 12 or FIG. 13 .
  • the embodiment of the present application also provides a computer program product including instructions, and when the instructions are executed on the controller, the controller is made to execute the method in FIG. 12 or FIG. 13 .
  • sequence numbers of the above-mentioned processes do not mean the order of execution, and the execution order of the processes should be determined by their functions and internal logic, and should not be used in the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • modules and algorithm steps of the examples described in conjunction with the embodiments disclosed herein can be implemented by electronic hardware, or a combination of computer software and electronic hardware. Whether these functions are executed by hardware or software depends on the specific application and design constraints of the technical solution. Skilled artisans may use different methods to implement the described functions for each specific application, but such implementation should not be regarded as exceeding the scope of the present application.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the modules is only a logical function division. In actual implementation, there may be other division methods.
  • multiple modules or components can be combined or May be integrated into another device, or some features may be omitted, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or modules may be in electrical, mechanical or other forms.
  • the modules described as separate components may or may not be physically separated, and the components displayed as modules may or may not be physical modules, that is, they may be located in one device, or may be distributed to multiple devices. Part or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional module in each embodiment of the present application may be integrated into one device, or each module may physically exist separately, or two or more modules may be integrated into one device.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • a software program it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on the computer, the processes or functions according to the embodiments of the present application will be generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website, computer, server, or data center Transmission to another website site, computer, server or data center via wired (such as coaxial cable, optical fiber, Digital Subscriber Line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or may be a data storage device including one or more servers, data centers, etc. that can be integrated with the medium.
  • the available medium may be a magnetic medium (such as a floppy disk, a hard disk, or a magnetic tape), an optical medium (such as a DVD), or a semiconductor medium (such as a solid state disk (Solid State Disk, SSD)), etc.
  • a magnetic medium such as a floppy disk, a hard disk, or a magnetic tape
  • an optical medium such as a DVD
  • a semiconductor medium such as a solid state disk (Solid State Disk, SSD)

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Automation & Control Theory (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种换热装置(111)、充电桩(12)、换热控制方法和车辆(11),涉及电动车领域,用于降低电动车中的电池组(112)的热失控风险。换热装置(111)包括:第二控制器(23)、至少一个内部冷却源(22)以及第一换热器(21),第一换热器(21)用于对电池组(112)进行降温;第一换热器(21)包括外部腔体(212)和至少一个内部腔体(211),外部腔体(212)和内部腔体(211)相互之间无连通;至少一个内部腔体(211)与至少一个内部冷却源(22)连通以流动内部冷却液;外部腔体(212)用于与换热装置(111)外部的外部冷却源(122)连通以流动外部冷却液;第二控制器(23)用于获取电池组(112)的温度,根据电池组(112)的温度控制电源(121)对电池组(112)充电,并控制至少一个内部冷却源(22)和外部冷却源(122)的运行。

