WO2023091053A1 - Device for large area magnetometric inspection of pipelines and metal structures - Google Patents
Device for large area magnetometric inspection of pipelines and metal structures Download PDFInfo
- Publication number
- WO2023091053A1 WO2023091053A1 PCT/RU2022/050297 RU2022050297W WO2023091053A1 WO 2023091053 A1 WO2023091053 A1 WO 2023091053A1 RU 2022050297 W RU2022050297 W RU 2022050297W WO 2023091053 A1 WO2023091053 A1 WO 2023091053A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pipeline
- microcontroller
- metal structures
- unit
- utility
- Prior art date
Links
- 239000002184 metal Substances 0.000 title claims abstract description 13
- 238000007689 inspection Methods 0.000 title abstract 3
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 7
- 239000010959 steel Substances 0.000 claims abstract description 7
- 238000004891 communication Methods 0.000 claims abstract description 6
- 230000005291 magnetic effect Effects 0.000 abstract description 14
- 230000007547 defect Effects 0.000 abstract description 6
- 238000009413 insulation Methods 0.000 abstract description 5
- 238000013154 diagnostic monitoring Methods 0.000 abstract description 2
- 238000005259 measurement Methods 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 244000025254 Cannabis sativa Species 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 230000005294 ferromagnetic effect Effects 0.000 description 1
- 230000005415 magnetization Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012806 monitoring device Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000009683 ultrasonic thickness measurement Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/72—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
- G01N27/82—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
- G01N27/83—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws by investigating stray magnetic fields
Definitions
- the utility model relates to the field of external diagnostic monitoring of the technical parameters of an underground pipeline and the level of its corrosion protection from environmental influences based on the detection of magnetic field anomalies associated with defects in the metal of the pipeline (structure) without removing the thermal insulation and casing of the pipeline (structure), as well as this device allows diagnosing metal containers of various sizes, ferromagnetic support structures, supporting column structures of production platforms and other metal structures.
- the device for diagnosing the technical parameters of an underground pipeline contains a node of constant magnetic field sensors connected to buffer amplifiers connected, in turn, to an ADC and a microcontroller, a node of alternating magnetic field sensors connected to preamplifiers, buffer amplifiers, an ADC and a microcontroller, connected to a sensor module magnetic field, a data acquisition and control unit consisting of two interconnected microcontrollers, non-volatile memory, a GPS module, a USB port through which the microcontroller is connected to a personal computer and a GPS satellite navigation system, a unit of accelerometer converters.
- the excitation and synchronization unit consisting of two generators - the main and auxiliary, a microcontroller built into the auxiliary generator, GPS modules built into the main and auxiliary generators.
- the disadvantage of the above device is the limited use of it, for example, the impossibility of operation in the winter, in the desert.
- a magnetic flaw detector for detecting surface defects in pipelines contains a block of Hall sensors, which is connected to an ADC, which is connected to a processor, which in turn is connected to a memory device and a video monitoring device.
- the magnetic flaw detector contains a power source that is connected to all modules and elements of the control electronic unit (ADC, processor, storage device).
- the objective of the claimed utility model is to develop a device for areal diagnostics of the technical condition of steel pipelines and metal structures with high diagnostic accuracy.
- the technical result of the claimed utility model is to increase the accuracy and reliability of diagnosing the technical condition of steel pipelines and metal structures.
- the device for areal diagnostics of the technical condition of steel pipelines and metal structures contains a housing in which a block of Hall sensors, an analog-to-digital converter, a microcontroller are installed and interconnected in series, and an accelerometer block is installed in the housing, a radio communication module and a memory unit that are connected to the microcontroller.
- FIG. 1 Block diagram of the device.
- 1 - block of Hall sensors 1 - block of Hall sensors; 2 - 24-bit analog-to-digital converter (ADC); 3 - microcontroller; 4 - block of accelerometers; 5 - radio communication module; 6 - current source unit; 7 - memory block.
- ADC analog-to-digital converter
- the claimed device works as follows.
- the operator installs the claimed device over the proposed pipeline route in such a way that the linearly located Hall sensors (magnetic field sensors) in the sensor unit (1) are oriented along the proposed pipeline route.
- the block (1) of the sensors there are 16 Hall sensors that receive the signal of the magnetic field of the pipeline, and each Hall sensor examines its swath of the pipeline surface.
- the magnetic field signals from the block (1) of the Hall sensors are fed to a 24-bit ADC (2), in which the analog signal is converted to digital.
