WO2023065724A1 - 制冷系统和充电系统 - Google Patents
制冷系统和充电系统 Download PDFInfo
- Publication number
- WO2023065724A1 WO2023065724A1 PCT/CN2022/103458 CN2022103458W WO2023065724A1 WO 2023065724 A1 WO2023065724 A1 WO 2023065724A1 CN 2022103458 W CN2022103458 W CN 2022103458W WO 2023065724 A1 WO2023065724 A1 WO 2023065724A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- module
- charging
- cooling
- temperature
- power
- Prior art date
Links
- 238000005057 refrigeration Methods 0.000 title claims abstract description 65
- 238000001816 cooling Methods 0.000 claims abstract description 389
- 239000003507 refrigerant Substances 0.000 claims abstract description 214
- 239000007788 liquid Substances 0.000 claims abstract description 93
- 238000006243 chemical reaction Methods 0.000 claims description 6
- 230000007423 decrease Effects 0.000 claims description 6
- 239000003795 chemical substances by application Substances 0.000 claims 1
- 230000017525 heat dissipation Effects 0.000 abstract description 35
- 239000013256 coordination polymer Substances 0.000 description 26
- 238000000034 method Methods 0.000 description 24
- 230000000694 effects Effects 0.000 description 11
- 238000012546 transfer Methods 0.000 description 11
- 101100129496 Arabidopsis thaliana CYP711A1 gene Proteins 0.000 description 9
- 101100129499 Arabidopsis thaliana MAX2 gene Proteins 0.000 description 9
- 101100083446 Danio rerio plekhh1 gene Proteins 0.000 description 9
- 101100218322 Arabidopsis thaliana ATXR3 gene Proteins 0.000 description 5
- 102100029768 Histone-lysine N-methyltransferase SETD1A Human genes 0.000 description 5
- 102100032742 Histone-lysine N-methyltransferase SETD2 Human genes 0.000 description 5
- 101000865038 Homo sapiens Histone-lysine N-methyltransferase SETD1A Proteins 0.000 description 5
- 101100149326 Homo sapiens SETD2 gene Proteins 0.000 description 5
- LZHSWRWIMQRTOP-UHFFFAOYSA-N N-(furan-2-ylmethyl)-3-[4-[methyl(propyl)amino]-6-(trifluoromethyl)pyrimidin-2-yl]sulfanylpropanamide Chemical compound CCCN(C)C1=NC(=NC(=C1)C(F)(F)F)SCCC(=O)NCC2=CC=CO2 LZHSWRWIMQRTOP-UHFFFAOYSA-N 0.000 description 5
- 101100533304 Plasmodium falciparum (isolate 3D7) SETVS gene Proteins 0.000 description 5
- 101150117538 Set2 gene Proteins 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 5
- 239000000110 cooling liquid Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 230000032683 aging Effects 0.000 description 4
- 238000009835 boiling Methods 0.000 description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 238000012423 maintenance Methods 0.000 description 3
- LVGUZGTVOIAKKC-UHFFFAOYSA-N 1,1,1,2-tetrafluoroethane Chemical compound FCC(F)(F)F LVGUZGTVOIAKKC-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 239000002826 coolant Substances 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 101100534109 Schizosaccharomyces pombe (strain 972 / ATCC 24843) spm1 gene Proteins 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 101150017073 cmk1 gene Proteins 0.000 description 1
- 101150103556 cmk2 gene Proteins 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 101150028393 pmk-1 gene Proteins 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B5/00—Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
- F25B5/02—Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/30—Constructional details of charging stations
- B60L53/302—Cooling of charging equipment
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
- F25B41/20—Disposition of valves, e.g. of on-off valves or flow control valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
- F25B41/40—Fluid line arrangements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B49/00—Arrangement or mounting of control or safety devices
- F25B49/02—Arrangement or mounting of control or safety devices for compression type machines, plants or systems
- F25B49/022—Compressor control arrangements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B49/00—Arrangement or mounting of control or safety devices
- F25B49/02—Arrangement or mounting of control or safety devices for compression type machines, plants or systems
- F25B49/027—Condenser control arrangements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B25/00—Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
- F25B25/005—Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2600/00—Control issues
- F25B2600/25—Control of valves
- F25B2600/2515—Flow valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/21—Temperatures
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/7072—Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/12—Electric charging stations
Definitions
- the present application relates to the field of energy technology, and more specifically, to a refrigeration system and a charging system in the field of energy technology.
- the application provides a refrigeration system and a charging system.
- the direct cooling module is controlled by the thermal management module, which can not only improve the heat transfer coefficient of the charging pile, effectively dissipate heat for the charging pile, but also realize rapid heat dissipation of the charging pile, ensuring the safety of the charging pile. safety.
- the present application provides a refrigeration system, which may include a thermal management module, a direct cooling module, multiple heat exchange modules, and multiple cooling pipelines.
- the input end of the thermal management module can be used for connecting with the control module of the charging pile
- the output end of the thermal management module can be used for connecting with the input end of the direct cooling module
- the output end of the direct cooling module can be used for connecting with the first pipeline
- the first end of the assembly is connected, and the second end of the first pipeline assembly can be used to connect with the input end of each heat exchange module in the plurality of heat exchange modules and the input end of each cooling line in the plurality of cooling lines
- the output end of each heat exchange module and the output end of each cooling pipeline can be respectively used for connecting with the first end of the second pipeline assembly, and the second end of the second pipeline assembly can be used for connecting with the input end of the direct cooling module
- Each heat exchange module can also be connected to a corresponding power module in the charging pile, and each cooling pipeline is placed inside a corresponding charging gun in the charging pile and the cable connected to the charging gun.
- the thermal management module can be used to: send control information to the direct cooling module according to the charging information from the control module.
- the charging information may be used to indicate that the charging pile needs to charge the terminal device.
- the direct cooling module can be used to: convert the gaseous refrigerant transmitted in the second pipeline assembly into liquid refrigerant according to the control information, and transmit the liquid refrigerant to each heat exchange module and each heat exchange module through the first pipeline assembly a cooling circuit;
- Each heat exchange module can be used to: dissipate heat for a corresponding power module according to the liquid refrigerant;
- Each cooling pipeline can be used for cooling a corresponding charging gun and a cable connected to the charging gun according to a liquid refrigerant.
- the heat exchange module can be embedded inside the power module or fixed outside the power module.
- other ways can also be used to realize the connection between the heat exchange module and the power module, which is not limited in this application.
- the number of heat exchange modules can be compared with The number of power modules is the same, and the number of cooling pipelines can be the same as the number of charging guns.
- multiple (such as two or three) power modules can also share one heat exchange module. That is to say, one heat exchanging module can be fixed outside the multiple power modules, and the heat exchanging module can dissipate heat for the multiple power modules.
- the above-mentioned heat exchange module may use a plate heat exchanger.
- the heat exchange module can also use other types of heat exchangers, which is not limited in this application.
- the direct cooling module is controlled by the thermal management module according to the charging information, the heat exchange is directly performed between the heat exchange module and the power module, and the heat exchange is directly performed between the cooling pipeline, the charging gun and the cable, which not only realizes the heat exchange
- the module dissipates heat for the power module (that is, realizes the cooling of the power module), and also realizes the cooling pipeline for the heat dissipation of the charging gun and the cable (that is, realizes the cooling of the charging gun and the cable).
- the heat transfer coefficient of the charging pile is improved, the cooling effect of the charging pile is significantly improved, and the heat dissipation speed of the charging pile is accelerated to ensure the safety of the charging pile.
- the refrigerant (including liquid refrigerant and gaseous refrigerant) is a phase-change refrigerant (for example, a low-temperature and environmentally friendly refrigerant R134a, which has a low conductivity and a boiling point of -26.1°C. Refrigerants such as R134y can also be used).
- a phase-change refrigerant for example, a low-temperature and environmentally friendly refrigerant R134a, which has a low conductivity and a boiling point of -26.1°C.
- Refrigerants such as R134y can also be used.
- the amount of refrigerant used in this application is small, and it is not easy to leak. Moreover, even if the refrigerant leaks, the refrigerant will decompose quickly, and it is not easy to damage the insulation or short circuit of the refrigeration system.
- the direct cooling module may include a compressor, a condenser, and a fan.
- the input end of the compressor can be connected with the output end of the thermal management module and the second pipeline assembly
- the output end of the compressor can be connected with the input end of the condenser
- the input end of the condenser can also be connected with the output end of the thermal management module Connected, the output end of the condenser can be connected with the first pipe assembly.
- the compressor can be used for: compressing the gaseous refrigerant transferred in the second pipe assembly according to the control information, and transferring the compressed gaseous refrigerant to the condenser.
- the condenser can be used to: convert the compressed gaseous refrigerant into liquid refrigerant according to the control information, and transmit the liquid refrigerant to each heat exchange module and each cooling pipeline through the first pipeline assembly.
- the fan can be used to: Cool the condenser.
- the compressor and the condenser in this application convert the gaseous refrigerant transmitted by the second pipeline assembly into a liquid refrigerant to realize the phase change of the refrigerant, and then realize the heat exchange module as a power module Heat dissipation, the cooling pipeline dissipates heat for the charging gun and the cables connected to the charging gun.
- the first pipe assembly may include a first main pipe and a plurality of first secondary pipes.
- the plurality of first secondary pipelines may include a first part of the first secondary pipelines and a second part of the first secondary pipelines.
- the first sub-pipeline in the first part can be connected to the plurality of heat exchange modules in one-to-one correspondence, and the first sub-pipeline in the second part can be connected in one-to-one correspondence with the plurality of cooling pipelines.
- the first end of the first main pipeline can be used to connect with the output end of the condenser, and the second end of the first main pipeline can be used to connect with the first auxiliary pipeline of each first auxiliary pipeline in the first part.
- One end is connected to the first end of each first secondary pipeline in the second part of the first secondary pipeline, and the second end of one first secondary pipeline in the first part of the first secondary pipeline can be used for connecting with multiple heat exchange modules
- One of the heat exchange modules is correspondingly connected, and the second end of one of the first secondary pipelines in the second part can be used for corresponding connection with one of the plurality of cooling pipelines.
- each first secondary pipeline may be provided with a throttle valve (also called an expansion valve).
- the throttling valve can be used to adjust the flow rate of the liquid refrigerant transmitted in each first secondary pipeline.
- the refrigerant output from the throttle valve (that is, the refrigerant entering the heat exchange module and the cooling pipeline) is a low-temperature and low-pressure liquid refrigerant.
- the low-pressure liquid refrigerant dissipates heat for the power module, and the cooling pipeline dissipates heat for the charging gun and cables based on the low-temperature and low-pressure liquid refrigerant.
- the low-temperature and low-pressure liquid refrigerant returns to the compressor through the second pipe assembly.
- the compressor compresses the low-temperature and low-pressure liquid refrigerant to obtain a high-temperature and high-pressure gaseous refrigerant.
- the high-temperature and high-pressure gaseous refrigerant enters the condenser, and the condenser can output the medium-temperature and high-pressure liquid refrigerant.
- the medium-temperature and high-pressure liquid refrigerant enters the throttle valve, and the throttle valve can reduce the pressure of the medium-temperature and high-pressure liquid refrigerant.
- the volume of the medium-temperature and high-pressure liquid refrigerant expands to obtain a low-temperature and low-pressure liquid refrigerant.
- low temperature, medium temperature, high temperature, low pressure and high pressure are all relative, not absolute low temperature, medium temperature, high temperature, low pressure and high pressure.
- the temperature of the refrigerant input into the compressor is lower than the temperature of the refrigerant output from the compressor, and the pressure of the refrigerant input into the compressor is lower than that of the refrigerant output from the compressor.
- the refrigerant input into the compressor (that is, the refrigerant transmitted from the heat exchange module and the cooling pipeline by the second pipeline assembly) can be a low-temperature and low-pressure liquid refrigerant
- the refrigerant output by the compressor can be a high-temperature High pressure liquid refrigerant.
- the boiling point of the refrigerant is generally lower than 0°C, and the low-temperature and low-pressure liquid refrigerant output by the throttle valve is transmitted to the heat exchange module and the cooling pipeline through the first pipeline assembly, where the heat exchange module dissipates heat for the power module and When the cooling pipeline dissipates heat for the charging gun and cables, the liquid refrigerant is transformed into a gaseous refrigerant due to heat absorption (that is, the output from the heat exchange module and the cooling pipeline is transmitted to the compressor through the second pipeline assembly).
- the refrigerant is a low-temperature and low-pressure gaseous refrigerant).
- the temperature of the refrigerant input into the condenser (that is, the refrigerant output from the compressor) is higher than the temperature of the refrigerant output from the condenser, and the pressure of the refrigerant input into the condenser is the same as that of the compressor output
- the pressure of the refrigerant is basically the same, combined with the working principle of the condenser, it can be obtained that the refrigerant output by the condenser can be a medium-temperature and high-pressure liquid refrigerant.
- the temperature of the refrigerant input to the throttle valve (that is, the refrigerant output from the condenser) is higher than the temperature of the refrigerant output from the throttle valve, and the pressure ratio of the refrigerant input to the throttle valve is higher than that of the refrigerant output from the throttle valve.
- the pressure of the refrigerant output by the throttling valve is high, so the refrigerant input to the throttle valve can be a medium-temperature and high-pressure liquid refrigerant, and the refrigerant output by the throttle valve can be a low-temperature and low-pressure liquid refrigerant.
- the second conduit assembly may include a second main conduit and a plurality of second secondary conduits.
- the plurality of second secondary pipelines includes a first part of second secondary pipelines and a second part of second secondary pipelines.
- the first part of the second sub-pipelines can be connected to a plurality of heat exchange modules in a one-to-one correspondence
- the second part of the second sub-pipelines can be connected to a plurality of cooling pipelines in a one-to-one correspondence.
- the first end of one second sub-pipe in the first part of the second sub-pipe can be used for corresponding connection with one of the plurality of heat exchange modules, and the first end of one second sub-pipe in the second part of the second sub-pipe The end can be used for corresponding connection with one of the plurality of cooling lines.
- the second end of each second secondary pipeline in the first part of the second secondary pipeline and the second end of each second secondary pipeline in the second part of the second secondary pipeline can be respectively used to connect with the first end of the second main pipeline , the second end of the second main pipe can be used to connect with the input end of the direct cooling module.
- the heat dissipation of multiple power modules, multiple charging guns and cables can be realized through the refrigerant in the first main pipeline, the second main pipeline, the multiple first secondary pipelines and the multiple second secondary pipelines.
- each first secondary pipeline may be provided with a first sensor.
- the first sensor may be used to collect the temperature of the gaseous refrigerant transported in the first secondary pipeline where the first sensor is located.
- a second sensor may be provided on each second secondary pipeline.
- the second sensor may be used to collect the temperature of the gaseous refrigerant transported in the second secondary pipeline where the second sensor is located.
- each power module may be provided with a third sensor, and the third sensor may be used to collect the actual temperature of the power module where the third sensor is located.
- each charging gun can be provided with a fourth sensor.
- the fourth sensor can be used to collect the actual temperature of the charging gun where the fourth sensor is located.
- a fifth sensor may be provided on the outer surface of the charging pile, and the fifth sensor may be used to collect the temperature of the environment where the charging pile is located.
- the thermal management module can receive charging information from the control module, and obtain (from the fifth sensor) the ambient temperature where the charging pile is located, (from the third sensor) the actual temperature of the power module, and ( Acquired from the fourth sensor) the actual temperature of the charging gun.
- the thermal management module obtains the cooling power of the direct cooling module based on the charging information, and according to the ambient temperature of the charging pile, the actual temperature of the power module, and the actual temperature of the charging gun.
- the thermal management module can send the cooling power of the direct cooling module to the direct cooling module as control information, and control the opening of the throttle valve.
- the thermal management module can obtain the cooling power required for the actual temperature of the power module to drop to the target temperature of the power module based on the charging information and according to the ambient temperature where the charging pile is located and the actual temperature of the power module. Similarly, the thermal management module can obtain the cooling power required for the actual temperature of the charging gun to drop to the target temperature of the charging gun based on the charging information and according to the ambient temperature of the charging pile and the actual temperature of the charging gun. Furthermore, the thermal management module can superimpose the cooling power required for the actual temperature of the power module to drop to the target temperature of the power module and the cooling power required for the actual temperature of the charging gun to drop to the target temperature of the charging gun to obtain the cooling power of the direct cooling module. power.
- the target temperature of the power module may be lower than or equal to a preset first temperature upper limit, and the target temperature of the charging gun may be lower than or equal to a preset second temperature upper limit.
- the thermal management module can obtain the heat loss of the power module according to the input power of the power module and the conversion efficiency of the power module. Based on the charging information, the thermal management module obtains the actual temperature drop of the power module according to the ambient temperature of the charging pile, the actual temperature of the power module, the preset target temperature of the power module, the heat loss of the power module, and the first corresponding relationship. The cooling power required for the target temperature of the module.
- the first correspondence can be used to indicate the temperature of the environment where the charging pile is located, the actual temperature of the power module, the target temperature of the power module, the heat loss of the power module, and the temperature required for the actual temperature of the power module to drop to the target temperature of the power module. Correspondence between cooling power.
- the thermal management module can obtain the heat loss of the charging gun by using Ohm's law according to the current and impedance of the charging gun. Based on the charging information, the thermal management module obtains the actual temperature of the charging gun according to the ambient temperature of the charging pile, the actual temperature of the charging gun, the preset target temperature of the charging gun, the heat loss of the charging gun, and the second corresponding relationship. The cooling power required for the gun's target temperature.
- the second corresponding relationship is used to indicate the ambient temperature of the charging pile, the actual temperature of the charging gun, the target temperature of the charging gun, the heat loss of the charging gun and the actual temperature of the charging gun required to reduce the actual temperature of the charging gun to the target temperature of the charging gun.
- the corresponding relationship between the cooling power is used to indicate the ambient temperature of the charging pile, the actual temperature of the charging gun, the target temperature of the charging gun, the heat loss of the charging gun and the actual temperature of the charging gun required to reduce the actual temperature of the charging gun to the target temperature of the charging gun.
- the thermal management module can also obtain the temperature of the liquid refrigerant transported by any one of the multiple first secondary pipelines and the temperature of the corresponding second secondary pipeline in the multiple second secondary pipelines. The temperature difference between the temperature of the gaseous refrigerant transported by the pipes. The thermal management module can adjust the opening degree of the throttle valve according to the temperature difference.
- the thermal management module can control the opening of the throttle valve to increase.
- the thermal management module can obtain the cooling power of the direct cooling module according to the actual temperature of the power module and the actual temperature of the charging gun in this situation (refer to the above process), and control the direct cooling module according to the newly obtained cooling power of the direct cooling module operation (that is, derating of the direct cooling module (that is, reducing the output power, which can be achieved by reducing the speed of the compressor, etc.)), and controlling the opening of the corresponding throttle valve to decrease.
- the thermal management module can control the direct cooling module to shut down and control all throttle valves to close.
- the refrigeration system provided by this application has a compact structure and is easy to maintain. More importantly, the heat dissipation efficiency of the refrigeration system provided by this application is much higher than that of the cooling liquid, which can quickly dissipate heat for the charging pile and ensure the safety of the charging pile.
- this application has no restrictions on the number and power of charging piles, that is to say, the refrigeration system provided by this application can be used to dissipate heat for one or more charging piles, and at the same time, it can be used for one high-power charging pile or multiple charging piles.
- the high-power charging system constituted can meet the charging demand of high-power new energy vehicles.
- the present application provides a charging system, which may include a charging pile and the refrigeration system provided in the above-mentioned first aspect and its possible implementation manners.
- control module in the charging pile can be connected to the thermal management module in the refrigeration system, and the control module sends charging information to the thermal management module.
- One of the plurality of heat exchange modules in the cooling system can be connected to a corresponding one of the plurality of power modules in the charging pile, and the heat exchange module can dissipate heat for the power module.