Description

换热装置、充电桩、换热控制方法和车辆 技术领域
本申请涉及电动车领域,尤其涉及一种换热装置、充电桩、换热控制方法和车辆。
背景技术
目前,电动车中的电池组主要依靠电动车自带的换热装置进行冷却散热,电动车中的电池组在进行快速充电时发热量很大,特别是在采用超大功率快充时,传统电池的换热装置很难满足电池组温控需求,如果换热装置无法对电池组有效进行降温,电池组可能产生自燃爆炸等热失控风险。
发明内容
本申请实施例提供一种换热装置、充电桩、换热控制方法和车辆,用于降低电动车中的电池组的热失控风险。
为达到上述目的,本申请的实施例采用如下技术方案:
第一方面,提供了一种换热装置,包括:控制器、至少一个内部冷却源以及第一换热器,第一换热器用于对电池组进行降温;第一换热器包括外部腔体和至少一个内部腔体,外部腔体和内部腔体相互之间无连通;至少一个内部腔体与至少一个内部冷却源连通以流动内部冷却液;外部腔体用于与换热装置外部的外部冷却源连通以流动外部冷却液;控制器用于获取电池组的温度,根据电池组的温度控制电源对电池组充电,并控制至少一个内部冷却源和外部冷却源的运行。
本申请实施例提供的换热装置,在换热装置中包括至少一个内部冷却源以及与电池组接触的换热器,换热器中包括相互之间无连通的外部腔体和至少一个内部腔体,至少一个内部腔体与至少一个内部冷却源连通以流动内部冷却液,外部腔体用于与换热装置外部的外部冷却源连通以流动外部冷却液,通过外部冷却源来帮助内部冷却源对电池组进行降温,降低电池组热失控风险。
在一种可能的实施方式中,至少一个内部冷却源包括水冷源、空调和第一水泵中的至少一个;其中,水冷源指利用冷却液与外界通过热对流进行热交换的装置;空调指利用压缩机使冷却液产生气液变化来实现热交换的装置。本申请不限定内部冷却源的种类和数量。
在一种可能的实施方式中,至少一个内部腔体包括第一腔体,至少一个内部冷却源包括水冷源、空调、第二换热器,水冷源和空调分别通过管道与第二换热器连通,水冷源还与第一腔体连通。第一腔体将电池组产生的热量一部分传递至第二换热器,并在第二换热器将热量传递至空调,第一腔体将电池组产生的热量另一部分传递至水冷源。
在一种可能的实施方式中,至少一个内部腔体包括第一腔体,至少一个内部冷却源包括水冷源、空调、第二换热器,水冷源、空调和第一腔体分别通过管道与第二换热器连通。第一腔体将电池组产生的热量传递至第二换热器,并在第二换热器将热量传递至水冷源和空调。
在一种可能的实施方式中,至少一个内部腔体包括第一腔体和第二腔体,至少一个内部冷却源包括水冷源和空调,空调与第一腔体连通,水冷源与第二腔体连通。第一腔体将电池组产生的热量传递至空调,第二腔体将电池组产生的热量传递至水冷源。
在一种可能的实施方式中,至少一个内部腔体还包括第三腔体,第一水泵与第三腔体连通。第一水泵用于驱动冷却液在第一换热器中流动以实现电池组的均温。
在一种可能的实施方式中,第一换热器包括与电池组接触的第一板型结构,至少一个内部腔体和外部腔体位于第一板型结构中,至少一个内部腔体和外部腔体可以间隔分布,以便对电池组均匀降温。至少一个内部腔体和外部腔体为蜂窝状结构,在保证第一板型结构的强度的同时,还可以增大换热面积。
在一种可能的实施方式中,第一换热器包括与电池组接触的第一板型结构和第二板型结构,至少一个内部腔体位于第一板型结构中,外部腔体位于第二板型结构中。由于不必考虑至少一个内部腔体和外部腔体间隔分布,所以结构设计更简单。至少一个内部腔体和外部腔体可以为蜂窝状结构,在保证第一板型结构和第二板型结构的强度的同时,还可以增大换热面积。
在一种可能的实施方式中,至少一个内部腔体用于容纳电池组。由于电池组直接浸入至少一个内部腔体的内部冷却液中,内部冷却液的热传导效果比空气更好,因此可以实现更好散热。
在一种可能的实施方式中,控制器具体用于:当电池组的最高温度大于或等于第一门限时,控制电源停止对电池组充电,并控制至少一个内部冷却源以及外部冷却源运行;或者,当电池组的最高温度大于或等于第二门限并且小于第一门限时,控制电源对电池组充电,并控制至少一个内部冷却源以及外部冷却源运行;或者,当电池组的最高温度小于第二门限时,控制电源对电池组充电,并控制至少一个内部冷却源停止运行,控制外部冷却源运行。即优先通过外部冷却源对电池组进行制冷,以降低至少一个内部冷却源的负荷。
在一种可能的实施方式中,控制器具体用于:当电池组的最高温度大于或等于第一门限时,控制电源停止对电池组充电,并控制至少一个内部冷却源以及外部冷却源运行,并获取电池组的发热量;或者,当电池组的发热量大于外部冷却源的制冷量时,控制至少一个内部冷却源和外部冷却源运行;或者,当电池组的发热量小于或等于外部冷却源的制冷量时,控制至少一个内部冷却源停止运行,控制外部冷却源运行。即优先通过外部冷却源对电池组进行制冷,以降低至少一个内部冷却源的负荷。
第二方面,提供了一种换热控制方法,应用于如第一方面及其任一实施方式所述的换热装置,该方法包括:获取电池组的温度,根据电池组的温度控制电源对电池组充电,并控制换热装置中的至少一个内部冷却源和换热装置以外的外部冷却源的运行。
在一种可能的实施方式中,根据电池组的温度控制电源对电池组充电,并控制换热装置中的至少一个内部冷却源和换热装置以外的外部冷却源的运行,包括:当电池组的最高温度大于或等于第一门限时,控制电源停止对电池组充电,并控制至少一个内部冷却源以及外部冷却源运行;或者,当电池组的最高温度大于或等于第二门限并且小于第一门限时,控制电源对电池组充电,并控制至少一个内部冷却源以及外部冷却源运行;或者,当电池组的最高温度小于第二门限时,控制电源对电池组充电,并 控制至少一个内部冷却源停止运行,控制外部冷却源运行。
在一种可能的实施方式中,根据电池组的温度控制电源对电池组充电,并控制换热装置中的至少一个内部冷却源和换热装置以外的外部冷却源的运行,包括:当电池组的最高温度大于或等于第一门限时,控制电源停止对电池组充电,并控制至少一个内部冷却源以及外部冷却源运行,并获取电池组的发热量;或者,当电池组的发热量大于外部冷却源的制冷量时,控制至少一个内部冷却源和外部冷却源运行;或者,当电池组的发热量小于或等于外部冷却源的制冷量时,控制至少一个内部冷却源停止运行,控制外部冷却源运行。
第三方面,提供了一种充电桩,包括控制器、电源、外部冷却源、供电接口、通信接口以及热交换接口,控制器,用于通过通信接口从车辆接收控制命令,根据控制命令控制电源通过供电接口对车辆的电池组进行充电,以及,根据控制命令控制外部冷却源通过热交换接口与车辆交换冷却液,冷却液用于对电池组进行降温。
