WO2023090646A1 - 파워 모듈을 위한 히트싱크 - Google Patents

파워 모듈을 위한 히트싱크 Download PDF

Info

Publication number
WO2023090646A1
WO2023090646A1 PCT/KR2022/015265 KR2022015265W WO2023090646A1 WO 2023090646 A1 WO2023090646 A1 WO 2023090646A1 KR 2022015265 W KR2022015265 W KR 2022015265W WO 2023090646 A1 WO2023090646 A1 WO 2023090646A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
power module
heat dissipation
cooling water
outlet
Prior art date
Application number
PCT/KR2022/015265
Other languages
English (en)
French (fr)
Inventor
윤상원
편성현
Original Assignee
한양대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220101915A external-priority patent/KR20230071707A/ko
Application filed by 한양대학교 산학협력단 filed Critical 한양대학교 산학협력단
Publication of WO2023090646A1 publication Critical patent/WO2023090646A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • the present invention relates to a heat sink for a power module, and more particularly, to a heat sink for a power module providing improved cooling performance.
  • the power element mounted in the power module increases heat generation, and due to the maximum operating temperature of the power element, the power module can be driven only within a range that does not exceed the corresponding temperature.
  • cooling of the power module is an important factor, and improvement of cooling performance is very important for higher output of the power module.
  • a heat sink used for cooling the power module uses cooling water to increase the cooling effect. Cooling of the power module is achieved by contact between the flowing cooling water and the cooling fins.
  • the present invention is to provide a heat sink for a power module exhibiting more improved cooling performance.
  • an inlet through which cooling water is introduced and an outlet through which the cooling water is discharged are formed, and a body portion having an open top; a first flow path formed in the body and through which the cooling water flows; an upper cap coupled to an upper portion of the body portion and having a power module disposed thereon; and a heat sink for a power module formed on a lower surface of the upper cap and including a heat dissipation pattern inserted into the first flow path.
  • a pressure difference between an inlet through which cooling water is introduced and an outlet through which cooling water is discharged is reduced, and at the same time, cooling performance may be improved.
  • a cooling imbalance between power elements may be resolved by additionally using a passage in which a heat dissipation pattern is not inserted.
  • cooling imbalance between power devices may be resolved by adjusting the number of heat sinks allocated to power devices disposed at different positions.
  • FIG. 1 is a diagram for explaining a heat sink for a power module according to an embodiment of the present invention.
  • FIG. 2 is a diagram for explaining the structure of a heat dissipation fin according to an embodiment of the present invention.
  • FIG. 3 is a diagram for explaining a heat sink for a power module according to another embodiment of the present invention.
  • FIG. 4 is a diagram for explaining a heat sink for a power module according to another embodiment of the present invention.
  • 5 is a diagram showing simulation results for the cooling effect.
  • FIG. 6 is a diagram for explaining a heat sink for a power module according to another embodiment of the present invention.
  • the pressure loss means a pressure difference between an inlet through which cooling water flows in and an outlet through which cooling water is discharged.
  • the pressure loss increases.
  • the required output of the cooling water pump must be very high, so a heat sink capable of reducing the pressure loss is required.
  • the present invention proposes a heat sink capable of reducing pressure loss and simultaneously increasing cooling performance.
  • One embodiment of the present invention reduces pressure loss by using a heat dissipation fin having a through hole. Since flow resistance of the coolant by the radiating fin is reduced by the through hole, pressure loss may be reduced.
  • FIG. 1 is a diagram for explaining a heat sink for a power module according to an embodiment of the present invention
  • FIG. 2 is a diagram for explaining the structure of a heat dissipation fin according to an embodiment of the present invention.
  • a heat sink according to an embodiment of the present invention includes a body portion 110 , a first flow path 121 , an upper cap 130 and a heat dissipation pattern 140 .
  • the body part 110 has a frame shape with a first flow path 121 formed therein and an open top, and has an inlet 111 through which cooling water flows in and an outlet 112 through which cooling water is discharged. Cooling water introduced through the inlet 111 flows along the first flow path 121 and is discharged through the outlet 112 .
  • the upper cap 130 is coupled to an upper portion of the body portion 110, and the upper portion of the body portion 110 is sealed so that cooling water does not flow out of the body portion 110.
  • the upper cap 130 has a panel shape, a power module is disposed on the upper surface of the upper cap 130, and a heat dissipation pattern inserted into the first flow path 121 is formed on the lower surface of the upper cap 130. Thermal grease, which improves the cooling performance of the power module, may be applied to the upper surface of the upper cap 130 .
  • the heat generated by the power module is transferred to the heat dissipation pattern, and the heat from the heat dissipation pattern is transferred to the cooling water flowing along the first flow path 121, thereby cooling the power module.
  • the heat dissipation pattern may include a heat dissipation fin 140 having a through hole 141 formed therein.
  • Through-holes 141 through which cooling water passes are formed in the plurality of radiating fins 140 protruding from the lower surface of the upper cap 130, and the area of resistance to the cooling water decreases by the area of the through-holes 141, thereby reducing pressure loss. This can be reduced and the cooling performance can be improved.
  • the through hole 141 may be formed parallel to the direction in which the cooling water flows.
  • the inlet through which coolant flows in through hole 141 faces the inlet 111 of the body, and the outlet through which coolant is discharged from through-hole 141 faces the outlet 112 of body. (141) can be formed.
  • the heat dissipation fin 140 may be formed to contact the body portion 110 while being inserted into the first flow path 121 .
  • the length of the radiating fin 140 may be designed so that the radiating fin 140 contacts the bottom surface of the first flow path 121 in a state where the upper cap 130 is coupled to the body 110. .
  • the radiating fins 140 can easily contact the bottom surface of the first flow passage 121, the bottom surface to which the radiating fins 140 are in contact is closer to the upper cap 130 than the bottom surface to which the radiating fins 140 do not contact. can be formed close to each other.
  • the body portion 110 is also cooled by the cooling water, and cooling performance may be further improved by contacting the cooling fin 140 with the cooled body portion 110 .
  • the shape of the heat dissipation fin 140 is not limited to the rectangular parallelepiped shape shown in FIG. 2 and may have various shapes capable of reducing the flow resistance of the cooling water.
  • a plurality of protruding patterns may be formed on the heat dissipation fin 140 in order to further enhance the cooling performance of the heat dissipation fin 140 having through holes.
  • the protruding pattern increases the surface area of the heat dissipation fin in contact with the cooling water, so that cooling performance can be further improved.
  • FIG. 3 is a diagram for explaining a heat sink for a power module according to another embodiment of the present invention.
  • the heat sink may further include a second flow path 122 as well as a first flow path 121 .
  • the second flow path 122 is also formed in the body part 110 , and the cooling water flows not only along the first flow path 121 but also along the second flow path 122 by the second flow path 122 .
  • the second flow path 122 diverges from the first flow path 121 at a first point of the first flow path 121 and joins the first flow path 121 at a second point of the first flow path 121 .
  • the first point is a point closer to the inlet 111 than the outlet 112, and the second point may be variously determined according to embodiments.
  • the second point may be determined according to the position of the power module 300 disposed on the upper cap 130, and is a point closer to the outlet 112 than the inlet 111 or closer to the inlet 111 than the outlet 112. may be a branch.
  • the second flow path 122 is used to support cooling of the power device 302 disposed relatively close to the outlet 112 among the power devices 301 and 302 included in the power module 300, and the second flow path ( 122), the cooling imbalance between the power elements can be resolved. Since a cooling imbalance among power devices deteriorates the performance of a specific power device, it is important that the cooling performance of the power devices is evenly exhibited.
  • the cooling water flowing through the first flow path 121 is heated by the power element 301 disposed close to the inlet 111, and the temperature of the cooling water flowing through the first flow path 121 is Since it rises as it gets closer to the outlet 112, the cooling effect of the power element 302 disposed close to the outlet 112 may decrease.
  • the second flow path 122 The cooling water that has passed has a relatively lower temperature than that of the cooling water that has passed through the first flow path 121 . Accordingly, the cooling effect of the power element 302 disposed close to the outlet 112 may be maintained by the cooling water passing through the second flow path 122 .
  • FIG. 4 is a diagram for explaining a heat sink for a power module according to another embodiment of the present invention
  • FIG. 5 is a diagram showing a simulation result for a cooling effect.
  • a heat dissipation pattern may include a plurality of fin-type heat dissipation plates 441 and 442 .
  • the heat sinks 441 and 442 may be disposed parallel to the direction 400 in which the cooling water flows, and may have one end facing the outlet 112 and the other end facing the inlet 111 .
  • the lengths of the heat sinks 441 and 442 may be different from each other.
  • the longitudinal direction of the heat sink corresponds to the direction 400 in which the cooling water flows.
  • the heat dissipation plates 441 and 442 may be formed on the upper cap 130 in a pattern in which the length becomes shorter from the center to the outer portion.
  • the relatively short heat sink 441 may be disposed close to the power element 402 located close to the outlet 112 .
  • one end of the plurality of heat dissipation plates is spaced apart from one end of the body portion 110 where the outlet 112 is formed by the same distance, and the first heat dissipation plate 441 shorter than the length of the second heat dissipation plate 442 is The other end of the first heat sink 441 may be disposed closer to the outlet 112 than the other end of the second heat sink 442 .
  • the number of heat sinks allocated to the power device 402 disposed close to the outlet 112 may be greater than that to the power device 401 disposed close to the inlet 111 .
  • Cooling efficiency may be improved by allocating the number of heat sinks.
  • FIG. 5 is a diagram showing the temperature of a power device when cooling proceeds in a state in which six power devices are disposed on an upper cap.
  • FIG. 5 (a) shows the result when a heat sink having the same length is used.
  • (b) shows the result when using the heat sink according to an embodiment of the present invention.
  • the temperature deviation of the six power elements is relatively small, and therefore, according to one embodiment of the present invention, the cooling imbalance between the power elements is eliminated. Able to know.
  • FIG. 6 is a diagram for explaining a heat sink for a power module according to another embodiment of the present invention.
  • a heat dissipation pattern includes a screw threaded heat dissipation fin 640 . That is, one embodiment of the present invention uses a screw type heat dissipation fin, and the upper cap 130 may include a coupling hole 631 to which the heat dissipation fin 640 is coupled.
  • FIG. 6(a) shows the upper cap 130 to which the radiating fins 640 are coupled
  • FIG. 6(b) shows the lower surface of the upper cap 130 to which the radiating fins 640 are not coupled.
  • the cooling effect can be increased.
  • the heat radiation fin 640 can be easily coupled to the coupling hole 631 of the upper cap 130 as if a screw is fixed, the manufacturing process of forming the heat radiation fin on the upper cap This simplification can increase the efficiency of the manufacturing process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

보다 향상된 냉각 성능을 제공하는 파워 모듈을 위한 히트싱크가 개시된다. 개시된 파워 모듈을 위한 히트싱크는 냉각수가 유입되는 유입구와 상기 냉각수가 배출되는 배출구가 형성되며, 상부가 개방된 바디부; 상기 바디부에 형성되며, 상기 냉각수가 흐르는 제1유로; 상기 바디부의 상부에 결합되며, 상부면에 파워 모듈이 배치되는 상부캡; 및 상기 상부캡의 하부면에 형성되며, 상기 제1유로에 삽입되는 방열 패턴을 포함한다.

Description

파워 모듈을 위한 히트싱크
본 발명은 파워 모듈을 위한 히트싱크에 관한 것으로서, 더욱 상세하게는 보다 향상된 냉각 성능을 제공하는 파워 모듈을 위한 히트싱크에 관한 것이다.
최근 친환경과 관련된 문제가 대두하면서 많은 운송수단에서 전기 동력원을 사용한다. 이 때문에 고전력 배터리의 발전과 수요 증가와 함께, 고전력용 파워 모듈에 대한 수요도 증가하고 있다.
그리고 파워 모듈의 고전력화로 인해, 파워 모듈 내에 탑재된 파워 소자의 발열이 증가하게 되고, 파워 소자의 최대 동작 가능 온도로 인해, 해당 온도를 넘지 않는 범위 내에서만 파워 모듈의 구동이 가능하다. 이렇듯 파워 소자의 발열로 인해 파워 모듈의 출력 범위가 제한되기 때문에, 파워 모듈에 대한 냉각은 중요한 요소이며, 파워 모듈의 더 높은 출력을 위해서는 냉각 성능의 향상이 매우 중요하다.
파워 모듈의 냉각을 위해 사용되는 히트싱크는, 냉각 효과를 높이기 위해 냉각수를 이용한다. 흐르는 냉각수와 냉각핀의 접촉에 의해, 파워 모듈의 냉각이 이루어진다.
본 발명은 보다 향상된 냉각 성능이 발휘되는 파워 모듈을 위한 히트싱크를 제공하기 위한 것이다.
상기한 목적을 달성하기 위한 본 발명의 일 실시예에 따르면, 냉각수가 유입되는 유입구와 상기 냉각수가 배출되는 배출구가 형성되며, 상부가 개방된 바디부; 상기 바디부에 형성되며, 상기 냉각수가 흐르는 제1유로; 상기 바디부의 상부에 결합되며, 상부면에 파워 모듈이 배치되는 상부캡; 및 상기 상부캡의 하부면에 형성되며, 상기 제1유로에 삽입되는 방열 패턴을 포함하는 파워 모듈을 위한 히트싱크 가 제공된다.
본 발명의 일실시예에 따르면, 냉각수가 유입되는 유입구와 냉각수가 배출되는 배출구에서의 압력 차이가 감소하고, 이와 동시에, 냉각 성능이 향상될 수 있다.
또한 본 발명의 일실시예에 따르면, 방열 패턴이 삽입되지 않는 유로를 추가로 이용함으로써, 파워 소자 사이의 냉각 불균형이 해소될 수 있다.
또한 본 발명의 일실시예에 따르면, 서로 다른 위치에 배치되는 파워 소자에 할당되는 방열판의 개수를 조절함으로써, 파워 소자 사이의 냉각 불균형이 해소될 수 있다.
또한 본 발명의 일실시예에 따르면, 스크류 타입의 방열핀을 이용함으로서, 냉각 성능이 향상되고, 히트 싱크의 제조 공정 효율이 향상될 수 있다.
도 1은 본 발명의 일실시예에 따른 파워 모듈을 위한 히트싱크를 설명하기 위한 도면이다.
도 2는 본 발명의 일실시예에 따른 방열핀의 구조를 설명하기 위한 도면이다.
도 3은 본 발명의 다른 실시예에 따른 파워 모듈을 위한 히트싱크를 설명하기 위한 도면이다.
도 4는 본 발명의 또 다른 실시예에 따른 파워 모듈을 위한 히트싱크를 설명하기 위한 도면이다.
도 5는 냉각 효과에 대한 시뮬레이션 결과를 도시하는 도면이다.
도 6은 본 발명의 또 다른 실시예에 따른 파워 모듈을 위한 히트싱크를 설명하기 위한 도면이다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다.
냉각수를 이용하는 히트싱크의 냉각 성능을 평가할 때, 중요한 두가지 요소는 파워 모듈에 탑재된 파워 소자의 온도와, 압력 손실이다. 여기서 압력 손실은 냉각수가 유입되는 유입구와 냉각수가 배출되는 배출구에서의 압력 차이를 의미한다. 파워 소자의 온도를 낮추기 위해 냉각수의 유량을 증가시키면, 압력 손실이 커지게 된다. 압력 손실이 커지면 요구되는 냉각수 펌프의 출력이 매우 높아져야 하기 때문에, 압력 손실을 줄일 수 있는 히트 싱크가 필요하다.
이에 본 발명은 압력 손실을 낮추고, 이와 동시에, 냉각 성능을 높일 수 있는 히트싱크를 제안한다. 본 발명의 일실시예는 관통홀이 형성된 방열핀을 이용해 압력 손실을 줄인다. 관통홀에 의해, 방열핀에 의한 냉각수의 흐름 저항이 감소하므로 압력 손실이 낮아질 수 있다.
이하에서, 본 발명에 따른 실시예들을 첨부된 도면을 참조하여 상세하게 설명한다.
도 1은 본 발명의 일실시예에 따른 파워 모듈을 위한 히트싱크를 설명하기 위한 도면이며, 도 2는 본 발명의 일실시예에 따른 방열핀의 구조를 설명하기 위한 도면이다.
도 1 및 도 2를 참조하면 본 발명의 일실시예에 따른 히트싱크는 바디부(110), 제1유로(121), 상부캡(130) 및 방열 패턴(140)을 포함한다.
바디부(110)는 내부에 제1유로(121)가 형성되고 상부가 개방된 프레임 형상으로서, 냉각수가 유입되는 유입구(111)와, 냉각수가 배출되는 배출구(112)가 형성된다. 유입구(111)를 통해 유입된 냉각수는 제1유로(121)를 따라 흘러, 배출구(112)로 배출된다.
상부캡(130)은 바디부(110)의 상부에 결합되며, 냉각수가 바디부(110)의 외부로 유출되지 않도록 바디부(110)의 상부는 밀봉된다. 상부캡(130)은 패널 형상으로서, 상부캡(130)의 상부면에는 파워 모듈이 배치되며, 상부캡(130)의 하부면에는 제1유로(121)에 삽입되는 방열 패턴이 형성된다. 상부캡(130)의 상부면에는, 파워 모듈의 냉각 성능을 높여주는 써멀 그리스(thermal grease)가 도포될 수 있다.
파워 모듈에서 생성된 열은 방열 패턴으로 전달되고, 방열 패턴의 열이 제1유로(121)를 따라 흐르는 냉각수로 전달되면서, 파워 모듈에 대한 냉각이 이루어진다.
방열 패턴은 일실시예로서, 관통홀(141)이 형성된 방열핀(140)을 포함할 수 있다. 상부캡(130)의 하부면으로부터 돌출되는 복수의 방열핀(140)에는 냉각수가 통과하는 관통홀(141)이 형성되며, 관통홀(141)의 면적만큼 냉각수에 대한 저항 면적이 감소함으로써, 압력 손실이 감소하고 냉각 성능이 향상될 수 있다.
냉각수에 대한 저항 면적을 줄이기 위해, 관통홀(141)은 냉각수가 흐르는 방향과 평행하도록 형성될 수 있다. 다시 말해 관통홀(141)에서 냉각수가 유입되는 유입구는, 바디부의 유입구(111)와 마주보고, 관통홀(141)에서 냉각수가 배출되는 배출구는, 바디부의 배출구(112)와 마주보도록, 관통홀(141)이 형성될 수 있다.
또한 방열핀(140)은, 제1유로(121)에 삽입된 상태에서, 바디부(110)에 접촉하도록 형성될 수 있다. 다시 말해, 방열핀(140)의 길이는, 상부캡(130)이 바디부(110)와 결합된 상태에서, 방열핀(140)이 제1유로(121)의 바닥면에 접촉하도록, 설계될 수 있다. 그리고 방열핀(140)이 용이하게 제1유로(121)의 바닥면에 접촉할 수 있도록, 방열핀(140)이 접촉되는 바닥면은, 방열핀(140)이 접촉되지 않는 바닥면보다 상부캡(130)에 가깝도록 형성될 수 있다. 냉각수에 의해 바디부(110) 역시 냉각되며, 방열핀(140)이 냉각된 바디부(110)와 접촉함으로써, 냉각 성능이 더욱 향상될 수 있다.
방열핀(140)의 형상은, 도 2에 도시된 직육면체 형상에 한정되지 않으며, 냉각수의 흐름 저항을 감소시킬 수 있는 다양한 형상일 수 있다.
한편, 본 발명의 일실시예에 따르면, 관통홀이 형성된 방열핀(140)의 냉각 성능을 더욱 높이기 위해, 방열핀(140)에 복수의 돌출 패턴이 형성될 수 있다. 돌출 패턴에 의해 냉각수와 접촉하는 방열핀의 표면적이 증가하여, 냉각 성능이 더욱 향상될 수 있다.
도 3은 본 발명의 다른 실시예에 따른 파워 모듈을 위한 히트싱크를 설명하기 위한 도면이다.
도 3을 참조하면, 본 발명의 일실시예에 따른 히트싱크는, 제1유로(121) 뿐만 아니라 제2유로(122)를 더 포함할 수 있다. 제2유로(122) 역시 바디부(110)에 형성되며, 제2유로(122)에 의해 냉각수는 제1유로(121) 뿐만 아니라 제2유로(122)를 따라서도 흐르게 된다. 제2유로(122)는, 제1유로(121)의 제1지점에서 제1유로(121)로부터 분기되어, 제1유로(121)의 제2지점에서 제1유로(121)로 합류한다.
이 때, 제1지점은 배출구(112)보다 유입구(111)에 가까운 지점이며, 제2지점은 실시예에 따라서 다양하게 결정될 수 있다. 제2지점은 상부캡(130)에 배치된 파워 모듈(300)의 위치에 따라서 결정될 수 있으며, 유입구(111)보다 배출구(112)에 가까운 지점이거나, 배출구(112)보다 유입구(111)에 가까운 지점일 수 있다.
제2유로(122)는 파워 모듈(300)에 포함된 파워 소자(301, 302) 중에서 상대적으로 배출구(112)에 가까이 배치된 파워 소자(302)의 냉각을 지원하는데 이용되며, 제2유로(122)에 의해, 파워 소자 사이의 냉각 불균형이 해소될 수 있다. 파워 소자 사이의 냉각 불균형은 특정 파워 소자의 성능을 열화시키므로, 파워 소자에 대한 냉각 성능이 고르게 발휘되는 것이 중요하다.
만일 제2유로(122)가 없다면, 유입구(111)에 가까이 배치된 파워 소자(301)에 의해 제1유로(121)를 흐르는 냉각수가 가열되어, 제1유로(121)를 흐르는 냉각수의 온도는 배출구(112)에 가까워질수록 상승하므로, 배출구(112)에 가까이 배치된 파워 소자(302)에 대한 냉각 효과가 떨어질 수 있다.
하지만 방열 패턴은 제2유로(122)에는 삽입되지 않고 제1유로(121)에만 삽입되며, 제2유로(122)를 흐르는 냉각수는 방열 패턴에 의해 가열되지 않기 때문에, 제2유로(122)를 통과한 냉각수는 제1유로(121)를 통과한 냉각수보다 상대적으로 온도가 낮다. 따라서 제2유로(122)를 통과한 냉각수에 의해 배출구(112)에 가까이 배치된 파워 소자(302)에 대한 냉각 효과가 유지될 수 있다.
도 4는 본 발명의 또 다른 실시예에 따른 파워 모듈을 위한 히트싱크를 설명하기 위한 도면이며, 도 5는 냉각 효과에 대한 시뮬레이션 결과를 도시하는 도면이다.
도 4를 참조하면, 본 발명의 일실시예에 따른 방열 패턴은, 핀(fin) 타입의 복수의 방열판(441, 442)을 포함할 수 있다. 방열판(441, 442)은 냉각수가 흐르는 방향(400)에 평행하도록 배치되고, 일단이 배출구(112)를 향하고 타단이 유입구(111)를 향하도록 형성될 수 있다. 이 때, 파워 모듈에 포함된 파워 소자 사이의 냉각 불균형 해소를 위해, 방열판(441, 442)의 길이는 서로 다를 수 있다. 여기서, 방열판의 길이 방향은, 냉각수가 흐르는 방향(400)에 대응되는 방향이다.
방열판(441, 442)은 중앙에서부터 외곽으로 갈수록 길이가 짧아지는 패턴으로 상부캡(130)에 형성될 수 있다. 그리고 상대적으로 짧은 방열판(441)은, 배출구(112)에 가까이 위치하는 파워 소자(402)에 근접하도록 배치될 수 있다. 다시 말해, 복수의 방열판의 일단은 배출구(112)가 형성된 바디부(110)의 일단으로부터 동일한 거리만큼 이격되어 위치하며, 제2방열판(442)의 길이보다 짧은 제1방열판(441)은, 제1방열판(441)의 타단이 제2방열판(442)의 타단보다, 배출구(112)에 가깝도록 배치될 수 있다. 이 경우, 유입구(111)에 가까이 배치된 파워 소자(401)보다 배출구(112)에 가까이 배치된 파워 소자(402)에 할당된 방열판의 개수가 더 많아질 수 있다.
전술된 바와 같이, 제1유로(121)를 흐르는 냉각수의 온도는 배출구(112)에 가까워질수로 상승하여, 배출구(112)에 가까이 배치된 파워 소자에 대한 냉각 효율이 떨어질 수 밖에 없는데, 보다 많은 방열판의 개수가 할당됨으로써 냉각 효율이 향상될 수 있다.
도 5는 상부캡에 6개의 파워 소자가 배치된 상태에서 냉각이 진행된 경우의 파워 소자의 온도를 도시하는 도면으로서, 도 5(a)는 동일한 길이의 방열판을 이용한 경우의 결과를 나타내며, 도 5(b)는 본 발명의 일실시예에 따른 방열판을 이용한 경우의 결과를 나타낸다.
도 5에 도시된 바와 같이, 본 발명의 일실시예에 의할 경우, 6개의 파워 소자의 온도 편차가 상대적으로 적으며 따라서, 본 발명의 일실시예에 따르면 파워 소자 사이의 냉각 불균형이 해소됨을 알 수 있다.
도 6은 본 발명의 또 다른 실시예에 따른 파워 모듈을 위한 히트싱크를 설명하기 위한 도면이다.
도 6을 참조하면, 본 발명의 일실시예에 따른 방열 패턴은 나사산이 형성된 방열핀(640)을 포함한다. 즉 본 발명의 일실시예는 나사(screw) 타입의 방열핀을 이용하며, 상부캡(130)은 방열핀(640)이 결합되는 결합홀(631)을 포함할 수 있다. 도 6(a)는 방열핀(640)이 결합된 상부캡(130)을 도시하며, 도 6(b)는 방열핀(640)이 결합되지 않은 상부캡(130)의 하부면을 도시하는 도면이다.
본 발명의 일실시예에 따르면, 방열핀(640)의 표면에 형성된 나사산에 의해, 방열핀(640)의 표면적이 증가하므로, 냉각 효과가 증가할 수 있다.
또한 본 발명의 일실시예에 따르면, 나사가 고정되는 것과 같이, 용이하게 방열핀(640)이 상부캡(130)의 결합홀(631)에 결합될 수 있으므로, 방열핀을 상부캡에 형성하는 제조 공정이 단순화되어 제조 공정 효율이 높아질 수 있다.
이상과 같이 본 발명에서는 구체적인 구성 요소 등과 같은 특정 사항들과 한정된 실시예 및 도면에 의해 설명되었으나 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상적인 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다. 따라서, 본 발명의 사상은 설명된 실시예에 국한되어 정해져서는 아니되며, 후술하는 특허청구범위뿐 아니라 이 특허청구범위와 균등하거나 등가적 변형이 있는 모든 것들은 본 발명 사상의 범주에 속한다고 할 것이다.

Claims (5)

  1. 냉각수가 유입되는 유입구와 상기 냉각수가 배출되는 배출구가 형성되며, 상부가 개방된 바디부;
    상기 바디부에 형성되며, 상기 냉각수가 흐르는 제1유로;
    상기 바디부의 상부에 결합되며, 상부면에 파워 모듈이 배치되는 상부캡; 및
    상기 상부캡의 하부면에 형성되며, 상기 제1유로에 삽입되는 방열 패턴
    을 포함하는 파워 모듈을 위한 히트싱크.
  2. 제 1항에 있어서,
    상기 방열 패턴은
    상기 냉각수가 통과하는 관통홀이 형성된 방열핀을 포함하며,
    상기 방열핀은
    상기 제1유로에 삽입된 상태에서, 상기 제1유로의 바닥면에 접촉하는
    파워 모듈을 위한 히트싱크.
  3. 제 1항에 있어서,
    상기 제1유로의 제1지점에서 상기 제1유로로부터 분기되어, 상기 제1유로의 제2지점에서 상기 제1유로로 합류하는 제2유로를 더 포함하며,
    상기 제1지점은 상기 배출구보다 상기 유입구에 가까운 지점인
    파워 모듈을 위한 히트싱크.
  4. 제 1항에 있어서,
    상기 방열 패턴은
    상기 냉각수가 흐르는 방향에 평행하도록 배치되고, 일단이 상기 배출구를 향하고 타단이 상기 유입구를 향하는 복수의 방열판을 포함하며,
    상기 복수의 방열판 중 제1방열판의 길이는 제2방열판의 길이보다 짧으며,
    상기 복수의 방열판의 일단은 상기 배출구가 형성된 상기 바디부의 일단으로부터 동일한 거리만큼 이격되어 위치하며,
    상기 제1방열판은, 상기 제1방열판의 타단이 상기 제2방열판의 타단보다, 상기 배출구에 가깝도록 배치되는
    파워 모듈을 위한 히트싱크.
  5. 제 1항에 있어서,
    상기 방열 패턴은, 나사산이 형성된 방열핀을 포함하며,
    상기 상부캡은, 상기 방열핀이 결합되는 결합홀을 포함하는
    파워 모듈을 위한 히트싱크.
PCT/KR2022/015265 2021-11-16 2022-10-11 파워 모듈을 위한 히트싱크 WO2023090646A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20210157704 2021-11-16
KR10-2021-0157704 2021-11-16
KR10-2022-0101915 2022-08-16
KR1020220101915A KR20230071707A (ko) 2021-11-16 2022-08-16 파워 모듈을 위한 히트싱크

Publications (1)

Publication Number Publication Date
WO2023090646A1 true WO2023090646A1 (ko) 2023-05-25

Family

ID=86397264

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/015265 WO2023090646A1 (ko) 2021-11-16 2022-10-11 파워 모듈을 위한 히트싱크

Country Status (1)

Country Link
WO (1) WO2023090646A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101132409B1 (ko) * 2011-05-30 2012-04-03 (주)휴엔텍 레이저 기기용 냉각장치
KR20130131603A (ko) * 2012-05-24 2013-12-04 현대모비스 주식회사 냉각유로를 공유하는 인휠시스템용 파워모듈
KR20140085011A (ko) * 2012-12-27 2014-07-07 현대모비스 주식회사 공냉식 냉각장치
KR20180094700A (ko) * 2017-02-16 2018-08-24 엘지전자 주식회사 히트싱크를 구비하는 파워 모듈
KR20210085730A (ko) * 2019-12-31 2021-07-08 고려대학교 산학협력단 수냉식 히트싱크

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101132409B1 (ko) * 2011-05-30 2012-04-03 (주)휴엔텍 레이저 기기용 냉각장치
KR20130131603A (ko) * 2012-05-24 2013-12-04 현대모비스 주식회사 냉각유로를 공유하는 인휠시스템용 파워모듈
KR20140085011A (ko) * 2012-12-27 2014-07-07 현대모비스 주식회사 공냉식 냉각장치
KR20180094700A (ko) * 2017-02-16 2018-08-24 엘지전자 주식회사 히트싱크를 구비하는 파워 모듈
KR20210085730A (ko) * 2019-12-31 2021-07-08 고려대학교 산학협력단 수냉식 히트싱크

Similar Documents

Publication Publication Date Title
WO2021080217A1 (en) High performance uniform temperature cold plate
US20230086448A1 (en) Liquid cooling plate suitable for liquid cooling heat dissipation of electronic device, and heat dissipation unit
WO2015130057A1 (ko) 전지모듈
WO2011130944A1 (zh) 散热装置及含其的调速器
WO2019112288A1 (ko) 열변환장치
WO2013103254A1 (ko) 배터리 모듈
WO2018012721A1 (ko) 배터리 모듈
WO2020060048A1 (ko) 전지 모듈
WO2023090646A1 (ko) 파워 모듈을 위한 히트싱크
CN117580246A (zh) 一种储能变流器
WO2017200171A1 (ko) 디스플레이용 냉각기 및 이를 적용한 디스플레이 장치
WO2022211201A1 (en) Pulsating heat pipe-based battery cooling module and battery unit including the same
WO2021235748A1 (ko) 방열판
CN211128733U (zh) 散热装置及用户驻地设备
WO2014104832A1 (ko) 변압기용 방열기
WO2024106641A1 (ko) 전기차 급속충전 전원장치용 전력반도체 방열판 모듈
KR20230071707A (ko) 파워 모듈을 위한 히트싱크
CN113260237B (zh) 一种光模块散热系统、光模块
CN221427845U (zh) 电池包壳体及电池包
EP4369879A1 (en) Heat exchange structure of power electronic apparatus, heat dissipation air passage and power electronic apparatus
CN210840488U (zh) 一种散热装置
CN221728345U (zh) 一种交换机外壳
WO2011037412A2 (ko) 전자부품용 냉각장치
WO2017116085A1 (ko) 방열 장치
WO2020159122A1 (ko) 피티씨 히터

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22895854

Country of ref document: EP

Kind code of ref document: A1