- the digitized data from the ADC (2) simultaneously with the measured acceleration data relative to its own axes received from the accelerometer unit (4) are fed to the microcontroller (3).
- the microcontroller (3) determines the orientation of the object in space (roll and pitch angles) according to the data from the accelerometer unit (4) and binds the data received from the Hall sensor unit (1) to the calculated roll and pitch angles and generates a common data package for basis linking the magnetometric data obtained from the Hall sensor unit to the calculated roll and pitch angles.
- the generated data packet is transmitted through the radio communication module (5) to an external device and additionally stored in the memory block (7).
- Current source block (6) which is connected to the microcontroller (3) and supplies power to it.
- a new common data packet is formed in the microcontroller, which is also transmitted to an external device using the radio communication module (5) and additionally stored in the memory block (7 ).
- the device is designed to detect magnetic field anomalies associated with pipeline (tank) metal defects without removing the thermal insulation and casing of the pipeline (tank). Based on the data received from the microcontroller (3), the operator of the device observes the results of magnetic testing on the screen of a tablet computer in real time in the form of a color area map, where each color corresponds to the level of magnetization of pipeline sections, which allows the device operator to immediately mark sections of the surface of the pipeline or tank , in which it is necessary to carry out additional flaw detection by the arbitration method - ultrasonic thickness measurement.
- accelerometers will make it possible to bind the surveyed sections of the pipeline (structure) relative to the starting point and determine the angular position of the device relative to the pipeline, which allows more accurate identification of the defect in the pipeline.
- the transmission of data processed in the microcontroller (3) makes it possible to increase the accuracy and reliability of diagnosing the technical condition of steel pipelines and structures due to the absence of wires (between the microcontroller and an external device, which allows you to pass through bushes, tall grass, without disturbing the data transmission (due to a break in wires) to an external device.
- the advantages of this method are that, without stripping the insulation, continuous continuous monitoring of the entire surface of the pipeline is carried out, while the sections that are the worst in their condition, in which it is necessary to carry out contact diagnostics, are accurately localized. Due to the presence of measurement binding relative to the starting point, the software implements the construction of a 3D model of the surveyed pipeline or other metal structure (tank with insulation).
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
Abstract
The utility model relates to external diagnostic monitoring of the technical parameters of a buried pipeline and the level of protection of the pipeline against a corrosive surrounding environment by detecting magnetic field anomalies caused by defects in the metal of the pipeline (structure) without removing the thermal insulation and casing of the pipeline (structure). The technical result of the claimed utility model is more accurate and reliable inspection of the technical condition of steel pipelines and metal structures. A device for the large area magnetometric inspection of the technical condition of steel pipelines and metal structures comprises a housing within which a unit of Hall sensors, an analog-to-digital converter and a microcontroller are mounted and connected in series, wherein further mounted within the housing are a unit of accelerometers, a radio communication module and a memory unit, which are connected to the microcontroller.
Description
УСТРОЙСТВО ДЛЯ ПЛОЩАДНОЙ МАГНИТОМЕТРИЧЕСКОЙ ДИАГНОСТИКИ ТРУБОПРОВОДОВ И МЕТАЛЛИЧЕСКИХ КОНСТРУКЦИЙ DEVICE FOR AREA MAGNETOMETRIC DIAGNOSIS OF PIPELINES AND METAL STRUCTURES
ОБЛАСТЬ ТЕХНИКИ FIELD OF TECHNOLOGY
Полезная модель относится к области наружного диагностического контроля технических параметров подземного трубопровода и уровня его коррозионной защищенности от влияния окружающей среды на основе выявления аномалий магнитного поля, связанных с дефектами металла трубопровода (конструкции) без снятия теплоизоляции и кожуха трубопровода (конструкции), а также данное устройство позволяет диагностировать металлические емкости различного размера, ферромагнитные опорные конструкции, опорные колонные конструкции добывающих платформ и другие металлические конструкции. The utility model relates to the field of external diagnostic monitoring of the technical parameters of an underground pipeline and the level of its corrosion protection from environmental influences based on the detection of magnetic field anomalies associated with defects in the metal of the pipeline (structure) without removing the thermal insulation and casing of the pipeline (structure), as well as this device allows diagnosing metal containers of various sizes, ferromagnetic support structures, supporting column structures of production platforms and other metal structures.