- One of the plurality of cooling pipelines in the refrigeration system can be arranged inside a corresponding charging gun in the charging pile, and the cooling pipeline can dissipate heat for the corresponding charging gun and the cables connected to the charging gun.
- the thermal management module in this application can control the direct cooling module, and the direct cooling module can convert the gaseous refrigerant outputted by the heat exchange module and the cooling pipeline into a liquid refrigerant, and then the heat exchange module becomes the power module according to the liquid refrigerant.
- the cooling pipeline dissipates heat for the charging gun and its cables according to the liquid refrigerant, which not only improves the heat transfer coefficient of one or more charging piles, but also speeds up the heat dissipation rate of one or more charging piles.
- the aging speed of the power module and the charging gun can also be slowed down, thereby improving the operational reliability of the entire charging system.
- the charging system includes a charging pile.
- the cooling system may include multiple heat exchange modules, and the charging pile may include multiple power modules.
- one heat exchange module can be connected with a corresponding power module, and the heat exchange module is used to dissipate heat for the power module.
- the refrigeration system may also include multiple cooling pipelines, and the charging post S2 may also include multiple charging guns.
- a cooling pipeline can be arranged inside a corresponding charging gun, and the cooling pipeline is used for cooling the charging gun and the cables connected with the charging gun.
- the thermal management module can be connected to the control module in the charging pile, and both the direct cooling module and the thermal management module are placed inside the charging pile.
- both the direct cooling module and the thermal management module are placed inside the charging pile, so the charging pile can be called an integrated pile.
- the direct cooling module and thermal management module in the charging system provided by this application can be located inside the charging pile to form an integrated pile, that is to say, the refrigeration system in this application can be used to dissipate heat from the integrated pile.
- the charging system may include multiple charging piles, and the multiple charging piles may be connected in parallel.
- the thermal management module can be connected with the control module of each charging pile in the multiple charging piles, and the direct cooling module and the thermal management module are placed outside the multiple charging piles. That is to say, the heat dissipation of the power module and charging gun in each charging pile can be realized through a direct cooling module and a thermal management module. Therefore, the charging system can be called a charging system including split piles.
- the direct cooling module and thermal management module in the charging system provided by this application are located outside multiple charging piles to form a split pile, that is to say, the cooling system provided by this application can be used to dissipate heat from the split piles.
- the split pile in this application has a compact structure, which can reduce the investment cost and operation and maintenance cost of the charging system, and can increase the utilization rate of the direct cooling module.
- the charging pile may include a control module, multiple power modules and multiple charging guns.
- control module can be connected with each power module in the plurality of power modules, and any power module in the plurality of power modules can be connected with any charging gun in the plurality of charging guns through a corresponding cable.
- the control module can be used to: control each power module, and also send charging information to the cooling system (that is, to the thermal management module in the direct cooling system).
- Each power module can be used to: under the control of the control module, output DC power to any charging gun according to the AC power provided by the AC power supply or the DC power provided by the DC power supply;
- Each charging gun can be used to: charge terminal equipment according to the direct current output by any power module.
- the present application provides a charging system control method, which may include: the thermal management module according to the charging information from the control module in the charging pile (can be used to indicate that one or more charging piles need to charge the corresponding terminal equipment ) to send control information to the direct cooling module.
- the thermal management module can control the direct cooling module to convert the gaseous refrigerant transmitted in the second pipeline assembly into a liquid refrigerant according to the control information, and transmit the liquid refrigerant to one or more charging piles through the first pipeline assembly
- the thermal management module in this application can control the direct cooling module, and the direct cooling module can convert the gaseous refrigerant outputted by the heat exchange module and the cooling pipeline into a liquid refrigerant, and then the heat exchange module becomes the power module according to the liquid refrigerant.
- the cooling pipeline dissipates heat for the charging gun and its cables according to the liquid refrigerant, which not only improves the heat transfer coefficient of one or more charging piles, but also speeds up the heat dissipation rate of one or more charging piles.
- the aging speed of the power module and the charging gun can also be slowed down, thereby improving the operational reliability of the entire charging system.
- control method provided in the present application may further include: the thermal management module controls the throttle valve provided on the first auxiliary pipe to realize the flow rate of the liquid refrigerant transmitted in each first auxiliary pipe adjustment.
- each first secondary pipeline may be provided with a first sensor, and the first sensor may collect the temperature of the liquid refrigerant transported in the first secondary pipeline where the first sensor is located.
- each second secondary pipeline may be provided with a second sensor, and the second sensor may collect the temperature of the gaseous refrigerant transported in the second secondary pipeline where the second sensor is located.
- each power module may be provided with a third sensor, and the third sensor may collect the actual temperature of the power module where the third sensor is located.
- each charging gun may be provided with a fourth sensor, and the fourth sensor may collect the actual temperature of the charging gun where the fourth sensor is located.
- a fifth sensor may be provided on the outer surface of the charging pile (one charging pile or any one of multiple charging piles), and the fifth sensor may be used to collect the ambient temperature of the charging pile.
- the thermal management module sending control information to the direct cooling module according to the charging information from the control module in the charging pile may include:
- the thermal management module receives the charging information from the control module, and obtains the ambient temperature of the charging pile (which can be obtained from the fifth sensor), the actual temperature of the power module (which can be obtained from the third sensor) and the actual temperature of the charging gun (which can be obtained from the fifth sensor). Four sensor acquisition).
- the thermal management module can be based on the charging information, and according to the ambient temperature of the charging pile, the actual temperature of the power module and the charging gun The actual temperature obtains the cooling power of the direct cooling module.
- the thermal management module can send the cooling power of the direct cooling module to the direct cooling module as control information, and control the opening of the throttle valve.
- the thermal management module can be based on the charging information and according to the ambient temperature where the charging pile is located, the actual temperature of the power module and The actual temperature of the charging gun, according to the following process to obtain the cooling power of the direct cooling module:
- the thermal management module can obtain the actual temperature of the power module based on the charging information and according to the ambient temperature of the charging pile and the actual temperature of the power module to drop the target temperature of the power module (such as 40°C, which can be lower than or equal to the above preset The cooling power required by the first temperature upper limit). Similarly, the thermal management module can also obtain the actual temperature of the charging gun based on the charging information and according to the ambient temperature of the charging pile and the actual temperature of the charging gun to drop the target temperature of the charging gun (such as 50°C, which can be lower than or equal to the above preset temperature). The cooling power required by the set second temperature upper limit).
- the thermal management module can superpose the cooling power required for the actual temperature of the power module to drop to the target temperature of the power module and the cooling power required for the actual temperature of the charging gun to drop to the target temperature of the charging gun to obtain the cooling power of the direct cooling module.
- the thermal management module may obtain cooling power required for the actual temperature of the power module to drop to the target temperature of the power module according to the following process:
- the thermal management module can obtain the heat loss of the power module according to the input power of the power module and the conversion efficiency of the power module.
- the thermal management module can charge information, and obtain it according to the ambient temperature where the charging pile is located, the actual temperature of the power module, the preset target temperature of the power module, the heat loss of the power module, and the first corresponding relationship (refer to the introduction above) Cooling power required for the actual temperature of the power module to drop to the target temperature of the power module.
- the thermal management module can obtain the cooling power required for the actual temperature of the charging gun to drop to the target temperature of the charging gun according to the following process:
- the thermal management module can use Ohm's law to obtain the heat loss of the charging gun according to the current and impedance of the charging gun.
- the thermal management module can obtain charging information based on the charging information and according to the ambient temperature of the charging pile, the actual temperature of the charging gun, the preset target temperature of the charging gun, the heat loss of the charging gun, and the second corresponding relationship (refer to the introduction above).
- control method provided by the present application may further include: the thermal management module obtains the temperature of the liquid refrigerant transported by any one of the multiple first secondary pipelines and the temperature of the multiple second secondary pipelines. The temperature difference between the temperatures of the gaseous refrigerant transported by the second auxiliary pipe in the auxiliary pipe. The thermal management module can adjust the opening degree of the throttle valve according to the temperature difference.
- the thermal management module can adjust the opening of the throttle valve according to the following two situations:
- the thermal management module 11 can obtain the cooling power of the direct cooling module according to the actual temperature of the power module and the actual temperature of the charging gun in this situation, and control the direct cooling module to operate according to the newly obtained cooling power of the direct cooling module (that is, direct cooling
- the module derates (that is, reduces the output power, which can be realized by reducing the speed of the compressor, etc.) and controls the opening of the corresponding throttle valve to decrease.
- control method provided by the present application may further include: when one charging pile or any one of the multiple charging piles is shut down (the charging of the terminal equipment is completed, the charging pile is shut down) or fails, the thermal The management module can control the shutdown of the direct cooling module and control the closing of the throttle valve.
- control method is not only applicable to a charging system including one charging pile, but also applicable to a charging system including multiple charging piles.
- Fig. 1 provides a kind of schematic structural diagram of the refrigeration system of the embodiment of the present application
- Fig. 2 provides a kind of schematic structural view of the refrigeration system of the embodiment of the present application
- FIG. 3 provides a schematic structural diagram of a charging system according to an embodiment of the present application
- FIG. 4 provides a schematic structural diagram of a charging system according to an embodiment of the present application.
- FIG. 5 provides a schematic structural diagram of a charging system according to an embodiment of the present application.
- FIG. 6 provides a schematic structural diagram of a charging pile according to an embodiment of the present application.
- Fig. 7 provides a schematic flow chart of a method for controlling a charging system in an embodiment of the present application.
- At least one (item) means one or more, and “multiple” means two or more.
- “And/or” is used to describe the association relationship of associated objects, indicating that there can be three types of relationships, for example, “A and/or B” can mean: only A exists, only B exists, and A and B exist at the same time , where A and B can be singular or plural.
- the character “/” generally indicates that the contextual objects are an “or” relationship.
- At least one of the following” or similar expressions refer to any combination of these items, including any combination of single or plural items.
- At least one item (piece) of a, b or c can mean: a, b, c, "a and b", “a and c", “b and c", or "a and b and c ", where a, b, c can be single or multiple.
- New energy vehicles are generally divided into new energy passenger vehicles (such as battery electric vehicles (BEV) and plug-in hybrid electric vehicles (PHEV)), new energy commercial vehicles (such as electric bus vehicles and electric buses, etc.), new energy special vehicles (such as electric heavy trucks (that is, electric heavy trucks, which can be trucks with a total mass greater than 14 tons), electric shuttles and electric special vehicles (such as electric fire trucks), etc.) and new energy Logistics vehicles (such as electric light trucks (that is, electric light trucks, which can be trucks with a total mass of more than 1.8 tons and less than or equal to 4.5 tons), electric medium trucks (that is, electric medium-sized trucks, which can be trucks with a total mass of more than 4.5 tons and less than or equal to 14 tons) Trucks) and electric minivans (can be small trucks with a total mass of 1.8 tons or less), etc.), etc.
- BEV battery electric vehicles
- PHEV plug-in hybrid electric vehicles
- new energy commercial vehicles such as electric bus vehicles and electric buses, etc.
- new energy special vehicles such as electric
- the power of battery packs on new energy passenger vehicles is usually between 50kWh and 100kWh
- the power of battery packs on new energy commercial vehicles is usually between 150kWh and 300kWh
- the power of battery packs on new energy special vehicles is usually Between 200kWh and 500kWh
- the power of the battery pack on the new energy logistics vehicle is usually between 50kWh and 200kWh.
- charging piles In order to meet the charging requirements of different new energy vehicles mentioned above, shorten the charging time, and realize fast charging of new energy vehicles, charging piles (or charging piles, etc.) need to meet the high-power charging requirements of new energy vehicles, that is, charging piles need to have high-power charging. ability.
- the peak power of the charging pile needs to reach 200kW to 400kW at the highest, and the current of a single charging gun in the charging gun needs to be as high as 250A, and it lasts for several minutes to ten minutes.
- a fan can be used to dissipate heat for the charging pile (that is, an air cooling method is used to dissipate heat for the charging pile).
- the fan speed is usually high, the noise is relatively loud, and affected by the ambient temperature, the cooling effect of the air cooling method on the charging pile (that is, the cooling effect) is poor. More importantly, the air cooling method can only dissipate heat for the power module, not for cables and charging cables.
- the air-cooling method has a limited heat dissipation effect of the power module, which may cause the charging pile to derate (that is, reduce the output power) or even terminate the operation, and the heat generated by the cable and the charging gun cannot be dissipated quickly, resulting in the temperature of the cable and the charging gun. Higher, which speeds up the aging speed of cables and charging guns.
- direct cooling and liquid cooling can be used, that is, direct cooling modules (such as compressors, which require refrigerants) and liquid cooling modules (such as liquid storage tanks, which require cooling liquid) to dissipate heat for the charging pile.
- Coolant such as ethylene glycol, etc.
- heat exchange is required between the direct cooling module and the liquid cooling module, and then heat exchange is performed between the liquid cooling module and the charging pile (that is, the device to be directly cooled).
- the refrigeration system S1 may include a thermal management module 11, a direct cooling module 12, N heat exchange modules A (that is, heat exchange modules A1, heat exchange modules A2, ..., heat exchange modules AN in Fig. 1 ) and M A cooling pipeline B (that is, cooling pipeline B1, cooling pipeline B2, ..., cooling pipeline BM in Fig. 1).
- the dotted lines with arrows in FIG. 1 indicate the transmission path (ie, communication circuit) of information (including charging information F1 and control information F2 ), and the solid lines with arrows indicate the transmission path of refrigerant (ie, cooling circuit).
- the input terminal of the thermal management module 11 can be used to connect with the control module (control module, CM, pile controller) of the charging pile C (as shown by the dotted line arrow in Fig. 1), the output terminal of the thermal management module 11 Can be used for being connected with the input end of direct cooling module 12 (as shown in the dotted line arrow in Fig. 1), the output end of direct cooling module 12 can be used for being connected with the first end of first pipeline assembly 13 (as shown in Fig.
- the second end of the first pipe assembly 13 can be used to communicate with the input end of each heat exchange module in the N heat exchange modules A and the input of each cooling line in the M cooling lines End connection (as shown by the solid line arrow in Figure 1), the output end of each heat exchange module and the output end of each cooling pipeline are respectively used to connect with the first end of the second pipeline assembly 14 (as shown in Figure 1 As shown by the solid line arrow in ), the second end of the second pipeline assembly 14 can be used to connect with the input end of the direct cooling module 12 (as shown by the solid line arrow in FIG. 1 ).
- each heat exchange module is also connected to a corresponding power module (power module, PM) in the charging pile C (not shown in Figure 1), and each cooling pipeline can be placed in the corresponding charging pile C A charging gun and the inside of the cable connected to the charging gun (not shown in Figure 1).
- PM power module
- the heat exchange module can be embedded inside the power module or fixed outside the power module.
- other ways may also be used to realize the connection between the heat exchange module and the power module, which is not limited in this embodiment of the present application.
- the thermal management module 11 can be used to: send control information F2 to the direct cooling module 12 according to the charging information F1 from the control module CM (that is, the control module CM can send charging information F1 to the thermal management module 11), and the charging information F1 can be used to indicate Charging piles need to charge new energy vehicles.
- the direct cooling module 12 can be used to: convert the gaseous refrigerant transmitted in the second pipeline assembly 14 into a liquid refrigerant according to the control information F2, and transmit the liquid refrigerant to each replacement through the first pipeline assembly 11.
- the thermal modules ie, the heat exchange module A1 to the heat exchange module AN
- each cooling pipeline ie, the cooling pipeline B1 to the cooling pipeline BM.
- Each heat exchange module (such as the heat exchange module A1) can be used to dissipate heat for a power module (which may be all power modules in the charging pile, not shown in FIG. 1 ) according to the liquid refrigerant transmitted by the first pipe assembly 13 .
- Each cooling pipeline (such as cooling pipeline B1) can be used for: the liquid refrigerant transmitted by the first pipeline assembly 13 is the charging gun (it can be all the charging guns in use in the charging gun, not shown in FIG. 1 ) and the cable (not shown in Figure 1) connected to the charging gun for heat dissipation.
- the refrigerant forms a loop in the entire refrigeration system.
- the transmission path of the refrigerant is shown by the solid arrow in Figure 1, which can be: direct cooling module 12 ⁇ first pipeline assembly 13 ⁇ multiple heat exchange modules A and multiple cooling pipelines B ⁇ second pipeline assembly 14 ⁇ Direct cooling module 12. That is, the refrigerant is output from the direct cooling module 12, is transported to the multiple heat exchange modules A and the multiple cooling pipelines B through the first pipeline assembly 13, and flows through the multiple heat exchange modules A, the multiple cooling pipelines B and the The refrigerant returns to the direct cooling module 11 through the second pipe assembly 14 .
- the number of heat exchange modules can be compared with The number of power modules is the same, and the number of cooling pipelines can be the same as the number of charging guns.
- multiple (such as two or three) power modules can also share one heat exchange module. That is to say, one heat exchanging module can be fixed outside the multiple power modules, and the heat exchanging module can dissipate heat for the multiple power modules.
- the charging pile includes four power modules and two charging guns, so the refrigeration system may include four heat exchange modules and two cooling pipelines.
- the above-mentioned heat exchange module may use a plate heat exchanger.
- the heat exchange module may also use other types of heat exchangers, which are not limited in this embodiment of the present application.
- the direct cooling module is controlled by the thermal management module according to the charging information, heat exchange is directly performed between the heat exchange module and the power module, and heat exchange is directly performed between the cooling pipeline, the charging gun and the cable, which not only realizes
- the heat exchange module dissipates heat for the power module (that is, realizes the cooling of the power module), and also realizes that the cooling pipeline dissipates heat for the charging gun and the cable (that is, realizes the cooling of the charging gun and the cable).
- the heat transfer coefficient of the charging pile is improved, the cooling effect of the charging pile is significantly improved, and the heat dissipation speed of the charging pile is accelerated to ensure the safety of the charging pile.
- the refrigerant (including liquid refrigerant and gaseous refrigerant) is a phase-change refrigerant (for example, a low-temperature and environmentally friendly refrigerant R134a, which has a low conductivity and a boiling point of -26.1°C. Refrigerants such as R134y can also be used).
- a phase-change refrigerant for example, a low-temperature and environmentally friendly refrigerant R134a, which has a low conductivity and a boiling point of -26.1°C.
- Refrigerants such as R134y can also be used.
- the refrigerant in the refrigeration system provided by the embodiment of the present application is transported along the circuit, the refrigerant usage is small, and the refrigerant is not easy to leak. Moreover, even if the refrigerant leaks, the refrigerant will decompose quickly, and it is not easy to damage the insulation or short circuit of the refrigeration system.
- the direct cooling module 12 may include a compressor 121 , a condenser 122 and a fan 123 .
- the dotted lines with arrows in FIG. 2 indicate the transmission paths (ie, communication circuits) of information (including charging information F1 and control information F2 ), and the solid lines with arrows indicate the transmission paths of refrigerant (ie, cooling circuits).
- the input end of the compressor 121 can be connected with the output end of the thermal management module 11 (as shown by the dotted arrow in FIG. 2 ), and the input end of the compressor 121 can also be connected with the second pipeline assembly 14 (as shown in FIG.
- the output end of the compressor 121 can be connected to the input end of the condenser 122 (as shown by the solid line arrow in FIG. 2 ), and the input end of the condenser 122 can also be connected to the thermal management module 11
- the output end is connected (as shown by the dotted arrow in FIG. 2 ), and the output end of the condenser 122 can be connected with the first pipeline assembly 13 (as shown by the solid line arrow in FIG. 2 ).
- the compressor 121 may be used for: compressing the gaseous refrigerant transmitted in the second pipe assembly 14 according to the control information F2, and transmitting the compressed gaseous refrigerant to the condenser 122. That is to say, the compressor 122 is controlled by the thermal management module 11, and under the control of the thermal management module 11, the compressor 122 starts to compress the gaseous refrigerant transmitted in the second pipeline assembly 14, and compresses the compressed gaseous refrigerant The refrigerant is sent to the condenser 122.