本申请实施例提供的充电桩,通过外部冷却源来帮助对电池组进行降温,降低电池组热失控风险。
在一种可能的实施方式中,控制器,还用于通过通信接口向车辆发送外部冷却源的制冷量。以便车辆确定是否需要外部冷却源运行以及是否需要外部冷却源满负荷运行。
在一种可能的实施方式中,供电接口、通信接口中的至少一个与热交换接口位于不同连接器中。可以防止热交换接口流出的冷却液与供电接口或通信接口接触,使充电过程更安全。
第四方面,提供了一种换热控制方法,应用于如第三方面及其任一实施方式所述的充电桩,该方法包括:通过通信接口从车辆接收控制命令;根据控制命令控制电源通过供电接口对车辆的电池组进行充电,以及,根据控制命令控制外部冷却源通过热交换接口与车辆交换冷却液,冷却液用于对电池组进行降温。
在一种可能的实施方式中,还包括:向车辆发送外部冷却源的制冷量。
第五方面,提供了一种车辆,包括如第一方面及其任一实施方式所述的换热装置以及电池组,换热装置中的第一换热器与电池组接触。
第六方面,提供了一种计算机可读存储介质,计算机可读存储介质中存储有指令,当指令在控制器上被执行时,使得控制器执行如第二方面及其任一实施方式所述的方法,或者,执行如第四方面及其任一实施方式所述的方法。
第七方面,提供了一种包含指令的计算机程序产品,当指令在控制器上被执行时,使得控制器执行如第二方面及其任一实施方式所述的方法,或者,执行如第四方面及其任一实施方式所述的方法。
关于第二方面、第五方面及其任一实施方式的技术效果参照第一方面及其任一实施方式的技术效果。关于第四方面的技术效果参照第三方面及其任一实施方式的技术效果。关于第六方面及其任一实施方式的技术效果和第七方面及其任一实施方式的技术效果参照第一方面及其任一实施方式的技术效果,或者,参照第三方面及其任一实施方式的技术效果,此处不再赘述。
附图说明
图1为本申请实施例提供的一种换热系统的结构示意图;
图2为本申请实施例提供的一种换热装置的结构示意图;
图3为本申请实施例提供的一种第一换热器的结构示意图;
图4为本申请实施例提供的另一种第一换热器的结构示意图;
图5为本申请实施例提供的又一种第一换热器的结构示意图;
图6为本申请实施例提供的一种至少一个内部冷却源的结构示意图;
图7为本申请实施例提供的另一种至少一个内部冷却源的结构示意图;
图8为本申请实施例提供的一种至少一个内部冷却源的导通管路的示意图;
图9为本申请实施例提供的另一种至少一个内部冷却源的导通管路的示意图;
图10为本申请实施例提供的另一种至少一个内部冷却源的结构示意图;
图11为本申请实施例提供的又一种至少一个内部冷却源的结构示意图;
图12为本申请实施例提供的一种换热控制方法的流程示意图;
图13为本申请实施例提供的另一种换热控制方法的流程示意图。
具体实施方式
需要说明的是,本申请实施例涉及的术语“第一”、“第二”等仅用于区分同一类型特征的目的,不能理解为用于指示相对重要性、数量、顺序等。
本申请实施例涉及的术语“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
本申请实施例涉及的术语“耦合”、“连接”应做广义理解,例如,可以指物理上的直接连接,也可以指通过电子器件实现的间接连接,例如通过电阻、电感、电容或其他电子器件实现的连接。
如前文所述的,传统的电动车在快速充电时发热量很大,特别是在采用超大功率快充时,传统电池的换热装置很难满足电池组温控需求,如果换热装置无法对电池组有效进行降温,电池组可能产生自燃爆炸等热失控风险。生产厂商为了实现超大功率快充,将电池组的换热装置设计成具有超高散热性能。而电动车在正常驾驶时电池组的发热量却很小,造成换热装置设计冗余并提高了生产成本。而且,在严苛工况下,传统的电池组的换热装置主要依靠空调来对电池组进行制冷,提高了空调噪音并且降低了乘员舱的制冷效果。另外,传统的电池组的换热装置在严苛工况下散热能力有限,电池组易集聚热量,为保证安全会降低充电功率,造成充电时间过长,影响驾驶体验。
为此,本申请实施例提供的换热装置、充电桩、换热控制方法和车辆,在对电池组进行充电时,通过外接充电桩中的冷却源来帮助对电动车中的电池组进行制冷,从而降低电动车中的电池组的热失控风险。在保证对电池组的制冷效果的前提下降低电动车中换热装置的设计规格,降低生产成本,满足未来快充的散热需求。并且由于主要依赖充电桩中的冷却源来对电池组进行制冷,所以可以降低电动车上空调的噪音,并减小了在充电时对空调的制冷效果的影响。另外,由于充电桩中的冷却源制冷效果比车上安装的换热装置的制冷效果更好,因此不会降低充电功率,从而缩短充电时间,提高驾驶体验。
如图1所示,本申请实施例提供了一种换热系统10,包括车辆11和充电桩12。其中,车辆11包括电池组112以及与电池组112接触的换热装置111。充电桩12包括第一控制器120、电源121、外部冷却源122以及至少一个连接器123。外部冷却源122可以为水冷源或者空调等。
充电桩12可以通过至少一个连接器123与车辆11连接,至少一个连接器123包括供电接口1231、通信接口1232以及热交换接口1233,供电接口1231和通信接口1232中的至少一个与热交换接口1233可以位于同一连接器123或位于不同连接器123中,当供电接口1231和通信接口1232中的至少一个与热交换接口1233位于不同连接器123中时,可以防止热交换接口1233流出的冷却液与供电接口1231或通信接口1232接触,使充电过程更安全。其中,充电桩12中的第一控制器120分别与电源121和外部冷却源122连接,第一控制器120还通过通信接口1232与换热装置111连接;充电桩12中的电源121通过供电接口1231与电池组112连接;充电桩12中的外部冷却源122通过热交换接口1233与车辆11中的换热装置111连接。
第一控制器120可以执行本申请实施例的换热控制方法,通过通信接口1232从车辆11中的换热装置111接收控制命令,根据控制命令来控制电源121通过供电接口1231向车辆11供电,从而对车辆11的电池组112进行充电,以及,根据控制命令控制外部冷却源122通过热交换接口1233与车辆11中的换热装置111交换冷却液,从而在对电池组112充电时帮助电池组112降温。
如图2所示,换热装置111包括:第二控制器23、至少一个内部冷却源22以及与电池组112接触的第一换热器21。
至少一个内部冷却源22可以包括空调221、水冷源222以及第一水泵223中的至少一个。水冷源222指利用冷却液与外界通过热对流进行热交换的装置(在高温处吸热,在低温处放热),适用于电池组112的温度高于环境温度的场景;空调221指利用压缩机使冷却液产生气液变化来实现热交换的装置(在低温处吸热,在高温处放热),不仅适用于电池组112的温度高于环境温度的场景,还适用于环境温度高于电池组112的温度的场景;第一水泵223用于驱动冷却液在第一换热器21中流动以实现电池组112的均温。
