WO2023090421A1 - 微粒子試料のスペクトルデータの生成方法、微粒子の解析方法、微粒子の判別方法、がん細胞由来のエクソソームの有無の判定方法、微粒子のスペクトル計測用基板、微粒子のスペクトル計測用デバイスおよび微粒子のスペクトル計測用装置 - Google Patents

微粒子試料のスペクトルデータの生成方法、微粒子の解析方法、微粒子の判別方法、がん細胞由来のエクソソームの有無の判定方法、微粒子のスペクトル計測用基板、微粒子のスペクトル計測用デバイスおよび微粒子のスペクトル計測用装置 Download PDF

Info

Publication number
WO2023090421A1
WO2023090421A1 PCT/JP2022/042861 JP2022042861W WO2023090421A1 WO 2023090421 A1 WO2023090421 A1 WO 2023090421A1 JP 2022042861 W JP2022042861 W JP 2022042861W WO 2023090421 A1 WO2023090421 A1 WO 2023090421A1
Authority
WO
WIPO (PCT)
Prior art keywords
spectrum
fine particles
substrate
hole
measured
Prior art date
Application number
PCT/JP2022/042861
Other languages
English (en)
French (fr)
Inventor
奏 龍▲崎▼
倫太郎 松田
正輝 谷口
祐貴 小本
Original Assignee
国立大学法人北海道大学
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人北海道大学, 国立大学法人大阪大学 filed Critical 国立大学法人北海道大学
Publication of WO2023090421A1 publication Critical patent/WO2023090421A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/34Measuring or testing with condition measuring or sensing means, e.g. colony counters
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material