- the condenser 122 can be used to: convert the compressed gaseous refrigerant into a liquid refrigerant according to the control information F2, and transmit the liquid refrigerant to each heat exchange module through the first pipe assembly 13 (that is, the heat exchange module module A1 to heat exchange module AN) and each cooling pipeline (ie cooling pipeline B1 to cooling pipeline BM). That is to say, the condenser 122 is controlled by the thermal management module 11 , and under the control of the thermal management module 11 , the condenser 122 starts to convert the compressed gaseous refrigerant into a liquid refrigerant, and passes through the first pipeline assembly 13 Deliver liquid refrigerant to each heat exchange module and each cooling circuit.
- the fan 123 can be used to dissipate heat for the condenser 122 , thereby improving the operation efficiency of the condenser 122 .
- the compressor and the condenser in the embodiment of the present application convert the gaseous refrigerant transmitted by the second pipe assembly into a liquid refrigerant to realize the phase change of the refrigerant, and then realize the heat exchange module as
- the power module dissipates heat
- the cooling pipeline dissipates heat for the charging gun and the cables connected to the charging gun.
- the direct cooling module 12 may further include a box body, the compressor 121 , the condenser 122 and the fan 123 are located inside the box body, and cooling holes are provided on the side walls of the box body.
- the direct cooling module is equipped with fans and heat dissipation holes, and there is no need for fans and heat dissipation holes in the charging pile, which improves the IP (ingress protection) protection level of the charging pile.
- the above-mentioned first pipeline assembly 13 may include a first main pipeline (that is, the vertical pipeline on the left side of the heat exchange module and the cooling pipeline in FIG. 2 ) and N+M first auxiliary pipelines ( That is, the heat exchange module and the horizontal pipeline on the left side of the cooling pipeline in Figure 2).
- the N+M first secondary pipelines include N first pipelines connected to the heat exchange module (that is, the first part of the first secondary pipeline, that is, the N pieces between the first main pipeline and the N heat exchange modules.
- the first pipeline and M first pipelines connected to the cooling pipeline (ie the second part of the first secondary pipeline, that is, the M first secondary pipelines between the first main pipeline and the M cooling pipelines) .
- the N first auxiliary pipes are connected to the N heat exchange modules in one-to-one correspondence. That is to say, the first first secondary pipe among the N first secondary pipes is correspondingly connected with the first heat exchange module (that is, the heat exchange module A1 in FIG. 2 ) among the N heat exchange modules, and the N first secondary pipes
- the second first auxiliary pipe in one pair of pipes is correspondingly connected with the second heat exchange module in the N heat exchange modules (that is, the heat exchange module A2 in Figure 2), and so on, the N first auxiliary pipes
- the last (that is, the Nth) first auxiliary pipe in the N heat exchange modules is correspondingly connected with the last (that is, the Nth) heat exchange module (that is, the heat exchange module AN in FIG. 2 ).
- the M first secondary pipelines are connected to the M cooling pipelines in one-to-one correspondence. That is to say, the first first auxiliary pipe among the M first auxiliary pipes is correspondingly connected with the first cooling pipe among the M cooling pipes (that is, the cooling pipe B1 in FIG. 2 ), and the M first The second first secondary pipeline in one secondary pipeline is correspondingly connected with the second cooling pipeline in the M cooling pipelines (that is, the cooling pipeline B2 in Figure 2), and so on, the M first secondary pipelines The last (that is, the Mth) first secondary pipeline among the M cooling pipelines is correspondingly connected with the last cooling pipeline (that is, the cooling pipeline BM in FIG. 2 ).
- first end of the first main pipeline i.e. the lower end of the first main pipeline in FIG. Two ends
- first end of each first secondary pipeline in the N first secondary pipelines ie the left end of each first secondary pipeline in the N first secondary pipelines in Figure 2
- M first secondary pipelines The first end of each first auxiliary pipe in the auxiliary pipes (that is, the left end of each first auxiliary pipe in the M first auxiliary pipes in FIG. 2 ) is connected.
- the second end of one of the first secondary pipelines in the N first secondary pipelines can be used to communicate with one of the N heat exchange modules
- the heat exchange modules are connected correspondingly (for example, the second end of the first first auxiliary pipe in the N first auxiliary pipes can be used to connect with the first heat exchange module in the N heat exchange modules (ie, the heat exchange module A1)
- the input end of corresponding connection the second end of a first sub-pipeline in M first sub-pipelines (that is, the right end of each second sub-pipeline in M second sub-pipelines in Fig.
- each of the N+M first secondary pipelines may be provided with a throttle valve (also called an expansion valve).
- the throttling valve can be used to adjust the flow rate of the liquid refrigerant transmitted in each first secondary pipeline.
- a throttle valve T11 may be provided on the first first secondary pipeline among the N first secondary pipelines.
- a throttle valve T12 may be provided on the second first secondary pipeline among the N first secondary pipelines.
- a throttle valve T1N may be provided on the last first secondary pipeline among the N first secondary pipelines.
- a throttle valve T21 may be provided on the first first secondary pipeline among the M first secondary pipelines.
- a throttle valve T22 may be provided on the second first auxiliary pipe among the M first auxiliary pipes.
- a throttle valve T2M may be provided on the last first secondary pipeline among the M first secondary pipelines.
- the refrigerant output from the throttle valve (that is, the refrigerant entering the heat exchange module and the cooling pipeline) is a low-temperature and low-pressure liquid refrigerant.
- the low-pressure liquid refrigerant dissipates heat for the power module, and the cooling pipeline dissipates heat for the charging gun and cables based on the low-temperature and low-pressure liquid refrigerant.
- the low-temperature and low-pressure liquid refrigerant returns to the compressor through the second pipe assembly.
- the compressor compresses the low-temperature and low-pressure liquid refrigerant to obtain a high-temperature and high-pressure gaseous refrigerant.
- the high-temperature and high-pressure gaseous refrigerant enters the condenser, and the condenser can output the medium-temperature and high-pressure liquid refrigerant.
- the medium-temperature and high-pressure liquid refrigerant enters the throttle valve, and the throttle valve can reduce the pressure of the medium-temperature and high-pressure liquid refrigerant.
- the volume of the medium-temperature and high-pressure liquid refrigerant expands to obtain a low-temperature and low-pressure liquid refrigerant.
- low temperature, medium temperature, high temperature, low pressure and high pressure are all relative, not absolute low temperature, medium temperature, high temperature, low pressure and high pressure.
- the temperature of the refrigerant input into the compressor is lower than the temperature of the refrigerant output from the compressor, and the pressure of the refrigerant input into the compressor is lower than that of the refrigerant output from the compressor.
- the working principle can be obtained.
- the refrigerant input into the compressor (that is, the refrigerant transmitted by the second pipeline assembly is from the heat exchange module and the cooling pipeline) can be a low-temperature and low-pressure liquid refrigerant, and the refrigerant output by the compressor can be a high-temperature High pressure liquid refrigerant.
- the boiling point of the refrigerant is generally lower than 0°C, and the low-temperature and low-pressure liquid refrigerant output by the throttle valve is transmitted to the heat exchange module and the cooling pipeline through the first pipeline assembly, where the heat exchange module dissipates heat for the power module and When the cooling pipeline dissipates heat for the charging gun and cables, the liquid refrigerant is transformed into a gaseous refrigerant due to heat absorption (that is, the output from the heat exchange module and the cooling pipeline is transmitted to the compressor through the second pipeline assembly).
- the refrigerant is a low-temperature and low-pressure gaseous refrigerant).
- the temperature of the refrigerant input into the condenser (that is, the refrigerant output from the compressor) is higher than the temperature of the refrigerant output from the condenser, and the pressure of the refrigerant input into the condenser is the same as that of the compressor output
- the pressure of the refrigerant is basically the same, combined with the working principle of the condenser, it can be obtained that the refrigerant output by the condenser can be a medium-temperature and high-pressure liquid refrigerant.
- the temperature of the refrigerant input to the throttle valve (that is, the refrigerant output from the condenser) is higher than the temperature of the refrigerant output from the throttle valve, and the pressure ratio of the refrigerant input to the throttle valve is higher than that of the refrigerant output from the throttle valve.
- the pressure of the refrigerant output by the throttling valve is high, so the refrigerant input to the throttle valve can be a medium-temperature and high-pressure liquid refrigerant, and the refrigerant output by the throttle valve can be a low-temperature and low-pressure liquid refrigerant.
- the above-mentioned second pipeline assembly may include a second main pipeline (that is, the vertical pipeline on the right side of the heat exchange module and the cooling pipeline in FIG. 2 ) and N+M second secondary pipelines (that is, In Figure 2, the heat exchange module and the horizontal pipe on the right side of the cooling pipe).
- a second main pipeline that is, the vertical pipeline on the right side of the heat exchange module and the cooling pipeline in FIG. 2
- N+M second secondary pipelines that is, In Figure 2, the heat exchange module and the horizontal pipe on the right side of the cooling pipe.
- the N+M second secondary pipelines include N second pipelines connected to the heat exchange module (that is, the first part of the second secondary pipeline, that is, the N number between the second main pipeline and the N heat exchange modules.
- the second pipeline and M second pipelines connected to the cooling pipeline (i.e. the second part of the second secondary pipeline, that is, M second secondary pipelines between the second main pipeline and the M cooling pipelines) .
- the N second secondary pipes correspond to the N heat exchange modules one by one.
- the first end of the first second secondary pipeline in the N second secondary pipelines that is, the left end of the first second secondary pipeline in the N second secondary pipelines in Figure 2
- the N heat exchange modules Corresponds to the first heat exchange module in (ie heat exchange module A1 in Figure 2).
- the first end of the second second secondary pipeline in the N second secondary pipelines (that is, the left end of the second second secondary pipeline in the N second secondary pipelines in Figure 2) exchanges heat with the N second secondary pipelines.
- the second heat exchange module in the module (that is, the heat exchange module A2 in FIG. 2 ) corresponds.
- the first end of the Nth (ie the last) second secondary pipeline in the N second secondary pipelines ie the left end of the last second secondary pipeline in the N second secondary pipelines in Figure 2) and
- the Nth (ie, the last) heat exchange module ie, the heat exchange module AN in FIG. 2 ) among the N heat exchange modules corresponds.
- the M second secondary pipelines correspond to the M cooling pipelines one by one.
- the first end of the first second secondary pipeline in the M second secondary pipelines that is, the left end of the first second secondary pipeline in the M second secondary pipelines in Figure 2
- the M cooling pipelines Corresponds to the first cooling pipeline in (that is, the cooling pipeline B1 in Figure 2).
- the first end of the second second secondary pipeline in the M second secondary pipelines (that is, the left end of the second second secondary pipeline in the M second secondary pipelines in Figure 2) is connected to the M cooling pipes Corresponds to the second cooling pipeline in the road (that is, the cooling pipeline B2 in Figure 2).
- the first end of the Mth (i.e. the last) second secondary pipeline in the M second secondary pipelines ie the left end of the last second secondary pipeline in the M second secondary pipelines in Figure 2) and
- the Mth (ie, the last) cooling pipeline (ie, the cooling pipeline BM in FIG. 2 ) among the M cooling pipelines corresponds.
- the first end of one second secondary pipeline in the N second secondary pipelines can be used for corresponding connection with one of the N heat exchange modules (such as the first second secondary pipeline in the N second secondary pipelines
- the first end of can be used for corresponding connection with the output end of the first heat exchange module (ie heat exchange module A1) among the N heat exchange modules).
- the first end of a second secondary pipeline in the M second secondary pipelines can be used for corresponding connection with one of the M cooling pipelines (such as the first second secondary pipeline in the M second secondary pipelines
- the first end of can be used for corresponding connection with the output end of the first cooling pipeline (that is, the cooling pipeline B1) among the M cooling pipelines).
- each second secondary pipeline in the N second secondary pipelines i.e. the right end of each second secondary pipeline in the N second secondary pipelines in Figure 2 and the second end of each second secondary pipeline in the M second secondary pipelines
- the second end of the secondary pipeline i.e. the right end of each second secondary pipeline in the M second secondary pipelines in Fig.
- the second main pipeline can have N+M first ends
- the second end of the second main pipeline i.e. the lower end of the second main pipeline in Figure 2
- the input end of the direct cooling module 12 i.e. The input terminal of the compressor 12
- N power modules and M charging guns and wires can be realized by using the refrigerant in the first main pipeline, the second main pipeline, the N+M first auxiliary pipelines, and the N+M second auxiliary pipelines. cable heat dissipation.
- each of the above-mentioned first secondary pipelines may be provided with a first sensor (that is, the first sensor C111, the first sensor C112, ..., the first sensor C11N, and the first sensor in FIG. C121, first sensor C122, . . . , first sensor C12M).
- a first sensor that is, the first sensor C111, the first sensor C112, ..., the first sensor C11N, and the first sensor in FIG. C121, first sensor C122, . . . , first sensor C12M).
- a first sensor may be used to collect the temperature of the gaseous refrigerant transported in the first secondary pipeline where the first sensor is located.
- the first sensor C111 can be used to collect the first sub-pipe where the first sensor C111 is located (that is, the first first sub-pipe among the N first sub-pipes, that is, the heat exchange in the N first sub-pipes) The temperature of the gaseous refrigerant transmitted in the first secondary pipeline connected to the input end of the module A1).
- the first sensor C121 can be used to collect the first sub-pipe where the first sensor C121 is located (that is, the first first sub-pipe among the M first sub-pipes, that is, the first sub-pipe in the M first sub-pipes and the cooling The temperature of the gaseous refrigerant transmitted in the first auxiliary pipeline connected to the input end of the pipeline B1).
- second sensors i.e., second sensors C211, second sensors C212, ..., second sensors C21N, second sensors C221, second sensors C222 in FIG. , ..., the second sensor C22M).
- a second sensor may be used to collect the temperature of the gaseous refrigerant transported in the second secondary pipeline where the second sensor is located.
- the second sensor C211 can be used to collect the second sub-pipe where the second sensor C211 is located (ie the first second sub-pipe in the N second sub-pipes, that is, the heat exchange in the N second sub-pipes) The temperature of the gaseous refrigerant transmitted in the second secondary pipeline connected to the output end of the module A1).
- the second sensor C221 can be used to collect the second sub-pipe where the second sensor C221 is located (that is, the first second sub-pipe among the M second sub-pipes, that is, the M second sub-pipe and the cooling The temperature of the gaseous refrigerant transmitted in the second auxiliary pipeline connected to the output end of the pipeline B1).
- each power module may be provided with a third sensor, and the third sensor may be used to collect an actual temperature (which may be represented by T PM ) of the power module where the third sensor is located.
- T PM an actual temperature
- each charging gun can be provided with a fourth sensor.
- the fourth sensor can be used to collect the actual temperature (which can be represented by T CP ) of the charging gun where the fourth sensor is located.
- a fifth sensor may be provided on the outer surface of the charging pile, and the fifth sensor may be used to collect the ambient temperature of the charging pile (which may be represented by TE ).
- the above-mentioned thermal management module 11 can receive the charging information F1 from the control module CM, and can obtain (from the fifth sensor) the ambient temperature T E where the charging pile is located, (from the third sensor) The actual temperature T PM of the power module and (obtained from the fourth sensor) the actual temperature T CP of the charging gun.
- the thermal management module 11 can be based on the charging information F1, and according to the ambient temperature T E where the charging pile is located, the actual temperature T PM of the power module, and the actual temperature T CP of the charging gun
- the cooling power of the direct cooling module 12 (which can be represented by P) is obtained.
- the actual temperature T PM of the power module is higher than the preset first temperature upper limit T MAX1 and lasts for the preset first duration T SET1 , while the actual temperature T CP of the charging gun is higher than the preset second temperature
- the upper limit T MAX2 lasts for a preset second duration T SET2 .
- the thermal management module 11 needs the ambient temperature TE of the charging pile, the actual temperature T PM of the power module, and the actual temperature T CP of the charging gun to obtain the cooling power P of the direct cooling module 12 .
- the thermal management module 11 can send the cooling power P of the direct cooling module 12 to the direct cooling module 12 as control information F2, and control the throttle valve (that is, the throttle valve T11 to the throttle valve T1N in FIG. 2 , and Throttle valve T21 to throttle valve T224) are opened.
- the management module 11 does not need to send the control information F2 to the direct cooling module 12.
- the throttle valve T11 to the throttle valve T1N and the throttle valve T21 to the throttle valve T2M are in the closed state.
- the thermal management module 11 can obtain the actual temperature T PM of the power module based on the charging information F1 and according to the ambient temperature T E where the charging pile is located and the actual temperature T PM of the power module to drop to the target temperature of the power module (T TPM said) required refrigeration power (can be expressed in PPM ).
- the thermal management module 11 can be based on the input power of the power module (which can be represented by P in ) and the conversion efficiency of the power module (which can be represented by n, and the conversion efficiency n can include the rectification efficiency of the power module, Chopping efficiency, power correction efficiency, filtering efficiency, etc.) to obtain the heat loss of the power module (which can be expressed in PLPM ).
- the conversion efficiency ⁇ is 95%
- the remaining 5% is the heat loss of the power module, which is mainly dissipated in the form of heat, which is equivalent to the heat loss of the power module being 5kW.
- the thermal management module 11 can be based on the charging information F1, and according to the ambient temperature TE of the charging pile, the actual temperature T PM of the power module, the preset target temperature TPM of the power module, the heat loss PLPM of the power module, and The first correspondence obtains the cooling power P PM required for the actual temperature T CP of the power module to drop to the target temperature T TPM of the power module.
- the above-mentioned first corresponding relationship can be used to indicate the ambient temperature where the charging pile is located, the actual temperature of the power module, the target temperature of the power module, the heat loss of the power module, and the actual temperature of the power module required to drop to the target temperature of the power module.
- the first corresponding relationship can be obtained from the manufacturer of the charging pile.
- the first corresponding relationship may be represented in the form of a curve or in the form of a table, which is not limited in this embodiment of the present application.
- the thermal management module 11 can obtain the actual temperature T CP of the charging gun based on the charging information F1 and according to the ambient temperature T E where the charging pile is located and the actual temperature T CP of the charging gun to drop to the target temperature of the charging gun (T TCP said) required refrigeration power (can be expressed in P CP ).
- the thermal management module 11 can be based on the charging information F1, and according to the ambient temperature TE of the charging pile, the actual temperature T CP of the charging gun, the preset target temperature T TCP of the charging gun, the heat loss P LCP of the charging gun, and The second correspondence obtains the cooling power P CP required for the actual temperature T CP of the charging gun to drop to the target temperature T TCP of the charging gun.
- the above-mentioned second corresponding relationship can be used to indicate the temperature of the environment where the charging pile is located, the actual temperature of the charging gun, the target temperature of the charging gun, and the heat loss of the charging gun and the actual temperature of the charging gun drops to the target temperature of the charging gun.
- the second corresponding relationship can be obtained from the manufacturer of the charging pile.
- the second corresponding relationship may be represented in the form of a curve or in the form of a table, which is not limited in this embodiment of the present application.
- the thermal management module 11 can reduce the actual temperature T CP of the power module to the target temperature T TPM of the power module, the required cooling power P PM and the actual temperature T CP of the charging gun to the target temperature T TCP of the charging gun
- the target temperature T TPM of the power module may be lower than or equal to a preset first temperature upper limit T MAX1 .
- T TPM can be 40°C
- T MAX1 can be preset as 60°C.
- the target temperature T TCP of the charging gun may be lower than or equal to a preset second temperature upper limit T MAX2 .
- T TCP can be set at 50°C
- T MAX2 can be preset at 80°C.
- the thermal management module 11 may ambient temperature (such as 25°C)
- the cooling power P of the direct cooling module 12 is 15kW (the cooling power P PM required to drop the actual temperature T CP of the power module to 40°C and the actual temperature T CP of the charging gun to drop to 50 °C required refrigeration power P CP superimposed to get).
