WO2023091053A1 - Dispositif pour le diagnostic magnétométrique de surface de conduits et de structures métalliques - Google Patents

Dispositif pour le diagnostic magnétométrique de surface de conduits et de structures métalliques Download PDF

Info

Publication number
WO2023091053A1
WO2023091053A1 PCT/RU2022/050297 RU2022050297W WO2023091053A1 WO 2023091053 A1 WO2023091053 A1 WO 2023091053A1 RU 2022050297 W RU2022050297 W RU 2022050297W WO 2023091053 A1 WO2023091053 A1 WO 2023091053A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipeline
microcontroller
metal structures
unit
utility
Prior art date
Application number
PCT/RU2022/050297
Other languages
English (en)
Russian (ru)
Inventor
Дмитрий Валерьевич САКСОН
Original Assignee
Общество С Ограниченной Ответственностью "Центр Инноваций И Технологий"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество С Ограниченной Ответственностью "Центр Инноваций И Технологий" filed Critical Общество С Ограниченной Ответственностью "Центр Инноваций И Технологий"
Publication of WO2023091053A1 publication Critical patent/WO2023091053A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/83Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws by investigating stray magnetic fields

Definitions

  • the utility model relates to the field of external diagnostic monitoring of the technical parameters of an underground pipeline and the level of its corrosion protection from environmental influences based on the detection of magnetic field anomalies associated with defects in the metal of the pipeline (structure) without removing the thermal insulation and casing of the pipeline (structure), as well as this device allows diagnosing metal containers of various sizes, ferromagnetic support structures, supporting column structures of production platforms and other metal structures.
  • the device for diagnosing the technical parameters of an underground pipeline contains a node of constant magnetic field sensors connected to buffer amplifiers connected, in turn, to an ADC and a microcontroller, a node of alternating magnetic field sensors connected to preamplifiers, buffer amplifiers, an ADC and a microcontroller, connected to a sensor module magnetic field, a data acquisition and control unit consisting of two interconnected microcontrollers, non-volatile memory, a GPS module, a USB port through which the microcontroller is connected to a personal computer and a GPS satellite navigation system, a unit of accelerometer converters.
  • the excitation and synchronization unit consisting of two generators - the main and auxiliary, a microcontroller built into the auxiliary generator, GPS modules built into the main and auxiliary generators.
  • the disadvantage of the above device is the limited use of it, for example, the impossibility of operation in the winter, in the desert.
  • a magnetic flaw detector for detecting surface defects in pipelines contains a block of Hall sensors, which is connected to an ADC, which is connected to a processor, which in turn is connected to a memory device and a video monitoring device.
  • the magnetic flaw detector contains a power source that is connected to all modules and elements of the control electronic unit (ADC, processor, storage device).
  • the objective of the claimed utility model is to develop a device for areal diagnostics of the technical condition of steel pipelines and metal structures with high diagnostic accuracy.
  • the technical result of the claimed utility model is to increase the accuracy and reliability of diagnosing the technical condition of steel pipelines and metal structures.
  • the device for areal diagnostics of the technical condition of steel pipelines and metal structures contains a housing in which a block of Hall sensors, an analog-to-digital converter, a microcontroller are installed and interconnected in series, and an accelerometer block is installed in the housing, a radio communication module and a memory unit that are connected to the microcontroller.
  • FIG. 1 Block diagram of the device.
  • 1 - block of Hall sensors 1 - block of Hall sensors; 2 - 24-bit analog-to-digital converter (ADC); 3 - microcontroller; 4 - block of accelerometers; 5 - radio communication module; 6 - current source unit; 7 - memory block.
  • ADC analog-to-digital converter
  • the claimed device works as follows.
  • the operator installs the claimed device over the proposed pipeline route in such a way that the linearly located Hall sensors (magnetic field sensors) in the sensor unit (1) are oriented along the proposed pipeline route.
  • the block (1) of the sensors there are 16 Hall sensors that receive the signal of the magnetic field of the pipeline, and each Hall sensor examines its swath of the pipeline surface.
  • the magnetic field signals from the block (1) of the Hall sensors are fed to a 24-bit ADC (2), in which the analog signal is converted to digital.
  • the digitized data from the ADC (2) simultaneously with the measured acceleration data relative to its own axes received from the accelerometer unit (4) are fed to the microcontroller (3).
  • the microcontroller (3) determines the orientation of the object in space (roll and pitch angles) according to the data from the accelerometer unit (4) and binds the data received from the Hall sensor unit (1) to the calculated roll and pitch angles and generates a common data package for basis linking the magnetometric data obtained from the Hall sensor unit to the calculated roll and pitch angles.
  • the generated data packet is transmitted through the radio communication module (5) to an external device and additionally stored in the memory block (7).
  • Current source block (6) which is connected to the microcontroller (3) and supplies power to it.
  • a new common data packet is formed in the microcontroller, which is also transmitted to an external device using the radio communication module (5) and additionally stored in the memory block (7 ).
  • the device is designed to detect magnetic field anomalies associated with pipeline (tank) metal defects without removing the thermal insulation and casing of the pipeline (tank). Based on the data received from the microcontroller (3), the operator of the device observes the results of magnetic testing on the screen of a tablet computer in real time in the form of a color area map, where each color corresponds to the level of magnetization of pipeline sections, which allows the device operator to immediately mark sections of the surface of the pipeline or tank , in which it is necessary to carry out additional flaw detection by the arbitration method - ultrasonic thickness measurement.
  • accelerometers will make it possible to bind the surveyed sections of the pipeline (structure) relative to the starting point and determine the angular position of the device relative to the pipeline, which allows more accurate identification of the defect in the pipeline.
  • the transmission of data processed in the microcontroller (3) makes it possible to increase the accuracy and reliability of diagnosing the technical condition of steel pipelines and structures due to the absence of wires (between the microcontroller and an external device, which allows you to pass through bushes, tall grass, without disturbing the data transmission (due to a break in wires) to an external device.
  • the advantages of this method are that, without stripping the insulation, continuous continuous monitoring of the entire surface of the pipeline is carried out, while the sections that are the worst in their condition, in which it is necessary to carry out contact diagnostics, are accurately localized. Due to the presence of measurement binding relative to the starting point, the software implements the construction of a 3D model of the surveyed pipeline or other metal structure (tank with insulation).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

