WO2023090892A1 - 표면 개질된 무기 나노 입자 및 이의 제조 방법 - Google Patents

표면 개질된 무기 나노 입자 및 이의 제조 방법 Download PDF

Info

Publication number
WO2023090892A1
WO2023090892A1 PCT/KR2022/018191 KR2022018191W WO2023090892A1 WO 2023090892 A1 WO2023090892 A1 WO 2023090892A1 KR 2022018191 W KR2022018191 W KR 2022018191W WO 2023090892 A1 WO2023090892 A1 WO 2023090892A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
inorganic nanoparticles
nanoparticles
magnesium hydroxide
rpm
Prior art date
Application number
PCT/KR2022/018191
Other languages
English (en)
French (fr)
Inventor
정현석
남기태
한길상
김희정
홍정석
Original Assignee
성균관대학교산학협력단
서울대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 성균관대학교산학협력단, 서울대학교산학협력단 filed Critical 성균관대학교산학협력단
Publication of WO2023090892A1 publication Critical patent/WO2023090892A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L17/00Materials for surgical sutures or for ligaturing blood vessels ; Materials for prostheses or catheters
    • A61L17/14Post-treatment to improve physical properties
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L17/00Materials for surgical sutures or for ligaturing blood vessels ; Materials for prostheses or catheters
    • A61L17/14Post-treatment to improve physical properties
    • A61L17/145Coating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/28Materials for coating prostheses
    • A61L27/30Inorganic materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/28Materials for coating prostheses
    • A61L27/30Inorganic materials
    • A61L27/306Other specific inorganic materials not covered by A61L27/303 - A61L27/32
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/08Materials for coatings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/08Materials for coatings
    • A61L31/082Inorganic materials
    • A61L31/088Other specific inorganic materials not covered by A61L31/084 or A61L31/086
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • C01F5/14Magnesium hydroxide
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/20Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing organic materials
    • A61L2300/22Lipids, fatty acids, e.g. prostaglandins, oils, fats, waxes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/12Nanosized materials, e.g. nanofibres, nanoparticles, nanowires, nanotubes; Nanostructured surfaces
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Definitions