- the above-mentioned thermal management module 11 may obtain the temperature (which may be represented by T1 ) of the liquid refrigerant transported by the first secondary pipeline where the first sensor is collected by any first sensor, and Obtaining the gaseous refrigerant collected by the second sensor from the second secondary pipeline where the second sensor is located (the second secondary pipeline and the above-mentioned first secondary pipeline are respectively connected to the same heat exchange module or the same cooling pipeline) Temperature (can be represented by T2 ).
- the thermal management module 11 may calculate the temperature difference between the temperature T1 of the liquid refrigerant transported by any one of the first auxiliary pipes and the temperature T2 of the corresponding gaseous refrigerant transported by the second auxiliary pipe ( It can be represented by ⁇ T).
- the thermal management module 11 adjusts the opening degree of the corresponding throttle valve according to the temperature difference ⁇ T.
- the thermal management Module 11 can control the opening degree of the throttle valve to increase.
- the thermal management module 11 can obtain the cooling power of the direct cooling module according to the actual temperature of the power module and the actual temperature of the charging gun in this situation (refer to the above process), and control the cooling power of the direct cooling module according to the newly acquired cooling power of the direct cooling module. Power operation (that is, derating of the direct cooling module (that is, reducing the output power, which can be achieved by reducing the speed of the compressor, etc.)), and controlling the opening of the corresponding throttle valve to decrease.
- the thermal management module 11 can control the throttle valve corresponding to the charging gun (that is, the cooling pipeline in the charging gun The throttle valve on the connected first secondary pipeline) is closed (that is, the throttle valve opening is 0).
- the thermal management module 11 can control the throttle valve by sending corresponding control information F3 (the communication circuit corresponding to the control information F3 is shown as a dotted line with an arrow in FIG. valve opening).
- a valve V may be provided on the second main pipeline, as shown in FIG. 2 .
- the valve V can be closed.
- control module CM in the charging pile when the charging pile is shut down or fails, sends control information F3 to the thermal management module 11 (for indicating that the charging pile is shut down or faulty), and the thermal management module 11 can
- the control information F3 controls the shutdown of the direct cooling module 12 and controls all throttle valves to be closed.
- the heat transfer coefficient of the direct cooling system provided in the embodiment of the present application (used to characterize the heat transfer capacity of the direct cooling system) can reach 3000W/(m 2 ⁇ K) to 25000W/(m 2 ⁇ K), K represents the Kelvin temperature.
- the cooling effect of the direct cooling system far exceeds that of fan cooling and coolant cooling (that is, liquid cooling), and is not affected by the ambient temperature. It has a better heat dissipation effect in hot summer weather.
- the refrigeration system provided by the embodiment of the present application has a compact structure and is easy to maintain. More importantly, the heat dissipation efficiency of the refrigeration system provided by the embodiment of the present application can be 2 to 3 times higher than that of the cooling liquid, which can quickly dissipate heat for the charging pile and ensure the safety of the charging pile.
- the embodiment of the present application has no limitation on the number and power of charging piles, that is to say, the refrigeration system provided in the embodiment of the present application can be used to dissipate heat for one or more charging piles.
- a high-power charging system composed of multiple charging piles can meet the charging needs of high-power new energy vehicles.
- the embodiment of the present application also provides a charging system S0, as shown in FIG. 3 , which may include (one or more) charging piles S2 and the above-mentioned cooling system S1.
- control module in the charging pile can be connected to the thermal management module in the refrigeration system, and the control module sends charging information to the thermal management module.
- One of the plurality of heat exchange modules in the cooling system can be connected to a corresponding one of the plurality of power modules in the charging pile, and the heat exchange module can dissipate heat for the power module.
- One of the plurality of cooling pipelines in the refrigeration system can be arranged inside a corresponding charging gun in the charging pile, and the cooling pipeline can dissipate heat for the corresponding charging gun and the cables connected to the charging gun.
- the thermal management module in the embodiment of the present application can control the direct cooling module, and the direct cooling module can convert the gaseous refrigerant output from the heat exchange module and the cooling pipeline into a liquid refrigerant, and then the heat exchange module is based on the liquid refrigerant.
- the power module dissipates heat, and at the same time, the cooling pipeline dissipates heat for the charging gun and its cables according to the liquid refrigerant, which not only improves the heat transfer coefficient of one or more charging piles, but also speeds up the heat dissipation rate of one or more charging piles.
- the aging speed of the power module and the charging gun can also be slowed down, thereby improving the operational reliability of the entire charging system.
- the charging system S0 includes a charging pile.
- control module CM in the charging pile can be connected to the thermal management module 11 in the refrigeration system, and the control module CM sends charging information F1 to the thermal management module 11 .
- the refrigeration system may include multiple heat exchange modules (that is, heat exchange module A1, heat exchange module A2, ..., heat exchange module AN in Figure 4, a total of N heat exchange modules), and the charging pile may include multiple power modules (that is, the power module PM1, the power module PM2, ..., the power module PMN in FIG. 4).
- one heat exchange module can be connected with a corresponding power module, and the heat exchange module is used to dissipate heat for the power module.
- the heat exchange module A1 may be connected to the power module PM1, and the heat exchange module A1 may dissipate heat for the power module PM1.
- the refrigeration system may also include a plurality of cooling pipelines (that is, cooling pipeline B1, cooling pipeline B2, ..., cooling pipeline BM in FIG. 4 ), and charging pile S2 may also include charging gun C1, charging gun C2 , ..., charging gun CM have M charging guns in total.
- a cooling pipeline can be arranged inside a corresponding charging gun, and the cooling pipeline is used for cooling the charging gun and the cables connected with the charging gun.
- the cooling pipeline B1 can be arranged inside the charging gun C1, and the cooling pipeline B1 can dissipate heat for the charging gun and the cables connected to the charging gun C1.
- the thermal management module 11 can be connected to the control module CM in the charging pile S2, and the direct cooling module 12 and the thermal management module 11 are both placed inside the charging pile.
- both the direct cooling module 12 and the thermal management module 11 are placed inside the charging pile S2, therefore, the charging pile S2 can be called an integrated pile.
- the direct cooling module and thermal management module in the charging system provided by the above embodiments of the present application can be located inside the charging pile to form an integrated pile, that is to say, the refrigeration system in the embodiment of the present application can be used to dissipate heat from the integrated pile.
- the charging system S0 may include K charging piles (that is, charging piles S21 to S2K), and the K charging piles may be connected in parallel.
- the thermal management module 11 in the refrigeration system and the control module of each charging pile in the K charging piles (that is, the control module CM1 in the first charging pile to the control module CM1 in the Kth charging pile in Figure 5
- the control module CMK is connected, and the control module CM1 to the control module CMK need to send control information to the thermal management module 11 according to their own charging information.
- the thermal management module 11 controls the direct cooling module 12 to start according to the control information, and then realizes the heat dissipation of the power module and the charging gun in the charging pile.
- the first charging pile may include multiple power modules such as the power module PM11, and multiple charging guns such as the charging gun C11 and the charging gun C12.
- the refrigeration system in FIG. 5 may include multiple heat exchange modules such as the heat exchange module A11 and multiple cooling pipelines such as the cooling pipeline B11 and the cooling pipeline B12.
- the Kth charging pile may also include multiple power modules such as the power module PMK1 and multiple charging guns such as the charging gun CMK1 and the charging gun CMK2 .
- the refrigeration system in FIG. 5 may include multiple heat exchange modules such as the heat exchange module AK1 and multiple cooling pipelines such as the cooling pipeline BK1 and the cooling pipeline BK2.
- the direct cooling module 12 and the thermal management module 11 can be placed outside the K charging piles. That is to say, the heat dissipation of the power module and the charging gun in each charging pile can be realized through a direct cooling module 12 and a thermal management module 11 . Therefore, the charging system S0 shown in FIG. 5 can be called a charging system including split piles.
- the direct cooling module and thermal management module in the charging system provided by the above embodiments of the present application are located outside multiple charging piles, forming split piles, that is to say, the cooling system in the embodiments of the present application can be used for split piles To dissipate heat.
- the split pile in the embodiment of the present application has a compact structure, which can reduce the investment cost and operation and maintenance cost of the charging system, and can increase the utilization rate of the direct cooling module.
- the charging pile S (that is, the charging pile S2, the charging pile S21 or the charging pile S2K above) may include a control module CM, and N power modules PM (that is, the power module PM1 in FIG. 6 ).