第一换热器21包括至少一组内部接口(例如第一进口IN1和第一出口OUT1)、外部接口(例如第二进口IN2和第二出口OUT2),以及,相互之间无连通的外部腔体212和至少一个内部腔体211,即至少一个内部腔体211之间无连通,外部腔体212和至少一个内部腔体211之间也无连通,也就是说,各腔体之间是独立的。需要说明的是,本申请中涉及的接口(包括进口和出口)无方向性,即进口可以作为出口,出口可以作为进口。
至少一个内部腔体211通过至少一组内部接口与至少一个内部冷却源22连通以流动内部冷却液,即至少一个内部冷却源22通过流动的内部冷却液与第一换热器21的至少一个内部腔体211进行热交换,从而实现对电池组112降温。外部腔体212通过外部接口以及单向阀24与换热装置111外部的(位于充电桩12中)外部冷却源122连通以流动外部冷却液,即外部冷却源122通过流动的外部冷却液与外部腔体212进行热交换,从而实现对电池组112降温,其中单向阀24用于调节外部冷却液的流量, 为简化附图在其他附图中未示出。由于外部腔体212和至少一个内部腔体211相互之间无连通,使得内部冷却液之间以及内部冷却液和外部冷却液之间在物理上隔离,各冷却液之间不会互相污染。
第二控制器23可以执行本申请实施例的换热控制方法,与第一控制器120通信(例如向第一控制器120发送控制命令),通过第一控制器120控制电源121对电池组112进行充电,控制至少一个内部冷却源22的运行,以及,通过第一控制器120控制外部冷却源122的运行,从而对电池组112进行降温。
下面示例性地对第一换热器21的几种可能结构进行说明:
示例性的,图3示出了一种第一换热器21的结构,第一换热器21包括与电池组112接触的第一板型结构31,至少一组内部接口(例如第一进口IN1和第一出口OUT1)和外部接口(例如第二进口IN2和第二出口OUT2)设置在第一板型结构31上,至少一个内部腔体211和外部腔体212位于第一板型结构31中,至少一个内部腔体211和外部腔体212可以间隔分布,以便对电池组112均匀降温。图3中示出的至少一个内部腔体211和外部腔体212可以为蜂窝状结构,在保证第一板型结构31的强度的同时,还可以增大换热面积。
示例性的,图4示出了另一种第一换热器21的结构,第一换热器21包括与电池组112接触的第一板型结构41和第二板型结构42,至少一个内部腔体211位于第一板型结构41中,至少一组内部接口(例如第一进口IN1和第一出口OUT1)设置在第一板型结构41上,外部腔体212位于第二板型结构42中,外部接口(例如第二进口IN2和第二出口OUT2)设置在第二板型结构42上。图4中示出的至少一个内部腔体211和外部腔体212可以为蜂窝状结构,在保证第一板型结构31和第二板型结构42的强度的同时,还可以增大换热面积。相对于图3所示的第一换热器21的结构,图4所示的第一换热器21的结构由于不必考虑至少一个内部腔体211和外部腔体212间隔分布,所以结构设计更简单。
示例性的,图5示出了又一种第一换热器21的结构,第一换热器21为盒状的壳体中空结构,第一换热器21的壳体包括侧板51、底板52和顶板(图中未示出),侧板51、底板52和顶板封闭后形成至少一个内部腔体211。至少一组内部接口(例如第一进口IN1和第一出口OUT1)通过壳体的任一侧(例如侧板51、底板52或顶板)连通至少一个内部腔体211。电池组112(包括电芯53、极耳54和铜板55)位于至少一个内部腔体211中并浸入内部冷却液中,内部冷却液为绝缘液体。壳体的至少一侧(即侧板51、底板52和顶板中的至少一个)是中空的,从而形成外部腔体212,外部接口(例如第二进口IN2和第二出口OUT2)通过壳体连接外部腔体212。由于电池组112直接浸入内部冷却液中,内部冷却液的热传导效果比空气更好,因此可以实现更好散热。
下面示例性地对至少一个内部冷却源22的几种可能结构进行说明。需要说明的是,下面至少一个内部冷却源22的任一结构均可以与前文所述的第一换热器21的任一结构相结合:
示例性的,图6示出了一种至少一个内部冷却源22的结构,包括水冷源、空调、第二换热器64和第二水泵68。第一换热器21的至少一个内部腔体包括第一腔体2111。 水冷源、空调和第一腔体2111分别通过管道与第二换热器64连通,其中,第一腔体2111通过至少一组内部接口(例如第一进口IN1和第一出口OUT1)与第二换热器64连通。第一腔体2111将电池组112产生的热量传递至第二换热器64,并在第二换热器64将热量传递至水冷源和空调。此时,第一换热器21可以采用图5所示的结构。该至少一个内部冷却源22和第一换热器21的结构可以避免各种冷却液之间互相污染。
其中,水冷源包括散热器62、第一风扇66和第三水泵69,散热器62通过第三水泵69与第二换热器64连通以流动冷却液(例如水),从而实现散热器62与第二换热器64的热交换,第一风扇66用于通过加快空气对流来加快散热器62的散热。
其中,空调包括冷凝器61、压缩机65、第一膨胀阀70,可选的,还可以包括蒸发器63、第二膨胀阀71和第二风扇67,蒸发器63和第二风扇67通常位于驾驶舱用于对驾驶舱进行制冷。冷凝器65通过压缩机65和第二膨胀阀71与蒸发器63连通以流动冷却液(此时为制冷剂),冷凝器65还通过压缩机65和第一膨胀阀70与第二换热器64连通以流动冷却液,一部分制冷剂在蒸发器63吸热气化,另一部分制冷剂在第二换热器64吸热气化,气化后的制冷剂经过压缩机65压缩后在冷凝器61液化以放热,重新流回蒸发器63和第二换热器64。第二换热器64还通过第二水泵68与第一腔体2111连通以流动冷却液。
示例性的,图7示出了另一种至少一个内部冷却源22的结构,包括水冷源、空调、第二换热器64。第一换热器21的至少一个内部腔体包括第一腔体2111。水冷源和空调分别通过管道与第二换热器64连通,水冷源还与第一腔体2111连通,其中,第一腔体2111通过至少一组内部接口(例如第一进口IN1和第一出口OUT1)与水冷源连通。第一腔体2111将电池组112产生的热量一部分传递至第二换热器64,并在第二换热器64将热量传递至空调,第一腔体2111将电池组112产生的热量另一部分传递至水冷源。