  • the present invention was made under the support of the Ministry of Trade, Industry and Energy of the Republic of Korea under task number 20016588, and the research management institution for the above task is the Korea Evaluation Institute of Industrial Technology, the research project name is “materials and parts technology development (R&D)”, and the research project name is “eco-friendly” Development of perovskite module for BIPV using the process”, the host is the Sungkyunkwan University Industry-University Cooperation Foundation, and the research period is 2021.06.01.-2021.12.31.
  • the present invention was made by the project number 2018M3C1B7021994 under the support of the Ministry of Science and ICT of the Republic of Korea, and the research management specialized institution of the project is the National Research Foundation of Korea, the research project name is “STEAM research (R&D)”, and the research project name is “Principles of Bio-Inorganization” Based on self-assembly interface research and artificial bio-mineral technology development”, the host is Sungkyunkwan University Industry-University Cooperation Foundation, and the research period is 2021.01.01.-2021.12.31.
  • the present invention was made by the task number 2020-0-00541-002 under the support of the Ministry of Science and ICT of the Republic of Korea. ”, the title of the research project is “Development of autonomous power flexible photoelectric device module for smart farm wireless complex IoT sensor”, the leading institution is Sungkyunkwan University Industry-University Cooperation Foundation, and the research period is 2021.01.01.-2021.12.31.
  • the present invention was made by the task number 20203040010320 under the support of the Ministry of Trade, Industry and Energy of the Republic of Korea, and the research management institution for the above task is the Korea Institute of Energy Technology Evaluation and Planning, the research project name is "New Renewable Energy Core Technology Development”, and the research task name is "Increasing power generation Development of 26% efficiency, 6-inch perovskite/crystalline silicon tandem solar cell manufacturing technology for ”, Sungkyunkwan University Industry-University Cooperation Foundation, research period 2021.04.01.-2021.12.31.
  • the present invention relates to inorganic nanoparticles containing magnesium hydroxide and surface-modified with a fatty acid, and a method for preparing the same.
  • Coronary artery disease is a heart disease that creates a potentially threatening condition due to insufficient blood supply to the heart muscle, and can lead to angina pectoris, myocardial infarction, silent myocardial ischemia, and sudden death due to sudden cardiac arrest.
  • Coronary artery balloon dilatation which is a representative treatment method for these diseases, is widely used instead of coronary artery bypass grafting by placing a balloon-covered stent in a narrowed portion of the blood vessel and then expanding the balloon with high pressure to widen it.
  • a stent is a mesh tube structure that can be applied to most coronary organs such as blood vessels, esophagus, and bile ducts. .
  • Conventional metal stents remain permanently in the human body and cause inflammation or other diseases such as late thrombosis, requiring additional removal surgery.
  • natural polymers or synthetic polymers having biodegradability have been used, and research on biodegradable synthetic polymer materials is being actively conducted.
  • a drug-eluting stent has been developed that allows the drug to be continuously released for a long time by applying a drug such as a proliferation inhibitor or an immunosuppressant.
  • Biodegradable polymer matrices used to control the drug release behavior upon surface coating of such drug-eluting stents are widely used in living implants due to their characteristics of being completely degraded after a certain period of time in vivo.
  • biodegradable polymers are biodegraded, lactic acid, glycolic acid, hydroxycaproic acid, maleic acid, phosphazene, hydroxybutyric acid, hydroxyethoxyacetic acid, sebacic acid, alcohol, trimethylene glycol, amino acids, formalin, alkyloxy Acidic substances such as anoacrylates are produced, which causes inflammatory reactions, active oxygen, cell death, necrosis, and aging in the human body.
  • the present inventors have intensively researched to develop surface-modified inorganic nanoparticles that are suitable for manufacturing biological implants because of their improved dispersibility in organic solvents while satisfying biocompatibility.
  • inorganic nanoparticles having a hydroxyl group are prepared and the surface is modified using a fatty acid having hydrophobicity, aggregation and sedimentation in an organic solvent required for the manufacture of a biological implant are suppressed, resulting in excellent dispersion stability.
  • the present invention was completed.
  • an object of the present invention is to provide inorganic nanoparticles containing magnesium hydroxide and surface-modified with fatty acids.
  • Another object of the present invention is to provide a biological implant coated with inorganic nanoparticles containing magnesium hydroxide and surface-modified with fatty acids.
  • Another object of the present invention is to provide a method for preparing inorganic nanoparticles containing magnesium hydroxide and surface-modified with fatty acids.
  • the present invention provides inorganic nanoparticles containing magnesium hydroxide and surface-modified with a fatty acid.
  • the surface-modified inorganic nanoparticles of the present invention satisfy biocompatibility and have excellent high dispersion stability in organic solvents, so they can be usefully used as a composition for coating a living implant.
  • the term "inorganic particle” means a particle containing an inorganic component.
  • the inorganic particles are contained in a biodegradable polymer matrix used for biological implants such as stents to neutralize acidic decomposition products generated during the decomposition of biodegradable polymers, resulting in cell inflammatory reactions, active oxygen, cell death, necrosis, and aging due to acidification. It may be to improve the biocompatibility of the bioimplant by inhibiting. As the content of the inorganic particles increases, the neutralization degree and neutralization rate of acidic decomposition products generated when the biodegradable polymer is decomposed may increase.
  • biodegradable polymer may mean a material that can be degraded by body fluids or microorganisms in vivo.
  • biodegradable may be used interchangeably with the term “biocompatible”.
  • biodegradable polymer matrix may be used interchangeably with the term “biodegradable coating polymer matrix” and may refer to a polymer network formed of a biodegradable polymer.
  • a biodegradable polymer may produce an acidic degradation product upon decomposition.
  • the surface-modified inorganic particles may neutralize an acidic decomposition product generated by decomposition of the biodegradable polymer to suppress an inflammatory reaction and cytotoxicity.
  • nanoparticle means a particle having a particle size dimension of less than 1 ⁇ m. Since nanoparticles have a large surface area, it is easy to synthesize target substances, and their targeting ability can be enhanced by enabling the synthesis of various substances. can
  • a method using mechanical energy or electrical energy is mainly used.
  • mechanical energy the principle of comminution is basically used.
  • Milling techniques for particle size reduction exist, such as fluid energy milling, ball milling, media milling, homogenization, and the like.
  • Methods using electrical energy include electrospray, selective recovery, flow focusing, and induction jet spraying.
  • surface modification in the present specification means imparting physical, chemical, and biological properties to the surface of a material that were not originally present in the material. It means to change surface roughness, hydrophilicity, charge, reactivity, etc.
  • the surface modification may be to change the hydrophilicity of the surface.
  • the surface modification is binding fatty acids to the surface of the nanoparticles.
  • Bonding between the fatty acid and the surface of the nanoparticles includes, but is not limited to, covalent bonding, bonding by electrostatic attraction, and bonding by molecule-to-molecular attraction.
  • COOH or COO - at the terminal of the fatty acid binds to a hydroxyl group (-OH) exposed on the surface of the inorganic nanoparticle, and thus the carbon chain of the fatty acid is oriented outward.
  • Hydrophobicity may be imparted to inorganic nanoparticles, but is not limited thereto.
  • the fatty acid is a saturated fatty acid or an unsaturated fatty acid. More specifically, the fatty acid is caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, arachidic acid, behenic acid, lignoceric acid, cerotic acid, myristoleic acid, palmitic acid It is selected from the group consisting of toleic acid, sapienoic acid, oleic acid, elaidic acid, vaccenic acid, linoleic acid, linoelaidic acid, ⁇ -linolenic acid, arachidonic acid, eicosapentaenoic acid, erucic acid, and docosahexaenoic acid It may be one or more fatty acids, but is not limited thereto.
  • the fatty acid may be oleic acid, but is not limited thereto.
  • the inorganic nanoparticles have an average diameter of 50 nm to 300 nm. More specifically, the inorganic nanoparticles have a size of 50 nm to 130 nm, 50 nm to 150 nm, 50 nm to 170 nm, 50 nm to 195 nm, 50 nm to 225 nm, 50 nm to 260 nm, 50 nm to 300 nm, 65 nm to 130 nm, 65 nm to 150 nm, 65 nm to 170 nm, 65 nm to 195 nm, 65 nm to 225 nm, 65 nm to 260 nm, 65 nm to 300 nm, 80 nm to 130 nm, 80 nm to 150 nm, 80 nm to 170 nm, 80 nm to 195 nm, 80 nm to 225 nm, 80 nm to 260
  • the present invention provides a biological implant coated with inorganic nanoparticles containing magnesium hydroxide and surface-modified with fatty acids.
  • the living implant is selected from a non-vascular stent, a stent for intravascular insertion, a surgical suture, a scaffold for supporting the outer wall of a blood vessel, a scaffold for tissue regeneration, a bio-nano fiber, a hydrogel, and a bio sponge cardiovascular materials, dental materials selected from pins, screws, rods and implants, urological tube conduits, tracheal tube conduits, vascular catheters, balloon catheters, urinary catheters, coronary angioplasty catheters, cannulas, and neuro/orthopedics/plastics. Any one selected from the group consisting of biomaterials for surgery, but is not limited thereto.