- N power modules PM that is, the power module PM1 in FIG. 6
- the control module CM can communicate with each of the N power modules PM
- the power modules are connected, and any one of the N power modules PM is connected to any one of the M charging guns through a corresponding cable.
- the control module CM can be used for: controlling each power module, and sending charging information F1 to the thermal management module 11 in the refrigeration system S1.
- Each power module can be used for: under the control of the control module CM, according to the AC power provided by the AC power supply (ie, V AC-in in Figure 6) or the DC power provided by the DC power supply (ie, V DC-in in Figure 6 ) Output direct current (that is, V DC-out in Figure 6) to any charging gun.
- the AC power supply ie, V AC-in in Figure 6
- the DC power provided by the DC power supply ie, V DC-in in Figure 6
- Output direct current that is, V DC-out in Figure 6
- Each charging gun (such as charging gun C1) can be used to: charge new energy vehicles according to the direct current V DC-out output by any power module.
- Process 100 can be implemented according to the following steps:
- Step S101 The thermal management module obtains the charging information from the control module (used to indicate that the charging pile needs to charge the corresponding terminal equipment, that is, the charging system needs to start working, and the cooling system needs to dissipate heat for the charging pile) and the information of each sensor (including the first The ambient temperature of the charging pile collected by the fifth sensor, the actual temperature of the power module collected by the third sensor, and the actual temperature of the charging gun collected by the fourth sensor).
- Step S102 When the actual temperature of the power module is higher than the preset first temperature upper limit (such as 60°C) and lasts for the preset first duration (such as 10 seconds), or the actual temperature of the charging gun is higher than the preset
- the second temperature upper limit value such as 80°C
- the thermal management module can be based on the charging information and according to the ambient temperature where the charging pile is located, the actual temperature of the power module and The actual temperature of the charging gun obtains the cooling power of the direct cooling module (refer to the introduction above for the detailed process), and sends the cooling power of the direct cooling module to the direct cooling module as control information, so that the direct cooling module follows the cooling power sent by the thermal management module. Power running.
- Step S103 The thermal management module can adjust the opening degree of the throttle valve according to the temperature difference between the temperature of the liquid refrigerant transported by any one of the first auxiliary pipelines and the temperature of the gaseous refrigerant transported by the corresponding second auxiliary pipeline.
- Step S104 When the temperature difference is higher than the preset temperature threshold, it indicates that the heat dissipation of the heat exchange module or the cooling pipeline is not obvious, and the thermal management module can control the opening of the throttle valve to increase. Otherwise (that is, when the temperature difference is lower than or equal to the preset temperature threshold), step S105 is executed.
- Step S105 When the actual temperature of the power module is not higher than the target temperature of the power module, or the actual temperature of the charging gun is not higher than the target temperature of the charging gun, the thermal management module can The actual temperature can regain the cooling power of the direct cooling module.
- Step S106 The thermal management module controls the direct cooling module to operate according to the reacquired cooling power of the direct cooling module (that is, the direct cooling module derates (that is, reduces the output power, which can be achieved by reducing the speed of the compressor, etc.)), and controls The opening of the corresponding throttle valve decreases.
- Step S107 When the charging pile stops or fails, the thermal management module can control the direct cooling module to stop and control the throttle valve to close.
- step S102 if the actual temperature of the power module is not higher than the first temperature upper limit (such as 60°C) and the actual temperature of the charging gun is not higher than the second temperature upper limit, the thermal management module does not need to To obtain the cooling power of the direct cooling module, the direct cooling module does not need to be started.
- the first temperature upper limit such as 60°C
- step S105 when the actual temperature of the power module is higher than the target temperature of the power module, or the actual temperature of the charging gun is higher than the target temperature of the charging gun, the thermal management module can acquire the direct cooling module according to step S102 cooling power.
- the control method of the charging system is similar to the above-mentioned control process 100, the difference is that the thermal management module needs to obtain the control from at least one charging pile in the m charging piles.
- the charging information of the module (used to indicate that at least one charging pile needs to charge the corresponding terminal equipment, that is, the charging system needs to start working, and the cooling system needs to dissipate heat for at least one charging pile).
- the thermal management module can be used when the actual temperature of one or more power modules of at least one charging pile is higher than the preset first temperature upper limit (such as 60°C) and lasts When the preset first duration (such as 10 seconds), or the actual temperature of one or more charging guns in at least one charging pile is higher than the preset second temperature upper limit (such as 80°C) and continues to preset For the second duration (such as 10 seconds), the direct cooling module is obtained based on the charging information of the corresponding control module and according to the ambient temperature of the charging pile, the actual temperature of one or power modules, and the actual temperature of one or more charging guns (The detailed process can also refer to the introduction above), and send the cooling power of the direct cooling module to the direct cooling module as control information, so that the direct cooling module operates according to the cooling power sent by the thermal management module.
- the preset first temperature upper limit such as 60°C
- the preset second temperature upper limit such as 80°C
- the direct cooling module is obtained based on the charging information of the corresponding control module and according to the ambient
- the thermal management module needs to reacquire the direct cooling power of the direct cooling module according to the actual temperature of the power module and the actual temperature of the charging gun, and control the operation of the direct cooling module according to the reacquired cooling power of the direct cooling module (that is, the direct cooling module Derating (that is, reducing the output power, which can be achieved by reducing the speed of the compressor, etc.) and controlling the opening of the corresponding throttle valve to decrease.
- the direct cooling module Derating that is, reducing the output power, which can be achieved by reducing the speed of the compressor, etc.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Transportation (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Devices That Are Associated With Refrigeration Equipment (AREA)
Abstract
一种制冷系统(S1)和充电系统(S0),可以通过制冷系统(S1)中的热管理模块(11)控制直冷模块(12),不仅能够提升充电桩(S2)的换热系数,为充电桩(S2)有效散热,还能够实现充电桩(S2)的快速散热。制冷系统(S1)可以包括热管理模块(11)、直冷模块(12)、多个换热模块(A)和多个冷却管路(B)。热管理模块(11)可以向直冷模块(12)发送用于指示充电桩(S2)需要为终端设备充电的控制信息,直冷模块(12)可以用于将第二管道组件(14)中传输的气态的制冷剂转变为液态的制冷剂,并通过第一管道组件(13)传输至每个换热模块(A1,…,AN)和每个冷却管路(B1,…,BM)。进而,每个换热模块(A1,…,AN)根据液态的制冷剂为功率模块(PM1,…,PMN)散热,且每个冷却管路(B1,…,BM)根据液态的制冷剂为充电枪(C1,…,CM)以及与充电枪(C1,…,CM)连接的线缆散热。
Description
本申请要求于2021年10月20日提交中国专利局、申请号为202111221623.8、申请名称为“制冷系统和充电系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及能源技术领域,并且更具体地,涉及能源技术领域中的一种制冷系统和充电系统。
随着新能源行业的大力发展,终端设备(如新能源汽车等)的充电需求也越来越大。目前,通常通过充电桩(或者充电堆等)为新能源汽车充电。为了缩短充电时间,实现新能源汽车的快速充电,充电桩需要满足新能源汽车的大功率充电需求。
在新能源汽车的充电过程中,充电桩中的功率模块和充电枪等会产生大量热量,影响充电桩的安全性。因此,亟需一种能够提升充电桩的换热系数,并实现充电桩快速散热的技术方案。
发明内容
本申请提供了一种制冷系统和充电系统,通过热管理模块控制直冷模块,不仅能够提升充电桩的换热系数,为充电桩有效散热,还能够实现充电桩的快速散热,确保充电桩的安全性。
第一方面,本申请提供了一种制冷系统,可以包括热管理模块、直冷模块、多个换热模块和多个冷却管路。
其中,热管理模块的输入端可以用于与充电桩的控制模块连接,热管理模块的输出端可以用于与直冷模块的输入端连接,直冷模块的输出端可以用于与第一管道组件的第一端连接,第一管道组件的第二端可以用于与多个换热模块中每个换热模块的输入端和多个冷却管路中每个冷却管路的输入端连接,每个换热模块的输出端和每个冷却管路的输出端可以分别用于与第二管道组件的第一端连接,第二管道组件的第二端可以用于与直冷模块的输入端连接,每个换热模块还可以与充电桩中对应的一个功率模块连接,每个冷却管路置 于充电桩中对应的一个充电枪和与充电枪连接的线缆内部。
基于上述连接关系,可以进一步得到:
热管理模块可以用于:根据来自控制模块的充电信息向直冷模块发送控制信息。
其中,充电信息可以用于指示充电桩需要为终端设备充电。
直冷模块可以用于:根据控制信息,将第二管道组件中传输的气态的制冷剂转变为液态的制冷剂,并通过第一管道组件将液态的制冷剂传输至每个换热模块和每个冷却管路;
每个换热模块可以用于:根据液态的制冷剂为对应的一个功率模块散热;
每个冷却管路可以用于:根据液态的制冷剂为对应的一个充电枪以及与充电枪连接的线缆散热。
需要解释的是,换热模块可以嵌入功率模块内部,或者固定在功率模块外部。当然,还可以采用其他方式实现换热模块与功率模块的连接,本申请对此不做限定。
可以理解的,由于换热模块用于为功率模块散热,冷却管路用于为充电枪以及与充电枪连接的线缆散热,所以,为了达到更好的散热效果,换热模块的数量可以与功率模块的数量相同,冷却管路的数量可以与充电枪的数量相同。
当然,也可以多个(如两个或者三个)功率模块共用一个换热模块。也就是说,可以将一个换热模块固定在多个功率模块的外部,通过该换热模块为多个功率模块散热。
可选地,上述的换热模块可以采用板式换热器。当然,换热模块还可以采用其他类型的换热器,本申请对此不做限定。
本申请通过热管理模块根据充电信息对直冷模块的控制,换热模块与功率模块之间直接进行热量交换,冷却管路与充电枪以及线缆之间直接进行热量交换,不仅实现了换热模块为功率模块的散热(即实现功率模块的制冷),还实现了冷却管路为充电枪以及线缆的散热(即实现充电枪和线缆的制冷)。同时,提升了充电桩的换热系数,明显改善了充电桩的制冷效果,并加快了充电桩的散热速度,确保充电桩的安全性。
在一种可能的实现方式中,制冷剂(包括液态的制冷剂和气态的制冷剂)采用相变制冷剂(例如,采用低温环保的制冷剂R134a,其导电率低,沸点为-26.1℃。还可以采用R134y等制冷剂)。
本申请中制冷剂的使用量较小,且不易泄露。而且,即使制冷剂泄露,制冷剂会迅速会发,不易破坏制冷系统的绝缘或短路。
在一种可能的实现方式中,直冷模块可以包括压缩机、冷凝器和风扇。
其中,压缩机的输入端可以与热管理模块的输出端和第二管道组件连接,压缩机的输出端可以与冷凝器的输入端连接,冷凝器的输入端还可以与热管理模块的输出端连接,冷凝器的输出端可以与第一管道组件连接。
压缩机可以用于:根据控制信息,将第二管道组件中传输的气态的制冷剂进行压缩,并将压缩后的气态的制冷剂传输至冷凝器。
冷凝器可以用于:根据控制信息,将压缩后的气态的制冷剂转变为液态的制冷剂,并通过第一管道组件将液态的制冷剂传输至每个换热模块和每个冷却管路。
风扇可以用于:为冷凝器散热。
本申请中的压缩机和冷凝器在控制模块的控制下,将第二管道组件传输的气态的制冷剂变换为液态的制冷剂,实现制冷剂的相变,进而能够实现换热模块为功率模块散热,冷却管路为充电枪及与充电枪连接的线缆散热。
在一示例中,第一管道组件可以包括第一主管道和多个第一副管道。
其中,多个第一副管道可以包括第一部分第一副管道和第二部分第一副管道。第一部分第一副管道和多个换热模块可以一一对应连接,第二部分第一副管道和多个冷却管路可以一一对应连接。
可选地,第一主管道的第一端可以用于与冷凝器的输出端连接,第一主管道的第二端可以用于与第一部分第一副管道中每个第一副管道的第一端和第二部分第一副管道中每个第一副管道的第一端连接,第一部分第一副管道中的一个第一副管道的第二端可以用于与多个换热模块中的一个换热模块对应连接,第二部分第一副管道中的一个第一副管道的第二端可以用于与多个冷却管路中的一个冷却管路对应连接。
在一种可能的实现方式中,每个第一副管道上可以设有节流阀(还可以叫作膨胀阀)。节流阀可以用于调节每个第一副管道中传输的液态的制冷剂的流量。
根据上述介绍和节流阀的工作原理可以理解到,从节流阀输出的制冷剂(即进入换热模块和冷却管路的制冷剂)为低温低压的液态的制冷剂,换热模块根据低温低压的液态制冷剂为功率模块散热,冷却管路根据低温低压的液态制冷剂为充电枪及线缆散热。之后,低温低压的液态制冷剂通过第二管道组件回到压缩机。压缩机将低温低压的液态制冷剂进行压缩,可以得到高温高压的气态制冷剂。高温高压的气态制冷剂进入冷凝器,冷凝器可以输出中温高压的液态制冷剂。中温高压的液态制冷剂进入节流阀,节流阀可以将中温高压的液态制冷剂的压力减小,同时中温高压的液态制冷剂的体积膨胀,即可得到低温低压的液态制冷剂(即进入换热模块和冷却管路的制冷剂)。
需要说明的是,上述低温、中温、高温、低压和高压都是相对的,不是绝对的低温、中温、高温、低压和高压。
例如,以压缩机为参照,输入压缩机的制冷剂的温度比压缩机输出的制冷剂的温度低,且输入压缩机的制冷剂的压力比压缩机输出的制冷剂的低,结合压缩机的工作原理可以得到,输入压缩机的制冷剂(即第二管道组件传输的为来自换热模块和冷却管路的制冷剂) 可以为低温低压的液态制冷剂,压缩机输出的制冷剂可以为高温高压的液态制冷剂。