Definitions

  • the present invention relates to a method (production method) for generating spectral data of a fine particle sample.
  • the present invention also provides a method for analyzing fine particles; a method for discriminating unidentified fine particles; a method for determining the presence or absence of cancer cell-derived exosomes in a body fluid-derived sample containing exosomes; a substrate for spectral measurement of fine particles a device for measuring the spectrum of fine particles; and an apparatus for measuring the spectrum of fine particles.
  • analysis of fine particles or analysis using fine particles is performed based on the components contained in the fine particles.
  • bioparticles with a length of 5 ⁇ m or less such as small microparticle-like bacteria, exosomes, or viruses, can be identified by elucidating the unique molecules present on the membrane surface, and the type of bioparticles can be determined and the disease of the body from which the bioparticles originate. possibility is being determined.
  • analysis of the state of air pollution is being performed using component analysis of PM2.5, which is fine particles with a diameter of 2.5 ⁇ m or less dispersed in the atmosphere.
  • spectral measurement is a method that enables non-destructive analysis.
  • the Raman spectrum is for observing signals based on vibrations of molecules that make up a substance, and it is possible to obtain information based on each component that makes up the fine particles.
  • Raman scattered light is very weak, but in recent years, surface-enhanced Raman spectroscopy (SERS) and the like have enabled more sensitive analysis.
  • SERS is a method that utilizes a phenomenon in which the intensity of molecular Raman scattered light is increased by localized surface plasmon resonance (SPR) on metals having rough surfaces such as silver and gold.
  • Patent Document 1 discloses an apparatus for analyzing molecules such as polynucleotides using SPR.
  • Patent Document 2 discloses a method of discriminating the types of cells contained in a sample using Raman spectra.
  • one Raman spectrum is obtained from one unidentified cell, and a plurality of Raman spectra obtained one by one from each of a plurality of cells whose types are known.
  • Patent Document 2 analysis is performed by acquiring one Raman spectrum from one unidentified fine particle.
  • eukaryotic animal cells such as rat basophilic leukemia cells (RBL) and Chinese hamster ovary cells (CHO) are used in paragraph [0037] of Patent Document 2 and FIG. has a particle size of about 10 to 30 ⁇ m.
  • Paragraph [0036] of Patent Document 2 describes a Raman scattering light measurement device that acquires Raman spectra one by one from each of such large particle size cells while changing the cells to be irradiated with laser light.
  • the apparatus described in Patent Document 2 is an apparatus that cannot be applied to fine particles having a length of 5 ⁇ m or less, and it is difficult to apply the apparatus as it is to fine particles of small size.
  • Patent Document 2 discloses discrimination using principal component analysis results of a plurality of spectra obtained from each of a plurality of cells whose types are known. However, in order to enable more reliable analysis, a method of easily obtaining a larger amount of multiple spectra is desired.
  • the present inventors have made intensive studies to solve the above problems, and completed a substrate that can measure a single fine particle with a length of 5 ⁇ m or less with high sensitivity by a method completely different from the measurement method of Patent Document 2. Using this substrate, we have found a method for efficiently generating and acquiring a measurement spectrum for each fine particle for a large amount of fine particles. Based on this method, the present invention was completed through further studies.
  • the present invention is as follows.
  • a method for generating spectral data of a microparticle sample containing at least one microparticle comprising the step of obtaining a measurement spectrum from a microparticle placed in a through-hole of a substrate, wherein the through-hole is , the substrate has an inclined structure in which the width continuously decreases from one surface to the other surface, and at least a part of the inner surface of the through hole is made of a metal exhibiting plasmon resonance,
  • the generating method wherein in the step of acquiring the measurement spectrum, the measurement spectrum is acquired while irradiating light into the through-hole.
  • the fine particles dispersed in the liquid are subjected to one or more selected from the group consisting of electrophoresis, dielectrophoresis, optical tweezers, Brownian motion, and Coulomb interaction.
  • a method for analyzing fine particles comprising the step of statistically analyzing the spectral data obtained by the generation method described in [2] or [4].
  • the step of statistically analyzing the spectral data includes forming a set of peaks with high correlation coefficients among the plurality of measured spectra of the spectral data;
  • the analysis method according to [8] comprising the step of identifying at least one component contained in the fine particles by comparing the obtained peak set with spectra of known substances.
  • the step of statistically analyzing the spectrum data includes the step of performing multivariate analysis on the plurality of measured spectra of the spectrum data, and comparing the spectrum obtained by the multivariate analysis with the spectrum of a known substance.
  • a discrimination method for discriminating unidentified fine particles wherein the measured spectrum of each of a plurality of fine particles A whose type is known and the measured spectrum of each of a plurality of fine particles B of which another type is known
  • the unidentified fine particles are exosomes, the fine particles A are exosomes derived from cancer cells, the fine particles B are exosomes derived from normal cells, and in the step of performing the discrimination, the unidentified
  • the determination method according to [11] wherein the exosomes as the fine particles for determination determine whether or not they are derived from cancer cells.
  • a step of generating spectral data consisting of a plurality of measured spectra obtained from each, and a signal having a maximum value at 1087 cm ⁇ 1 ⁇ 5 cm ⁇ 1 and a maximum value at 1435 cm ⁇ 1 ⁇ 5 cm ⁇ 1 among the plurality of measured spectra A step of obtaining a correlation coefficient with a signal having a, and a step of determining that cancer cell-derived exosomes are present in the sample when the correlation coefficient is a certain value or more, determination method.
  • a substrate for measuring the spectrum of fine particles which has a through hole penetrating from one surface of the substrate to the other surface, and the through hole has a size that allows the fine particles to pass through one by one.
  • At least part of an inner surface of the through hole is made of a metal exhibiting plasmon resonance, and the through hole has a width continuously extending from the one surface to the other surface of the substrate.
  • a device for measuring the spectrum of fine particles comprising: the substrate according to any one of [14] to [16]; a first liquid tank included in an inner wall; and a second liquid tank including a portion of the other surface of the substrate including at least the through hole in the inner wall;
  • a device for spectral measurement of fine particles comprising: [18]
  • An apparatus for measuring the spectrum of fine particles comprising the device according to [17], a guiding section for passing the fine particles one by one through the through-hole, a light source, and light from the light source. and a detector that measures the light generated when the microparticles in the through holes are irradiated with the light to obtain a measurement spectrum.
  • the apparatus according to [18] wherein the measured spectrum is a Raman spectrum.
  • the apparatus according to [18], wherein the measured spectrum is a fluorescence spectrum.
  • the present invention provides a novel spectral data generation method for analysis of fine particles with a length of 5 ⁇ m or less or analysis using fine particles.
  • the present invention also provides a substrate, device, and apparatus for spectroscopic measurement of fine particles that can be used in the above method. Further, according to the present invention, a method for analyzing fine particles, a discrimination method for discriminating unidentified fine particles, and a determination method for determining the presence or absence of cancer cell-derived exosomes in a body fluid-derived sample containing exosomes using the above method is provided.
  • FIG. 1A to 1C are diagrams showing the manufacturing procedure of the substrate used in the examples.
  • FIG. 2 is a diagram showing the structure of the substrate used in the examples.
  • FIG. 3 shows a schematic cross-sectional view of a device for spectral measurement used in the examples.
  • FIG. 4 shows a schematic cross-sectional view of a Raman spectrum measurement system used in Examples.
  • FIG. 5 shows a circuit block diagram of a Raman spectrum measurement system used in the examples.
  • Figure 8 is a diagram showing the results of mapping the correlation coefficients of the measured Raman spectra of multiple microparticles in exosome samples derived from normal cells.
  • Figure 9 is a diagram showing the results of mapping the correlation coefficient of the measured Raman spectra of a plurality of fine particles in exosome samples derived from liver cancer cells.
  • FIG. 10 is a diagram showing the spectrum of the first principal component obtained by performing principal component analysis of the measured Raman spectra of multiple microparticles in exosome samples derived from normal cells.
  • FIG. 11 shows the first principal component score based on the principal component analysis of the measured Raman spectra of multiple fine particles in exosome samples derived from liver cancer cells and normal cells on the abscissa, and the second principal component score on the ordinate.
  • Figure 12 shows the first principal component analysis based on the measured Raman spectra of multiple microparticles in exosome samples from normal cells, X-ray irradiated normal cells, liver cancer cells, blood of healthy subjects and senescent cells. It is a diagram plotting component scores on the abscissa and second principal component scores on the ordinate.
  • FIG. 14 is a diagram showing the measured fluorescence spectra of the gold microparticles inside and outside the through-hole, superimposed on each other.
  • a method of generating spectral data of a microparticle sample of the present invention is a method of generating spectral data (a production method) of a microparticle sample containing at least one microparticle, comprising: obtaining a measured spectrum from a microparticle disposed within.
  • the through-hole has an inclined structure in which the width continuously decreases from one surface to the other surface of the substrate, and at least a part of the inner surface of the through-hole has a plasmon It is composed of metals that exhibit resonance.
  • the measurement spectrum is acquired while irradiating the through hole with light.
  • a measured spectrum may be obtained from each of the plurality of fine particles in the fine particle sample.
  • the spectral data is a bundle of multiple measured spectra.
  • the present invention relates to a method for generating spectral data of a fine particle sample. More specifically, the present invention relates to a method of generating spectral data of a particle sample for analysis of particles and analysis using the particles, based on components contained in the particles.
  • the "component contained in the fine particles” is not particularly limited, and may be one specific component or substantially all components, and the type of spectrum to be acquired and the purpose of analysis are selected accordingly.
  • the component contained in the microparticles to be analyzed may be a component contained in any part of the microparticles, and is spectral data that can be obtained without destroying the microparticles, although it varies depending on the type of spectrum to be obtained. In this case, it is possible to analyze the components contained on the surface of the microparticles in particular.
  • the generation method of the present invention can provide the spectral data of the microparticle sample as a bundle of measured spectra based on each microparticle.
  • the spectral data of a fine particle sample is obtained by collectively measuring a certain amount of fine particles, so the data is averaged, and it is difficult to reflect the information of the components contained in only some of the fine particles in the sample.
  • analysis based on the measured spectrum of one fine particle has been difficult.
  • the generation method of the present invention enables analysis by statistical processing by providing spectral data of a microparticle sample containing a plurality of microparticles as a bundle of measured spectra based on each microparticle.
  • components contained in various fine particles components that could not be detected conventionally can be detected.
  • determinations that were not possible with conventional methods, such as determination based on the amount of fine particles containing a specific component among the fine particles in the sample.
  • the spectral data generated by the generation method of the present invention (a bundle of measured spectra based on each fine particle) will also be referred to as a "new database obtained by the present invention".
  • fine particles means particles with a length of 10 nm to 5 ⁇ m.
  • the shape of the fine particles is not particularly limited, and may be, for example, spherical, elliptical, cylindrical, cubic, pyramidal, other polyhedral, conical, irregular shapes, and the like.
  • the length of a fine particle means the length of the longest line (major axis) among the lines connecting two points that are the intersections of the line passing through the center of the cross section of the fine particle and the outer periphery of the cross section. and
  • the fine particles preferably have a length of 10 nm to 3 ⁇ m, more preferably 10 nm to 1 ⁇ m, particularly preferably 30 to 500 nm, and most preferably 50 to 200 nm.
  • the shortest line (minor axis) of the line connecting two points that are the intersections of the line passing through the center of the cross section of the fine particle and the outer periphery of the cross section is preferably 1 nm to 5 ⁇ m, and preferably 3 nm to 3 nm. It is more preferably 3 ⁇ m, particularly preferably 5 nm to 1 ⁇ m, even more preferably 10 to 500 nm, even more preferably 30 to 300 nm, most preferably 50 to 200 nm. .
  • the length (major axis) of the fine particles and the short axis range be within the preferred ranges described above.
  • the ratio of the length (major axis) to the minor axis (aspect ratio) of the fine particles may be, for example, 99:1 to 50:50, preferably 90:10 to 50:50, more preferably 80:20. 50:50 is more preferred, 70:30 to 50:50 is particularly preferred, and 60:40 to 50:50 is even more preferred.
  • Fine particles with a relatively small aspect ratio are preferable to elongated fine particles with a large aspect ratio such as polynucleotides and other polymer molecules, from the viewpoint that the fine particles are easier to pass through the through-holes of the substrate having through-holes one by one. .
  • Fine particles may be composed of a single component or a plurality of components, but the production method of the present invention is particularly significant when targeting fine particles composed of a plurality of components. big.
  • fine particles include biological fine particles derived from organisms and inorganic fine particles.
  • bioparticles include small particulate bacteria and the like, organelles such as mitochondria, viruses, and exosomes.
  • biological microparticles those having a lipid bilayer membrane structure pass through the through-holes of a substrate having through-holes one by one, and from the viewpoint of obtaining a measurement spectrum at the position of the through-holes, the biological microparticles are Those having a lipid bilayer membrane structure are preferred, and viruses and exosomes are more preferred.
  • inorganic fine particles include PM2.5.
  • components contained in biological microparticles include lipids, proteins, and sugar chains.
  • components contained in the inorganic fine particles include carbon components, nitrates, sulfates, ammonium salts, silicon, sodium and aluminum.
  • the microparticles are viruses, exosomes, or particles with a diameter of 2.5 ⁇ m or less that are dispersed in the atmosphere. It is preferable from the viewpoint of having properties in common in that they are fine particles.
  • Fungi, bacteria, mycoplasma, etc. can be mentioned as examples of small microscopic bacteria.
  • Bacteria having a particle size of 100 nm to 5 ⁇ m are typically used, and bacteria having a particle size of 100 nm to 3 ⁇ m are preferred.
  • Membrane proteins are examples of components contained in bacteria that can be analyzed by the spectral data obtained by the production method of the present invention. By analyzing membrane proteins, it is possible to distinguish the types and states of bacteria.
  • viruses include coronavirus, norovirus, influenza virus, and Ebola virus.
  • viruses with a particle size of 10 nm to 1 ⁇ m are exemplified.
  • An example of a virus component that can be analyzed using the spectral data obtained by the production method of the present invention is a surface spike protein. By analyzing the spike protein, it is possible to discriminate the type of virus, and it is also possible to identify mutants.
  • exosomes are used synonymously with “extracellular vesicles”.
  • Extracellular vesicles are defined as "nucleated (incapable of replication) lipid bilayer-enclosed particles that are released from cells”.
  • components contained in exosomes that can be analyzed by the spectral data obtained by the production method of the present invention include components in the lipid bilayer membrane or components present on the surface of the lipid bilayer membrane.
  • exosomes are regarded as a type of extracellular vesicles, and extracellular vesicles are classified into “exosomes”, “microvesicles”, and “apoptotic bodies” according to their production mechanism and size.
  • Exosomes are endosome-derived vesicles with a particle size of about 50-150 nm
  • microvesicles are vesicles directly secreted from cells with a particle size of about 0.1-1 ⁇ m
  • apoptotic bodies are cell fragments generated by cell death. and the particle size is about 1 to 4 ⁇ m.
  • exosomes may be “exosomes”, “microvesicles”, “apoptotic bodies”, or mixtures thereof. For example, it may be a mixture of "exosomes” and "microvesicles”.
  • Exosomes are microparticles secreted by cells and present in body fluids. Since it contains information on cells that secrete exosomes, it is attracting attention as a biomarker for diseases such as cancer. In particular, by examining the components present on the surface of the lipid bilayer membrane of exosomes, specifically molecules such as proteins, lipids, and sugar chains, it is possible to predict the type of cancer and the metastasis destination of the cancer. It is possible (Non-Patent Documents 1 to 3). However, conventionally, when exosomes are measured by Raman spectroscopy, it is difficult to analyze specific components because a spectrum that shows all the information of multiple components such as proteins, lipids, and sugar chains can be obtained.
  • Non-Patent Document 1 Haiying Zhang, et al., "Identification of distinct nanoparticles and subsets of extracellular vesicles by asymmetric flow field-flow fractionation", Nature Cell Biology, Vol. 20, pp. 332-343.
  • Non-Patent Document 2 Ayuko Hoshino, et al., “Tumour exosome integrins determine organotropic metastasis”, Nature, Vol. 527, pp. 329-335.
  • Non-Patent Document 3 Ayuko Hoshino, et al., “Extracellular Vesicle and Particle Biomarkers Define Multiple Human Cancers”, Cell, Vol. 182, pp. 1044-1061.
  • Cancer-derived exosomes are contained in body fluids such as blood, urine, and saliva. Therefore, examinations and diagnoses using exosomes can be performed using non-invasive samples, unlike conventional methods.
  • Body fluids contain biological components other than exosomes. Since those components become noise in the measurement, for example, as shown in the examples described later, exosomes may be separated from the sample by known procedures.
  • cancer types that secrete exosomes include gastric cancer, esophageal cancer, lung cancer, liver cancer, biliary tract cancer, pancreatic cancer, colon cancer, ovarian cancer, prostate cancer, and bladder cancer. , breast cancer, glioma, glioblastoma, melanoma, and medulloblastoma.
  • PM2.5 is fine particles with a diameter (particle size, preferably long axis) of 2.5 ⁇ m or less dispersed in the atmosphere.
  • PM2.5 is composed of salts such as sulfates and nitrates, silica components, metal components, black carbon, various organic compounds, etc., and mainly floats as an aerosol.
  • the spectrum data obtained by the generation method of the present invention can be used to analyze not only the surface components of PM2.5 but also each component that constitutes PM2.5.
  • the composition of PM2.5 varies depending on the environment, and by examining the composition of PM2.5, it is possible to elucidate the origin of PM2.5, the effects of PM2.5 on the body, and the like.
  • a method of generating spectral data of a particulate sample of the present invention includes obtaining a measured spectrum from each of n particulates in a particulate sample containing a plurality of particulates.
  • particulate samples include cell culture media, cell suspensions, body fluids containing exosomes or suspensions containing exosomes isolated from these body fluids, suspensions of viruses, body fluids containing viruses or body fluids isolated from these body fluids.
  • a virus-containing suspension, a filter that collects PM2.5 from the atmosphere, or a solution (aqueous solution) in which PM2.5 extracted from this filter is dissolved can be used.
  • the fine particle sample may be pretreated according to the type of measurement spectrum to be obtained for the sample as described above, the purpose of use of the spectrum data, and the like.
  • the fine particle sample may be subjected to a process of labeling with a fluorescent substance using molecules on the surface of fine particles for detection by fluorescence.
  • molecules on the surface of the fine particles may be modified with reactive molecules in order to bind or adsorb the fine particles to the measurement substrate or the inside of the through-holes.
  • a fine particle sample is usually a sample containing a large amount of fine particles, and can be a sample containing, for example, about 10 to the 15th power of fine particles.
  • a measured spectrum is obtained from each of n fine particles corresponding to all or part of the sample. n may be determined according to the amount (number) of fine particles contained in the sample, the intended use of the spectrum data, etc. Above, 50 or more, 60 or more, 70 or more, 80 or more, 90 or more, 100 or more, and so on.
  • Spectral data consisting of n measured spectra obtained by the generation method of the present invention can be used for analysis by statistical processing.
  • n may be 1000 or less, 500 or less, 300 or less, etc., taking into consideration the time and effort required to acquire the measured spectrum and data processing.
  • a measured spectrum is obtained from each of n fine particles.
  • One or more measured spectra may be measured per fine particle, but it is preferable that the number of spectra measured per fine particle is the same, and one measured spectrum is obtained per fine particle. is preferred. That is, the spectral data obtained by the method for generating spectral data of a fine particle sample of the present invention is preferably a bundle of n measured spectra.
  • the n bundles of measured spectra obtained by the method for generating spectral data of a fine particle sample of the present invention are n bundles of measured spectra illustrated in two or more dimensions.
  • the n bundles of measured spectra means n sets of measured spectra, and does not mean a spectrum obtained by integrating n measured spectra or a spectrum obtained by averaging n measured spectra. However, the n bundles of the measured spectrum may be integrated or averaged and used as necessary.
  • a bundle of n measured spectra may be a data processing of n measured spectra plotted in two or more dimensions (eg, matrix, heat map, waterfall plot).
  • the measurement spectrum is not particularly limited as long as it can give a result based on one fine particle.
  • Examples of measured spectra include Raman spectrum, infrared spectrum, fluorescence spectrum, mass spectrum and the like.
  • the measured spectrum is preferably Raman spectrum and fluorescence spectrum, particularly preferably Raman spectrum.
  • a method of generating spectral data of a fine particle sample of the present invention includes a step of obtaining a measured spectrum from each of n fine particles in a fine particle sample.
  • the method of obtaining a measured spectrum from fine particles There is no particular limitation on the method of obtaining a measured spectrum from fine particles.
  • an infrared spectrum infrared light is irradiated and absorption of the irradiated light according to the wave number is observed.
  • To acquire the fluorescence spectrum a monochromatic excitation light is applied and the resulting fluorescence is observed.
  • electron beam irradiation, ion irradiation, laser irradiation, etc. necessary for ionizing molecules are performed.
  • the type of external stimulus depends on the measurement spectrum to be acquired as described above, but it is preferably light.
  • the light is laser light. This is because the laser beam has high directivity and convergence, and is suitable for measuring fine particles having a length of 10 nm to 5 ⁇ m.
  • the laser light a laser with a required wavelength can be selected and used from semiconductor lasers, gas lasers, solid-state lasers, and the like.
  • the wavelength of the monochromatic light used for obtaining the Raman spectrum can be selected from wavelengths obtained using a known light source that emits external light (excitation light) having a wavelength capable of generating Raman scattered light. can. For example, a wavelength range of about 400 to 800 nm can be appropriately selected according to the microparticles to be analyzed and the components contained in the microparticles. Since the Raman spectrum can use near-infrared light, which has little effect on biological samples, as excitation light, it is possible to observe living cells under culture conditions.
  • Raman scattered light from the components contained in one fine particle is extremely weak, it is preferable to enhance it.
  • Methods of enhancement include, for example, resonance Raman scattering, tip-enhanced Raman scattering (TERS), surface-enhanced Raman scattering (SERS), and the like, and these techniques may be combined.
  • Each technique is publicly known. For example, by adsorbing molecules to metals that exhibit plasmon resonance, such as gold and silver, and obtaining surface-enhanced Raman scattering, the scattered light intensity is increased by 10 4 (10 4 ) times the intensity of Raman scattered light from isolated molecules.
  • the external stimulus is not particularly limited as long as it induces plasmon resonance, but it is preferable to use a monochromatic laser that is used during Raman spectrum measurement.
  • An example of a method of obtaining a measurement spectrum from each of n fine particles of a fine particle sample containing a plurality of fine particles is as follows.
  • the microparticles in the sample are dispersed on the substrate used for spectrum measurement, a probe such as a light irradiator and a detector is scanned, and the measurement spectrum of each microparticle is obtained under microscopic observation.
  • the microparticles in the sample can be dispersed on a substrate used for spectrum measurement in the same manner, and the substrate can be scanned to obtain the measurement spectrum of each microparticle.
  • the measured spectrum is a Raman spectrum
  • the spectrum to be measured is Raman spectrum or fluorescence spectrum
  • fluorescence enhancement surface plasmon excitation enhanced fluorescence
  • This procedure can be repeated to obtain a measured spectrum from each of the n microparticles.
  • the measurement spectrum of each fine particle while moving the fine particles in the sample one by one in the approximate normal direction of the substrate.
  • particles can be passed through the through-holes of a substrate having through-holes one by one, and the particles can be measured at the positions of the through-holes.
  • This procedure makes it possible to obtain many measured spectra faster and more easily.
  • the spectrum to be measured is a Raman spectrum or a fluorescence spectrum
  • the Raman spectrum or fluorescence spectrum by a procedure including irradiating light from the side of the through-hole having a large opening, from the viewpoint of further enhancing the Raman scattered light intensity or fluorescence intensity.
  • the microparticle analysis method of the present invention includes the step of statistically analyzing the spectral data obtained by the production method of the present invention.
  • statistical analysis By performing statistical analysis on the spectral data obtained by the method for generating spectral data of a fine particle sample of the present invention, that is, the bundle of n measured spectra (new database obtained by the present invention), Analysis can be performed.
  • Statistical analysis may be performed using machine learning or artificial intelligence (AI).
  • AI artificial intelligence
  • n is preferably 20 or more when performing the generation method of the present invention (when constructing a new database obtained by the present invention) in order to obtain sufficient accuracy and reliability.
  • n when performing analysis of known fine particles or analysis using known fine particles, is 2 to 5, etc. A small n may also provide sufficient reliability.
  • An example of a preferred embodiment of the analysis method of the present invention includes the steps of performing multivariate analysis on n measured spectra of spectrum data obtained by the generation method of the present invention, and identifying at least one component contained in the microparticle by matching the spectrum.
  • spectral data e.g. principal component analysis, sparse principal component analysis, non-negative matrix factorization (multivariate waveform decomposition - alternating least squares), cluster analysis, independent component analysis, linear discriminant analysis, logistic regression analysis, or Gaussian mixture model Multivariate analysis such as can be performed to obtain information based on the composition of the microparticles.
  • the new database obtained by the present invention can be analyzed using spectral data of known constituent components (known spectrum database) as a reference spectrum or the like.
  • a detailed analysis can be performed by
  • whether or not a specific component is present in the fine particles for example, a cancer marker molecule
  • the spectrum data generated by the generation method of the present invention is subjected to principal component analysis, and the obtained spectrum of the principal component is compared with a known spectrum (for example, a known spectrum database can be used.) Ingredients can be identified.
  • a known spectrum for example, a known spectrum database can be used.
  • a set of peaks having high correlation coefficients is formed between n measured spectra of spectrum data generated by the generation method of the present invention, and the obtained peak set is used as a spectrum of a known substance (for example, , a known spectrum database can be used.) to identify the components contained in the microparticles.
  • the set of peaks may contain two or more peaks, for example, may consist of only two peaks (e.g., two characteristic peaks of the component), and correspond to the spectrum good too.
  • the spectrum of each particle is made into an N ⁇ M matrix as shown in Table 1.
  • the correlation coefficient of the intensity at each two wavenumber points (Y-th and Y'-th) is calculated based on the formula specifically shown in the embodiment.
  • the maximum value of each spectrum may be normalized to 1, general standardization processing, or both may be performed before determining the correlation coefficient.
  • the determination method of the present invention is a determination method for determining the presence or absence of cancer cell-derived exosomes in a body fluid-derived sample containing exosomes, and is obtained from each of n exosomes in the sample by the production method of the present invention.
  • a step of generating spectral data consisting of n measured spectra, and a signal having a maximum value at 1087 cm ⁇ 1 ⁇ 5 cm ⁇ 1 and a signal having a maximum value at 1435 cm ⁇ 1 ⁇ 5 cm ⁇ 1 between the n measured spectra A step of obtaining a correlation coefficient with, and a step of determining that cancer cell-derived exosomes are present in the sample when the correlation coefficient is a certain value or more.
  • 155 measured Raman spectra were obtained for exosomes in a sample derived from a body fluid containing exosomes, and between the obtained spectra, two characteristic signals due to the structure in phosphorylated serine were correlated.
  • the presence of phosphorylated proteins is identified by confirming the Specifically, a signal having a maximum value at 1087 cm ⁇ 1 ⁇ 5 cm ⁇ 1 and a signal having a maximum value at 1435 cm ⁇ 1 ⁇ 5 cm ⁇ 1 are linked, that is, the correlation coefficient is a certain value or more. On the basis of which we have identified the presence of phosphorylated proteins.
  • Non-Patent Document 4 Shilian Dong et al., ⁇ Beehive-Inspired Macroporous SERS Probe for Cancer Detection through Capturing and Analyzing Exosomes in Plasma'', ACS Appl. Mater. Interfaces, Vol. 12, pp. 5136-5146.
  • Analysis using correlation coefficients can also be performed using two-dimensional mapping of spectra as shown in the example.
  • ⁇ Determination method for determining undetermined fine particles Furthermore, it is also possible to analyze unidentified (unknown) fine particles using spectral data of known fine particles obtained by the generation method of the present invention. For example, distinguishing between particles of the same type (e.g., viruses, exosomes) but with different properties (e.g., mutation-type viruses, particles derived from specific disease patients such as cancer, etc.) ) can be performed.
  • unidentified fine particles e.g., viruses, exosomes
  • different properties e.g., mutation-type viruses, particles derived from specific disease patients such as cancer, etc.
  • an index for distinguishing between different particles was found. If so, the index can be used to discriminate the particles.
  • the discrimination method of the present invention is a discrimination method for discriminating unidentified fine particles, a step of acquiring N A measured spectra of a fine particle A whose type is known and N B measured spectra of a fine particle B whose type is known, respectively, by the generation method of the present invention; a step of performing a principal component analysis on spectrum data consisting of N A +N B measured spectra and obtaining an index for discriminating the measured spectra of fine particles A and fine particles B from scores of two or more principal components; obtaining a measured spectrum from each of the one or more unidentified microparticles in the microparticle sample; calculating two or more principal component scores for the measured spectrum of the undistinguished microparticle; a step of comparing the score of the unidentified fine particle with the index to make a discrimination, wherein the unidentified fine particle has a length of 10 nm to 5 ⁇ m.
  • the N1 measured spectrum bundles of the specimen fine particle 1 and the N2 measured spectrum bundles of the specimen fine particle 2 are added to obtain spectrum data, which is N1 + N2 measured spectrum bundles.
  • a principal component analysis is performed on the spectral data consisting of the N 1 +N two measured spectra, and an index for discriminating the measured spectra of the sample fine particle 1 and the sample fine particle 2 is obtained from scores of two or more principal components.
  • Each of N 1 and N 2 is preferably 20 or more, more preferably 50 or more, and even more preferably 100 or more.
  • the spectrum data points are MM points, and (N 1 +N 2 ) ⁇ MM matrices are created.
  • the total 200 spectral bundles form a 200 ⁇ 1000 matrix.
  • a variance-covariance matrix for the matrix is obtained, and eigenvalues and eigenvectors for the variance-covariance matrix are obtained.
  • normalization and standardization of the spectral flux may be performed as necessary.
  • a score plot is created using the eigenvector for each eigenvalue, with the first principal component and the second principal component in descending order of eigenvalue. If a score plot of two or more principal component scores, eg, a first principal component and a second principal component, can be generated to form a boundary line between each microparticle, this can be the indicator of the above.
  • the spectrum to be measured may be a measured spectrum of one fine particle, or spectrum data generated by the generation method of the present invention.
  • a preferred embodiment in the case of acquiring spectral data of an undetermined fine particle as a measured spectrum of one fine particle is the same as a preferred embodiment of the generation method of the present invention. Further, when acquiring an undetermined fine particle as a measured spectrum of one fine particle, it is preferable to acquire the measured spectrum of one fine particle using the fine particle spectrum measurement substrate of the present invention.
  • the discrimination method of the present invention is a discrimination method for discriminating whether the target exosomes are derived from cancer cells, A step of obtaining N 1 measurement spectra of cancer cell-derived exosomes and N 2 measurement spectra of exosomes from normal cells by the generation method of the present invention, A step of performing principal component analysis of spectral data consisting of N 1 + N 2 measured spectra, and obtaining an index for discriminating the measured spectra derived from cancer cells and normal cells from scores of two or more principal components; calculating two or more principal component scores for the spectrum of the exosome of interest; It is preferable to include a step of performing discrimination by checking the score of the target exosomes against the index.