  • the present invention provides a method for preparing inorganic nanoparticles containing magnesium hydroxide and surface-modified with a fatty acid, comprising the following steps:
  • the organic solvent in step (a) is 1 selected from the group consisting of C1 to C6 lower alcohol, petroleum ether, hexane, benzene, chloroform, methylene chloride, ether, ethyl acetate and acetone More than one kind of organic solvent, but is not limited thereto.
  • the nanoparticles of step (a) are prepared by milling magnesium oxide and an aqueous solvent.
  • the size of the inorganic particles may be reduced using a milling process to form particles in the nanometer particle size range.
  • the milling process since the particles are divided into smaller particles or uniformly spread in the organic solvent, the separation property can be improved without agglomeration.
  • the milling process includes dry and wet milling processes, such as roll milling, bead milling, attrition milling, jet milling, plane Plaenetary milling, ring milling, cryo-milling, ball milling, media milling, or homogenization may be used, but is not limited thereto.
  • dry and wet milling processes such as roll milling, bead milling, attrition milling, jet milling, plane Plaenetary milling, ring milling, cryo-milling, ball milling, media milling, or homogenization may be used, but is not limited thereto.
  • the milling step is a ball milling step, but is not limited thereto.
  • the ball milling is performed with balls having an average diameter of 0.1 to 10 mm. More specifically, the diameter of the ball is 0.1 mm to 2 mm, 0.1 mm to 3 mm, 0.1 mm to 5 mm, 0.1 mm to 7 mm, 0.1 mm to 10 mm, 0.4 mm to 2 mm, 0.4 mm to 3 mm , 0.4 mm to 5 mm, 0.4 mm to 7 mm, 0.4 mm to 10 mm, 0.7 mm to 2 mm, 0.7 mm to 3 mm, 0.7 mm to 5 mm, 0.7 mm to 7 mm, 0.7 mm to 10 mm, 0.8 mm to 2 mm, 0.8 mm to 3 mm, 0.8 mm to 5 mm, 0.8 mm to 7 mm, 0.8 mm to 10 mm, 0.9 mm to 2 mm, 0.8 mm to 3 mm, 0.8 mm to 5 mm, 0.8 mm to 7 mm, 0.8 mm to 10 mm
  • the rotational speed of the ball mill is 200 rpm to 400 rpm. More specifically, 200 rpm to 310 rpm, 200 rpm to 320 rpm, 200 rpm to 340 rpm, 200 rpm to 370 rpm, 200 rpm to 400 rpm, 230 rpm to 310 rpm, 230 rpm to 320 rpm, 230 rpm to 340 rpm , 230 rpm to 370 rpm, 230 rpm to 400 rpm, 260 rpm to 310 rpm, 260 rpm to 320 rpm, 260 rpm to 340 rpm, 260 rpm to 370 rpm, 260 rpm to 400 rpm, 280 rpm to 310 rpm, 280 rpm to 320 rpm, 280 rpm to 320 rpm, 280 rpm to 340 rpm, 280 rpm to 370 rpm
  • the aqueous solvent is water, distilled water, sterile water, physiological saline, phosphate buffered saline (PBS), acetate buffer, Tris buffer, methanol, purified water, ethanol, 1-propanol, 2-propanol, At least one aqueous solvent selected from the group consisting of 1-pentanol, 2-butoxyethanol, ethylene glycol, acetone, 2-butanone, 4-methyl-2-propanone, chloroform, and combinations thereof , but is not limited thereto.
  • PBS phosphate buffered saline
  • the stirring step of step (a) is performed at 40 ° C to 120 ° C. More specifically, 40 ° C to 80 ° C, 40 ° C to 85 ° C, 40 ° C to 90 ° C, 40 ° C to 100 ° C, 40 ° C to 110 ° C, 40 ° C to 120 ° C, 50 ° C to 80 ° C, 50 ° C to 85 ° C °C, 50 °C to 90 °C, 50 °C to 100 °C, 50 °C to 110 °C, 50 °C to 120 °C, 60 °C to 80 °C, 60 °C to 85 °C, 60 °C to 90 °C, 60 °C to 100 °C, 60°C to 110°C, 60°C to 120°C, 70°C to 80°C, 70°C to 85°C, 70°C to 90°C, 70°C to 100°C, 70°C to 110°C, or 70°C
  • step (a) 0.1 g to 5 g of nanoparticles per 100 mL of an organic solvent, water, or a mixed solvent thereof is added. More specifically, 0.1 g to 0.6 g, 0.1 g to 0.75 g, 0.1 g to 1.0 g, 0.1 g to 2.0 g, 0.1 g to 3.5 g, and 0.1 to 5.0 g per 100 mL of the organic solvent, water, or a mixture thereof.
  • step (a) the fatty acid is added at a concentration of 40.0% to 99.0%, and the volume ratio of the fatty acid and the organic solvent in which the nanoparticles are dispersed, water, or a mixed solvent thereof 1:5 to 1:200.
  • the volume ratio of the fatty acid and the organic solvent in which the nanoparticles are dispersed, water, or a mixed solvent thereof is 1:5 to 1:22.5, 1:5 to 1:25, 1:5 to 1:30, 1 :5 to 1:50, 1:5 to 1:75, 1:5 to 1:100, 1:5 to 1:150, 1:5 to 1:200, 1:10 to 1:22.5, 1:10 to 1:25, 1:10 to 1:30, 1:10 to 1:50, 1:10 to 1:75, 1:10 to 1:100, 1:10 to 1:150, 1:10 to 1 :200, 1:15 to 1:22.5, 1:15 to 1:25, 1:15 to 1:30, 1:15 to 1:50, 1:15 to 1:75, 1:15 to 1:100 , 1:15 to 1:150, 1:15 to 1:200, 1:17.5 to 1:22.5, 1:17.5 to 1:25, 1:17.5 to 1:30, 1:17.5 to 1:50, 1 :17.5 to 1:75, 1:17.5 to 1:100, 1:17.5 to 1:150, or 1:17.5 to 1:200, but is not limited
  • the concentration of the fatty acid is added to 40.0% to 99.0%. More specifically, the concentration of the fatty acid is 40.0% to 70.0%, 40.0% to 75.0%, 40.0% to 80.0%, 40.0% to 88.0%, 40.0% to 90.0%, 40.0% to 95.0%, 40.0% to 99.0% , 50.0% to 70.0%, 50.0% to 75.0%, 50.0% to 80.0%, 50.0% to 88.0%, 50.0% to 90.0%, 50.0% to 95.0%, 50.0% to 99.0%, 55.0% to 70.0%, 55.0 % to 75.0%, 55.0% to 80.0%, 55.0% to 88.0%, 55.0% to 90.0%, 55.0% to 95.0%, 55.0% to 99.0%, 60.0% to 70.0%, 60.0% to 75.0%, 60.0% to 80.0%, 60.0% to 88.0%, 60.0% to 90.0%, 60.0% to 90.0%, 60.0%
  • the washing in step (b) is performed using an organic solvent, water, or a mixed solvent thereof.
  • the organic solvent used for washing in step (b) is a group consisting of C1 to C6 lower alcohol, petroleum ether, hexane, benzene, chloroform, methylene chloride, ether, ethyl acetate and acetone It is one or more organic solvents selected from, but is not limited thereto.
  • nanoparticles may be obtained by washing and drying the precipitate in step (b).
  • the content of the fatty acid in the stirring step of the magnesium hydroxide nanoparticles and the fatty acid for surface modification is the same as the content of the fatty acid in the surface modification of the inorganic nanoparticles, the common content is in this specification In order to avoid redundant description of , the description is omitted.
  • Inorganic nanoparticles containing magnesium oxide and surface-modified with fatty acids of the present invention have a very small particle size compared to commercially available inorganic nanoparticles and have a hydrophobic surface, suppressing aggregation and sedimentation in organic solvents. Since it has excellent dispersibility and dispersion stability, it can be usefully used in the manufacture of biological implants.
  • FIG. 2 shows a reaction in which oleic acid and magnesium hydroxide nanoparticles are combined, and shows that the carbon chain of oleic acid is oriented outward during the bonding process, thereby imparting hydrophobicity to the surface of the nanoparticles.
  • Figure 3 shows a scanning electron microscope (Field-emission scanning electron microscopy, FE-SEM) image and particle size analysis (PSA) graph of magnesium hydroxide prepared in Preparation Example 1.
  • Figure 6 shows a photograph of a solution in which the particles prepared according to Preparation Example 1 and Comparative Example 1 are dispersed in water, ethanol (EtOH), chloroform (CF), and tetrahydrofuran (THF), respectively.
  • Figure 7 shows a photograph of the dispersion solution after dispersing the particles prepared in Preparation Example 1 and Comparative Examples 1 to 3 in a tetrahydrofuran (THF) solvent and after 24 hours.
  • THF tetrahydrofuran
  • % used to indicate the concentration of a particular substance is (weight/weight) % for solids/solids, (weight/volume) % for solids/liquids, and liquid/liquid is (volume/volume) %.
  • Magnesium hydroxide nanoparticles were prepared by ball milling 1 g of magnesium oxide and 40 mL of distilled water with 150 g of balls having a diameter of 1 mm at a ball mill rotational speed of 300 rpm for 24 hours.
  • the size of the prepared magnesium hydroxide nanoparticles was confirmed through field-emission scanning electron microscopy (FE-SEM) images and particle size analysis (PSA) using a particle size analyzer. It was confirmed that the average diameter of the nanoparticles was 115.0 nm (FIG. 3).
  • Magnesium hydroxide nanoparticles were prepared in the same manner as in Preparation Example 1, except that the surface modification process using oleic acid was not performed.
  • the size of commercially available magnesium hydroxide particles was confirmed through a field-emission scanning electron microscopy (FE-SEM) image and particle size analysis (PSA) using a particle size analyzer.
  • FE-SEM field-emission scanning electron microscopy
  • PSD particle size analysis
  • the average diameter of the particles of Comparative Example 3 was 3995 nm, and it was confirmed that the particle size was very large compared to the nanoparticles of Preparation Example 1.
  • Example 1 Fourier-transform infrared (FT-IR) spectroscopy analysis of magnesium hydroxide particles of Preparation Example 1, Comparative Example 2 and Comparative Example 3
  • FT-IR Fourier-transform infrared
  • Example 2 Comparison of dispersibility between Preparation Example 1 and Comparative Example 1
  • the particles prepared according to Preparation Example and Comparative Example 1 were dispersed in water, ethanol (Ethanol, EtOH), chloroform (CF), and tetrahydrofuran (THF), respectively, and the state of the solution was observed. The results are shown in FIG. 6 .
  • the solution looked hazy because it was mixed with water and ethanol, but the dispersibility was poor in chloroform and tetrahydrofuran solvents, so the particles precipitated and the solution was clear.
  • the surface was modified to be hydrophobic, so it was not miscible with water and ethanol, and the dispersibility in chloroform and tetrahydrofuran solvents was improved, so it was confirmed that the solution looked hazy.
  • Example 3 Comparison of dispersibility of Preparation Example 1 and Comparative Examples 1 to 3
  • Example 4 Particle size analysis over time of inorganic nanoparticles of Preparation Example 1
  • Example 4-1 Particle size analysis after dispersion in tetrahydrofuran (THF)
  • Example 4-2 Particle size analysis after dispersion in chloroform (CF)