需要说明的是,制冷剂沸点一般低于0℃,节流阀输出的低温低压的液态的制冷剂通过第一管道组件传输到换热模块和冷却管路,在换热模块为功率模块散热和冷却管路为充电枪及线缆散热的过程中,液态的制冷剂因吸热而相变为气态制冷剂(即换热模块和冷却管路输出的并通过第二管道组件传输到压缩机的制冷剂为低温低压的气态制冷剂)。
还例如,以冷凝器为参考,输入冷凝器的制冷剂(即压缩机输出的制冷剂)的温度比冷凝器输出的制冷剂的温度高,且输入冷凝器的制冷剂的压力与压缩机输出的制冷剂的压力基本相同,结合冷凝器的工作原理可以得到,冷凝器输出的制冷剂可以为中温高压的液态制冷剂。
又例如,以节流阀为参照,输入节流阀的制冷剂(即冷凝器输出的制冷剂)的温度比节流阀输出的制冷剂的温度高,输入节流阀的制冷剂的压力比节流阀输出的制冷剂的压力高,所以输入节流阀的制冷剂可以为中温高压的液态的制冷剂,节流阀输出的制冷剂可以为低温低压的液态的制冷剂。
在另一示例中,第二管道组件可以包括第二主管道和多个第二副管道。
其中,多个第二副管道包括第一部分第二副管道和第二部分第二副管道。第一部分第二副管道可以与多个换热模块一一对应连接,第二部分第二副管道与多个冷却管路一一对应连接。
第一部分第二副管道中一个第二副管道的第一端可以用于与多个换热模块中的一个换热模块对应连接,第二部分第二副管道中一个第二副管道的第一端可以用于与多个冷却管路中的一个冷却管路对应连接。第一部分第二副管道中每个第二副管道的第二端和第二部分第二副管道中每个第二副管道的第二端可以分别用于与第二主管道的第一端连接,第二主管道的第二端可以用于与直冷模块的输入端连接。
本申请实可以通过上述第一主管道、第二主管道、多个第一副管道和多个第二副管道中的制冷剂实现多个功率模块以及多个充电枪及线缆的散热。
在一种可能的实现方式中,每个第一副管道上可以设有第一传感器。第一传感器可以用于采集该第一传感器所在的第一副管道中传输的气态的制冷剂的温度。
类似地,每个第二副管道上可以设有第二传感器。第二传感器可以用于采集该第二传感器所在的第二副管道中传输的气态的制冷剂的温度。
在又一种可能的实现方式中,每个功率模块可以设有一个第三传感器,该第三传感器可以用于采集第三传感器所在的功率模块的实际温度。
类似地,每个充电枪可以设有一个第四传感器。该第四传感器可以用于采集第四传感器所在的充电枪的实际温度。
可选地,充电桩的外表面可以设置第五传感器,该第五传感器可以用于采集充电桩所在环境温度。
在一种可能的实现方式中,热管理模块可以接收来自控制模块的充电信息,并(从第五传感器)获取充电桩所在的环境温度、(从第三传感器获取)功率模块的实际温度和(从第四传感器获取)充电枪的实际温度。
在功率模块的实际温度高于预设的第一温度上限值且持续预设的第一时长时,或者充电枪的实际温度高于预设的第二温度上限值且持续预设的第二时长时,热管理模块基于充电信息,并根据充电桩所在的环境温度、功率模块的实际温度和充电枪的实际温度获取直冷模块的制冷功率。热管理模块可以将直冷模块的制冷功率作为控制信息下发给直冷模块,并控制节流阀打开。
进一步地,热管理模块可以基于充电信息,并根据充电桩所在的环境温度和功率模块的实际温度获取功率模块的实际温度降至功率模块的目标温度所需的制冷功率。类似地,热管理模块可以基于充电信息,并根据充电桩所在的环境温度和充电枪的实际温度获取充电枪的实际温度降至充电枪的目标温度所需的制冷功率。进而,热管理模块可以将功率模块的实际温度降至功率模块的目标温度所需的制冷功率和充电枪的实际温度降至充电枪的目标温度所需的制冷功率叠加,得到直冷模块的制冷功率。
可选地,功率模块的目标温度可以低于或者等于预设的第一温度上限值,充电枪的目标温度低于或者等于预设的第二温度上限值。
在一示例中,热管理模块可以根据功率模块的输入功率和功率模块的转换效率获取功率模块的热损耗。热管理模块基于充电信息,并根据充电桩所在的环境温度、功率模块的实际温度、预设的功率模块的目标温度、功率模块的热损耗以及第一对应关系获取功率模块的实际温度降至功率模块的目标温度所需的制冷功率。
其中,第一对应关系可以用于指示充电桩所在的环境温度、功率模块的实际温度、功率模块的目标温度和功率模块的热损耗与功率模块的实际温度降至功率模块的目标温度所需的制冷功率之间的对应关系。
在另一示例中,热管理模块可以根据充电枪的电流和阻抗,采用欧姆定律获取充电枪的热损耗。热管理模块基于充电信息,并根据充电桩所在的环境温度、充电枪的实际温度、预设的充电枪的目标温度、充电枪的热损耗以及第二对应关系获取充电枪的实际温度降至充电枪的目标温度所需的制冷功率。
其中,第二对应关系用于指示充电桩所在的环境温度、充电枪的实际温度、充电枪的目标温度和充电枪的热损耗与所述充电枪的实际温度降至充电枪的目标温度所需的制冷功率之间的对应关系。
在一种可能的实现方式中,热管理模块还可以获取多个第一副管道中的任意一个第一副管道传输的液态的制冷剂的温度与多个第二副管道中的对应第二副管道传输的气态的制冷剂的温度之间的温度差。热管理模块可以根据温度差调节节流阀的开度。
进一步地,当温度差高于预设的温度阈值时,表明换热模块或冷却管路的散热不明显,热管理模块可以控制节流阀的开度增大。
当温度差低于或等于预设的温度阈值时,表明换热模块或冷却管路的散热明显。在该情况下,功率模块的实际温度低于功率模块的目标温度,或者充电枪的实际温度低于充电枪的目标温度。于是,热管理模块可以根据该情况下功率模块的实际温度和充电枪的实际温度获取直冷模块的制冷功率(参考上文过程),并控制直冷模块按照重新获取的直冷模块的制冷功率运行(即直冷模块降额(即降低输出功率,可以通过降低压缩机的降速等实现)运行),并控制对应的节流阀的开度减小。
在一种可能的实现方式中,当充电桩停机或者故障时,热管理模块可以控制直冷模块停机,并控制所有节流阀关闭。
与冷却液制冷相比,本申请提供的制冷系统结构紧凑,便于维护。更重要的是,本申请提供的制冷系统的散热效率远高于冷却液制冷散热效率,可以快速为充电桩散热,确保充电桩的安全性。
而且,本申请对充电桩的数量和功率无限制,也就是说,本申请提供的制冷系统可以用于多一个或多个充电桩散热,同时,可以为一个大功率充电桩或多个充电桩构成的大功率充电系统,可以满足大功率新能源汽车的充电需求。
第二方面,本申请提供了一种充电系统,可以包括充电桩以及上述第一方面及其可能的实现方式提供的制冷系统。
可选地,充电桩中的控制模块可以与制冷系统中的热管理模块连接,控制模块发送充电信息给热管理模块。制冷系统中多个换热模块中的一个换热模块可以与充电桩中多个功率模块中对应的一个功率模块连接,换热模块可以为功率模块散热。
制冷系统中多个冷却管路中的一个冷却管路可以设置于充电桩中对应的一个充电枪内部,冷却管路可以为对应的一个充电枪及与充电枪连接的线缆散热。
本申请中的热管理模块可以控制直冷模块,直冷模块可以将换热模块和冷却管路输出的气态的制冷剂变换为液态的制冷剂,进而换热模块根据液态的制冷剂为功率模块散热,同时,冷却管路根据液态的制冷剂为充电枪及其线缆散热,不仅提高了一个或多个充电桩的换热系数,还加快了一个或多个充电桩的散热速率。另外,还可以减缓功率模块和充电枪的老化速度,进而提高整个充电系统的运行可靠性。
在一种可能的实现方式中,充电系统包括一个充电桩。
可选地,制冷系统可以包括多个换热模块,充电桩可以包括多个功率模块。
其中,一个换热模块可以与对应的一个功率模块连接,换热模块用于为功率模块散热。
进一步地,制冷系统还可以包括多个冷却管路,充电桩S2还可以包括多个充电枪。
其中,一个冷却管路可以设置于对应的一个充电枪内部,冷却管路用于为充电枪及与充电枪连接的线缆散热。
在一示例中,热管理模块可以与充电桩中的控制模块连接,且直冷模块和热管理模块均置于充电桩的内部。
也就是说,直冷模块和热管理模块均置于充电桩内部,因此,该充电桩可以叫作一体桩。
需要说明的是,制冷系统中节流阀等的详细介绍,可以参考前文,本申请在此不做赘述。
本申请提供的充电系统中的直冷模块和热管理模块可以位于充电桩内部,形成一体桩,也就是说,本申请中的制冷系统可以用于对一体桩进行散热。
在另一种可能的实现方式中,充电系统可以包括多个充电桩,多个充电桩可以并联。
其中,热管理模块可以与多个充电桩中每个充电桩的控制模块连接,且直冷模块和热管理模块均置于多个充电桩的外部。也就是说通过一个直冷模块和一个热管理模块可以实现每个充电桩中的功率模块和充电枪的散热。因此,充电系统可以叫作包括分体桩的充电系统。
同样,制冷系统中节流阀等的详细介绍,可以参考前文,本申请在此也不做赘述。
本申请提供的充电系统中的直冷模块和热管理模块位于多个充电桩的外部,形成分体桩,也就是说,本申请提供的制冷系统可以用于对分体桩进行散热。
本申请中的分体桩结构紧凑,可以降低充电系统的投资成本和运维成本,能够提高直冷模块的使用率。
可选地,充电桩(一个充电桩或者多个充电桩中的每个充电桩)可以包括控制模块、多个功率模块和多个充电枪。
其中,控制模块可以与多个功率模块中的每个功率模块连接,多个功率模块中任意一个功率模块通过对应的线缆可以与多个充电枪中任意一个充电枪连接。
根据上述连接关系,可以进一步得到:
控制模块可以用于:控制每个功率模块,还用于发送充电信息给制冷系统(即给直冷系统中的热管理模块)。
每个功率模块可以用于:在控制模块的控制下,根据交流电源提供的交流电或者直流电源提供的直流电输出直流电给任意一个充电枪;
每个充电枪可以用于:根据任意一个功率模块输出的直流电为终端设备充电。
第三方面,本申请提供了一种充电系统的控制方法,可以包括:热管理模块根据来自充电桩中控制模块的充电信息(可以用于指示一个或多个充电桩需要为对应的终端设备充电)向直冷模块发送控制信息。热管理模块可以根据控制信息控制直冷模块将第二管道组件中传输的气态的制冷剂转变为液态的制冷剂,并通过第一管道组件将液态的制冷剂传输至一个或多个充电桩中的每个换热模块和每个冷却管路。进而,每个换热模块根据液态的制冷剂为对应的一个功率模块散热,每个冷却管路根据液态的制冷剂为对应的一个充电枪以及与该充电枪连接的线缆散热。
本申请中的热管理模块可以控制直冷模块,直冷模块可以将换热模块和冷却管路输出的气态的制冷剂变换为液态的制冷剂,进而换热模块根据液态的制冷剂为功率模块散热,同时,冷却管路根据液态的制冷剂为充电枪及其线缆散热,不仅提高了一个或多个充电桩的换热系数,还加快了一个或多个充电桩的散热速率。另外,还可以减缓功率模块和充电枪的老化速度,进而提高整个充电系统的运行可靠性。
可选地,上述的直冷模块、第一管道组件和第二管道组件各自的详细介绍也可以参考前文,本申请在此不做赘述。
在一种可能的实现方式中,本申请提供的控制方法还可以包括:热管理模块控制第一副管道上设置的节流阀,实现每个第一副管道中传输的液态的制冷剂的流量的调节。
在一示例中,每个第一副管道上可以设有一个第一传感器,该第一传感器可以采集第一传感器所在的第一副管道中传输的液态的制冷剂的温度。
在另一示例中,每个第二副管道上可以设有一个第二传感器,该第二传感器可以采集第二传感器所在的第二副管道中传输的气态的制冷剂的温度。
在再一示例中,每个功率模块可以设有一个第三传感器,该第三传感器可以采集第三传感器所在的功率模块的实际温度。
在又一示例中,每个充电枪可以设有一个第四传感器,该第四传感器可以采集第四传感器所在的充电枪的实际温度。
在又一示例中,充电桩(一个充电桩或者多个充电桩中的任意一个充电桩)的外表面可以设置一个第五传感器,该第五传感器可以用于采集充电桩所在环境温度。
在一种可能的实现方式中,热管理模块根据来自充电桩中控制模块的充电信息向直冷模块发送控制信息可以包括:
热管理模块接收来自控制模块的充电信息,并获取充电桩所在的环境温度(可以从第五传感器获取)、功率模块的实际温度(可以从第三传感器获取)和充电枪的实际温度(从第四传感器获取)。在功率模块的实际温度高于预设的第一温度上限值(如60℃)且持 续预设的第一时长(如10秒)时,或者充电枪的实际温度高于预设的第二温度上限值(如80℃)且持续预设的第二时长(如10秒)时,热管理模块可以基于充电信息,并根据充电桩所在的环境温度、功率模块的实际温度和充电枪的实际温度获取直冷模块的制冷功率。热管理模块可以将直冷模块的制冷功率作为控制信息下发给直冷模块,并控制节流阀打开。
进一步地,在功率模块的实际温度高于预设的第一温度上限值(如60℃)且持续预设的第一时长(如10秒)时,或者充电枪的实际温度高于预设的第二温度上限值(如80℃)且持续预设的第二时长(如10秒)时,热管理模块可以基于充电信息,并根据充电桩所在的环境温度、功率模块的实际温度和充电枪的实际温度,按照以下过程获取直冷模块的制冷功率:
热管理模块可以基于充电信息、并根据充电桩所在的环境温度和功率模块的实际温度获取功率模块的实际温度降至所述功率模块的目标温度(如40℃,可以低于等于上述预设的第一温度上限值)所需的制冷功率。类似的,热管理模块还可以基于充电信息、并根据充电桩所在的环境温度和充电枪的实际温度获取充电枪的实际温度降至充电枪的目标温度(如50℃,可以低于等于上述预设的第二温度上限值)所需的制冷功率。热管理模块可以将功率模块的实际温度降至功率模块的目标温度所需的制冷功率和充电枪的实际温度降至充电枪的目标温度所需的制冷功率叠加,得到直冷模块的制冷功率。
在一示例中,热管理模块可以按照下述过程获取功率模块的实际温度降至功率模块的目标温度所需的制冷功率:
热管理模块可以根据功率模块的输入功率和功率模块的转换效率获取功率模块的热损耗。热管理模块可以充电信息,并根据充电桩所在的环境温度、所述功率模块的实际温度、预设的功率模块的目标温度、功率模块的热损耗以及第一对应关系(参考上文介绍)获取功率模块的实际温度降至功率模块的目标温度所需的制冷功率。
在另一示例中,热管理模块可以按照下述过程获取充电枪的实际温度降至充电枪的目标温度所需的制冷功率:
热管理模块可以根据充电枪的电流和阻抗,采用欧姆定律获取充电枪的热损耗。热管理模块可以基于充电信息,并根据充电桩所在的环境温度、充电枪的实际温度、预设的充电枪的目标温度、充电枪的热损耗以及第二对应关系(参考上文介绍)获取充电枪的实际温度降至充电枪的目标温度所需的制冷功率。
在一种可能的实现方式中,本申请提供的控制方法还可以包括:热管理模块获取多个第一副管道中的任意一个第一副管道传输的液态的制冷剂的温度与多个第二副管道中的对应第二副管道传输的气态的制冷剂的温度之间的温度差。热管理模块可以根据温度差调 节节流阀的开度。
进一步地,热管理模块可以按照以下两种情况调节节流阀的开度:
情况一:当温度差高于预设的温度阈值时,表明换热模块或冷却管路的散热不明显,热管理模块可以控制节流阀的开度增大。
情况二:当温度差低于或等于预设的温度阈值时,表明换热模块或冷却管路的散热明显。在情况二下,功率模块的实际温度低于功率模块的目标温度,或者充电枪的实际温度低于充电枪的目标温度。于是,热管理模块11可以根据该情况下功率模块的实际温度和充电枪的实际温度获取直冷模块的制冷功率,并控制直冷模块按照重新获取的直冷模块的制冷功率运行(即直冷模块降额(即降低输出功率,可以通过降低压缩机的降速等实现)运行),并控制对应的节流阀的开度减小。
在一种可能的实现方式中,本申请提供的控制方法还可以包括:当一个充电桩或多个充电桩中的任意一个充电桩停机(终端设备充电结束,充电桩停机)或者故障时,热管理模块可以控制直冷模块停机,并控制节流阀关闭。
需要说明的是,本申请提供的上述控制方法不仅适用于包括一个充电桩的充电系统,还适用于包括多个充电桩的充电系统。
应当理解的是,本申请的第二方面和第三方面与本申请的第一方面的技术方案一致,各方面及对应的可行实施方式所取得的有益效果相似,不再赘述。
为了更清楚地说明本申请或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1提供了本申请实施例的制冷系统的一种示意性结构图;
图2提供了本申请实施例的制冷系统的一种示意性结构图;
图3提供了本申请实施例的充电系统的一种示意性结构图;
图4提供了本申请实施例的充电系统的一种示意性结构图;
图5提供了本申请实施例的充电系统的一种示意性结构图;
图6提供了本申请实施例的充电桩的一种示意性结构图;
图7提供了本申请实施例中充电系统的控制方法的一种示意性流程图。
下面将结合附图,对本申请中的技术方案进行描述。
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请中的附图,对本申请中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书实施例和权利要求书及附图中的术语“第一”、“第二”等仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元。方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
应当理解,在本申请中,“至少一个(项)”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,用于描述关联对象的关联关系,表示可以存在三种关系,例如,“A和/或B”可以表示:只存在A,只存在B以及同时存在A和B三种情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,“a和b”,“a和c”,“b和c”,或“a和b和c”,其中a,b,c可以是单个,也可以是多个。
随着新能源行业的大力发展,终端设备(如新能源汽车等)的产销量越来越高。
新能源汽车一般分为新能源乘用车(如纯电动汽车(battery electric vehicle,BEV)和插电式混合动力汽车(plug-in hybrid electric vehicle,PHEV))、新能源商用车(如电动公交车和电动大巴等)、新能源专用车(如电动重卡(即电动重型卡车,可以为总质量大于14吨的卡车)、电动摆渡车和电动特种车(如电动消防车)等)以及新能源物流车(如电动轻卡(即电动轻型卡车,可以为总质量大于1.8吨且小于等于4.5吨的卡车)、电动中卡(即电动中型卡车,可以为总质量大于4.5吨且小于等于14吨的卡车)和电动微型面包车(可以为总质量小于等于1.8吨的小卡车)等)等。
其中,新能源乘用车搭载的电池包的电量通常在50kWh至100kWh之间,新能源商用车搭载的电池包的电量通常在150kWh至300kWh之间,新能源专用车搭载的电池包的电量通常在200kWh至500kWh之间,新能源物流车搭载的电池包的电量通常在50kWh至200kWh之间。
为了满足上述不同新能源汽车的充电需求,缩短充电时间,实现新能源汽车的快速充电,充电桩(或者充电堆等)需要满足新能源汽车的大功率充电需求,即充电桩需要具有 大功率充电能力。例如,充电桩的峰值功率最高需要达到200kW至400kW,充电枪中单个充电枪的电流需要高达250A,且持续几分钟至十几分钟。
在新能源汽车的充电过程中,充电桩中的功率模块、充电枪以及功率模块与充电枪之间的线缆会产生大量热量。于是,可以采用风扇为充电桩散热(即采用风冷方式为充电桩散热)。但是,风扇转速通常较高,噪音比较大,而且受环境温度的影响,风冷方式对充电桩的散热效果(即制冷效果)较差。更重要的是,风冷方式只能为功率模块散热,不能为线缆和充电枪散热。风冷方式为功率模块的散热效果有限,可能导致充电桩降额(即输出功率减小)运行甚至终止,而且线缆和充电枪产生的热量无法快速散出,导致线缆和充电枪的温度较高,加快了线缆和充电枪的老化速度。
为了克服上述风冷方式的不足,可以采用直冷和液冷结合的方式,也就是采用直冷模块(如压缩机等,需要采用制冷剂)和液冷模块(如储液箱,需要采用冷却液)为充电桩散热。冷却液(如乙二醇等)的消耗量大,且易泄露,可能会造成充电桩短路等事故。而且,直冷模块和液冷模块之间需要进行热量交换,液冷模块再与充电桩(即被直冷设备)之间进行热量交换。也就是说,在整个过程中,需要进行两次热交换,因此换热系数和充电桩的制冷效果均较差,且依靠制冷剂进行热量交换,制冷速率(即散热速率)较慢。
为了提升充电桩的换热系数,改善充电桩的制冷效果,并实现充电桩快速散热,确保充电桩的安全性,本申请实施例提供了一种制冷系统,如图1所示。图1中,制冷系统S1可以包括热管理模块11、直冷模块12、N个换热模块A(即图1中的换热模块A1、换热模块A2、…、换热模块AN)和M个冷却管路B(即图1中的冷却管路B1、冷却管路B2、…、冷却管路BM)。图1中的带箭头的虚线表示信息(包括充电信息F1和控制信息F2)的传输路径(即通讯回路),带箭头的实线表示制冷剂的传输路径(即冷却回路)。
其中,热管理模块11的输入端可以用于与充电桩C的控制模块(control module,CM,即桩控制器)连接(如图1中的虚线箭头所示),热管理模块11的输出端可以用于与直冷模块12的输入端连接(如图1中的虚线箭头所示),直冷模块12的输出端可以用于与第一管道组件13的第一端连接(如图1中的实线箭头所示),第一管道组件13的第二端可以用于与N个换热模块A中每个换热模块的输入端和M个冷却管路中每个冷却管路的输入端连接(如图1中的实线箭头所示),每个换热模块的输出端和每个冷却管路的输出端分别用于与第二管道组件14的第一端连接(如图1中的实线箭头所示),第二管道组件14的第二端可以用于与直冷模块12的输入端连接(如图1中的实线箭头所示)。
可选地,每个换热模块还与充电桩C中对应的一个功率模块(power module,PM)连接(图1中未示出),每个冷却管路可以置于充电桩C中对应的一个充电枪和与充电枪连接的线缆内部(图1中未示出)。
需要解释的是,换热模块可以嵌入功率模块内部,或者固定在功率模块外部。当然,还可以采用其他方式实现换热模块与功率模块的连接,本申请实施例对此不做限定。
还需要解释的是,也可以换热模块
根据上述连接关系,可以进一步得到:
热管理模块11可以用于:根据来自控制模块CM的充电信息F1(即控制模块CM可以给热管理模块11发送充电信息F1)向直冷模块12发送控制信息F2,充电信息F1可以用于指示充电桩需要为新能源汽车充电。
直冷模块12可以用于:根据控制信息F2,将第二管道组件14中传输的气态的制冷剂转变为液态的制冷剂,并通过第一管道组件11将液态的制冷剂传输至每个换热模块(即换热模块A1至换热模块AN)和每个冷却管路(即冷却管路B1至冷却管路BM)。
每个换热模块(如换热模块A1)可以用于:根据第一管道组件13传输的液态的制冷剂为功率模块(可以是充电桩中的所有功率模块,图1中未示出)散热。
每个冷却管路(如冷却管路B1)可以用于:根据第一管道组件13传输的液态的制冷剂为充电枪(可以是充电枪中所有正在使用的充电枪,图1中未示出)以及与充电枪连接的线缆(图1中未示出)散热。
从图1可以看出,制冷剂在整个制冷系统中形成了回路。制冷剂的传输路径如图1中的实线箭头所示,可以是:直冷模块12→第一管道组件13→多个换热模块A和多个冷却管路B→第二管道组件14→直冷模块12。也就是,制冷剂从直冷模块12中输出,经过第一管道组件13传输至多个换热模块A和多个冷却管路B,流经多个换热模块A和多个冷却管路B和制冷剂再经过第二管道组件14回到直冷模块11。
可以理解的,由于换热模块用于为功率模块散热,冷却管路用于为充电枪以及与充电枪连接的线缆散热,所以,为了达到更好的散热效果,换热模块的数量可以与功率模块的数量相同,冷却管路的数量可以与充电枪的数量相同。
当然,也可以多个(如两个或者三个)功率模块共用一个换热模块。也就是说,可以将一个换热模块固定在多个功率模块的外部,通过该换热模块为多个功率模块散热。
例如,充电桩包括四个功率模块和两个充电枪,于是,制冷系统可以包括四个换热模块和两个冷却管路。
可选地,上述的换热模块可以采用板式换热器。当然,换热模块还可以采用其他类型的换热器,本申请实施例对此不做限定。
本申请实施例通过热管理模块根据充电信息对直冷模块的控制,换热模块与功率模块之间直接进行热量交换,冷却管路与充电枪以及线缆之间直接进行热量交换,不仅实现了换热模块为功率模块的散热(即实现功率模块的制冷),还实现了冷却管路为充电枪以及 线缆的散热(即实现充电枪和线缆的制冷)。同时,提升了充电桩的换热系数,明显改善了充电桩的制冷效果,并加快了充电桩的散热速度,确保充电桩的安全性。
在一种可能的实现方式中,制冷剂(包括液态的制冷剂和气态的制冷剂)采用相变制冷剂(例如,采用低温环保的制冷剂R134a,其导电率低,沸点为-26.1℃。还可以采用R134y等制冷剂)。
本申请实施例提供的制冷系统中的制冷剂沿着回路传输,制冷剂的使用量较小,且不易泄露。而且,即使制冷剂泄露,制冷剂会迅速会发,不易破坏制冷系统的绝缘或短路。
进一步地,如图2所示,上述直冷模块12可以包括压缩机121、冷凝器122和风扇123。图2中的带箭头的虚线表示信息(包括充电信息F1和控制信息F2)的传输路径(即通讯回路),带箭头的实线表示制冷剂的传输路径(即冷却回路)。其中,压缩机121的输入端可以与热管理模块11的输出端连接(如图2中的虚线箭头所示),压缩机121的输入端还可以和第二管道组件14连接(如图2中的实线箭头所示),压缩机121的输出端可以与冷凝器122的输入端连接(如图2中的实线箭头所示),冷凝器122的输入端还可以与热管理模块11的输出端连接(如图2中的虚线箭头所示),冷凝器122的输出端可以与第一管道组件13连接(如图2中的实线箭头所示)。
根据上述连接关系,可以进一步得到:
压缩机121可以用于:根据控制信息F2,将第二管道组件14中传输的气态的制冷剂进行压缩,并将压缩后的气态的制冷剂传输至冷凝器122。也就是说,压缩机122受热管理模块11的控制,在热管理模块11的控制下,压缩机122启动,将第二管道组件14中传输的气态的制冷剂进行压缩,并将压缩后的气态的制冷剂传输至冷凝器122。