  • Preferred embodiments of other discrimination methods include discrimination methods, learning methods, discrimination devices, etc. using fine particles having a length of 5 ⁇ m or less instead of cells in paragraphs [0006] to [0085] of Patent Document 2. and the content described in that paragraph of US Pat.
  • one measurement spectrum (e.g., Raman spectrum or fluorescence spectrum) is obtained from one unidentified particle, and one measurement spectrum is obtained from each of a plurality of particles whose types are known.
  • Multiple degrees of agreement which indicate the degree to which the measured spectra of unidentified fine particles match the multiple principal component spectra obtained by principal component analysis of multiple measured spectra, are calculated, and obtained by principal component analysis.
  • a learning model that uses supervised learning it is preferable to use a support vector machine, but other learning models may also be used. It is preferable to perform machine learning of a learning model such as a support vector machine using a plurality of principal component scores corresponding to each of a plurality of particles whose types are known and the type of each particle as training data. Further, it is preferable that the discriminating device that discriminates the type of fine particles acquires teacher data from the outside.
  • a learning model using unsupervised learning may be used for classification, and clustering can be cited as a learning model using unsupervised learning.
  • the discriminating device corresponds to a plurality of main component spectra obtained by principal component analysis of a plurality of measurement spectra obtained from a plurality of particles whose types are known, and to each of a plurality of particles whose types are known. It is preferable to externally acquire the result of classifying the plurality of principal component scores according to the type by the learning model.
  • a coordinate space containing coordinate points having a plurality of principal component scores as components is processed by a support vector machine or the like.
  • the learning model divides into multiple regions.
  • the coordinate point is a two-dimensional coordinate point whose components are the first principal component score and the second principal component score.
  • a plurality of principal component scores are classified according to the type of fine particles according to the division of the coordinate space.
  • the substrate for spectrum measurement of fine particles of the present invention has a through hole penetrating from one surface of the substrate to the other surface, the through hole has a size that allows the fine particles to pass one by one, and the inner surface of the through hole At least a part of the through hole is made of a metal exhibiting plasmon resonance, and the through hole has an inclined structure in which the width continuously decreases from one surface of the substrate toward the other surface.
  • many measurement spectra can be obtained more quickly and easily by using a substrate having through-holes in order to obtain measurement spectra from each of n particles of a sample containing a plurality of particles. It is possible.
  • the substrate for spectrum measurement of fine particles of the present invention having such through-holes will be described below.
  • the substrate for spectral measurement of fine particles of the present invention can be applied to fine particles having a length of 10 nm to 5 ⁇ m as well as to particles longer or smaller than that.
  • the substrate for spectrum measurement of fine particles of the present invention is preferably applied to fine particles having a length of 10 nm to 5 ⁇ m.
  • the method of generating spectral data of a fine particle sample of the present invention, the method of analyzing fine particles of the present invention, and the it is more preferable to perform the determination method of the present invention.
  • the substrate is not particularly limited as long as it can be used for spectrum measurement.
  • a sheet-like substrate may be used as the substrate.
  • substrate materials include inorganic materials and organic materials such as polymeric materials.
  • the material of the substrate is preferably electrically insulating. Examples include insulating materials used in the field of semiconductor manufacturing technology such as silicon (Si), glass, quartz, gold, silver, copper, aluminum, polydimethylsiloxane (PDMS), polytetra Examples include fluoroethylene (PTFE), polystyrene, and polypropylene.
  • the thickness of the substrate is not particularly limited as long as the through-holes can be provided.
  • the size of the substrate is not particularly limited as long as it is a size that allows through-holes to be provided.
  • the substrate can be manufactured by a known method, and commercially available products can also be used.
  • the through holes may be formed using known means such as etching and photolithography.
  • the entire surface or a part of the surface of the substrate (for example, inside or near the through hole) may be surface-processed.
  • the substrate has a through hole penetrating from one surface of the substrate to the other surface.
  • the size of the through-holes should be such that fine particles to be measured can pass through one by one. Therefore, the size of the through-hole may be appropriately adjusted so that it is larger than the maximum cross-sectional area when the fine particles to be detected pass through, but not too large.
  • the circle-equivalent diameter of the through-hole may be in the range of 10 nm to 5 ⁇ m.
  • the equivalent circle diameter of the through-hole may be 50 nm to 4 ⁇ m at the smallest site.
  • the circle-equivalent diameter of a through-hole means the diameter of a circle having an area equal to the cross-sectional area of a cross-section (a cross-section parallel to one or the other surface) of the through-hole.
  • the shape of the through hole is not particularly limited, it is, for example, a frustum such as a truncated cone or a truncated pyramid.
  • the shapes of the two bases (top and bottom) of the frustum are usually similar, but need not be.
  • one base of the frustum may be square and the other base may be rectangular.
  • the equivalent circle diameter of the opening of the through hole on either side of the substrate is 10 nm to 5 ⁇ m (preferably 50 nm to 3 ⁇ m, more preferably 50 nm to 1 ⁇ m, particularly preferably 50 to 500 nm, more particularly preferably 100 to 200 nm), and the circle-equivalent diameter of the opening of the through-hole on the other surface is in the range of 10 nm to 500 ⁇ m (preferably 50 nm to 1 ⁇ m).
  • Through holes of any shape can be provided. It is preferable that the through-hole has a shape having an inclined structure that continuously decreases from one surface of the substrate toward the other surface.
  • the circle-equivalent diameter of the through-holes on the plane where the cross-sectional area of the through-holes is the largest is preferably 500 nm or more.
  • the circle-equivalent diameter of the through-holes on the plane with the smallest cross-sectional area of the through-holes is preferably 50 nm or more, and more preferably 100 nm or more and 1 ⁇ m or less.
  • the substrate for spectrum measurement of fine particles has a through hole penetrating from one surface to the other surface of the substrate as described above, and the through hole has a size that allows the fine particles to pass one by one, and at least the inside of the through hole It is preferable that the surface of the substrate is a metal that exhibits plasmon resonance, and that the through-hole has a shape (inclined structure) that continuously decreases from one surface of the substrate toward the other surface.
  • this substrate for spectral measurement of fine particles of this preferred form may be referred to as the substrate of the present invention.
  • the present inventors found that by using the substrate of the present invention in particular for Raman spectrum measurement, compared with the measurement when this substrate is not used (when using a substrate having cylindrical through holes), 10 8 ( It was found that a 10 to the 8th power)-fold increase in sensitivity was observed. Since the through-hole has a shape (inclined structure, preferably a truncated quadrangular pyramid shape) that continuously decreases from one surface of the substrate to the other surface, the incident light passes through the width of the through-hole along the inclined structure.
  • This enhancement is obtained is that the incident light can be efficiently used by concentrating the light on the through-holes on the surface where the V is the smallest.
  • This enhancement is generally equivalent to the value defined by the enhancement factor (EF) in surface-enhanced Raman spectroscopy, and a 4-aminothiophenol molecule (Sigma -Aldrich Co. LLC), and the value obtained by measuring how many times the Raman scattered light was enhanced by the presence or absence of the through-hole.
  • EF enhancement factor
  • a 4-aminothiophenol molecule Sigma -Aldrich Co. LLC
  • a truncated quadrangular pyramid shape is particularly preferable as the shape of the through hole of the substrate of the present invention.
  • the angle formed by the inner surface of the through-hole (the side surface of the trapezoid in the case of a truncated quadrangular pyramid) with the surface of the substrate is preferably 30 to 90 degrees, more preferably 30 to 60 degrees. is more preferable, and more than 45 degrees and 60 degrees or less is particularly preferable.
  • the substrate of the present invention at least the surface inside the through-hole is made of a metal that exhibits plasmon resonance.
  • the substrate of the present invention is preferably made of a metal exhibiting plasmon resonance.
  • Metals exhibiting plasmon resonance include metals such as gold, silver, copper, and aluminum, or combinations of two or more of these. Gold or silver is preferred, and gold is more preferred.
  • the substrate of the present invention uses an insulating material generally used in the field of semiconductor manufacturing technology as a base material from the viewpoint of ease of forming through-holes or from the viewpoint of cost, and at least the surface inside the through-holes of the base material is It may have a metal layer that exhibits plasmon resonance in the surface.
  • insulating materials that can be used as substrates include Si, Ge, Se, Te , GaAs, GaP, GaN, InSb, InP, Si3N4 (silicon nitride), SiO2 (silicon dioxide), Alternatively, a combination of two or more of these may be used.
  • Si is preferable as the substrate, and a substrate main body made of Si is more preferable. It is also preferable to use a material having a Si 3 N 4 layer or a SiO 2 layer on the surface of a sheet-like substrate main body made of Si, like the substrate used in the examples.
  • the through-holes in the substrate of the present invention can be formed, for example, by etching.
  • a preferred method for forming the through-holes is a production method in which the through-holes are formed in the substrate for spectral measurement of fine particles of the present invention by etching so as to form the through-holes in the shape of a truncated quadrangular pyramid. Specifically, it is preferable to use the substrate manufacturing method of the present invention described below.
  • the method for manufacturing a substrate of the present invention comprises forming a quadrangular pyramid-shaped hole by performing anisotropic etching by wet etching from one surface of a substrate including a substrate main body made of Si from one surface, and forming holes in the other surface of the substrate. Wet etching at opposing locations to penetrate the holes to form through holes.
  • anisotropic etching is performed by wet etching from one surface of a silicon wafer (sheet-like base material made of Si) to form square pyramid-shaped holes, and then wet etching is performed at the opposite position on the other surface. doing.
  • the through holes by this manufacturing method, the holes can be penetrated and the size of the opening can be adjusted within a preferable range. The size of the opening may be adjusted to a desired size after forming the metal layer exhibiting plasmon resonance.
  • the metal layer exhibiting plasmon resonance provided on at least the surface inside the through-holes of the base material may be formed only on the surface inside the through-holes. It may be formed on either one surface, or may be formed on both sides of the substrate.
  • a metal layer exhibiting plasmon resonance may be formed on the surface of the substrate by means such as vapor deposition.
  • the thickness of the metal layer exhibiting plasmon resonance provided at least on the surface inside the through-holes of the base material may be 50 nm or more, preferably 50 ⁇ m or more. There is no particular upper limit because the thicker the thickness, the better.
  • the cross-sectional shape of the opening formed by the through-hole on either side of the substrate is a square with each side of 10 nm to 5 ⁇ m.
  • the width of the through-hole in any one of the openings of the substrate having the smallest through-hole width is preferably 50 to 500 nm, more preferably 100 to 500 nm.
  • this portion is preferably a quadrangle with each side of 50 nm to 5 ⁇ m ⁇ 50 nm to 5 ⁇ m, more preferably a quadrangle of 100 nm to 5 ⁇ m ⁇ 100 nm to 5 ⁇ m, and a quadrangle of 100 to 500 nm ⁇ 50 to 500 nm.
  • the thickness of the substrate is preferably 50 ⁇ m to 500 ⁇ m. With a substrate of this size, it is possible to measure exosomes, especially exosomes with a particle size of about 50 to 150 nm, with high sensitivity and efficiency.
  • the cross-sectional shape of the opening of the through hole may have a short axis and a long axis.
  • the ratio (aspect ratio) of the cross-sectional length (major axis) of the opening of the through-hole and the width (minor axis) of the opening may be, for example, 99:1 to 50:50, but 90: It is preferably 10 to 50:50, more preferably 80:20 to 50:50.
  • the cross-sectional shape of the opening of the through-hole is preferably rectangular, even among quadrilaterals.
  • a preferred example of the cross-sectional shape of the opening of the through-hole is, for example, a rectangle of 100 nm ⁇ 300 nm (aspect ratio 76:24).
  • a process of adjusting fine particles to be dispersed in a liquid When performing spectrum measurement using a substrate having through-holes, the fine particles are preferably adjusted to be dispersed in a liquid. This is because it is easy to guide the fine particles to the through holes and allow them to pass through.
  • An electrolytic solution is preferable as the liquid in which the fine particles are dispersed.
  • the electrolytic solution is not particularly limited, and a solution obtained by dissolving an ionic substance in a polar solvent is preferable. Examples of the electrolytic solution include TE buffer (Tris-EDTA buffer: manufactured by Nippon Gene Co., Ltd.).
  • the step of passing the fine particles through the through-hole includes a step of guiding the fine particles into or near the through-hole, a step of holding the guided fine particles inside or near the through-hole, and a step of holding the fine particles into the through-hole. It is preferable to include a step of removing from the inside or the vicinity of the through hole. It is sufficient if the spectrum is measured in the holding process.
  • the holding position may be inside the through-hole, but may be near the through-hole, that is, a portion in contact with the through-hole on the surface of the substrate, depending on the properties of the microparticles to be measured and the spectrum to be measured. .
  • the step of holding fine particles may be omitted. It is preferable that the fine particles enter the through-hole through the opening on one surface side of the substrate and exit the through-hole through the opening on the other surface side of the substrate.
  • Particles can be guided into or near through-holes using electrophoresis, dielectrophoresis, optical tweezers, Brownian motion, or Coulomb interaction.
  • fine particles dissolved in a liquid are placed in through-holes by one or more methods selected from the group consisting of electrophoresis, dielectrophoresis, optical tweezers, Brownian motion, and Coulomb interaction. It is preferred to let it pass through.
  • a plurality of actions and methods may be used in combination.
  • the fine particles may be held inside or near the through-holes by, for example, being adsorbed inside or near the through-holes.
  • a method of adsorption for example, when the biological microparticles have a negative charge, a method of positively charging the through-holes to cause adsorption by Coulomb force, a method using optical tweezers, a method of chemical adsorption, and the like. can give.
  • a method of chemical adsorption is adsorption using reactive molecules on the surface of the fine particles and the nanostructure, and either one or both of them may be previously modified or coated for this purpose. For example, adsorption using an antigen-antibody reaction may be used.
  • the inside of the through-hole or the vicinity of the through-hole may be modified with a group that binds to an antibody whose antigen is a molecule present on the surface of the fine particle, and the antibody may be used for adsorption (see, for example, Patent Document 3).
  • Patent Document 3 International Publication No. 2018/221271
  • the retention time of fine particles may be determined according to the properties of the fine particles to be measured and the spectrum to be measured, and can be selected, for example, in the range of 0.00005 seconds to 100 seconds.
  • the upper limit of the preferred range of retention time of the fine particles is more preferably 10 seconds or less, particularly preferably 1 second or less, and most preferably 0.1 second or less.
  • the step of holding as described above may be omitted, for example, measurements may be made while the particles are decelerating inside or near the through-hole compared to the speed of movement of the particles to the entrance of the through-hole. .
  • the removal of fine particles from inside or near the through-holes can be performed by electrical discharge, reverse bias application (in the case of Coulomb force), light-off (in the case of optical tweezers), or desorption reaction (in the case of chemisorption).
  • the movement of the fine particles and the adjustment of retention inside or near the through holes may be performed under microscopic observation. Under microscopic observation, the movement of each fine particle can be confirmed and measured.
  • the above process that involves movement of particles can be automated by adjusting the concentration of particles in a sample containing particles, the electrolyte solution used, the cycle of light on and off, etc. You can also For example, when a particle passes through a through-hole, the ionic current flowing through the through-hole is reduced. Therefore, by observing this ionic current, the timing at which the particle passes through the through-hole can be known. Therefore, by using this ion current as a trigger signal, it is possible to automate the turning on and off of the measurement.
  • An electrode for ion current observation may be provided on the side wall of the through-hole or in the immediate vicinity of the through-hole.
  • the measured particle is removed from inside or near the through-hole, and then the next particle is guided to the inside or near the through-hole for measurement.
  • the measured spectrum based on one particle can be efficiently obtained in large numbers (eg, 20 or more, 30 or more, 40 or more, 50 or more, 60 or more, 70 or more, 80 or more, 90 or more, 100 or more).
  • the time taken to complete obtaining the measurement spectrum from n fine particles is 0.00005 to 100 seconds in terms of the average time per fine particle.
  • the upper limit of the preferable range of the time required to complete obtaining the measurement spectrum from n fine particles is more preferably 10 seconds or less, particularly preferably 1 second or less, and 0.1 seconds or less. It is more particularly preferred to have
  • the measurement spectrum is obtained by detecting a signal generated by applying an external stimulus to the fine particles inside or near the through-hole.
  • the through-hole has a shape with an inclined structure that continuously decreases from one surface (surface A) of the substrate to the other surface (surface B)
  • the measured spectrum is measured on the surface of the through-hole having a large opening.
  • the external stimulus is applied from the surface (surface A) side having larger openings.
  • it is preferable to have a structure in which the size of the opening of the through-hole on the laser irradiation side is larger than the spot diameter of the laser.
  • Signal detection for spectrum measurement is also preferably performed from the side of the surface (surface A) having a larger opening.
  • a confocal lens and an objective lens in combination with the light source in order to irradiate and converge the external light from the light source on the fine particles inside or near the through hole.
  • the particles are preferably measured in liquid, and the objective lens is preferably of the immersion type.
  • Signal detection can also be performed through an objective lens.
  • the distance from the objective lens to the through-hole is preferably the same distance as the working distance of the objective lens.
  • an optical filter, a half mirror, etc. can be used with reference to known techniques in order to suppress background signals and obtain a higher S/N.
  • the substrate of the present invention or other substrate for particle measurement having through holes can be used as a member of a device for particle spectrum measurement.
  • the spectrum measurement device includes a substrate, a first liquid tank having an inner wall portion including at least a through hole on one surface of the substrate, and an inner wall portion including at least a through hole on the other surface of the substrate. and a second reservoir.
  • a device for measuring the spectrum of fine particles using the "substrate for measuring the spectrum of fine particles of the present invention" as a substrate is referred to as a device for measuring the spectrum of fine particles of the present invention (hereinafter referred to as a device for measuring the spectrum of fine particles of the present invention. also called).
  • the device of the present invention can be used to construct an apparatus for spectral measurement of fine particles.
  • the device for measuring the spectrum of fine particles of the present invention (hereinafter also referred to as the device of the present invention) comprises the device of the present invention, a guide section for passing fine particles one by one through a through hole, a light source, and light from the light source. includes a detection unit that measures the light (signal) generated when the microparticles in the through-hole are irradiated with the light and obtains a measurement spectrum.
  • Preferred embodiments of the device of the invention and the apparatus of the invention are described below.
  • the microparticles are guided from the first liquid tank to the through hole, and after measurement, move from the through hole to the second liquid tank.
  • the liquid reservoir on the face side of the larger opening is the first liquid reservoir and the more Preferably, the liquid tank on the face side of the small opening is the second liquid tank.
  • the member for forming the first liquid tank and the member for forming the second liquid tank are not particularly limited as long as they are members capable of forming a liquid tank filled with a liquid (such as an electrolytic solution).
  • a liquid such as an electrolytic solution
  • the first liquid tank and the second liquid tank are formed so as to sandwich the substrate, and are formed so that fine particles introduced into the first liquid tank can pass through the through holes and move to the second liquid tank. It is good if there is
  • the first liquid tank and the second liquid tank are provided with holes for filling or discharging the sample solution or the electrolytic solution, and holes for inserting electrodes and/or leads for electrophoresis. good too.
  • the electrodes can be made of known conductive metals such as silver/silver chloride, aluminum, copper, platinum, gold, silver, and titanium. Two electrodes can be placed in the first liquid tank and the second liquid tank, respectively, and the microparticles can be moved by applying a direct current.
  • the applied voltage may be determined according to conditions such as the type of particles to be moved, and can be set between 0.01V and 1.5V, for example.
  • the electrodes placed in the first liquid tank should be connected to the power supply and ground via leads.
  • the electrodes placed in the second liquid tank may be connected to the ammeter and the ground via leads.
  • the connection positions of the power supply and the ammeter may be exchanged between the first liquid tank side and the second liquid tank side, and the power supply and the ammeter may be provided on the same electrode side.
  • the power supply there are no particular restrictions on the power supply as long as it can pass a direct current between the electrodes.
  • the ammeter As long as it can measure the ion current generated over time when the current is applied.
  • a noise elimination circuit, a voltage stabilization circuit, or the like may be provided as necessary.
  • Spectral measurement of fine particles may be performed with a device that includes means for applying an external stimulus to the fine particles (light source) and means for detecting a signal (detector).
  • the apparatus preferably further includes means (induction unit) for passing fine particles through the through-holes one by one.
  • a light source can be mentioned as a means for applying an external stimulus to the microparticles.
  • a preferred light source is a laser.
  • a laser light source may be used as a means for applying an external stimulus to the microparticles.
  • the device of the present invention preferably includes an introduction port for irradiating the through-hole with a laser light source.
  • a detection unit that detects a signal measures light generated by an external stimulus to obtain a measurement spectrum.
  • Light generated by an external stimulus includes Raman scattered light and fluorescence generated when fine particles are irradiated with light from a laser light source.
  • the detection unit includes, for example, a spectroscope for separating light and a detector (light receiving device) for detecting light. More preferably, the detection unit includes a spectroscope for spectrally dispersing the Raman scattered light and a detector for detecting the spectrally separated Raman scattered light.
  • the measured spectrum is a Raman spectrum
  • the light source is a laser light source
  • the detection unit comprises a spectroscope for spectrally dispersing the Raman scattered light and a detector for detecting the spectrally separated Raman scattered light. It is more preferable to include
  • the means for causing the fine particles to pass through the through-holes one by one is not particularly limited, and the means described in the preferred embodiment of the step of passing the fine particles through the through-holes of the substrate of the present invention can be mentioned. Examples thereof include electrophoresis means and optical tweezers means.
  • the electrophoresis means includes a first liquid tank filled with an electrolytic solution on one surface side of the device as described above and a surface including at least through holes, and a surface including at least through holes on the other surface side of the substrate. a first electrode formed in the first bath (which can be arranged in the liquid to be filled); and a first electrode formed in the second bath (which can be arranged in the liquid to be filled). and a power source for applying a voltage to the first and second electrodes.
  • Apparatus for measuring the spectrum of fine particles includes analysis means for implementing the above-mentioned analysis method for fine particles (such as a program for creating principal component analysis and correlation coefficient mapping); General-purpose CPU and processors for executing the analysis means Control means; storage means for storing analysis means; recording means such as memory and RAM for recording the obtained measurement spectrum and other data; input means such as mouse and keyboard; output means; display means such as display; It may include software or hardware. Some or more of these may be stored in a PC or may be stored on a cloud system.
  • One surface of the substrate is covered with an anti-etching metal mask having a square through-hole of 400 ⁇ m ⁇ 400 ⁇ m, and a reactive ion etching apparatus (RIE-10NR, SAMCO CO., Ltd.) is used to fill the through-hole.
  • RIE-10NR, SAMCO CO., Ltd. reactive ion etching apparatus
  • the silicon nitride film was similarly removed only in a square region of 1000 ⁇ m ⁇ 1000 ⁇ m at the opposite position to expose the silicon surface.
  • surface A an aqueous solution of potassium hydroxide (Wako Pure Chemical Industries, Ltd.) on a hot plate at 125° C. for about 3 hours.
  • Wet etching was performed on NINOS ND-1, As One CO., Ltd.).
  • Au which is a metal exhibiting plasmon resonance
  • SVC-700LRF Sanyu Electronics Co., Ltd.
  • FIG. 1B A photograph showing the surface A side of the manufactured substrate and a scanning electron microscope photograph of the through-hole portion of the substrate are shown in FIG.
  • the opening of the through-hole was a rectangle of 100 nm ⁇ 300 nm.
  • the angle formed by the inclined surface of the through-hole (the side surface of the truncated quadrangular pyramid) and the surface of the substrate was 54.7 degrees (FIG. 1B).
  • liquid tanks (first liquid tank and second liquid tank, respectively) are formed on one surface (surface A) and the opposite surface (surface B) of the substrate prepared above. and used as a device for measuring one fine particle. All of the liquid tanks were made of a hydrophilic resin so that the part including the through-holes on the substrate surface was a part of the inner wall.
  • Exosomes which are bioparticles with a lipid bilayer membrane, were used as microparticle samples.
  • the culture supernatant of normal cells TAG-3 (human lung-derived adherent cells); American Type Culture Collection Co., Ltd., America) was collected and centrifuged at 3000 g at 4°C. Centrifugation was performed for 15 minutes at the bottom to remove dead cells and cell debris. This was used as a culture supernatant sample.
  • 20 mL of the culture supernatant sample was introduced into a centrifugation tube dedicated to an ultracentrifuge, and centrifuged at 110,000 g under 4° C. conditions for 80 minutes.
  • liver cancer cell-derived cells HepG2 (human liver cancer cells); American Type Culture Collection Co., Ltd., America) except for using exosome samples derived from normal cells
  • An exosome sample derived from liver cancer was prepared by the same procedure as the preparation.
  • the first liquid tank and the second liquid tank of the device fabricated above were filled with TE buffer (Tris-EDTA buffer: manufactured by Nippon Gene Co., Ltd.) as an electrolytic solution.
  • TE buffer Tris-EDTA buffer: manufactured by Nippon Gene Co., Ltd.
  • silver/silver chloride electrodes were arranged in both baths.
  • the exosome sample prepared above was added to the electrolyte in the first liquid bath.
  • This device was installed on a sample stage of a Raman spectrometer (named LabRAM ARAMIS) manufactured by HORIBA, and a measurement system shown in FIGS. 4 and 5 was constructed.
  • An immersion type objective lens was placed above the first liquid tank so that the distance from the through hole to the surface of the objective lens was 2 mm. Measurements were made using a 785 nm laser.
  • the exosomes in the first liquid tank are guided to the inside of the through-hole using electrophoresis, and each fine particle is passed through the through-hole of the substrate.
  • optical tweezers using a 785 nm laser for Raman measurement
  • the fine particles are held inside the through-hole so as to be adsorbed inside the through-hole and decelerated inside the through-hole. passed through the hole.
  • a laser is irradiated from the side of the through-hole having a large opening for 1 to 10 seconds per fine particle, and the spectrum from 400 to 1600 cm ⁇ 1 is measured at a resolution of 1 cm ⁇ 1 to obtain the Raman spectrum of the through-hole. Got in position. After the measurement, the light was turned off, the particles were peeled off, and after the retained fine particles were removed from the inside of the through-holes, the next fine particles were measured. By repeating this, a plurality of measured Raman spectra were obtained for each fine particle.
  • spectral data which is a bundle of 100 and 155 measurement spectra for each sample, is obtained. Obtained. That is, it was found that, according to the present invention, spectral data for analysis using fine particles with a length of 5 ⁇ m or less can be generated from one fine particle at a time.
  • Figure 6 shows the overlay of multiple Raman spectra measured for exosome samples derived from normal cells
  • Figure 7 shows the overlay of multiple Raman spectra measured for exosome samples derived from liver cancer cells. show. In the results of exosome samples derived from liver cancer cells, it can be seen that signals are observed in the spectra of many fine particles near 1100 cm ⁇ 1 .
  • N ⁇ M matrix was formed after normalizing the observed Raman scattered light intensity (maximum value of 1 in each spectrum).
  • N is the number of spectra (100 and 155)
  • M is each Raman spectral point (both 1200) obtained by dividing 400 to 1600 cm ⁇ 1 with a measurement resolution of 1 cm ⁇ 1 .
  • the correlation coefficient of intensity between two Raman shift points (Y and Y') was obtained by the following formula.
  • FIG. 8 shows the results of exosome samples derived from normal cells.
  • the correlation coefficient mapping shown in the figure the higher the correlation coefficient, the darker the color.
  • the peaks at 1580 cm ⁇ 1 that showed high correlation coefficients (0.5 or more) are circled. Since these peaks move together, they are considered to be signals from the same molecule. Since this group of peaks coincides with the peak of the integrin molecule ( ⁇ 5 ⁇ 1) (Non-Patent Document 5), this group of peaks is considered to be derived from the integrin molecule.
  • Non-Patent Document 5 Mustafa H. Chowdhury, et al., "Use of surface-enhanced Raman spectroscopy for the detection of human integrins", Journal of Biomedical Optics, Vol. 11, 024004.
  • FIG. 9 shows the results of mapping the correlation coefficients of exosome samples derived from liver cancer cells (data in FIG. 7 (155 spectra)).
  • the color of the position where the vicinity of 1087 cm ⁇ 1 and the vicinity of 1435 cm ⁇ 1 intersect is dark, and it can be seen that these peaks are interlocked.
  • the signal around 1087 cm ⁇ 1 is a peak obtained also from non-phosphorylated proteins, but since it is associated with around 1435 cm ⁇ 1 , this is a signal derived from a phosphorylated protein (phosphoserine). turned out to be.
  • Spectral data obtained from exosome samples derived from normal cells obtained as described above (N 1 : 100 spectra)
  • Spectral data obtained from exosome samples derived from liver cancer cells (N 2 : 155 spectra ) was used to prepare spectral data, which is a bundle of 255 (N 1 +N 2 ) measured spectra.
  • Principal component analysis was performed using a 255 x 1200 matrix based on the spectrum data point of 1200 (M), and the eigenvectors of the 1st to 100th principal components were created using a python program. I asked.
  • FIG. 11 shows the score plot results of the first principal component (PC1) and the second principal component (PC2). As indicated by the boundary line in the figure, it was found that the measured spectrum of exosomes derived from normal cells and the measured spectrum of exosomes derived from liver cancer cells could be distinguished from the results of this plot.
  • FIG. 12 shows the score plot results of the first principal component (PC1) and the second principal component (PC2).
  • black circular marks indicate exosomes derived from X-ray irradiated normal cells
  • light gray diamond marks indicate exosomes derived from normal cells
  • dark gray square marks indicate exosomes derived from blood of healthy subjects.
  • Light gray triangular marks indicate senescent cell-derived exosomes
  • dark gray cross-shaped marks indicate hepatoma cell-derived exosomes.
  • Exosomes derived from X-ray-irradiated cells contain fragmented DNA, and it is known that the increase of these DNA fragments within the cell causes the cell to become cancerous. Therefore, by detecting exosomes containing fragmented DNA (X-ray irradiated normal cells in FIG. 12), the tendency of cells to become cancerous can be understood. This can be used for preventive medicine because it can diagnose changes in the body before cancer develops.
  • Non-Patent Document 6 Kazunori Matsui, et al., "Raman Spectra of Silica Gel Prepared from Triethoxysilane and Tetraethoxysilane by the Sol-Gel Method", Journal of the Ceramic Society of Japan, Vol. 106, pp. 528-530.
  • the fluorescence spectrum of the gold microparticles trapped in the through-holes was measured in the same manner (excitation wavelength 532 nm).
  • FIG. 14 shows the measured fluorescence spectrum of one gold fine particle outside the through-hole and the measured fluorescence spectrum of one gold fine particle inside the through-hole. From FIG. 14, it can be seen that the fluorescence from the gold microparticles can be increased by measuring the fluorescence spectrum in the through-hole of the substrate according to the present invention. Since the fluorescence peak wavelength of the fine gold particles is 800 nm or less, this graph shows the tail portion on the long wavelength side of the fluorescence spectrum.
  • the present invention is useful in various fields such as determining the type of fine particles, determining the possibility of disease, and analyzing the state of air pollution.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Dispersion Chemistry (AREA)
  • Biophysics (AREA)
  • Sustainable Development (AREA)
  • Molecular Biology (AREA)
  • Hematology (AREA)
  • Food Science & Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Urology & Nephrology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本発明に係るスペクトルデータの生成方法は、少なくとも1個の微粒子を含む微粒子試料のスペクトルデータの生成方法であって、基板の貫通孔内に配置された微粒子から計測スペクトルを取得する工程を含み、前記貫通孔は、前記基板の一方の面から他方の面に向かって連続的に幅が小さくなる傾斜構造を有し、前記貫通孔の内面の少なくとも一部は、プラズモン共鳴を示す金属で構成されており、前記計測スペクトルを取得する工程では、前記貫通孔内に光を照射しながら前記計測スペクトルを取得する。