其中,水冷源包括散热器62、第一风扇66、第二水泵68以及三通阀72,散热器62和第一腔体2111通过三通阀72和第二水泵68与第二换热器64连通以流动冷却液,从而实现散热器62、第二换热器64和第一换热器21的热交换,第一风扇66用于通过空气对流加快散热器62的散热。关于空调的描述见图6相关描述,在此不再重复。
如图8所示,如果第二控制器23控制三通阀72将第二换热器64与第一换热器21之间的管路导通,并控制第一膨胀阀70将冷凝器61与第二换热器64之间的管路导通,则可以形成图8中粗实线所示的两个环路,此时电池组112的制冷主要依靠外部冷却源122来实现,因此可以降低至少一个内部冷却源22的负荷,例如降低空调负荷和空调噪声,提升乘员舱舒适性。如图9所示,如果第二控制器23控制三通阀72将第二换热器64与第一换热器21之间的管路导通,并控制第一膨胀阀70将冷凝器61与第二换热器64之间的管路关闭,则可以形成图9中粗实线所示的一个环路,此时电池组112的制冷完全依靠外部冷却源122来实现,不会影响到空调对乘员舱的制冷,可以降低空调负荷和空调噪声,提升乘员舱舒适性。
示例性的,图10示出了另一种至少一个内部冷却源22的结构,包括水冷源、空调。第一换热器21的至少一个内部腔体包括第一腔体2111和第二腔体2112。空调通过至少一组内部接口(例如第一进口IN1和第一出口OUT1)与第一腔体2111连通, 水冷源通过至少一组内部接口(例如第三进口IN3和第三出口OUT3)与第二腔体2112连通。第一腔体2111将电池组112产生的热量传递至空调,第二腔体2112将电池组112产生的热量传递至水冷源。
其中,水冷源包括散热器62、第一风扇66、第二水泵68以及三通阀72,散热器62和第一腔体2111通过三通阀72和第二水泵68与第二腔体2112连通以流动冷却液,从而实现散热器62和第一换热器21的热交换,第一风扇66用于通过空气对流加快散热器62的散热。
其中,空调包括冷凝器61、压缩机65、第一膨胀阀70,可选的,还可以包括蒸发器63、第二膨胀阀71和第二风扇67,蒸发器63和第二风扇67通常位于驾驶舱用于对驾驶舱进行制冷。冷凝器65通过压缩机65和第二膨胀阀71与蒸发器63连通以流动冷却液(此时为制冷剂),冷凝器65还通过压缩机65和第一膨胀阀70与第一腔体2111连通以流动冷却液,一部分制冷剂在蒸发器63吸热气化,另一部分制冷剂在第一腔体2111吸热气化,气化后的制冷剂经过压缩机65压缩后在冷凝器61液化以放热,重新流回蒸发器63和第一腔体2111。
示例性的,图11示出了又一种至少一个内部冷却源22的结构,包括水冷源、空调和第一水泵223。第一换热器21的至少一个内部腔体包括第一腔体2111、第二腔体2112和第三腔体2113。空调通过至少一组内部接口(例如第一进口IN1和第一出口OUT1)与第一腔体2111连通,水冷源通过至少一组内部接口(例如第三进口IN3和第三出口OUT3)与第二腔体2112连通,第一水泵223通过至少一组内部接口(例如第四进口IN4和第四出口OUT4)与第三腔体2113连通。第一腔体2111将电池组112产生的热量传递至空调,第二腔体2112将电池组112产生的热量传递至水冷源,第一水泵223驱动冷却液在第一换热器21中流动以实现电池组112的均温。
其中,水冷源包括散热器62、第一风扇66、第二水泵68,散热器62和第一腔体2111通过第二水泵68与第二腔体2112连通以流动冷却液,从而实现散热器62和第一换热器21的热交换,第一风扇66用于通过空气对流加快散热器62的散热。关于空调的描述见图10中的相关描述,在此不再重复。
需要说明的是,图11中的第一水泵223同样可以适用于图6-图10中的场景。
下面示例性地描述第二控制器23如何通过第一控制器120控制电源121对电池组112充电,控制至少一个内部冷却源22的运行,以及,通过第一控制器120控制外部冷却源122的运行,来对电池组112进行降温。如图12所示,第二控制器23和第一控制器120可以执行如下换热控制方法:
S101、当电池组112的最高温度t大于或等于第一门限T1时,第二控制器23控制电源121停止对电池组112充电,控制至少一个内部冷却源22和外部冷却源122运行。
电池组112的多个部位安装温度传感器,第二控制器23可以通过这些传感器实时获取电池组112的最高温度。
在电源121对电池组112进行快速充电前,如果电池组112的最高温度过高,继续对电池组112进行快速充电则会存在很大风险,因此,第二控制器23控制至少一个内部冷却源22运行,以及,向充电桩12中的第一控制器120发送控制命令,由第一 控制器120根据控制命令控制外部冷却源122运行。
特别地,第二控制器23可以控制至少一个内部冷却源22满负荷运行,以及,向充电桩12中的第一控制器120发送控制命令,由第一控制器120根据控制命令控制外部冷却源122满负荷运行。其中,第二控制器23控制至少一个内部冷却源22满负荷运行可以包括以下至少一项:例如,第二控制器23控制空调、水冷源和第一水泵全部运行,控制空调为最大功率运行,控制水冷源的三通阀为最大开度,控制前文所述的第一水泵、第二水泵、第三水泵为最大转速,控制外部冷却源122满负荷运行包括控制单向阀最大开度,控制外部冷却源122最大功率运行等,以尽快对电池组112进行降温。
S102、当电池组112的最高温度大于或等于第二门限T2并且小于第一门限T1时,第二控制器23控制电源121对电池组112充电,控制至少一个内部冷却源22和外部冷却源122运行。
当电池组112的最高温度降低至第一门限以下时,第二控制器23才向充电桩12中的第一控制器120发送控制命令,由第一控制器120根据控制命令控制电源121对电池组112进行充电。此时,第二控制器23根据当前电池组112的最高温度确定(例如查表)当前时刻允许的最大充电功率,并向充电桩12中的第一控制器120发送控制命令,由第一控制器120根据控制命令来控制电源121的充电功率。
当开始对电池组112充电后,如果电池组112的最高温度仍较高,则第二控制器23依然控制至少一个内部冷却源22和外部冷却源122运行,来对电池组112进行降温。
特别地,当电池组112的最高温度大于或等于第三门限T3并且小于第一门限T1时,第二控制器23控制至少一个内部冷却源22和外部冷却源122满负荷运行,以尽快对电池组112进行降温。关于第二控制器23如何控制至少一个内部冷却源22和外部冷却源122满负荷运行的描述见步骤S101的描述。当电池组112的最高温度大于或等于第二门限T2并且小于第三门限T3时,第二控制器23控制至少一个内部冷却源22以部分负荷运行,并控制外部冷却源122满负荷运行,可以降低至少一个内部冷却源22的负荷,例如降低空调负荷和空调噪声,提升乘员舱舒适性。