冷凝器122可以用于:根据控制信息F2,将压缩后的气态的制冷剂转变为液态的制冷剂,并通过第一管道组件13将液态的制冷剂传输至每个换热模块(即换热模块A1至换热模块AN)和每个冷却管路(即冷却管路B1至冷却管路BM)。也就是说,冷凝器122受热管理模块11的控制,在热管理模块11的控制下,冷凝器122启动,将压缩后的气态的制冷剂转变为液态的制冷剂,并通过第一管道组件13将液态的制冷剂传输至每个换热模块和每个冷却管路。
风扇123可以用于:为冷凝器122散热,进而提高冷凝器122的运行效率。
本申请实施例中的压缩机和冷凝器在控制模块的控制下,将第二管道组件传输的气态的制冷剂变换为液态的制冷剂,实现制冷剂的相变,进而能够实现换热模块为功率模块散热,冷却管路为充电枪及与充电枪连接的线缆散热。
在一示例中,直冷模块12还可以包括箱体,压缩机121、冷凝器122和风扇123均位于箱体内部,箱体侧壁上设有散热孔。
本申请实施例中仅有直冷模块设有风扇和散热孔,充电桩内无需风扇和散热孔,提高了充电桩的IP(ingress protection)防护等级。
在一种可能的实现方式中,上述第一管道组件13可以包括第一主管道(即图2中换热模块和冷却管路左边竖直方向的管道)和N+M个第一副管道(即图2中换热模块和冷却管路左边水平方向的管道)。
其中,N+M个第一副管道包括N个与换热模块模块连接的第一幅管道(即第一部分第一副管道,也就是第一主管道和N个换热模块之间的N个第一幅管道)和M个与冷却管路连接的第一幅管道(即第二部分第一副管道,也就是第一主管道和M个冷却管路之间的M个第一副管道)。
可选地,N个第一副管道和N个换热模块一一对应连接。也就是说,N个第一副管道中的第一个第一副管道与N个换热模块中的第一个换热模块(即图2中的换热模块A1)对应连接,N个第一副管道中的第二个第一副管道与N个换热模块中的第二个换热模块(即图2中的换热模块A2)对应连接,以此类推,N个第一副管道中的最后一个(即第N个)第一副管道与N个换热模块中的最后一个(即第N个)换热模块(即图2中的换热模块AN)对应连接。
类似地,M个第一副管道和M个冷却管路一一对应连接。也就是说,M个第一副管道中的第一个第一副管道与M个冷却管路中的第一个冷却管路(即图2中的冷却管路B1)对应连接,M个第一副管道中的第二个第一副管道与M个冷却管路中的第二个冷却管路(即图2中的冷却管路B2)对应连接,以此类推,M个第一副管道中的最后一个(即第M个)第一副管道与M个冷却管路中的最后一个冷却管路(即图2中的冷却管路BM)对应连接。
进一步地,第一主管道的第一端(即图2中第一主管道的下端)可以用于与冷凝器122的输出端连接,第一主管道的第二端(即N+M个第二端)可以用于与N个第一副管道中每个第一副管道的第一端(即图2中N个第一副管道中每个第一副管道的左端)和M个第一副管道中每个第一副管道的第一端(即图2中M个第一副管道中每个第一副管道的左端)连接。N个第一副管道中的一个第一副管道的第二端(即图2中N个第一副管道中每个第一副管道的右端)可以用于与N个换热模块中的一个换热模块对应连接(如N个第一副管道中的第一个第一副管道的第二端可以用于与N个换热模块中的第一个换热模块(即换热模块A1)的输入端对应连接),M个第一副管道中的一个第一副管道的第二端(即图2中M个第二副管道中每个第二副管道的右端)可以用于与M个冷却管路中的一个冷却管路对应连接(如M个第一副管道中的第一个第一副管道的第二端可以用于与M个冷却管路中的第一个冷却管路(即冷却管路B1)的输入端对应连接)。
在一种可能的实现方式中,上述N+M个第一副管道中的每个第一副管道上可以设有节流阀(还可以叫作膨胀阀)。节流阀可以用于调节每个第一副管道中传输的液态的制冷剂的流量。
例如,N个第一副管道中的第一个第一副管道上可以设有节流阀T11。
又例如,N个第一副管道中的第二个第一副管道上可以设有节流阀T12。
还例如,N个第一副管道中的最后一个第一副管道上可以设有节流阀T1N。
还例如,M个第一副管道中的第一个第一副管道上可以设有节流阀T21。
还例如,M个第一副管道中的第二个第一副管道上可以设有节流阀T22。
还例如,M个第一副管道中的最后一个第一副管道上可以设有节流阀T2M。
根据上述介绍和节流阀的工作原理可以理解到,从节流阀输出的制冷剂(即进入换热模块和冷却管路的制冷剂)为低温低压的液态的制冷剂,换热模块根据低温低压的液态制冷剂为功率模块散热,冷却管路根据低温低压的液态制冷剂为充电枪及线缆散热。之后,低温低压的液态制冷剂通过第二管道组件回到压缩机。压缩机将低温低压的液态制冷剂进行压缩,可以得到高温高压的气态制冷剂。高温高压的气态制冷剂进入冷凝器,冷凝器可以输出中温高压的液态制冷剂。中温高压的液态制冷剂进入节流阀,节流阀可以将中温高压的液态制冷剂的压力减小,同时中温高压的液态制冷剂的体积膨胀,即可得到低温低压的液态制冷剂(即进入换热模块和冷却管路的制冷剂)。
需要说明的是,上述低温、中温、高温、低压和高压都是相对的,不是绝对的低温、中温、高温、低压和高压。
例如,以压缩机为参照,输入压缩机的制冷剂的温度比压缩机输出的制冷剂的温度低,且输入压缩机的制冷剂的压力比压缩机输出的制冷剂的低,结合压缩机的工作原理可以得到,输入压缩机的制冷剂(即第二管道组件传输的为来自换热模块和冷却管路的制冷剂)可以为低温低压的液态制冷剂,压缩机输出的制冷剂可以为高温高压的液态制冷剂。
需要说明的是,制冷剂沸点一般低于0℃,节流阀输出的低温低压的液态的制冷剂通过第一管道组件传输到换热模块和冷却管路,在换热模块为功率模块散热和冷却管路为充电枪及线缆散热的过程中,液态的制冷剂因吸热而相变为气态制冷剂(即换热模块和冷却管路输出的并通过第二管道组件传输到压缩机的制冷剂为低温低压的气态制冷剂)。
还例如,以冷凝器为参考,输入冷凝器的制冷剂(即压缩机输出的制冷剂)的温度比冷凝器输出的制冷剂的温度高,且输入冷凝器的制冷剂的压力与压缩机输出的制冷剂的压力基本相同,结合冷凝器的工作原理可以得到,冷凝器输出的制冷剂可以为中温高压的液态制冷剂。
又例如,以节流阀为参照,输入节流阀的制冷剂(即冷凝器输出的制冷剂)的温度比 节流阀输出的制冷剂的温度高,输入节流阀的制冷剂的压力比节流阀输出的制冷剂的压力高,所以输入节流阀的制冷剂可以为中温高压的液态的制冷剂,节流阀输出的制冷剂可以为低温低压的液态的制冷剂。
在一种可能的实现方式中,上述第二管道组件可以包括第二主管道(即图2中换热模块和冷却管路右边竖直方向的管道)和N+M个第二副管道(即图2中换热模块和冷却管路右边水平方向的管道)。
其中,N+M个第二副管道包括N个与换热模块模块连接的第二幅管道(即第一部分第二副管道,也就是第二主管道和N个换热模块之间的N个第二幅管道)和M个与冷却管路连接的第二幅管道(即第二部分第二副管道,也就是第二主管道和M个冷却管路之间的M个第二副管道)。
可选地,N个第二副管道与N个换热模块一一对应。
例如,N个第二副管道中的第一个第二副管道的第一端(即图2中N个第二副管道中的第一个第二副管道的左端)与N个换热模块中的第一个换热模块(即图2中的换热模块A1)对应。
又例如,N个第二副管道中的第二个第二副管道的第一端(即图2中N个第二副管道中的第二个第二副管道的左端)与N个换热模块中的第二个换热模块(即图2中的换热模块A2)对应。
还例如,N个第二副管道中的第N个(即最后一个)第二副管道的第一端(即图2中N个第二副管道中的最后一个第二副管道的左端)与N个换热模块中的第N个(即最后一个)换热模块(即图2中的换热模块AN)对应。
类似地,M个第二副管道与M个冷却管路一一对应。
例如,M个第二副管道中的第一个第二副管道的第一端(即图2中M个第二副管道中的第一个第二副管道的左端)与M个冷却管路中的第一个冷却管路(即图2中的冷却管路B1)对应。
又例如,M个第二副管道中的第二个第二副管道的第一端(即图2中M个第二副管道中的第二个第二副管道的左端)与M个冷却管路中的第二个冷却管路(即图2中的冷却管路B2)对应。
还例如,M个第二副管道中的第M个(即最后一个)第二副管道的第一端(即图2中M个第二副管道中的最后一个第二副管道的左端)与M个冷却管路中的第M个(即最后一个)冷却管路(即图2中的冷却管路BM)对应。
根据上述对应关系,可以进一步得到:
N个第二副管道中一个第二副管道的第一端可以用于与N个换热模块中的一个换热 模块对应连接(如N个第二副管道中的第一个第二副管道的第一端可以用于与N个换热模块中的第一个换热模块(即换热模块A1)的输出端对应连接)。
M个第二副管道中一个第二副管道的第一端可以用于与M个冷却管路中的一个冷却管路对应连接(如M个第二副管道中的第一个第二副管道的第一端可以用于与M个冷却管路中的第一个冷却管路(即冷却管路B1)的输出端对应连接)。
N个第二副管道中每个第二副管道的第二端(即图2中N个第二副管道中每个第二副管道的右端)和M个第二副管道中每个第二副管道的第二端(即图2中M个第二副管道中每个第二副管道的右端)分别用于与第二主管道的第一端(即图2中第二主管道的上端,第二主管道可以有N+M个第一端)连接,第二主管道的第二端(即图2中第二主管道的下端)可以用于与直冷模块12的输入端(即压缩机121的输入端)连接。
本申请实施例可以通过上述第一主管道、第二主管道、N+M个第一副管道和N+M个第二副管道中的制冷剂实现N个功率模块以及M个充电枪及线缆的散热。
在一种可能的实现方式中,上述每个第一副管道上可以设有第一传感器(即图2中的第一传感器C111、第一传感器C112、…、第一传感器C11N,以及第一传感器C121、第一传感器C122、…、第一传感器C12M)。
可选地,一个第一传感器可以用于采集该第一传感器所在的第一副管道中传输的气态的制冷剂的温度。
例如,第一传感器C111可以用于采集第一传感器C111所在的第一副管道(即N个第一副管道中的第一个第一副管道,也就是N个第一副管道中与换热模块A1的输入端连接的第一副管道)中传输的气态的制冷剂的温度。
还例如,第一传感器C121可以用于采集第一传感器C121所在的第一副管道(即M个第一副管道中的第一个第一副管道,也就是M个第一副管道中与冷却管路B1的输入端连接的第一副管道)中传输的气态的制冷剂的温度。
类似地,上述每个第二副管道上可以设有第二传感器(即图2中的第二传感器C211、第二传感器C212、…、第二传感器C21N,以及第二传感器C221、第二传感器C222、…、第二传感器C22M)。
可选地,一个第二传感器可以用于采集该第二传感器所在的第二副管道中传输的气态的制冷剂的温度。
例如,第二传感器C211可以用于采集第二传感器C211所在的第二副管道(即N个第二副管道中的第一个第二副管道,也就是N个第二副管道中与换热模块A1的输出端连接的第二副管道)中传输的气态的制冷剂的温度。
还例如,第二传感器C221可以用于采集第二传感器C221所在的第二副管道(即M 个第二副管道中的第一个第二副管道,也就是M个第二副管道中与冷却管路B1的输出端连接的第二副管道)中传输的气态的制冷剂的温度。
在一种可能的实现方式中,每个功率模块可以设有一个第三传感器,该第三传感器可以用于采集第三传感器所在的功率模块的实际温度(可以用T
PM表示)。
类似地,每个充电枪可以设有一个第四传感器。该第四传感器可以用于采集第四传感器所在的充电枪的实际温度(可以用T
CP表示)。
可选地,充电桩的外表面可以设置第五传感器,该第五传感器可以用于采集充电桩所在环境温度(可以用T
E表示)。
在一种可能的实现方式中,上述热管理模块11可以接收来自控制模块CM的充电信息F1,并可以(从第五传感器)获取充电桩所在的环境温度T
E、(从第三传感器获取)功率模块的实际温度T
PM和(从第四传感器获取)充电枪的实际温度T
CP。
在功率模块的实际温度T
PM高于预设的第一温度上限值(可以用T
MAX1表示)且持续预设的第一时长(用T
SET1表示,T
SET1可以取10秒)时(表明功率模块需要降温),或者充电枪的实际温度T
CP高于预设的第二温度上限值(可以用T
MAX2表示)且持续预设的第二时长(可以用T
SET2表示,T
SET2也可以取10秒)时(表明充电枪需要降温),热管理模块11可以基于充电信息F1,并根据充电桩所在的环境温度T
E、功率模块的实际温度T
PM和充电枪的实际温度T
CP获取直冷模块12的制冷功率(可以用P表示)。
需要说明的是,通常情况下,只要控制模块CM给热管理模块11发送充电信息F1,就表明存在新能源汽车需要充电,那么就会出现以下三种情况:
情况一:仅有功率模块的实际温度T
PM高于预设的第一温度上限值T
MAX1且持续预设的第一时长T
SET1(即功率模块的实际温度T
PM高于预设的第一温度上限值T
MAX1且持续预设的第一时长T
SET1,且充电枪的实际温度T
CP低于或等于预设的第二温度上限值T
MAX2)。在情况一下,热管理模块11需要根据充电桩所在的环境温度T
E和功率模块的实际温度T
PM获取直冷模块12的制冷功率P。
情况二:仅有充电枪的实际温度T
CP高于预设的第二温度上限值T
MAX2且持续预设的第二时长T
SET2(即充电枪的实际温度T
CP高于预设的第二温度上限值T
MAX2且持续预设的第二时长T
SET2,且功率模块的实际温度T
PM低于或等于预设的第一温度上限值T
MAX1)。在情况二下,热管理模块11需要根据充电桩所在的环境温度T
E和充电枪的实际温度T
CP获取直冷模块12的制冷功率P。
情况三:功率模块的实际温度T
PM高于预设的第一温度上限值T
MAX1且持续预设的第一时长T
SET1,同时充电枪的实际温度T
CP高于预设的第二温度上限值T
MAX2且持续预设的第二时长T
SET2。在情况三下,热管理模块11需要充电桩所在的环境温度T
E、功率模块的 实际温度T
PM和充电枪的实际温度T
CP获取直冷模块12的制冷功率P。
进一步地,热管理模块11可以将直冷模块12的制冷功率P作为控制信息F2下发给直冷模块12,并控制节流阀(即图2中节流阀T11至节流阀T1N,以及节流阀T21至节流阀T2M)打开。
需要说明的是,在功率模块的实际温度T
PM低于或等于预设的第一温度上限值T
MAX1,且充电枪的实际温度T
CP低于或等于预设的第二温度上限值T
MAX2时,无需启动直冷模块12,因此,管理模块11无需向直冷模块12下发控制信息F2。同时,节流阀T11至节流阀T1N以及节流阀T21至节流阀T2M处于关闭状态。
进一步地,热管理模块11可以基于充电信息F1,并根据充电桩所在的环境温度T
E和功率模块的实际温度T
PM获取功率模块的实际温度T
PM降至功率模块的目标温度(可以用T
TPM表示)所需的制冷功率(可以用P
PM表示)。
在一种可能的实现方式中,热管理模块11可以根据功率模块的输入功率(可以用P
in表示)和功率模块的转换效率(可以用η表示,转换效率η可以包括功率模块的整流效率、斩波效率、功率校正效率、滤波效率等)获取功率模块的热损耗(可以用P
LPM表示)。
例如,功率模块的输入功率P
in为100kW时,转换效率η为95%,则剩余5%为功率模块的热损耗,主要以热量的形式散发,相当于功率模块的热损耗为5kW。
进而,热管理模块11可以基于充电信息F1,并根据充电桩所在的环境温度T
E、功率模块的实际温度T
PM、预设的功率模块的目标温度T
TPM、功率模块的热损耗P
LPM以及第一对应关系获取功率模块的实际温度T
CP降至功率模块的目标温度T
TPM所需的制冷功率P
PM。
其中,上述第一对应关系可以用于指示充电桩所在的环境温度、功率模块的实际温度、功率模块的目标温度和功率模块的热损耗与功率模块的实际温度降至功率模块的目标温度所需的制冷功率之间的对应关系。第一对应关系可以从充电桩的生产厂家获取。而且,第一对应关系可以以曲线的形式体现,也可以以表格的形式体现,本申请实施例对此不做限定。
类似地,热管理模块11可以基于充电信息F1,并根据充电桩所在的环境温度T
E和充电枪的实际温度T
CP获取充电枪的实际温度T
CP降至充电枪的目标温度(可以用T
TCP表示)所需的制冷功率(可以用P
CP表示)。
在一种可能的实现方式中,热管理模块11可以根据充电枪的电流(可以用I表示)和阻抗(可以用R表示),采用欧姆定律获取充电枪的热损耗(可以用P
LCP表示)。也就是满足P
LCP=I
2R。
进而,热管理模块11可以基于充电信息F1,并根据充电桩所在的环境温度T
E、充电 枪的实际温度T
CP、预设的充电枪的目标温度T
TCP、充电枪的热损耗P
LCP以及第二对应关系获取充电枪的实际温度T
CP降至充电枪的目标温度T
TCP所需的制冷功率P
CP。
其中,上述的第二对应关系可以用于指示充电桩所在的环境温度、充电枪的实际温度、充电枪的目标温度和充电枪的热损耗与充电枪的实际温度降至充电枪的目标温度所需的制冷功率之间的对应关系。第二对应关系可以从充电桩的生产厂家获取。而且,第二对应关系可以以曲线的形式体现,也可以以表格的形式体现,本申请实施例对此不做限定。
更进一步地,热管理模块11可以将功率模块的实际温度T
CP降至功率模块的目标温度T
TPM所需的制冷功率P
PM和充电枪的实际温度T
CP降至充电枪的目标温度T
TCP所需的制冷功率P
CP叠加,得到直冷模块的制冷功率P,也就是满足P=P
PM+P
CP。
在一示例中,功率模块的目标温度T
TPM可以低于等于预设的第一温度上限值T
MAX1。例如,T
TPM可以取40℃,T
MAX1可以预设为60℃。
在另一示例中,充电枪的目标温度T
TCP可以低于等于预设的第二温度上限值T
MAX2。例如,T
TCP可以取50℃,T
MAX2可以预设为80℃。
在再一示例中,在功率模块的实际温度T
PM高于60℃且持续10秒,且充电枪的实际温度T
CP高于80℃且持续10秒时,热管理模块11可以根据充电桩所在的环境温度(如25℃)得到直冷模块12的制冷功率P为15kW(由功率模块的实际温度T
CP降至40℃所需的制冷功率P
PM和充电枪的实际温度T
CP降至50℃所需的制冷功率P
CP叠加得到)。
在一种可能的实现方式中,上述热管理模块11可以获取任意一个第一传感器采集的该第一传感器所在的第一副管道传输的液态的制冷剂的温度(可以用T
1表示),并获取第二传感器采集的该第二传感器所在的第二副管道(该第二副管道和上述第一副管道分别与同一个换热模块或者同一个冷却管路连接)传输的气态的制冷剂的温度(可以用T
2表示)。
可选地,热管理模块11可以计算任意一个第一副管道传输的液态的制冷剂的温度T
1与对应的一个第二副管道传输的气态的制冷剂的温度T
2之间的温度差(可以用△T表示)。
进一步地,热管理模块11根据温度差△T调节对应的节流阀的开度。
示例性的,当温度差△T高于预设的温度阈值(可以用△T
SET表示)时(即△T>△T
SET),表明换热模块或冷却管路的散热不明显,热管理模块11可以控制节流阀的开度增大。
当温度差△T低于或等于预设的温度阈值时,表明换热模块或冷却管路的散热明显。在该情况下,功率模块的实际温度低于功率模块的目标温度,或者充电枪的实际温度低于充电枪的目标温度。于是,热管理模块11可以根据该情况下功率模块的实际温度和充电枪的实际温度获取直冷模块的制冷功率(参考上文过程),并控制直冷模块按照重新获取 的直冷模块的制冷功率运行(即直冷模块降额(即降低输出功率,可以通过降低压缩机的降速等实现)运行),并控制对应的节流阀的开度减小。
需要说明的是,如果任意一个充电枪处于空闲状态(即不存在新能源汽车通过该充电枪充电),那么热管理模块11可以控制该充电枪对应的节流阀(即充电枪中冷却管路所连接的第一副管道上的节流阀)关闭(即节流阀开度为0)。
可选地,热管理模块11可以通过发送对应的控制信息F3(控制信息F3对应的通讯回路如图2中带箭头的虚线所示)给节流阀,以控制节流阀(即控制节流阀的开度)。
在一种可能的实现方式中,第二主管道上可以设置阀门V,如图2所示。当充电桩需要维护时,可以将阀门V关闭。
在一种可能的实现方式中,当充电桩停机或者故障时,充电桩中的控制模块CM向热管理模块11发送控制信息F3(用于指示充电桩停机或者故障),热管理模块11可以根据控制信息F3控制直冷模块12停机,并控制所有节流阀关闭。
本申请实施例提供的直冷系统的换热系数(用于表征直冷系统的换热能力)可达3000W/(m
2·K)至25000W/(m
2·K),K表示开尔文温度。直冷系统降温效果远远超过风扇制冷和冷却液制冷(即液冷方式),且不受环境温度影响,在夏天高温天气散热效果较好。
另外,与冷却液制冷相比,本申请实施例提供的制冷系统结构紧凑,便于维护。更重要的是,本申请实施例提供的制冷系统的散热效率可高于冷却液制冷散热效率的2倍至3倍,可以快速为充电桩散热,确保充电桩的安全性。
而且,本申请实施例对充电桩的数量和功率无限制,也就是说,本申请实施例提供的制冷系统可以用于多一个或多个充电桩散热,同时,可以为一个大功率充电桩或多个充电桩构成的大功率充电系统,可以满足大功率新能源汽车的充电需求。
本申请实施例还提供了一种充电系统S0,如图3所示,可以包括(一个或多个)充电桩S2以及上述的制冷系统S1。
可选地,充电桩中的控制模块可以与制冷系统中的热管理模块连接,控制模块发送充电信息给热管理模块。制冷系统中多个换热模块中的一个换热模块可以与充电桩中多个功率模块中对应的一个功率模块连接,换热模块可以为功率模块散热。
制冷系统中多个冷却管路中的一个冷却管路可以设置于充电桩中对应的一个充电枪内部,冷却管路可以为对应的一个充电枪及与充电枪连接的线缆散热。
本申请实施例中的热管理模块可以控制直冷模块,直冷模块可以将换热模块和冷却管路输出的气态的制冷剂变换为液态的制冷剂,进而换热模块根据液态的制冷剂为功率模块散热,同时,冷却管路根据液态的制冷剂为充电枪及其线缆散热,不仅提高了一个或多个 充电桩的换热系数,还加快了一个或多个充电桩的散热速率。另外,还可以减缓功率模块和充电枪的老化速度,进而提高整个充电系统的运行可靠性。
在一种可能的实现方式中,充电系统S0包括一个充电桩。
如图4所示,充电桩中的控制模块CM可以与制冷系统中的热管理模块11连接,控制模块CM发送充电信息F1给热管理模块11。
可选地,制冷系统可以包括多个换热模块(即图4中的换热模块A1、换热模块A2、…、换热模块AN共N个换热模块),充电桩可以包括多个功率模块(即图4中的功率模块PM1、功率模块PM2、…、功率模块PMN)。
其中,一个换热模块可以与对应的一个功率模块连接,换热模块用于为功率模块散热。例如,换热模块A1可以与功率模块PM1连接,换热模块A1可以为功率模块PM1散热。
进一步地,制冷系统还可以包括多个冷却管路(即图4中的冷却管路B1、冷却管路B2、…、冷却管路BM),充电桩S2还可以包括充电枪C1、充电枪C2、…、充电枪CM共M个充电枪。
其中,一个冷却管路可以设置于对应的一个充电枪内部,冷却管路用于为充电枪及与充电枪连接的线缆散热。例如,冷却管路B1可以设置与充电枪C1内部,冷却管路B1可以为充电枪及与充电枪C1连接的线缆散热。
在一示例中,热管理模块11可以与充电桩S2中的控制模块CM连接,且直冷模块12和热管理模块11均置于充电桩的内部。
也就是说,直冷模块12和热管理模块11均置于充电桩S2内部,因此,该充电桩S2可以叫作一体桩。
需要说明的是,制冷系统中节流阀等的详细介绍,可以参考前文,本申请实施例在此不做赘述。
本申请上述实施例提供的充电系统中的直冷模块和热管理模块可以位于充电桩内部,形成一体桩,也就是说,本申请实施例中的制冷系统可以用于对一体桩进行散热。
在另一种可能的实现方式中,充电系统S0可以包括K个充电桩(即充电桩S21至充电桩S2K),K个充电桩可以并联。
如图5所示,制冷系统中的热管理模块11与K个充电桩中每个充电桩的控制模块(即图5中第一个充电桩中的控制模块CM1至第K个充电桩中的控制模块CMK)连接,控制模块CM1至控制模块CMK都需要根据自身的充电信息发送控制信息给热管理模块11。进而,热管理模块11再根据控制信息控制直冷模块12启动,进而实现充电桩中功率模块和充电枪的散热。
可选地,第一个充电桩可以包括功率模块PM11等多个功率模块以及充电枪C11、充 电枪C12等多个充电枪。对应地,图5中的制冷系统可以包括换热模块A11等多个换热模块以及冷却管路B11、冷却管路B12等多个冷却管路。
类似地,第K个充电桩也可以包括功率模块PMK1等多个功率模块以及充电枪CMK1、充电枪CMK2等多个充电枪。对应地,图5中的制冷系统可以包括换热模块AK1等多个换热模块以及冷却管路BK1、冷却管路BK2等多个冷却管路。
在一示例中,直冷模块12和热管理模块11可以置于K个充电桩的外部。也就是说通过一个直冷模块12和一个热管理模块11可以实现每个充电桩中的功率模块和充电枪的散热。因此,图5所示的充电系统S0可以叫作包括分体桩的充电系统。
同样,制冷系统中节流阀等的详细介绍,可以参考前文,本申请实施例在此也不做赘述。
本申请上述实施例提供的充电系统中的直冷模块和热管理模块位于多个充电桩的外部,形成分体桩,也就是说,本申请实施例中的制冷系统可以用于对分体桩进行散热。
本申请实施例中的分体桩结构紧凑,可以降低充电系统的投资成本和运维成本,能够提高直冷模块的使用率。
可选地,如图6所示,充电桩S(即上文的充电桩S2、充电桩S21或者充电桩S2K)可以包括控制模块CM、N个功率模块PM(即图6中的功率模块PM1、功率模块PM2、…、功率模块PMN)和M个充电枪(即图6中的充电枪C1、充电枪C2、…、充电枪CM),控制模块CM可以与N个功率模块PM中的每个功率模块连接,N个功率模块PM中任意一个功率模块通过对应的线缆与M个充电枪中任意一个充电枪连接。
根据上述连接关系,可以进一步得到:
控制模块CM可以用于:控制每个功率模块,还用于发送充电信息F1给制冷系统S1中的热管理模块11。