Description

微粒子試料のスペクトルデータの生成方法、微粒子の解析方法、微粒子の判別方法、がん細胞由来のエクソソームの有無の判定方法、微粒子のスペクトル計測用基板、微粒子のスペクトル計測用デバイスおよび微粒子のスペクトル計測用装置
 本発明は、微粒子試料のスペクトルデータの生成方法(生産方法)に関する。本発明はまた、微粒子の解析方法;未判別の微粒子を判別する判別方法;エクソソームを含む体液由来の試料中のがん細胞由来のエクソソームの有無を判定する判定方法;微粒子のスペクトル計測用の基板;微粒子のスペクトル計測用デバイス;微粒子のスペクトル計測用の装置に関する。
 様々な分野で、微粒子の解析または微粒子を利用した解析が、その微粒子に含まれる成分に基づいて行なわれている。例えば、微粒子状の小さな細菌等、エクソソーム、またはウイルスなどの長さが5μm以下の生体微粒子は、膜表面に存在する特有の分子の解明により、種類の判定や、生体微粒子が由来する生体の疾患の可能性の判定が行なわれている。また、大気に分散している直径2.5μm以下の微粒子であるPM2.5の成分解析を利用して、大気汚染状況の解析が行なわれている。
 微粒子に含まれる成分を特定するための方法の中でも、スペクトル測定は非破壊的な分析が可能な手法である。特に、ラマンスペクトルは物質を構成する分子の振動に基づくシグナルを観測するものであり、微粒子を構成する各成分に基づく情報を得ることができる。ラマン散乱光は非常に微弱であるが、近年は、表面増強ラマン分光法(SERS)等により、より高感度な分析が可能になっている。SERSは粗い表面をもつ銀や金などの金属上の局在表面プラズモン共鳴(SPR)により分子のラマン散乱光の強度が増大する現象を利用した方法である。特許文献1にはSPRを利用してポリヌクレオチド等の分子を解析する装置が開示されている。
 一方、長さが5μm以下の微粒子よりも大きな対象の種類を判別する方法が知られている。例えば、特許文献2にはラマンスペクトルを利用して試料に含まれる細胞の種類を判別する方法が開示されている。特許文献2に記載の方法では、一つの未判別の細胞から一つのラマンスペクトルを取得し、さらに種類の判明している複数の細胞のそれぞれから一つずつ得られたラマンスペクトルからなる複数のラマンスペクトルの主成分分析により得られた複数の主成分のスペクトルに対して前記未判別の細胞のラマンスペクトルが一致する度合を示す複数の一致度を計算し、この一致度の分類に基づき未判別の細胞の種類を判別している。
国際公開第2009/030953号 国際公開第2019/117177号
 特許文献2に開示される解析方法においては、未判別の1つの微粒子から1つのラマンスペクトルを取得して解析が行なわれている。ただし、実際には、特許文献2の段落[0037]や図4ではラット好塩基球性白血病細胞(RBL)やチャイニーズハムスター卵巣細胞(CHO)などの真核動物細胞を用いており、それらの細胞の粒径は10~30μm程度である。特許文献2の段落[0036]にはレーザー光を照射する細胞を変更しながら、このような大きな粒径の細胞のそれぞれから1つずつラマンスペクトルを取得するラマン散乱光測定装置が記載されている。しかし、特許文献2に記載の装置は、長さが5μm以下の微粒子には適用できない装置であり、そのまま微粒子のサイズが小さい場合に転用することは困難であった。
 さらに、多量の微粒子を含む試料では、そのうちの1つの微粒子のみからのデータに基づく解析では正確な結果が得られない可能性がある。また、入手できる試料中の1つまたは限られた数の微粒子の計測結果に基づいては、目的とする解析を行なうことができない場合がある。例えば、がん細胞に由来するエクソソームに特有の成分が存在するとしても、検査に用いられる体液に含まれるエクソソームのうち、がん細胞由来のエクソソームはその一部であるため、1つまたは数個のエクソソームの計測結果からは上記の特有の成分を利用した正しい判定はできない。一方、より一般的な一定量の微粒子をまとめて計測する手法では、試料中の一部の微粒子のみに含まれる成分の情報は反映されにくい。
 また、特許文献2では種類の判明している複数の細胞のそれぞれから得られた複数のスペクトルの主成分分析結果を利用した判別が開示されている。しかし、より信頼度の高い解析を可能とするために、複数のスペクトルをより多量に容易に得る方法が望まれる。
 本発明の目的は、長さが5μm以下の微粒子の解析または微粒子を利用した解析のためのスペクトルデータの生成方法を提供することである。また、本発明の別の目的は、上記の方法に用いることができる、微粒子のスペクトル計測用の基板、デバイスおよび装置を提供することである。また、本発明の別の目的は、上記の方法を用いた、微粒子の解析方法、未判別の微粒子を判別する判別方法、エクソソームを含む体液由来の試料中のがん細胞由来のエクソソームの有無を判定する判定方法を提供することである。
 本発明者らは、上記課題の解決のため鋭意検討し、特許文献2の計測方法とは全く異なる手法で長さが5μm以下の1微粒子を高感度で計測することができる基板を完成させ、この基板を用いて1微粒子ごとの計測スペクトルを多量の微粒子について効率よく生成し、取得する方法を見出した。そして、この方法に基づき、さらに検討を重ねて、本発明の完成に至った。
 具体的には、本発明は以下のとおりである。
 [1]少なくとも1個の微粒子を含む微粒子試料のスペクトルデータの生成方法(生産方法)であって、基板の貫通孔内に配置された微粒子から計測スペクトルを取得する工程を含み、前記貫通孔は、前記基板の一方の面から他方の面に向かって連続的に幅が小さくなる傾斜構造を有し、前記貫通孔の内面の少なくとも一部は、プラズモン共鳴を示す金属で構成されており、前記計測スペクトルを取得する工程では、前記貫通孔内に光を照射しながら前記計測スペクトルを取得する、生成方法。
 [2]前記計測スペクトルを取得する工程では、前記微粒子試料中の複数の微粒子のそれぞれから計測スペクトルを取得し、前記スペクトルデータは、複数の計測スペクトルの束である、[1]に記載の生成方法。
 [3]前記微粒子の長さが10nm~5μmである、[1]または[2]に記載の生成方法。
 [4]前記計測スペクトルを取得する工程では、前記貫通孔に前記複数の微粒子を1つずつ通過させ、前記複数の微粒子のそれぞれから前記計測スペクトルを取得する、[2]に記載の生成方法。
 [5]前記計測スペクトルを取得する工程では、液体中に分散している前記微粒子を、電気泳動、誘電泳動、光ピンセット、ブラウン運動、およびクーロン相互作用からなる群より選択される1つ以上の方法により前記貫通孔内に移動させる、[1]~[4]のいずれか一項に記載の生成方法。
 [6]前記計測スペクトルは、ラマンスペクトルである、[1]~[5]のいずれか一項に記載の生成方法。
 [7]前記計測スペクトルは、蛍光スペクトルである、[1]~[5]のいずれか一項に記載の生成方法。
 [8][2]または[4]に記載の生成方法により取得された前記スペクトルデータの統計解析を行なう工程を含む、微粒子の解析方法。
 [9]前記スペクトルデータの統計解析を行なう工程は、前記スペクトルデータの前記複数の計測スペクトル間において互いに相関係数の高いピークの集合を形成する工程と、
 得られたピークの集合を既知物のスペクトルと照合して前記微粒子に含まれる成分を少なくとも1つ同定する工程と、を含む、[8]に記載の解析方法。
 [10]前記スペクトルデータの統計解析を行なう工程は、前記スペクトルデータの前記複数の計測スペクトルにおいて多変量解析を行なう工程と、前記多変量解析により得られたスペクトルを既知物のスペクトルと照合して前記微粒子に含まれる成分を少なくとも1つ同定する工程と、を含む、[8]に記載の解析方法。
 [11]未判別の微粒子を判別する判別方法であって、種類の判明している複数の微粒子Aのそれぞれの計測スペクトルおよび別の種類の判明している複数の微粒子Bのそれぞれの計測スペクトルを請求項2に記載の生成方法により取得する工程と、前記複数の微粒子Aの計測スペクトルおよび前記複数の微粒子Bの計測スペクトルを含むスペクトルデータの主成分分析を行い、2つ以上の主成分のスコアから微粒子Aおよび微粒子Bの計測スペクトルを判別する指標を求める工程と、微粒子試料中の1個以上の未判別の微粒子のそれぞれから計測スペクトルを[1]~[7]のいずれか一項に記載の生成方法により取得する工程と、前記未判別の微粒子の計測スペクトルについて前記の2つ以上の主成分のスコアを計算する工程と、前記未判別の微粒子のスコアを前記指標に照合して判別を行なう工程と、を含み、前記未判別の微粒子の長さが10nm~5μmである、判別方法。
 [12]前記未判別の微粒子は、エクソソームであり、前記微粒子Aは、がん細胞由来のエクソソームであり、前記微粒子Bは、正常細胞由来のエクソソームであり、前記判別を行なう工程では、前記未判別の微粒子としての前記エクソソームが、がん細胞に由来するか否かを判別する、[11]に記載の判別方法。
 [13]エクソソームを含む体液由来の試料中のがん細胞由来のエクソソームの有無を判定する判定方法であって、[2]または[4]に記載の生成方法により前記試料中の複数のエクソソームのそれぞれから得られた複数の計測スペクトルからなるスペクトルデータを生成する工程と、前記複数の計測スペクトル間において1087cm-1±5cm-1に極大値を有するシグナルと1435cm-1±5cm-1に極大値を有するシグナルとの相関係数を求める工程と、前記相関係数が一定の値以上であるときに上記試料中にがん細胞由来のエクソソームが存在すると判定する工程と、を含む、判定方法。
 [14]微粒子のスペクトルを計測するための基板であって、前記基板の一方の面から他方の面に貫通する貫通孔を有し、前記貫通孔は、前記微粒子が1つずつ通過できるサイズを有し、前記貫通孔の内面の少なくとも一部は、プラズモン共鳴を示す金属で構成されており、前記貫通孔は、前記基板の前記一方の面から前記他方の面に向かって連続的に幅が小さくなる傾斜構造を有する、基板。
 [15]前記貫通孔は、錐台形状である、[14]に記載の基板。
 [16]前記基板の前記他方の面の前記貫通孔の開口部の円相当径は、10nm~5μmである、[15]に記載の基板。
 [17]微粒子のスペクトルを計測するためのデバイスであって、[14]~[16]のいずれか一項に記載の基板と、前記基板の前記一方の面の少なくとも前記貫通孔を含む部分を内壁に含む第1の液槽と、前記基板の前記他方の面の少なくとも前記貫通孔を含む部分を内壁に含む第2の液槽と、
 を含む、微粒子のスペクトル計測用デバイス。
 [18]微粒子のスペクトルを計測するための装置であって、[17]に記載のデバイスと、前記貫通孔に前記微粒子を1つずつ通過させるための誘導部と、光源と、前記光源の光が前記貫通孔内の前記微粒子に照射されたときに生じる光を計測して計測スペクトルを取得する検出部と、を含む、装置。
 [19]前記計測スペクトルは、ラマンスペクトルである、[18]に記載の装置。
 [20]前記計測スペクトルは、蛍光スペクトルである、[18]に記載の装置。
 本発明により、長さが5μm以下の微粒子の解析または微粒子を利用した解析のための新規なスペクトルデータの生成方法が提供される。また、本発明により、上記の方法に用いることができる、微粒子のスペクトル計測用の基板、デバイスおよび装置が提供される。また、本発明により、上記の方法を用いた、微粒子の解析方法、未判別の微粒子を判別する判別方法、エクソソームを含む体液由来の試料中のがん細胞由来のエクソソームの有無を判定する判定方法が提供される。
図1A~Cは、実施例で用いた基板の製造手順を示す図である。 図2は、実施例で用いた基板の構造を示す図である。 図3は、実施例で用いた、スペクトル計測のためのデバイスの概略断面図を示す。 図4は、実施例で用いたラマンスペクトル測定系の概略断面図を示す。 図5は、実施例で用いたラマンスペクトル測定系の回路ブロック図を示す。 図6は、正常細胞由来のエクソソームサンプル中の複数(N=100)の微粒子の計測ラマンスペクトルを重ねて示す図である。 図7は、肝がん細胞由来のエクソソームサンプル中の複数(N=155)の微粒子の計測ラマンスペクトルを重ねて示す図である。 図8は、正常細胞由来のエクソソームサンプル中の複数の微粒子の計測ラマンスペクトルの相関係数のマッピングを行なった結果を示す図である。 図9は、肝がん細胞由来のエクソソームサンプル中の複数の微粒子の計測ラマンスペクトルの相関係数のマッピングを行なった結果を示す図である。 図10は、正常細胞由来のエクソソームサンプル中の複数の微粒子の計測ラマンスペクトルの主成分分析を行なって得られた第1主成分のスペクトルを示す図である。 図11は、肝がん細胞由来および正常細胞由来のエクソソームサンプル中の複数の微粒子の計測ラマンスペクトルの主成分分析に基づく第1主成分スコアを横座標、第2主成分スコアを縦座標としてプロットした図である。 図12は、正常細胞、X線を照射した正常細胞、肝がん細胞、健常者の血液および老化細胞由来のエクソソームサンプル中の複数の微粒子の計測ラマンスペクトルの主成分分析に基づく第1主成分スコアを横座標、第2主成分スコアを縦座標としてプロットした図である。 図13は、複数(N=100)のシリカ微粒子の計測ラマンスペクトルを重ねて示す図である。 図14は、貫通孔内外にある金微粒子の計測蛍光スペクトルを重ねて示す図である。
 以下、本発明を詳細に説明する。以下に記載する構成要件の説明は、代表的な実施形態や具体例に基づいてなされることがあるが、本発明はそのような実施形態に限定されるものではない。なお、本明細書において「~」を用いて表される数値範囲は「~」前後に記載される数値を下限値および上限値として含む範囲を意味する。
 <微粒子試料のスペクトルデータの生成方法>
 本発明の微粒子試料のスペクトルデータの生成方法(以下、本発明の生成方法という)は、少なくとも1個の微粒子を含む微粒子試料のスペクトルデータの生成方法(生産方法)であって、基板の貫通孔内に配置された微粒子から計測スペクトルを得ることを含む。この後説明するように、上記貫通孔は、上記基板の一方の面から他方の面に向かって連続的に幅が小さくなる傾斜構造を有し、上記貫通孔の内面の少なくとも一部は、プラズモン共鳴を示す金属で構成されている。また、上記計測スペクトルを取得する工程では、上記貫通孔内に光を照射しながら計測スペクトルを取得する。微粒子試料が複数の微粒子を含む場合、上記計測スペクトルを取得する工程では、上記微粒子試料中の複数の微粒子のそれぞれから計測スペクトルを取得してもよい。この場合、スペクトルデータは複数の計測スペクトルの束である。
 本発明は、微粒子試料のスペクトルデータの生成方法に関する。より詳しくは、本発明は、微粒子に含まれる成分に基づいて、微粒子の解析や、当該微粒子を利用した解析を行なうための微粒子試料のスペクトルデータの生成方法に関する。本明細書において、「微粒子に含まれる成分」は特に限定されず、特定の1つの成分であっても、実質的に全ての成分であってもよく、取得されるスペクトルの種類や解析の目的に従って、適宜選択される。解析される微粒子に含まれる成分は、微粒子のいずれの部分に含まれている成分であってもよく、取得されるスペクトルの種類によっても異なるが、微粒子を破壊することなく取得できるスペクトルデータである場合は、特に微粒子の表面に含まれている成分の解析を行なうことができる。
 微粒子試料が複数の微粒子を含む場合、本発明の生成方法は、微粒子試料のスペクトルデータを1つずつの微粒子に基づく計測スペクトルの束として提供することができる。通常、微粒子試料のスペクトルデータは一定量の微粒子がまとめて測定されるものであるため、データは平均化され、試料中の一部の微粒子のみに含まれる成分の情報は反映されにくい。従来、微粒子1つの計測スペクトルに基づく解析は、困難であった。一方、長さが10μmを超える細胞1つの計測スペクトルに基づく解析であっても、特許文献2に記載のように、1つまたは数個程度の限られた数の細胞それぞれの計測スペクトルを用いたものに限られていた。
 本発明の生成方法により、複数の微粒子を含む微粒子試料のスペクトルデータを1つずつの微粒子に基づく計測スペクトルの束として提供することにより、統計学的処理による解析が可能になる。また、種々の微粒子に含まれる成分として、従来検出できていなかった成分を検出することができる。さらに、試料中の微粒子のうちの特定の成分を含む微粒子の量に基づく判定などの、従来の方法では不可能であった判定が可能になる。以下、本発明の生成方法により生成されるスペクトルデータ(1つずつの微粒子に基づく計測スペクトルの束)を、「本発明で得られる新規データベース」ともいう。
 (微粒子)
 本明細書において、「微粒子」というときは、長さが10nm~5μmの粒子を意味する。微粒子の形状は、特に限定されず、例えば、球状、楕円状、円柱状、立方体状、角錐状、その他の多面体状、円錐状、不定形状などであってもよい。
 本明細書において微粒子の長さは、微粒子の断面の中心を通る線とその断面の外周との交点である2点を結んだ線のうち最も長い線(長軸)の長さを意味するものとする。本発明では、微粒子の長さが10nm~3μmであることが好ましく、10nm~1μmであることがより好ましく、30~500nmであることが特に好ましく、50~200nmであることがより特に好ましい。
 本明細書において、微粒子の断面の中心を通る線とその断面の外周との交点である2点を結んだ線のうち最も短い線(短軸)が1nm~5μmであることが好ましく、3nm~3μmであることがより好ましく、5nm~1μmであることが特に好ましく、10~500nmであることがより特に好ましく、30~300nmであることがさらにより特に好ましく、50~200nmであることが最も好ましい。貫通孔を有する基板の貫通孔に微粒子を1つずつ通過させる場合、微粒子の長さ(長軸)の範囲に加えて、短軸の範囲も上記の好ましい範囲とすることが好ましい。
 微粒子の長さ(長軸)と短軸の比(アスペクト比)は、例えば99:1~50:50であってもよいが、90:10~50:50であることが好ましく、80:20~50:50であることがより好ましく、70:30~50:50であることが特に好ましく、60:40~50:50であることがより特に好ましい。ポリヌクレオチドやその他のポリマー分子などのアスペクト比が大きくて細長い微粒子よりも、アスペクト比が比較的小さい微粒子の方が、貫通孔を有する基板の貫通孔に微粒子を1つずつ通過させやすい観点から好ましい。
 微粒子は、単一の成分から構成されていても複数の成分から構成されていてもよいが、本発明の生成方法は、特に複数の成分から構成される微粒子を対象とする際にその意義が大きい。微粒子の例としては、生物に由来する生体微粒子および無機微粒子などがあげられる。生体微粒子の例としては、微粒子状の小さな細菌等、ミトコンドリアなどの細胞小器官、ウイルス、およびエクソソームがあげられる。生体微粒子の中でも、脂質二重膜の構造を有するものが貫通孔を有する基板の貫通孔に微粒子を1つずつ通過させ、計測スペクトルを貫通孔の位置で取得する観点からは、生体微粒子は、脂質二重膜の構造を有するものが好ましく、ウイルスおよびエクソソームがより好ましい。無機微粒子の例としては、PM2.5などがあげられる。
 生体微粒子に含まれる成分の例としては、脂質、タンパク質、糖鎖などがあげられる。無機微粒子に含まれる成分の例としては、炭素成分、硝酸塩、硫酸塩、アンモニウム塩のほか、ケイ素、ナトリウム、アルミニウムなどがあげられる。
 これらの中でも、微粒子は、ウイルス、エクソソーム、または大気に分散している直径2.5μm以下の粒子であることが、微粒子の長さが10nm~3μmであって、アスペクト比が好ましい範囲内である微粒子である点で共通する性質を備える観点から、好ましい。
 微粒子状の小さな細菌等としては、真菌、細菌、マイコプラズマ等があげられる。典型的には、粒径100nm~5μmの細菌等があげられ、粒径100nm~3μmの細菌等が好ましい。本発明の生成方法で得られるスペクトルデータで解析することができる細菌等に含まれる成分の例としては膜タンパク質があげられる。膜タンパク質の解析により、細菌等の種類や状態の判別が可能である。
 ウイルスとしては、コロナウイルス、ノロウイルス、インフルエンザウイルス、エボラウイルスなどが知られている。典型的には、粒径10nm~1μmのウイルスが例示される。本発明の生成方法で得られるスペクトルデータで解析することができるウイルスに含まれる成分の例としては、表面のスパイクタンパク質があげられる。スパイクタンパク質の解析により、ウイルスの種類の判別が可能であり、変異種などの識別も可能である。
 本明細書においてエクソソームは「細胞外小胞」と同義で用いられる。細胞外小胞は「細胞から放出される核を持たない(複製できない)脂質二重膜で囲まれた粒子」と定義される。本発明の生成方法で得られるスペクトルデータで解析することができるエクソソームに含まれる成分の例としては、この脂質二重膜中の成分または脂質二重膜表面に存在する成分があげられる。
 近年では「エクソソーム」は細胞外小胞の一種とされ、細胞外小胞は、産生機構と大きさにより、「エクソソーム」、「マイクロベシクル」、および「アポトーシス小体」に分類されている。エクソソームはエンドソーム由来の小胞であり、粒径50~150nm程度、マイクロベシクルは細胞から直接分泌された小胞であり粒径0.1~1μm程度、アポトーシス小体は細胞死により生じた細胞断片であり粒径1~4μm程度である。しかし、本明細書において、エクソソームというとき、「エクソソーム」であっても、「マイクロベシクル」であっても、「アポトーシス小体」であっても、それらの混合物であってもよい。例えば、「エクソソーム」と「マイクロベシクル」との混合物であってもよい。