L'invention concerne un dispositif destiné au diagnostic magnétométrique de l'état technique de conduits et de structures en acier.
PCT/RU2022/050297 2021-11-19 2022-09-19 Dispositif pour le diagnostic magnétométrique de surface de conduits et de structures métalliques WO2023091053A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2021133690 2021-11-19
RU2021133690 2021-11-19

Publications (1)

Publication Number Publication Date
WO2023091053A1 true WO2023091053A1 (fr) 2023-05-25

Family

ID=86397577

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2022/050297 WO2023091053A1 (fr) 2021-11-19 2022-09-19 Dispositif pour le diagnostic magnétométrique de surface de conduits et de structures métalliques

Country Status (1)

Country Link
WO (1) WO2023091053A1 (fr)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090013806A1 (en) * 2007-07-09 2009-01-15 Microline Technology Corporation Communication system for pipeline inspection
WO2010067162A1 (fr) * 2008-12-12 2010-06-17 Ecopetrol S.A. Outil intelligent pour détection de perforations et interprétation de données en ligne
RU119885U1 (ru) * 2011-10-27 2012-08-27 Учреждение Российской академии наук Ордена Трудового Красного Знамени Институт физики металлов Уральского отделения РАН (ИФМ УрО РАН) Магнитный дефектоскоп для обнаружения поверхностных дефектов трубопроводов
WO2016016649A1 (fr) * 2014-08-01 2016-02-04 Chargepoint Technology Limited Système et procédé de surveillance d'utilisation
CN106078734A (zh) * 2016-06-08 2016-11-09 江苏若博机器人科技有限公司 一种无线传输两核四轴履带式天然气管道机器人控制系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090013806A1 (en) * 2007-07-09 2009-01-15 Microline Technology Corporation Communication system for pipeline inspection
WO2010067162A1 (fr) * 2008-12-12 2010-06-17 Ecopetrol S.A. Outil intelligent pour détection de perforations et interprétation de données en ligne
RU119885U1 (ru) * 2011-10-27 2012-08-27 Учреждение Российской академии наук Ордена Трудового Красного Знамени Институт физики металлов Уральского отделения РАН (ИФМ УрО РАН) Магнитный дефектоскоп для обнаружения поверхностных дефектов трубопроводов
WO2016016649A1 (fr) * 2014-08-01 2016-02-04 Chargepoint Technology Limited Système et procédé de surveillance d'utilisation
CN106078734A (zh) * 2016-06-08 2016-11-09 江苏若博机器人科技有限公司 一种无线传输两核四轴履带式天然气管道机器人控制系统

Similar Documents

Publication Publication Date Title
EP2820404B1 (fr) Détection de défauts pour des canalisations
EP2820405B1 (fr) Détection de défauts pour des canalisations
CN107218942B (zh) 小径管道缺陷定位装置及基于快速正交搜索算法的定位方法
CN102966850B (zh) 一种管道走向的检测方法
US20100102809A1 (en) Differential gradiometric magnetometer, system and method of use
US20180058849A1 (en) Near-bit dynamic well deviation angle measurement method and apparatus
US10209159B2 (en) Displacement detecting device for structural object, sharing system of displacement of structural object, and method and program of detecting displacement of structural object
JP6105859B2 (ja) 埋設物探査装置
MX2013006114A (es) Sistema y metodo para verificar estructuras acopladas mecanicamente.
RU2634755C2 (ru) Способ и устройство диагностики технических параметров подземного трубопровода
JP6574637B2 (ja) 高度検出装置、負荷・駆動装置および高度検出方法
Roberts et al. Structural dynamic and deflection monitoring using integrated GPS and triaxial accelerometers
CN110146069B (zh) 一种管道支管定位装置及方法
CN107219335B (zh) 基于复连续小波变换的管道连接器检测方法
CN106855410A (zh) 一种基于惯性技术的地下管道定位测量设备
RU209512U1 (ru) Устройство для площадной магнитометрической диагностики технического состояния стальных трубопроводов и конструкций
WO2023091053A1 (fr) Dispositif pour le diagnostic magnétométrique de surface de conduits et de structures métalliques
CN205139080U (zh) 一种检测金属管道应力的磁检测仪
KR20100079635A (ko) 해저 케이블 고장지점 탐색장치
RU2568232C2 (ru) Комплекс мониторинга напряженно-деформированного состояния магистральных трубопроводов
CN203420292U (zh) 直读式桩基位移检测装置
US9869790B2 (en) Buried asset locator device that takes orientation of device into account during sensing process
CN105606016A (zh) 一种基于三轴倾角定位的空间应变测量装置及方法
CN104062692A (zh) 高精度海底地热流探测设备
JP5142632B2 (ja) 磁気信号検出方法、磁気信号検出プログラム、磁気信号検出装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22896209

Country of ref document: EP

Kind code of ref document: A1