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Epidemiology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Surgery (AREA)
  • Vascular Medicine (AREA)
  • Transplantation (AREA)
  • Dermatology (AREA)
  • Medicinal Chemistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Materials Engineering (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Geology (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

본 발명은 수산화마그네슘을 포함하고, 지방산으로 표면 개질된 무기 나노 입자 및 이의 제조 방법에 관한 것이다. 본 발명의 무기 나노 입자는 시판되는 무기 나노입자와 비교하여 입자 크기가 매우 작으며, 표면이 소수성을 띠게 되어 유기 용매 상에서의 응집 및 침강 현상이 억제되어 우수한 분산성 및 분산 안정성을 가지므로, 생체 이식물 제조에 유용하게 사용될 수 있다.

Description

표면 개질된 무기 나노 입자 및 이의 제조 방법
본 발명은 대한민국 산업통상자원부의 지원 하에서 과제번호 20016588에 의해 이루어진 것으로서, 상기 과제의 연구관리 전문기관은 한국산업기술평가관리원, 연구사업명은 “소재부품기술개발(R&D)”, 연구과제명은 “친환경 공정을 적용한 BIPV용 페로브스카이트 모듈 개발”, 주관기관은 성균관대학교 산학협력단, 연구기간은 2021.06.01.-2021.12.31.이다.
본 발명은 대한민국 과학기술정보통신부의 지원 하에서 과제번호 2018M3C1B7021994에 의해 이루어진 것으로서, 상기 과제의 연구관리 전문기관은 한국연구재단, 연구사업명은 “STEAM연구(R&D)”, 연구과제명은 “생무기물화 원리 기반 자기조립 계면 연구 및 인공 바이오 미네랄 기술 개발”, 주관기관은 성균관대학교 산학협력단, 연구기간은 2021.01.01.-2021.12.31.이다.
본 발명은 대한민국 과학기술정보통신부의 지원 하에서 과제번호 2020-0-00541-002에 의해 이루어진 것으로서, 상기 과제의 연구관리 전문기관은 정보통신기획평가원, 연구사업명은 “ICT첨단유망기술육성(R&D)”, 연구과제명은 “스마트팜 무선 복합 IoT 센서용 자율전원 유연 광전소자 모듈개발”, 주관기관은 성균관대학교 산학협력단, 연구기간은 2021.01.01.-2021.12.31.이다.
본 발명은 대한민국 산업통상자원부의 지원 하에서 과제번호 20203040010320에 의해 이루어진 것으로서, 상기 과제의 연구관리 전문기관은 한국에너지기술평가원, 연구사업명은 “신재생에너지핵심기술개발”, 연구과제명은 “발전량 증대를 위한 효율 26%급, 6인치 페로브스카이트/결정질 실리콘 탠덤 태양전지 셀 제작기술 개발”, 주관기관은 성균관대학교 산학협력단, 연구기간은 2021.04.01.-2021.12.31.이다.
본 특허출원은 2021년 11월 17일에 대한민국 특허청에 제출된 대한민국 특허출원 제10-2021-0158948호에 대하여 우선권을 주장하며, 상기 특허출원의 개시사항은 본 명세서에 참조로서 삽입된다.
본 발명은 수산화마그네슘을 포함하고, 지방산으로 표면 개질된 무기 나노 입자 및 이의 제조 방법에 관한 것이다.
관상동맥 질환은 심장 근육에 충분한 혈액이 공급되지 않아 잠재적인 위협 상태가 되도록 만드는 심장병이며, 협심증, 심근경색, 무증상 심근 허혈, 급성 심정지에 의한 돌연사를 초래할 수 있다. 이들 질환에 대표적인 치료 방법인 관상동맥 풍선확장술은 풍선에 덮여있는 스텐트(stent)를 혈관의 좁아진 부위에 위치시킨 후 풍선을 높은 압력으로 확장시켜 넓히는 방법으로 관상동맥 우회술을 대신하여 널리 이용되고 있다.
스텐트는 혈관, 식도, 담관 등 대부분의 관상 구조 신체 기관에 적용 가능한 그물망의 튜브 구조로 카테터를 이용하여 관상 구조 기관의 좁아진 곳에 넣어서 협착을 완화시켜 관상 구조 내부 내용물의 흐름을 원활하게 하는 의료기기이다. 기존의 금속 스텐트는 인체 내에 영구적으로 남아있어 염증을 유발하거나 후기 혈전증 등 기타 질병을 유발하는 문제점이 있어 추가 제거 수술이 필요하였다. 이러한 문제점을 해결하기 위해 생분해성을 가지는 천연고분자 또는 합성고분자 등을 사용하게 되었으며, 생분해성 합성 고분자 소재에 대한 연구가 활발히 진행되고 있다.
관상동맥 질환 관련 스텐트의 경우, 이식 후에 혈액이 스텐트 이식물과 반응하여 응집되어 새로이 확장된 동맥을 막는 혈전증을 예방하기 위해, 환자는 아스피린 외에 항-응고 약물 또는 항-혈전 약물을 스텐트 시술 후 6개월 또는 그 이상 복용해야 한다. 이에 따라, 증식억제제 또는 면역억제제 등의 약물을 도포 하여 약물이 장시간 지속적으로 방출되게 하는 약물-용출 스텐트가 개발된 바 있다.
이러한 약물-용출 스텐트의 표면 코팅 시 약물방출 거동을 조절하기 위해 사용되는 생분해성 고분자 매트릭스는 생체 내에서 일정 시간 경과 후에 완전히 분해되는 특성으로 인하여 생체용 이식물에 널리 사용되고 있다. 그러나, 생분해성 고분자는 생분해되면서 락트산, 글라이콜산, 수산화카프로산, 말레산, 포스파젠, 수산화부틸산, 수산화에톡시아세트산, 세바식산, 알코올, 트리메틸렌글라이콜, 아미노산, 포르말린, 알킬시아노아크릴레이트 등의 산성 물질이 생성되어 인체 내에서 염증 반응, 활성산소, 세포사멸, 괴사 및 노화를 야기하는 문제점이 있다.
이러한 문제를 극복하기 위해 염기성 무기 입자를 이용하여 산성 물질의 억제를 위한 연구가 있다. 염기성 무기 입자를 이용하는 경우, 산성화한 혈관 내 환경 pH가 중화되고 조직 세포가 그대로 생존하여 괴사를 막을 수 있다. 그러나, 코팅 및 생체 이식물 제조를 위한 물질에 한계가 있으며 유기 용매 상에서의 분산안정성이 충분히 개선되지 않은 문제가 존재한다.
따라서, 생체 이식물로의 응용을 위해 생체 적합성을 만족시키면서 분산 안정성이 우수한 무기 입자에 대한 필요성이 요구되는 실정이다.
본 발명자들은 생체 적합성을 만족시키면서 유기 용매 내 분산성이 향상되어 생체 이식물 제조에 적합한 표면 개질된 무기 나노 입자를 개발하고자 예의 연구 노력하였다. 그 결과, 수산화기를 가지는 무기 나노 입자를 제조한 후, 소수성을 가지는 지방산을 이용하여 표면을 개질하는 경우, 생체 이식물 제조에 필요한 유기 용매 상에서의 응집 및 침강 현상이 억제되어 우수한 분산 안정성을 가짐을 규명함으로써, 본 발명을 완성하게 되었다.
따라서, 본 발명의 목적은 수산화마그네슘을 포함하고, 지방산으로 표면 개질된 무기 나노 입자를 제공하는 것이다.
본 발명의 다른 목적은 수산화마그네슘을 포함하고, 지방산으로 표면 개질된 무기 나노 입자로 코팅된 생체 이식물을 제공하는 것이다.
본 발명의 또 다른 목적은 수산화마그네슘을 포함하고, 지방산으로 표면 개질된 무기 나노 입자의 제조 방법을 제공하는 것이다.
본 발명의 일 양태에 따르면, 본 발명은 수산화마그네슘을 포함하고, 지방산으로 표면 개질된 무기 나노 입자를 제공한다.
본 발명의 표면 개질된 무기 나노 입자는 본 발명의 구현예에서 확인한 바와 같이, 생체 적합성을 만족시키며 유기 용매상에서 고분산 안정성 특성이 우수하므로, 생체 이식물 코팅용 조성물로 유용하게 사용될 수 있다.
본 명세서에서 사용된 용어 "무기 입자"는 무기 성분을 포함하는 입자를 의미한다. 상기 무기 입자는 스텐트 등 생체 이식물에 사용되는 생분해성 고분자 매트릭스 내에 함유되어 생분해성 고분자의 분해 시 생성되는 산성 분해산물을 중화시켜, 산성화에 따른 세포 염증반응, 활성산소, 세포사멸, 괴사 및 노화를 억제함으로써 생체이식물의 생체 적합성을 향상시키는 것일 수 있다. 상기 무기 입자는 함량이 증가할수록 생분해성 고분자의 분해 시 생성되는 산성 분해산물의 중화도 및 중화 속도가 증가하는 것일 수 있다.
본 명세서에서 사용되는 용어 "생분해성 고분자"는 생체 내에서 체액 또는 미생물 등에 의해서 분해될 수 있는 물질을 의미할 수 있다. 용어 "생분해성"은 용어 "생체적합성"과 상호 교환적으로 사용될 수 있다. 용어 "생분해성 고분자 매트릭스"는 용어 "생분해성 코팅 고분자 매트릭스"와 상호교환적으로 사용될 수 있으며, 생분해성 고분자 로 형성된 고분자 네트워크를 의미할 수 있다. 예를 들어, 생분해성 고분자는 분해 시 산성 분해산물을 생성하는 것일 수 있다.
본 발명의 일 구현예에 있어서, 상기 표면 개질된 무기 입자는 상기 생분해성 고분자의 분해에 의하여 생성되는 산성 분해산물을 중화시켜 염증 반응 및 세포 독성을 억제하는 것일 수 있다.
본 명세서에서 사용된 용어, "나노 입자"는 1 μm 미만의 입도 크기(dimension)를 갖는 입자를 의미한다. 나노 입자는 넓은 표면적을 가지고 있어 표적 물질을 합성하기 용이하고, 다양한 물질의 합성이 가능하게 함으로써 그 표적능을 높일 수 있어 나노 바이오센서, 나노 영상, 나노 약물전달체, 나노 기기 등 다양한 분야에 활용될 수 있다.
나노 입자를 얻기 위해서는 기계적 에너지를 이용하거나 전기적 에너지를 이용하는 방법이 주로 사용된다. 기계적 에너지를 이용하는 경우, 주로 분쇄(comminution)의 원리를 기본적으로 이용한다. 입자 크기 감소를 위한 밀링 기술, 예를 들어 유체 에너지 밀링, 볼밀링, 미디어밀링, 균질화 등이 존재한다. 전기적 에너지에 의한 방법으로는 전기분무, 선택적 회수법, 흐름 집속법, 유도 젯 분사법 등이 있다.
본 명세서상의 용어 "표면 개질"은 물질 표면에 원래 물질에 없던 물리, 화학, 생물적 특성을 부여하는 것을 의미한다. 표면의 거칠기, 친수성, 전하, 반응성 등을 변화시키는 것을 의미한다.
본 발명의 일 구현예에 있어서, 상기 표면 개질은 표면의 친수성을 변화시키는 것일 수 있다.
본 발명의 일 구현예에 있어서, 상기 표면 개질은 지방산을 나노입자 표면에 결합시키는 것이다. 상기 지방산과 나노입자 표면과의 결합은 공유결합, 정전기적 인력에 의한 결합, 분자-분자간 인력에 의한 결합을 포함하나, 이에 한정되는 것은 아니다.
본 발명의 일 구현예에 있어서, 상기 지방산 말단에 있는 COOH 또는 COO-는 상기 무기 나노 입자 표면에 노출되어 있는 하이드록시기(-OH)와 결합하고, 이에 따라 지방산의 탄소 사슬이 바깥쪽으로 배향됨으로써 무기 나노 입자에 소수성을 부여할 수 있으나, 이에 한정되는 것은 아니다.
본 발명의 일 구현예에 있어서, 상기 지방산은 포화 지방산 또는 불포화 지방산이다. 보다 구체적으로, 상기 지방산은 카프릴산, 카프르산, 라우르산, 미리스트산, 팔미트산, 스테아르산, 아라키드산, 베헨산, 리그노세르산, 세로트산, 미리스톨레산, 팔미톨레산, 사피엔산, 올레산, 엘라이드산, 박센산, 리놀레산, 리노엘라이드산, α-리놀렌산, 아라키돈산, 에이코사펜타엔산, 에루크산, 도코사헥사엔산으로 이루어진 군으로부터 선택되는 1종 이상의 지방산일 수 있으나, 이에 한정되는 것은 아니다.