 エクソソームは、細胞から分泌され体液に存在している微粒子である。エクソソームを分泌した細胞の情報を含んでいるため、がんを始めとした疾患のバイオマーカーとして注目されている。特に、エクソソームの脂質二重膜表面に存在している成分、具体的にはタンパク質、脂質、糖鎖などの分子を調べることで、がんの種類やそのがんの転移先も予測することが可能である(非特許文献1~3)。しかし、従来、ラマン分光でエクソソームを計測すると、タンパク質や脂質や糖鎖など複数の成分の情報が全て表れたスペクトルが得られるため、特定の成分の解析が困難であった。本発明のスペクトルデータの生成方法を用いることによって、ラマン分光を利用したエクソソームの特定の成分の解析が可能となり、がんなどの疾患のマーカーの解明も可能になると考えられる。
 [非特許文献1]Haiying Zhang, et al., "Identification of distinct nanoparticles and subsets of extracellular vesicles by asymmetric flow field-flow fractionation", Nature Cell Biology, Vol. 20, pp. 332-343.
 [非特許文献2]Ayuko Hoshino, et al., “Tumour exosome integrins determine organotropic metastasis”, Nature, Vol. 527, pp. 329-335.
 [非特許文献3]Ayuko Hoshino, et al., “Extracellular Vesicle and Particle Biomarkers Define Multiple Human Cancers”, Cell, Vol. 182, pp. 1044-1061.
 がん由来のエクソソームは、血液、尿、唾液等の体液に含まれている。したがって、エクソソームを用いた検査や診断は、従来とは異なり、非侵襲性の試料を使用して行なうことができる。なお、体液には、エクソソーム以外の生体成分が含まれている。それらの成分は測定のノイズとなることから、例えば、後述する実施例に示すように、公知の手順により試料からエクソソームを分離してもよい。エクソソームを分泌するがんの種類の例としては、例えば、胃がん、食道がん、肺がん、肝臓がん、胆道がん、膵臓がん、大腸がん、卵巣がん、前立腺がん、膀胱がん、乳がん、神経膠腫、神経膠芽腫、メラノーマ、髄芽腫等があげられる。
 PM2.5は大気に分散している直径(粒径、好ましくは長軸)2.5μm以下の微粒子である。PM2.5は硫酸塩や硝酸塩など塩類、シリカ成分、金属成分、黒色炭素、様々な有機化合物などで構成されており、おもにエアロゾルとして浮遊している。本発明の生成方法で得られるスペクトルデータでは、PM2.5の表面の成分のほか、PM2.5を構成する各成分を解析することができる。PM2.5の組成は環境に応じて様々で、PM2.5の組成を調べることによって、PM2.5の起源、PM2.5の身体への影響などを解明することができる。
 (微粒子試料)
 本発明の微粒子試料のスペクトルデータの生成方法は、微粒子を複数含む微粒子試料のn個の微粒子のそれぞれから計測スペクトルを得ることを含む。微粒子試料の例としては、細胞の培地、細胞の懸濁液、エクソソームを含む体液またこの体液から分離したエクソソームを含む懸濁液、ウイルスの懸濁液、ウイルスを含む体液またこの体液から分離したウイルスを含む懸濁液、大気中からPM2.5を捕集したフィルターまたはこのフィルターから抽出したPM2.5を溶解させた溶液(水溶液)などがあげられる。
 微粒子試料は、上述のような試料について取得する計測スペクトルの種類やスペクトルデータの使用目的等に応じた前処理を行なったものであってもよい。例えば、微粒子試料は、蛍光による検出のため、微粒子表面の分子などを利用して蛍光物質で標識する処理を行なったものであってもよい。また、微粒子を測定基板や貫通孔内部に結合または吸着させるために微粒子表面の分子に反応性分子による修飾を行なってもよい。
 (微粒子試料中の微粒子の個数n)
 微粒子試料は、通常、微粒子を多量に含む試料であり、例えば、10の2乗~15乗程度の微粒子を含む試料でありうる。本発明の微粒子のスペクトルデータの生成方法では、この試料に含まれる全てまたは一部に該当するn個の微粒子それぞれから計測スペクトルを得る。nは試料に含まれる微粒子の量(個数)やスペクトルデータの使用目的等に応じて決定すればよいが、2以上、3以上、4以上、5以上、10以上、20以上、30以上、40以上、50以上、60以上、70以上、80以上、90以上、100以上などであればよい。本発明の生成方法で得られるn個の計測スペクトルからなるスペクトルデータを利用して、統計学的処理による解析が可能になる。未知の微粒子を計測する場合は、より大きいn(100以上が好ましい)のスペクトルデータを利用することにより、さらに信頼度の高い解析が可能である。一方、スペクトル特性が既知の粒子を計測する場合は、5以下のn数でも信頼度の高い解析が可能である。また、複数の微粒子のそれぞれから計測スペクトルを得ることによって、微粒子に関するより正確な情報を得ることができるとともに、試料中の一部の微粒子のみで表れている特性を検出することができる。nの上限は特にないが、計測スペクトル取得の時間と労力やデータの処理を考慮して、1000以下、500以下、300以下などであればよい。
 (計測スペクトル)
 本発明の微粒子試料のスペクトルデータの生成方法では、n個の微粒子のそれぞれから計測スペクトルを得る。1個の微粒子当たり、1個以上の計測スペクトルを計測すればよいが、1個の微粒子当たりで計測されるスペクトル数は同じであることが好ましく、1個の微粒子当たり1個の計測スペクトルを得ることが好ましい。すなわち、本発明の微粒子試料のスペクトルデータの生成方法で得られるスペクトルデータはn個の計測スペクトルの束であることが好ましい。
 本発明の微粒子試料のスペクトルデータの生成方法で得られるn個の計測スペクトルの束は、2次元以上で図示される計測スペクトルのn個の束である。計測スペクトルのn個の束とは計測スペクトルのn個の集合を意味し、n個の計測スペクトルを積算したスペクトルやn個の計測スペクトルを平均化したスペクトルを意味するものではない。ただし、計測スペクトルのn個の束は、必要に応じて、積算または平均化して用いてもよい。n個の計測スペクトルの束は、2次元以上で図示される計測スペクトルのn個をデータ処理したもの(例えば行列、ヒートマップ、ウォータフォールプロット)であってもよい。
 計測スペクトルは特に限定されず、1つの微粒子に基づく結果を与えることができるスペクトルであればよい。計測スペクトルの例としては、ラマンスペクトル、赤外スペクトル、蛍光スペクトル、質量スペクトルなどがあげられる。計測スペクトルは、ラマンスペクトルおよび蛍光スペクトルが好ましく、ラマンスペクトルが特に好ましい。
 (計測スペクトルを得る方法)
 本発明の微粒子試料のスペクトルデータの生成方法は、微粒子試料中のn個の微粒子のそれぞれから計測スペクトルを得る工程を含む。微粒子から計測スペクトルを得る方法は特に制限はない。例えば、取得する計測スペクトルに応じて微粒子に外部刺激が与えられ、微粒子由来のシグナルが計測されることが好ましい。例えば、赤外スペクトルの取得のためには赤外光を照射し、波数に応じた照射光の吸収を観測する。蛍光スペクトルの取得のためには、単色の励起光を照射し、生じる蛍光を観測する。質量スペクトルの取得のためには、分子のイオン化に必要な電子線照射、イオン照射、レーザー照射などを行なう。
 外部刺激の種類は上述のように取得する計測スペクトルに依存するが、光であることが好ましい。光はレーザー光であることが好ましい。レーザー光は指向性および集光性が高く、長さが10nm~5μmの微粒子の測定に適しているからである。レーザー光としては、半導体レーザー、ガスレーザー、固体レーザーなどから、必要な波長のレーザーを選択して用いることができる。
 ラマンスペクトルの取得のためには単色のレーザー光が照射されればよい。物質に一定振動数の単色光を照射したとき、生じる散乱光の大部分は入射光と同じ振動数を有しているが、ごく僅かに異なる振動数の散乱光(ラマン散乱光)が生じる。この散乱光の振動数と入射光との振動数の差(ラマンシフト)は、物質を構成する分子の振動状態に対応するものである。従って、ラマン散乱光強度をラマンシフトに対してプロットしたラマンスペクトルは物質を構成する分子の構造や状態を知るための分析法として利用されている。
 ラマンスペクトル取得のために用いる単色光の波長としては、ラマン散乱光を発生させることができる波長の外部光(励起光)を照射する、公知の光源を使用して得られる波長から選択することができる。例えば、波長約400~800nmの範囲で、解析する微粒子や微粒子に含まれる成分に応じて適宜選択することができる。ラマンスペクトルは、生体試料に影響の少ない近赤外光を励起光として用いることも可能であるため、培養条件下で生きたままの細胞を観測することも可能である。
 微粒子1つに含まれる成分からのラマン散乱光は、非常に微弱であるため、増強されることが好ましい。増強する方法としては、例えば、共鳴ラマン散乱、ティップ増強ラマン散乱(TERS)、表面増強ラマン散乱(SERS)などがあげられ、これらの手法を組み合わせてもよい。それぞれ手法は公知である。例えば、金や銀などのプラズモン共鳴を示す金属に分子を吸着させ表面増強ラマン散乱を得ることにより、孤立した分子からのラマン散乱光と比べて散乱光強度を10(10の4乗)倍以上増強できることが知られている。内部の表面がプラズモン共鳴を示す金属である貫通孔を有する本発明の基板を利用して計測スペクトルを取得する場合は、少なくとも表面増強ラマン散乱に基づく、増強効果が得られ、さらに、所定の形状の貫通孔とすることにより、10(10の8乗)倍の増強を得ることができる。この基板を用いる場合の外部刺激としては、プラズモン共鳴を誘導する刺激であれば特に限定されないが、ラマンスペクトル測定時に用いられる単色のレーザーを用いることが好ましい。
 微粒子を複数含む微粒子試料のn個の微粒子それぞれから計測スペクトルを得る方法(好ましくは、1微粒子のラマンスペクトルの生成方法)の例としては以下があげられる。
 まず、スペクトル計測時に用いる基板上に試料中の微粒子を散布し、光照射器および検出器等のプローブを走査して、顕微観察の下、各微粒子の計測スペクトルを得る方法があげられる。または、同様にスペクトル計測時に用いる基板上に試料中の微粒子を散布し、基板を走査して各微粒子の計測スペクトルを得ることもできる。計測スペクトルがラマンスペクトルである場合はプローブとしてプラズモン共鳴を誘導するプローブを用いることが好ましい。
 また、スペクトル計測時に用いる基板上で、顕微観察の下、電気泳動や光ピンセットの手段を用いて微粒子を略水平方向で移動させながら、1微粒子ごとの計測スペクトルを取得する方法があげられる。例えば、計測スペクトルがラマンスペクトルまたは蛍光スペクトルである場合、少なくとも表面がプラズモン共鳴を示す金属である貫通孔を設けられた基板を用いることが好ましい。吸着等によって上記の貫通孔の位置に微粒子を保持して計測スペクトルを取得することにより、表面増強ラマン散乱光またはプラズモン共鳴による蛍光増強(表面プラズモン励起増強蛍光)を得ることができるからである。この手順を繰り返して、n個の微粒子それぞれから計測スペクトルを得ることができる。
 さらに、試料中の微粒子を1つずつ、基板の略法線方向に移動させながら、各微粒子の計測スペクトルを得る方法があげられる。例えば、電気泳動や光ピンセットの手段を用いて、貫通孔を有する基板の貫通孔に微粒子を1つずつ通過させ、貫通孔の位置で微粒子を計測することができる。この手順によっては、多くの計測スペクトルを、より早く、またより簡易に得ることが可能である。例えば、計測スペクトルがラマンスペクトルまたは蛍光スペクトルである場合、少なくとも貫通孔内部表面がプラズモン共鳴を示す金属である基板を用いることが好ましい。貫通孔内部で計測スペクトルを取得することにより、表面増強ラマン散乱または表面プラズモン励起増強蛍光を得ることができるからである。この手順を繰り返して、n個の微粒子それぞれから計測スペクトルを得ることができる。
 微粒子を複数含む微粒子試料のn個の微粒子それぞれから計測スペクトルを得る方法において、基板を固定した状態で計測スペクトルを取得することが、多くの計測スペクトルを、より早く、またより簡易に得る観点から好ましい。特許文献2の段落[0035]~[0036]の試料保持部を移動させて、細胞1つずつからラマンスペクトルを取得する方法と比較して、基板を固定した状態で計測スペクトルを取得することで、より早く計測スペクトルを取得できる。さらに、光照射器および検出器も固定することが好ましい。
 さらに、ラマンスペクトルまたは蛍光スペクトルを貫通孔の大きい開口部を有する面側から光を照射することを含む手順で取得することが、ラマン散乱光強度または蛍光強度をより増強する観点からより好ましい。
 <微粒子の解析方法>
 本発明の微粒子の解析方法は、本発明の生成方法により取得されたスペクトルデータの統計解析を行なう工程を含む。本発明の微粒子試料のスペクトルデータの生成方法で得られたスペクトルデータ、すなわちn個の計測スペクトルの束(本発明で得られる新規データベース)について統計解析を行なうことで、微粒子に含まれる成分に基づく解析を行なうことができる。統計解析は機械学習または人工知能(AI)を利用して行なってもよい。統計解析により未知の微粒子の解析を行なう場合、十分な精度および信頼度を得るために本発明の生成方法を行うとき(本発明で得られる新規データベースを構築するとき)のnは20以上が好ましく、50以上がより好ましく、80以上がさらに好ましく、100以上が特に好ましい。一方、既知の微粒子の解析や既知の微粒子を利用した解析を行なう場合は、本発明の生成方法を行うとき(本発明で得られる新規データベースを構築するとき)のnは、2~5などの小さいnでも十分な信頼度が得られることもある。
 (多変量解析)
 本発明の解析方法の好ましい態様の一例は、本発明の生成方法により取得されたスペクトルデータのn個の計測スペクトルにおいて多変量解析を行なう工程と、多変量解析により得られたスペクトルを既知物のスペクトルと照合して微粒子に含まれる成分を少なくとも1つ同定する工程と、を含む解析方法である。
 スペクトルデータについて、例えば、主成分分析、スパース主成分分析、非負値行列因子分解(多変量波形分解-交互最小二乗)、クラスター分析、独立成分分析、線形判別分析、ロジスティック回帰分析、または混合ガウスモデルなどの多変量解析を行なって、微粒子の成分に基づく情報を得ることができる。
 本発明の微粒子のスペクトルデータの生成方法では1微粒子ごとの計測スペクトルの束が得られるため、上記のような解析方法を利用して、含まれる成分に関する情報を得ることができる。
 例えば、測定微粒子の構成成分に関する情報が既知である場合は、本発明で得られる新規データベースに対して、既知の構成成分のスペクトルデータ(既知スペクトルデータベース)を参照スペクトル等として使用した解析を行なうことによって、詳細な解析を行なうことができる。さらに、微粒子に特定の成分が存在するか否か(例えば、がんのマーカー分子など)の判定も当該特定成分のスペクトルを基準とした解析により行なうことができる。
 また、上記のような解析方法を利用して、未知の微粒子であっても、含まれる成分に関する情報を得ることができる。例えば、本発明の生成方法により生成されたスペクトルデータについて主成分分析を行い、得られた主成分のスペクトルを既知のスペクトル(例えば、既知スペクトルデータベースを利用できる。)と照合して微粒子に含まれる成分を同定することができる。
 (相関係数を利用した解析)
 また、微粒子の解析方法の別の例として、相関係数を利用した解析があげられる。具体的には、本発明の生成方法により生成されたスペクトルデータのn個の計測スペクトル間において互いに相関係数の高いピークの集合を形成し、得られたピークの集合を既知物のスペクトル(例えば、既知スペクトルデータベースを利用できる。)と照合して微粒子に含まれる成分を同定することができる。ピークの集合は、2つ以上のピークを含むものであればよく、例えば、2つのピーク(例えば、成分の特徴的な2つのピーク)のみからなるものでもよく、スペクトルに対応するものであってもよい。
 すなわち、あるピークAが増えた時に一緒にピークBが同じだけ増えれば、AとBの相関係数は1、ピークBが変化なければ相関係数0、逆に同じだけ減少した場合はピークAとBの相関係数-1となる。ラマンスペクトルの場合、ピークは分子に対応しているので、相関係数が高ければ高いほど、それらのピークは同じ分子からのシグナルであると判断できる。この相関性を得られたデータ全てで調べる、つまりn個のスペクトルにおいて注目しているピークに対して各スペクトル間で相関係数を求める。そうすることで、連動し合っているピークがわかる。その連動し合っているピークは同一の分子からのシグナルと判断できる。
 具体的手順としては、各粒子のスペクトルを、表1に示すようにN×Mの行列にする。その後、各波数二点(Y番目とY’番目)における強度(intensity)の相関係数を実施例で具体的に示す式に基づき算出する。また、必要に応じて各スペクトルの最大値を1に正規化もしくは一般的な標準化処理、またはその両方をしてから相関係数を求めてもよい。
Figure JPOXMLDOC01-appb-T000001
<エクソソームを含む体液由来の試料中のがん細胞由来のエクソソームの有無を判定する判定方法>
 相関係数を利用した解析により微粒子の性質を示す成分の部分構造に基づくシグナルを利用した特定の微粒子の有無の解析も可能である。
 本発明の判定方法は、エクソソームを含む体液由来の試料中のがん細胞由来のエクソソームの有無を判定する判定方法であって、本発明の生成方法により試料中のn個のエクソソームそれぞれから得られたn個の計測スペクトルからなるスペクトルデータを生成する工程と、n個の計測スペクトル間において1087cm-1±5cm-1に極大値を有するシグナルと1435cm-1±5cm-1に極大値を有するシグナルとの相関係数を求める工程と、相関係数が一定の値以上であるときに上記試料中にがん細胞由来のエクソソームが存在すると判定する工程とを含む。
 実施例では、エクソソームを含む体液由来の試料中のエクソソームについて155個の計測ラマンスペクトルを取得し、得られたスペクトル間において、リン酸化セリン中の構造に起因する2つの特徴的なシグナルの相関関係を確認することによって、リン酸化タンパク質の存在を特定している。具体的には、1087cm-1±5cm-1に極大値を有するシグナルと1435cm-1±5cm-1に極大値を有するシグナルとが連動していること、すなわち、相関係数が一定値以上であることに基づき、リン酸化タンパク質の存在を特定している。リン酸化セリンはリン酸化タンパク質の特徴的な部分構造であり、リン酸化タンパク質の存在はがん細胞由来のエクソソームの特徴である(非特許文献4)。したがって、上記のシグナルの連動の有無によって、試料中のがん細胞由来のエクソソームの有無を判定することができる。この判定結果はがんの診断に利用することができる。
 [非特許文献4]Shilian Dong et al., ”Beehive-Inspired Macroporous SERS Probe for Cancer Detection through Capturing and Analyzing Exosomes in Plasma”, ACS Appl. Mater. Interfaces, Vol. 12, pp. 5136-5146.
 相関係数を利用した解析は、実施例で示すようなスペクトルの二次元マッピングを用いて行なうこともできる。
<未判別の微粒子を判別する判別方法>
 さらに、本発明の生成方法によって取得した既知の微粒子のスペクトルデータを利用して、未判別の(未知の)微粒子の解析を行なうこともできる。例えば、同一種の微粒子(例えば、ウイルス同士、エクソソーム同士)であるが、互いに性質等が異なる微粒子の判別(例えば、変位型ウイルスの判別、がんなどの特定の疾患患者由来の微粒子の判別など)を行なうことができる。
 一例として、互いに異なる微粒子試料についてそれぞれ本発明の生成方法により取得した計測スペクトルの束を足し合わせた計測スペクトルの束を用いて主成分分析を行った結果、互いに異なる微粒子を判別する指標が見出された場合には、その指標を利用して、微粒子の判別を行なうことができる。
 本発明の生成方法によって取得した既知の微粒子のスペクトルデータを利用した微粒子の判別の中でも、以下に記載する本発明の判別方法に適用することが好ましい。
 本発明の判別方法は、未判別の微粒子を判別する判別方法であって、
 種類の判明している微粒子AのN個の計測スペクトルおよび別の種類の判明している微粒子BのN個の計測スペクトルをそれぞれ本発明の生成方法により取得する工程と、
 N+N個の計測スペクトルからなるスペクトルデータの主成分分析を行い、2つ以上の主成分のスコアから微粒子Aおよび微粒子Bの計測スペクトルを判別する指標を求める工程と、
 微粒子試料中の1個以上の未判別の微粒子のそれぞれから計測スペクトルを得ること、
 未判別の微粒子の計測スペクトルについての2つ以上の主成分のスコアを計算する工程と、
 未判別の微粒子のスコアを指標に照合して判別を行なう工程とを含み、未判別の微粒子の長さが10nm~5μmである。
 対象としている検体微粒子(未判別の微粒子)について、微粒子A(既知の検体微粒子1)または微粒子B(既知の検体微粒子2)のいずれかを判別する場合に考えられる指標を以下で説明する。