其中,第二控制器23控制至少一个内部冷却源22以部分负荷运行可以包括以下至少一项:例如,第二控制器23控制空调、水冷源和第一水泵中的至少一个不运行或以部分负荷运行,控制空调为非最大功率运行,控制水冷源的三通阀不为最大开度,控制前文所述的第一水泵、第二水泵、第三水泵中的至少一个不为最大转速等。
S103、当电池组112的最高温度小于第二门限T2时,第二控制器23控制电源121对电池组112充电,控制至少一个内部冷却源22停止运行,控制外部冷却源122运行。
特别地,当电池组112的最高温度小于第二门限T2时,第二控制器23可以控制至少一个内部冷却源22停止运行,控制外部冷却源122以部分负荷运行,第二控制器23可以向充电桩12中的第一控制器120发送控制命令,由第一控制器120根据控制命令控制外部冷却源122以部分负荷运行,例如,控制外部冷却源122不以最大功率运行,控制外部冷却源122间隔时间运行,控制单向阀不为最大开度等,从而达到节能的目的。
该步骤可以释放至少一个内部冷却源22的负荷,至少一个内部冷却源22可以停止运行以降低噪声,或者,至少一个内部冷却源22负荷可以完全用于乘员舱的制冷,提升乘员舱舒适性。
需要说明的是,在执行完步骤S103后重新从步骤S101开始执行。
或者,如图13所示,第二控制器23可以执行如下换热控制方法:
S201、当电池组112的最高温度t大于或等于第一门限T1时,第二控制器23控制电源121停止对电池组112充电,控制至少一个内部冷却源22以及外部冷却源122运行,并获取电池组112的发热量q。
在不同的充电功率下,电池组112的发热量也不同,充电功率与发热量之间的关系进行标定从而得到表,第二控制器23通过查表即可以确定在不同充电功率下电池组112的发热量。其他内容参照步骤S101。
S202、当电池组112的发热量q大于外部冷却源122的制冷量Qo时,第二控制器23控制电源121对电池组112充电,并控制至少一个内部冷却源22以及外部冷却源122运行。
可以在生成电动车时对至少一个内部冷却源22的运行状态以及制冷量进行标定从而得到表,第二控制器23通过查表即可以确定至少一个内部冷却源22在不同运行状态下(例如满负荷或部分负荷)的制冷量。第二控制器23可以通过与充电桩12中的第一控制器120通信来获取外部冷却源122在不同运行状态下的制冷量。
当电池组112的发热量q大于外部冷却源122的制冷量Qo时,第二控制器23向充电桩12中的第一控制器120发送控制命令,由第一控制器120根据控制命令控制电源121对电池组112进行充电。此时,第二控制器23根据当前电池组112的最高温度确定(例如查表)当前时刻允许的最大充电功率,并向充电桩12中的第一控制器120发送控制命令,由第一控制器120根据控制命令来控制电源121的充电功率。
特别地,当电池组112的发热量q大于或等于至少一个内部冷却源22的制冷量Qi与外部冷却源122的制冷量Qo之和(Qi+Qo)时,第二控制器23可以控制至少一个内部冷却源22满负荷运行,并控制外部冷却源122满负荷运行。当电池组112的发热量q大于外部冷却源122的制冷量Qo并且小于至少一个内部冷却源22的制冷量Qi与外部冷却源122的制冷量Qo之和(Qi+Qo)时,第二控制器23可以控制至少一个内部冷却源22以部分负荷运行,控制外部冷却源122满负荷运行。
即优先通过外部冷却源122对电池组112进行制冷,以降低至少一个内部冷却源22的负荷。其他内容参照步骤S102。
S203、当电池组112的发热量q小于或等于外部冷却源122的制冷量Qo时,控制至少一个内部冷却源22停止运行,控制外部冷却源122运行。
特别地,当电池组112的发热量q小于外部冷却源122的制冷量Qo时,第二控制器23可以控制至少一个内部冷却源22停止运行,控制外部冷却源122以部分负荷运行。该步骤可以参照步骤S103。
本申请实施例提供的换热装置、充电桩、换热控制方法和车辆,在换热装置中包括至少一个内部冷却源以及与电池组接触的换热器,换热器中包括相互之间无连通的外部腔体和至少一个内部腔体,至少一个内部腔体与至少一个内部冷却源连通以流动 内部冷却液,外部腔体用于与换热装置外部的外部冷却源连通以流动外部冷却液,通过外部冷却源来帮助内部冷却源对电池组进行降温,降低电池组热失控风险。
本申请实施例还提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当指令在控制器上被执行时,使得控制器执行图12或图13中的方法。
本申请实施例还提供了一种包含指令的计算机程序产品,当指令在控制器上被执行时,使得控制器执行图12或图13中的方法。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的模块及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、设备和方法,可以通过其它的方式实现。例如,以上所描述的设备实施例仅仅是示意性的,例如,所述模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个模块或组件可以结合或者可以集成到另一个设备,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,设备或模块的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理模块,即可以位于一个设备,或者也可以分布到多个设备上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能模块可以集成在一个设备中,也可以是各个模块单独物理存在,也可以两个或两个以上模块集成在一个设备中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式来实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(Digital Subscriber Line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。所述可用介质 可以是磁性介质(例如,软盘、硬盘、磁带),光介质(例如,DVD)、或者半导体介质(例如固态硬盘(Solid State Disk,SSD))等。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (21)