본 발명의 일 구현예에 있어서, 상기 지방산은 올레산일 수 있으나, 이에 한정되는 것은 아니다.
본 발명의 일 구현예에 있어서, 상기 무기 나노 입자는 50 nm 내지 300 nm의 평균 직경을 갖는 것이다. 보다 구체적으로 상기 무기 나노 입자는 50 nm 내지 130 nm, 50 nm 내지 150 nm, 50 nm 내지 170 nm, 50 nm 내지 195 nm, 50 nm 내지 225 nm, 50 nm 내지 260 nm, 50 nm 내지 300 nm, 65 nm 내지 130 nm, 65 nm 내지 150 nm, 65 nm 내지 170 nm, 65 nm 내지 195 nm, 65 nm 내지 225 nm, 65 nm 내지 260 nm, 65 nm 내지 300 nm, 80 nm 내지 130 nm, 80 nm 내지 150 nm, 80 nm 내지 170 nm, 80 nm 내지 195 nm, 80 nm 내지 225 nm, 80 nm 내지 260 nm, 80 nm 내지 300 nm, 90 nm 내지 130 nm, 90 nm 내지 150 nm, 90 nm 내지 170 nm, 90 nm 내지 195 nm, 90 nm 내지 225 nm, 90 nm 내지 260 nm, 90 nm 내지 300 nm, 100 nm 내지 130 nm, 100 nm 내지 150 nm, 100 nm 내지 170 nm, 100 nm 내지 195 nm, 100 nm 내지 225 nm, 100 nm 내지 260 nm, 또는 100 nm 내지 300 nm이나, 이에 한정되는 것은 아니다.
본 발명의 다른 양태에 따르면, 본 발명은 수산화마그네슘을 포함하고, 지방산으로 표면 개질된 무기 나노 입자로 코팅된 생체 이식물을 제공한다.
본 발명의 일 구현예에 있어서, 상기 생체 이식물은 비혈관 스텐트, 혈관 내부 삽입용 스텐트, 수술용 봉합사, 혈관 외벽 지지용 지지체, 조직 재생용 지지체, 바이오 나노 섬유, 하이드로겔 및 바이오 스폰지 중에서 선택되는 심혈관계 재료, 핀, 나사, 막대 및 임플란트 중에서 선택되는 치과 재료, 비뇨기과용 튜브 도관, 기관용 튜브 도관, 혈관 카테터, 풍선 카테터, 소변 카테터, 관상 동맥 혈관 성형술 카테터, 캐뉼라, 및 신경/정형/성형외과용 생체 재료로 이루어진 군에서 선택되는 어느 하나인 것이나, 이에 한정되는 것은 아니다.
본 발명의 또 다른 양태에 따르면, 본 발명은 다음 단계를 포함하는 수산화마그네슘을 포함하고, 지방산으로 표면 개질된 무기 나노 입자의 제조방법을 제공한다:
(a) 유기용매, 물 또는 이들의 혼합용매에 분산시킨 수산화마그네슘 나노 입자에 지방산을 투입하여 교반하는 단계; 및
(b) 침전물을 세척하여 수산화마그네슘 나노 입자를 수득하는 단계.
본 발명의 일 구현예에 있어서, 상기 (a) 단계의 유기용매는 C1 내지 C6의 저급 알코올, 석유 에테르, 헥산, 벤젠, 클로로포름, 메틸렌클로라이드, 에테르, 에틸아세테이트 및 아세톤으로 이루어진 군으로부터 선택되는 1종 이상의 유기용매이나, 이에 한정되는 것은 아니다.
본 발명의 일 구현예에 있어서, 상기 (a) 단계의 나노 입자는 산화마그네슘과 수성용매를 밀링하는 단계에 의하여 제조되는 것이다.
본 발명의 일 구현예에 있어서, 밀링 공정을 사용하여 무기 입자의 크기를 감소시켜 나노미터 입자 크기 범위의 입자를 형성시킬 수 있다. 밀링 공정에 의하는 경우, 입자가 더 작은 입자로 쪼개어지거나, 유기용매 내에서 균일하게 퍼질 수 있으므로 뭉침 현상이 없이 분상성이 향상될 수 있다.
본 발명의 일 구현예에 있어서, 밀링 공정으로 건식 및 습식 밀링 공정, 예컨대 롤밀링(Roll milling), 비드밀링(bead milling), 아트리션밀링(attrition milling), 제트밀링(jet milling), 플래네터리밀링(plaenetary milling), 링밀링(ring milling), 극저온-밀링(cryo-milling), 볼밀링(ball milling), 매체밀링 (media milling) 또는 균질화가 사용될 수 있으나, 이에 한정되는 것은 아니다.
본 발명의 일 구현예에 있어서, 상기 밀링하는 단계는 볼밀링 단계이나, 이에 한정되는 것은 아니다.
본 발명의 일 구현예에 있어서, 상기 볼밀링은 평균 직경 0.1 내지 10 mm의 볼과 함께 볼밀링하는 것이다. 보다 구체적으로, 상기 볼의 직경은 0.1 mm 내지 2 mm, 0.1 mm 내지 3 mm, 0.1 mm 내지 5 mm, 0.1 mm 내지 7 mm, 0.1 mm 내지 10 mm, 0.4 mm 내지 2 mm, 0.4 mm 내지 3 mm, 0.4 mm 내지 5 mm, 0.4 mm 내지 7 mm, 0.4 mm 내지 10 mm, 0.7 mm 내지 2 mm, 0.7 mm 내지 3 mm, 0.7 mm 내지 5 mm, 0.7 mm 내지 7 mm, 0.7 mm 내지 10 mm, 0.8 mm 내지 2 mm, 0.8 mm 내지 3 mm, 0.8 mm 내지 5 mm, 0.8 mm 내지 7 mm, 0.8 mm 내지 10 mm, 0.9 mm 내지 2 mm, 0.9 mm 내지 3 mm, 0.9 mm 내지 5 mm, 0.9 mm 내지 7 mm, 또는 0.9 mm 내지 10 mm이나, 이에 한정되는 것은 아니다.
본 발명의 일 구현예에 있어서, 상기 볼밀링의 회전속도는 200 rpm 내지 400 rpm인 것이다. 보다 구체적으로 200 rpm 내지 310 rpm, 200 rpm 내지 320 rpm, 200 rpm 내지 340 rpm, 200 rpm 내지 370 rpm, 200 rpm 내지 400 rpm, 230 rpm 내지 310 rpm, 230 rpm 내지 320 rpm, 230 rpm 내지 340 rpm, 230 rpm 내지 370 rpm, 230 rpm 내지 400 rpm, 260 rpm 내지 310 rpm, 260 rpm 내지 320 rpm, 260 rpm 내지 340 rpm, 260 rpm 내지 370 rpm, 260 rpm 내지 400 rpm, 280 rpm 내지 310 rpm, 280 rpm 내지 320 rpm, 280 rpm 내지 340 rpm, 280 rpm 내지 370 rpm, 280 rpm 내지 400 rpm, 290 rpm 내지 310 rpm, 290 rpm 내지 320 rpm, 290 rpm 내지 340 rpm, 290 rpm 내지 370 rpm, 또는 290 rpm 내지 400 rpm이나, 이에 한정되는 것은 아니다.
본 발명의 일 구현예에 있어서, 상기 수성용매는 물, 증류수, 멸균수, 생리식염수, 인산완충식염수(PBS), 아세테이트 완충액, 트리스 완충액, 메탄올, 정제수, 에탄올, 1-프로판올, 2-프로판올, 1-펜탄올, 2-부톡시에탄올, 에틸렌글라이콜, 아세톤, 2-부타논, 4-메틸-2-프로파논, 클로로포름 및 이들의 조합으로 이루어진 군으로부터 선택되는 1종 이상의 수성용매인 것이나, 이에 한정되는 것은 아니다.
본 발명의 일 구현예에 있어서, 상기 (a) 단계의 교반하는 단계는 40℃ 내지 120℃에서 수행되는 것이다. 보다 구체적으로, 40℃ 내지 80℃, 40℃ 내지 85℃, 40℃ 내지 90℃, 40℃ 내지 100℃, 40℃ 내지 110℃, 40℃ 내지 120℃, 50℃ 내지 80℃, 50℃ 내지 85℃, 50℃ 내지 90℃, 50℃ 내지 100℃, 50℃ 내지 110℃, 50℃ 내지 120℃, 60℃ 내지 80℃, 60℃ 내지 85℃, 60℃ 내지 90℃, 60℃ 내지 100℃, 60℃ 내지 110℃, 60℃ 내지 120℃, 70℃ 내지 80℃, 70℃ 내지 85℃, 70℃ 내지 90℃, 70℃ 내지 100℃, 70℃ 내지 110℃, 또는 70℃ 내지 120℃이나, 이에 한정되는 것은 아니다.
본 발명의 일 구현예에 있어서, 상기 (a) 단계에서 나노 입자는 유기용매, 물 또는 이들의 혼합용매 100 mL 당 0.1 g 내지 5 g이 첨가되는 것이다. 보다 구체적으로, 유기용매, 물 또는 이들의 혼합용매 100 mL 당 0.1 g 내지 0.6 g, 0.1 g 내지 0.75 g, 0.1 g 내지 1.0 g, 0.1 g 내지 2.0 g, 0.1 g 내지 3.5 g, 0.1 내지 5.0 g, 0.25 g 내지 0.6 g, 0.25 g 내지 0.75 g, 0.25 g 내지 1.0 g, 0.25 g 내지 2.0 g, 0.25 g 내지 3.5 g, 0.25 내지 5.0 g, 0.4 g 내지 0.6 g, 0.4 g 내지 0.75 g, 0.4 g 내지 1.0 g, 0.4 g 내지 2.0 g, 0.4 g 내지 3.5 g, 또는 0.4 g 내지 5.0 g이 첨가되는 것이나, 이에 한정되는 것은 아니다.
본 발명의 일 구현예에 있어서, 상기 (a) 단계에서 상기 지방산은 40.0% 내지 99.0%의 농도로 첨가되며, 상기 지방산과 상기 나노 입자가 분산된 유기용매, 물 또는 이들의 혼합용매의 부피비는 1:5 내지 1:200인 것이다. 보다 구체적으로, 상기 지방산과 상기 나노 입자가 분산된 유기용매, 물 또는 이들의 혼합용매의 부피비는 1:5 내지 1:22.5, 1:5 내지 1:25, 1:5 내지 1:30, 1:5 내지 1:50, 1:5 내지 1:75, 1:5 내지 1:100, 1:5 내지 1:150, 1:5 내지 1:200, 1:10 내지 1:22.5, 1:10 내지 1:25, 1:10 내지 1:30, 1:10 내지 1:50, 1:10 내지 1:75, 1:10 내지 1:100, 1:10 내지 1:150, 1:10 내지 1:200, 1:15 내지 1:22.5, 1:15 내지 1:25, 1:15 내지 1:30, 1:15 내지 1:50, 1:15 내지 1:75, 1:15 내지 1:100, 1:15 내지 1:150, 1:15 내지 1:200, 1:17.5 내지 1:22.5, 1:17.5 내지 1:25, 1:17.5 내지 1:30, 1:17.5 내지 1:50, 1:17.5 내지 1:75, 1:17.5 내지 1:100, 1:17.5 내지 1:150, 또는 1:17.5 내지 1:200인 것이나, 이에 한정되는 것은 아니다.
본 발명의 일 구현예에 있어서, 상기 지방산의 농도는 40.0% 내지 99.0%로 첨가되는 것이다. 보다 구체적으로, 상기 지방산의 농도는 40.0% 내지 70.0%, 40.0% 내지 75.0%, 40.0% 내지 80.0%, 40.0% 내지 88.0%, 40.0% 내지 90.0%, 40.0% 내지 95.0%, 40.0% 내지 99.0%, 50.0% 내지 70.0%, 50.0% 내지 75.0%, 50.0% 내지 80.0%, 50.0% 내지 88.0%, 50.0% 내지 90.0%, 50.0% 내지 95.0%, 50.0% 내지 99.0%, 55.0% 내지 70.0%, 55.0% 내지 75.0%, 55.0% 내지 80.0%, 55.0% 내지 88.0%, 55.0% 내지 90.0%, 55.0% 내지 95.0%, 55.0% 내지 99.0%, 60.0% 내지 70.0%, 60.0% 내지 75.0%, 60.0% 내지 80.0%, 60.0% 내지 88.0%, 60.0% 내지 90.0%, 60.0% 내지 95.0%, 60.0% 내지 99.0%, 65.0% 내지 70.0%, 65.0% 내지 75.0%, 65.0% 내지 80.0%, 65.0% 내지 88.0%, 65.0% 내지 90.0%, 65.0% 내지 95.0%, 65.0% 내지 99.0%, 또는 65% 내지 88%로 첨가되는 것이나, 이에 한정되는 것은 아니다.