 検体微粒子1のN個の計測スペクトルの束および検体微粒子2のN2個の計測スペクトルの束を足し合わせてN+N個の計測スペクトルの束であるスペクトルデータを得る。前記のN+N個の計測スペクトルからなるスペクトルデータの主成分分析を行い、2つ以上の主成分のスコアから検体微粒子1および検体微粒子2の計測スペクトルを判別する指標を求める。NおよびNは、それぞれ20以上が好ましく、50以上がより好ましく、100以上がさらに好ましい。具体例として、スペクトルのデータ点をMM点とし、(N+N)×MM個の行列を作成する。例えば、検体微粒子1および検体微粒子2それぞれのスペクトルの束の数が100個、スペクトルのデータ点が1000点だった場合、足し合わせた200個のスペクトル束で200×1000の行列となる。その行列に対する分散共分散行列を求め、さらにその分散共分散行列に対する固有値と固有ベクトルを求める。その際、必要に応じてスペクトル束の正規化および標準化を行なってもよい。固有値の大きいものから第一主成分、第二主成分とし、各固有値における固有ベクトルを用いてスコアプロットを作成する。2つ以上の主成分スコア、例えば第一主成分と第二主成分、のスコアプロットを形成して、各微粒子間で境界線を形成できる場合、これを上記の指標とすることができる。
 すなわち、未判別の微粒子から取得される測定対象のスペクトルについて上記の主成分のスコアを計算して、上記スコアプロットと照合することにより、いずれの微粒子であるか判別することができる。測定対象のスペクトルは、1微粒子の計測スペクトルであってもよく、本発明の生成方法により生成されたスペクトルデータであってもよい。
 なお、未判別の微粒子のスペクトルデータを1微粒子の計測スペクトルとして取得する場合の好ましい態様は、本発明の生成方法の好ましい態様と同様である。また、未判別の微粒子を1微粒子の計測スペクトルとして取得する場合、本発明の微粒子のスペクトル計測用基板を用いて、1微粒子の計測スペクトルを取得することが好ましい。
 (対象エクソソームががん細胞に由来するか否かを判別する判別方法)
 未判別の微粒子を判別する判別方法の中でも、本発明の判別方法は、対象エクソソームががん細胞に由来するか否かを判別する判別方法であって、
 がん細胞由来のエクソソームのN個の計測スペクトルおよび正常細胞由来のエクソソームのN個の計測スペクトルをそれぞれ本発明の生成方法により取得する工程と、
 N+N個の計測スペクトルからなるスペクトルデータの主成分分析を行い、2つ以上の主成分のスコアからがん細胞および正常細胞由来の計測スペクトルを判別する指標を求める工程と、
 対象エクソソームのスペクトルについての2つ以上の主成分のスコアを計算する工程と、
 対象エクソソームのスコアを指標に照合して判別を行なう工程と、を含むことが好ましい。
 その他の判別方法の好ましい態様は、特許文献2の段落[0006]~[0085]において細胞の代わりに長さが5μm以下の微粒子を用いる判別方法、学習方法および判別装置などの態様を挙げることができ、特許文献2の当該段落に記載された内容は参照して本明細書に組み込まれる。
 具体的には、一つの未判別の微粒子から一つの計測スペクトル(例えばラマンスペクトルや蛍光スペクトル)を取得し、種類の判明している複数の微粒子のそれぞれから一つずつ得られた計測スペクトルからなる複数の計測スペクトルの主成分分析により得られた複数の主成分のスペクトルに対して、未判別の微粒子の計測スペクトルが一致する度合を示す複数の一致度を計算し、主成分分析により得られた種類の判明している複数の微粒子のそれぞれに対応する複数の主成分スコアを、教師あり学習を用いる学習モデルによって種類別に分類した結果に基づいて、複数の一致度を分類することにより、未判別の微粒子の種類を判別することが好ましい。
 教師あり学習を用いる学習モデルとして、サポートベクターマシンを用いることが好ましいが、その他の学習モデルを用いてもよい。種類の判明している複数の微粒子のそれぞれに対応する複数の主成分スコアとそれぞれの微粒子の種類とを教師データとして、サポートベクターマシン等の学習モデルの機械学習を行うことが好ましい。また、微粒子の種類の判別を行う判別装置は、外部から教師データを取得することが好ましい。
 一方、教師なし学習を用いる学習モデルを用いて分類してもよく、教師なし学習を用いる学習モデルとして、クラスタリングなどを挙げることができる。
 判別装置は、種類の判明している複数の微粒子から得られた複数の計測スペクトルを主成分分析により得られた複数の主成分のスペクトルと、種類の判明している複数の微粒子のそれぞれに対応する複数の主成分スコアを学習モデルによって種類別に分類した結果とを、外部から取得することが好ましい。
 また、種類の判明している複数の微粒子のそれぞれに対応する複数の主成分スコアを分類する際に、複数の主成分スコアを成分とした座標点が含まれる座標空間を、サポートベクターマシン等の学習モデルによって複数の領域に分割することが好ましい。例えば、座標点は第1主成分スコア及び第2主成分スコアを成分とした二次元の座標点である。座標空間の分割に応じて、微粒子の種類別に複数の主成分スコアが分類される。
 (相関係数の二次元マッピングの比較による判別方法)
 また、既知の微粒子について上記のように得られた相関係数の二次元マッピングを、測定対象の未知微粒子で同様に得た相関係数の二次元マッピングと比較して異同を判断することにより、測定対象の未知微粒子を判別することもできる。
 <微粒子のスペクトル計測用基板>
 本発明の微粒子のスペクトル計測用の基板は、基板の一方の面から他方の面に貫通する貫通孔を有し、貫通孔は微粒子が1つずつ通過できるサイズを有し、貫通孔の内面の少なくとも一部がプラズモン共鳴を示す金属で構成されており、貫通孔は基板の一方の面から他方の面に向かって連続的に幅が小さくなる傾斜構造を有する。上記のように、微粒子を複数含む試料のn個の微粒子それぞれから計測スペクトルを得るために、貫通孔を有する基板を用いることにより、多くの計測スペクトルを、より早く、またより簡易に得ることが可能である。以下、このような貫通孔を有する、本発明の微粒子のスペクトル計測用の基板について説明する。
 なお、本発明の微粒子のスペクトル計測用の基板は、長さが10nm~5μmである微粒子に対しても、それよりも長さが大きい粒子または小さい微粒子に対しても適用できる。ただし、本発明の微粒子のスペクトル計測用の基板は、長さが10nm~5μmである微粒子に対して適用することが好ましい。特に、本発明の微粒子のスペクトル計測用の基板を、長さが10nm~5μmである微粒子に適用することで、本発明の微粒子試料のスペクトルデータの生成方法や、本発明の微粒子の解析方法や、本発明の判別方法を行うことがより好ましい。
 (基板)
 基板はスペクトル計測時に用いることができるものであれば特に限定されない。基板としてはシート状の基板を用いればよい。基板の材料の例としては、無機材料および高分子材料などの有機材料があげられる。基板の材料は電気的絶縁性を有することが好ましい。例としては、ケイ素(シリコン:Si)などの半導体製造技術の分野で用いられている絶縁性の材料のほか、ガラス、石英、金、銀、銅、アルミニウム、ポリジメチルシロキサン(PDMS)、ポリテトラフルオロエチレン(PTFE)、ポリスチレン、ポリプロピレンなどがあげられる。基板の厚みは、貫通孔を設けることができるものであれば特に限定されず、例えば50nm~1mm程度であればよく、50nm~500μmが好ましく、1μm~500μmがより好ましい。基板のサイズは貫通孔を設けることができるサイズであれば特に限定されない。
 基板は公知の方法で製造すればよく、市販品を用いることもできる。貫通孔は、エッチング、フォトリソグラフィなどの公知の手段を用いて形成すればよい。基板の全面または一部の面は(例えば貫通孔内部や近傍)は、表面加工されていてもよい。
 (貫通孔)
 基板は、基板の一方の面から他方の面に貫通する貫通孔を有する。貫通孔のサイズは、測定対象の微粒子が1つずつ通過できればよい。したがって、貫通孔のサイズは、検出したい微粒子の通過時の最大断面積より大きいが、大き過ぎないように適宜調整すればよい。例えば、貫通孔の円相当径は10nm~5μmの範囲であればよい。測定対象の微粒子がエクソソームである場合、貫通孔の円相当径は、最も小さい部位で50nm~4μmであればよい。なお、本明細書において、貫通孔の円相当径とは、貫通孔のある断面(一方の面または他方の面に平行な断面)について、その断面積と等しい面積の円の直径を意味する。
 貫通孔の形状は特に限定されないが、例えば円錐台、角錐台などの錐台である。錐台の2つの底面(上底および下底)の形状は、通常は相似であるが、必ずしも相似でなくてもよい。例えば、錐台の一方の底面が正方形で、他方の底面が長方形であってもよい。また、用いるレーザーの波長や貫通孔近傍の屈折率に応じて貫通孔の形状および幅を選択することが好ましい。例えば、水溶液中で785nmのレーザーを用いた場合、基板のいずれか一方の面の前記貫通孔による開口部の円相当径が10nm~5μm(好ましくは50nm~3μm、より好ましくは50nm~1μm、特に好ましくは50~500nm、より特に好ましくは100~200nm)で、他方の面の前記貫通孔による開口部の円相当径が10nm~500μm(好ましくは50nm~1μm)の範囲で、基板に上記のいずれかの形状の貫通孔を設けることができる。貫通孔は基板の一方の面から他方の面に向かって連続的に小さくなる傾斜構造を有する形状であることが好ましい。このとき、貫通孔の断面積が最も大きくなる面における貫通孔の円相当径は500nm以上であることが好ましい。貫通孔の断面積が最も小さくなる面における貫通孔の円相当径は50nm以上であることが好ましく、100nm以上1μm以下であることがより好ましい。
 微粒子のスペクトル計測用基板は、上記のように基板の一方の面から他方の面に貫通する貫通孔を有し、かつ貫通孔は微粒子が1つずつ通過できるサイズを有するとともに、少なくとも貫通孔内部の表面がプラズモン共鳴を示す金属であり、貫通孔は前記基板の一方の面から他方の面に向かって連続的に小さくなる形状(傾斜構造)を有することが好ましい。以下、この好ましい形態の微粒子のスペクトル計測用基板を本発明の基板ということがある。本発明者らは、本発明の基板を特にラマンスペクトルの計測に用いることによって、この基板を用いないとき(円柱形状の貫通孔を有する基板を用いる場合)の計測と比較して、10(10の8乗)倍の感度の増強が見られることを見出した。貫通孔が基板の一方の面から他方の面に向かって連続的に小さくなる形状(傾斜構造、好ましくは四角錐台形状)を有することで、入射光が傾斜構造に沿って、貫通孔の幅が最も小さくなる面における貫通孔に集光し、入射光を効率よく利用できることが、この増強度を得られる理由の一つとして挙げられる。この増強度は、一般的に表面増強ラマン分光測定におけるエンハンスメントファクター(EF)で定義されている値と等価であり、ラマン分光測定において参照試料として一般的に用いられる4-アミノチオフェノール分子(Sigma-Aldrich Co. LLC)を計測し、貫通孔の有無によってラマン散乱光が何倍に増強したかを計測することで得られた値である。
 本発明の基板の貫通孔に微粒子を1つずつ通過させ、貫通孔の位置で微粒子を計測することにより、1微粒子ごとの計測スペクトルを連続的に得ることができる。また、本発明の基板を用いて、ラマンスペクトルを計測するスペクトルデータの生成方法では、蛍光分子などでの標識や金属表面への固定化処理などが無くても、高感度な計測で得られたスペクトルデータを効率よく取得することができる。
 本発明の基板の貫通孔の形状としては特に四角錐台形状が好ましい。本発明の基板において貫通孔の内部の面(四角錐台形状である場合は台形の側面)が基板の表面となす角度は30~90度であることが好ましく、30度から60度であることがより好ましく、45度を超え60度以下であることが特に好ましい。
 本発明の基板は少なくとも貫通孔内部の表面が、プラズモン共鳴を示す金属である。本発明の基板はプラズモン共鳴を示す金属を材料としていることが好ましい。プラズモン共鳴を示す金属としては、金、銀、銅、アルミニウムなどの金属またはこれらいずれか2つ以上の組み合わせがあげられ、金または銀が好ましく、金がより好ましい。
 本発明の基板は貫通孔形成の容易性の観点またはコストの観点から、半導体製造技術の分野で一般的に用いられている絶縁性の材料を基材とし、基材の少なくとも貫通孔内部の表面にプラズモン共鳴を示す金属の層を有しているものであってもよい。基材として用いることができる絶縁性の材料の例としては、Si、Ge、Se、Te、GaAs、GaP、GaN、InSb、InP、Si(窒化ケイ素)、SiO(二酸化ケイ素)、またはこれらいずれか2つ以上の組み合わせ等があげられる。これらのうち、基材としてはSiが好ましく、Siからなる基材本体であることがより好ましい。実施例で用いた基材のように、Siからなるシート状基材本体の表面にSi層またはSiO層を有する材料を用いることも好ましい。
 本発明の基板における貫通孔は、例えば、エッチング等により形成することができる。好ましい貫通孔の形成方法は、本発明の微粒子のスペクトル計測用の基板において、貫通孔が四角錐台形状である態様を、エッチングにより形成する製造方法である。具体的には、以下に示す、本発明の基板の製造方法であることが好ましい。
 本発明の基板の製造方法は、Siからなる基材本体を含む基材の一方の面からウェットエッチングによる異方性エッチングを行ない四角錐形状の孔を形成すること、基材の他方の面の対向する位置でウェットエッチングを行なって孔を貫通させて貫通孔を形成することを含む。後述する実施例にはその手順の一例が示されている。実施例では、シリコンウエハー(Siからなるシート状基材)の一方の面からウェットエッチングによる異方性エッチングを行ない四角錐形状の孔を形成したのち、他方の面の対向する位置でウェットエッチングを行なっている。この製造方法で貫通孔を形成することによって、孔を貫通させるとともに開口部の大きさを好ましい範囲に調整することができる。なお、開口部の大きさはプラズモン共鳴を示す金属の層を形成後に所望のサイズとなるように調整すればよい。
 本発明の基板において、基材の少なくとも貫通孔内部の表面に設けられているプラズモン共鳴を示す金属の層は、貫通孔内部の表面のみに形成されていてもよく、加えて、基材のいずれか一方の表面に形成されていてもよく、基材の両面に形成されていてもよい。プラズモン共鳴を示す金属の層は蒸着などの手段で基材の表面に形成されていればよい。
 本発明の基板において、基材の少なくとも貫通孔内部の表面に設けられているプラズモン共鳴を示す金属の層の厚みは、50nm以上であればよく、50μm以上であることが好ましい。厚いほど好ましいため、上限は特にないが、製造の容易性やコストの観点から100μm以下であることが好ましい。
 本発明の基板は、基板のいずれか一方の面の貫通孔による開口部の断面形状が、各辺が10nm~5μmの4角形であることが好ましい。本発明の基板は、貫通孔の幅が最も小さくなる基板のいずれか一方の開口部における貫通孔の幅が50~500nmであることが好ましく、100~500nmであることがより好ましい。特にこの部位は各辺が50nm~5μm×50nm~5μmの4角形であることが好ましく、100nm~5μm×100nm~5μmの4角形であることがより好ましく、100~500nm×50~500nmの4角形であることがさらに好ましい。このとき、基板の厚みは、50μm~500μmであることが好ましい。この大きさの基板で、特にエクソソーム、とりわけ、粒径50~150nm程度のエクソソームの計測を高感度で効率良く行なうことが可能である。
 貫通孔の開口部の断面形状は、短軸と長軸を有していてもよい。貫通孔の開口部の断面形状の長さ(長軸)と、開口部の幅(短軸)の比(アスペクト比)は、例えば99:1~50:50であってもよいが、90:10~50:50であることが好ましく、80:20~50:50であることがより好ましい。貫通孔の開口部の断面形状は四角形の中でも、長方形であることが好ましい。貫通孔の開口部の断面形状の好ましい一例は、例えば100nm×300nmの長方形(アスペクト比76:24)である。
 (貫通孔を有する基板を用いた計測スペクトルの取得方法)
 -微粒子を液体に分散された状態に調整する工程-
 貫通孔を有する基板を用いてスペクトルの計測を行なう際、微粒子は液体に分散された状態に調整されていることが好ましい。微粒子を貫通孔に導き、通過させやすいからである。微粒子を分散させる液体としては電解液が好ましい。電解液としては特に制限はなく、イオン性物質を極性溶媒に溶解させた溶液が好ましい。電解液としては、例えばTEバッファー(トリス-EDTAバッファー:株式会社ニッポンジーン製)を挙げられる。
 -微粒子が貫通孔を通過する工程-
 微粒子が貫通孔を通過する工程は、微粒子が貫通孔内部または貫通孔近傍に導かれる工程、導かれた微粒子が貫通孔内部または貫通孔近傍に保持される工程、保持されていた微粒子が貫通孔内部または貫通孔近傍から除去される工程を含むことが好ましい。保持される工程でスペクトルが計測されていればよい。保持される位置は、貫通孔内部であればよいが、計測する微粒子や、計測されるスペクトルの性質に応じて、貫通孔近傍、すなわち、基板表面の貫通孔に接する部位などであってもよい。ただし、スペクトル計測のときに微粒子が貫通孔内部または貫通孔近傍に保持されていることを要しないスペクトルの計測のときは、保持される工程は無くてもよい。微粒子は、基板に設けられた貫通孔における基板の一方の表面側の開口部から貫通孔に進入し、基板の他方の表面側の開口部から貫通孔の外に出ることが好ましい。
 微粒子は、電気泳動、誘電泳動、光ピンセット、ブラウン運動、またはクーロン相互作用などを利用して貫通孔内部または貫通孔近傍に導くことができる。本発明では、液体(電解液)中に溶解されている微粒子を、電気泳動、誘電泳動、光ピンセット、ブラウン運動、およびクーロン相互作用からなる群より選択される1つ以上の方法により貫通孔に通過させることが好ましい。複数の作用・方法を組み合わせて利用してもよい。
 微粒子は、例えば、貫通孔内部または貫通孔近傍に吸着することによって貫通孔内部または貫通孔近傍に保持されていればよい。吸着させる方法としては、例えば、生体微粒子が負電荷を有している場合に、貫通孔を正に帯電させることによってクーロン力で吸着させる方法、光ピンセットによる方法、化学的に吸着させる方法などがあげられる。化学的に吸着させる方法は、微粒子とナノ構造体表面の反応性分子を利用した吸着であり、この目的のためにいずれか一方、または双方を予め修飾または被覆しておいてもよい。例えば、抗原抗体反応を利用した吸着などを用いてもよい。例えば、貫通孔内部または貫通孔近傍を微粒子表面に存在する分子を抗原とする抗体に結合する基で修飾し、さらに抗体を利用して吸着させてもよい(例えば、特許文献3参照)。
 [特許文献3]国際公開2018/221271号
 微粒子の保持時間は、計測する微粒子や、計測されるスペクトルの性質に応じて決定すればよく、例えば、0.00005秒~100秒の範囲で選択することができる。微粒子の保持時間の好ましい範囲の上限値は10秒間以下であることがより好ましく、1秒間以下であることが特に好ましく、0.1秒間以下であることがより特に好ましい。上述のように保持される工程は無くてもよく、例えば貫通孔入り口までの微粒子の移動速度と比較して、貫通孔内部または近傍では微粒子が減速している間に計測が行なわれてもよい。
 貫通孔内部または貫通孔近傍からの微粒子の除去は、放電や逆バイアス印加(クーロン力の場合)、光オフ(光ピンセットの場合)、脱離反応(化学吸着の場合)により行なうことができる。
 上記の微粒子の移動や貫通孔内部または貫通孔近傍での保持の調整は、顕微観察の下で行なえばよい。顕微観察の下で、微粒子の1つずつの移動を確認して計測を行なうことができる。または、電気泳動および光ピンセットを併用した手法などにおいては、微粒子を含む試料の微粒子の濃度や用いる電解液、光のオンオフの周期などを調整することにより、微粒子の移動を伴う上記の工程を自動化することもできる。例えば、微粒子が貫通孔を通過することで貫通孔を流れているイオン電流が減少するため、このイオン電流を観察することで微粒子が貫通孔を通過するタイミングがわかる。そのため、このイオン電流をトリガ信号として使用することで、計測のオンおよびオフを自動化することができる。イオン電流観察のための電極は、貫通孔の側壁や貫通孔の直近に設けてもよい。
 -スペクトル計測の繰り返し-
 スペクトル計測後に計測済みの微粒子を貫通孔内部または貫通孔近傍から除去し、次に、次の微粒子を貫通孔内部または貫通孔近傍に導いて計測する手順を繰り返すことにより、1微粒子に基づく計測スペクトルを効率的に数多く(例えば、20以上、30以上、40以上、50以上、60以上、70以上、80以上、90以上、100以上)得ることができる。n個の微粒子から計測スペクトルを得ることを完了するまでにかかる時間が、微粒子1個あたりの平均時間に換算して0.00005~100秒間であることが好ましい。n個の微粒子から計測スペクトルを得ることを完了するまでにかかる時間の好ましい範囲の上限値は10秒間以下であることがより好ましく、1秒間以下であることが特に好ましく、0.1秒間以下であることがより特に好ましい。
 -計測スペクトルの取得-
 計測スペクトルは、貫通孔内部または貫通孔近傍にある微粒子に外部刺激が与えられることにより生じるシグナルを検出して得られるものである。貫通孔が基板の一方の面(表面A)から他方の面(表面B)に向かって連続的に小さくなる傾斜構造を有する形状である場合、計測スペクトルを貫通孔の大きい開口部を有する面側から光を照射することを含む手順で取得することが、ラマン散乱光強度をより増強する観点から好ましい。すなわち、より大きい開口部を有する面(表面A)側から外部刺激が与えられることが好ましい。例えば、レーザーは貫通孔の開口部が大きい方の面から照射することが好ましい。また、レーザー照射側の貫通孔の開口部の大きさは、レーザーのスポット径よりも大きい構造を有することが好ましい。