  1. 一种换热装置,其特征在于,包括:
    控制器、至少一个内部冷却源以及第一换热器,所述第一换热器用于对电池组进行降温;
    所述第一换热器包括外部腔体和至少一个内部腔体,所述外部腔体和所述内部腔体相互之间无连通;所述至少一个内部腔体与所述至少一个内部冷却源连通以流动内部冷却液;所述外部腔体用于与所述换热装置外部的外部冷却源连通以流动外部冷却液;
    所述控制器用于获取所述电池组的温度,根据所述电池组的温度控制电源对所述电池组充电,并控制所述至少一个内部冷却源和所述外部冷却源的运行。
  2. 根据权利要求1所述的换热装置,其特征在于,所述至少一个内部冷却源包括水冷源、空调和第一水泵中的至少一个;其中,所述水冷源指利用冷却液与外界通过热对流进行热交换的装置;所述空调指利用压缩机使冷却液产生气液变化来实现热交换的装置。
  3. 根据权利要求2所述的换热装置,其特征在于,所述至少一个内部腔体包括第一腔体,所述至少一个内部冷却源包括所述水冷源、所述空调、第二换热器,所述水冷源和所述空调分别通过管道与所述第二换热器连通,所述水冷源还与所述第一腔体连通。
  4. 根据权利要求2所述的换热装置,其特征在于,所述至少一个内部腔体包括第一腔体,所述至少一个内部冷却源包括所述水冷源、所述空调、第二换热器,所述水冷源、所述空调和所述第一腔体分别通过管道与所述第二换热器连通。
  5. 根据权利要求2所述的换热装置,其特征在于,所述至少一个内部腔体包括第一腔体和第二腔体,所述至少一个内部冷却源包括所述水冷源和所述空调,所述空调与所述第一腔体连通,所述水冷源与所述第二腔体连通。
  6. 根据权利要求3-5任一项所述的换热装置,其特征在于,所述至少一个内部腔体还包括第三腔体,所述第一水泵与所述第三腔体连通。
  7. 根据权利要求1-6任一项所述的换热装置,其特征在于,所述第一换热器包括与所述电池组接触的第一板型结构,所述至少一个内部腔体和所述外部腔体位于所述第一板型结构中。
  8. 根据权利要求1-6任一项所述的换热装置,其特征在于,所述第一换热器包括与所述电池组接触的第一板型结构和第二板型结构,所述至少一个内部腔体位于所述第一板型结构中,所述外部腔体位于所述第二板型结构中。
  9. 根据权利要求1-6任一项所述的换热装置,其特征在于,所述至少一个内部腔体用于容纳所述电池组。
  10. 根据权利要求1-9任一项所述的换热装置,其特征在于,所述控制器具体用于:
    当所述电池组的最高温度大于或等于第一门限时,控制所述电源停止对所述电池组充电,并控制所述至少一个内部冷却源以及所述外部冷却源运行;或者,
    当所述电池组的最高温度大于或等于第二门限并且小于所述第一门限时,控制所述电源对所述电池组充电,并控制所述至少一个内部冷却源以及所述外部冷却源运行; 或者,
    当所述电池组的最高温度小于所述第二门限时,控制所述电源对所述电池组充电,并控制所述至少一个内部冷却源停止运行,控制所述外部冷却源运行。
  11. 根据权利要求1-9任一项所述的换热装置,其特征在于,所述控制器具体用于:
    当所述电池组的最高温度大于或等于第一门限时,控制所述电源停止对所述电池组充电,并控制所述至少一个内部冷却源以及所述外部冷却源运行,并获取所述电池组的发热量;或者,
    当所述电池组的发热量大于所述外部冷却源的制冷量时,控制所述至少一个内部冷却源和所述外部冷却源运行;或者,
    当所述电池组的发热量小于或等于所述外部冷却源的制冷量时,控制所述至少一个内部冷却源停止运行,控制所述外部冷却源运行。
  12. 一种换热控制方法,其特征在于,应用于如权利要求1-11任一项所述的换热装置,所述方法包括:
    获取电池组的温度,根据所述电池组的温度控制电源对所述电池组充电,并控制所述换热装置中的至少一个内部冷却源和所述换热装置以外的外部冷却源的运行。
  13. 根据权利要求12所述的方法,其特征在于,所述根据所述电池组的温度控制电源对所述电池组充电,并控制所述换热装置中的至少一个内部冷却源和所述换热装置以外的外部冷却源的运行,包括:
    当所述电池组的最高温度大于或等于第一门限时,控制所述电源停止对所述电池组充电,并控制所述至少一个内部冷却源以及所述外部冷却源运行;或者,
    当所述电池组的最高温度大于或等于第二门限并且小于所述第一门限时,控制所述电源对所述电池组充电,并控制所述至少一个内部冷却源以及所述外部冷却源运行;或者,
    当所述电池组的最高温度小于所述第二门限时,控制所述电源对所述电池组充电,并控制所述至少一个内部冷却源停止运行,控制所述外部冷却源运行。
  14. 根据权利要求12所述的方法,其特征在于,所述根据所述电池组的温度控制电源对所述电池组充电,并控制所述换热装置中的至少一个内部冷却源和所述换热装置以外的外部冷却源的运行,包括:
    当所述电池组的最高温度大于或等于第一门限时,控制所述电源停止对所述电池组充电,并控制所述至少一个内部冷却源以及所述外部冷却源运行,并获取所述电池组的发热量;或者,
    当所述电池组的发热量大于所述外部冷却源的制冷量时,控制所述至少一个内部冷却源和所述外部冷却源运行;或者,
    当所述电池组的发热量小于或等于所述外部冷却源的制冷量时,控制所述至少一个内部冷却源停止运行,控制所述外部冷却源运行。
  15. 一种充电桩,其特征在于,包括控制器、电源、外部冷却源、供电接口、通信接口以及热交换接口,
    所述控制器,用于通过所述通信接口从车辆接收控制命令,根据所述控制命令控制所述电源通过所述供电接口对所述车辆的电池组进行充电,以及,根据所述控制命 令控制所述外部冷却源通过所述热交换接口与所述车辆交换冷却液,所述冷却液用于对所述电池组进行降温。
  16. 根据权利要求15所述的充电桩,其特征在于,所述控制器,还用于通过所述通信接口向所述车辆发送所述外部冷却源的制冷量。
  17. 根据权利要求15或16所述的充电桩,其特征在于,所述供电接口、所述通信接口中的至少一个与所述热交换接口位于不同连接器中。
  18. 一种换热控制方法,其特征在于,包括:
    通过通信接口从车辆接收控制命令;
    根据所述控制命令控制电源通过供电接口对所述车辆的电池组进行充电,以及,根据控制命令控制外部冷却源通过热交换接口与所述车辆交换冷却液,所述冷却液用于对所述电池组进行降温。
  19. 根据权利要求18所述的方法,其特征在于,还包括:
    向所述车辆发送所述外部冷却源的制冷量。
  20. 一种车辆,其特征在于,包括如权利要求1-11任一项所述的换热装置以及电池组,所述换热装置中的第一换热器与所述电池组接触。
  21. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有指令,当所述指令在控制器上被执行时,使得所述控制器执行如权利要求12-14任一项所述的方法,或者,执行如权利要求18或19所述的换热控制方法。
PCT/CN2021/133219 2021-11-25 2021-11-25 换热装置、充电桩、换热控制方法和车辆 WO2023092400A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21965135.3A EP4369473A1 (en) 2021-11-25 2021-11-25 Heat exchange device, charging station, heat exchange control method, and vehicle
CN202180050149.9A CN116508194A (zh) 2021-11-25 2021-11-25 换热装置、充电桩、换热控制方法和车辆
PCT/CN2021/133219 WO2023092400A1 (zh) 2021-11-25 2021-11-25 换热装置、充电桩、换热控制方法和车辆