본 발명의 일 구현예에 있어서, 상기 (b) 단계의 세척은 유기용매, 물 또는 이들의 혼합용매를 사용하여 수행되는 것이다.
본 발명의 일 구현예에 있어서, 상기 (b) 단계의 세척에 사용되는 유기용매는 C1 내지 C6의 저급 알코올, 석유 에테르, 헥산, 벤젠, 클로로포름, 메틸렌클로라이드, 에테르, 에틸아세테이트 및 아세톤으로 이루어진 군으로부터 선택되는 1종 이상의 유기용매인 것이나, 이에 한정되는 것은 아니다.
본 발명의 일 구현예에 있어서, 상기 (b) 단계에서 침전물을 세척한 뒤 건조하여 나노 입자를 수득할 수 있다.
상기 본 발명의 일 양태에 따른 표면 개질을 위한 수산화마그네슘 나노 입자와 지방산과의 교반 단계의 지방산에 관한 내용은, 무기 나노 입자의 표면 개질에서의 지방산에 관한 내용과 동일하므로, 공통된 내용은 본 명세서의 중복기재를 피하기 위하여 그 기재를 생략한다.
본 발명의 산화마그네슘을 포함하고, 지방산으로 표면 개질된 무기 나노 입자는 시판되는 무기 나노입자와 비교하여 입자 크기가 매우 작으며, 표면이 소수성을 띠게 되어 유기 용매 상에서의 응집 및 침강 현상이 억제되어 우수한 분산성 및 분산 안정성을 가지므로, 생체 이식물 제조에 유용하게 사용될 수 있다.
도 1은 제조예 1에서 사용된 산화마그네슘과 제조예 1에 의해 제조된 수산화마그네슘의 X-선 회절 분석(X-ray Diffraction, XRD) 결과를 나타낸 것이다.
도 2는 올레산과 수산화마그네슘 나노 입자가 결합하는 반응을 나타낸 것으로, 결합 과정에서 올레산의 탄소 사슬이 바깥쪽으로 배향됨으로써 나노 입자의 표면에 소수성을 부여하는 것을 나타낸 것이다.
도 3은 제조예 1에서 제조된 수산화마그네슘의 주사 전자 현미경(Field-emission scanning electron microscopy, FE-SEM) 이미지와 입도 분석(Particle size analysis, PSA) 그래프를 나타낸 것이다.
도 4는 비교예 3의 시판 중인 전계-방출 주사 전자 현미경(Field-emission scanning electron microscopy, FE-SEM) 이미지와 입도 분석(Particle size analysis, PSA) 그래프를 나타낸 것이다.
도 5는 제조예 1, 비교예 2 및 비교예 3에서 제조된 수산화마그네슘의 푸리에-변환 적외선 분광(Fourier-transform infrared(FT-IR) Spectroscopy) 분석 결과를 각각 나타낸 것이다.
도 6은 제조예 1 및 비교예 1에 따라 제조된 입자를 각각 물(water), 에탄올(EtOH), 클로로포름(CF), 테트라하이드로퓨란(THF)에 분산시킨 용액의 사진을 나타낸 것이다.
도 7은 제조예 1 및 비교예 1 내지 비교예 3에서 제조된 입자를 테트라하이드로퓨란 (tetrahydrofuran, THF) 용매에 분산시킨 후와 24 시간 후의 분산 용액의 사진을 나타낸 것이다.
도 8은 제조예 1에서 제조된 표면 개질된 무기 나노 입자를 테트라하이드로퓨란 (tetrahydrofuran, THF) 용매에 분산시킨 후 시간 경과에 따른 입도 분포를 나타낸 것이다.
도 9는 제조예 1에서 제조된 표면 개질된 무기 나노 입자를 클로로포름(chloroform, CF) 용매에 분산시킨 후 시간 경과에 따른 입도 분포를 나타낸 것이다.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.
실시예
본 명세서 전체에 걸쳐, 특정 물질의 농도를 나타내기 위하여 사용되는 "%"는 별도의 언급이 없는 경우, 고체/고체는 (중량/중량) %, 고체/액체는 (중량/부피) %, 그리고 액체/액체는 (부피/부피) %이다.
제조예 1: 표면 개질된 무기 나노 입자의 제조
산화마그네슘 1g 및 증류수 40 mL를 직경 1 mm의 볼 150 g과 함께 볼밀 회전속도 300 rpm에서 24 시간 동안 볼밀링하여 수산화마그네슘 나노 입자를 제조하였다.
산화마그네슘으로부터 수산화마그네슘 나노 입자가 제조되었음을 X-선 회절 분석(X-ray Diffraction, XRD)을 통하여 확인할 수 있었다(도 1).
상기 제조된 수산화 나노입자의 표면 개질을 위하여, 상기 제조된 수산화 나노입자 0.5 g을 에탄올 100 mL에 분산시킨 후, 올레산 (oleic acid, 65.0% 내지88.0%) 5 mL를 투입하여 75℃에서 3 시간 동안 교반하였다. 반응 이후 침전물을 에탄올로 세척 및 건조하여 소수성으로 표면 개질된 수산화마그네슘 나노 입자를 제조하였다. 이 때 상기 올레산 말단에 있는 COOH 또는 COO-는 입자 표면에 노출되어 있는 하이드록시기(-OH)와 결합하고, 이에 따라 올레산의 탄소 사슬이 바깥쪽으로 배향됨으로써 수산화마그네슘 입자에 소수성을 부여할 수 있다(도 2).
제조된 수산화마그네슘 나노 입자의 크기를 전계-방출 주사 전자 현미경(Field-emission scanning electron microscopy, FE-SEM) 이미지와 입도 분석기를 사용한 입도 분석(Particle size analysis, PSA)을 통하여 확인하였다. 나노 입자의 평균 직경이 115.0 nm 인 것을 확인할 수 있었다(도 3).
비교예 1: 무기 나노 입자의 제조
올레산을 이용한 표면 개질 공정을 실시하지 않은 것을 제외하고는 제조예 1과 동일한 방법으로 수산화마그네슘 나노 입자를 제조하였다.
비교예 2: 시판 중인 수산화마그네슘을 사용한 표면 개질된 무기 입자의 제조
시판 중인 수산화마그네슘을 사용한 것을 제외하고는 제조예 1과 동일한 방법으로 올레산을 이용한 표면 개질 공정을 실시하여 표면 개질된 수산화마그네슘 입자를 제조하였다.
비교예 3: 시판 중인 수산화 마그네슘 입자
상기 비교예 2에서 사용된 것과 동일한 시판 중인 수산화마그네슘 입자를 비교예 3으로 사용하였다.
시판 중인 수산화마그네슘 입자의 크기를 주사 전자 현미경(Field-emission scanning electron microscopy, FE-SEM) 이미지와 입도 분석기를 사용한 입도 분석(Particle size analysis, PSA)을 통하여 확인하였다.
결과는 도 4에 나타내었다.
도 4에 나타낸 바와 같이, 비교예 3의 입자의 평균 직경은 3995 nm으로, 제조예 1의 나노입자와 비교하여 입자 크기가 매우 큰 것을 확인할 수 있었다.
실시예 1: 제조예 1, 비교예 2 및 비교예 3의 수산화마그네슘 입자의 푸리에-변환 적외선 분광(Fourier-transform infrared(FT-IR) Spectroscopy) 분석
푸리에-변환 적외선 분광계를 사용하여 제조예 1, 비교예 2 및 비교예 3의 입자들의 화학적 결합을 확인하였다.
결과는 도5에 나타내었다.
도 5에 나타낸 바와 같이, 비교예 3에서는 2800 ~ 3000 cm-1에서 아무런 특성 피크를 찾을 수 없으나, 올레산에 의해 표면 개질한 제조예 1 및 비교예2에서는 2800 ~ 3000 cm-1에서 알킬기 (C-H)에 해당하는 특성 피크가 새로 생성되어, 수산화마그네슘 표면에 올레산의 도입이 성공적으로 이루어진 것을 확인할 수 있었다.
실시예 2: 제조예 1 및 비교예 1의 분산성 비교
제조예 및 비교예 1에 따라 제조된 입자를 각각 물(water), 에탄올(Ethanol, EtOH), 클로로포름(Chloroform, CF), 테트라하이드로퓨란(tetrahydrofuran, THF)에 분산시키고 용액의 상태를 관찰하였다. 결과는 도 6에 나타내었다. 비교예 1에 의해 제조된 입자의 경우, 물과 에탄올과는 혼화되어 용액이 뿌옇게 보였으나, 클로로포름과 테트라하이드로퓨란 용매에서는 분산성이 좋지 않아 입자가 침전되고 용액이 맑된 것을 확인할 수 있었다. 반면, 제조예 1에 의해 제조된 입자의 경우, 표면이 소수성으로 개질되어 물과 에탄올에는 혼화되지 않으며, 클로로포름과 테트라하이드로퓨란 용매에 분산성이 향상되어 용액이 뿌옇게 보이는 것을 확인할 수 있었다.
상기 결과로부터, 제조예 1에서와 같이 무기 나노 입자의 표면을 올레산으로 개질함에 의하여 무기 나노 입자의 분산성이 향상됨을 확인할 수 있었다.
실시예 3: 제조예 1 및 비교예 1 내지 3의 분산성 비교
제조예 1 및 비교예 1 내지 3에 따라 제조된 입자를 테트라하이드로퓨란 (tetrahydrofuran, THF) 용매에 분산시키고 24 시간 후 용액의 상태를 관찰하였다. 결과는 도 7에 나타내었다.
테트라하이드로퓨란 용매에 분산시킨 직후에는 모든 용액이 뿌옇게 보였다. 24 시간 경과 후에는 비교예 1 내지 비교예 3의 입자가 분산된 용액에서는 침전이 일어나 맑게 보였고, 제조예 1의 용액은 나노 입자의 분산이 유지되어 뿌옇게 보였다(도 7).
상기 결과로부터, 제조예 1에 따라 제조된 본 발명의 표면 개질된 무기 나노 입자의 분산성이 가장 우수함을 확인할 수 있었다.
실시예 4: 제조예 1의 무기 나노 입자의 시간 경과에 따른 입도 분석
실시예 4-1: 테트라하이드로퓨란(tetrahydrofuran, THF)에 분산 후 입도 분석
제조예 1에 따라 제조된 표면 개질된 무기 나노 입자를 테트라하이드로퓨란(tetrahydrofuran, THF) 용매에 분산시킨 후 1 시간, 2 시간, 3 시간, 6 시간, 및 24 시간 경과 후의 입도 분포를 입도 분석기를 사용한 입도 분석(Particle size analysis, PSA)을 통하여 확인하였다(도 8).
도 8에 나타낸 바와 같이, 24 시간이 경과한 후에도 평균 직경이 115 nm인 나노 입자가 대부분 유지되어 제조예 1의 표면 개질된 무기 나노 입자의 분산성 뿐만 아니라 안정성 역시 우수한 것을 확인할 수 있었다.
실시예 4-2: 클로로포름(chloroform, CF)에 분산 후 입도 분석
제조예 1에 따라 제조된 표면 개질된 무기 나노 입자를 클로로포름(chloroform, CF)에 분산시킨 후 분산 직후, 3 시간 경과 후, 6 시간 경과 후 및 24 시간 경과 후의 입도 분포를 입도 분석기를 사용한 입도 분석(Particle size analysis, PSA)을 통하여 확인하였다(도 9).
도 9에 나타낸 바와 같이, 24 시간이 경과한 후에도 평균 직경이 115 nm인 나노 입자가 대부분 유지되어 제조예 1의 표면 개질된 무기 나노 입자의 분산성 뿐만 아니라 안정성 역시 우수한 것을 확인할 수 있었다.