УРОВЕНЬ ТЕХНИКИ BACKGROUND OF THE INVENTION
Из уровня техники известно устройство диагностики технических параметров подземного трубопровода, раскрытое в RU 2634755 С2, опубл. 03.11.2017. Устройство диагностики технических параметров подземного трубопровода содержит узел датчиков постоянного магнитного поля, соединенных с буферными усилителями, соединенными, в свою очередь, с АЦП и микроконтроллером, узел датчиков переменного магнитного поля, соединенных с предусилителями, буферными усилителями, АЦП и микроконтроллером, соединенные в модуль датчиков магнитного поля, блок сбора данных и управления, состоящий из соединенных между собой двух микроконтроллеров, энергонезависимой памяти, GPS модуль, порт USB, через который микроконтроллер соединяется с персональным компьютером и системой спутниковой навигации GPS, блок преобразователей-акселерометров. При этом блок возбуждения и синхронизации, состоящий из двух генераторов - основного и вспомогательного, микроконтроллера, встроенного во вспомогательный генератор, GPS модулей, встроенных в основной и вспомогательный генераторы. In the prior art, a device for diagnosing the technical parameters of an underground pipeline is known, disclosed in RU 2634755 C2, publ. 11/03/2017. The device for diagnosing the technical parameters of an underground pipeline contains a node of constant magnetic field sensors connected to buffer amplifiers connected, in turn, to an ADC and a microcontroller, a node of alternating magnetic field sensors connected to preamplifiers, buffer amplifiers, an ADC and a microcontroller, connected to a sensor module magnetic field, a data acquisition and control unit consisting of two interconnected microcontrollers, non-volatile memory, a GPS module, a USB port through which the microcontroller is connected to a personal computer and a GPS satellite navigation system, a unit of accelerometer converters. At the same time, the excitation and synchronization unit, consisting of two generators - the main and auxiliary, a microcontroller built into the auxiliary generator, GPS modules built into the main and auxiliary generators.
Недостатком указанного выше устройства является ограниченность его использования, например, невозможность эксплуатации в зимний период, в пустыне. The disadvantage of the above device is the limited use of it, for example, the impossibility of operation in the winter, in the desert.
Кроме того, из уровня техники известен магнитный дефектоскоп для обнаружения поверхностных дефектов трубопроводов, раскрытый в RU 119885 U1 , опубл. 07.06.2001 , прототип. Магнитный дефектоскоп для обнаружения поверхностных дефектов трубопроводов содержит блок датчиков Холла, который соединен с АЦП, который соединен с процессором, который в свою очередь соединен с запоминающим устройством и видеоконтрольным устройством. Кроме того, магнитный дефектоскоп содержит источник питания, который подключен ко всем модулям и элементам управляющего электронного блока (АЦП, процессор, запоминающее устройство). In addition, a magnetic flaw detector for detecting surface defects in pipelines is known from the prior art, disclosed in RU 119885 U1, publ. 06/07/2001, prototype. A magnetic flaw detector for detecting surface defects in pipelines contains a block of Hall sensors, which is connected to an ADC, which is connected to a processor, which in turn is connected to a memory device and a video monitoring device. In addition, the magnetic flaw detector contains a power source that is connected to all modules and elements of the control electronic unit (ADC, processor, storage device).
Недостаток раскрытого выше магнитного дефектоскопа - низкая точность измерения.
РАСКРЫТИЕ ПОЛЕЗНОЙ МОДЕЛИ The disadvantage of the magnetic flaw detector disclosed above is the low measurement accuracy. DISCLOSURE OF UTILITY MODEL
Задачей заявленной полезной модели является разработка устройства для площадной диагностики технического состояния стальных трубопроводов и металлических конструкций с высокой точностью диагностики. The objective of the claimed utility model is to develop a device for areal diagnostics of the technical condition of steel pipelines and metal structures with high diagnostic accuracy.
Техническим результатом заявленной полезной модели является повышение точности и достоверности диагностики технического состояния стальных трубопроводов и металлических конструкций. The technical result of the claimed utility model is to increase the accuracy and reliability of diagnosing the technical condition of steel pipelines and metal structures.
Указанный технический результат, достигается за счет того, что устройство для площадной диагностики технического состояния стальных трубопроводов и металлических конструкций содержит корпус, в котором последовательно установлены и соединены между собой блок датчиков Холла, аналого-цифровой преобразователь, микроконтроллер, причем в корпусе установлены блок акселерометров, модуль радиосвязи и блок памяти, которые соединены с микроконтроллером. The specified technical result is achieved due to the fact that the device for areal diagnostics of the technical condition of steel pipelines and metal structures contains a housing in which a block of Hall sensors, an analog-to-digital converter, a microcontroller are installed and interconnected in series, and an accelerometer block is installed in the housing, a radio communication module and a memory unit that are connected to the microcontroller.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ BRIEF DESCRIPTION OF THE DRAWINGS
Полезная модель будет более понятной из описания, не имеющего ограничительного характера и приводимого со ссылками на прилагаемые чертежи, на которых изображено: The utility model will be better understood from the description, which is not restrictive and given with reference to the accompanying drawings, which show:
Фиг. 1 - Структурная схема устройства. Fig. 1 - Block diagram of the device.