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/133219 WO2023092400A1 (zh) 2021-11-25 2021-11-25 换热装置、充电桩、换热控制方法和车辆

Publications (1)

Publication Number Publication Date
WO2023092400A1 true WO2023092400A1 (zh) 2023-06-01

Family

ID=86538464

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/133219 WO2023092400A1 (zh) 2021-11-25 2021-11-25 换热装置、充电桩、换热控制方法和车辆

Country Status (3)

Country Link
EP (1) EP4369473A1 (zh)
CN (1) CN116508194A (zh)
WO (1) WO2023092400A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205790267U (zh) * 2016-07-07 2016-12-07 欧孚迪汽车设计武汉有限公司 一种电动车电池充电热交换系统
CN107054120A (zh) * 2016-02-11 2017-08-18 福特全球技术公司 用于快速充电电池电动车辆的热管理系统
CN206471453U (zh) * 2016-12-30 2017-09-05 铜陵市沃特玛电池有限公司 一种电池包冷却系统
CN108202609A (zh) * 2016-12-20 2018-06-26 现代自动车株式会社 用于车辆电池管理的系统和方法及其车辆
US20190176633A1 (en) * 2017-12-11 2019-06-13 Zoox, Inc. Underbody charging of vehicle batteries
JP2019140740A (ja) * 2018-02-07 2019-08-22 トヨタ自動車株式会社 充電システム
CN112208391A (zh) * 2019-07-11 2021-01-12 现代自动车株式会社 用于车辆的电池的热管理系统及其控制方法
CN112224079A (zh) * 2020-09-15 2021-01-15 东风汽车集团有限公司 一种纯电动汽车的充电管理方法及系统
CN113629311A (zh) * 2020-05-07 2021-11-09 比亚迪股份有限公司 换热器、车载电池热管理系统、车辆及充电站
CN113690514A (zh) * 2020-05-19 2021-11-23 比亚迪股份有限公司 一种电池温度控制方法、装置、设备及介质

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107054120A (zh) * 2016-02-11 2017-08-18 福特全球技术公司 用于快速充电电池电动车辆的热管理系统
CN205790267U (zh) * 2016-07-07 2016-12-07 欧孚迪汽车设计武汉有限公司 一种电动车电池充电热交换系统
CN108202609A (zh) * 2016-12-20 2018-06-26 现代自动车株式会社 用于车辆电池管理的系统和方法及其车辆
CN206471453U (zh) * 2016-12-30 2017-09-05 铜陵市沃特玛电池有限公司 一种电池包冷却系统
US20190176633A1 (en) * 2017-12-11 2019-06-13 Zoox, Inc. Underbody charging of vehicle batteries
JP2019140740A (ja) * 2018-02-07 2019-08-22 トヨタ自動車株式会社 充電システム
CN112208391A (zh) * 2019-07-11 2021-01-12 现代自动车株式会社 用于车辆的电池的热管理系统及其控制方法
CN113629311A (zh) * 2020-05-07 2021-11-09 比亚迪股份有限公司 换热器、车载电池热管理系统、车辆及充电站
CN113690514A (zh) * 2020-05-19 2021-11-23 比亚迪股份有限公司 一种电池温度控制方法、装置、设备及介质
CN112224079A (zh) * 2020-09-15 2021-01-15 东风汽车集团有限公司 一种纯电动汽车的充电管理方法及系统

Also Published As

Publication number Publication date
EP4369473A1 (en) 2024-05-15
CN116508194A (zh) 2023-07-28

Similar Documents

Publication Publication Date Title
US20200290469A1 (en) Apparatus for charging electric vehicle
WO2020199669A1 (zh) 一种热管理装置、热管理系统及新能源汽车
CN113782868B (zh) 一种新型的电动汽车两相浸没式液冷系统与冷启动系统
WO2021169286A1 (zh) 一种热管理系统和新能源汽车
CN111216533B (zh) 一种48v混合动力汽车热管理系统及混合动力汽车
WO2023065724A1 (zh) 制冷系统和充电系统
CN109616706B (zh) 电动汽车电池包温度控制装置及其控制方法
CN204558619U (zh) 一种电池包的温度管理系统
WO2022036608A1 (zh) 蓄热装置、换热装置、控制方法、控制部件以及热管理系统
WO2021120815A1 (zh) 车辆的热管理系统和车辆
CN210379345U (zh) 一种动力电池的液冷系统
CN109301386B (zh) 一种汽车动力电池的加热冷却系统
CN214542352U (zh) 车辆冷却系统
EP4184085A1 (en) Valve block device, control method, vehicle cooling system and vehicle
WO2024109883A1 (zh) 氢能混动汽车的动力电池加热方法、装置、介质和设备
WO2023092400A1 (zh) 换热装置、充电桩、换热控制方法和车辆
WO2024067409A1 (zh) 一种汽车热泵系统、热管理方法及汽车
CN113309764A (zh) 一种纯电动工程机械散热系统及控制方法
WO2022016943A1 (zh) 电池加热装置、电池热调节方法、计算机可读存储介质以及电子设备
CN110544807A (zh) 动力电池的液冷系统及其控制方法
CN210133034U (zh) 一种电动汽车动力电池温度控制装置
CN114156558A (zh) 一种基于制冷剂相变潜热的电池热管理方法及系统
CN113540616A (zh) 一种基于重力热管冷却的电池热管理系统及控制方法
WO2024011520A1 (zh) 换热装置、换热设备、热管理系统及其控制方法、车辆
WO2024086960A1 (zh) 热管理系统及车辆

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202180050149.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21965135

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021965135

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021965135

Country of ref document: EP

Effective date: 20240207