Claims (12)

  1. 수산화마그네슘을 포함하고, 지방산으로 표면 개질된 무기 나노 입자.
  2. 제1항에 있어서, 상기 지방산은 카프릴산, 카프르산, 라우르산, 미리스트산, 팔미트산, 스테아르산, 아라키드산, 베헨산, 리그노세르산, 세로트산, 미리스톨레산, 팔미톨레산, 사피엔산, 올레산, 엘라이드산, 박센산, 리놀레산, 리노엘라이드산, α-리놀렌산, 아라키돈산, 에이코사펜타엔산, 에루크산, 도코사헥사엔산으로 이루어진 군으로부터 선택되는 1종 이상의 지방산인, 무기 나노 입자.
  3. 제2항에 있어서, 상기 지방산은 올레산인, 무기 나노 입자.
  4. 제1항 내지 제3항 중 어느 한 항에 있어서, 상기 무기 나노 입자는 50 nm 내지 300 nm의 평균 직경을 갖는 것인 무기 나노 입자.
  5. 제1항의 무기 나노 입자로 코팅된 생체 이식물.
  6. 제5항에 있어서, 상기 생체 이식물은 비혈관 스텐트, 혈관 내부 삽입용 스텐트, 수술용 봉합사, 혈관 외벽 지지용 지지체, 조직 재생용 지지체, 바이오 나노 섬유, 하이드로겔 및 바이오 스폰지 중에서 선택되는 심혈관계 재료, 핀, 나사, 막대 및 임플란트 중에서 선택되는 치과 재료, 비뇨기과용 튜브 도관, 기관용 튜브 도관, 혈관 카테터, 풍선 카테터, 소변 카테터, 관상 동맥 혈관 성형술 카테터, 캐뉼라, 및 신경/정형/성형외과용 생체 재료로 이루어진 군에서 선택되는 어느 하나인 것인, 생체 이식물.
  7. 다음 단계를 포함하는 수산화마그네슘을 포함하고, 지방산으로 표면 개질된 무기 나노 입자의 제조방법.
    (a) 유기용매, 물 또는 이들의 혼합용매에 분산시킨 수산화마그네슘 나노 입자에 지방산을 투입하여 교반하는 단계; 및
    (b) 침전물을 세척하여 수산화마그네슘 나노 입자를 수득하는 단계.
  8. 제7항에 있어서, 상기 (a) 단계의 유기용매는 C1 내지 C6의 저급 알코올, 석유 에테르, 헥산, 벤젠, 클로로포름, 메틸렌클로라이드, 에테르, 에틸아세테이트 및 아세톤으로 이루어진 군으로부터 선택되는 1종 이상의 유기용매인, 제조방법.
  9. 제7항에 있어서, 상기 (a) 단계의 나노 입자는 산화마그네슘과 수성 용매를 밀링하는 단계에 의하여 제조되는 것인, 제조방법.
  10. 제7항에 있어서, 상기 (a) 단계는 40℃ 내지 120℃에서 수행되는 것인, 제조방법.
  11. 제7항에 있어서, 상기 (b) 단계의 지방산은 카프릴산, 카프르산, 라우르산, 미리스트산, 팔미트산, 스테아르산, 아라키드산, 베헨산, 리그노세르산, 세로트산, 미리스톨레산, 팔미톨레산, 사피엔산, 올레산, 엘라이드산, 박센산, 리놀레산, 리노엘라이드산, α-리놀렌산, 아라키돈산, 에이코사펜타엔산, 에루크산, 도코사헥사엔산, 이루어진 군으로부터 선택되는 1종 이상의 지방산인, 제조방법.
  12. 제11항에 있어서, 상기 지방산은 올레산인, 제조방법.
PCT/KR2022/018191 2021-11-17 2022-11-17 표면 개질된 무기 나노 입자 및 이의 제조 방법 WO2023090892A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0158948 2021-11-17
KR1020210158948A KR102624211B1 (ko) 2021-11-17 2021-11-17 표면 개질된 무기 나노 입자 및 이의 제조 방법