 スペクトル計測のためのシグナルの検出もより大きい開口部を有する面(表面A)側から行なわれることが好ましい。
 スペクトル計測時には、光源から外部光を貫通孔内部または貫通孔近傍にある微粒子に照射し収束させるために、光源と組み合わせて、共焦点レンズおよび対物レンズを使用することが好ましい。微粒子は液体中で計測されていることが好ましく、対物レンズは液浸タイプであることが好ましい。シグナルの検出も対物レンズを介して行なうことができる。対物レンズから貫通孔までの距離は、対物レンズのワーキングディスタンスと同じ距離であることが好ましい。スペクトル計測に用いられる装置においては、バックグラウンドシグナルを抑制し、より高いS/Nを得るために、光学フィルター、ハーフミラーなどを、公知技術を参照して用いることができる。
 <微粒子のスペクトル計測用デバイスおよび装置>
 本発明の基板またはその他の貫通孔を有する微粒子計測用の基板は、微粒子のスペクトル計測用デバイスの部材として使用することができる。例えば、スペクトル計測用デバイスは、基板と、基板の一方の面の少なくとも貫通孔を含む部分を内壁に含む第1の液槽と、基板の他方の面の少なくとも貫通孔を含む部分を内壁に含む第2の液槽とを含むように構成することができる。このような構成で、液体試料中の微粒子を上述のように電気泳動または光ピンセットなどを利用して貫通孔内部または貫通孔近傍に導き貫通孔を通過させることができる。特にこのような構成のうち、基板として「本発明の微粒子のスペクトル計測用の基板」を用いた微粒子のスペクトル計測用デバイスを、本発明の微粒子のスペクトル計測用デバイスという(以下、本発明のデバイスともいう)。さらに、本発明のデバイスを用いて、微粒子のスペクトル計測用の装置を構成することができる。本発明の微粒子のスペクトル計測用の装置(以下、本発明の装置ともいう)は、本発明のデバイスと、貫通孔に微粒子を1つずつ通過させるための誘導部と、光源と、光源の光が貫通孔内の微粒子に照射されたときに生じる光(シグナル)を計測して計測スペクトルを取得する検出部を含む。以下、本発明のデバイスと本発明の装置の好ましい態様を説明する。
 (第1の液槽、第2の液槽)
 この本発明のデバイスを用いて微粒子を計測する場合、微粒子は、第1の液槽から、貫通孔に導かれ、計測後に貫通孔から第2の液槽に移動する。デバイス中の基板が、基板の一方の面から他方の面に向かって連続的に小さくなる貫通孔を有する場合、より大きい開口部の面側の液槽が第1の液槽であり、かつより小さい開口部の面側の液槽が第2の液槽であることが好ましい。
 第1の液槽を形成するための部材および第2の液槽を形成するための部材はいずれも液体(電解液等)を充填する液槽を形成することができる部材であれば特に限定されないが、電気的および化学的に不活性な材料で形成することが好ましい。例としては、ガラス、サファイア、セラミック、樹脂、ゴム、エラストマー、Si(窒化ケイ素)、SiO(二酸化ケイ素)、Alなどがあげられる。
 第1の液槽および第2の液槽は、基板を挟むように形成され、第1の液槽に投入した微粒子が、貫通孔を通過して第2の液槽に移動できるように形成されていればよい。第1の液槽および第2の液槽は、試料液、または電解液を充填または排出するための孔や、電気泳動のための電極および/またはリードを挿入するための孔が設けられていてもよい。
 電極は、銀/塩化銀、アルミニウム、銅、白金、金、銀、チタン等の公知の導電性金属で形成することができる。2つの電極をそれぞれ、第1の液槽および第2の液槽に配置して、直流電流を印加することで微粒子を移動させることができる。印加電圧は、移動させる微粒子の種類など、条件に応じて決定すればよく、例えば0.01V~1.5Vの間で設定することができる。
 第1の液槽に配置する電極は、リードを介して電源、アースに接続させればよい。第2の液槽に配置する電極は、リードを介して電流計、アースに接続させればよい。電源と電流計の接続位置は、第1の液槽側と第2の液槽側で入れ替えてもよく、電源と電流計は、同じ電極側に設けてもよい。
 電源は、電極間に直流電流を通電できるものであれば特に制限はない。電流計は、通電した際に、発生するイオン電流を経時的に測定できるものであれば特に制限はない。必要に応じてノイズ除去回路や電圧安定化回路等を設けてもよい。
 微粒子のスペクトル計測は、外部刺激を微粒子に与えるための手段(光源)およびシグナルを検出する手段(検出部)を含む装置で行なえばよい。微粒子のスペクトル計測が貫通孔を有する基板を用いて行なわれる場合は、装置は、さらに貫通孔に微粒子を1つずつ通過させるための手段(誘導部)を含むことが好ましい。
 (外部刺激を微粒子に与えるための手段(光源))
 外部刺激を微粒子に与えるための手段としては、光源があげられる。好ましい光源としては、レーザーがあげられる。また、計測スペクトルがラマンスペクトルや蛍光スペクトルである場合、外部刺激を微粒子に与えるための手段はレーザー光源であればよい。
 本発明の装置は、レーザー光源を前記貫通孔に照射するための導入口を含むことが好ましい。
 (シグナルを検出する手段(検出部))
 シグナルを検出する検出部は、例えば、外部刺激により生じる光を計測して計測スペクトルを取得する。外部刺激により生じる光としてはレーザー光源からの光が微粒子に照射されて生じるラマン散乱光や蛍光などがあげられる。検出部は、例えば、光を分光するための分光器と光を検出するための検出器(受光装置)を含む。検出部は、ラマン散乱光を分光するための分光器と分光されたラマン散乱光を検出するための検出器を含むことがより好ましい。さらに本発明の装置は、計測スペクトルがラマンスペクトルであり、光源がレーザー光源であり、検出部がラマン散乱光を分光するための分光器と分光されたラマン散乱光を検出するための検出器を含むことがより好ましい。
 (貫通孔に微粒子を1つずつ通過させるための手段(誘導部))
 貫通孔に微粒子を1つずつ通過させるための手段としては、特に制限はなく、本発明の基板の、微粒子が貫通孔を通過する工程の好ましい態様で説明した手段を挙げることができる。例えば、電気泳動手段や光ピンセット手段などがあげられる。電気泳動手段は、上述のようなデバイスの一方の面側の少なくとも貫通孔を含む面とで電解液を充填する第1の液槽と、基板の他方の面側の少なくとも貫通孔を含む面とで電解液を充填する第2の液槽と、第1の液槽に形成された(充填される液体に配置できる)第1電極と、第2の液槽に形成された(充填される液体に配置できる)第2電極と、第1電極および第2電極に電圧を付与するための電源とを含んでいればよい。
 (解析手段など)
 微粒子のスペクトル計測用装置は、上述の微粒子の解析方法を実施するための解析手段(主成分分析や相関係数マッピングを作成するプログラムなど);解析手段を実行するための汎用CPUやプロセッサなどの制御手段;解析手段を記憶した記憶手段;得られた計測スペクトルやその他のデータを記録するメモリやRAMなどの記録手段;マウスやキーボードなどの入力手段;出力手段;ディスプレイなどの表示手段;その他のソフトウェアまたはハードウェアを含んでいてもよい。これらの一部または複数は、PCに格納されていてもよく、クラウドシステム上に格納されていてもよい。
 以下に実施例をあげて本発明をさらに具体的に説明する。以下の実施例に示す材料、試薬、物質量とその割合、操作等は本発明の趣旨から逸脱しない限り適宜変更することができる。従って、本発明の範囲は以下の実施例に限定されるものではない。
 <基板の作製>
 両表面に50nmの窒化ケイ素(窒化シリコン)膜を持つ面方位(100)の厚さ300μmのシリコンウエハー(E&M  CO.,LTD)(図1A)を25mm四方に切った。基板の一方の面に400μm×400μmの正方形の貫通孔が形成されているエッチング防止用のメタルマスクをかぶせ、反応性イオンエッチング装置(RIE-10NR、SAMCO  CO.,Ltd)によって、貫通孔内に露出している400μm×400μmの正方形の領域のみ窒化シリコン膜を除去し、シリコン表面をむき出しにした。基板の他方の面についても対向する位置で同様に1000μm×1000μmの正方形の領域のみ窒化シリコン膜を除去し、シリコン表面をむき出しにした。その後、400μm×400μmのシリコン表面(表面A)のむき出しにした部分のシリコンのみを選択的に水酸化カリウム水溶液(和光純薬株式会社)によって、約3時間かけて125℃のホットプレート(Hot  plate  NINOS  ND-1、As  One  CO.,Ltd)上でウェットエッチングを行った。その後、基板の他方の1000μm四方のシリコン表面(表面B)のむき出しにした部分のシリコンのみを選択的に水酸化カリウム水溶液(和光純薬株式会社)によって、シリコン基板に貫通孔があくまで125℃のホットプレート上でウェットエッチングを行った。この操作により、貫通孔が基板の一方の面から他方の面に向かって連続的に小さくなる形状(傾斜構造)を有するシリコン貫通孔を形成した(図1B)。その後、基板の上面と下面方向から、スパッタリング法(SVC-700LRF、サンユー電子株式会社)によって、プラズモン共鳴を示す金属であるAuを100nm蒸着した(図1C)。
 作製した基板の表面A側を示す写真と基板の貫通孔部位の走査電子顕微鏡写真を図2に示す。貫通孔の開口部は100nm×300nmの長方形であった。貫通孔の傾斜面(四角錐台の側面)が基板の表面となす角度は54.7度であった(図1B)。
 図3に示す構成で、上記で作製した基板の一方の面(表面A)側と反対側の面(表面B)側に液槽(それぞれ第1の液槽および第2の液槽)を形成し、1微粒子計測のためのデバイスとした。いずれの液槽も基板面の貫通孔を含む部位が内壁の一部となるように、親水性の樹脂にて形成した。
 <エクソソームサンプルの調製>
 脂質二重膜を有する生体微粒子であるエクソソームを微粒子サンプルとした。(1)正常細胞(TIG-3(ヒト肺由来付着性細胞);American  Type  Culture  Collection  Co.,Ltd.,America)の培養上清液を回収し、遠心分離機を用いて3000g、4℃条件下で15分遠心分離を行い、死細胞や細胞片を取り除いた。これを培養上清サンプルとした。(2)培養上清サンプル20mLを超遠心機専用の遠心チューブに導入し、4℃条件下110000gで80分間遠心処理を行った。(3)遠心処理で外側にあたるチューブの内壁にピペットが触れないよう注意し、上澄みを取り除き、0.22μmのフィルターでろ過した1mLのPBS(株式会社 ニッポンジーン製)を用い、遠心処理で外側にあたるチューブの内壁の付着物を複数回のピペッティングにより分散させた。(4)PBSを19mL加え、再び4℃条件下110000gで80分間遠心処理を行った。(5)遠心処理で外側にあたるチューブの内壁にピペットが触れないよう注意し、上澄みを取り除き、1mLのPBSで付着物をよく分散させ、正常細胞由来のエクソソームサンプルとした。
(6)正常細胞の代わりに肝臓がん細胞由来の細胞(HepG2(ヒト肝がん細胞);American  Type  Culture  Collection  Co.,Ltd.,America)を用いた以外は、正常細胞由来のエクソソームサンプル調製と同様の手順で肝臓がん由来のエクソソームサンプルを調製した。
 <エクソソームのラマンスペクトル測定>
 上記で作製したデバイスの第1の液槽および第2の液槽に電解液としてTEバッファー(トリス-EDTAバッファー:株式会社ニッポンジーン製)を満たした。さらに両液槽に銀/塩化銀電極を配置した。第1の液槽中の電解液に上記で調製したエクソソームサンプルを添加した。このデバイスをHORIBA製ラマン分光装置(名称LabRAM ARAMIS)の試料台に設置し、図4および図5に示す測定系を構築した。第1の液槽の上部に液浸タイプの対物レンズを貫通孔から対物レンズ表面までの距離が2mmになるように配置した。計測は785nmレーザーを用いて行なった。
 液槽に配置した電極に0.1Vの電圧を印加することにより、第1の液槽中のエクソソームを、電気泳動を用いて貫通孔内部に導き、1微粒子ずつ基板の貫通孔を通過させた。さらに光ピンセット(ラマン計測用の785nmレーザー使用)で、微粒子の通過速度を調節しながら、貫通孔内部に吸着させつつ、貫通孔内部で減速するように微粒子を貫通孔内部に保持して、貫通孔を通過させた。1微粒子につき、1~10秒間、貫通孔の大きい開口部を有する面側からレーザーを照射し、400~1600cm-1までのスペクトルを1cm-1の分解能で計測して、ラマンスペクトルを貫通孔の位置で得た。計測後は、光オフして粒子を剥がし、保持されていた微粒子が貫通孔内部から除去された後、次の微粒子を計測した。これを繰り返すことで1微粒子ごとの計測ラマンスペクトルを複数得た。
 正常細胞由来のエクソソームサンプルについては100個、肝臓がん細胞由来のエクソソームサンプルについては155個の微粒子を計測し、それぞれのサンプルについて100個および155個の計測スペクトルの束であるスペクトルデータを得た。すなわち、本発明によれば、1微粒子ずつから、長さが5μm以下の微粒子を利用した解析のためのスペクトルデータを生成できることがわかった。正常細胞由来のエクソソームサンプルについて計測した複数のラマンスペクトルを重ねて表示した結果を図6、肝臓がん細胞由来のエクソソームサンプルについて計測した複数のラマンスペクトルを重ねて表示した結果を図7に示す。肝臓がん細胞由来のエクソソームサンプルの結果では、1100cm-1付近に多くの微粒子のスペクトルでシグナルが観測されていることが分かる。
 <相関係数によるデータ解析>
 各サンプルについて上記のように得られたスペクトルデータについて、観測されたラマン散乱光強度を正規化(各スペクトルにおいて最大値を1にする)した後、N×Mの行列を形成した。Nはスペクトル数(100個、および155個)、Mは400~1600cm-1を計測分解能1cm-1で分割した各ラマンスペクトル点(いずれも1200)である。各サンプルのラマンスペクトル群(N個)において、あるラマンシフト二点(YおよびY’)間における強度(intensity)の相関係数を以下の式で求めた。
Figure JPOXMLDOC01-appb-M000002
 全てのYY’の組み合わせで相関係数を求め、相関係数のマッピングを行なった。結果を図8に示す。図8は正常細胞由来のエクソソームサンプルの結果である。図に示す相関係数のマッピングでは、相関係数が高いほど濃い色で示されている。図8の正常細胞由来のエクソソームサンプルの結果において、1580cm-1のピークが高い相関係数(0.5以上)を示したピークを丸で囲った。これらのピークは連動して動いているため、同じ分子からのシグナルと考えられる。このピーク群はインテグリン分子(α5β1)のピークと一致しているので(非特許文献5)、このピーク群はインテグリン分子由来と考えられる。
 [非特許文献5]Mustafa H. Chowdhury, et al., "Use of surface-enhanced Raman spectroscopy for the detection of human integrins", Journal of Biomedical Optics, Vol. 11, 024004.
 さらに、肝がん細胞由来のエクソソームサンプル(図7のデータ(155個のスペクトル))の相関係数のマッピングの結果を図9に示す。1087cm-1付近と1435cm-1付近とが交わる位置の色が濃くなっており、これらのピークが連動していることがわかる。1087cm-1付近のシグナルは、リン酸化していないタンパク質からも得られるピークであるが、1435cm-1付近と連動していることで、これはリン酸化タンパク質(リン酸化セリン:Phosphoserine)由来のシグナルであると判明した。
 <主成分分析>
 上記と同様に作成したN×Mの行列を用いて主成分分析を行なった。得られた第1主成分のスペクトル(固有ベクトル)を、図10(正常細胞由来のエクソソームサンプル)に示す。得られたスペクトルにおけるピークはいずれもインテグリンン(α5β1)のデータと一致していた。
 上記のように得られた正常細胞由来のエクソソームサンプルから得たスペクトルデータ(N:100個のスペクトル)肝がん細胞由来のエクソソームサンプルから得たスペクトルデータ(N:155個のスペクトル)を用い、255個(N+N)の計測スペクトルの束であるスペクトルデータを準備した。スペクトルのデータ点を1200(M)とし、このスペクトルデータに基づく、255×1200の行列を用いて主成分分析を行い、第1主成分から第100主成分の固有ベクトルをpythonで作成したプログラムを用いて求めた。第1主成分(PC1)と第2主成分(PC2)のスコアプロットの結果を図11に示す。図中の境界線で示すようにこのプロットの結果から正常細胞由来のエクソソームの計測スペクトルと肝がん細胞由来のエクソソームの計測スペクトルを識別できることが判明した。
 <X線照射細胞由来のエクソソームのラマンスペクトルの主成分分析>
 上記と同様の手順で、正常細胞(TIG-3)由来のエクソソーム、X線を照射した正常細胞(TIG-3)由来のエクソソーム、肝がん細胞(HepG2)由来のエクソソーム、健常者の血液由来のエクソソーム、および老化細胞由来のエクソソームのラマンスペクトルを計測し、主成分分析を行った。第1主成分(PC1)と第2主成分(PC2)のスコアプロットの結果を図12に示す。図12において、黒色の円形のマークはX線照射正常細胞由来のエクソソームを示し、薄い灰色の菱形のマークは正常細胞由来のエクソソームを示し、濃い灰色の正方形のマークは健常者血液由来のエクソソームを示し、薄い灰色の三角形のマークは老化細胞由来のエクソソームを示し、濃い灰色のクロス形のマークは肝がん細胞由来のエクソソームを示している。
 図12中の破線で示すように、このプロットの結果からX線を照射した正常細胞由来のエクソソームの計測スペクトルと、他のエクソソームの計測スペクトルとを識別できることが判明した。これは、X線照射正常細胞由来のエクソソームの表面分子が、他のエクソソームの表面分子とは大きく異なっていることを意味している。
 X線照射細胞由来のエクソソームには断片化したDNAが含まれており、このDNA断片が細胞内で増えることで細胞ががん化していくことが知られている。そのため、断片化したDNAが含まれているエクソソーム(図12におけるX線照射正常細胞)を検出することで、細胞のがん化傾向がわかる。これは、がんになる前の体内変化を診断できるため、予防医療に役立てることができる。
 <シリカ微粒子のラマンスペクトル測定>
 PM2.5の無機微粒子であるシリカ微粒子を微粒子サンプルとした。上記のエクソソームサンプルの測定時と同じ基板を用いて同様の手順で直径100nmのシリカ微粒子(コアフロント株式会社製)のラマンスペクトルを測定し、100個の計測スペクトルの束であるスペクトルデータを得た。すなわち、本発明によれば、1微粒子ずつから、長さが5μm以下の微粒子を利用した解析のためのスペクトルデータを生成できることがわかった。複数(N=100)のシリカ微粒子の計測ラマンスペクトルを重ねて表示した結果を図13に示す。図13より、均一性の高いシリカ微粒子サンプルの結果では、全ての微粒子のスペクトルで、478cm-1±5cm-1付近および506cm-1±5cm-1付近に極大値を有するシグナルが観測されていることが分かる。これらのピークはシリカ由来であるため(非特許文献6)、正しく微粒子が計測できており、再現性の高いデータが得られることが分かる。
 [非特許文献6]Kazunori Matsui, et al., "Raman Spectra of Silica Gel Prepared from Triethoxysilane and Tetraethoxysilane by the Sol-Gel Method", Journal of the Ceramic Society of Japan, Vol. 106, pp. 528-530.
 この本発明の生成方法により取得されたシリカ微粒子のスペクトルデータを、本発明で得られる新規データベースとして用いることにより、またはさらにその他のPM2.5粒子に対して同様に本発明の生成方法を適用して取得されたその他のPM2.5粒子のスペクトルデータと組み合わせて上記の主成分分析などを行うことにより、大気中のPM2.5の種類を判別し、大気汚染状況の解析に応用することができる。
 <金微粒子の蛍光スペクトル測定>
 無機微粒子の表面を金でコートした、直径20~100nmの金微粒子を微粒子サンプルとした。上記のエクソソームサンプルの測定時と同じ基板を用いて、同様の手順で貫通孔内にトラップした金微粒子の蛍光スペクトルを測定した(励起波長532nm)。貫通孔外にある1個の金微粒子の計測蛍光スペクトルと、貫通孔内にある1個の金微粒子の計測蛍光スペクトルを図14に示す。図14より、本発明に係る基板の貫通孔内において蛍光スペクトルを計測することで、金微粒子からの蛍光を増大できていることが分かる。なお、金微粒子の蛍光のピーク波長は800nm以下であるため、このグラフは蛍光スペクトルの長波長側の裾の部分を示している。
 本出願は、2021年11月19日出願の特願2021-188402に基づく優先権を主張する。当該出願明細書および図面に記載された内容は、すべて本願明細書に援用される。
 本発明は、微粒子の種類の判定や、疾患の可能性の判定、大気汚染状況の解析などの様々な分野において有用である。
 1 基板
 2 貫通孔
 3 開口部
 4 シリコン
 5 窒化ケイ素膜
 6 金(Au)の層
 7 第1の液槽
 8 第2の液槽
 9 電極
 10 液浸対物レンズ
 17 電解液で充填されている第1の液槽
 18 電解液で充填されている第2の液槽
 20 解析手段
 

Claims (20)

  1.  少なくとも1個の微粒子を含む微粒子試料のスペクトルデータの生成方法であって、
     基板の貫通孔内に配置された微粒子から計測スペクトルを取得する工程を含み、
     前記貫通孔は、前記基板の一方の面から他方の面に向かって連続的に幅が小さくなる傾斜構造を有し、
     前記貫通孔の内面の少なくとも一部は、プラズモン共鳴を示す金属で構成されており、
     前記計測スペクトルを取得する工程では、前記貫通孔内に光を照射しながら前記計測スペクトルを取得する、
     生成方法。
  2.  前記計測スペクトルを取得する工程では、前記微粒子試料中の複数の微粒子のそれぞれから計測スペクトルを取得し、
     前記スペクトルデータは、複数の計測スペクトルの束である、
     請求項1に記載の生成方法。
  3.  前記微粒子の長さが10nm~5μmである、請求項1に記載の生成方法。
  4.  前記計測スペクトルを取得する工程では、前記貫通孔に前記複数の微粒子を1つずつ通過させ、前記複数の微粒子のそれぞれから前記計測スペクトルを取得する、請求項2に記載の生成方法。
  5.  前記計測スペクトルを取得する工程では、液体中に分散している前記微粒子を、電気泳動、誘電泳動、光ピンセット、ブラウン運動、およびクーロン相互作用からなる群より選択される1つ以上の方法により前記貫通孔内に移動させる、請求項1に記載の生成方法。
  6.  前記計測スペクトルは、ラマンスペクトルである、請求項1~5のいずれか一項に記載の生成方法。
  7.  前記計測スペクトルは、蛍光スペクトルである、請求項1~5のいずれか一項に記載の生成方法。
  8.  請求項2に記載の生成方法により取得された前記スペクトルデータの統計解析を行なう工程を含む、微粒子の解析方法。
  9.  前記スペクトルデータの統計解析を行なう工程は、
     前記スペクトルデータの前記複数の計測スペクトル間において互いに相関係数の高いピークの集合を形成する工程と、
     得られたピークの集合を既知物のスペクトルと照合して前記微粒子に含まれる成分を少なくとも1つ同定する工程と、
     を含む、請求項8に記載の解析方法。
  10.  前記スペクトルデータの統計解析を行なう工程は、
     前記スペクトルデータの前記複数の計測スペクトルにおいて多変量解析を行なう工程と、
     前記多変量解析により得られたスペクトルを既知物のスペクトルと照合して前記微粒子に含まれる成分を少なくとも1つ同定する工程と、
     を含む、請求項8に記載の解析方法。
  11.  未判別の微粒子を判別する判別方法であって、
     種類の判明している複数の微粒子Aのそれぞれの計測スペクトルおよび別の種類の判明している複数の微粒子Bのそれぞれの計測スペクトルを請求項2に記載の生成方法により取得する工程と、
     前記複数の微粒子Aの計測スペクトルおよび前記複数の微粒子Bの計測スペクトルを含むスペクトルデータの主成分分析を行い、2つ以上の主成分のスコアから微粒子Aおよび微粒子Bの計測スペクトルを判別する指標を求める工程と、
     微粒子試料中の1個以上の未判別の微粒子のそれぞれから計測スペクトルを請求項1または請求項2に記載の生成方法により取得する工程と、
     前記未判別の微粒子の計測スペクトルについて前記の2つ以上の主成分のスコアを計算する工程と、
     前記未判別の微粒子のスコアを前記指標に照合して判別を行なう工程と、
     を含み、
     前記未判別の微粒子の長さが10nm~5μmである、
     判別方法。
  12.  前記未判別の微粒子は、エクソソームであり、
     前記微粒子Aは、がん細胞由来のエクソソームであり、
     前記微粒子Bは、正常細胞由来のエクソソームであり、
     前記判別を行なう工程では、前記未判別の微粒子としての前記エクソソームが、がん細胞に由来するか否かを判別する、
     請求項11に記載の判別方法。
  13.  エクソソームを含む体液由来の試料中のがん細胞由来のエクソソームの有無を判定する判定方法であって、
     請求項2に記載の生成方法により前記試料中の複数のエクソソームのそれぞれから得られた複数の計測スペクトルからなるスペクトルデータを生成する工程と、
     前記複数の計測スペクトル間において1087cm-1±5cm-1に極大値を有するシグナルと1435cm-1±5cm-1に極大値を有するシグナルとの相関係数を求める工程と、
     前記相関係数が一定の値以上であるときに上記試料中にがん細胞由来のエクソソームが存在すると判定する工程と、
     を含む、判定方法。
  14.  微粒子のスペクトルを計測するための基板であって、
     前記基板の一方の面から他方の面に貫通する貫通孔を有し、
     前記貫通孔は、前記微粒子が1つずつ通過できるサイズを有し、
     前記貫通孔の内面の少なくとも一部は、プラズモン共鳴を示す金属で構成されており、
     前記貫通孔は、前記基板の前記一方の面から前記他方の面に向かって連続的に幅が小さくなる傾斜構造を有する、
     基板。
  15.  前記貫通孔は、錐台形状である、請求項14に記載の基板。
  16.  前記基板の前記他方の面の前記貫通孔の開口部の円相当径は、10nm~5μmである、請求項15に記載の基板。
  17.  微粒子のスペクトルを計測するためのデバイスであって、
     請求項14~16のいずれか一項に記載の基板と、
     前記基板の前記一方の面の少なくとも前記貫通孔を含む部分を内壁に含む第1の液槽と、
     前記基板の前記他方の面の少なくとも前記貫通孔を含む部分を内壁に含む第2の液槽と、
     を含む、微粒子のスペクトル計測用デバイス。
  18.  微粒子のスペクトルを計測するための装置であって、
     請求項17に記載のデバイスと、
     前記貫通孔に前記微粒子を1つずつ通過させるための誘導部と、
     光源と、
     前記光源の光が前記貫通孔内の前記微粒子に照射されたときに生じる光を計測して計測スペクトルを取得する検出部と、
     を含む、装置。
  19.  前記計測スペクトルは、ラマンスペクトルである、請求項18に記載の装置。
  20.  前記計測スペクトルは、蛍光スペクトルである、請求項18に記載の装置。
     
PCT/JP2022/042861 2021-11-19 2022-11-18 微粒子試料のスペクトルデータの生成方法、微粒子の解析方法、微粒子の判別方法、がん細胞由来のエクソソームの有無の判定方法、微粒子のスペクトル計測用基板、微粒子のスペクトル計測用デバイスおよび微粒子のスペクトル計測用装置 WO2023090421A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021188402 2021-11-19
JP2021-188402 2021-11-19

Publications (1)

Publication Number Publication Date
WO2023090421A1 true WO2023090421A1 (ja) 2023-05-25

Family

ID=86397049

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/042861 WO2023090421A1 (ja) 2021-11-19 2022-11-18 微粒子試料のスペクトルデータの生成方法、微粒子の解析方法、微粒子の判別方法、がん細胞由来のエクソソームの有無の判定方法、微粒子のスペクトル計測用基板、微粒子のスペクトル計測用デバイスおよび微粒子のスペクトル計測用装置

Country Status (1)

Country Link
WO (1) WO2023090421A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI840269B (zh) 2023-07-06 2024-04-21 浩河未來實業有限公司 外泌體製造系統

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020106370A (ja) * 2018-12-27 2020-07-09 国立大学法人北海道大学 計測制御装置、分光計測装置、及び計測制御方法
JP2021188402A (ja) 2020-06-01 2021-12-13 トヨタ自動車株式会社 情報処理装置、認証システム、情報処理方法、およびプログラム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020106370A (ja) * 2018-12-27 2020-07-09 国立大学法人北海道大学 計測制御装置、分光計測装置、及び計測制御方法
JP2021188402A (ja) 2020-06-01 2021-12-13 トヨタ自動車株式会社 情報処理装置、認証システム、情報処理方法、およびプログラム

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
AYUKO HOSHINO ET AL.: "Extracellular Vesicle and Particle Biomarkers Define Multiple Human Cancers", CELL, vol. 182, pages 1044 - 1061
AYUKO HOSHINO ET AL.: "Tumour exosome integrins determine organotropic metastasis", NATURE, vol. 527, pages 329 - 335, XP055448126, DOI: 10.1038/nature15756
CARMICHEAL JOSEPH, HAYASHI CHIHIRO, HUANG XI, LIU LEI, LU YAO, KRASNOSLOBODTSEV ALEXEY, LUSHNIKOV ALEXANDER, KSHIRSAGAR PRAKASH G.: "Label-free characterization of exosome via surface enhanced Raman spectroscopy for the early detection of pancreatic cancer", NANOMEDICINE: NANOTECHNOLOGY, BIOLOGY, AND MEDICINE, ELSEVIER, AMSTERDAM, NL, vol. 16, 1 February 2019 (2019-02-01), AMSTERDAM, NL, pages 88 - 96, XP093068287, ISSN: 1549-9634, DOI: 10.1016/j.nano.2018.11.008 *
DONG SHILIAN, WANG YUHUI, LIU ZHENGQI, ZHANG WUWEN, YI KEZHEN, ZHANG XINGANG, ZHANG XIAOLEI, JIANG CHANGZHONG, YANG SHIKUAN, WANG : "Beehive-Inspired Macroporous SERS Probe for Cancer Detection through Capturing and Analyzing Exosomes in Plasma", APPLIED MATERIALS & INTERFACES, AMERICAN CHEMICAL SOCIETY, US, vol. 12, no. 4, 29 January 2020 (2020-01-29), US , pages 5136 - 5146, XP093068288, ISSN: 1944-8244, DOI: 10.1021/acsami.9b21333 *
HAIYING ZHANG ET AL.: "Identification of distinct nanoparticles and subsets of extracellular vesicles by asymmetric flow field-flow fractionation", NATURE CELL BIOLOGY, vol. 20, pages 332 - 343, XP036709197, DOI: 10.1038/s41556-018-0040-4
HUANG JING, LIU SHUPENG, CHEN ZHENYI, CHEN NA, PANG FUFEI, WANG TINGYUN: "Distinguishing Cancerous Liver Cells Using Surface-Enhanced Raman Spectroscopy", TECHNOLOGY IN CANCER RESEARCH AND TREATMENT, ADENINE PRESS, SCHENECTADY, NY, US, vol. 15, no. 1, 1 February 2016 (2016-02-01), US , pages 36 - 43, XP093068291, ISSN: 1533-0346, DOI: 10.1177/1533034614561358 *
KAZUNORI MATSUI ET AL.: "Raman Spectra of Silica Gel Prepared from Triethoxysilane and Tetraethoxysilane by the Sol-Gel Method", JOURNAL OF THE CERAMIC SOCIETY OF JAPAN, vol. 106, pages 528 - 530
MATSUDA RINTARO, TSUTSUI MAKUSU, ARIMA YUSUKE, TANIGUCHI MASALEM, TAMADA KAORU, RYUZAKI SOU: "Plasmonic properties of inverted cone shaped plasmonic nanopores", PREPRINTS OF THE 67TH JSAP SPRING MEETING 2020, 28 February 2020 (2020-02-28), XP009546408 *
MUSTAFA H. CHOWDHURY ET AL.: "Use of surface-enhanced Raman spectroscopy for the detection of human integrins", JOURNAL OF BIOMEDICAL OPTICS, vol. 11, pages 024004
SHILIAN DONG ET AL.: "Beehive-Inspired Macroporous SERS Probe for Cancer Detection through Capturing and Analyzing Exosomes in Plasma", ACS APPL. MATER., vol. 12, pages 5136 - 5146, XP093068288, DOI: 10.1021/acsami.9b21333

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI840269B (zh) 2023-07-06 2024-04-21 浩河未來實業有限公司 外泌體製造系統

Similar Documents

Publication Publication Date Title
US20220341872A1 (en) Method and apparatus for detecting particles, like biological macromolecules or nanoparticles
Viehrig et al. Quantitative SERS assay on a single chip enabled by electrochemically assisted regeneration: a method for detection of melamine in milk
JP4705754B2 (ja) 生体粒子のイオン移動度分析
Dipalo et al. 3D plasmonic nanoantennas integrated with MEA biosensors
EP2993460B1 (en) Target-substance detection apparatus and method
Jalali et al. Plasmonic nanobowtiefluidic device for sensitive detection of glioma extracellular vesicles by Raman spectrometry
CN103926231B (zh) 光学感测芯片
Hardy et al. Methods in Raman spectroscopy for saliva studies–a review
JP2009270852A (ja) ラマンスペクトル検出方法及びラマンスペクトル検出装置
US20130217143A1 (en) Chemical-analysis device integrated with metallic-nanofinger device for chemical sensing
US20220326161A1 (en) Apparatuses for analysing the optical properties of a sample
Aitekenov et al. Raman, Infrared and Brillouin spectroscopies of biofluids for medical diagnostics and for detection of biomarkers
KR101857061B1 (ko) 표면에 금속 입자가 부착된 홀을 포함하는 광학체를 사용한 표면증강라만 분석방법
Wu et al. Highly sensitive label-free detection of analytes at different scales using uniform graphene-nanopyramids hybrid SERS system
Mussi et al. Silver-coated silicon nanowire platform discriminates genomic DNA from normal and malignant human epithelial cells using label-free Raman spectroscopy
Verdonck et al. Label-free phenotyping of peripheral blood lymphocytes by infrared imaging
WO2023090421A1 (ja) 微粒子試料のスペクトルデータの生成方法、微粒子の解析方法、微粒子の判別方法、がん細胞由来のエクソソームの有無の判定方法、微粒子のスペクトル計測用基板、微粒子のスペクトル計測用デバイスおよび微粒子のスペクトル計測用装置
US20180143140A1 (en) Patch clamp technique with complementary raman spectroscopy
JP5097590B2 (ja) ラマン信号測定方法およびラマン信号測定装置
Berezin et al. The promises, methodological discrepancies and pitfalls in measurement of cell-derived extracellular vesicles in diseases
US20170269071A1 (en) Liquid-sample component analysis method
Raveendran et al. Ultrasensitive analyte detection by combining nanoparticle-based surface-enhanced Raman scattering (SERS) substrates with multivariate analysis
JP6468572B2 (ja) 増強電磁場を用いたアレイ型センサーを使用した測定方法及び測定装置
JP4520361B2 (ja) プローブビーズの品質検査方法
US20230003762A1 (en) Device and method for comprehensive characterization, analysis, hetero-genity and purity quantification of extracellular vesicles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22895702

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2023562418

Country of ref document: JP

Kind code of ref document: A