1 - блок датчиков Холла; 2 - 24-х разрядный аналого-цифровой преобразователь (АЦП); 3 - микроконтроллер; 4 - блок акселерометров; 5 - модуль радиосвязи; 6 - блок источника тока; 7 - блок памяти. 1 - block of Hall sensors; 2 - 24-bit analog-to-digital converter (ADC); 3 - microcontroller; 4 - block of accelerometers; 5 - radio communication module; 6 - current source unit; 7 - memory block.
ОСУЩЕСТВЛЕНИЕ ПОЛЕЗНОЙ МОДЕЛИ IMPLEMENTATION OF UTILITY MODEL
Заявленное устройство работает следующим образом. Оператор устанавливает заявленное устройство над предполагаемой трассой залегания трубопровода таким образом, чтобы линейно расположенные датчики Холла (датчики магнитного поля) в блоке (1) датчиков были ориентированы вдоль предполагаемой трассы залегания трубопровода. В блоке (1) датчиков расположено 16 датчиков Холла, которые принимают сигнал магнитного поля трубопровода, причем каждый датчик Холла обследует свою полосу захвата поверхности трубопровода. Сигналы магнитного поля с блока (1) датчиков Холла поступают в 24-х разрядный АЦП (2), в котором происходит преобразование аналогового сигнала в цифровой. Оцифрованные данные с АЦП (2) одновременно с измеренными данными ускорения относительно собственных осей, полученными от блока акселерометров (4), поступают в микроконтроллер (3). В микроконтроллере (3) происходит определение ориентации объекта в пространстве (углов крена и тангажа) по данным от блока акселерометров (4) и привязки данных, полученных с блока (1) датчиков Холла, к рассчитанным углам крена и тангажа и формирование общего пакета данных на основе
привязки магнитометрических данных, полученных с блока датчиков Холла, к рассчитанным углам крена и тангажа. Сформированный пакет данных через модуль радиосвязи (5) передается на внешнее устройство и дополнительно сохраняется в блок памяти (7). Блок источника тока (6), который соединен с микроконтроллером (3) и подает питание на него. При необходимости, оператор перемещает устройство вдоль предполагаемой трассы залегания трубопровода в новую точку измерения, после осуществления указанных выше операций в микроконтроллере формируется новый общий пакет данных, которые также при помощи модуля радиосвязи (5) передается на внешнее устройство и дополнительно сохраняется в блок памяти (7). The claimed device works as follows. The operator installs the claimed device over the proposed pipeline route in such a way that the linearly located Hall sensors (magnetic field sensors) in the sensor unit (1) are oriented along the proposed pipeline route. In the block (1) of the sensors there are 16 Hall sensors that receive the signal of the magnetic field of the pipeline, and each Hall sensor examines its swath of the pipeline surface. The magnetic field signals from the block (1) of the Hall sensors are fed to a 24-bit ADC (2), in which the analog signal is converted to digital. The digitized data from the ADC (2) simultaneously with the measured acceleration data relative to its own axes received from the accelerometer unit (4) are fed to the microcontroller (3). The microcontroller (3) determines the orientation of the object in space (roll and pitch angles) according to the data from the accelerometer unit (4) and binds the data received from the Hall sensor unit (1) to the calculated roll and pitch angles and generates a common data package for basis linking the magnetometric data obtained from the Hall sensor unit to the calculated roll and pitch angles. The generated data packet is transmitted through the radio communication module (5) to an external device and additionally stored in the memory block (7). Current source block (6), which is connected to the microcontroller (3) and supplies power to it. If necessary, the operator moves the device along the proposed pipeline route to a new measurement point, after performing the above operations, a new common data packet is formed in the microcontroller, which is also transmitted to an external device using the radio communication module (5) and additionally stored in the memory block (7 ).