Publications (1)

Publication Number Publication Date
WO2023090892A1 true WO2023090892A1 (ko) 2023-05-25

Family

ID=86397421

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/018191 WO2023090892A1 (ko) 2021-11-17 2022-11-17 표면 개질된 무기 나노 입자 및 이의 제조 방법

Country Status (2)

Country Link
KR (1) KR102624211B1 (ko)
WO (1) WO2023090892A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110015572A (ko) * 2008-04-25 2011-02-16 쓰리엠 이노베이티브 프로퍼티즈 컴파니 입자의 표면 개질 방법
KR20120002650A (ko) * 2010-07-01 2012-01-09 한국세라믹기술원 표면개질된 수산화마그네슘을 함유한 난연성 폴리에스테르 수지 조성물 및 이의 제조방법
KR20120029130A (ko) * 2010-09-16 2012-03-26 한국과학기술연구원 표면 개질된 금속 입자 및 생분해성 고분자를 포함하는 생체 이식물, 이의 염증 억제용으로서의 용도 및 그 제조 방법
KR20170025560A (ko) * 2015-08-28 2017-03-08 한국과학기술연구원 염기성 입자 및 세포외기질 물질을 포함하는 조직재생용 다공성 생분해성 고분자 지지체 및 이의 제조방법
KR102198945B1 (ko) * 2018-07-16 2021-01-05 차의과학대학교 산학협력단 표면이 개질된 염기성 세라믹 입자 및 생분해성 고분자를 포함하는 생체 이식물 및 이의 제조방법

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100455343B1 (ko) 2001-08-29 2004-11-12 학교법인 인하학원 약물 방출 스텐트용 코팅 조성물 및 이를 사용하여 제조된약물 방출 스텐트
KR101917737B1 (ko) * 2016-10-31 2018-11-12 한국과학기술연구원 유무기 복합 - 다공성 생분해성 고분자 지지체 및 이의 제조방법
CN108706612A (zh) * 2018-07-04 2018-10-26 河南师范大学 一种机械球磨制备纳米氢氧化镁的方法
KR102248030B1 (ko) * 2019-09-06 2021-05-06 차의과학대학교 산학협력단 표면 개질된 무기 나노입자 및 생분해성 고분자를 포함하는 생체이식물, 및 이의 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110015572A (ko) * 2008-04-25 2011-02-16 쓰리엠 이노베이티브 프로퍼티즈 컴파니 입자의 표면 개질 방법
KR20120002650A (ko) * 2010-07-01 2012-01-09 한국세라믹기술원 표면개질된 수산화마그네슘을 함유한 난연성 폴리에스테르 수지 조성물 및 이의 제조방법
KR20120029130A (ko) * 2010-09-16 2012-03-26 한국과학기술연구원 표면 개질된 금속 입자 및 생분해성 고분자를 포함하는 생체 이식물, 이의 염증 억제용으로서의 용도 및 그 제조 방법
KR20170025560A (ko) * 2015-08-28 2017-03-08 한국과학기술연구원 염기성 입자 및 세포외기질 물질을 포함하는 조직재생용 다공성 생분해성 고분자 지지체 및 이의 제조방법
KR102198945B1 (ko) * 2018-07-16 2021-01-05 차의과학대학교 산학협력단 표면이 개질된 염기성 세라믹 입자 및 생분해성 고분자를 포함하는 생체 이식물 및 이의 제조방법

Also Published As

Publication number Publication date
KR20230072333A (ko) 2023-05-24
KR102624211B1 (ko) 2024-01-12

Similar Documents

Publication Publication Date Title
Gautam et al. Gelatin-polycaprolactone-nanohydroxyapatite electrospun nanocomposite scaffold for bone tissue engineering
US11878088B2 (en) Chitosan nanofiber compositions, compositions comprising modified chitosan, and methods of use
DE69837141T2 (de) Polyhydroxyalkanoate für in vivo anwendungen
WO2018080155A2 (ko) 고분자 코팅 기반의 산화질소 전달용 복합체 제작 방법 및 이의 응용
Dhania et al. Scaffolds the backbone of tissue engineering: Advancements in use of polyhydroxyalkanoates (PHA)
CN1418116A (zh) 聚磷腈衍生物
CN111407930B (zh) 一种聚合物仿生涂层及其制备方法
WO2014069728A1 (ko) 카테콜아민을 이용하여 재료의 표면에 일산화질소 함유 코팅막을 형성하는 방법
CN110694117A (zh) 一种完全可降解骨修复材料及其制备方法
KR20220054250A (ko) 생물오손-저항성 코팅 및 이의 제조 및 사용 방법
WO2023090892A1 (ko) 표면 개질된 무기 나노 입자 및 이의 제조 방법
RU2447902C2 (ru) Биологически активная полимерная медицинская композиция (варианты)
Hossain et al. Poly (trimethylene carbonate-co-caprolactone): An emerging drug delivery nanosystem in pharmaceutics
CN109091702A (zh) 用于人体植入材料表面明胶微球载药生物活性涂层的制备方法及产品和应用
CN116059449B (zh) 用于治疗骨缺损的双层可降解骨组织工程支架及制备方法
WO2012060592A9 (ko) 생체 적합성의 향상, 표면 강도의 조절, 독성 및 염증을 억제하는 탄소나노튜브 폴리머 복합체 코팅막 및 그의 제조방법
WO2021045556A1 (ko) 표면 개질된 무기 나노입자 및 생분해성 고분자를 포함하는 생체이식물, 및 이의 제조방법
KR20130009478A (ko) 개질 cnt가 흡착된 인산칼슘 나노입자 및 생분해성 고분자를 포함하는 나노복합체, 및 이의 제조방법
Rodríguez-Contreras et al. PHAs as matrices for drug delivery
Kzar et al. The biomedical potential of polycaprolactone nanofibrous scaffold containing titanium oxide for wound healing applications
Freire Anti-Bacterial Surface Protection for Prostheses
Luciano Polyhydroxyalkanoates based systems: The future of drug delivery and tissue engineering devices
Xue et al. Surface modification and cell behavior of electronic packaging materials PET
CN111188102B (zh) 一种抗肿瘤用的复合电纺组织工程支架材料的制备方法、工程支架材料及其应用
CN115105645B (zh) 一种复合微球、伤口修复敷料的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22896091

Country of ref document: EP

Kind code of ref document: A1