每个功率模块可以用于:在控制模块CM的控制下,根据交流电源提供的交流电(即图6中的V
AC-in)或者直流电源提供的直流电(即图6中的V
DC-in)输出直流电(即图6中的V
DC-out)给任意一个充电枪。
每个充电枪(如充电枪C1)可以用于:根据任意一个功率模块输出的直流电V
DC-out为新能源汽车充电。
针对图4所示的包括一个充电桩的充电系统,该充电系统的控制方法详细流程图可以如图7所示。过程100可以按照以下步骤实现:
步骤S101:热管理模块获取来自控制模块的充电信息(用于指示充电桩需要为对应的终端设备充电,即充电系统需要开始工作,制冷系统需要为充电桩散热)和各传感器的信息(包括第五传感器采集的充电桩所在的环境温度、第三传感器采集的功率模块的实际 温度和第四传感器采集的充电枪的实际温度)。
步骤S102:在功率模块的实际温度高于预设的第一温度上限值(如60℃)且持续预设的第一时长(如10秒)时,或者充电枪的实际温度高于预设的第二温度上限值(如80℃)且持续预设的第二时长(如10秒)时,热管理模块可以基于充电信息,并根据充电桩所在的环境温度、功率模块的实际温度和充电枪的实际温度获取直冷模块的制冷功率(详细过程可以参考上文介绍),并将直冷模块的制冷功率作为控制信息发送给直冷模块,使直冷模块按照热管理模块发送的制冷功率运行。
步骤S103:热管理模块可以根据任意一个第一副管道传输的液态的制冷剂的温度与对应第二副管道传输的气态的制冷剂的温度之间的温度差调节节流阀的开度。
步骤S104:当温度差高于预设的温度阈值时,表明换热模块或冷却管路的散热不明显,热管理模块可以控制节流阀的开度增大。否则(即当温度差低于或等于预设的温度阈值时),执行步骤S105。
步骤S105:当功率模块的实际温度不高于功率模块的目标温度,或者充电枪的实际温度不高于充电枪的目标温度时,热管理模块可以根据该情况下功率模块的实际温度和充电枪的实际温度重新获取直冷模块的制冷功率。
步骤S106:热管理模块控制直冷模块按照重新获取的直冷模块的制冷功率运行(即直冷模块降额(即降低输出功率,可以通过降低压缩机的降速等实现)运行),并控制对应的节流阀的开度减小。
步骤S107:当充电桩停机或者故障时,热管理模块可以控制直冷模块停机,并控制节流阀关闭。
需要说明的是,步骤S102中,如果功率模块的实际温度不高于第一温度上限值(如60℃)且充电枪的实际温度不高于第二温度上限值时,热管理模块无需获取直冷模块的制冷功率,直冷模块也无需启动。
还需要说明的是,步骤S105中,当功率模块的实际温度高于功率模块的目标温度,或者充电枪的实际温度高于充电枪的目标温度时,热管理模块可以按照步骤S102获取直冷模块的制冷功率。
针对图5所示的包括m个充电桩的充电系统,该充电系统的控制方法与上述控制过程100类似,不同之处在于:热管理模块需要获取来自m个充电桩中至少一个充电桩的控制模块的充电信息(用于指示至少一个充电桩需要为对应的终端设备充电,即充电系统需要开始工作,制冷系统需要为至少一个充电桩散热)。
不同之处还在于,针对多个充电桩,热管理模块可以在至少一个充电桩的其中一个或多个功率模块的实际温度高于预设的第一温度上限值(如60℃)且持续预设的第一时长 (如10秒)时,或者在至少一个充电桩的其中一个或多个充电枪的实际温度高于预设的第二温度上限值(如80℃)且持续预设的第二时长(如10秒)时,基于对应的控制模块的充电信息,并根据充电桩所在的环境温度、一个或功率模块的实际温度以及一个或多个充电枪的实际温度获取直冷模块的制冷功率(详细过程同样可以参考上文介绍),并将直冷模块的制冷功率作为控制信息发送给直冷模块,使直冷模块按照热管理模块发送的制冷功率运行。
还需要说明的是,在每个充电桩中的每个功率模块的实际温度不高于功率模块的目标温度且每个充电桩中的每个充电枪的实际温度不高于充电枪的目标温度时,热管理模块需要根据功率模块的实际温度和充电枪的实际温度重新获取直冷模块的直冷功率,并控制控制直冷模块按照重新获取的直冷模块的制冷功率运行(即直冷模块降额(即降低输出功率,可以通过降低压缩机的降速等实现)运行),并控制对应的节流阀的开度减小。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。
Claims (21)
- 一种制冷系统,其特征在于,包括热管理模块、直冷模块、多个换热模块和多个冷却管路;所述热管理模块的输入端用于与充电桩的控制模块连接,所述热管理模块的输出端用于与所述直冷模块的输入端连接,所述直冷模块的输出端用于与第一管道组件的第一端连接,所述第一管道组件的第二端用于与所述多个换热模块中每个换热模块的输入端和所述多个冷却管路中每个冷却管路的输入端连接,所述每个换热模块的输出端和所述每个冷却管路的输出端分别用于与第二管道组件的第一端连接,所述第二管道组件的第二端用于与所述直冷模块的输入端连接,所述每个换热模块还与所述充电桩中对应的一个功率模块连接,所述每个冷却管路置于所述充电桩中对应的一个充电枪和与所述充电枪连接的线缆内部;所述热管理模块用于:根据来自所述控制模块的充电信息向所述直冷模块发送控制信息,所述充电信息用于指示所述充电桩需要为终端设备充电;所述直冷模块用于:根据所述控制信息,将所述第二管道组件中传输的气态的制冷剂转变为液态的制冷剂,并通过所述第一管道组件将所述液态的制冷剂传输至所述每个换热模块和所述每个冷却管路;所述换热模块用于:根据所述液态的制冷剂为所述功率模块散热;所述冷却管路用于:根据所述液态的制冷剂为所述充电枪以及所述与所述充电枪连接的线缆散热。
- 根据权利要求1所述的制冷系统,其特征在于,所述直冷模块包括压缩机、冷凝器和风扇;所述压缩机的输入端与所述热管理模块的输出端和所述第二管道组件连接,所述压缩机的输出端与所述冷凝器的输入端连接,所述冷凝器的输入端还与所述热管理模块的输出端连接,所述冷凝器的输出端与所述第一管道组件连接;所述压缩机用于:根据所述控制信息,将所述第二管道组件中传输的气态的制冷剂进行压缩,并将压缩后的气态的制冷剂传输至所述冷凝器;所述冷凝器用于:根据所述控制信息,将所述压缩后的气态的制冷剂转变为所述液态的制冷剂,并通过所述第一管道组件将所述液态的制冷剂传输至所述每个换热模块和所述每个冷却管路;所述风扇用于:为所述冷凝器散热。
- 根据权利要求2所述的制冷系统,其特征在于,所述第一管道组件包括第一主管道 和多个第一副管道;所述多个第一副管道包括第一部分第一副管道和第二部分第一副管道;所述第一部分第一副管道和所述多个换热模块一一对应连接,所述第二部分第一副管道和所述多个冷却管路一一对应连接;所述第一主管道的第一端用于与所述冷凝器的输出端连接,所述第一主管道的第二端用于与所述第一部分第一副管道中每个第一副管道的第一端和所述第二部分第一副管道中每个第一副管道的第一端连接,所述第一部分第一副管道中的一个第一副管道的第二端用于与所述多个换热模块中的一个换热模块对应连接,所述第二部分第一副管道中的一个第一副管道的第二端用于与所述多个冷却管路中的一个冷却管路对应连接。
- 根据权利要求3所述的制冷系统,其特征在于,所述每个第一副管道上设有节流阀;所述节流阀用于:调节所述每个第一副管道中传输的所述液态的制冷剂的流量。
- 根据权利要求4所述的制冷系统,其特征在于,所述每个第一副管道上设有第一传感器;所述第一传感器用于:采集所述第一传感器所在的第一副管道中传输的所述液态的制冷剂的温度。
- 根据权利要求5所述的制冷系统,其特征在于,所述第二管道组件包括第二主管道和多个第二副管道;所述多个第二副管道包括第一部分第二副管道和第二部分第二副管道,所述第一部分第二副管道与所述多个换热模块一一对应,所述第二部分第二副管道与所述多个冷却管路一一对应;所述第一部分第二副管道中一个第二副管道的第一端用于与所述多个换热模块中的一个换热模块对应连接,所述第二部分第二副管道中一个第二副管道的第一端用于与所述多个冷却管路中的一个冷却管路对应连接,所述第一部分第二副管道中每个第二副管道的第二端和所述第二部分第二副管道中每个第二副管道的第二端分别用于与所述第二主管道的第一端连接,所述第二主管道的第二端用于与所述直冷模块的输入端连接。
- 根据权利要求6所述的制冷系统,其特征在于,所述每个第二副管道上设有第二传感器;所述第二传感器用于:采集所述第二传感器所在的第二副管道中传输的所述气态的制冷剂的温度。
- 根据权利要求7所述的制冷系统,其特征在于,所述功率模块设有第三传感器;所述第三传感器用于:采集所述功率模块的实际温度。
- 根据权利要求8所述的制冷系统,其特征在于,所述充电枪设有第四传感器;所述第四传感器用于:采集所述充电枪的实际温度。
- 根据权利要求9所述的制冷系统,其特征在于,所述热管理模块用于:接收来自所述控制模块的所述充电信息,并获取所述充电桩所在的环境温度、所述功率模块的实际温度和所述充电枪的实际温度;在所述功率模块的实际温度高于预设的第一温度上限值且持续预设的第一时长时,或者所述充电枪的实际温度高于预设的第二温度上限值且持续预设的第二时长时,基于所述充电信息,并根据所述充电桩所在的环境温度、所述功率模块的实际温度和所述充电枪的实际温度获取所述直冷模块的制冷功率;将所述直冷模块的制冷功率作为控制信息下发给所述直冷模块,并控制所述节流阀打开。
- 根据权利要求10所述的制冷系统,其特征在于,所述热管理模块用于:基于所述充电信息,并根据所述充电桩所在的环境温度和所述功率模块的实际温度获取所述功率模块的实际温度降至所述功率模块的目标温度所需的制冷功率;基于所述充电信息,并根据所述充电桩所在的环境温度和所述充电枪的实际温度获取所述充电枪的实际温度降至所述充电枪的目标温度所需的制冷功率;将所述功率模块的实际温度降至所述功率模块的目标温度所需的制冷功率和所述充电枪的实际温度降至所述充电枪的目标温度所需的制冷功率叠加,得到所述直冷模块的制冷功率。
- 根据权利要求11所述的制冷系统,其特征在于,所述功率模块的目标温度低于或者等于所述预设的第一温度上限值;所述充电枪的目标温度低于或者等于所述预设的第二温度上限值。
- 根据权利要求11或12所述的制冷系统,其特征在于,所述热管理模块用于:根据所述功率模块的输入功率和所述功率模块的转换效率获取所述功率模块的热损耗;基于所述充电信息,并根据所述充电桩所在的环境温度、所述功率模块的实际温度、预设的所述功率模块的目标温度、所述功率模块的热损耗以及第一对应关系获取所述功率模块的实际温度降至所述功率模块的目标温度所需的制冷功率;其中,所述第一对应关系用于指示所述充电桩所在的环境温度、所述功率模块的实际温度、所述功率模块的目标温度和所述功率模块的热损耗与所述功率模块的实际温度降至所述功率模块的目标温度所需的制冷功率之间的对应关系。
- 根据权利要求11至13中任一项所述的制冷系统,其特征在于,所述热管理模块用于:根据所述充电枪的电流和阻抗,采用欧姆定律获取所述充电枪的热损耗;基于所述充电信息,并根据所述充电桩所在的环境温度、所述充电枪的实际温度、预设的所述充电枪的目标温度、所述充电枪的热损耗以及第二对应关系获取所述充电枪的实际温度降至所述充电枪的目标温度所需的制冷功率;其中,所述第二对应关系用于指示所述充电桩所在的环境温度、所述充电枪的实际温度、所述充电枪的目标温度和所述充电枪的热损耗与所述充电枪的实际温度降至所述充电枪的目标温度所需的制冷功率之间的对应关系。
- 根据权利要求10至14中任一项所述的制冷系统,其特征在于,所述热管理模块还用于:获取所述多个第一副管道中的任一第一副管道传输的所述液态的制冷剂的温度与所述多个第二副管道中的对应第二副管道传输的所述气态的制冷剂的温度之间的温度差;根据所述温度差调节所述节流阀的开度。
- 根据权利要求15所述的制冷系统,其特征在于,所述热管理模块用于:当所述温度差高于预设的温度阈值时,控制所述节流阀的开度增大;当所述温度差低于或等于所述预设的温度阈值时,重新获取所述直冷模块的制冷功率,控制所述直冷模块按照重新获取的所述直冷模块的制冷功率运行,并控制所述节流阀的开度减小。
- 根据权利要求10至16中任一项所述的制冷系统,其特征在于,所述热管理模块用于:当所述充电桩停机或者故障时,控制所述直冷模块停机,并控制所述节流阀关闭。
- 一种充电系统,其特征在于,包括充电桩以及如权利要求1至17中任一项所述的制冷系统。
- 根据权利要求18所述的充电系统,其特征在于,所述充电系统包括一个充电桩;所述热管理模块与所述充电桩中的控制模块连接,且所述直冷模块和所述热管理模块置于所述充电系统的内部。
- 根据权利要求18所述的充电系统,其特征在于,所述充电系统包括多个充电桩,所述多个充电桩并联;所述热管理模块与所述多个充电桩中每个充电桩的控制模块连接,且所述直冷模块和所述热管理模块均置于所述多个充电桩的外部。
- 根据权利要求18至20中任一项所述的充电系统,其特征在于,所述充电桩包括控制模块、多个功率模块和多个充电枪,所述控制模块与所述多个功率模块中的每个功率模块连接,所述多个功率模块中任意一个功率模块通过对应的线缆与所述多个充电枪中任 意一个充电枪连接;所述控制模块用于:控制所述每个功率模块,还用于发送充电信息给所述制冷系统;所述每个功率模块用于:在所述控制模块的控制下,根据交流电源提供的交流电或者直流电源提供的直流电输出直流电给所述任意一个充电枪;所述每个充电枪用于:根据所述任意一个功率模块输出的直流电为所述终端设备充电。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP22882346.4A EP4382835A1 (en) | 2021-10-20 | 2022-07-01 | Refrigeration system and charging system |
US18/599,783 US20240208344A1 (en) | 2021-10-20 | 2024-03-08 | Refrigerating system and charging system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111221623.8A CN114111131B (zh) | 2021-10-20 | 2021-10-20 | 制冷系统和充电系统 |
CN202111221623.8 | 2021-10-20 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/599,783 Continuation US20240208344A1 (en) | 2021-10-20 | 2024-03-08 | Refrigerating system and charging system |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023065724A1 true WO2023065724A1 (zh) | 2023-04-27 |
Family
ID=80376042
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/103458 WO2023065724A1 (zh) | 2021-10-20 | 2022-07-01 | 制冷系统和充电系统 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20240208344A1 (zh) |
EP (1) | EP4382835A1 (zh) |
CN (1) | CN114111131B (zh) |
WO (1) | WO2023065724A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116494805A (zh) * | 2023-06-21 | 2023-07-28 | 云南丁旺科技有限公司 | 充电装置、充电系统和充电控制方法 |
CN117301912A (zh) * | 2023-11-14 | 2023-12-29 | 深圳永泰数能科技有限公司 | 一种自动按需分配的液冷充电桩 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114111131B (zh) * | 2021-10-20 | 2023-10-20 | 华为数字能源技术有限公司 | 制冷系统和充电系统 |
CN116546799B (zh) * | 2023-07-04 | 2023-09-01 | 天津广瑞达汽车电子有限公司 | 一种基于实时红外图像数据的充电桩热处理方法及系统 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103370583A (zh) * | 2011-02-04 | 2013-10-23 | 丰田自动车株式会社 | 冷却装置 |
CN110014921A (zh) * | 2017-09-30 | 2019-07-16 | 比亚迪股份有限公司 | 车辆的充电装置以及车辆 |
CN209700423U (zh) * | 2019-02-26 | 2019-11-29 | 上海毫厘机电科技有限公司 | 一种直流大功率充电站变频液冷设备 |
CN110936830A (zh) * | 2019-11-06 | 2020-03-31 | 深圳巴斯巴科技发展有限公司 | 一种充电桩系统 |
CN210554275U (zh) * | 2019-06-18 | 2020-05-19 | 广州驿威新能源科技有限公司 | 一种新能源散热充电桩 |
JP2020089021A (ja) * | 2018-11-21 | 2020-06-04 | 株式会社デンソー | 乗り物用電池温度調節装置 |
CN213984141U (zh) * | 2020-10-16 | 2021-08-17 | 国创移动能源创新中心(江苏)有限公司 | 充电装置冷却系统 |
CN114111131A (zh) * | 2021-10-20 | 2022-03-01 | 华为数字能源技术有限公司 | 制冷系统和充电系统 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB201612039D0 (en) * | 2016-07-11 | 2016-08-24 | Arriba Cooltech Ltd | Heat pump control systems |
CN109297254A (zh) * | 2018-09-10 | 2019-02-01 | 成都深冷液化设备股份有限公司 | 以低温制冷机组为冷源的充电电缆气体循环冷却方法 |
CN110843572A (zh) * | 2019-11-26 | 2020-02-28 | 上海理工大学 | 新能源汽车充电桩的冷却控制方法 |
CN112448063A (zh) * | 2020-06-29 | 2021-03-05 | 杭州三花研究院有限公司 | 热管理系统、热管理系统的控制方法、存储介质 |
CN112020275B (zh) * | 2020-08-29 | 2023-06-02 | 努比亚技术有限公司 | 一种充电器散热控制方法、设备及计算机可读存储介质 |
-
2021
- 2021-10-20 CN CN202111221623.8A patent/CN114111131B/zh active Active
-
2022
- 2022-07-01 EP EP22882346.4A patent/EP4382835A1/en active Pending
- 2022-07-01 WO PCT/CN2022/103458 patent/WO2023065724A1/zh unknown
-
2024
- 2024-03-08 US US18/599,783 patent/US20240208344A1/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103370583A (zh) * | 2011-02-04 | 2013-10-23 | 丰田自动车株式会社 | 冷却装置 |
CN110014921A (zh) * | 2017-09-30 | 2019-07-16 | 比亚迪股份有限公司 | 车辆的充电装置以及车辆 |
JP2020089021A (ja) * | 2018-11-21 | 2020-06-04 | 株式会社デンソー | 乗り物用電池温度調節装置 |
CN209700423U (zh) * | 2019-02-26 | 2019-11-29 | 上海毫厘机电科技有限公司 | 一种直流大功率充电站变频液冷设备 |
CN210554275U (zh) * | 2019-06-18 | 2020-05-19 | 广州驿威新能源科技有限公司 | 一种新能源散热充电桩 |
CN110936830A (zh) * | 2019-11-06 | 2020-03-31 | 深圳巴斯巴科技发展有限公司 | 一种充电桩系统 |
CN213984141U (zh) * | 2020-10-16 | 2021-08-17 | 国创移动能源创新中心(江苏)有限公司 | 充电装置冷却系统 |
CN114111131A (zh) * | 2021-10-20 | 2022-03-01 | 华为数字能源技术有限公司 | 制冷系统和充电系统 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116494805A (zh) * | 2023-06-21 | 2023-07-28 | 云南丁旺科技有限公司 | 充电装置、充电系统和充电控制方法 |
CN116494805B (zh) * | 2023-06-21 | 2023-09-08 | 云南丁旺科技有限公司 | 充电装置、充电系统和充电控制方法 |
CN117301912A (zh) * | 2023-11-14 | 2023-12-29 | 深圳永泰数能科技有限公司 | 一种自动按需分配的液冷充电桩 |
Also Published As
Publication number | Publication date |
---|---|
CN114111131A (zh) | 2022-03-01 |
CN114111131B (zh) | 2023-10-20 |
EP4382835A1 (en) | 2024-06-12 |
US20240208344A1 (en) | 2024-06-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2023065724A1 (zh) | 制冷系统和充电系统 | |
US11370325B2 (en) | Thermal system layout designed for high cooling capacity at idle condition | |
KR101854193B1 (ko) | 태양광 에어컨 시스템 | |
WO2021169286A1 (zh) | 一种热管理系统和新能源汽车 | |
CN110838608B (zh) | 一种混合动力机车动力电池液冷式热管理装置 | |
JP2011073536A (ja) | 移動体熱サイクルシステム | |
WO2011065075A1 (ja) | 移動体用熱サイクルシステム | |
US20100025125A1 (en) | Method and Apparatus for the Operation of a Vehicle | |
CN113119680B (zh) | 一种整车热管理系统及其控制方法及汽车 | |
CN103368413A (zh) | 一种高集成变流装置 | |
CN111169326B (zh) | 燃料电池热交换系统及氢能有轨电车 | |
CN114427758A (zh) | 一种太阳能供应系统及其工作方法 | |
US20210367291A1 (en) | Heat transfer medium and heat transfer system | |
CN215295458U (zh) | 一种车载空调系统 | |
CN219267744U (zh) | 一种纯电动商用车动力电池冷却系统 | |
CN111391616B (zh) | 一种空调系统 | |
WO2023092400A1 (zh) | 换热装置、充电桩、换热控制方法和车辆 | |
WO2024086960A1 (zh) | 热管理系统及车辆 | |
CN217606903U (zh) | 一种电池模组及电子设备 | |
CN217903242U (zh) | 一种动力电池恒温热管理系统 | |
CN219667962U (zh) | 一种纯电动汽车电机和电池冷却集成热管理系统 | |
CN221585060U (zh) | 一种纯电动矿卡动力电池热管理控制系统 | |
CN114312484B (zh) | 一种热管理装置、热管理系统及新能源汽车 | |
CN212289439U (zh) | 热管理系统和电动汽车 | |
CN220272609U (zh) | 一种电动汽车动力电池冷却装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22882346 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022882346 Country of ref document: EP Effective date: 20240305 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |