WO2023090605A1 - 배터리 관리 장치 및 배터리 제어 방법 - Google Patents

배터리 관리 장치 및 배터리 제어 방법 Download PDF

Info

Publication number
WO2023090605A1
WO2023090605A1 PCT/KR2022/013597 KR2022013597W WO2023090605A1 WO 2023090605 A1 WO2023090605 A1 WO 2023090605A1 KR 2022013597 W KR2022013597 W KR 2022013597W WO 2023090605 A1 WO2023090605 A1 WO 2023090605A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
procedure
standby mode
switching
state
Prior art date
Application number
PCT/KR2022/013597
Other languages
English (en)
French (fr)
Inventor
남호철
김동현
이석진
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to EP22895814.6A priority Critical patent/EP4253138A4/en
Priority to CN202280008373.6A priority patent/CN116648370A/zh
Priority to US18/269,138 priority patent/US20240039059A1/en
Priority to JP2023536175A priority patent/JP7570762B2/ja
Publication of WO2023090605A1 publication Critical patent/WO2023090605A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/44Arrangements for executing specific programs
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/005Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting using a power saving mode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a battery management device and a battery control method, and more particularly, to a battery management device capable of quickly responding to a request from an upper system and a battery control method using the device.
  • a secondary battery which is a battery that can be recharged after use and reused, is manufactured as a battery module or battery pack made by connecting a plurality of battery cells in series according to the output capacity required by the device, and is used as a power source for various devices.
  • a battery is used in various fields ranging from electric bicycles, electric vehicles, and energy storage systems (ESS) as well as small high-tech electronic devices such as smart phones.
  • ESS energy storage systems
  • a battery module or battery pack is a structure in which a plurality of battery cells are combined, and in the case of overvoltage, overcurrent, or overheating in some battery cells, problems occur in the safety and operational efficiency of the battery module or battery pack. means are essential. Accordingly, a battery management system (BMS) that measures voltage values of each battery cell and monitors and controls voltage states of the battery cells based on the measured values is installed in the battery module or battery pack.
  • BMS battery management system
  • the BMS divides and manages the battery state into a normal state, a low power state, and a shutdown state, and transitions and manages the battery state according to a request from an upper system (eg, a vehicle).
  • an upper system eg, a vehicle
  • An object of the present invention to solve the above problems is to provide a battery system management device.
  • Another object of the present invention to solve the above problems is to provide a battery control method.
  • Battery system management device for achieving the above object is a processor; and a memory that stores at least one command executed by the processor, wherein the at least one command sets the state of the battery pack to low power when there is no request related to the use of the battery system from an upper system for a predetermined period of time.
  • a command to perform a procedure for switching to a standby mode in the state a command for escaping the procedure for switching to the standby mode in response to a request for activating a battery system when a battery system activation request is received from the upper system while performing a plurality of operations included in the procedure for switching to the standby mode; and a command for transitioning the state of the battery pack to a normal state.
  • the procedure of switching to the standby mode may include a procedure of checking whether the battery system activation request has occurred from the upper system whenever each operation included in the procedure of switching to the standby mode is performed.
  • the battery system activation request is generated while the corresponding operation is being performed for an operation that takes a time equal to or greater than a threshold value among a plurality of operations included in the procedure for switching to the standby mode. It is characterized in that it checks whether it has been done multiple times.
  • the command for escaping the procedure for switching to the standby mode includes a command for performing a rollback operation corresponding to one or more previously performed operations in the reverse order of the one or more previously performed operations during the procedure for switching to the standby mode.
  • the upper system may be a vehicle body.
  • a first operation included in the procedure of switching to the standby mode is an operation of terminating one device included in the battery management device or controlling it to a sleep or off state, and a rollback operation for the first operation is to turn the device into a sleep or off state. It may be an operation that initiates operation or controls in a normal or on state.
  • a battery control method is a battery control method performed by a battery management system (BMS) that manages a battery system, and when there is no request related to the use of the battery system from an upper system for a certain period of time, the battery control method performing a procedure for converting a state of a battery pack into a standby mode, which is a low power state; escaping the procedure of switching to the standby mode in response to a request for activating the battery system when a battery system activation request is received from the upper system while performing a plurality of operations included in the procedure of switching to the standby mode; and transitioning the state of the battery pack to a normal state.
  • BMS battery management system
  • the process of switching to the standby mode may include checking whether the battery system activation request has occurred from the upper system whenever each operation included in the process of switching to the standby mode is performed.
  • the battery system activation request is generated while the corresponding operation is being performed for an operation that takes a time equal to or greater than a threshold value among a plurality of operations included in the procedure for switching to the standby mode. It may include a step of checking whether or not it has been done multiple times.
  • the step of escaping from the procedure of switching to the standby mode includes performing a rollback operation corresponding to one or more pre-performed operations in the reverse order of the one or more previously performed operations during the procedure of switching to the standby mode. can do.
  • the upper system may be a vehicle body.
  • a first operation included in the procedure of switching to the standby mode is an operation of terminating one device included in the battery management device or controlling it to a sleep or off state, and a rollback operation for the first operation is to turn the device into a sleep or off state. It may be an operation that initiates operation or controls in a normal or on state.
  • processing delay time required to return to a normal state for a battery activation request generated while a battery pack transitions to a low power state can be minimized.
  • FIG. 1 shows the structure of a battery system to which the present invention can be applied.
  • FIG. 2 is a diagram illustrating an example of states and state transitions of a battery system.
  • FIG. 3 is an operation flowchart of a BMS in a standby mode procedure according to a conventional battery control method.
  • FIG. 4 is an operation flowchart related to a standby mode entry procedure in a battery control method according to an embodiment of the present invention.
  • FIG. 5 is an operation sequence of a procedure for entering and exiting a standby mode in a battery control method according to an embodiment of the present invention by numbers.
  • FIG. 6 is a flowchart of a battery control method according to an embodiment of the present invention.
  • first, second, A, and B may be used to describe various components, but the components should not be limited by the terms. These terms are only used for the purpose of distinguishing one component from another. For example, a first element may be termed a second element, and similarly, a second element may be termed a first element, without departing from the scope of the present invention.
  • the term “and/or” includes any combination of a plurality of related listed items or any of a plurality of related listed items.
  • FIG. 1 shows the structure of a battery system to which the present invention can be applied.
  • a battery pack or battery module may include a plurality of battery cells connected in series.
  • a battery cell or module may be charged/discharged by being connected to a load through a positive terminal and a negative terminal.
  • the most commonly used battery cell is a lithium-ion (Li-Ion) battery cell.
  • a battery management system (BMS) 100 may be installed in such a battery module or battery pack.
  • the BMS monitors the current, voltage, and temperature of each battery pack it manages, calculates SOC (State Of Charge) based on the monitoring result, and controls charging and discharging.
  • SOC State of Charge
  • SOH State of Health; State of Battery Life
  • the BMS monitors the battery cells, reads the cell voltage, and transmits it to other systems connected to the battery.
  • the BMS also balances the charge of the battery cells equally to prolong the life of the battery system.
  • the BMS 100 may include various components such as a fuse, a current sensing element, a thermistor, a switch, and a balancer, and an MCU (Micro Controller Unit) 110 or In most cases, a BMIC (Battery Monitoring Integrated Chip) is additionally included.
  • the BMIC may be an IC type component that is located inside the BMS and measures information such as voltage, temperature, and current of the battery cell/module.
  • the BMS also monitors the battery cells and reads the cell voltage and forwards it to other systems connected to the battery.
  • the BMS includes a communication module 120 for communicating with other systems in the device including the battery system.
  • the communication module of the BMS can communicate with other systems in the device using CAN (Controller Area Network). In this case, parts, modules or systems within the BMS are connected to each other via the CAN bus.
  • CAN Controller Area Network
  • CAN communication Controller Area Network
  • CAN communication is a standard communication specification designed to allow microcontrollers or devices to communicate with each other without a host computer in a vehicle.
  • CAN communication is a non-host bus type message-based network protocol mainly used for communication between controllers, and is mainly used in vehicles.
  • FIG. 2 is a diagram illustrating an example of states and state transitions of a battery system.
  • the BMS can manage the battery state by classifying it into a normal mode, a sleep mode, and a shutdown mode.
  • Normal mode 21 is a normal operation mode of the battery pack in which the battery pack performs charging and discharging.
  • the standby mode 22 is a case where the battery pack is on standby in a low power state, and the shutdown mode 23 represents a case where the operation of the battery pack is stopped.
  • the transition from the normal mode to the standby mode is when the battery system is off (for example, the ignition is turned off in the case of a vehicle), the system state is the default (A), and other errors in the system If it does not occur (No Diag. Count-up), it may occur after the 2 second waiting time has elapsed. Also, the transition from the normal mode to the shutdown mode may occur after a waiting time of 2 seconds has elapsed when the battery system is off, the system state is default (A), and the minimum cell voltage (MinCellV) falls below a threshold value. Meanwhile, the transition from the standby mode or the shutdown mode to the normal mode occurs when the battery system is turned on (eg, when the vehicle is started).
  • FIG. 3 is an operation flowchart of a BMS in a standby mode procedure according to a conventional battery control method.
  • the table of FIG. 3 represents step-by-step program codes executed by a controller or a processor of the BMS, for example, an MCU when the battery enters the standby mode.
  • a controller or a processor of the BMS for example, an MCU when the battery enters the standby mode.
  • Each device in the BMS performs an operation corresponding to each program code or command under the control of the MCU.
  • the battery management application is terminated (Application deinit), and then the device termination procedure (device deinit.) proceeds (S31).
  • the device shutdown procedure first, it is checked whether the battery system is in an on state, and if it is in an on state, a transition procedure to a normal state, that is, an application start procedure is performed. When the battery system is off, an operation termination procedure for devices or parts in the BMS is performed.
  • Operation termination procedures for devices or parts in the BMS include AFE (Analog Front-end) sleep, FET (field effect transistor) off, history data termination (data save), sensor operation termination, data flash off, LDO ( It includes procedures such as linear & low-dropout) off, charge pump off, SCP (Self Control Protector) off, EEPROM (Electrically Erasable PROM) off, etc., and may include an MCU shutdown procedure in the last step.
  • AFE Analog Front-end
  • FET field effect transistor
  • history data termination data save
  • sensor operation termination data flash off
  • LDO It includes procedures such as linear & low-dropout) off, charge pump off, SCP (Self Control Protector) off, EEPROM (Electrically Erasable PROM) off, etc., and may include an MCU shutdown procedure in the last step.
  • MCU shutdown procedure in the last step.
  • the time required to complete the operation of each device is displayed on the right side of each item.
  • the BMS operation start procedure (S32) according to the battery activation request may be performed in the opposite order to the operation end procedure, starting with the MCU operation start, data flash on, LDO on, charge pump on, SCP on, EEPROM Procedures such as on, AFE normal, history data start, and sensor start can be performed.
  • FIG. 4 is an operation flowchart related to a standby mode entry procedure in a battery control method according to an embodiment of the present invention.
  • the BMS records all operations of the standby mode entry process and standby mode exit process as shown in FIG. 4 .
  • an active on check is performed for each operation step in the process of entering the standby mode. That is, the activation on check is performed whenever the steps such as AFE sleep, FET off, history data end, sensor operation end, data flash off, LDO off, charge pump off, SCP off, and EEPROM (Electrically Erasable PROM) off are performed. do.
  • an activation on check may be performed even during the corresponding operation, and the activation on check may be performed multiple times during the corresponding operation. That is, for an operation that takes a time longer than a threshold value among a plurality of operations included in a procedure for switching to a standby mode, it may be checked multiple times whether the battery system activation request has occurred while the corresponding operation is being performed.
  • FIG. 5 is an operation sequence of a procedure for entering and exiting a standby mode in a battery control method according to an embodiment of the present invention by numbers.
  • each operation is represented by a number.
  • the activity number indicates the operation number in the standby mode entry procedure
  • the rollback activity number represents the standby mode Indicates the operation number in the escape procedure.
  • each rollback activity number is written to be associated with a corresponding activity number.
  • activity number 1 in FIG. 5 represents an application termination operation
  • a corresponding rollback activity is an application startup operation and may be represented by number 24.
  • the BMS If there is no request for battery activation while the BMS enters the standby mode, it performs all operations in the standby mode entry procedure and then sequentially performs all operations in the standby mode exit procedure.
  • operation 16 is performed as the next operation. That is, in this case, operations 8 to 13 and the corresponding rollback operations (operations 15 to 17) are not performed.
  • operation No. 7 is a data flash termination operation
  • operation No. 16 is a data flash start operation. Thereafter, the BMS sequentially performs operations 23, 22, 21, and 24.
  • a rollback operation corresponding to one or more pre-performed operations is performed in the reverse order of the one or more pre-performed operations during the transition to the standby mode.
  • the BMS when a battery activation request occurs during the standby mode entry process, the BMS according to the present invention performs a rollback operation corresponding to the operations in the standby mode entry process that has already been performed, thereby transitioning to a normal state and promptly responding to a request from a higher level system. can respond
  • FIG. 6 is a flowchart of a battery control method according to an embodiment of the present invention.
  • the data processing method according to an embodiment of the present invention may be performed by a controller in the BMS, that is, an MCU, but the operation subject of the method according to the present invention is not limited thereto.
  • the controller checks whether there is no request related to the use of the battery system from the upper system for a certain period of time (S610). When there is no request to use the battery for a certain period of time, a procedure for switching the state of the battery pack to a standby mode, which is a low power state, is initiated (S620).
  • the battery system activation request is generated while the corresponding operation is being performed for an operation that takes a time equal to or greater than a threshold value among a plurality of operations included in the procedure for switching to the standby mode. It may include a step of checking whether or not it has been done multiple times.
  • the procedure for switching to the standby mode is escaped in response to the request.
  • the process of escaping from the procedure of switching to the standby mode may be performed by performing a rollback operation corresponding to one or more pre-performed operations during the procedure of switching to the standby mode. In this case, the rollback operation may be performed in the reverse order of one or more previously performed operations.
  • control unit transitions the state of the battery pack to a normal state (S650).
  • N is the total number of operations included in the standby mode conversion procedure.
  • a computer-readable recording medium includes all types of recording devices in which data that can be read by a computer system is stored.
  • computer-readable recording media may be distributed to computer systems connected through a network to store and execute computer-readable programs or codes in a distributed manner.
  • a block or apparatus corresponds to a method step or feature of a method step.
  • aspects described in the context of a method may also be represented by a corresponding block or item or a corresponding feature of a device.
  • Some or all of the method steps may be performed by (or using) a hardware device such as, for example, a microprocessor, programmable computer, or electronic circuitry. In some embodiments, one or more of the most important method steps may be performed by such an apparatus.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Software Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Emergency Management (AREA)
  • Business, Economics & Management (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

본 발명의 실시예에 따른 배터리 제어 방법은 BMS에 의해 수행되는 배터리 제어 방법으로서, 일정 시간 동안 상위 시스템으로부터 상기 배터리 시스템의 사용과 관련한 요청이 없는 경우 상기 배터리 팩의 상태를 저전력 상태인 대기 모드로 전환하는 절차를 수행하는 단계; 상기 대기 모드로 전환하는 절차에 포함된 복수의 동작을 수행하던 중 상기 상위 시스템으로부터 배터리 시스템 활성화 요청이 수신되는 경우 해당 요청에 대해 응답하여, 상기 대기 모드로 전환하는 절차를 탈출하는 단계; 및 상기 배터리 팩의 상태를 정상 상태로 천이하는 단계를 포함할 수 있다.

Description

배터리 관리 장치 및 배터리 제어 방법
본 출원은 2021년 11월 16일 한국특허청에 제출된 한국 특허 출원 제10-2021-0157157호의 출원일의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서에 포함된다.
본 발명은 배터리 관리 장치 및 배터리 제어 방법에 관한 것으로, 보다 구체적으로는 상위 시스템의 요청에 신속하게 대응 가능한 배터리 관리 장치 및 해당 장치에 의한 배터리 제어 방법에 관한 것이다.
사용 후 충전하여 재사용이 가능한 전지인 2차 전지는 디바이스가 요구하는 출력 용량에 따라 다수 개의 배터리 셀들을 직렬 연결하여 이루어진 배터리 모듈 또는 배터리 팩으로 제작되어, 각종 디바이스의 전원 공급원으로서 사용된다. 이와 같은 배터리는 스마트 폰 등의 소형 첨단 전자기기 분야뿐만 아니라 전기 자전거, 전기 자동차, 에너지저장시스템(ESS)에 이르기까지 다양한 분야에 사용되고 있다.
배터리 모듈 또는 배터리 팩은 다수 개의 배터리 셀들이 조합된 구조체로서, 일부 배터리 셀에서 과전압, 과전류, 과발열 등이 되는 경우에는 배터리 모듈 또는 배터리 팩의 안전성과 작동 효율에 문제가 발생하므로, 이들을 검출하기 위한 수단이 필수적이다. 따라서, 배터리 모듈 또는 배터리 팩에는 각 배터리 셀들의 전압 값을 측정하고, 측정된 값을 바탕으로 배터리 셀들의 전압 상태를 모니터링하며 제어하는 BMS(Battery Management System)가 장착되어 있다.
BMS는 배터리 상태를 정상 상태, 저전력 상태, 셧다운 상태 등으로 구분하여 관리하며, 상위 시스템(예를 들어, 차량)의 요청에 따라 배터리 상태를 천이하여 관리한다. 이때, 상위 시스템의 요청이 없어 저전력 상태로 전환하는 작업 중 재요청이 있는 경우 기존에 처리중이던 작업을 마무리하고 정상 상태로 복귀하는 데 적지 않은 시간이 소요된다. 그에 따라 해당 시간 동안 상위 시스템의 요청에 대해 정상적인 대응이 불가능하다는 문제가 발생한다.
상기와 같은 문제점을 해결하기 위한 본 발명의 목적은 배터리 시스템 관리 장치를 제공하는 데 있다.
상기와 같은 문제점을 해결하기 위한 본 발명의 다른 목적은 배터리 제어 방법을 제공하는 데 있다.
상기 목적을 달성하기 위한 본 발명의 일 실시예에 따른 배터리 시스템 관리 장치는 프로세서; 및 상기 프로세서를 통해 실행되는 적어도 하나의 명령을 저장하는 메모리를 포함하고, 상기 적어도 하나의 명령은, 일정 시간 동안 상위 시스템으로부터 상기 배터리 시스템의 사용과 관련한 요청이 없는 경우 상기 배터리 팩의 상태를 저전력 상태인 대기 모드로 전환하는 절차를 수행하도록 하는 명령; 상기 대기 모드로 전환하는 절차에 포함된 복수의 동작을 수행하던 중 상기 상위 시스템으로부터 배터리 시스템 활성화 요청이 수신되는 경우 해당 요청에 대해 응답하여, 상기 대기 모드로 전환하는 절차를 탈출하도록 하는 명령; 및 상기 배터리 팩의 상태를 정상 상태로 천이하도록 하는 명령을 포함할 수 있다.
상기 대기 모드로 전환하는 절차는, 상기 대기 모드로 전환하는 절차에 포함된 각 동작을 수행할 때마다 상기 상위 시스템으로부터 상기 배터리 시스템 활성화 요청이 발생하였는지 체크하는 절차를 포함할 수 있다.
상기 배터리 시스템 활성화 요청이 발생하였는지 체크하는 절차는, 상기 대기 모드로 전환하는 절차에 포함된 복수의 동작들 중 임계치 이상의 시간이 소요되는 동작에 대해서는 해당 동작이 수행되는 도중 상기 배터리 시스템 활성화 요청이 발생하였는지 복수 회 체크하는 것을 특징으로 한다.
상기 대기 모드로 전환하는 절차를 탈출하도록 하는 명령은, 상기 대기 모드로 전환하는 절차 중 기 수행된 하나 이상의 동작에 대응하는 롤백 동작을 상기 기 수행된 하나 이상의 동작의 순서와 역순으로 수행하도록 하는 명령을 포함할 수 있다.
상기 상위 시스템은 차량 본체일 수 있다.
상기 대기 모드로 전환하는 절차에 포함된 제1 동작은 상기 배터리 관리 장치 내에 포함된 하나의 디바이스를 종료시키거나 슬립 또는 오프 상태로 제어하는 동작이고, 상기 제1 동작에 대한 롤백 동작은 해당 디바이스를 동작 개시하거나 정상 또는 온 상태로 제어하는 동작일 수 있다.
본 발명의 다른 실시예에 따른 배터리 제어 방법은 배터리 시스템을 관리하는 BMS(Battery Management System)에 의해 수행되는 배터리 제어 방법으로서, 일정 시간 동안 상위 시스템으로부터 상기 배터리 시스템의 사용과 관련한 요청이 없는 경우 상기 배터리 팩의 상태를 저전력 상태인 대기 모드로 전환하는 절차를 수행하는 단계; 상기 대기 모드로 전환하는 절차에 포함된 복수의 동작을 수행하던 중 상기 상위 시스템으로부터 배터리 시스템 활성화 요청이 수신되는 경우 해당 요청에 대해 응답하여, 상기 대기 모드로 전환하는 절차를 탈출하는 단계; 및 상기 배터리 팩의 상태를 정상 상태로 천이하는 단계를 포함할 수 있다.
상기 대기 모드로 전환하는 절차는, 상기 대기 모드로 전환하는 절차에 포함된 각 동작을 수행할 때마다 상기 상위 시스템으로부터 상기 배터리 시스템 활성화 요청이 발생하였는지 체크하는 단계를 포함할 수 있다.
상기 배터리 시스템 활성화 요청이 발생하였는지 체크하는 단계는, 상기 대기 모드로 전환하는 절차에 포함된 복수의 동작들 중 임계치 이상의 시간이 소요되는 동작에 대해서는 해당 동작이 수행되는 도중 상기 배터리 시스템 활성화 요청이 발생하였는지 복수 회 체크하는 단계를 포함할 수 있다.
상기 대기 모드로 전환하는 절차를 탈출하는 단계는, 상기 대기 모드로 전환하는 절차 중 기 수행된 하나 이상의 동작에 대응하는 롤백 동작을 상기 기 수행된 하나 이상의 동작의 순서와 역순으로 수행하는 단계를 포함할 수 있다.
상기 상위 시스템은 차량 본체일 수 있다.
상기 대기 모드로 전환하는 절차에 포함된 제1 동작은 상기 배터리 관리 장치 내에 포함된 하나의 디바이스를 종료시키거나 슬립 또는 오프 상태로 제어하는 동작이고, 상기 제1 동작에 대한 롤백 동작은 해당 디바이스를 동작 개시하거나 정상 또는 온 상태로 제어하는 동작일 수 있다.
상기와 같은 본 발명의 실시예에 따르면, 배터리 팩이 저전력 상태로 천이하는 도중 발생하는 배터리 활성화 요청에 대해 정상 상태로 복귀하는 데 소요되는 처리 지연시간을 최소화할 수 있다.
도 1은 본 발명이 적용될 수 있는 배터리 시스템의 구조를 나타낸다.
도 2는 배터리 시스템의 상태 및 상태 천이의 예를 나타낸 도면이다.
도 3은 통상적인 배터리 제어 방법에 따른 대기 모드 절차 내 BMS의 동작 순서도이다.
도 4는 본 발명 실시예에 따른 배터리 제어 방법에서의 대기 모드 진입 절차 관련 동작 순서도이다.
도 5는 본 발명의 실시예에 따른 배터리 제어 방법에서 대기 모드 진입 및 탈출 절차의 동작 순서를 번호로 나타낸 것이다.
도 6은 본 발명의 실시예에 따른 배터리 제어 방법의 순서도이다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다.
제1, 제2, A, B 등의 용어는 다양한 구성요소들을 설명하는 데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다. "및/또는"이라는 용어는 복수의 관련된 기재된 항목들의 조합 또는 복수의 관련된 기재된 항목들 중의 어느 항목을 포함한다.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.
본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
이하, 본 발명에 따른 바람직한 실시예를 첨부된 도면을 참조하여 상세하게 설명한다.
도 1은 본 발명이 적용될 수 있는 배터리 시스템의 구조를 나타낸다.
도 1에서 배터리 팩 또는 배터리 모듈(Battery Module)은 직렬 연결된 복수의 배터리 셀을 포함하여 구성될 수 있다. 배터리 셀 또는 모듈은 양극 단자 및 음극 단자를 통해부하와 연결되어 충/방전 동작할 수 있다. 가장 일반적으로 사용되는 배터리 셀은 리튬 이온(Li-Ion) 배터리 셀이다.
이러한 배터리 모듈 또는 배터리 팩에는 배터리 관리 시스템(Battery Management System; BMS)(100)이 설치될 수 있다. BMS는 자신이 관장하는 각 배터리 팩의 전류, 전압 및 온도를 모니터링하고, 모니터링 결과에 근거하여 SOC(State Of Charge)를 산출하고 충방전을 제어한다. 여기서, SOC(State of Charge; 충전율)은 배터리의 현재 충전된 상태를 비율[%]로 표현한 것이고, SOH(State of Health; 배터리 수명 상태)은 배터리의 현재 퇴화 상태를 비율[%]로 표현한 것이다.
이처럼 BMS는 배터리 셀들을 모니터링하며 셀 전압을 읽고 배터리와 연결된 다른 시스템에 전달한다. BMS는 또한, 배터리 시스템의 수명을 연장하기 위해 배터리 셀의 전하를 균등하게 밸런싱한다.
이와 같은 동작을 수행하기 위해 BMS(100)는 퓨즈, 전류센싱 소자, 써미스터, 스위치, 밸런서 등 다양한 구성요소들을 포함할 수 있는데, 이들과 연동하고 제어하기 위한 MCU(Micro Controller Unit)(110) 또는 BMIC(Battery Monitoring Integrated Chip)를 추가로 포함하는 경우가 대부분이다. 여기서, BMIC는 BMS 내부에 위치하며 배터리 셀/모듈의 전압, 온도, 전류 등의 정보를 측정하는 IC 형태의 부품일 수 있다.
BMS는 또한, 배터리 셀들을 모니터링하며 셀 전압을 읽고 배터리와 연결된 다른 시스템에 전달한다. 이를 위해 BMS는, 배터리 시스템이 포함된 장치 내의 다른 시스템과 통신하기 위한 통신 모듈(120)을 포함한다. BMS의 통신 모듈은CAN(Controller Area Network)을 이용해 장치 내 다른 시스템과 통신할 수 있다. 이 경우 BMS 내 부품, 모듈 또는 시스템들은 CAN 버스를 통해 서로 연결된다.
CAN 통신(Controller Area Network)은 차량 내에서 호스트 컴퓨터 없이 마이크로컨트롤러나 장치들이 서로 통신하기 위해 설계된 표준 통신 규격이다. CAN 통신은 각 제어기들 간의 통신을 위해 주로 사용되는 non-host 버스 방식의 메시지 기반 네트워크 프로토콜로서, 차량에 주로 사용된다.
도 2는 배터리 시스템의 상태 및 상태 천이의 예를 나타낸 도면이다.
BMS는 배터리 상태를 정상(Normal) 모드, 대기(Sleep) 모드, 셧다운(Shutdown) 모드 등으로 구분하여 관리할 수 있다. 정상 모드(21)는 배터리 팩이 충방전을 수행하는 배터리 팩의 통상적인 동작 모드이다. 대기 모드(22)는 배터리 팩이 저전력 상태로 대기 중인 경우이고, 셧다운 모드(23)는 배터리 팩의 동작이 중단된 경우를 나타낸다.
도 2에 도시된 예에 따르면, 정상 모드에서 대기 모드로의 천이는 배터리 시스템이 오프이고(예를 들어, 차량의 경우 시동이 꺼진 상태) 시스템 상태가 디폴트(A)이며, 시스템 내 다른 이상이 발생되지 않은 경우(No Diag. Count-up), 2초의 대기 시간이 경과한 후 일어날 수 있다. 또한, 정상 모드에서 셧다운 모드로의 천이는 배터리 시스템이 오프이고 시스템 상태가 디폴트(A)이며 최소 셀 전압(MinCellV)이 임계치 이하로 떨어진 경우, 2초의 대기 시간이 경과한 후 일어날 수 있다. 한편, 대기 모드, 셧다운 모드에서 정상 모드로의 천이는 배터리 시스템이 온이 되는 경우(예를 들어, 차량의 시동이 켜진 경우) 발생한다.
이때, 상위 시스템의 요청이 없어 대기 모드로 전환하는 작업 중 상위 시스템으로부터 배터리 사용에 대한 재요청이 있는 경우에는, 기존에 처리중이던 작업을 마무리하고 정상 상태로 복귀하게 되는데, 이 과정에서 적지 않은 시간이 소요된다.
도 3은 통상적인 배터리 제어 방법에 따른 대기 모드 절차 내 BMS의 동작 순서도이다.
도 3의 테이블은 배터리가 대기 모드로 진입한 경우 BMS의 제어부 또는 프로세서, 예를 들어, MCU에 의해 수행되는 단계별 프로그램 코드를 나타낸다. BMS 내 각 디바이스는 MCU의 제어에 따라 각 프로그램 코드 또는 명령에 대응하는 동작을 수행하게 된다.
도 3을 참조하면, 대기모드 진입 절차에서는 배터리 관리 어플리케이션이 종료(Application deinit)되고 이후 디바이스 종료 절차(device deinit.)가 진행된다(S31). 디바이스 종료 절차 내에서는 우선 배터리 시스템의 상태가 온 상태인지 체크하고, 온 상태인 경우에는 정상 상태로의 천이 절차, 즉 어플리케이션 개시 절차를 수행한다. 배터리 시스템이 오프인 경우에는 BMS 내 디바이스 또는 부품들에 대한 동작 종료 절차가 수행된다.
BMS 내 디바이스 또는 부품들에 대한 동작 종료 절차는 AFE(Analog Front-end) 슬립(sleep), FET(field effect transistor) 오프, 히스토리 데이터 종료(데이터 저장), 센서 동작 종료, 데이터플래시 오프, LDO(Linear & low-dropout) 오프, 충전 펌프 오프, SCP(Self Control Protector) 오프, EEPROM(Electrically Erasable PROM) 오프 등의 절차를 포함하며, 마지막 단계에서 MCU 종료 절차를 포함할 수 있다. 도 3의 테이블에는, 각 장치의 동작 종료에 소요되는 시간이 각 항목의 오른쪽에 표시되어 있다.
한편, 배터리 활성화 요청에 따른 BMS의 동작 개시 절차(S32)는 동작 종료 절차와 반대 순서로 수행될 수 있으며, MCU 동작 개시를 시작으로, 데이터플래시 온, LDO 온, 충전 펌프 온, SCP 온, EEPROM 온, AFE 노멀, 히스토리 데이터 개시, 센서 개시 등의 절차를 수행할 수 있다.
그런데, BMS가 대기 모드로의 진입절차를 수행하는 도중 배터리 사용에 대한 재요청, 즉 배터리 활성화(예를 들어, 차량의 경우 Ignition on 또는 Activate on) 요청이 발생하는 경우에도, 도3의 테이블에 개시된 디바이스 종료 절차가 중단되지 않고 해당 절차가 수행 완료될 때까지 내부 절차들이 모두 수행된다. 따라서, BMS가 대기모드 진입 절차를 수행하는 도중 배터리 활성화 요청이 발생하는 경우 기존 수행되던 절차를 마무리한 후에야 해당 절차로부터의 탈출이 가능하다. 그 사이의 지연시간은 최대 약 940ms 에 이를 수 있다.
여기서, 신속한 응답을 요구하는 전기차의 경우 활성화 온(activate on) 후 몇백 ms 이내에 요청에 대한 응답이 가능할 것을 요구한다는 점에서 이러한 지연시간이 시스템 성능에 미치는 영향은 매우 크다고 할 것이다.
도 4는 본 발명 실시예에 따른 배터리 제어 방법에서의 대기 모드 진입 절차 관련 동작 순서도이다.
본 발명 실시예에 따르면 BMS는 대기 모드 진입 과정 및 대기 모드 탈출 과정의 동작을 도 4에 도시된 바와 같이 모두 기록한다. 또한, 대기 모드 진입 과정 내의 각 동작 단계마다 활성화 온 체크(Active On Check)를 수행한다. 즉, AFE 슬립, FET 오프, 히스토리 데이터 종료, 센서 동작 종료, 데이터플래시 오프, LDO 오프, 충전 펌프 오프, SCP 오프, EEPROM(Electrically Erasable PROM) 오프 등의 단계가 수행될 때마다 활성화 온 체크를 수행한다.
또한, 히스토리 데이터 종료, 및 데이터플래시 오프와 같이 동작 수행시간이 긴 동작의 경우에는, 해당 동작 중에도 활성화 온 체크를 수행할 수 있으며 해당 동작 중의 활성화 온 체크는 복수 회 수행될 수도 있다. 즉, 대기 모드로 전환하는 절차에 포함된 복수의 동작들 중 임계치 이상의 시간이 소요되는 동작에 대해서는 해당 동작이 수행되는 도중 상기 배터리 시스템 활성화 요청이 발생하였는지 복수 회 체크할 수 있다.
도 5는 본 발명의 실시예에 따른 배터리 제어 방법에서 대기 모드 진입 및 탈출 절차의 동작 순서를 번호로 나타낸 것이다.
본 발명의 실시예에 따른 도 5의 테이블에서는 각 동작을 번호로 표현하고 있으는데, 액티비티 번호(Activity No.)는 대기 모드 진입 절차에서의 동작 번호를 나타내며, 롤백(Rollback) 액티비티 번호는 대기 모드 탈출 절차에서의 동작 번호를 나타낸다. 여기서, 각 롤백 액티비티 번호는 대응하는 액티비티 번호와 연관되도록 기재되어 있다.
예를 들어, 도 5의 액티비티 번호 1은 어플리케이션 종료 동작을 나타내는데, 그에 상응하는 롤백 액티비티는 어플리케이션 개시 동작이며 번호 24로 표현될 수 있다.
도 5에서는 두 가지 경우, 즉, BMS가 대기 모드 진입하는 과정에서 배터리 활성화 요청이 없는 경우(case 1)와 BMS가 대기 모드 진입하는 과정 중 7번 동작의 수행 시점에 배터리 활성화 요청이 발생한 경우(case 2)를 나타낸다.
BMS가 대기 모드 진입하는 과정에서 배터리 활성화 요청이 없는 경우에는 대기 모드 진입 절차 내 모든 동작을 수행한 후 그에 대응하는 대기 모드 탈출 절차 내 모든 동작을 순차적으로 수행한다.
반면, BMS가 대기 모드 진입하는 과정 중 7번 동작의 수행 시점에 배터리 활성화 요청이 발생한 경우, 다음 동작으로 16번 동작이 수행된다. 즉, 이 경우, 8번 동작 내지 13번 동작, 그리고 그에 대응하는 롤백 동작(15번 동작 내지 17번 동작)을 수행되지 않는다. 도 4를 참조하면, 7번 동작은 데이터플래시 종료 동작이며, 16번 동작은 데이터플래시 개시 동작이다. 이후 BMS는 순차적으로, 23번, 22번, 21번, 24번 동작을 수행하게 된다.
즉, 대기 모드로 전환하는 절차 중 기 수행된 하나 이상의 동작에 대응하는 롤백 동작을, 기 수행된 하나 이상의 동작의 순서와 역순으로 수행한다.
즉, 본 발명에 따른 BMS는 대기 모드 진입 과정 중 배터리 활성화 요청이 발생하면, 기 수행된 대기 모드 진입 과정 내 동작들에 상응하는 롤백 동작을 수행함으로써, 정상 상태로 천이하여 상위 시스템의 요청에 즉시 대응할 수 있다.
도 6은 본 발명의 실시예에 따른 배터리 제어 방법의 순서도이다.
본 발명의 실시예에 따른 데이터 처리 방법은 BMS 내 컨트롤러, 즉 MCU에 의해 수행될 수 있으나, 본 발명에 따른 방법의 동작 주체가 이에 한정되는 것은 아니다.
제어부(MCU)는 일정 시간 동안 상위 시스템으로부터 배터리 시스템의 사용과 관련한 요청이 없는지 체크한다(S610). 일정 시간 동안 배터리 사용 요청이 없는 경우 배터리 팩의 상태를 저전력 상태인 대기 모드로 전환하는 절차를 개시한다(S620).
이때, 대기 모드로 전환하는 절차에 포함된 각 동작을 수행할 때마다(S621, S622, S623, S624) 상위 시스템으로부터 배터리 시스템 활성화 요청이 발생하였는지 체크한다(S630).
상기 배터리 시스템 활성화 요청이 발생하였는지 체크하는 단계는, 상기 대기 모드로 전환하는 절차에 포함된 복수의 동작들 중 임계치 이상의 시간이 소요되는 동작에 대해서는 해당 동작이 수행되는 도중 상기 배터리 시스템 활성화 요청이 발생하였는지 복수 회 체크하는 단계를 포함할 수 있다.
대기 모드로 전환하는 절차에 포함된 복수의 동작을 수행하던 중 상기 상위 시스템으로부터 배터리 시스템 활성화 요청이 수신되는 경우(S630의 예), 해당 요청에 대해 응답하여, 대기 모드로 전환하는 절차를 탈출한다(S640). 대기 모드로 전환하는 절차를 탈출하는 과정은, 대기 모드로 전환하는 절차 중 기 수행된 하나 이상의 동작에 대응하는 롤백 동작을 수행함으로써 이루어질 수 있다. 이때, 롤백 동작은 이미 수행된 하나 이상의 동작의 순서와 역순으로 수행될 수 있다.
이후 제어부는, 배터리 팩의 상태를 정상 상태로 천이시킨다(S650).
한편, 대기모드 전환 절차 진행 중 배터리 시스템에 대한 활성화 요청이 수신되지 않고 절차 내 모든 동작이 수행 완료된 경우(S624의 예)에는 해당 절차가 종료된다. 도 6에서 N은 대기모드 전환 절차 내에 포함된 동작의 전체 개수이다.
본 발명의 실시예에 따른 방법의 동작은 컴퓨터로 읽을 수 있는 기록매체에 컴퓨터가 읽을 수 있는 프로그램 또는 코드로서 구현하는 것이 가능하다. 컴퓨터가 읽을 수 있는 기록매체는 컴퓨터 시스템에 의해 읽혀질 수 있는 데이터가 저장되는 모든 종류의 기록장치를 포함한다. 또한 컴퓨터가 읽을 수 있는 기록매체는 네트워크로 연결된 컴퓨터 시스템에 분산되어 분산 방식으로 컴퓨터로 읽을 수 있는 프로그램 또는 코드가 저장되고 실행될 수 있다.
본 발명의 일부 측면들은 장치의 문맥에서 설명되었으나, 그것은 상응하는 방법에 따른 설명 또한 나타낼 수 있고, 여기서 블록 또는 장치는 방법 단계 또는 방법 단계의 특징에 상응한다. 유사하게, 방법의 문맥에서 설명된 측면들은 또한 상응하는 블록 또는 아이템 또는 상응하는 장치의 특징으로 나타낼 수 있다. 방법 단계들의 몇몇 또는 전부는 예를 들어, 마이크로프로세서, 프로그램 가능한 컴퓨터 또는 전자 회로와 같은 하드웨어 장치에 의해(또는 이용하여) 수행될 수 있다. 몇몇의 실시예에서, 가장 중요한 방법 단계들의 하나 이상은 이와 같은 장치에 의해 수행될 수 있다.
이상 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.

Claims (12)

  1. 배터리 시스템을 관리하는 장치로서,
    프로세서; 및
    상기 프로세서를 통해 실행되는 적어도 하나의 명령을 저장하는 메모리를 포함하고,
    상기 적어도 하나의 명령은,
    일정 시간 동안 상위 시스템으로부터 상기 배터리 시스템의 사용과 관련한 요청이 없는 경우 상기 배터리 팩의 상태를 저전력 상태인 대기 모드로 전환하는 절차를 수행하도록 하는 명령;
    상기 대기 모드로 전환하는 절차에 포함된 복수의 동작을 수행하던 중 상기 상위 시스템으로부터 배터리 시스템 활성화 요청이 수신되는 경우 해당 요청에 대해 응답하여, 상기 대기 모드로 전환하는 절차를 탈출하도록 하는 명령; 및
    상기 배터리 팩의 상태를 정상 상태로 천이하도록 하는 명령을 포함하는, 배터리 시스템 관리 장치.
  2. 청구항 1에 있어서,
    상기 대기 모드로 전환하는 절차는,
    상기 대기 모드로 전환하는 절차에 포함된 각 동작을 수행할 때마다 상기 상위 시스템으로부터 상기 배터리 시스템 활성화 요청이 발생하였는지 체크하는 절차를 포함하는, 배터리 관리 장치.
  3. 청구항 2에 있어서,
    상기 배터리 시스템 활성화 요청이 발생하였는지 체크하는 절차는,
    상기 대기 모드로 전환하는 절차에 포함된 복수의 동작들 중 임계치 이상의 시간이 소요되는 동작에 대해서는 해당 동작이 수행되는 도중 상기 배터리 시스템 활성화 요청이 발생하였는지 복수 회 체크하는 것을 특징으로 하는, 배터리 관리 장치.
  4. 청구항 1에 있어서,
    상기 대기 모드로 전환하는 절차를 탈출하도록 하는 명령은,
    상기 대기 모드로 전환하는 절차 중 기 수행된 하나 이상의 동작에 대응하는 롤백 동작을 상기 기 수행된 하나 이상의 동작의 순서와 역순으로 수행하도록 하는 명령을 포함하는, 배터리 관리 장치.
  5. 청구항 1에 있어서,
    상기 상위 시스템은 차량 본체인, 배터리 관리 장치.
  6. 청구항 1에 있어서,
    상기 대기 모드로 전환하는 절차에 포함된 제1 동작은 상기 배터리 관리 장치 내에 포함된 하나의 디바이스를 종료시키거나 슬립 또는 오프 상태로 제어하는 동작이고, 상기 제1 동작에 대한 롤백 동작은 해당 디바이스를 동작 개시하거나 정상 또는 온 상태로 제어하는 동작인, 배터리 관리 장치.
  7. 배터리 시스템을 관리하는 BMS(Battery Management System)에 의해 수행되는 배터리 제어 방법으로서,
    일정 시간 동안 상위 시스템으로부터 상기 배터리 시스템의 사용과 관련한 요청이 없는 경우 상기 배터리 팩의 상태를 저전력 상태인 대기 모드로 전환하는 절차를 수행하는 단계;
    상기 대기 모드로 전환하는 절차에 포함된 복수의 동작을 수행하던 중 상기 상위 시스템으로부터 배터리 시스템 활성화 요청이 수신되는 경우 해당 요청에 대해 응답하여, 상기 대기 모드로 전환하는 절차를 탈출하는 단계; 및
    상기 배터리 팩의 상태를 정상 상태로 천이하는 단계를 포함하는, 배터리 제어 방법.
  8. 청구항 7에 있어서,
    상기 대기 모드로 전환하는 절차는,
    상기 대기 모드로 전환하는 절차에 포함된 각 동작을 수행할 때마다 상기 상위 시스템으로부터 상기 배터리 시스템 활성화 요청이 발생하였는지 체크하는 단계를 포함하는, 배터리 제어 방법.
  9. 청구항 8에 있어서,
    상기 배터리 시스템 활성화 요청이 발생하였는지 체크하는 단계는,
    상기 대기 모드로 전환하는 절차에 포함된 복수의 동작들 중 임계치 이상의 시간이 소요되는 동작에 대해서는 해당 동작이 수행되는 도중 상기 배터리 시스템 활성화 요청이 발생하였는지 복수 회 체크하는 단계를 포함하는, 배터리 제어 방법.
  10. 청구항 7에 있어서,
    상기 대기 모드로 전환하는 절차를 탈출하는 단계는,
    상기 대기 모드로 전환하는 절차 중 기 수행된 하나 이상의 동작에 대응하는 롤백 동작을 상기 기 수행된 하나 이상의 동작의 순서와 역순으로 수행하는 단계를 포함하는, 배터리 제어 방법.
  11. 청구항 7에 있어서,
    상기 상위 시스템은 차량 본체인, 배터리 제어 방법.
  12. 청구항 7에 있어서,
    상기 대기 모드로 전환하는 절차에 포함된 제1 동작은 상기 배터리 관리 장치 내에 포함된 하나의 디바이스를 종료시키거나 슬립 또는 오프 상태로 제어하는 동작이고, 상기 제1 동작에 대한 롤백 동작은 해당 디바이스를 동작 개시하거나 정상 또는 온 상태로 제어하는 동작인, 배터리 제어 방법.
PCT/KR2022/013597 2021-11-16 2022-09-13 배터리 관리 장치 및 배터리 제어 방법 WO2023090605A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP22895814.6A EP4253138A4 (en) 2021-11-16 2022-09-13 BATTERY MANAGEMENT DEVICE AND BATTERY CONTROL METHOD
CN202280008373.6A CN116648370A (zh) 2021-11-16 2022-09-13 用于管理电池的装置和用于控制电池的方法
US18/269,138 US20240039059A1 (en) 2021-11-16 2022-09-13 Device for managing battery and method for controlling battery
JP2023536175A JP7570762B2 (ja) 2021-11-16 2022-09-13 電池管理装置及び電池制御方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0157157 2021-11-16
KR1020210157157A KR20230071214A (ko) 2021-11-16 2021-11-16 배터리 관리 장치 및 배터리 제어 방법

Publications (1)

Publication Number Publication Date
WO2023090605A1 true WO2023090605A1 (ko) 2023-05-25

Family

ID=86397198

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/013597 WO2023090605A1 (ko) 2021-11-16 2022-09-13 배터리 관리 장치 및 배터리 제어 방법

Country Status (6)

Country Link
US (1) US20240039059A1 (ko)
EP (1) EP4253138A4 (ko)
JP (1) JP7570762B2 (ko)
KR (1) KR20230071214A (ko)
CN (1) CN116648370A (ko)
WO (1) WO2023090605A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003323235A (ja) * 2002-04-30 2003-11-14 Canon Inc バッテリを搭載した情報処理装置の停電時運転方法
KR101621407B1 (ko) * 2013-11-12 2016-05-16 주식회사 엘지화학 배터리 팩 관리 장치 및 관리 방법
CN102998625B (zh) * 2011-09-09 2017-05-24 株式会社杰士汤浅国际 监视装置
KR101967464B1 (ko) * 2018-04-12 2019-04-09 현대오트론 주식회사 배터리 방전 방지 방법 및 이를 수행하는 전자 제어 장치
KR20210053103A (ko) * 2019-11-01 2021-05-11 주식회사 엘지화학 배터리 감시 장치 및 방법
KR20210157157A (ko) 2020-06-19 2021-12-28 삼성전자주식회사 메모리 컨트롤러의 구동방법, 호스트의 구동방법 및 스토리지 장치

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6055643A (en) * 1997-09-25 2000-04-25 Compaq Computer Corp. System management method and apparatus for supporting non-dedicated event detection
JP2005297669A (ja) 2004-04-08 2005-10-27 Nissan Motor Co Ltd 車両用制御装置
JP5627068B2 (ja) 2009-01-14 2014-11-19 京セラ株式会社 端末装置、その制御方法およびプログラム
US8779729B2 (en) 2011-09-09 2014-07-15 Gs Yuasa International Ltd. Electric storage device monitor
KR102007835B1 (ko) 2012-03-13 2019-08-07 에스케이이노베이션 주식회사 배터리 관리 시스템의 전원 장치
CN106165239B (zh) 2014-04-08 2018-04-03 株式会社丰田自动织机 电池监视装置
JP6557991B2 (ja) 2015-02-24 2019-08-14 セイコーエプソン株式会社 回路装置及び電子機器
KR101820293B1 (ko) 2016-03-23 2018-01-19 현대자동차주식회사 차량용 전원 관리 장치 및 그 제어방법
JP2020131877A (ja) 2019-02-18 2020-08-31 株式会社豊田自動織機 電池監視装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003323235A (ja) * 2002-04-30 2003-11-14 Canon Inc バッテリを搭載した情報処理装置の停電時運転方法
CN102998625B (zh) * 2011-09-09 2017-05-24 株式会社杰士汤浅国际 监视装置
KR101621407B1 (ko) * 2013-11-12 2016-05-16 주식회사 엘지화학 배터리 팩 관리 장치 및 관리 방법
KR101967464B1 (ko) * 2018-04-12 2019-04-09 현대오트론 주식회사 배터리 방전 방지 방법 및 이를 수행하는 전자 제어 장치
KR20210053103A (ko) * 2019-11-01 2021-05-11 주식회사 엘지화학 배터리 감시 장치 및 방법
KR20210157157A (ko) 2020-06-19 2021-12-28 삼성전자주식회사 메모리 컨트롤러의 구동방법, 호스트의 구동방법 및 스토리지 장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4253138A4

Also Published As

Publication number Publication date
EP4253138A1 (en) 2023-10-04
JP2023554363A (ja) 2023-12-27
JP7570762B2 (ja) 2024-10-22
EP4253138A4 (en) 2024-07-31
CN116648370A (zh) 2023-08-25
KR20230071214A (ko) 2023-05-23
US20240039059A1 (en) 2024-02-01

Similar Documents

Publication Publication Date Title
WO2018147545A1 (ko) 전원 공급 장치 및 이를 포함하는 배터리 팩
WO2022235131A1 (ko) 차량 비상 시동 장치, 그 제어 방법, 및 상기 방법을 실행시키기 위한 컴퓨터 판독 가능한 프로그램을 기록한 기록 매체
EP3576241A1 (en) Battery system
WO2017039165A1 (ko) 배터리팩 충전 제어 장치 및 방법
WO2013147395A1 (ko) 배터리 특성 자동 인식 시스템, 이에 적용되는 배터리 정보 저장 장치 및 이를 이용한 배터리 관리 장치의 최적화 방법
WO2021049753A1 (ko) 배터리 진단 장치 및 방법
WO2021006566A1 (ko) 배터리 셀 진단 장치 및 방법
WO2019088430A1 (ko) 체결 인식 기능을 갖춘 배터리 팩
WO2021137540A1 (ko) 배터리 관리 장치
WO2020071682A1 (ko) Bms 간 통신 시스템 및 방법
KR102684206B1 (ko) 배터리 모듈 밸런싱 장치 및 방법
WO2022265277A1 (ko) 배터리 관리 장치 및 방법
WO2018135735A1 (ko) 배터리 충전 방법 및 충전 시스템
WO2020055162A1 (ko) 스위치 진단 장치 및 방법
WO2018131874A1 (ko) 에너지 절약 및 빠른 셀 밸런싱이 가능한 충전 제어 장치 및 방법
WO2023090605A1 (ko) 배터리 관리 장치 및 배터리 제어 방법
WO2023136512A1 (ko) 배터리 충전 심도 산출 장치 및 그것의 동작 방법
WO2021125678A1 (ko) 병렬 배터리 릴레이 진단 장치 및 방법
KR20230064967A (ko) Bms 데이터 처리 장치 및 방법
WO2024106792A1 (ko) 배터리 관리 장치, 배터리 팩 및 배터리 팩의 충전 제어 방법
WO2023068557A1 (ko) 소비전류 제어 장치 및 이를 포함하는 배터리 관리 장치
WO2020130576A1 (ko) Bms 인식 시스템 및 방법
WO2023003441A1 (ko) 배터리 관리 장치 및 방법
WO2023038289A1 (ko) 배터리 관리 장치 및 그것의 동작 방법
WO2023068695A1 (ko) 배터리 상태를 관리하기 위한 배터리 제어 시스템 및 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023536175

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280008373.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18269138

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22895814

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022895814

Country of ref document: EP

Effective date: 20230630