Устройство предназначено для выявления аномалий магнитного поля, связанных с дефектами металла трубопровода (резервуара) без снятия теплоизоляции и кожуха трубопровода (резервуара). Оператор устройства на основе полученных данных с микроконтроллера (3) в режиме реального времени наблюдает результаты магнитного контроля на экране планшетного компьютера в виде цветной площадной карты, где каждый цвет соответствует уровню намагниченности участков трубопровода, что позволяет оператору устройства сразу же отмечать участки поверхности трубопровода или резервуара, в которых следует произвести дополнительный дефектоскопический контроль арбитражным методом - ультразвуковой толщинометрией. The device is designed to detect magnetic field anomalies associated with pipeline (tank) metal defects without removing the thermal insulation and casing of the pipeline (tank). Based on the data received from the microcontroller (3), the operator of the device observes the results of magnetic testing on the screen of a tablet computer in real time in the form of a color area map, where each color corresponds to the level of magnetization of pipeline sections, which allows the device operator to immediately mark sections of the surface of the pipeline or tank , in which it is necessary to carry out additional flaw detection by the arbitration method - ultrasonic thickness measurement.
Применение акселерометров позволит выполнить привязку обследованных участков трубопровода (конструкции) относительно точки старта и определить угловое положение устройства относительно трубопровода, что позволяет более точно определить дефект на трубопроводе. The use of accelerometers will make it possible to bind the surveyed sections of the pipeline (structure) relative to the starting point and determine the angular position of the device relative to the pipeline, which allows more accurate identification of the defect in the pipeline.
Использование 24-х зарядного АЦП позволяет производить более точную оцифровку данных, что повышает точность снятия данных. The use of a 24-charge ADC allows more accurate data digitization, which increases the accuracy of data acquisition.
Передача данных, обработанных в микроконтроллере (3), позволяет повысить точности и достоверности диагностики технического состояния стальных трубопроводов и конструкций за счет отсутствия проводов (между микроконтроллером и внешним устройством, что позволяет проходить через кустарники, высокую траву, не нарушаю передачу данных (за счет обрыва провода) на внешнее устройство. The transmission of data processed in the microcontroller (3) makes it possible to increase the accuracy and reliability of diagnosing the technical condition of steel pipelines and structures due to the absence of wires (between the microcontroller and an external device, which allows you to pass through bushes, tall grass, without disturbing the data transmission (due to a break in wires) to an external device.
Преимущества данного метода состоит в том, что без снятия изоляции осуществляется сплошной непрерывный контроль всей поверхности трубопровода, при этом точно локализуются участки, наихудшие по своему состоянию, в которых необходимо провести контактную диагностику. Благодаря наличию привязки измерений относительно точки старта, в программном обеспечении реализовано построение ЗО-модели обследованного трубопровода или другой металлической конструкции (резервуар с изоляцией). The advantages of this method are that, without stripping the insulation, continuous continuous monitoring of the entire surface of the pipeline is carried out, while the sections that are the worst in their condition, in which it is necessary to carry out contact diagnostics, are accurately localized. Due to the presence of measurement binding relative to the starting point, the software implements the construction of a 3D model of the surveyed pipeline or other metal structure (tank with insulation).
Полезная модель была раскрыта выше со ссылкой на конкретный вариант его осуществления. Для специалистов могут быть очевидны и иные варианты осуществления
полезной модели, не меняющие ее сущности, как она раскрыта в настоящем описании. Соответственно, полезную модель следует считать ограниченным по объему только ниже следующей формулой полезной модели.
The utility model has been disclosed above with reference to a specific embodiment. Other embodiments may be obvious to those skilled in the art. utility model that does not change its essence, as it is disclosed in the present description. Accordingly, the utility model should be considered limited in scope only below the following claims of the utility model.
Claims
1. Устройство для площадной диагностики технического состояния стальных трубопроводов и металлических конструкций, содержащее корпус, в котором последовательно установлены и соединены между собой блок датчиков Холла, аналого- цифровой преобразователь, микроконтроллер, причем в корпусе установлены блок акселерометров, модуль радиосвязи и блок памяти, которые соединены с микроконтроллером. 1. A device for areal diagnostics of the technical condition of steel pipelines and metal structures, containing a housing in which a Hall sensor unit, an analog-to-digital converter, a microcontroller are installed and interconnected in series, and an accelerometer unit, a radio communication module and a memory unit are installed in the housing, which connected to the microcontroller.
5
5
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2021133690 | 2021-11-19 | ||
RU2021133690 | 2021-11-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023091053A1 true WO2023091053A1 (en) | 2023-05-25 |
Family
ID=86397577
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/RU2022/050297 WO2023091053A1 (en) | 2021-11-19 | 2022-09-19 | Device for large area magnetometric inspection of pipelines and metal structures |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2023091053A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090013806A1 (en) * | 2007-07-09 | 2009-01-15 | Microline Technology Corporation | Communication system for pipeline inspection |
WO2010067162A1 (en) * | 2008-12-12 | 2010-06-17 | Ecopetrol S.A. | Intelligent tool for detecting perforations and interpretation of data online |
RU119885U1 (en) * | 2011-10-27 | 2012-08-27 | Учреждение Российской академии наук Ордена Трудового Красного Знамени Институт физики металлов Уральского отделения РАН (ИФМ УрО РАН) | MAGNETIC DEFECTOSCOPE FOR DETECTING SURFACE PIPELINE DEFECTS |
WO2016016649A1 (en) * | 2014-08-01 | 2016-02-04 | Chargepoint Technology Limited | Usage monitoring system and method |
CN106078734A (en) * | 2016-06-08 | 2016-11-09 | 江苏若博机器人科技有限公司 | One is wirelessly transferred dinuclear four axle crawler type natural gas line robot control system |
-
2022
- 2022-09-19 WO PCT/RU2022/050297 patent/WO2023091053A1/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090013806A1 (en) * | 2007-07-09 | 2009-01-15 | Microline Technology Corporation | Communication system for pipeline inspection |
WO2010067162A1 (en) * | 2008-12-12 | 2010-06-17 | Ecopetrol S.A. | Intelligent tool for detecting perforations and interpretation of data online |
RU119885U1 (en) * | 2011-10-27 | 2012-08-27 | Учреждение Российской академии наук Ордена Трудового Красного Знамени Институт физики металлов Уральского отделения РАН (ИФМ УрО РАН) | MAGNETIC DEFECTOSCOPE FOR DETECTING SURFACE PIPELINE DEFECTS |
WO2016016649A1 (en) * | 2014-08-01 | 2016-02-04 | Chargepoint Technology Limited | Usage monitoring system and method |
CN106078734A (en) * | 2016-06-08 | 2016-11-09 | 江苏若博机器人科技有限公司 | One is wirelessly transferred dinuclear four axle crawler type natural gas line robot control system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2820404B1 (en) | Fault detection for pipelines | |
CN107218942B (en) | Small-diameter pipeline defect positioning device and positioning method based on fast orthogonal search algorithm | |
EP2820405B2 (en) | Fault detection for pipelines | |
CN104235618B (en) | MEMS (Micro Electro Mechanical System) inertial measurement unit-based pipeline surveying and mapping and defect positioning device and pipeline surveying and mapping and defect positioning method thereof | |
CN102966850B (en) | Pipeline alignment detection method | |
US20100102809A1 (en) | Differential gradiometric magnetometer, system and method of use | |
US10209159B2 (en) | Displacement detecting device for structural object, sharing system of displacement of structural object, and method and program of detecting displacement of structural object | |
CN104183155A (en) | Device for detecting parking space in parking lot and detection method | |
JP6105859B2 (en) | Buried object exploration equipment | |
RU2634755C2 (en) | Method and device for diagnosing technical parameters of underground pipeline | |
CN109141407A (en) | A kind of error compensation system and method for growing defeated underground piping positioning system | |
KR101860262B1 (en) | Location and depth measuring method of a underground objects | |
CN110146069B (en) | Pipeline branch pipe positioning device and method | |
JP2016045193A (en) | Altitude detection device, load drive device, and altitude detection method | |
RU209512U1 (en) | Device for areal magnetometric diagnostics of the technical condition of steel pipelines and structures | |
WO2023091053A1 (en) | Device for large area magnetometric inspection of pipelines and metal structures | |
CN205139080U (en) | Detect magnetism detector of metal pipeline stress | |
JP2011094442A (en) | Three-dimensional measurement system for excavated earth retaining work | |
KR20100079635A (en) | An apparatus of fault location for submarine cable | |
CN203420292U (en) | Direct-reading type pile foundation displacement detection device | |
US9869790B2 (en) | Buried asset locator device that takes orientation of device into account during sensing process | |
CN105606016A (en) | Space strain measurement apparatus based on triaxial inclination angle positioning and method thereof | |
CN104062692A (en) | High-precision seabed terrestrial heat flow detection device | |
JP5142632B2 (en) | Magnetic signal detection method, magnetic signal detection program, and magnetic signal detection apparatus | |
CN112985369A (en) | Pipeline connector detection method based on novel artificial fish swarm algorithm |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22896209 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |