WO2023090200A1 - Spunbond nonwoven fabric - Google Patents

Spunbond nonwoven fabric Download PDF

Info

Publication number
WO2023090200A1
WO2023090200A1 PCT/JP2022/041499 JP2022041499W WO2023090200A1 WO 2023090200 A1 WO2023090200 A1 WO 2023090200A1 JP 2022041499 W JP2022041499 W JP 2022041499W WO 2023090200 A1 WO2023090200 A1 WO 2023090200A1
Authority
WO
WIPO (PCT)
Prior art keywords
nonwoven fabric
spunbond nonwoven
temperature
tsl
spunbond
Prior art date
Application number
PCT/JP2022/041499
Other languages
French (fr)
Japanese (ja)
Inventor
島田大樹
中嶋格
小出現
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Publication of WO2023090200A1 publication Critical patent/WO2023090200A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/005Synthetic yarns or filaments
    • D04H3/007Addition polymers
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/14Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic yarns or filaments produced by welding
    • D04H3/147Composite yarns or filaments
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/16Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic filaments produced in association with filament formation, e.g. immediately following extrusion

Definitions

  • the present invention relates to spunbond nonwoven fabrics.
  • spunbond nonwoven fabric which is used as the main material for disposable diapers.
  • a nonwoven fabric that is excellent in water resistance even with a low basis weight and has high softness and high tensile strength it is composed of a polypropylene spunbond nonwoven fabric with a fineness of 0.7 to 1.5 dtex and a polypropylene melt blown nonwoven fabric with a fiber diameter of 1 to 3 ⁇ m.
  • a spunbond/meltblown laminated nonwoven fabric having a 5% modulus index within a specific range (see Patent Document 1).
  • an object of the present invention is to provide a spunbond nonwoven fabric that has excellent strength even with a low basis weight and is excellent in flexibility and touch.
  • the spunbond nonwoven fabric of the present invention has the following constitution.
  • a spunbonded nonwoven fabric made of conjugated fibers containing a polypropylene-based resin as a main component, the spunbonded nonwoven fabric having a fused portion and a non-fused portion, wherein the conjugated fibers in the non-fused portion are at least It has two or more softening temperatures Ts (°C), and the difference (Tsh-Tsl) between the highest softening temperature Tsh (°C) and the lowest softening temperature Tsl (°C) is 5°C or higher and 30°C or lower. , spunbond nonwovens.
  • the spunbonded nonwoven fabric of the present invention it is possible to obtain a spunbond nonwoven fabric that has excellent strength even with a low basis weight and excellent softness and touch. Due to these properties, the spunbonded nonwoven fabric of the present invention can be used particularly favorably as sanitary materials.
  • the spunbonded nonwoven fabric of the present invention is a spunbonded nonwoven fabric made of conjugate fibers containing a polypropylene-based resin as a main component, the spunbonded nonwoven fabric has a fused portion and a non-fused portion, and has the non-fused portion.
  • the conjugate fiber of the wearing part has at least two softening temperatures Ts (°C), and the difference (Tsh-Tsl) between the highest softening temperature Tsh (°C) and the lowest softening temperature Tsl (°C) is 5 °C or higher and 30 °C or lower.
  • the composite fibers that constitute the spunbond nonwoven fabric of the present invention are mainly composed of a polypropylene resin.
  • Polypropylene-based resins are suitable because they are superior in spinnability and strength properties compared to other polyolefin-based resins such as polyethylene-based resins.
  • the term "polypropylene-based resin” refers to a resin in which the molar fraction of propylene units in repeating units is 60 mol % to 100 mol %. The same applies to "polyethylene-based resin”.
  • the polypropylene-based resin used in the present invention includes propylene homopolymers and copolymers of propylene and various ⁇ -olefins.
  • main component means that it accounts for 50% by mass or more of the entire conjugate fiber.
  • the proportion of propylene homopolymer is preferably 60% by mass or more, more preferably 70% by mass or more, and still more preferably 80% by mass or more. By doing so, good spinnability can be maintained and strength can be improved.
  • the material (sometimes referred to as "thermoplastic resin") constituting the conjugate fiber used in the present invention may be a mixture of two or more types of polypropylene resin and other resins.
  • resin compositions containing other olefin resins such as polyethylene and poly-4-methyl-1-pentene, thermoplastic elastomers, and the like can also be used.
  • the polypropylene-based resin used in the present invention contains commonly used antioxidants, weather-resistant agents, and the like in order to further enhance the effects of the present invention, or to the extent that the effects of the present invention are not impaired in order to impart other properties.
  • Additives such as agents, light stabilizers, heat stabilizers, antistatic agents, antistatic agents, spinning agents, antiblocking agents, lubricants including polyethylene wax, crystal nucleating agents, and pigments, or other polymers. can be added according to
  • the melting point (Tmr) of the polypropylene resin used in the present invention is preferably 120°C to 2200°C.
  • the melting point (Tmr) is preferably 120°C to 2200°C.
  • the melting point (Tmr) refers to the maximum (highest) melting peak temperature obtained by measuring the polypropylene-based resin by differential scanning calorimetry (DSC).
  • the melt flow rate (hereinafter sometimes abbreviated as MFR) of the polypropylene-based resin as the core component is 10 g/10 min to 100 g. /10 min.
  • MFR melt flow rate
  • the MFR of the polypropylene-based resin of the core component is preferably 100 g/10 min or less, more preferably 80 g/10 min or less, and even more preferably 60 g/10 min or less, thereby suppressing a decrease in single yarn strength. and a spunbond nonwoven fabric with excellent strength can be obtained.
  • the MFR of the polypropylene-based resin of the sheath component is 10 g/10 min to 200 g/10 min than the MFR of the polypropylene-based resin of the core component. Large is preferred.
  • the MFR of the polypropylene-based resin of the sheath component higher than the MFR of the polypropylene-based resin of the core component, preferably 10 g/10 min or more, more preferably 15 g/10 min or more, and still more preferably 20 g/10 min or more, It is possible to concentrate the spinning stress on the core component during spinning, promote the molecular orientation of the core component, and suppress the molecular orientation of the sheath component.
  • the MFR of the polypropylene-based resin of the sheath component is greater than the MFR of the polypropylene-based resin of the core component by more than 200 g/10 min, the monofilament strength of the conjugated fiber is lowered and excessive softening occurs during heat bonding.
  • the MFR of the polypropylene-based resin as the sheath component is not greater than the MFR of the polypropylene-based resin as the core component by more than 150 g/10 min, and the MFR of the polypropylene-based resin as the core component is more than 100 g/10 min. It is even more preferable that it is not too large.
  • the value measured by ASTM D1238 (A method) is adopted. According to this standard, it is specified that the polypropylene resin should be measured under a load of 2.16 kg and a temperature of 230°C.
  • the MFR of the polypropylene-based resin used in the present invention by blending two or more resins with different MFRs at an arbitrary ratio.
  • the MFR of the resin blended with the main polypropylene resin (referring to the polypropylene resin that accounts for the largest mass% in the polypropylene resin) is 10 g / 10 minutes to 1000 g / 10 minutes. more preferably 20 g/10 minutes to 800 g/10 minutes, still more preferably 30 g/10 minutes to 600 g/10 minutes.
  • a fatty acid amide compound having 23 to 50 carbon atoms is contained in the whole or sheath component of the conjugate fiber mainly composed of polypropylene resin, in order to improve slipperiness and flexibility. It is a preferred embodiment that
  • the number of carbon atoms in the fatty acid amide compound mixed with the polypropylene resin is preferably 23 or more, more preferably 30 or more, thereby suppressing excessive exposure of the fatty acid amide compound on the fiber surface and improving spinnability and processability. It has excellent stability and can maintain high productivity.
  • the number of carbon atoms in the fatty acid amide compound is preferably 50 or less, more preferably 42 or less, the fatty acid amide compound can easily migrate to the fiber surface and impart lubricity and softness to the spunbond nonwoven fabric. can be done.
  • fatty acid amide compounds having 23 to 50 carbon atoms used in the present invention include saturated fatty acid monoamide compounds, saturated fatty acid diamide compounds, unsaturated fatty acid monoamide compounds, and unsaturated fatty acid diamide compounds.
  • fatty acid amide compounds having 23 to 50 carbon atoms include tetradocosanoic acid amide, hexadocosanoic acid amide, octadocosanoic acid amide, nervonic acid amide, tetracosapentaenoic acid amide, nisic acid amide, ethylenebislauric acid amide, Methylenebislauric acid amide, ethylenebisstearic acid amide, ethylenebishydroxystearic acid amide, ethylenebisbehenic acid amide, hexamethylenebisstearic acid amide, hexamethylenebisstearic acid amide, hexamethylenehydroxystearic acid amide, distearyladipate amide, distearylsebacamide, ethylenebisoleic acid amide, ethylenebiserucic acid amide, hexamethylenebisoleic acid amide and the like, and a plurality of these can be used in combination.
  • ethylene bis-stearic acid amide which is a saturated fatty acid diamide compound
  • Ethylene bis-stearic acid amide has excellent thermal stability, so it can be melt-spun. Fibers containing polypropylene-based resin containing this ethylene bis-stearic acid amide can maintain high productivity while maintaining slipperiness. It is possible to obtain a spunbond nonwoven fabric excellent in flexibility and flexibility.
  • the amount of the fatty acid amide compound added is 0.01% by mass to 5.0% by mass.
  • the amount of the fatty acid amide compound added is preferably 0.01% by mass to 5.0% by mass, more preferably 0.1% by mass to 3.0% by mass, and still more preferably 0.1% by mass to 1.0% by mass.
  • the amount added here refers to the mass percentage of the fatty acid amide compound added to the entire thermoplastic resin containing polypropylene resin as the main component that constitutes the spunbond nonwoven fabric of the present invention. For example, even when the fatty acid amide compound is added only to the sheath component that constitutes the core-sheath type composite fiber, the ratio of addition to the total amount of the core-sheath component is calculated.
  • the additive is solvent-extracted from the fiber and quantitatively analyzed using liquid chromatography mass spectrometry (LS/MS) or the like. method.
  • the extraction solvent is appropriately selected according to the type of the fatty acid amide compound.
  • LS/MS liquid chromatography mass spectrometry
  • a method using a chloroform-methanol mixed solution can be mentioned as an example.
  • composite fiber mainly composed of polypropylene resin As the composite form of the composite fibers constituting the spunbond nonwoven fabric of the present invention, for example, composite forms such as a concentric core-sheath type, an eccentric core-sheath type, an islands-in-the-sea type, and a side-by-side type can be used. Above all, it is preferable to use a core-sheath type conjugate form, that is, the conjugate fiber is a core-sheath type conjugate fiber because it has excellent spinnability and can be uniformly bonded to each other by thermal bonding. A more preferable embodiment is to have a concentric sheath-core composite form, that is, the composite fiber is a concentric sheath-core composite fiber.
  • the islands-in-the-sea conjugate fiber has the same effect as the core-sheath conjugate fiber. Therefore, hereinafter, the core-sheath conjugate fiber also includes the islands-in-the-sea conjugate fiber unless the sea-island conjugate fiber is specifically mentioned. and
  • “sheath component” should be read as “sea component” and “core component” should be read as “island component”, or “sea component” should be read as "sheath”.
  • the high softening temperature portion and the low softening temperature portion are configured to have a side-by-side cross section, so that the molecular orientation of the high softening temperature portion remains, while the low softening temperature portion Since it can be thermally bonded, the portion with a high softening temperature corresponds to the "core component", and the portion with a low softening temperature corresponds to the "sheath component".
  • the preferred range of MFR described above is also preferably the same as long as the portion with a high softening temperature corresponds to the "core component” and the portion with a low softening temperature corresponds to the "sheath component".
  • the composite fibers constituting the spunbond nonwoven fabric of the present invention preferably have an average single fiber fineness of 0.5 dtex to 3.0 dtex.
  • a spunbonded nonwoven fabric having an average single fiber fineness of preferably 0.5 dtex or more, more preferably 0.6 dtex or more, and even more preferably 0.7 dtex or more prevents a decrease in spinnability and has excellent production stability.
  • the average single fiber fineness is preferably 3.0 dtex or less, more preferably 2.0 dtex or less, and still more preferably 1.5 dtex or less, so that the texture is excellent, the texture is uniform, and the strength is excellent. It can be a spunbond nonwoven fabric.
  • the average single fiber fineness can be controlled by the spinning temperature, single hole discharge rate, spinning speed, etc., which will be described later.
  • the conjugate fibers constituting the spunbond nonwoven fabric of the present invention preferably have an average single fiber diameter of 8 ⁇ m to 20 ⁇ m.
  • the average single fiber diameter can be controlled by the spinning temperature, single hole discharge rate, spinning speed, etc., which will be described later.
  • the average single fiber diameter ( ⁇ m) of the conjugated fibers forming the spunbond nonwoven fabric is calculated by the following procedure. (1) Collect 10 small piece samples (100 ⁇ 100 mm) at random from the spunbond nonwoven fabric. (2) Take a photograph of the surface at a magnification of 500 to 2000 using a microscope or a scanning electron microscope, and measure the width (diameter) of 100 conjugate fibers in the non-fused portion in total, 10 from each sample. If the cross-section of the conjugate fiber is irregular, the cross-sectional area is measured to obtain the diameter of a perfect circle having the same cross-sectional area. (3) Average the diameter values of 100 measured fibers and round off to the second decimal place to obtain the average single fiber diameter ( ⁇ m).
  • the mass ratio of the sheath component is preferably 20% to 80% by mass.
  • the mass ratio of the sheath component is preferably 20% by mass or more, more preferably 30% by mass or more, and even more preferably 40% by mass or more, the sheath components are strongly fused to each other during thermal bonding, and can be put to practical use.
  • a spunbond nonwoven fabric having sufficient strength can be obtained.
  • the ratio of the sheath component is preferably 80% by mass or less, more preferably 70% by mass or less, and even more preferably 60% by mass or less, the single filament strength of the composite fiber is improved, and it is sufficient for practical use. It can be a spunbond nonwoven fabric having strength.
  • a round cross-section, a flat cross-section, and an irregular cross-section such as a Y-shape or a C-shape can be used.
  • a circular cross section is preferable because it does not have difficulty in bending due to a structure such as a flat cross section or an irregular cross section, and can be used as a spunbond nonwoven fabric having excellent flexibility.
  • a hollow cross-section can be applied as the cross-sectional shape, but a solid cross-section is preferable because it is excellent in spinnability and can be stably spun even with a small fiber diameter.
  • the spunbonded nonwoven fabric of the present invention is a spunbonded nonwoven fabric made of composite fibers containing a polypropylene-based resin as a main component, wherein the spunbonded nonwoven fabric has a fused portion and a non-fused portion.
  • the conjugate fibers in the non-fused portion have at least two softening temperatures Ts (°C), and the difference (Tsh-Tsl) between the highest softening temperature Tsh (°C) and the lowest softening temperature Tsl (°C) is 5°C or higher and 30°C or lower.
  • the spunbond nonwoven fabric of the present invention has a fused portion and a non-fused portion. By doing so, it is possible to obtain a spunbond nonwoven fabric having sufficient strength for practical use while maintaining softness and touch.
  • the fused portion refers to a portion where the conjugate fibers are fused together
  • the non-fused portion refers to a portion where the conjugate fibers are not fused to each other and the cross-sectional shape is maintained.
  • the softening temperature Ts (° C.) of the composite fiber in the non-fused portion is a value calculated by the following procedure by nanoscale-thermomechanical analysis (nano-TMA).
  • This nano-TMA is capable of thermal analysis in the submicron region, and uses an atomic force microscope (AFM) probe (cantilever) equipped with a temperature sensor equipped with a heater.
  • AFM atomic force microscope
  • the composite fiber is fixed on a sample stage, and an AFM probe with a temperature sensor and a heater is fixed near the center in the fiber diameter direction.
  • the probe is heated from 25° C. to 180° C.
  • Tsh may not be observed in some conjugate fibers, but in this case, the average value is obtained only from the observed Tsh.
  • the spunbonded nonwoven fabric of the present invention has at least two softening temperatures Ts (°C) of the conjugate fibers in the non-fused portion, and the highest softening temperature Tsh (°C) and the lowest softening temperature Tsl (°C). and the difference (Tsh-Tsl) is 5°C or more and 30°C or less.
  • the fibers can be strongly thermally bonded to each other while the molecular orientation of the fiber inner layer remains, so that a spunbond nonwoven fabric having excellent strength can be obtained.
  • the difference (Tsh-Tsl) between Tsh (° C.) and Tsl (° C.) is 30° C. or less, preferably 25° C. or less, and more preferably 20° C. or less, so that the fibers are not crushed during thermal bonding. Since the fibers are likely to be in firm contact with each other, they can be strongly thermally bonded, and a spunbond nonwoven fabric having excellent strength can be obtained. In addition, it is possible to prevent operational problems such as excessive softening of the fiber surface layer during thermal bonding and sticking to the heat roll.
  • the maximum softening temperature Tsh (° C.) and the minimum softening temperature Tsl (° C.) of the conjugate fiber in the non-fused portion are determined by the MFR, melting point, additives, and mass ratio of the components constituting the conjugate fiber ( In the case of a core-sheath type conjugate fiber, it can be controlled by the mass ratio of the sheath component) and/or the spinning temperature, spinning speed, etc., which will be described later.
  • the spunbond nonwoven fabric of the present invention preferably has a single peak melting temperature Tm (°C) by differential scanning calorimetry (DSC).
  • Tm peak melting temperature
  • DSC differential scanning calorimetry
  • the melting peak temperature Tm (°C) of the spunbond nonwoven fabric obtained by differential scanning calorimetry a value calculated by the following procedure shall be adopted.
  • a sample of 0.5 to 5 mg of spunbond nonwoven fabric is sampled.
  • Differential scanning calorimetry (DSC) is used to raise the temperature from room temperature to 200°C at a heating rate of 20°C/min to obtain a DSC curve.
  • the peak top temperature of the melting endothermic peak is read from the DSC curve and taken as the melting peak temperature Tm (°C) of the spunbond nonwoven fabric.
  • the difference (Tm-Tsl) between the melting peak temperature Tm (°C) of the spunbonded nonwoven fabric of the present invention and the lowest softening temperature Tsl (°C) of the composite fibers in the non-fused portion is 10°C or more and 40°C or less. is preferred.
  • the difference (Tm ⁇ Tsl) between Tm (° C.) and Tsl (° C.) is preferably 40° C. or less, more preferably 35° C. or less, and even more preferably 30° C. or less.
  • the fibers are heated during thermal bonding. Since the fibers are crushed and tend to come into firm contact with each other, they can be firmly thermally bonded, and a spunbond nonwoven fabric having excellent strength can be obtained.
  • the difference (Tm ⁇ Tsl) between Tm (° C.) and Tsl (° C.) is preferably 10° C. or higher, more preferably 15° C. or higher, and still more preferably 20° C. or higher, so that The fibers can be strongly thermally bonded to each other while leaving the molecular orientation inside the fibers, and a spunbond nonwoven fabric having excellent strength can be obtained.
  • the spunbond nonwoven fabric of the present invention has a plurality of melting peak temperatures Tm (°C)
  • the highest melting peak temperature Tm (°C) is used to combine the melting peak temperature Tm (°C) and the non-fused portion.
  • the difference (Tm ⁇ Tsl) from the lowest softening temperature Tsl (° C.) of the fiber shall be calculated.
  • the difference (Tm-Tsh) between the melting peak temperature Tm (°C) of the spunbond nonwoven fabric of the present invention and the maximum softening temperature Tsh (°C) of the composite fibers in the non-fused portion is 1°C or higher and 20°C or lower.
  • the difference (Tm ⁇ Tsh) between Tm (° C.) and Tsh (° C.) is preferably 20° C. or less, more preferably 15° C. or less, and still more preferably 10° C. or less, thereby improving the strength of the fiber. and a spunbonded nonwoven fabric having excellent strength after thermal bonding can be obtained.
  • the difference (Tm-Tsh) between Tm (° C.) and Tsh (° C.) is preferably 1° C. or more, more preferably 3° C. or more, and still more preferably 5° C. or more, so that the It is possible to prevent the occurrence of thread breakage due to a large stress applied to a part of the fiber.
  • Tm melting peak temperatures
  • the highest melting peak temperature Tm (°C) is used to combine the melting peak temperature Tm (°C) and the non-fused portion.
  • the difference (Tm ⁇ Tsh) from the maximum softening temperature Tsh (° C.) of the fiber shall be calculated.
  • the spunbond nonwoven fabric of the present invention preferably has a surface roughness SMD of 1 ⁇ m to 3 ⁇ m by the KES method on at least one side.
  • the surface roughness SMD by the KES method is preferably 1.0 ⁇ m or more, more preferably 1.3 ⁇ m or more, and even more preferably 1.6 ⁇ m or more, the spunbond nonwoven fabric becomes excessively dense and the texture deteriorates, You can prevent loss of flexibility.
  • the surface roughness SMD by the KES method is preferably 3.0 ⁇ m or less, more preferably 2.8 ⁇ m or less, and still more preferably 2.5 ⁇ m or less, so that the surface is smooth, less rough, and excellent in touch. It can be a spunbond nonwoven.
  • the surface roughness SMD by the KES method depends on the average single fiber diameter of the conjugate fiber, the texture of the spunbond nonwoven fabric, and/or the thermal bonding conditions described later (shape of bonded portion, compression rate, temperature, and linear pressure etc.) can be controlled by appropriately adjusting.
  • the surface roughness SMD by the KES method adopts a value measured as follows. (1) Three test pieces each having a width of 200 mm ⁇ 200 mm are taken from the spunbond nonwoven fabric at equal intervals in the width direction of the spunbond nonwoven fabric. (2) Set the test piece on the sample table.
  • the longitudinal direction (longitudinal direction) of the spunbond nonwoven fabric refers to the direction in which the spunbond nonwoven fabric is taken up by a winding device in the manufacturing process of the spunbond nonwoven fabric, and is also called the machine direction.
  • the transverse direction refers to the width direction of the spunbond nonwoven fabric with respect to the longitudinal direction.
  • the friction coefficient MIU of the spunbond nonwoven fabric of the present invention according to the KES method is preferably 0.01 to 0.30.
  • a spunbond nonwoven fabric having a friction coefficient MIU of preferably 0.30 or less, more preferably 0.20 or less, and still more preferably 0.15 or less thereby improving the slipperiness of the surface of the nonwoven fabric and providing an excellent texture.
  • the coefficient of friction MIU is preferably 0.01 or more, more preferably 0.03 or more, and still more preferably 0.05 or more, so that when the spun yarns are collected on the collection conveyor, there is friction between the yarns. It is possible to prevent slippage and deterioration of texture uniformity.
  • the coefficient of friction MIU according to the KES method depends on the additive of the polypropylene resin, the average single fiber diameter of the composite fiber, the texture of the spunbond nonwoven fabric, and/or the thermal bonding conditions described later (shape of the bonded portion, compression rate , temperature, line pressure, etc.) can be controlled.
  • the coefficient of friction MIU according to the KES method shall adopt a value measured as follows. (1) Three test pieces each having a width of 200 mm ⁇ 200 mm are taken from the spunbond nonwoven fabric at equal intervals in the width direction of the spunbond nonwoven fabric. (2) Set the test piece on the sample table. (3) Scan the surface of the test piece with a contact friction element (material: ⁇ 0.5 mm piano wire (20 pieces in parallel), contact area: 1 cm 2 ) to which a load of 50 gf (0.49 N) is applied, and measure the friction coefficient. Measure.
  • the MFR of the spunbond nonwoven fabric of the present invention is preferably 10 g/10 minutes to 300 g/10 minutes.
  • the MFR of the spunbond nonwoven fabric is preferably 10 g/10 minutes or more, more preferably 15 g/10 minutes or more, and even more preferably 20 g/10 minutes or more, so that even a small fiber diameter can be stably spun and the texture is improved.
  • a spunbonded nonwoven fabric having excellent strength, uniform texture, and excellent strength can be obtained.
  • the MFR of the spunbond nonwoven fabric is preferably 300 g/10 minutes or less, more preferably 200 g/10 minutes or less, and even more preferably 100 g/10 minutes or less, thereby suppressing a decrease in strength and excessive It is possible to prevent the occurrence of operational problems such as sticking to the heat roll due to softening easily.
  • the value measured by ASTM D1238 (method A) is adopted. According to this standard, it is specified that the polypropylene resin should be measured under a load of 2.16 kg and a temperature of 230°C.
  • the spunbond nonwoven fabric of the present invention preferably has a basis weight of 10 g/m 2 to 100 g/m 2 .
  • the basis weight is preferably 10 g/m 2 or more, more preferably 13 g/m 2 or more, and even more preferably 15 g/m 2 or more, so that the spunbond nonwoven fabric has sufficient strength for practical use.
  • the spun having a basis weight of preferably 100 g/m 2 or less, more preferably 50 g/m 2 or less, and even more preferably 30 g/m 2 or less has flexibility suitable for use as a nonwoven fabric for sanitary materials. It can be a bonded nonwoven fabric.
  • the basis weight of the spunbond nonwoven fabric conforms to "6.2 Mass per unit area" of JIS L1913:2010 "General nonwoven fabric test method", and adopts the value measured by the following procedure. do. (1) Three test pieces of 20 cm x 25 cm are taken per 1 m width of the sample. (2) Weigh each mass (g) in the standard state. (3) The average value is represented by mass (g/m 2 ) per 1 m 2 .
  • the thickness of the spunbond nonwoven fabric of the present invention is preferably 0.05 mm to 1.5 mm. With a thickness of preferably 0.05 mm to 1.5 mm, more preferably 0.08 mm to 1.0 mm, and even more preferably 0.10 mm to 0.8 mm, the sanitary material has flexibility and moderate cushioning properties.
  • a spunbond nonwoven fabric for use it can be a spunbond nonwoven fabric that is particularly suitable for use in disposable diapers.
  • the thickness (mm) of the spunbond nonwoven fabric conforms to "5.1" of JIS L1906:2000 "Test method for general long-fiber nonwoven fabric” and adopts a value measured by the following procedure. and (1) Using a presser with a diameter of 10 mm and a load of 10 kPa, the thickness of the nonwoven fabric is measured at 10 points per 1 m at equal intervals in the width direction in units of 0.01 mm. (2) Round off the average of the above 10 points to the third decimal place.
  • the spunbond nonwoven fabric of the present invention preferably has an apparent density of 0.05 g/cm 3 to 0.30 g/cm 3 .
  • the apparent density is preferably 0.30 g/cm 3 or less, more preferably 0.25 g/cm 3 or less, still more preferably 0.20 g/cm 3 or less, so that the fibers are densely packed to form a spunbond nonwoven fabric. flexibility can be prevented.
  • the apparent density is preferably 0.05 g/cm 3 or more, more preferably 0.08 g/cm 3 or more, and still more preferably 0.10 g/cm 3 or more, thereby suppressing the occurrence of fluffing and delamination.
  • a spunbond nonwoven fabric having sufficient strength and handleability for practical use.
  • the apparent density can be controlled by appropriately adjusting the average single fiber diameter of the conjugate fiber and/or the thermal bonding conditions described later (shape of bonded portion, pressure bonding rate, temperature, linear pressure, etc.). can be done.
  • the apparent density (g/cm 3 ) is calculated based on the following formula from the basis weight and thickness before rounding, and rounded to the third decimal place.
  • (g/cm 3 ) [basis weight (g/m 2 )]/[thickness (mm)] ⁇ 10 ⁇ 3 .
  • the bending resistance of the spunbond nonwoven fabric of the present invention is preferably 65 mm or less.
  • the bending resistance is preferably 65 mm or less, more preferably 60 mm or less, and still more preferably 55 mm or less, so that spunbond nonwoven fabrics for sanitary materials can be used, particularly for disposable diapers, to obtain excellent flexibility. can be done.
  • the bending resistance is preferably 10 mm or more.
  • the bending resistance is determined by the MFR of the polypropylene resin, the additive, the average single fiber diameter of the composite fiber, the basis weight of the spunbond nonwoven fabric, the maximum softening temperature Tsh (° C.) and the minimum softening of the composite fiber in the non-fused portion. Control by appropriately adjusting the difference (Tsh-Tsl) from the temperature Tsl (° C.) and/or the thermal bonding conditions (shape of bonding portion, compression rate, temperature, linear pressure, etc.) described later. be able to.
  • the tensile strength and elongation product per basis weight of the spunbond nonwoven fabric of the present invention is preferably 1.20 (N/50 mm)/(g/m 2 ) or more, and preferably 1.20 (N/50 mm)/(g /m 2 ) to 10.0 (N/50 mm)/(g/m 2 ).
  • the tensile strength and elongation product per basis weight is preferably 1.20 (N/50 mm)/(g/m 2 ) or more, more preferably 1.3 (N/50 mm)/(g/m 2 ) or more, and still more preferably is 1.4 (N/50 mm)/(g/m 2 ) or more, it is possible to obtain a spunbond nonwoven fabric that is soft, has good touch and texture, and has excellent strength even with a low basis weight.
  • the tensile strength and elongation product per basis weight is preferably 10.0 (N/50 mm)/(g/m 2 ) or less, the softness of the spunbond nonwoven fabric may be reduced, or the texture may be impaired.
  • the tensile strength and elongation product per unit weight is determined by the MFR of the polypropylene resin, the additive, the average single fiber diameter of the composite fiber, and the maximum softening temperature Tsh (° C.) of the composite fiber in the non-fused portion of the spunbond nonwoven fabric.
  • the tensile strength and elongation product per basis weight of the spunbond nonwoven fabric is according to JIS L1913: 2010 "General nonwoven fabric test method”"6.3 Tensile strength and elongation rate (ISO method)".
  • the tensile strength in the lateral direction (the width direction of the nonwoven fabric) per basis weight of the spunbond nonwoven fabric of the present invention is preferably 0.40 (N/25 mm)/(g/m 2 ) or more, and 0.40 (N /25 mm)/(g/m 2 ) to 2.00 (N/25 mm)/(g/m 2 ).
  • Tensile strength per basis weight is preferably 0.40 (N/25 mm)/(g/m 2 ) or more, more preferably 0.60 (N/25 mm)/(g/m 2 ) or more, still more preferably 0.60 (N/25 mm)/(g/m 2 ) or more.
  • a spunbond nonwoven fabric having a strength suitable for practical use When it is 80 (N/25 mm)/(g/m 2 ) or more, a spunbond nonwoven fabric having a strength suitable for practical use can be obtained.
  • the transverse tensile strength per basis weight is preferably 2.00 (N/25 mm)/(g/m 2 ) or less, the softness of the spunbond nonwoven fabric may be reduced, or the texture may be impaired. can prevent you from doing it.
  • the tensile strength of a spunbond nonwoven fabric is divided into the vertical direction (longitudinal direction of the nonwoven fabric) and the horizontal direction (width direction of the nonwoven fabric), but generally the tensile strength in the horizontal direction is smaller than the tensile strength in the vertical direction.
  • the tensile strength in the transverse direction per basis weight is 0.4 to 2.00 (N / 25 mm) / (g / m 2 ), so that the spunbond has a strength that can be used practically in the vertical direction. It can be a non-woven fabric.
  • the tensile strength in the transverse direction per basis weight is determined by the MFR of the polypropylene resin, the additive, the average single fiber diameter of the composite fiber, and the maximum softening temperature Tsh (°C) of the composite fiber in the non-fused portion of the spunbond nonwoven fabric.
  • the tensile strength in the transverse direction per basis weight of the spunbond nonwoven fabric is according to "6.3 Tensile strength and elongation (ISO method)" of JIS L1913: 2010 "General nonwoven fabric test method”.
  • ISO method Tensile strength and elongation
  • the stress at 5% elongation in the machine direction per basis weight of the spunbonded nonwoven fabric of the present invention is preferably 0.40 (N/25 mm)/(g/m 2 ) or more, more preferably 0.40 (N/25 mm). /(g/m 2 ) to 2.00 (N/25 mm)/(g/m 2 ) is more preferable.
  • the stress at 5% elongation in the machine direction per basis weight is preferably 0.40 (N/25 mm)/(g/m 2 ) or more, more preferably 0.50 (N/25 mm)/(g/m 2 ) or more More preferably, it is 0.60 (N / 25 mm) / (g / m 2 ) or more, so that elongation due to tension during production of spunbond nonwoven fabrics and processing as sanitary materials is suppressed, and high yields are obtained. It can be produced stably.
  • the stress at 5% elongation in the longitudinal direction per basis weight is preferably 2.00 (N/25 mm)/(g/m 2 ) or less, the flexibility of the spunbond nonwoven fabric is reduced and the texture is impaired. You can prevent it from falling off.
  • the stress at 5% elongation in the longitudinal direction per unit weight is determined by the MFR of the polypropylene resin, the additive, the average single fiber diameter of the core-sheath type composite fiber, and the maximum softening of the composite fiber in the non-fused portion of the spunbond nonwoven fabric.
  • the difference (Tsh-Tsl) between the temperature Tsh (° C.) and the lowest softening temperature Tsl (° C.), and/or the spinning speed described later, the thermal bonding conditions (the shape of the bonded portion, the compression rate, the temperature, and the linear pressure etc.) can be controlled by appropriately adjusting.
  • the stress at 5% elongation in the longitudinal direction per basis weight of the spunbond nonwoven fabric is JIS L1913: 2010 "General nonwoven fabric test method”"6.3 Tensile strength and elongation (ISO method)".
  • the value measured by the following procedure shall be adopted.
  • Three test pieces of 25 mm ⁇ 200 mm are taken per 1 m width of the nonwoven fabric so that the long side faces the longitudinal direction of the nonwoven fabric (longitudinal direction of the nonwoven fabric).
  • (2) Set the test piece in a tensile tester at a grip interval of 100 mm.
  • the spunbond nonwoven fabric of the present invention is a long-fiber nonwoven fabric produced by the spunbond method.
  • the spunbond method is excellent in productivity and mechanical strength, and can suppress fluffing and falling off of fibers that tend to occur in short fiber nonwoven fabrics.
  • S thermocompression spunbond nonwoven fabric
  • a molten thermoplastic resin is spun from a spinneret as filaments, which are drawn by suction with compressed air using an ejector, and then collected on a moving net to obtain a nonwoven fibrous web. . Further, the obtained nonwoven fibrous web is subjected to heat bonding treatment to obtain a spunbond nonwoven fabric.
  • the shape of the spinneret or ejector is not particularly limited, but various shapes such as round and rectangular can be adopted.
  • the combination of a rectangular nozzle and a rectangular ejector is recommended because it uses a relatively small amount of compressed air and is excellent in terms of energy cost, and because the yarns are less likely to fuse or rub against each other, and the yarns can be easily opened. It is preferably used.
  • thermoplastic resin is melted in an extruder, weighed, supplied to a spinneret for conjugate fibers to be produced, and spun as long fibers.
  • the spinning temperature at which the thermoplastic resin is melted and spun is preferably 180°C to 250°C, more preferably 200°C to 240°C, still more preferably 220°C to 230°C.
  • the spun filament yarn is then cooled.
  • Methods for cooling the spun yarn include, for example, a method of forcibly blowing cold air onto the yarn, a method of natural cooling at the ambient temperature around the yarn, and a method of adjusting the distance between the spinneret and the ejector. etc., or a method combining these methods can be employed. Also, the cooling conditions can be appropriately adjusted in consideration of the discharge rate per single hole of the spinneret, the spinning temperature, the ambient temperature, and the like.
  • the cooled and solidified yarn is pulled and stretched by compressed air jetted from the ejector.
  • the spinning speed is preferably 3000m/min to 6000m/min, more preferably 3500m/min to 5500m/min, and still more preferably 4000m/min to 5000m/min.
  • the spinning speed is preferably 3000m/min to 6000m/min, more preferably 3500m/min to 5500m/min, and still more preferably 4000m/min to 5000m/min.
  • the obtained long fibers are collected on a moving net to obtain a nonwoven fiber web.
  • the obtained nonwoven fibrous web is fused to form fused portions, and the intended spunbond nonwoven fabric can be obtained.
  • the method of fusing the nonwoven fiber web is not particularly limited.
  • a method of heat-sealing with various rolls such as a heat embossing roll that is combined with a roll with engraving (unevenness) on the roll surface, and a heat calender roll that is a combination of a pair of upper and lower flat (smooth) rolls.
  • Examples include a method of heat-sealing by ultrasonic vibration of a horn, and a method of passing hot air through a nonwoven fiber web to soften or melt the surface of core-sheath type composite fibers to heat-seal the fiber intersections. .
  • thermal embossing rolls with engraving (unevenness) on the surface of a pair of upper and lower rolls, or a roll with a flat (smooth) surface on one roll and an engraving (unevenness) on the surface of the other roll It is preferred to use a hot embossing roll consisting of a combination of rolls. By doing so, it is possible to provide a fused portion that improves the strength of the spunbond nonwoven fabric and a non-fused portion that improves the texture and touch with good productivity.
  • a metal roll and a metal roll are used as for the surface material of the hot embossing rolls. Pairing is a preferred embodiment.
  • the embossing adhesion area ratio by such a hot embossing roll is preferably 5 to 30%.
  • the bonding area is preferably 5% or more, more preferably 8% or more, and even more preferably 10% or more, it is possible to obtain a strength that can be put to practical use as a spunbond nonwoven fabric.
  • the bonding area is preferably 30% or less, more preferably 25% or less, and even more preferably 20% or less, spunbond nonwoven fabrics for sanitary materials, particularly suitable for use in disposable diapers, have moderate flexibility. You can get sex. Even when ultrasonic bonding is used, the bonding area ratio is preferably within the same range.
  • the bonding area here refers to the ratio of the bonding area to the entire spunbond nonwoven fabric. Specifically, when thermal bonding is performed using a pair of rolls having unevenness, the spunbond nonwoven fabric at the portion (bonded portion) where the convex portion of the upper roll and the convex portion of the lower roll overlap and contact the nonwoven fiber web It refers to the percentage of the whole. In the case of heat-bonding with a roll having unevenness and a flat roll, it refers to the proportion of the portion (bonded portion) where the convex portion of the roll having unevenness contacts the nonwoven fiber web to the entire spunbond nonwoven fabric.
  • ultrasonic bonding it refers to the ratio of the portion (bonded portion) heat-sealed by ultrasonic processing to the entire spunbond nonwoven fabric.
  • the shape of the bonded part by a heat embossing roll or ultrasonic bonding is not particularly limited, but for example, a circle, an oval, a square, a rectangle, a parallelogram, a rhombus, a regular hexagon, and a regular octagon can be used.
  • the bonded portions are uniformly present at regular intervals in the longitudinal direction (conveyance direction) and the width direction of the spunbond nonwoven fabric. By doing so, variations in the strength of the spunbond nonwoven fabric can be reduced.
  • the surface temperature of the thermal embossing roll during thermal bonding is 30° C. lower to 10° C. higher than the melting point (hereinafter sometimes referred to as Tms (° C.)) of the thermoplastic resin constituting the sheath component used.
  • Tms melting point
  • a preferred embodiment is to set the temperature (that is, (Tms ⁇ 30° C.) to (Tms+10° C.)).
  • the surface temperature of the heat roll is preferably ⁇ 30° C. (that is, (Tms ⁇ 30° C.), hereinafter the same) or higher, more preferably ⁇ 20° C. (Tms ⁇ 20° C.) or higher, relative to the melting point of the thermoplastic resin. More preferably, the temperature is ⁇ 10° C.
  • the surface temperature of the hot embossing roll is preferably +10° C. (Tms+10° C.) or less, more preferably +5° C. (Tms+5° C.) or less, and still more preferably +0° C. (Tms+0° C.) or less with respect to the melting point of the thermoplastic resin.
  • the linear pressure of the thermal embossing roll during thermal bonding is preferably 50 N/cm to 500 N/cm.
  • the linear pressure of the roll is preferably 50 N/cm or more, more preferably 100 N/cm or more, and even more preferably 150 N/cm or more, a spunbonded nonwoven fabric is obtained which is strongly heat-bonded and has a strength suitable for practical use. be able to.
  • the linear pressure of the heat embossing roll to preferably 500 N/cm or less, more preferably 400 N/cm or less, and even more preferably 300 N/cm or less, the spunbond nonwoven fabric for sanitary materials, especially for paper diapers You can get just the right amount of flexibility for use in
  • thermal compression bonding may be performed using a thermal calender roll consisting of a pair of upper and lower flat rolls.
  • a pair of upper and lower flat rolls is a metal roll or elastic roll that does not have unevenness on the surface of the roll. can be used.
  • the elastic roll here means a roll made of a material having elasticity compared to a metal roll.
  • elastic rolls include so-called paper rolls such as paper, cotton, and aramid paper, and resin rolls made of urethane resin, epoxy resin, silicon resin, polyester resin, hard rubber, and mixtures thereof. is mentioned.
  • the spunbond nonwoven fabric of the present invention is excellent in softness and touch, has a uniform texture, has sufficient strength for practical use, and is excellent in productivity. It can be widely used for industrial materials and the like. In particular, it can be suitably used as sanitary materials such as disposable diapers, sanitary products and poultice base fabrics, and as medical materials such as protective clothing and surgical gowns.
  • the spunbond nonwoven fabric of the present invention will be specifically described based on examples. However, the present invention is not limited only to these examples. In the measurement of each physical property, unless otherwise specified, the measurement was performed according to the method described above.
  • Ts (°C) of composite fibers in non-fused portion of spunbond nonwoven fabric The measurement device is Nano-TA device “Nano-TA2" manufactured by Analysis Instruments, the AFM device is “Nano-R” manufactured by PACIFIC NANOTECHNOLOGY, and the probe is "PNI-AN2-300” manufactured by Analysis Instruments. and measured by the method described above. Measurement conditions were as follows. ⁇ Measurement method: nano-TMA (nano thermomechanical analysis) ⁇ Measurement temperature: 25 to 180°C ⁇ Temperature increase rate: 10°C/second (600°C/minute) ⁇ Measurement environment: In the atmosphere.
  • the melting point of the polypropylene resin used in the examples was obtained by measuring the melting peak temperature in the same manner as the above melting peak temperature measurement method except for sampling the polypropylene resin used, and obtaining the maximum (highest temperature) melting point was the peak temperature.
  • Example 1 Polypropylene resin made of a homopolymer having a melt flow rate (MFR) of 35 g/10 minutes and a melting point of 163°C is used as a core component, and polypropylene resin made of a homopolymer having an MFR of 60 g/10 minutes and a melting point of 163°C is used as a sheath component. respectively melted in an extruder, from a spinneret with a hole diameter ⁇ of 0.40 mm and a hole depth of 0.8 mm, a spinning temperature of 235 ° C., a single hole discharge rate of 0.40 g / min, and a sheath component ratio 30% by mass of concentric sheath-core composite fibers were spun.
  • MFR melt flow rate
  • the spun yarn was cooled and solidified, it was pulled and stretched by compressed air in an ejector and collected on a moving net to form a spunbond nonwoven fiber web made of polypropylene long fibers.
  • the average single fiber diameter was 14.0 ⁇ m, and the spinning speed converted from this was 2900 m/min. Spinnability was good with no yarn breakage observed after spinning for 1 hour.
  • the formed nonwoven fibrous web was thermally bonded using a pair of upper and lower thermal embossing rolls composed of the following upper roll and lower roll under the conditions of linear pressure: 500 N/cm and thermal bonding temperature: 140°C.
  • a spunbond nonwoven fabric having a basis weight of 15 g/m 2 and having fused and non-fused portions was obtained.
  • Example 2 A spunbond nonwoven fabric having fused portions and non-fused portions was obtained in the same manner as in Example 1, except that the basis weight was 10 g/m 2 .
  • the fibers constituting the formed spunbond nonwoven fibrous web had an average single fiber diameter of 14.0 ⁇ m, and the spinning speed converted from this was 2900 m/min. Spinnability was good with no yarn breakage observed after spinning for 1 hour.
  • the resulting spunbond nonwoven fabric had a uniform texture and excellent touch. Table 1 shows the evaluation results.
  • Example 3 A spunbonded nonwoven fabric having fused and non-fused portions was obtained in the same manner as in Example 1, except that the sheath component ratio was 50% by mass and the thermal bonding temperature was 145°C.
  • the fibers constituting the formed spunbond nonwoven fibrous web had an average single fiber diameter of 14.0 ⁇ m, and the spinning speed converted from this was 2900 m/min. Spinnability was good with no yarn breakage observed after spinning for 1 hour.
  • the resulting spunbond nonwoven fabric had a uniform texture and excellent touch. Table 1 shows the evaluation results.
  • Example 4 A spunbonded nonwoven fabric was obtained in the same manner as in Example 1, except that the sheath component ratio was 50% by mass, an eccentric core-sheath type composite fiber was used, and the heat bonding temperature was 145°C.
  • the fibers constituting the spunbond nonwoven web having fused and unfused portions had an average single fiber diameter of 14.0 ⁇ m and a spinning speed of 2900 m/min. Spinnability was good with no yarn breakage observed after spinning for 1 hour.
  • the resulting spunbond nonwoven fabric had a uniform texture and excellent touch. Table 1 shows the evaluation results.
  • Example 5 A spunbond nonwoven fabric having fused portions and non-fused portions was obtained in the same manner as in Example 1, except that the pressure of the compressed air in the ejector was adjusted.
  • the fibers constituting the formed spunbond nonwoven fibrous web had an average single fiber diameter of 11.2 ⁇ m, and the spinning speed converted from this was 4400 m/min. Spinnability was good with no yarn breakage observed after spinning for 1 hour.
  • the resulting spunbond nonwoven fabric had a uniform texture and excellent touch. Table 1 shows the evaluation results.
  • Example 6 A spunbond nonwoven fabric having fused and non-fused portions was prepared in the same manner as in Example 1, except that a polypropylene resin comprising a homopolymer having an MFR of 170 g/10 min and a melting point of 161°C was used as the sheath component. Obtained.
  • the fibers constituting the formed spunbond nonwoven fibrous web had an average single fiber diameter of 14.0 ⁇ m, and the spinning speed converted from this was 2900 m/min. Spinnability was good with no yarn breakage observed after spinning for 1 hour.
  • the resulting spunbond nonwoven fabric had a uniform texture and excellent touch. Table 1 shows the evaluation results.
  • Example 7 The same method as in Example 1 except that a polypropylene resin made of a homopolymer having an MFR of 30 g/10 min and a melting point of 148° C. was used as a sheath component, and the heat bonding temperature by a pair of upper and lower heat embossing rolls was set to 130° C. A spunbond nonwoven fabric having fused portions and non-fused portions was obtained. The fibers constituting the formed spunbond nonwoven fibrous web had an average single fiber diameter of 14.0 ⁇ m, and the spinning speed converted from this was 2900 m/min. Spinnability was good with no yarn breakage observed after spinning for 1 hour. The resulting spunbond nonwoven fabric had a uniform texture and excellent touch. Table 1 shows the evaluation results.
  • Example 1 The method was the same as in Example 1, except that the single-component fiber was made of a polypropylene resin consisting of a homopolymer having a melt flow rate (MFR) of 35 g/10 min and a melting point of 163°C, and the heat bonding temperature was 150°C. A spunbond nonwoven fabric having fused portions and non-fused portions was obtained. The fibers constituting the formed spunbond nonwoven fibrous web had an average single fiber diameter of 14.0 ⁇ m, and the spinning speed converted from this was 2900 m/min. As for spinnability, yarn breakage occurred twice in one hour of spinning. Table 1 shows the evaluation results of the obtained spunbond nonwoven fabric. When the thermal adhesion temperature was set to 155° C., a problem occurred in which the sheet ends stuck to the heat roll, resulting in poor transportability.
  • MFR melt flow rate
  • Example 2 The fusion-bonded portion and the non-bonded portion were formed in the same manner as in Example 1, except that a polypropylene resin made of a homopolymer having an MFR of 45 g/10 min and a melting point of 163°C was used as the sheath component, and the heat bonding temperature was set to 150°C.
  • a spunbond nonwoven fabric having fused portions was obtained.
  • the fibers constituting the formed spunbond nonwoven fibrous web had an average single fiber diameter of 14.0 ⁇ m, and the spinning speed converted from this was 2900 m/min. Spinnability was good with no yarn breakage observed after spinning for 1 hour. Table 1 shows the evaluation results of the obtained spunbond nonwoven fabric.
  • Tsh-Tsl The difference (Tsh-Tsl) between the highest softening temperature Tsh (°C) and the lowest softening temperature Tsl (°C) is 5. C. to 30.degree. C., the spunbond nonwoven fabric had excellent strength even with a low basis weight, and was excellent in softness and touch.
  • the spunbond nonwoven fabric made of a single polypropylene resin of Comparative Example 1 and the spunbond nonwoven fabric of Comparative Example 2 in which (Tsh-Tsl) was smaller than 5° C. were inferior in strength and flexibility.

Abstract

In order to provide a spunbond nonwoven fabric that is lightweight but strong, has excellent flexibility, and feels good on the skin, this spunbond nonwoven fabric comprises sheath-core bicomponent fibers having a polypropylene resin as the principal constituent. The spunbond nonwoven fabric has a fused section and an unfused section. The bicomponent fibers in the unfused section have at least two softening temperatures Ts (°C), and the difference (Tsh-Tsl) between the highest softening temperature Tsh (°C) and the lowest softening temperature Tsl (°C) is 5-30°C.

Description

スパンボンド不織布spunbond nonwoven fabric
 本発明は、スパンボンド不織布に関するものである。 The present invention relates to spunbond nonwoven fabrics.
 紙おむつや生理用ナプキン等の衛生用品の多くは、衛生上の問題から使用後に焼却処分や埋め立て処分がなされており、資源の消費やごみの増加による環境負荷が大きいことが問題となっている。こうした問題への対応として、製品の薄型化や軽量化が進められている。  Many sanitary products such as disposable diapers and sanitary napkins are incinerated or landfilled after use due to sanitation problems, and the problem is that the consumption of resources and the increase in waste have a large environmental impact. In order to deal with these problems, efforts are being made to reduce the thickness and weight of products.
 紙おむつの主要な素材として使用されているスパンボンド不織布でも、以前から低目付化の取り組みがなされている。例えば、低目付化しても耐水性に優れ、かつ柔らかさや引張強度も高い不織布として、繊度が0.7~1.5dtexのポリプロピレンスパンボンド不織布と繊維径が1~3μmのポリプロピレンメルトブロー不織布とからなり、特定の範囲の5%モジュラス指数を有するスパンボンド/メルトブロー積層不織布が提案されている(特許文献1参照。)。 Efforts have also been made to reduce the basis weight of spunbond nonwoven fabric, which is used as the main material for disposable diapers. For example, as a nonwoven fabric that is excellent in water resistance even with a low basis weight and has high softness and high tensile strength, it is composed of a polypropylene spunbond nonwoven fabric with a fineness of 0.7 to 1.5 dtex and a polypropylene melt blown nonwoven fabric with a fiber diameter of 1 to 3 μm. have proposed a spunbond/meltblown laminated nonwoven fabric having a 5% modulus index within a specific range (see Patent Document 1).
特許第4245970号公報Japanese Patent No. 4245970
 しかしながら、特許文献1に開示された方法では高強度化の効果が限定的であり、近年要求される低目付化の水準においては実用に供しうる強度を実現することが困難であった。 However, with the method disclosed in Patent Document 1, the effect of increasing the strength is limited, and it has been difficult to achieve practical strength at the level of low basis weight required in recent years.
 そこで、本発明の目的は、低目付でも優れた強度を有し、柔軟性や肌触りに優れたスパンボンド不織布を提供することにある。 Therefore, an object of the present invention is to provide a spunbond nonwoven fabric that has excellent strength even with a low basis weight and is excellent in flexibility and touch.
 本発明のスパンボンド不織布は、次の構成を有する。
[1]ポリプロピレン系樹脂を主成分とする複合繊維からなるスパンボンド不織布であって、前記スパンボンド不織布は融着部と非融着部とを有し、前記非融着部の複合繊維が少なくとも2つ以上の軟化温度Ts(℃)を有し、かつ、最高の軟化温度Tsh(℃)と最低の軟化温度Tsl(℃)との差(Tsh-Tsl)が5℃以上30℃以下である、スパンボンド不織布。
[2]前記スパンボンド不織布が示差走査型熱量測定法で単一の融解ピーク温度Tm(℃)を有する、[1]に記載のスパンボンド不織布。
[3]前記融解ピーク温度Tm(℃)と前記軟化温度Tsl(℃)との差(Tm-Tsl)が10℃以上40℃以下である、[1]または[2]に記載のスパンボンド不織布。
[4]前記スパンボンド不織布の目付あたりの引張強伸度積が1.20(N/50mm)/(g/m)以上である、請求項[1]~[3]のいずれかに記載のスパンボンド不織布。
[5]前記複合繊維が芯鞘型複合繊維である、[1]~[4]のいずれかに記載のスパンボンド不織布。
[6]鞘成分のポリオレフィン系樹脂のメルトフローレートが芯成分のポリオレフィン系樹脂のメルトフローレートよりも10g/10分~200g/10分大きい、[5]に記載のスパンボンド不織布。
The spunbond nonwoven fabric of the present invention has the following constitution.
[1] A spunbonded nonwoven fabric made of conjugated fibers containing a polypropylene-based resin as a main component, the spunbonded nonwoven fabric having a fused portion and a non-fused portion, wherein the conjugated fibers in the non-fused portion are at least It has two or more softening temperatures Ts (°C), and the difference (Tsh-Tsl) between the highest softening temperature Tsh (°C) and the lowest softening temperature Tsl (°C) is 5°C or higher and 30°C or lower. , spunbond nonwovens.
[2] The spunbond nonwoven fabric according to [1], wherein the spunbond nonwoven fabric has a single peak melting temperature Tm (°C) by differential scanning calorimetry.
[3] The spunbond nonwoven fabric according to [1] or [2], wherein the difference (Tm-Tsl) between the melting peak temperature Tm (°C) and the softening temperature Tsl (°C) is 10°C or higher and 40°C or lower. .
[4] The spunbond nonwoven fabric according to any one of [1] to [3], wherein the tensile strength and elongation product per basis weight is 1.20 (N/50 mm)/(g/m 2 ) or more. spunbond nonwoven fabric.
[5] The spunbond nonwoven fabric according to any one of [1] to [4], wherein the composite fibers are core-sheath type composite fibers.
[6] The spunbond nonwoven fabric according to [5], wherein the melt flow rate of the polyolefin-based resin as the sheath component is higher than that of the polyolefin-based resin as the core component by 10 g/10 minutes to 200 g/10 minutes.
 本発明によれば、低目付でも優れた強度を有し、柔軟性や肌触りに優れたスパンボンド不織布が得られる。これらの特性から、本発明のスパンボンド不織布は、特に衛生材料用途として好適に用いることができる。 According to the present invention, it is possible to obtain a spunbond nonwoven fabric that has excellent strength even with a low basis weight and excellent softness and touch. Due to these properties, the spunbonded nonwoven fabric of the present invention can be used particularly favorably as sanitary materials.
 本発明のスパンボンド不織布は、ポリプロピレン系樹脂を主成分とする複合繊維からなるスパンボンド不織布であって、前記のスパンボンド不織布は融着部と非融着部とを有し、前記の非融着部の複合繊維が少なくとも2つ以上の軟化温度Ts(℃)を有し、かつ、最高の軟化温度Tsh(℃)と最低の軟化温度Tsl(℃)との差(Tsh-Tsl)が5℃以上30℃以下である。このようにすることにより、低目付でも優れた強度を有し、柔軟性や肌触りに優れたスパンボンド不織布とすることができる。 The spunbonded nonwoven fabric of the present invention is a spunbonded nonwoven fabric made of conjugate fibers containing a polypropylene-based resin as a main component, the spunbonded nonwoven fabric has a fused portion and a non-fused portion, and has the non-fused portion. The conjugate fiber of the wearing part has at least two softening temperatures Ts (°C), and the difference (Tsh-Tsl) between the highest softening temperature Tsh (°C) and the lowest softening temperature Tsl (°C) is 5 °C or higher and 30 °C or lower. By doing so, it is possible to obtain a spunbond nonwoven fabric that has excellent strength even with a low basis weight and that is excellent in flexibility and touch.
 以下に、これら本発明の構成要素について詳細に説明するが、本発明はその要旨を超えない限り、以下に説明する範囲に何ら限定されるものではない。 Although these constituent elements of the present invention will be described in detail below, the present invention is not limited to the scope described below as long as it does not exceed the gist of the present invention.
 [ポリプロピレン系樹脂]
 本発明のスパンボンド不織布を構成する複合繊維は、ポリプロピレン系樹脂を主成分としてなる。ポリプロピレン系樹脂は、ポリエチレン系樹脂などの他のポリオレフィン系樹脂と比較して紡糸性や強度特性に優れることから好適である。なお、この発明において、「ポリプロピレン系樹脂」とは、繰り返し単位に占めるプロピレン単位のモル分率が60モル%~100モル%である樹脂のことを指す。「ポリエチレン系樹脂」についても同様である。また、本発明で用いられるポリプロピレン系樹脂としては、プロピレンの単独重合体もしくはプロピレンと各種α-オレフィンとの共重合体などが挙げられる。ここで「主成分」とは、複合繊維全体に対して、50質量%以上を占めることを意味する。
[Polypropylene resin]
The composite fibers that constitute the spunbond nonwoven fabric of the present invention are mainly composed of a polypropylene resin. Polypropylene-based resins are suitable because they are superior in spinnability and strength properties compared to other polyolefin-based resins such as polyethylene-based resins. In the present invention, the term "polypropylene-based resin" refers to a resin in which the molar fraction of propylene units in repeating units is 60 mol % to 100 mol %. The same applies to "polyethylene-based resin". The polypropylene-based resin used in the present invention includes propylene homopolymers and copolymers of propylene and various α-olefins. Here, "main component" means that it accounts for 50% by mass or more of the entire conjugate fiber.
 本発明で用いられるポリプロピレン系樹脂について、プロピレンの単独重合体の割合が60質量%以上であることが好ましく、より好ましくは70質量%以上であり、さらに好ましくは80質量%以上である。このようにすることで良好な紡糸性を維持し、かつ強度を向上させることができる。 Regarding the polypropylene resin used in the present invention, the proportion of propylene homopolymer is preferably 60% by mass or more, more preferably 70% by mass or more, and still more preferably 80% by mass or more. By doing so, good spinnability can be maintained and strength can be improved.
 本発明で用いられる複合繊維を構成する素材(「熱可塑性樹脂」と称する場合もある)としてはポリプロピレン系樹脂とともにその他の樹脂を含む2種以上の混合物であってもよい。前記混合物としてポリエチレン、ポリ-4-メチル-1-ペンテンなどのその他のオレフィン系樹脂や熱可塑性エラストマー等を含有する樹脂組成物を用いることもできる。 The material (sometimes referred to as "thermoplastic resin") constituting the conjugate fiber used in the present invention may be a mixture of two or more types of polypropylene resin and other resins. As the mixture, resin compositions containing other olefin resins such as polyethylene and poly-4-methyl-1-pentene, thermoplastic elastomers, and the like can also be used.
 本発明で用いられるポリプロピレン系樹脂には、本発明の効果をさらに高めるために、あるいは、他の特性を付与するために本発明の効果を損なわない範囲で、通常用いられる酸化防止剤、耐候安定剤、耐光安定剤、耐熱安定剤、帯電防止剤、帯電助剤、紡曇剤、ブロッキング防止剤、ポリエチレンワックスを含む滑剤、結晶核剤、および顔料等の添加物、あるいは他の重合体を必要に応じて添加することができる。 The polypropylene-based resin used in the present invention contains commonly used antioxidants, weather-resistant agents, and the like in order to further enhance the effects of the present invention, or to the extent that the effects of the present invention are not impaired in order to impart other properties. Additives such as agents, light stabilizers, heat stabilizers, antistatic agents, antistatic agents, spinning agents, antiblocking agents, lubricants including polyethylene wax, crystal nucleating agents, and pigments, or other polymers. can be added according to
 本発明で用いられるポリプロピレン系樹脂の融点(Tmr)は、120℃~2200℃であることが好ましい。この融点(Tmr)を好ましくは120℃以上、より好ましくは130℃以上、さらに好ましくは140℃以上とすることにより、実用に耐え得る耐熱性を得やすくなる。また、融点を好ましくは200℃以下、より好ましくは180℃以下、さらに好ましくは170℃以下とすることにより、口金から吐出された糸条を冷却し易くなり、繊維同士の融着を抑制し細い繊維径でも安定した紡糸が行い易くなる。ここでポリプロピレン系樹脂の融点(Tmr)とは、ポリプロピレン系樹脂を示差走査型熱量測定法(DSC)によって測定して得られる、最大の(最も高温の)融解ピーク温度を指す。 The melting point (Tmr) of the polypropylene resin used in the present invention is preferably 120°C to 2200°C. By setting the melting point (Tmr) to preferably 120° C. or higher, more preferably 130° C. or higher, and even more preferably 140° C. or higher, heat resistance that can withstand practical use can be easily obtained. In addition, by setting the melting point to preferably 200° C. or lower, more preferably 180° C. or lower, and even more preferably 170° C. or lower, the yarn ejected from the spinneret can be easily cooled, suppressing the fusion between the fibers and making the yarn thin. It becomes easy to perform stable spinning even with a fiber diameter. Here, the melting point (Tmr) of the polypropylene-based resin refers to the maximum (highest) melting peak temperature obtained by measuring the polypropylene-based resin by differential scanning calorimetry (DSC).
 本発明のスパンボンド不織布を構成する複合繊維が芯鞘型複合繊維である場合、芯成分のポリプロピレン系樹脂のメルトフローレート(以下、MFRと略すことがある。)は、10g/10分~100g/10分であることが好ましい。ポリプロピレン系樹脂のMFRを好ましくは10g/10分以上とし、より好ましくは20g/10分以上とし、さらに好ましくは30g/10分以上とすることにより、細い繊維径でも安定して紡糸することができ、肌触りに優れ、地合が均一なスパンボンド不織布とすることができる。一方、芯成分のポリプロピレン系樹脂のMFRを好ましくは100g/10分以下とし、より好ましくは80g/10分以下とし、さらに好ましくは60g/10分以下とすることにより、単糸強度の低下を抑制し、強度に優れたスパンボンド不織布とすることができる。 When the conjugate fibers constituting the spunbond nonwoven fabric of the present invention are core-sheath type conjugate fibers, the melt flow rate (hereinafter sometimes abbreviated as MFR) of the polypropylene-based resin as the core component is 10 g/10 min to 100 g. /10 min. By setting the MFR of the polypropylene-based resin to preferably 10 g/10 min or more, more preferably 20 g/10 min or more, and even more preferably 30 g/10 min or more, even a thin fiber diameter can be stably spun. , a spunbond nonwoven fabric having excellent texture and uniform formation can be obtained. On the other hand, the MFR of the polypropylene-based resin of the core component is preferably 100 g/10 min or less, more preferably 80 g/10 min or less, and even more preferably 60 g/10 min or less, thereby suppressing a decrease in single yarn strength. and a spunbond nonwoven fabric with excellent strength can be obtained.
 本発明のスパンボンド不織布を構成する複合繊維が芯鞘型複合繊維である場合、鞘成分のポリプロピレン系樹脂のMFRは、芯成分のポリプロピレン系樹脂のMFRよりも10g/10分~200g/10分大きいことが好ましい。鞘成分のポリプロピレン系樹脂のMFRを、芯成分のポリプロピレン系樹脂のMFRよりも好ましくは10g/10分以上、より好ましくは15g/10分以上、さらに好ましくは20g/10分以上大きくすることにより、紡糸時に芯成分に紡糸応力を集中させ、芯成分の分子配向を促進させるとともに、鞘成分の分子配向を抑制させることができる。一方、鞘成分のポリプロピレン系樹脂のMFRが、芯成分のポリプロピレン系樹脂のMFRよりも200g/10分を超えて大きいと、複合繊維の単糸強度が低下するとともに、熱接着時に過度に軟化しやすくなり、熱ロールに貼り付くなどの操業上の問題が発生するため好ましくない。鞘成分のポリプロピレン系樹脂のMFRは、芯成分のポリプロピレン系樹脂のMFRよりも150g/10分を超えて大きくないことがより好ましく、芯成分のポリプロピレン系樹脂のMFRよりも100g/10分を超えて大きくないことがさらに好ましい。 When the composite fibers constituting the spunbonded nonwoven fabric of the present invention are core-sheath type composite fibers, the MFR of the polypropylene-based resin of the sheath component is 10 g/10 min to 200 g/10 min than the MFR of the polypropylene-based resin of the core component. Large is preferred. By making the MFR of the polypropylene-based resin of the sheath component higher than the MFR of the polypropylene-based resin of the core component, preferably 10 g/10 min or more, more preferably 15 g/10 min or more, and still more preferably 20 g/10 min or more, It is possible to concentrate the spinning stress on the core component during spinning, promote the molecular orientation of the core component, and suppress the molecular orientation of the sheath component. On the other hand, if the MFR of the polypropylene-based resin of the sheath component is greater than the MFR of the polypropylene-based resin of the core component by more than 200 g/10 min, the monofilament strength of the conjugated fiber is lowered and excessive softening occurs during heat bonding. This is not preferable because it causes operational problems such as sticking to the hot roll. More preferably, the MFR of the polypropylene-based resin as the sheath component is not greater than the MFR of the polypropylene-based resin as the core component by more than 150 g/10 min, and the MFR of the polypropylene-based resin as the core component is more than 100 g/10 min. It is even more preferable that it is not too large.
 本発明に係るポリプロピレン系樹脂のMFRは、ASTM D1238(A法)によって測定される値を採用する。この規格によれば、ポリプロピレン系樹脂は荷重:2.16kg、温度:230℃にて測定することが規定されている。 For the MFR of the polypropylene resin according to the present invention, the value measured by ASTM D1238 (A method) is adopted. According to this standard, it is specified that the polypropylene resin should be measured under a load of 2.16 kg and a temperature of 230°C.
 もちろん、MFRの異なる2種類以上の樹脂を任意の割合でブレンドして、本発明で用いられるポリプロピレン系樹脂のMFRを調整することもできる。この場合、主となるポリプロピレン系樹脂(ポリプロピレン系樹脂中、最も大きな質量%を占めるポリプロピレン系樹脂のことを指す)に対してブレンドする樹脂のMFRは、10g/10分~1000g/10分であることが好ましく、より好ましくは20g/10分~800g/10分、さらに好ましくは30g/10分~600g/10分である。このようにすることにより、ブレンドしたポリプロピレン系樹脂に部分的に粘度斑が生じることを防ぎ、単繊維径や単繊維繊度を均一化したり、細い繊維でも安定して紡糸したりすることができる。 Of course, it is also possible to adjust the MFR of the polypropylene-based resin used in the present invention by blending two or more resins with different MFRs at an arbitrary ratio. In this case, the MFR of the resin blended with the main polypropylene resin (referring to the polypropylene resin that accounts for the largest mass% in the polypropylene resin) is 10 g / 10 minutes to 1000 g / 10 minutes. more preferably 20 g/10 minutes to 800 g/10 minutes, still more preferably 30 g/10 minutes to 600 g/10 minutes. By doing so, it is possible to prevent partial viscosity unevenness in the blended polypropylene resin, to make the single fiber diameter and single fiber fineness uniform, and to stably spin even fine fibers.
 本発明のスパンボンド不織布には、滑り性や柔軟性を向上させるために、ポリプロピレン系樹脂を主成分とする複合繊維の全体もしくは鞘成分に、炭素数23以上50以下の脂肪酸アミド化合物が含有されていることが好ましい態様である。 In the spunbonded nonwoven fabric of the present invention, a fatty acid amide compound having 23 to 50 carbon atoms is contained in the whole or sheath component of the conjugate fiber mainly composed of polypropylene resin, in order to improve slipperiness and flexibility. It is a preferred embodiment that
 ポリプロピレン系樹脂に混合される脂肪酸アミド化合物の炭素数を好ましくは23以上とし、より好ましくは30以上とすることにより、脂肪酸アミド化合物が過度に繊維表面に露出することを抑制し、紡糸性と加工安定性に優れたものとし、高い生産性を保持することができる。一方、脂肪酸アミド化合物の炭素数を好ましくは50以下とし、より好ましくは42以下とすることにより、脂肪酸アミド化合物が繊維表面に移動しやすくなり、スパンボンド不織布に滑り性と柔軟性を付与することができる。 The number of carbon atoms in the fatty acid amide compound mixed with the polypropylene resin is preferably 23 or more, more preferably 30 or more, thereby suppressing excessive exposure of the fatty acid amide compound on the fiber surface and improving spinnability and processability. It has excellent stability and can maintain high productivity. On the other hand, when the number of carbon atoms in the fatty acid amide compound is preferably 50 or less, more preferably 42 or less, the fatty acid amide compound can easily migrate to the fiber surface and impart lubricity and softness to the spunbond nonwoven fabric. can be done.
 本発明で使用される炭素数23以上50以下の脂肪酸アミド化合物としては、飽和脂肪酸モノアミド化合物、飽和脂肪酸ジアミド化合物、不飽和脂肪酸モノアミド化合物、および不飽和脂肪酸ジアミド化合物などが挙げられる。 Examples of fatty acid amide compounds having 23 to 50 carbon atoms used in the present invention include saturated fatty acid monoamide compounds, saturated fatty acid diamide compounds, unsaturated fatty acid monoamide compounds, and unsaturated fatty acid diamide compounds.
 具体的には、炭素数23以上50以下の脂肪酸アミド化合物として、テトラドコサン酸アミド、ヘキサドコサン酸アミド、オクタドコサン酸アミド、ネルボン酸アミド、テトラコサペンタエン酸アミド、ニシン酸アミド、エチレンビスラウリン酸アミド、メチレンビスラウリン酸アミド、エチレンビスステアリン酸アミド、エチレンビスヒドロキシステアリン酸アミド、エチレンビスベヘン酸アミド、ヘキサメチレンビスステアリン酸アミド、ヘキサメチレンビスベヘン酸アミド、ヘキサメチレンヒドロキシステアリン酸アミド、ジステアリルアジピン酸アミド、ジステアリルセバシン酸アミド、エチレンビスオレイン酸アミド、エチレンビスエルカ酸アミド、およびヘキサメチレンビスオレイン酸アミドなどが挙げられ、これらは複数組み合わせて用いることもできる。 Specifically, fatty acid amide compounds having 23 to 50 carbon atoms include tetradocosanoic acid amide, hexadocosanoic acid amide, octadocosanoic acid amide, nervonic acid amide, tetracosapentaenoic acid amide, nisic acid amide, ethylenebislauric acid amide, Methylenebislauric acid amide, ethylenebisstearic acid amide, ethylenebishydroxystearic acid amide, ethylenebisbehenic acid amide, hexamethylenebisstearic acid amide, hexamethylenebisstearic acid amide, hexamethylenehydroxystearic acid amide, distearyladipate amide, distearylsebacamide, ethylenebisoleic acid amide, ethylenebiserucic acid amide, hexamethylenebisoleic acid amide and the like, and a plurality of these can be used in combination.
 本発明では、これらの脂肪酸アミド化合物の中でも、特に飽和脂肪酸ジアミド化合物であるエチレンビスステアリン酸アミドが好ましく用いられる。エチレンビスステアリン酸アミドは、熱安定性に優れているため溶融紡糸が可能であり、このエチレンビスステアリン酸アミドが配合されたポリプロピレン系樹脂を含む繊維により、高い生産性を保持しながら、滑り性や柔軟性に優れたスパンボンド不織布を得ることができる。 Among these fatty acid amide compounds, ethylene bis-stearic acid amide, which is a saturated fatty acid diamide compound, is particularly preferably used in the present invention. Ethylene bis-stearic acid amide has excellent thermal stability, so it can be melt-spun. Fibers containing polypropylene-based resin containing this ethylene bis-stearic acid amide can maintain high productivity while maintaining slipperiness. It is possible to obtain a spunbond nonwoven fabric excellent in flexibility and flexibility.
 本発明では、この脂肪酸アミド化合物の添加量は、0.01質量%~5.0質量%であることが好ましい態様である。脂肪酸アミド化合物の添加量を好ましくは0.01質量%~5.0質量%とし、より好ましくは0.1質量%~3.0質量%とし、さらに好ましくは0.1質量%~1.0質量%とすることにより、紡糸性を維持しながら適度な滑り性と柔軟性を付与することができる。 In a preferred embodiment of the present invention, the amount of the fatty acid amide compound added is 0.01% by mass to 5.0% by mass. The amount of the fatty acid amide compound added is preferably 0.01% by mass to 5.0% by mass, more preferably 0.1% by mass to 3.0% by mass, and still more preferably 0.1% by mass to 1.0% by mass. By setting it to % by mass, it is possible to impart appropriate lubricity and flexibility while maintaining spinnability.
 ここでいう添加量とは、本発明のスパンボンド不織布を構成するポリプロピレン系樹脂を主成分とする熱可塑性樹脂全体に対して添加した脂肪酸アミド化合物の質量パーセントを言う。例えば、芯鞘型複合繊維を構成する鞘部成分のみに脂肪酸アミド化合物を添加する場合でも、芯鞘成分全体量に対する添加割合を算出している。 The amount added here refers to the mass percentage of the fatty acid amide compound added to the entire thermoplastic resin containing polypropylene resin as the main component that constitutes the spunbond nonwoven fabric of the present invention. For example, even when the fatty acid amide compound is added only to the sheath component that constitutes the core-sheath type composite fiber, the ratio of addition to the total amount of the core-sheath component is calculated.
 ポリプロピレン系樹脂からなる繊維に対する脂肪酸アミド化合物の添加量を測定する方法としては、例えば、前記の繊維から添加剤を溶媒抽出し、液体クロマトグラフ質量分析(LS/MS)などを用いて定量分析する方法が挙げられる。このとき抽出溶媒は脂肪酸アミド化合物の種類に応じて適宜選択されるものであるが、例えばエチレンビスステアリン酸アミドの場合には、クロロホルム-メタノール混液などを用いる方法が一例として挙げられる。 As a method for measuring the amount of the fatty acid amide compound added to the fiber made of polypropylene resin, for example, the additive is solvent-extracted from the fiber and quantitatively analyzed using liquid chromatography mass spectrometry (LS/MS) or the like. method. At this time, the extraction solvent is appropriately selected according to the type of the fatty acid amide compound. For example, in the case of ethylenebisstearic acid amide, a method using a chloroform-methanol mixed solution can be mentioned as an example.
 [ポリプロピレン系樹脂を主成分とする複合繊維]
 本発明のスパンボンド不織布を構成する複合繊維の複合形態としては、例えば、同心芯鞘型、偏心芯鞘型、海島型、およびサイドバイサイド型などの複合形態を用いることができる。中でも、紡糸性に優れ、熱接着により繊維同士を均一に接着させることができることから、芯鞘型の複合形態とすること、すなわち、前記の複合繊維が芯鞘型複合繊維であることが好ましく、同心芯鞘型の複合形態とすること、すなわち、前記の複合繊維が同心芯鞘型の芯鞘型複合繊維であることがより好ましい態様である。
[Composite fiber mainly composed of polypropylene resin]
As the composite form of the composite fibers constituting the spunbond nonwoven fabric of the present invention, for example, composite forms such as a concentric core-sheath type, an eccentric core-sheath type, an islands-in-the-sea type, and a side-by-side type can be used. Above all, it is preferable to use a core-sheath type conjugate form, that is, the conjugate fiber is a core-sheath type conjugate fiber because it has excellent spinnability and can be uniformly bonded to each other by thermal bonding. A more preferable embodiment is to have a concentric sheath-core composite form, that is, the composite fiber is a concentric sheath-core composite fiber.
 本発明において、海島型複合繊維においても芯鞘型複合繊維と同様の効果が得られることから、以降では海島型複合繊維について特筆しない限り、芯鞘型複合繊維に海島型複合繊維も含まれるものとする。なお、海島型複合繊維の場合は、以降で「鞘成分」とあるのを「海成分」と、「芯成分」とあるのを「島成分」と読み替える、あるいは、「海成分」を「鞘成分」、「島成分」を「芯成分」とみなした上で、測定などを行うこととする。また、サイドバイサイド型の場合も軟化温度の高い部分と軟化温度の低い部分がサイドバイサイド型の横断面を有するように構成されることにより高軟化温度部分の分子配向を残留させつつ、低軟化温度部分で熱接着できることから軟化温度の高い部分を「芯成分」、軟化温度の低い部分を「鞘成分」に相当するものとして測定などを行うものとする。また前述の好ましいMFRの範囲についても、軟化温度の高い部分を「芯成分」、軟化温度の低い部分を「鞘成分」に相当するものとして解釈すれば同様の範囲が好ましい。 In the present invention, the islands-in-the-sea conjugate fiber has the same effect as the core-sheath conjugate fiber. Therefore, hereinafter, the core-sheath conjugate fiber also includes the islands-in-the-sea conjugate fiber unless the sea-island conjugate fiber is specifically mentioned. and In the case of islands-in-the-sea composite fibers, hereinafter, "sheath component" should be read as "sea component" and "core component" should be read as "island component", or "sea component" should be read as "sheath". After considering the "component" and "island component" as the "core component", the measurement etc. will be performed. In addition, in the case of the side-by-side type, the high softening temperature portion and the low softening temperature portion are configured to have a side-by-side cross section, so that the molecular orientation of the high softening temperature portion remains, while the low softening temperature portion Since it can be thermally bonded, the portion with a high softening temperature corresponds to the "core component", and the portion with a low softening temperature corresponds to the "sheath component". The preferred range of MFR described above is also preferably the same as long as the portion with a high softening temperature corresponds to the "core component" and the portion with a low softening temperature corresponds to the "sheath component".
 本発明のスパンボンド不織布を構成する複合繊維は、平均単繊維繊度が0.5dtex~3.0dtexであることが好ましい。平均単繊維繊度を好ましくは0.5dtex以上とし、より好ましくは0.6dtex以上とし、さらに好ましくは0.7dtex以上とすることにより、紡糸性の低下を防ぎ、生産安定性に優れたスパンボンド不織布とすることができる。一方、平均単繊維繊度を好ましくは3.0dtex以下とし、より好ましくは2.0dtex以下とし、さらに好ましくは1.5dtex以下とすることにより、肌触りに優れ、地合が均一であり、強度に優れたスパンボンド不織布とすることができる。平均単繊維繊度は、後述する紡糸温度、単孔吐出量、紡糸速度などによって制御することができる。 The composite fibers constituting the spunbond nonwoven fabric of the present invention preferably have an average single fiber fineness of 0.5 dtex to 3.0 dtex. A spunbonded nonwoven fabric having an average single fiber fineness of preferably 0.5 dtex or more, more preferably 0.6 dtex or more, and even more preferably 0.7 dtex or more prevents a decrease in spinnability and has excellent production stability. can be On the other hand, the average single fiber fineness is preferably 3.0 dtex or less, more preferably 2.0 dtex or less, and still more preferably 1.5 dtex or less, so that the texture is excellent, the texture is uniform, and the strength is excellent. It can be a spunbond nonwoven fabric. The average single fiber fineness can be controlled by the spinning temperature, single hole discharge rate, spinning speed, etc., which will be described later.
 本発明のスパンボンド不織布を構成する複合繊維は、平均単繊維径が8μm~20μmであることが好ましい。平均単繊維径を好ましくは8μm以上とし、より好ましくは9μm以上とし、さらに好ましくは10μm以上とすることにより、紡糸性の低下を防ぎ、生産安定性に優れたスパンボンド不織布とすることができる。一方、平均単繊維径を好ましくは20μm以下とし、より好ましくは17μm以下とし、さらに好ましくは14μm以下とすることにより、肌触りに優れ、地合が均一であり、強度に優れたスパンボンド不織布とすることができる。平均単繊維径は、後述する紡糸温度、単孔吐出量、紡糸速度などによって制御することができる。 The conjugate fibers constituting the spunbond nonwoven fabric of the present invention preferably have an average single fiber diameter of 8 μm to 20 μm. By setting the average single fiber diameter to preferably 8 μm or more, more preferably 9 μm or more, and even more preferably 10 μm or more, it is possible to prevent a decrease in spinnability and obtain a spunbond nonwoven fabric with excellent production stability. On the other hand, by setting the average single fiber diameter to preferably 20 μm or less, more preferably 17 μm or less, and even more preferably 14 μm or less, the spunbond nonwoven fabric has excellent texture, uniform texture, and excellent strength. be able to. The average single fiber diameter can be controlled by the spinning temperature, single hole discharge rate, spinning speed, etc., which will be described later.
 本発明において、前記のスパンボンド不織布を構成する複合繊維の平均単繊維径(μm)は、以下の手順によって算出される値を採用するものとする。
(1)スパンボンド不織布からランダムに小片サンプル(100×100mm)を10個採取する。
(2)マイクロスコープまたは走査型電子顕微鏡で500~2000倍の表面写真を撮影し、各サンプルから10本ずつ、計100本の非融着部の複合繊維の幅(直径)を測定する。複合繊維の断面が異形の場合には断面積を測定し、同一の断面積を有する正円の直径を求める。
(3)測定した100本の直径の値の平均し、小数点以下第二位を四捨五入して平均単繊維径(μm)とする。
In the present invention, the average single fiber diameter (μm) of the conjugated fibers forming the spunbond nonwoven fabric is calculated by the following procedure.
(1) Collect 10 small piece samples (100×100 mm) at random from the spunbond nonwoven fabric.
(2) Take a photograph of the surface at a magnification of 500 to 2000 using a microscope or a scanning electron microscope, and measure the width (diameter) of 100 conjugate fibers in the non-fused portion in total, 10 from each sample. If the cross-section of the conjugate fiber is irregular, the cross-sectional area is measured to obtain the diameter of a perfect circle having the same cross-sectional area.
(3) Average the diameter values of 100 measured fibers and round off to the second decimal place to obtain the average single fiber diameter (μm).
 本発明のスパンボンド不織布を構成する複合繊維が芯鞘型複合繊維である場合には、鞘成分の質量比率が20質量%~80質量%であることが好ましい。鞘成分の質量比率が好ましくは20質量%以上、より好ましくは30質量%以上、さらに好ましくは40質量%以上であることにより、熱接着時に鞘成分同士が強固に融着し、実用に供しうる十分な強度を有するスパンボンド不織布とすることができる。一方、鞘成分の比率が好ましくは80質量%以下、より好ましくは70質量%以下、さらに好ましくは60質量%以下であることにより、複合繊維の単糸強度を向上させ、実用に供しうる十分な強度を有するスパンボンド不織布とすることができる。 When the composite fibers constituting the spunbond nonwoven fabric of the present invention are core-sheath type composite fibers, the mass ratio of the sheath component is preferably 20% to 80% by mass. When the mass ratio of the sheath component is preferably 20% by mass or more, more preferably 30% by mass or more, and even more preferably 40% by mass or more, the sheath components are strongly fused to each other during thermal bonding, and can be put to practical use. A spunbond nonwoven fabric having sufficient strength can be obtained. On the other hand, when the ratio of the sheath component is preferably 80% by mass or less, more preferably 70% by mass or less, and even more preferably 60% by mass or less, the single filament strength of the composite fiber is improved, and it is sufficient for practical use. It can be a spunbond nonwoven fabric having strength.
 本発明のスパンボンド不織布を構成する複合繊維の断面形状としては、丸断面、扁平断面、およびY型やC型などの異形断面を用いることができる。中でも、扁平断面や異形断面のような構造由来の曲げにくさがなく、柔軟性に優れたスパンボンド不織布とすることができることから、丸断面が好ましい態様である。また断面形状として中空断面を適用することもできるが、紡糸性に優れ、細い繊維径でも安定して紡糸できることから、中実断面が好ましい態様である。 As the cross-sectional shape of the conjugate fiber that constitutes the spunbond nonwoven fabric of the present invention, a round cross-section, a flat cross-section, and an irregular cross-section such as a Y-shape or a C-shape can be used. Among them, a circular cross section is preferable because it does not have difficulty in bending due to a structure such as a flat cross section or an irregular cross section, and can be used as a spunbond nonwoven fabric having excellent flexibility. A hollow cross-section can be applied as the cross-sectional shape, but a solid cross-section is preferable because it is excellent in spinnability and can be stably spun even with a small fiber diameter.
 [スパンボンド不織布]
 本発明のスパンボンド不織布は、前記のポリプロピレン系樹脂を主成分とする複合繊維からなるスパンボンド不織布であって、前記のスパンボンド不織布は融着部と非融着部とを有し、前記の非融着部の複合繊維が少なくとも2つ以上の軟化温度Ts(℃)を有し、かつ、最高の軟化温度Tsh(℃)と最低の軟化温度Tsl(℃)との差(Tsh-Tsl)が5℃以上30℃以下である。このようにすることにより、低目付でも優れた強度を有し、柔軟性や肌触りに優れたスパンボンド不織布とすることができる。
[Spunbond nonwoven]
The spunbonded nonwoven fabric of the present invention is a spunbonded nonwoven fabric made of composite fibers containing a polypropylene-based resin as a main component, wherein the spunbonded nonwoven fabric has a fused portion and a non-fused portion. The conjugate fibers in the non-fused portion have at least two softening temperatures Ts (°C), and the difference (Tsh-Tsl) between the highest softening temperature Tsh (°C) and the lowest softening temperature Tsl (°C) is 5°C or higher and 30°C or lower. By doing so, it is possible to obtain a spunbond nonwoven fabric that has excellent strength even with a low basis weight and that is excellent in flexibility and touch.
 まず、本発明のスパンボンド不織布は、融着部と非融着部とを有する。このようにすることにより、柔軟性や肌触りを保持しつつ、実用に供しうる十分な強度を有するスパンボンド不織布とすることができる。融着部とは複合繊維同士が融着している箇所を指し、非融着部とは複合繊維同士が融着しておらず断面形状を保持している箇所を指す。 First, the spunbond nonwoven fabric of the present invention has a fused portion and a non-fused portion. By doing so, it is possible to obtain a spunbond nonwoven fabric having sufficient strength for practical use while maintaining softness and touch. The fused portion refers to a portion where the conjugate fibers are fused together, and the non-fused portion refers to a portion where the conjugate fibers are not fused to each other and the cross-sectional shape is maintained.
 本発明において、非融着部の複合繊維の軟化温度Ts(℃)とは、ナノスケール熱機械分析法(nanoscale-Thermomechanical Analysis;nano-TMA)により、以下の手順によって算出される値のことである。このnano-TMAはサブミクロン領域での熱分析が可能であり、原子間力顕微鏡(AFM)のプローブ(カンチレバー)に加熱ヒーターを備えた温度センサーを取り付けた装置を使用するものである。
(1)スパンボンド不織布の非融着部の複合繊維を切り出す。
(2)複合繊維を試料台に固定し、繊維直径方向の中央付近に、加熱ヒーターを備えた温度センサー付きのAFMプローブを固定する。
(2)プローブを25℃から180℃まで、昇温速度10℃/秒で昇温し、プローブの高さ変化(a.u.)を測定する。
(3)プローブの高さ変化から試料中へプローブが針入するオンセット温度(軟化温度(℃))を測定し、最低の軟化温度をTsl(℃)、最高の軟化温度(℃)をTshとする。
(4)同様の測定を20本の繊維で行い、Tsl、Tshそれぞれの平均値を求め、小数点以下第二位を四捨五入する。なお、AFMプローブの接触位置により一部の複合繊維でTshが観測されないことがあるが、この場合は観測されたTshのみで平均値を求める。
In the present invention, the softening temperature Ts (° C.) of the composite fiber in the non-fused portion is a value calculated by the following procedure by nanoscale-thermomechanical analysis (nano-TMA). be. This nano-TMA is capable of thermal analysis in the submicron region, and uses an atomic force microscope (AFM) probe (cantilever) equipped with a temperature sensor equipped with a heater.
(1) Cutting out the conjugate fibers of the non-fused portion of the spunbond nonwoven fabric.
(2) The composite fiber is fixed on a sample stage, and an AFM probe with a temperature sensor and a heater is fixed near the center in the fiber diameter direction.
(2) The probe is heated from 25° C. to 180° C. at a heating rate of 10° C./sec, and the change in height (a.u.) of the probe is measured.
(3) Measure the onset temperature (softening temperature (° C.)) at which the probe penetrates into the sample from the height change of the probe, Tsl (° C.) for the lowest softening temperature, and Tsh for the highest softening temperature (° C.). and
(4) Perform the same measurement on 20 fibers, find the average value of each of Tsl and Tsh, and round off to the second decimal place. Depending on the contact position of the AFM probe, Tsh may not be observed in some conjugate fibers, but in this case, the average value is obtained only from the observed Tsh.
 本発明のスパンボンド不織布は、非融着部の複合繊維が少なくとも2つ以上の軟化温度Ts(℃)を有し、かつ、最高の軟化温度Tsh(℃)と最低の軟化温度Tsl(℃)との差(Tsh-Tsl)は、5℃以上30℃以下である。Tsh(℃)とTsl(℃)の差(Tsh-Tsl)を、5℃以上とし、好ましくは7℃以上とし、より好ましくは10℃以上とすることにより、熱接着時に繊維表層のみを軟化させることができる。そして、このようにすることにより、繊維内層の分子配向を残留させつつ、繊維同士を強固に熱接着させることができるため、優れた強度を有するスパンボンド不織布とすることができる。一方、Tsh(℃)とTsl(℃)の差(Tsh-Tsl)を、30℃以下とし、好ましくは25℃以下とし、より好ましくは20℃以下とすることにより、熱接着時に繊維がつぶれて繊維同士がしっかりと接触しやすくなるため、強固に熱接着させることができ、優れた強度を有するスパンボンド不織布とすることができる。また熱接着時に繊維表層が過度に軟化し熱ロールに貼り付くなどの操業上の問題が発生することを防ぐことができる。非融着部の複合繊維の最高の軟化温度Tsh(℃)および最低の軟化温度Tsl(℃)は、前記のポリプロピレン系樹脂のMFR、融点、添加剤、複合繊維を構成する成分の質量比率(芯鞘型複合繊維の場合には、鞘成分の質量比率)、および/または、後述する紡糸温度、紡糸速度などによって制御することができる。 The spunbonded nonwoven fabric of the present invention has at least two softening temperatures Ts (°C) of the conjugate fibers in the non-fused portion, and the highest softening temperature Tsh (°C) and the lowest softening temperature Tsl (°C). and the difference (Tsh-Tsl) is 5°C or more and 30°C or less. By setting the difference (Tsh−Tsl) between Tsh (° C.) and Tsl (° C.) to 5° C. or more, preferably 7° C. or more, and more preferably 10° C. or more, only the fiber surface layer is softened during thermal bonding. be able to. By doing so, the fibers can be strongly thermally bonded to each other while the molecular orientation of the fiber inner layer remains, so that a spunbond nonwoven fabric having excellent strength can be obtained. On the other hand, the difference (Tsh-Tsl) between Tsh (° C.) and Tsl (° C.) is 30° C. or less, preferably 25° C. or less, and more preferably 20° C. or less, so that the fibers are not crushed during thermal bonding. Since the fibers are likely to be in firm contact with each other, they can be strongly thermally bonded, and a spunbond nonwoven fabric having excellent strength can be obtained. In addition, it is possible to prevent operational problems such as excessive softening of the fiber surface layer during thermal bonding and sticking to the heat roll. The maximum softening temperature Tsh (° C.) and the minimum softening temperature Tsl (° C.) of the conjugate fiber in the non-fused portion are determined by the MFR, melting point, additives, and mass ratio of the components constituting the conjugate fiber ( In the case of a core-sheath type conjugate fiber, it can be controlled by the mass ratio of the sheath component) and/or the spinning temperature, spinning speed, etc., which will be described later.
 また、本発明のスパンボンド不織布は、示差走査型熱量測定法(DSC)で単一の融解ピーク温度Tm(℃)を有することが好ましい。なお、本発明において、「スパンボンド不織布が示差走査型熱量測定法で単一の融解ピーク温度Tm(℃)を有する」とは、下記の測定方法の(3)に記載の融解吸熱ピークが、実質的に1つのピークしか観測されないことを言う。このようにすることにより、熱接着時に低融点成分が溶融し熱ロールに貼り付くなどの操業上の問題を発生させることなく、繊維同士を十分な温度で強固に熱接着させることができるため、優れた強度を有するスパンボンド不織布が得られ易くなる。 Also, the spunbond nonwoven fabric of the present invention preferably has a single peak melting temperature Tm (°C) by differential scanning calorimetry (DSC). In the present invention, "the spunbond nonwoven fabric has a single melting peak temperature Tm (°C) by differential scanning calorimetry" means that the melting endothermic peak described in (3) of the following measurement method is It means that substantially only one peak is observed. By doing so, the fibers can be firmly thermally bonded together at a sufficient temperature without causing operational problems such as sticking to the hot roll due to melting of the low melting point component during thermal bonding. It becomes easy to obtain a spunbond nonwoven fabric having excellent strength.
 ここで示差走査型熱量測定法(DSC)により得られるスパンボンド不織布の融解ピーク温度Tm(℃)は、以下の手順によって算出される値を採用するものとする。
(1)スパンボンド不織布の繊維片を試料量0.5~5mgサンプリングする。
(2)示差走査型熱量測定法(DSC)を用い、昇温速度20℃/分で、常温から温度200℃まで昇温しDSC曲線を得る。
(3) DSC曲線から融解吸熱ピークのピークトップ温度を読み取り、スパンボンド不織布の融解ピーク温度Tm(℃)とする。
Here, as the melting peak temperature Tm (°C) of the spunbond nonwoven fabric obtained by differential scanning calorimetry (DSC), a value calculated by the following procedure shall be adopted.
(1) A sample of 0.5 to 5 mg of spunbond nonwoven fabric is sampled.
(2) Differential scanning calorimetry (DSC) is used to raise the temperature from room temperature to 200°C at a heating rate of 20°C/min to obtain a DSC curve.
(3) The peak top temperature of the melting endothermic peak is read from the DSC curve and taken as the melting peak temperature Tm (°C) of the spunbond nonwoven fabric.
 本発明のスパンボンド不織布の融解ピーク温度Tm(℃)と非融着部の複合繊維の最低の軟化温度Tsl(℃)との差(Tm-Tsl)は、10℃以上40℃以下であることが好ましい。Tm(℃)とTsl(℃)との差(Tm-Tsl)を、好ましくは40℃以下とし、より好ましくは35℃以下とし、さらに好ましくは30℃以下とすることにより、熱接着時に繊維がつぶれて繊維同士がしっかりと接触しやすくなるため、強固に熱接着させることができ、優れた強度を有するスパンボンド不織布とすることができる。また熱接着時に繊維表層が過度に軟化し熱ロールに貼り付くなどの操業上の問題が発生することを防ぐことができる。一方、Tm(℃)とTsl(℃)との差(Tm-Tsl)を、好ましくは10℃以上とし、より好ましくは15℃以上とし、さらに好ましくは20℃以上とすることにより、熱接着時に繊維内部の分子配向を残留させながら繊維同士を強固に熱接着させることができ、優れた強度を有するスパンボンド不織布とすることができる。なお、本発明のスパンボンド不織布が複数の融解ピーク温度Tm(℃)を有する場合は、最も高い融解ピーク温度Tm(℃)を用いて、融解ピーク温度Tm(℃)と非融着部の複合繊維の最低の軟化温度Tsl(℃)との差(Tm-Tsl)を算出するものとする。 The difference (Tm-Tsl) between the melting peak temperature Tm (°C) of the spunbonded nonwoven fabric of the present invention and the lowest softening temperature Tsl (°C) of the composite fibers in the non-fused portion is 10°C or more and 40°C or less. is preferred. By setting the difference (Tm−Tsl) between Tm (° C.) and Tsl (° C.) to preferably 40° C. or less, more preferably 35° C. or less, and even more preferably 30° C. or less, the fibers are heated during thermal bonding. Since the fibers are crushed and tend to come into firm contact with each other, they can be firmly thermally bonded, and a spunbond nonwoven fabric having excellent strength can be obtained. In addition, it is possible to prevent operational problems such as excessive softening of the fiber surface layer during thermal bonding and sticking to the heat roll. On the other hand, the difference (Tm−Tsl) between Tm (° C.) and Tsl (° C.) is preferably 10° C. or higher, more preferably 15° C. or higher, and still more preferably 20° C. or higher, so that The fibers can be strongly thermally bonded to each other while leaving the molecular orientation inside the fibers, and a spunbond nonwoven fabric having excellent strength can be obtained. When the spunbond nonwoven fabric of the present invention has a plurality of melting peak temperatures Tm (°C), the highest melting peak temperature Tm (°C) is used to combine the melting peak temperature Tm (°C) and the non-fused portion. The difference (Tm−Tsl) from the lowest softening temperature Tsl (° C.) of the fiber shall be calculated.
 また、本発明のスパンボンド不織布の融解ピーク温度Tm(℃)と非融着部の複合繊維の最高の軟化温度Tsh(℃)との差(Tm-Tsh)は、1℃以上20℃以下であることが好ましい。Tm(℃)とTsh(℃)との差(Tm-Tsh)を、好ましくは20℃以下とし、より好ましくは15℃以下とし、さらに好ましくは10℃以下とすることにより、繊維の強度を向上させ、熱接着後に優れた強度を有するスパンボンド不織布とすることができる。一方、Tm(℃)とTsh(℃)との差(Tm-Tsh)を、好ましくは1℃以上とし、より好ましは3℃以上とし、さらに好ましくは5℃以上とすることにより、紡糸時に繊維の一部に大きな応力がかかり、糸切れが発生することを防ぐことができる。なお、本発明のスパンボンド不織布が複数の融解ピーク温度Tm(℃)を有する場合は、最も高い融解ピーク温度Tm(℃)を用いて、融解ピーク温度Tm(℃)と非融着部の複合繊維の最高の軟化温度Tsh(℃)との差(Tm-Tsh)を算出するものとする。 Further, the difference (Tm-Tsh) between the melting peak temperature Tm (°C) of the spunbond nonwoven fabric of the present invention and the maximum softening temperature Tsh (°C) of the composite fibers in the non-fused portion is 1°C or higher and 20°C or lower. Preferably. The difference (Tm−Tsh) between Tm (° C.) and Tsh (° C.) is preferably 20° C. or less, more preferably 15° C. or less, and still more preferably 10° C. or less, thereby improving the strength of the fiber. and a spunbonded nonwoven fabric having excellent strength after thermal bonding can be obtained. On the other hand, the difference (Tm-Tsh) between Tm (° C.) and Tsh (° C.) is preferably 1° C. or more, more preferably 3° C. or more, and still more preferably 5° C. or more, so that the It is possible to prevent the occurrence of thread breakage due to a large stress applied to a part of the fiber. When the spunbond nonwoven fabric of the present invention has a plurality of melting peak temperatures Tm (°C), the highest melting peak temperature Tm (°C) is used to combine the melting peak temperature Tm (°C) and the non-fused portion. The difference (Tm−Tsh) from the maximum softening temperature Tsh (° C.) of the fiber shall be calculated.
 本発明のスパンボンド不織布は、少なくとも片面のKES法による表面粗さSMDが1μm~3μmであることが好ましい。KES法による表面粗さSMDが好ましくは1.0μm以上、より好ましくは1.3μm以上、さらに好ましくは1.6μm以上であることにより、スパンボンド不織布が過度に緻密化して風合いが悪化したり、柔軟性が損なわれたりすることを防ぐことができる。一方、KES法による表面粗さSMDが好ましくは3.0μm以下、より好ましくは2.8μm以下、さらに好ましくは2.5μm以下であることにより、表面が滑らかでざらつき感が小さく、肌触りに優れたスパンボンド不織布とすることができる。KES法による表面粗さSMDは、前記の複合繊維の平均単繊維径、スパンボンド不織布の地合、および/または、後述する熱接着の条件(接着部の形状、圧着率、温度、および線圧等)などを適切に調整することにより制御することができる。 The spunbond nonwoven fabric of the present invention preferably has a surface roughness SMD of 1 μm to 3 μm by the KES method on at least one side. When the surface roughness SMD by the KES method is preferably 1.0 μm or more, more preferably 1.3 μm or more, and even more preferably 1.6 μm or more, the spunbond nonwoven fabric becomes excessively dense and the texture deteriorates, You can prevent loss of flexibility. On the other hand, the surface roughness SMD by the KES method is preferably 3.0 μm or less, more preferably 2.8 μm or less, and still more preferably 2.5 μm or less, so that the surface is smooth, less rough, and excellent in touch. It can be a spunbond nonwoven. The surface roughness SMD by the KES method depends on the average single fiber diameter of the conjugate fiber, the texture of the spunbond nonwoven fabric, and/or the thermal bonding conditions described later (shape of bonded portion, compression rate, temperature, and linear pressure etc.) can be controlled by appropriately adjusting.
 なお、本発明においてKES法による表面粗さSMDは、以下のように測定される値を採用するものとする。
(1)スパンボンド不織布から幅200mm×200mmの試験片を、スパンボンド不織布の幅方向等間隔に3枚採取する。
(2)試験片を試料台にセットする。
(3)10gf(0.098N)の荷重をかけた表面粗さ測定用接触子(素材:φ0.5mmピアノ線、接触長さ:5mm)で試験片の表面を走査して、表面の凹凸形状の平均偏差を測定する。
(4)上記の測定を、すべての試験片の縦方向(不織布の長手方向)と横方向(不織布の幅方向)で行い、これらの計6点の平均偏差を平均して小数点以下第二位を四捨五入し、表面粗さSMD(μm)とする。
In addition, in the present invention, the surface roughness SMD by the KES method adopts a value measured as follows.
(1) Three test pieces each having a width of 200 mm×200 mm are taken from the spunbond nonwoven fabric at equal intervals in the width direction of the spunbond nonwoven fabric.
(2) Set the test piece on the sample table.
(3) Scan the surface of the test piece with a surface roughness measuring contact (material: φ0.5 mm piano wire, contact length: 5 mm) with a load of 10 gf (0.098 N) to Measure the mean deviation of
(4) Perform the above measurements in the longitudinal direction (longitudinal direction of nonwoven fabric) and transverse direction (width direction of nonwoven fabric) of all test pieces, and average the average deviation of these total 6 points to the second decimal place is rounded off to obtain the surface roughness SMD (μm).
 なお、スパンボンド不織布の長手方向(縦方向)とは、スパンボンド不織布の製造工程においてスパンボンド不織布が巻取装置に引取られる方向のことをいい、機械方向ともいう。横方向は、長手方向に対し、スパンボンド不織布の幅方向をいう。 The longitudinal direction (longitudinal direction) of the spunbond nonwoven fabric refers to the direction in which the spunbond nonwoven fabric is taken up by a winding device in the manufacturing process of the spunbond nonwoven fabric, and is also called the machine direction. The transverse direction refers to the width direction of the spunbond nonwoven fabric with respect to the longitudinal direction.
 本発明のスパンボンド不織布のKES法による摩擦係数MIUは、0.01~0.30であることが好ましい。摩擦係数MIUが好ましくは0.30以下、より好ましくは0.20以下、さらに好ましくは0.15以下であることにより、不織布表面の滑り性を向上させ、肌触りに優れたスパンボンド不織布とすることができる。一方、摩擦係数MIUが好ましくは0.01以上、より好ましくは0.03以上、さらに好ましくは0.05以上であることにより、紡糸した糸条を捕集コンベアに捕集する際に糸条同士が滑り地合均一性が悪化することを防ぐことができる。KES法による摩擦係数MIUは、前記のポリプロピレン系樹脂の添加剤、複合繊維の平均単繊維径、スパンボンド不織布の地合、および/または、後述する熱接着の条件(接着部の形状、圧着率、温度、および線圧等)などを適切に調整することにより制御することができる。 The friction coefficient MIU of the spunbond nonwoven fabric of the present invention according to the KES method is preferably 0.01 to 0.30. To provide a spunbond nonwoven fabric having a friction coefficient MIU of preferably 0.30 or less, more preferably 0.20 or less, and still more preferably 0.15 or less, thereby improving the slipperiness of the surface of the nonwoven fabric and providing an excellent texture. can be done. On the other hand, the coefficient of friction MIU is preferably 0.01 or more, more preferably 0.03 or more, and still more preferably 0.05 or more, so that when the spun yarns are collected on the collection conveyor, there is friction between the yarns. It is possible to prevent slippage and deterioration of texture uniformity. The coefficient of friction MIU according to the KES method depends on the additive of the polypropylene resin, the average single fiber diameter of the composite fiber, the texture of the spunbond nonwoven fabric, and/or the thermal bonding conditions described later (shape of the bonded portion, compression rate , temperature, line pressure, etc.) can be controlled.
 なお、本発明においてKES法による摩擦係数MIUは、以下のように測定される値を採用するものとする。
(1)スパンボンド不織布から幅200mm×200mmの試験片を、スパンボンド不織布の幅方向等間隔に3枚採取する。
(2)試験片を試料台にセットする。
(3)50gf(0.49N)の荷重をかけた接触摩擦子(素材:φ0.5mmピアノ線(20本並列)、接触面積:1cm)で試験片の表面を走査して、摩擦係数を測定する。
(4)上記の測定を、すべての試験片の縦方向(不織布の長手方向)と横方向(不織布の幅方向)で行い、これらの計6点の平均偏差を平均して小数点以下第四位を四捨五入し、摩擦係数MIUとする。
In the present invention, the coefficient of friction MIU according to the KES method shall adopt a value measured as follows.
(1) Three test pieces each having a width of 200 mm×200 mm are taken from the spunbond nonwoven fabric at equal intervals in the width direction of the spunbond nonwoven fabric.
(2) Set the test piece on the sample table.
(3) Scan the surface of the test piece with a contact friction element (material: φ0.5 mm piano wire (20 pieces in parallel), contact area: 1 cm 2 ) to which a load of 50 gf (0.49 N) is applied, and measure the friction coefficient. Measure.
(4) Perform the above measurements in the longitudinal direction (longitudinal direction of nonwoven fabric) and transverse direction (width direction of nonwoven fabric) of all test pieces, and average the average deviation of these total 6 points to the fourth decimal place is rounded off to obtain the friction coefficient MIU.
 本発明のスパンボンド不織布のMFRは、10g/10分~300g/10分であることが好ましい。スパンボンド不織布のMFRが好ましくは10g/10分以上、より好ましくは15g/10分以上、さらに好ましくは20g/10分以上であることにより、細い繊維径でも安定して紡糸することができ、肌触りに優れ、地合が均一であり、強度を優れたスパンボンド不織布とすることができる。一方、スパンボンド不織布のMFRが好ましくは300g/10分以下、より好ましくは200g/10分以下、さらに好ましくは100g/10分以下であることにより、強度の低下を抑制するとともに、熱接着時に過度に軟化しやすくなり熱ロールに貼り付くなどの操業上の問題が発生することを防ぐことができる。 The MFR of the spunbond nonwoven fabric of the present invention is preferably 10 g/10 minutes to 300 g/10 minutes. The MFR of the spunbond nonwoven fabric is preferably 10 g/10 minutes or more, more preferably 15 g/10 minutes or more, and even more preferably 20 g/10 minutes or more, so that even a small fiber diameter can be stably spun and the texture is improved. A spunbonded nonwoven fabric having excellent strength, uniform texture, and excellent strength can be obtained. On the other hand, the MFR of the spunbond nonwoven fabric is preferably 300 g/10 minutes or less, more preferably 200 g/10 minutes or less, and even more preferably 100 g/10 minutes or less, thereby suppressing a decrease in strength and excessive It is possible to prevent the occurrence of operational problems such as sticking to the heat roll due to softening easily.
 本発明に係るスパンボンド不織布のMFRは、ASTM D1238 (A法)によって測定される値を採用する。この規格によれば、ポリプロピレン系樹脂は荷重:2.16kg、温度:230℃にて測定することが規定されている。 For the MFR of the spunbond nonwoven fabric according to the present invention, the value measured by ASTM D1238 (method A) is adopted. According to this standard, it is specified that the polypropylene resin should be measured under a load of 2.16 kg and a temperature of 230°C.
 本発明のスパンボンド不織布の目付は、10g/m~100g/mであることが好ましい。目付が好ましくは10g/m以上、より好ましくは13g/m以上、さらに好ましくは15g/m以上であることにより、実用に供し得る十分な強度を有するスパンボンド不織布とすることができる。一方、目付が好ましくは100g/m以下、より好ましくは50g/m以下、さらに好ましくは30g/m以下であることにより、衛生材料用の不織布としての使用に適した柔軟性を有するスパンボンド不織布とすることができる。 The spunbond nonwoven fabric of the present invention preferably has a basis weight of 10 g/m 2 to 100 g/m 2 . The basis weight is preferably 10 g/m 2 or more, more preferably 13 g/m 2 or more, and even more preferably 15 g/m 2 or more, so that the spunbond nonwoven fabric has sufficient strength for practical use. On the other hand, the spun having a basis weight of preferably 100 g/m 2 or less, more preferably 50 g/m 2 or less, and even more preferably 30 g/m 2 or less, has flexibility suitable for use as a nonwoven fabric for sanitary materials. It can be a bonded nonwoven fabric.
 なお、本発明において、スパンボンド不織布の目付は、JIS L1913:2010「一般不織布試験方法」の「6.2 単位面積当たりの質量」に準じ、以下の手順によって測定される値を採用するものとする。
(1)20cm×25cmの試験片を、試料の幅1m当たり3枚採取する。
(2)標準状態におけるそれぞれの質量(g)を量る。
(3)その平均値を1m当たりの質量(g/m)で表する。
In the present invention, the basis weight of the spunbond nonwoven fabric conforms to "6.2 Mass per unit area" of JIS L1913:2010 "General nonwoven fabric test method", and adopts the value measured by the following procedure. do.
(1) Three test pieces of 20 cm x 25 cm are taken per 1 m width of the sample.
(2) Weigh each mass (g) in the standard state.
(3) The average value is represented by mass (g/m 2 ) per 1 m 2 .
 本発明のスパンボンド不織布の厚みは、0.05mm~1.5mmであることが好ましい。厚みが好ましくは0.05mm~1.5mm、より好ましくは0.08mm~1.0mm、さらに好ましくは0.10mm~0.8mmであることにより、柔軟性と適度なクッション性を備え、衛生材料用のスパンボンド不織布として、特に紙おむつ用途での使用に適したスパンボンド不織布とすることができる。 The thickness of the spunbond nonwoven fabric of the present invention is preferably 0.05 mm to 1.5 mm. With a thickness of preferably 0.05 mm to 1.5 mm, more preferably 0.08 mm to 1.0 mm, and even more preferably 0.10 mm to 0.8 mm, the sanitary material has flexibility and moderate cushioning properties. As a spunbond nonwoven fabric for use, it can be a spunbond nonwoven fabric that is particularly suitable for use in disposable diapers.
 なお、本発明において、スパンボンド不織布の厚さ(mm)は、JIS L1906:2000「一般長繊維不織布試験方法」の「5.1」に準じ、以下の手順によって測定される値を採用するものとする。
(1)直径10mmの加圧子を使用し、荷重10kPaで不織布の幅方向等間隔に1mあたり10点の厚さを0.01mm単位で測定する。
(2)上記10点の平均値の小数点以下第三位を四捨五入する。
In the present invention, the thickness (mm) of the spunbond nonwoven fabric conforms to "5.1" of JIS L1906:2000 "Test method for general long-fiber nonwoven fabric" and adopts a value measured by the following procedure. and
(1) Using a presser with a diameter of 10 mm and a load of 10 kPa, the thickness of the nonwoven fabric is measured at 10 points per 1 m at equal intervals in the width direction in units of 0.01 mm.
(2) Round off the average of the above 10 points to the third decimal place.
 また、本発明のスパンボンド不織布の見掛密度は、0.05g/cm~0.30g/cmであることが好ましい。見掛密度が好ましくは0.30g/cm以下、より好ましくは0.25g/cm以下、さらに好ましくは0.20g/cm以下であることにより、繊維が密にパッキングしてスパンボンド不織布の柔軟性が損なわれることを防ぐことができる。一方、見掛密度が好ましくは0.05g/cm以上、より好ましくは0.08g/cm以上、さらに好ましくは0.10g/cm以上であることにより、毛羽立ちや層間剥離の発生を抑え、実用に耐え得る十分な強度や取り扱い性を備えたスパンボンド不織布とすることができる。見掛密度は、複合繊維の平均単繊維径、および/または、後述する熱接着の条件(接着部の形状、圧着率、温度、および線圧等)などを適切に調整することにより制御することができる。 The spunbond nonwoven fabric of the present invention preferably has an apparent density of 0.05 g/cm 3 to 0.30 g/cm 3 . The apparent density is preferably 0.30 g/cm 3 or less, more preferably 0.25 g/cm 3 or less, still more preferably 0.20 g/cm 3 or less, so that the fibers are densely packed to form a spunbond nonwoven fabric. flexibility can be prevented. On the other hand, the apparent density is preferably 0.05 g/cm 3 or more, more preferably 0.08 g/cm 3 or more, and still more preferably 0.10 g/cm 3 or more, thereby suppressing the occurrence of fluffing and delamination. , a spunbond nonwoven fabric having sufficient strength and handleability for practical use. The apparent density can be controlled by appropriately adjusting the average single fiber diameter of the conjugate fiber and/or the thermal bonding conditions described later (shape of bonded portion, pressure bonding rate, temperature, linear pressure, etc.). can be done.
 なお、本発明において、見掛密度(g/cm)は、上記の四捨五入前の目付と厚みから、次の式に基づいて算出し、小数点以下第三位を四捨五入したものとする
 見掛密度(g/cm)=[目付(g/m)]/[厚さ(mm)]×10-3
In addition, in the present invention, the apparent density (g/cm 3 ) is calculated based on the following formula from the basis weight and thickness before rounding, and rounded to the third decimal place. (g/cm 3 )=[basis weight (g/m 2 )]/[thickness (mm)]×10 −3 .
 本発明のスパンボンド不織布の剛軟度は、65mm以下であることが好ましい。剛軟度が好ましくは65mm以下、より好ましくは60mm以下、さらに好ましくは55mm以下であることにより、衛生材料用のスパンボンド不織布として、特に紙おむつ用途での使用に適した優れた柔軟性を得ることができる。また、剛軟度が極端に低いと取り扱い性に劣るため、剛軟度は10mm以上であることが好ましい。剛軟度は、前記のポリプロピレン系樹脂のMFR、添加剤、複合繊維の平均単繊維径、スパンボンド不織布の目付、非融着部の複合繊維の最高の軟化温度Tsh(℃)と最低の軟化温度Tsl(℃)との差(Tsh-Tsl)、および/または、後述する熱接着の条件(接着部の形状、圧着率、温度、および線圧等)などを適切に調整することにより制御することができる。 The bending resistance of the spunbond nonwoven fabric of the present invention is preferably 65 mm or less. The bending resistance is preferably 65 mm or less, more preferably 60 mm or less, and still more preferably 55 mm or less, so that spunbond nonwoven fabrics for sanitary materials can be used, particularly for disposable diapers, to obtain excellent flexibility. can be done. Moreover, if the bending resistance is extremely low, the handleability is poor, so the bending resistance is preferably 10 mm or more. The bending resistance is determined by the MFR of the polypropylene resin, the additive, the average single fiber diameter of the composite fiber, the basis weight of the spunbond nonwoven fabric, the maximum softening temperature Tsh (° C.) and the minimum softening of the composite fiber in the non-fused portion. Control by appropriately adjusting the difference (Tsh-Tsl) from the temperature Tsl (° C.) and/or the thermal bonding conditions (shape of bonding portion, compression rate, temperature, linear pressure, etc.) described later. be able to.
 本発明のスパンボンド不織布の目付あたりの引張強伸度積は、1.20(N/50mm)/(g/m)以上であることが好ましく、1.20(N/50mm)/(g/m)~10.0(N/50mm)/(g/m)であることがより好ましい。目付あたりの引張強伸度積が好ましくは1.20(N/50mm)/(g/m)以上、より好ましくは1.3(N/50mm)/(g/m)以上、さらに好ましくは1.4(N/50mm)/(g/m)以上であることにより、柔軟で肌触りや風合いが良く、かつ低目付でも強度に優れたスパンボンド不織布とすることができる。一方、目付あたりの引張強伸度積が好ましくは10.0(N/50mm)/(g/m)以下であることにより、スパンボンド不織布の柔軟性が低下したり、風合いが損なわれたりすることを防ぐことができる。目付あたりの引張強伸度積は、前記のポリプロピレン系樹脂のMFR、添加剤、複合繊維の平均単繊維径、スパンボンド不織布の非融着部の複合繊維の最高の軟化温度Tsh(℃)と最低の軟化温度Tsl(℃)との差(Tsh-Tsl)、および/または、後述する紡糸速度、熱接着の条件(接着部の形状、圧着率、温度、および線圧等)などを適切に調整することにより制御することができる。 The tensile strength and elongation product per basis weight of the spunbond nonwoven fabric of the present invention is preferably 1.20 (N/50 mm)/(g/m 2 ) or more, and preferably 1.20 (N/50 mm)/(g /m 2 ) to 10.0 (N/50 mm)/(g/m 2 ). The tensile strength and elongation product per basis weight is preferably 1.20 (N/50 mm)/(g/m 2 ) or more, more preferably 1.3 (N/50 mm)/(g/m 2 ) or more, and still more preferably is 1.4 (N/50 mm)/(g/m 2 ) or more, it is possible to obtain a spunbond nonwoven fabric that is soft, has good touch and texture, and has excellent strength even with a low basis weight. On the other hand, if the tensile strength and elongation product per basis weight is preferably 10.0 (N/50 mm)/(g/m 2 ) or less, the softness of the spunbond nonwoven fabric may be reduced, or the texture may be impaired. can prevent you from doing it. The tensile strength and elongation product per unit weight is determined by the MFR of the polypropylene resin, the additive, the average single fiber diameter of the composite fiber, and the maximum softening temperature Tsh (° C.) of the composite fiber in the non-fused portion of the spunbond nonwoven fabric. The difference (Tsh-Tsl) from the lowest softening temperature Tsl (° C.), and/or the spinning speed described later, the thermal bonding conditions (shape of the bonded portion, compression rate, temperature, linear pressure, etc.) It can be controlled by adjusting.
 なお、本発明において、スパンボンド不織布の目付あたりの引張強伸度積は、JIS L1913:2010「一般不織布試験方法」の「6.3 引張強さ及び伸び率(ISO法)」に準じ、以下の手順によって測定される値を採用するものとする。
(1)50mm×300mmの試験片を、長片側が不織布の縦方向(不織布の長手方向)、横方向(不織布の幅方向)となるそれぞれの向きで、不織布の幅1m当たり3枚採取する。
(2)試験片をつかみ間隔200mmで引張試験機にセットする。
(3)引張速度100mm/分で引張試験を実施し、最大強力、最大強力時の伸度を測定する。ここで、伸度は100分率(%)換算しないこととする。
(4)各試験片で測定した最大強力、最大強力時の伸度の平均値を求め、次の式に基づいて目付あたりの引張強伸度積を算出し、小数点以下第三位を四捨五入する
   目付あたりの引張強伸度積((N/50mm)/(g/m))=[最大強力の平均値(N/50mm)]×[最大強力時の伸度の平均値(-)]/目付(g/m)。
In the present invention, the tensile strength and elongation product per basis weight of the spunbond nonwoven fabric is according to JIS L1913: 2010 "General nonwoven fabric test method""6.3 Tensile strength and elongation rate (ISO method)". shall adopt the value measured by the procedure of
(1) Take 3 test pieces of 50 mm×300 mm per 1 m width of the nonwoven fabric, with the long side of the nonwoven fabric facing the longitudinal direction (longitudinal direction of the nonwoven fabric) and the lateral direction (width direction of the nonwoven fabric).
(2) Set the test piece in a tensile tester at a grip interval of 200 mm.
(3) Conduct a tensile test at a tensile speed of 100 mm/min to measure maximum strength and elongation at maximum strength. Here, elongation is not converted into 100 percent (%).
(4) Calculate the average value of the maximum strength and elongation at maximum strength measured for each test piece, calculate the tensile strength and elongation product per basis weight based on the following formula, and round off to the third decimal place. Product of tensile strength and elongation per basis weight ((N/50mm)/(g/m 2 )) = [Average value of maximum strength (N/50mm)] × [Average value of elongation at maximum strength (-)] / basis weight (g/m 2 ).
 本発明のスパンボンド不織布の目付あたりの横方向(不織布の幅方向)の引張強力は、0.40(N/25mm)/(g/m)以上であることが好ましく、0.40(N/25mm)/(g/m)~2.00(N/25mm)/(g/m)であることがより好ましい。目付あたりの引張強力が好ましくは0.40(N/25mm)/(g/m)以上、より好ましくは0.60(N/25mm)/(g/m)以上、さらに好ましくは0.80(N/25mm)/(g/m)以上であることにより、実用に供しうる強度を有するスパンボンド不織布とすることができる。一方、目付あたりの横方向の引張強力が好ましくは2.00(N/25mm)/(g/m)以下であることにより、スパンボンド不織布の柔軟性が低下したり、風合いが損なわれたりすることを防ぐことができる。なお、スパンボンド不織布の引張強力は縦方向(不織布の長手方向)と横方向(不織布の幅方向)があるが、一般的には横方向の引張強力の方が縦方向の引張強力よりも小さくなることから、目付あたりの横方向の引張強力が0.4~2.00(N/25mm)/(g/m)であることにより、縦方向においても実用に供しうる強度を有するスパンボンド不織布とすることができる。目付あたりの横方向の引張強力は、前記のポリプロピレン系樹脂のMFR、添加剤、複合繊維の平均単繊維径、スパンボンド不織布の非融着部の複合繊維の最高の軟化温度Tsh(℃)と最低の軟化温度Tsl(℃)との差(Tsh-Tsl)、および/または、後述する紡糸速度、熱接着の条件(接着部の形状、圧着率、温度、および線圧等)などを適切に調整することにより制御することができる。 The tensile strength in the lateral direction (the width direction of the nonwoven fabric) per basis weight of the spunbond nonwoven fabric of the present invention is preferably 0.40 (N/25 mm)/(g/m 2 ) or more, and 0.40 (N /25 mm)/(g/m 2 ) to 2.00 (N/25 mm)/(g/m 2 ). Tensile strength per basis weight is preferably 0.40 (N/25 mm)/(g/m 2 ) or more, more preferably 0.60 (N/25 mm)/(g/m 2 ) or more, still more preferably 0.60 (N/25 mm)/(g/m 2 ) or more. When it is 80 (N/25 mm)/(g/m 2 ) or more, a spunbond nonwoven fabric having a strength suitable for practical use can be obtained. On the other hand, if the transverse tensile strength per basis weight is preferably 2.00 (N/25 mm)/(g/m 2 ) or less, the softness of the spunbond nonwoven fabric may be reduced, or the texture may be impaired. can prevent you from doing it. The tensile strength of a spunbond nonwoven fabric is divided into the vertical direction (longitudinal direction of the nonwoven fabric) and the horizontal direction (width direction of the nonwoven fabric), but generally the tensile strength in the horizontal direction is smaller than the tensile strength in the vertical direction. Therefore, the tensile strength in the transverse direction per basis weight is 0.4 to 2.00 (N / 25 mm) / (g / m 2 ), so that the spunbond has a strength that can be used practically in the vertical direction. It can be a non-woven fabric. The tensile strength in the transverse direction per basis weight is determined by the MFR of the polypropylene resin, the additive, the average single fiber diameter of the composite fiber, and the maximum softening temperature Tsh (°C) of the composite fiber in the non-fused portion of the spunbond nonwoven fabric. The difference (Tsh-Tsl) from the lowest softening temperature Tsl (° C.), and/or the spinning speed described later, the thermal bonding conditions (shape of the bonded portion, compression rate, temperature, linear pressure, etc.) It can be controlled by adjusting.
 なお、本発明において、スパンボンド不織布の目付あたりの横方向の引張強力は、JIS L1913:2010「一般不織布試験方法」の「6.3 引張強さ及び伸び率(ISO法)」に準じ、以下の手順によって測定される値を採用するものとする。
(1)25mm×200mmの試験片を、長片側が不織布の横方向(不織布の幅方向)となるように、不織布の幅1m当たり3枚採取する。
(2)試験片をつかみ間隔100mmで引張試験機にセットする。
(3)引張速度100mm/分で引張試験を実施し、最大強力を測定する。
(4)各試験片で測定した最大強力の平均値を求め、次の式に基づいて目付あたりの引張強力を算出し、小数点以下第三位を四捨五入する。
In the present invention, the tensile strength in the transverse direction per basis weight of the spunbond nonwoven fabric is according to "6.3 Tensile strength and elongation (ISO method)" of JIS L1913: 2010 "General nonwoven fabric test method". shall adopt the value measured by the procedure of
(1) Three test pieces of 25 mm×200 mm are collected per 1 m width of the nonwoven fabric so that the long side is in the lateral direction of the nonwoven fabric (the width direction of the nonwoven fabric).
(2) Set the test piece in a tensile tester at a grip interval of 100 mm.
(3) Conduct a tensile test at a tensile speed of 100 mm/min to measure the maximum strength.
(4) Find the average value of the maximum strength measured for each test piece, calculate the tensile strength per basis weight based on the following formula, and round off to the third decimal place.
   目付あたりの横方向の引張強力((N/25mm)/(g/m))=[最大強力の平均値(N/25mm)]/目付(g/m)。 Lateral tensile strength per basis weight ((N/25 mm)/(g/m 2 )) = [average maximum strength (N/25 mm)]/ basis weight (g/m 2 ).
 本発明のスパンボンド不織布の目付あたりの縦方向の5%伸長時応力は、0.40(N/25mm)/(g/m)以上であることが好ましく、0.40(N/25mm)/(g/m)~2.00(N/25mm)/(g/m)であることがより好ましい。目付あたりの縦方向の5%伸長時応力が好ましくは0.40(N/25mm)/(g/m)以上、より好ましくは0.50(N/25mm)/(g/m)以上、さらに好ましくは0.60(N/25mm)/(g/m)以上であることにより、スパンボンド不織布の生産時や衛生材料用途としての加工時の張力による伸びを抑制し、高い歩留まりで安定して生産することができる。また目付あたりの縦方向の5%伸長時応力が好ましくは2.00(N/25mm)/(g/m)以下であることにより、スパンボンド不織布の柔軟性が低下したり、風合いが損なわれたりすることを防ぐことができる。目付あたりの縦方向の5%伸長時応力は、前記のポリプロピレン系樹脂のMFR、添加剤、芯鞘型複合繊維の平均単繊維径、スパンボンド不織布の非融着部の複合繊維の最高の軟化温度Tsh(℃)と最低の軟化温度Tsl(℃)との差(Tsh-Tsl)、および/または、後述する紡糸速度、熱接着の条件(接着部の形状、圧着率、温度、および線圧等)などを適切に調整することにより制御することができる。 The stress at 5% elongation in the machine direction per basis weight of the spunbonded nonwoven fabric of the present invention is preferably 0.40 (N/25 mm)/(g/m 2 ) or more, more preferably 0.40 (N/25 mm). /(g/m 2 ) to 2.00 (N/25 mm)/(g/m 2 ) is more preferable. The stress at 5% elongation in the machine direction per basis weight is preferably 0.40 (N/25 mm)/(g/m 2 ) or more, more preferably 0.50 (N/25 mm)/(g/m 2 ) or more More preferably, it is 0.60 (N / 25 mm) / (g / m 2 ) or more, so that elongation due to tension during production of spunbond nonwoven fabrics and processing as sanitary materials is suppressed, and high yields are obtained. It can be produced stably. In addition, when the stress at 5% elongation in the longitudinal direction per basis weight is preferably 2.00 (N/25 mm)/(g/m 2 ) or less, the flexibility of the spunbond nonwoven fabric is reduced and the texture is impaired. You can prevent it from falling off. The stress at 5% elongation in the longitudinal direction per unit weight is determined by the MFR of the polypropylene resin, the additive, the average single fiber diameter of the core-sheath type composite fiber, and the maximum softening of the composite fiber in the non-fused portion of the spunbond nonwoven fabric. The difference (Tsh-Tsl) between the temperature Tsh (° C.) and the lowest softening temperature Tsl (° C.), and/or the spinning speed described later, the thermal bonding conditions (the shape of the bonded portion, the compression rate, the temperature, and the linear pressure etc.) can be controlled by appropriately adjusting.
 なお、本発明において、スパンボンド不織布の目付あたりの縦方向の5%伸長時応力は、JIS L1913:2010「一般不織布試験方法」の「6.3 引張強さ及び伸び率(ISO法)」に準じ、以下の手順によって測定される値を採用するものとする。
(1)25mm×200mmの試験片を、長片側が不織布の縦方向(不織布の長手方向)となるように、不織布の幅1m当たり3枚採取する。
(2)試験片をつかみ間隔100mmで引張試験機にセットする。
(3)引張速度100mm/分で引張試験を実施し、5%伸長時の応力(5%伸長時応力)を測定する。
(4)各試験片で測定した5%伸長時応力の平均値を求め、次の式に基づいて目付あたりの縦方向の5%伸長時応力を算出し、小数点以下第三位を四捨五入する
   目付あたりの縦方向の5%伸長時応力((N/25mm)/(g/m))=[5%伸長時応力の平均値(N/25mm)]/目付(g/m)。
In the present invention, the stress at 5% elongation in the longitudinal direction per basis weight of the spunbond nonwoven fabric is JIS L1913: 2010 "General nonwoven fabric test method""6.3 Tensile strength and elongation (ISO method)". The value measured by the following procedure shall be adopted.
(1) Three test pieces of 25 mm×200 mm are taken per 1 m width of the nonwoven fabric so that the long side faces the longitudinal direction of the nonwoven fabric (longitudinal direction of the nonwoven fabric).
(2) Set the test piece in a tensile tester at a grip interval of 100 mm.
(3) Conduct a tensile test at a tensile speed of 100 mm/min, and measure the stress at 5% elongation (stress at 5% elongation).
(4) Calculate the average value of the stress at 5% elongation measured for each test piece, calculate the stress at 5% elongation in the longitudinal direction per basis weight based on the following formula, and round off to the third decimal place. 5% elongation stress ((N/25 mm)/(g/m 2 )) in the longitudinal direction per unit = [average value of 5% elongation stress (N/25 mm)]/basis weight (g/m 2 ).
 [スパンボンド不織布の製造方法]
 次に、本発明のスパンボンド不織布を製造する方法の好ましい態様について、具体的に説明する。
[Method for producing spunbond nonwoven fabric]
Next, preferred embodiments of the method for producing the spunbond nonwoven fabric of the present invention will be specifically described.
 本発明のスパンボンド不織布は、スパンボンド法により製造される長繊維不織布である。スパンボンド法は、生産性や機械的強度に優れている他、短繊維不織布で起こりやすい毛羽立ちや繊維の脱落を抑制することができる。また、捕集したスパンボンド不織繊維ウェブあるいは熱圧着したスパンボンド不織布(どちらもSと表記する)を、SS、SSSおよびSSSSと複数層積層することにより、生産性や地合均一性が向上するため好ましい態様である。 The spunbond nonwoven fabric of the present invention is a long-fiber nonwoven fabric produced by the spunbond method. The spunbond method is excellent in productivity and mechanical strength, and can suppress fluffing and falling off of fibers that tend to occur in short fiber nonwoven fabrics. In addition, by laminating the collected spunbond nonwoven fiber web or thermocompression spunbond nonwoven fabric (both of which are both denoted as S) with SS, SSS and SSSS in multiple layers, productivity and texture uniformity are improved. This is a preferred embodiment for
 スパンボンド法では、まず溶融した熱可塑性樹脂を紡糸口金から長繊維として紡出し、これをエジェクターにより圧縮エアで吸引延伸した後、移動するネット上に繊維を捕集して不織繊維ウェブを得る。さらに得られた不織繊維ウェブに熱接着処理を施し、スパンボンド不織布が得られる。 In the spunbond method, first, a molten thermoplastic resin is spun from a spinneret as filaments, which are drawn by suction with compressed air using an ejector, and then collected on a moving net to obtain a nonwoven fibrous web. . Further, the obtained nonwoven fibrous web is subjected to heat bonding treatment to obtain a spunbond nonwoven fabric.
 紡糸口金やエジェクターの形状は特に制限されないが、例えば、丸形や矩形等、種々の形状のものを採用することができる。なかでも、圧縮エアの使用量が比較的少なくエネルギーコストに優れること、糸条同士の融着や擦過が起こりにくく、糸条の開繊も容易であることから、矩形口金と矩形エジェクターの組み合わせが好ましく用いられる。 The shape of the spinneret or ejector is not particularly limited, but various shapes such as round and rectangular can be adopted. In particular, the combination of a rectangular nozzle and a rectangular ejector is recommended because it uses a relatively small amount of compressed air and is excellent in terms of energy cost, and because the yarns are less likely to fuse or rub against each other, and the yarns can be easily opened. It is preferably used.
 本発明では、熱可塑性樹脂を押出機において溶融し、計量して、製造すべき複合繊維用の紡糸口金へと供給し、長繊維として紡出する。熱可塑性樹脂を溶融し紡糸する際の紡糸温度は、180℃~250℃であることが好ましく、より好ましくは200℃~240℃であり、さらに好ましくは220℃~230℃である。紡糸温度を上記範囲内とすることにより、安定した溶融状態とし、優れた紡糸安定性を得ることができる。 In the present invention, a thermoplastic resin is melted in an extruder, weighed, supplied to a spinneret for conjugate fibers to be produced, and spun as long fibers. The spinning temperature at which the thermoplastic resin is melted and spun is preferably 180°C to 250°C, more preferably 200°C to 240°C, still more preferably 220°C to 230°C. By setting the spinning temperature within the above range, a stable molten state can be obtained and excellent spinning stability can be obtained.
 紡出された長繊維の糸条は、次に冷却される。紡出された糸条を冷却する方法としては、例えば、冷風を強制的に糸条に吹き付ける方法、糸条周りの雰囲気温度で自然冷却する方法、および紡糸口金とエジェクター間の距離を調整する方法等が挙げられ、またはこれらの方法を組み合わせる方法を採用することができる。また、冷却条件は、紡糸口金の単孔あたりの吐出量、紡糸温度および雰囲気温度等を考慮して適宜調整して採用することができる。 The spun filament yarn is then cooled. Methods for cooling the spun yarn include, for example, a method of forcibly blowing cold air onto the yarn, a method of natural cooling at the ambient temperature around the yarn, and a method of adjusting the distance between the spinneret and the ejector. etc., or a method combining these methods can be employed. Also, the cooling conditions can be appropriately adjusted in consideration of the discharge rate per single hole of the spinneret, the spinning temperature, the ambient temperature, and the like.
 次に、冷却固化された糸条は、エジェクターから噴射される圧縮エアによって牽引され、延伸される。 Next, the cooled and solidified yarn is pulled and stretched by compressed air jetted from the ejector.
 紡糸速度は、3000m/分~6000m/分であることが好ましく、より好ましくは3500m/分~5500m/分であり、さらに好ましくは4000m/分~5000m/分である。紡糸速度を3000m/分~6000m/分とすることにより、高い生産性を有することになり、また繊維の配向結晶化が進み、高強度の長繊維を得ることができる。前述したとおり、本発明のポリプロピレン系樹脂を主成分とする芯鞘型複合繊維は、紡糸安定性に優れ、速い紡糸速度でも安定して生産することができる。 The spinning speed is preferably 3000m/min to 6000m/min, more preferably 3500m/min to 5500m/min, and still more preferably 4000m/min to 5000m/min. By setting the spinning speed to 3000 m/min to 6000 m/min, high productivity can be obtained, and the oriented crystallization of the fibers can be promoted to obtain high-strength long fibers. As described above, the core-sheath type conjugate fiber mainly composed of the polypropylene-based resin of the present invention has excellent spinning stability and can be stably produced even at a high spinning speed.
 続いて、得られた長繊維を、移動するネット上に捕集して不織繊維ウェブを得る。 Subsequently, the obtained long fibers are collected on a moving net to obtain a nonwoven fiber web.
 本発明では、前記の不織繊維ウェブに対して、ネット上でその片面から熱フラットロールを当接して仮接着させることも好ましい態様である。このようにすることにより、ネット上を搬送中に不織繊維ウェブの表層がめくれたり吹き流れたりして地合が悪化することを防いだり、糸条を捕集してから熱圧着するまでの搬送性を改善することができる。 In the present invention, it is also a preferred embodiment to temporarily bond the nonwoven fiber web by contacting a hot flat roll from one side thereof on the net. By doing so, it is possible to prevent the texture from deteriorating due to the surface layer of the nonwoven fiber web being turned up or blown away while it is being conveyed on the net, and to prevent the formation from deteriorating from the yarn collection to the thermocompression bonding. Transportability can be improved.
 続いて、得られた不織繊維ウェブを、融着させることにより融着部を形成させ、意図するスパンボンド不織布を得ることができる。 Subsequently, the obtained nonwoven fibrous web is fused to form fused portions, and the intended spunbond nonwoven fabric can be obtained.
 不織繊維ウェブを融着させる方法は特に制限されないが、例えば、上下一対のロール表面にそれぞれ彫刻(凹凸部)が施された熱エンボスロール、片方のロール表面がフラット(平滑)なロールと他方のロール表面に彫刻(凹凸部)が施されたロールとの組み合わせからなる熱エンボスロール、および上下一対のフラット(平滑)ロールの組み合わせからなる熱カレンダーロールなど、各種ロールにより熱融着させる方法、ホーンの超音波振動により熱融着させる方法、および不織繊維ウェブに熱風を貫通させて芯鞘型複合繊維の表面を軟化または融解させ、繊維交点同士を熱融着させるなどの方法が挙げられる。 The method of fusing the nonwoven fiber web is not particularly limited. A method of heat-sealing with various rolls, such as a heat embossing roll that is combined with a roll with engraving (unevenness) on the roll surface, and a heat calender roll that is a combination of a pair of upper and lower flat (smooth) rolls. Examples include a method of heat-sealing by ultrasonic vibration of a horn, and a method of passing hot air through a nonwoven fiber web to soften or melt the surface of core-sheath type composite fibers to heat-seal the fiber intersections. .
 なかでも、上下一対のロール表面にそれぞれ彫刻(凹凸部)が施された熱エンボスロール、または片方のロール表面がフラット(平滑)なロールと他方のロール表面に彫刻(凹凸部)が施されたロールとの組み合わせからなる熱エンボスロールを用いることが好ましい。このようにすることで、生産性良く、スパンボンド不織布の強度を向上させる融着部と、風合いや肌触りを向上させる非融着部と、を設けることができる。 Above all, thermal embossing rolls with engraving (unevenness) on the surface of a pair of upper and lower rolls, or a roll with a flat (smooth) surface on one roll and an engraving (unevenness) on the surface of the other roll It is preferred to use a hot embossing roll consisting of a combination of rolls. By doing so, it is possible to provide a fused portion that improves the strength of the spunbond nonwoven fabric and a non-fused portion that improves the texture and touch with good productivity.
 熱エンボスロールの表面材質としては、十分な熱圧着効果を得て、かつ片方のエンボスロールの彫刻(凹凸部)が他方のロール表面に転写することを防ぐため、金属製ロールと金属製ロールを対にすることが好ましい態様である。 As for the surface material of the hot embossing rolls, in order to obtain a sufficient thermocompression effect and to prevent the engraving (unevenness) of one embossing roll from being transferred to the surface of the other roll, a metal roll and a metal roll are used. Pairing is a preferred embodiment.
 このような熱エンボスロールによるエンボス接着面積率は、5~30%であることが好ましい。接着面積を好ましくは5%以上、より好ましくは8%以上、さらに好ましくは10%以上とすることにより、スパンボンド不織布として実用に供し得る強度を得ることができる。一方、接着面積を好ましくは30%以下、より好ましくは25%以下、さらに好ましくは20%以下とすることにより、衛生材料用のスパンボンド不織布として、特に紙おむつ用途での使用に適した適度な柔軟性を得ることができる。超音波接着を用いる場合でも、接着面積率は同様の範囲であることが好ましい。 The embossing adhesion area ratio by such a hot embossing roll is preferably 5 to 30%. By setting the bonding area to preferably 5% or more, more preferably 8% or more, and even more preferably 10% or more, it is possible to obtain a strength that can be put to practical use as a spunbond nonwoven fabric. On the other hand, by setting the bonding area to preferably 30% or less, more preferably 25% or less, and even more preferably 20% or less, spunbond nonwoven fabrics for sanitary materials, particularly suitable for use in disposable diapers, have moderate flexibility. You can get sex. Even when ultrasonic bonding is used, the bonding area ratio is preferably within the same range.
 ここでいう接着面積とは、接着部がスパンボンド不織布全体に占める割合のことを言う。具体的には、一対の凹凸を有するロールにより熱接着する場合は、上側ロールの凸部と下側ロールの凸部とが重なって不織繊維ウェブに当接する部分(接着部)のスパンボンド不織布全体に占める割合のことを言う。また、凹凸を有するロールとフラットロールにより熱接着する場合は、凹凸を有するロールの凸部が不織繊維ウェブに当接する部分(接着部)のスパンボンド不織布全体に占める割合のことを言う。また、超音波接着する場合は、超音波加工により熱溶着させる部分(接着部)のスパンボンド不織布全体に占める割合のことを言う。熱接着時に接着部に十分な熱が加わり、接着部の芯鞘型複合繊維全体が融着している場合、接着部と融着部の面積は等しいとみなすことができる。 The bonding area here refers to the ratio of the bonding area to the entire spunbond nonwoven fabric. Specifically, when thermal bonding is performed using a pair of rolls having unevenness, the spunbond nonwoven fabric at the portion (bonded portion) where the convex portion of the upper roll and the convex portion of the lower roll overlap and contact the nonwoven fiber web It refers to the percentage of the whole. In the case of heat-bonding with a roll having unevenness and a flat roll, it refers to the proportion of the portion (bonded portion) where the convex portion of the roll having unevenness contacts the nonwoven fiber web to the entire spunbond nonwoven fabric. In the case of ultrasonic bonding, it refers to the ratio of the portion (bonded portion) heat-sealed by ultrasonic processing to the entire spunbond nonwoven fabric. When sufficient heat is applied to the bonded portion during thermal bonding and the entire core-sheath type conjugate fiber is fused at the bonded portion, the bonded portion and the fused portion can be considered to have the same area.
 熱エンボスロールや超音波接着による接着部の形状は特に制限されないが、例えば、円形、楕円形、正方形、長方形、平行四辺形、ひし形、正六角形および正八角形などを用いることができる。また接着部は、スパンボンド不織布の長手方向(搬送方向)と幅方向にそれぞれ一定の間隔で均一に存在していることが好ましい。このようにすることにより、スパンボンド不織布の強度のばらつきを低減することができる。 The shape of the bonded part by a heat embossing roll or ultrasonic bonding is not particularly limited, but for example, a circle, an oval, a square, a rectangle, a parallelogram, a rhombus, a regular hexagon, and a regular octagon can be used. Moreover, it is preferable that the bonded portions are uniformly present at regular intervals in the longitudinal direction (conveyance direction) and the width direction of the spunbond nonwoven fabric. By doing so, variations in the strength of the spunbond nonwoven fabric can be reduced.
 熱接着時の熱エンボスロールの表面温度は、使用している鞘成分を構成する熱可塑性樹脂の融点(以降、Tms(℃)と記載することがある)に対し30℃低い温度から10℃高い温度(すなわち、(Tms-30℃)~(Tms+10℃))とすることが好ましい態様である。熱ロールの表面温度を前記熱可塑性樹脂の融点に対し好ましくは-30℃(すなわち、(Tms-30℃)、以下同様)以上とし、より好ましくは-20℃(Tms-20℃)以上とし、さらに好ましくは-10℃(Tms-10℃)以上とすることにより、強固に熱接着させ実用に供しうる強度のスパンボンド不織布を得ることができる。また、熱エンボスロールの表面温度を熱可塑性樹脂の融点に対し好ましくは+10℃(Tms+10℃)以下とし、より好ましくは+5℃(Tms+5℃)以下とし、さらに好ましくは+0℃(Tms+0℃)以下とすることにより、過度な熱接着を抑制し、衛生材料用のスパンボンド不織布として、特に紙おむつ用途での使用に適した適度な柔軟性を得ることができる。 The surface temperature of the thermal embossing roll during thermal bonding is 30° C. lower to 10° C. higher than the melting point (hereinafter sometimes referred to as Tms (° C.)) of the thermoplastic resin constituting the sheath component used. A preferred embodiment is to set the temperature (that is, (Tms−30° C.) to (Tms+10° C.)). The surface temperature of the heat roll is preferably −30° C. (that is, (Tms−30° C.), hereinafter the same) or higher, more preferably −20° C. (Tms−20° C.) or higher, relative to the melting point of the thermoplastic resin. More preferably, the temperature is −10° C. (Tms−10° C.) or higher, so that a spunbond nonwoven fabric can be obtained which is strongly heat-bonded and has a strength suitable for practical use. In addition, the surface temperature of the hot embossing roll is preferably +10° C. (Tms+10° C.) or less, more preferably +5° C. (Tms+5° C.) or less, and still more preferably +0° C. (Tms+0° C.) or less with respect to the melting point of the thermoplastic resin. By doing so, it is possible to suppress excessive heat adhesion and obtain appropriate softness suitable for use as a spunbond nonwoven fabric for sanitary materials, particularly for use in disposable diapers.
 熱接着時の熱エンボスロールの線圧は、50N/cm~500N/cmとすることが好ましい。ロールの線圧を好ましくは50N/cm以上とし、より好ましくは100N/cm以上とし、さらに好ましくは150N/cm以上とすることにより、強固に熱接着させ実用に供しうる強度のスパンボンド不織布を得ることができる。一方、熱エンボスロールの線圧を好ましくは500N/cm以下とし、より好ましくは400N/cm以下とし、さらに好ましくは300N/cm以下とすることにより、衛生材料用のスパンボンド不織布として、特に紙おむつ用途での使用に適した適度な柔軟性を得ることができる。 The linear pressure of the thermal embossing roll during thermal bonding is preferably 50 N/cm to 500 N/cm. By setting the linear pressure of the roll to preferably 50 N/cm or more, more preferably 100 N/cm or more, and even more preferably 150 N/cm or more, a spunbonded nonwoven fabric is obtained which is strongly heat-bonded and has a strength suitable for practical use. be able to. On the other hand, by setting the linear pressure of the heat embossing roll to preferably 500 N/cm or less, more preferably 400 N/cm or less, and even more preferably 300 N/cm or less, the spunbond nonwoven fabric for sanitary materials, especially for paper diapers You can get just the right amount of flexibility for use in
 また本発明では、スパンボンド不織布の厚みを調整することを目的に、上記の熱エンボスロールによる熱接着の前および/あるいは後に、上下一対のフラットロールからなる熱カレンダーロールにより熱圧着を施すことができる。上下一対のフラットロールとは、ロールの表面に凹凸のない金属製ロールや弾性ロールのことであり、金属製ロールと金属製ロールを対にしたり、金属製ロールと弾性ロールを対にしたりして用いることができる。 Further, in the present invention, for the purpose of adjusting the thickness of the spunbond nonwoven fabric, before and/or after the thermal bonding by the above-mentioned thermal embossing rolls, thermal compression bonding may be performed using a thermal calender roll consisting of a pair of upper and lower flat rolls. can. A pair of upper and lower flat rolls is a metal roll or elastic roll that does not have unevenness on the surface of the roll. can be used.
 また、ここで弾性ロールとは、金属製ロールと比較して弾性を有する材質からなるロールのことである。弾性ロールとしては、例えば、ペーパー、コットンおよびアラミドペーパー等のいわゆるペーパーロールや、ウレタン系樹脂、エポキシ系樹脂、シリコン系樹脂、ポリエステル系樹脂および硬質ゴム、およびこれらの混合物からなる樹脂製のロールなどが挙げられる。 Also, the elastic roll here means a roll made of a material having elasticity compared to a metal roll. Examples of elastic rolls include so-called paper rolls such as paper, cotton, and aramid paper, and resin rolls made of urethane resin, epoxy resin, silicon resin, polyester resin, hard rubber, and mixtures thereof. is mentioned.
 本発明のスパンボンド不織布は、柔軟性や肌触りに優れ、地合が均一であり、実用に供しうる十分な強度を有し、かつ生産性に優れることから、衛生材料、医療材料、生活資材および工業資材等に幅広く用いることができる。特に衛生材料では使い捨ておむつ、生理用品および湿布材の基布等、医療材料では防護服やサージカルガウン等として好適に用いることができる。 The spunbond nonwoven fabric of the present invention is excellent in softness and touch, has a uniform texture, has sufficient strength for practical use, and is excellent in productivity. It can be widely used for industrial materials and the like. In particular, it can be suitably used as sanitary materials such as disposable diapers, sanitary products and poultice base fabrics, and as medical materials such as protective clothing and surgical gowns.
 次に、実施例に基づき、本発明のスパンボンド不織布について具体的に説明する。ただし、本発明はこれらの実施例のみに限定されるものではない。なお、各物性の測定において、特段の記載がないものは、前記の方法に基づいて測定を行ったものである。 Next, the spunbond nonwoven fabric of the present invention will be specifically described based on examples. However, the present invention is not limited only to these examples. In the measurement of each physical property, unless otherwise specified, the measurement was performed according to the method described above.
 [測定方法]
 (1)樹脂のメルトフローレート(MFR)(g/10分):
 樹脂のMFRは、荷重が2.16kgで、温度が230℃の条件で前記の方法により測定した。
[Measuring method]
(1) Resin melt flow rate (MFR) (g/10 min):
The MFR of the resin was measured by the above method under the conditions of a load of 2.16 kg and a temperature of 230°C.
 (2)スパンボンド不織布を構成する芯鞘型複合繊維の平均単繊維径(μm):
 株式会社キーエンス製電子顕微鏡「VHX-D500」を用いて、前記の方法により測定した。
(2) Average single fiber diameter (μm) of core-sheath type composite fibers constituting the spunbond nonwoven fabric:
Using an electron microscope "VHX-D500" manufactured by Keyence Corporation, it was measured by the method described above.
 (3)紡糸速度(m/分):
 上記の平均単繊維径と樹脂の固体密度(0.91g/cm)から、長さ10000m当たりの質量を平均単繊維繊度(dtex)として、小数点以下第二位を四捨五入して算出した。平均単繊維繊度と、各条件で設定した紡糸口金単孔から吐出される樹脂の吐出量(以下、単孔吐出量と略記する。)(g/分)から、次の式に基づき、紡糸速度を有効数字二桁として算出した
   紡糸速度(m/分)=(10000×[単孔吐出量(g/分)])/[平均単繊維繊度(dtex)]。
(3) Spinning speed (m/min):
From the average single fiber diameter and the solid density of the resin (0.91 g/cm 3 ), the weight per 10000 m length was calculated as the average single fiber fineness (dtex) by rounding off to the second decimal place. Based on the average single fiber fineness and the amount of resin discharged from the spinneret single hole set under each condition (hereinafter abbreviated as the single hole discharge amount) (g/min), the spinning speed is calculated based on the following formula. Spinning speed (m/min)=(10000×[single hole discharge rate (g/min)])/[average single fiber fineness (dtex)].
 (4)スパンボンド不織布の非融着部の複合繊維の軟化温度Ts(℃):
 測定装置にはAnalysis Instruments社製Nano-TA装置「Nano-TA2」を、AFM装置にはPACIFIC NANOTECHNOLOGY社製「Nano-R」を、プローブにはAnalysis Instruments社製「PNI-AN2-300」を使用し、前記の方法により測定した。測定条件は、次のとおりで実施した。
・測定手法:nano-TMA(ナノ熱機械分析)
・測定温度:25~180℃
・昇温速度:10℃/秒(600℃/分)
・測定環境:大気中。
(4) Softening temperature Ts (°C) of composite fibers in non-fused portion of spunbond nonwoven fabric:
The measurement device is Nano-TA device "Nano-TA2" manufactured by Analysis Instruments, the AFM device is "Nano-R" manufactured by PACIFIC NANOTECHNOLOGY, and the probe is "PNI-AN2-300" manufactured by Analysis Instruments. and measured by the method described above. Measurement conditions were as follows.
・Measurement method: nano-TMA (nano thermomechanical analysis)
・Measurement temperature: 25 to 180°C
・Temperature increase rate: 10°C/second (600°C/minute)
・Measurement environment: In the atmosphere.
 (5)スパンボンド不織布の融解ピーク温度Tm(℃):
 測定装置にはPerkin-Elmer社製「DSC8500」を使用し、前記の方法により測定した。測定条件は、次のとおりで実施した。
・装置内雰囲気:窒素(20mL/分)
・温度・熱量校正:高純度インジウム(Tm=156.61℃、ΔHm=28.70J/g)
・温度範囲:20℃~200℃
・昇温速度:20℃/分
・試料量:約0.5~4mg
・試料容器:アルミニウム製標準容器。
(5) Melting peak temperature Tm (°C) of spunbond nonwoven fabric:
"DSC8500" manufactured by Perkin-Elmer was used as a measurement device, and the measurement was performed by the method described above. Measurement conditions were as follows.
・ Atmosphere in the device: Nitrogen (20 mL / min)
・Temperature/calorific value calibration: high purity indium (Tm = 156.61°C, ΔHm = 28.70 J/g)
・Temperature range: 20°C to 200°C
・Temperature increase rate: 20°C/min ・Sample amount: about 0.5 to 4 mg
・Sample container: Aluminum standard container.
 なお、表中スパンボンド不織布が単一の融解ピーク温度Tm(℃)を観測した場合は、その値を、複数の融解ピーク温度Tm(℃)を観測した場合は、それぞれの値を記載した。 In the table, when a single melting peak temperature Tm (°C) was observed for the spunbond nonwoven fabric, that value was noted, and when multiple melting peak temperatures Tm (°C) were observed, each value was noted.
 また、実施例において用いたポリプロピレン系樹脂の融点は、用いるポリプロピレン系樹脂をサンプリングする以外は上記融解ピーク温度の測定法と同様に融解ピーク温度を測定し、得られる最大の(最も高温の)融解ピーク温度とした。 In addition, the melting point of the polypropylene resin used in the examples was obtained by measuring the melting peak temperature in the same manner as the above melting peak temperature measurement method except for sampling the polypropylene resin used, and obtaining the maximum (highest temperature) melting point was the peak temperature.
 (6)スパンボンド不織布の縦方向の剛軟度(mm):
 スパンボンド不織布の剛軟度は、JIS L1913:2010「一般不織布試験方法」の「6.7 剛軟度(JIS法及びISO法)」の「6.7.4 ガーレ法」に記載の方法に準じて、不織布の縦方向(長手方向)の測定を行った。なお、いずれのスパンボンド不織布も、縦方向(長手方向)の剛軟度の方が横方向(幅方向)の剛軟度よりも大きかった。縦方向の剛軟度は小さいほど  柔軟性に優れる方向にあるが、65mm以下を合格とした。
(6) Spunbond nonwoven fabric longitudinal bending resistance (mm):
The bending resistance of the spunbond nonwoven fabric is measured according to the method described in "6.7.4 Gurley method" of "6.7 Bending resistance (JIS method and ISO method)" of JIS L1913: 2010 "General nonwoven fabric test method". The machine direction (longitudinal direction) of the nonwoven fabric was measured accordingly. In addition, the bending resistance in the machine direction (longitudinal direction) was higher than the bending resistance in the horizontal direction (width direction) for all spunbonded nonwoven fabrics. The lower the bending resistance in the vertical direction, the better the flexibility, but 65 mm or less was considered acceptable.
 (7)スパンボンド不織布の目付あたりの引張強力(N/25mm/(g/m)):
 測定装置には株式会社エー・アンド・デイ(A&D)製「RTG-1250」を使用し、前記の方法により測定した。目付あたりの横方向の引張強力は高いほど縦方向においても強度が高い方向にあるが、0.80(N/25mm)/(g/m)以上を合格とした。
(7) Tensile strength per basis weight of spunbond nonwoven fabric (N/25mm/(g/m 2 )):
"RTG-1250" manufactured by A&D Co., Ltd. was used as a measuring device, and the measurement was performed by the method described above. The higher the tensile strength in the transverse direction per basis weight, the higher the strength in the longitudinal direction as well.
 (8)スパンボンド不織布の目付あたりの引張強伸度積(N/50mm/(g/m)):
 測定装置には株式会社エー・アンド・デイ(A&D)製「RTG-1250」を使用し、前記の方法により測定した。目付あたりの引張強伸度積は大きいほどスパンボンド不織布が柔軟で肌触りや風合いと強度のバランスに優れる方向にあるが、1.20(N/50mm)/(g/m)以上を合格とした。
(8) Tensile strength and elongation product per basis weight of spunbond nonwoven fabric (N/50 mm/(g/m 2 )):
"RTG-1250" manufactured by A&D Co., Ltd. was used as a measuring device, and the measurement was performed by the method described above. The higher the tensile strength and elongation product per unit weight, the softer the spunbond nonwoven fabric and the better the balance between the feel, texture, and strength. bottom.
 (実施例1)
 メルトフローレート(MFR)が35g/10分、融点が163℃のホモポリマーからなるポリプロピレン樹脂を芯成分とし、MFRが60g/10分、融点が163℃のホモポリマーからなるポリプロピレン樹脂を鞘成分として使用し、それぞれ押出機で溶融し、孔径φが0.40mmで、孔深度が0.8mmの紡糸口金から、紡糸温度が235℃、単孔吐出量が0.40g/分で、鞘成分比率30質量%の同心芯鞘型複合繊維を紡出した。紡出した糸条を冷却固化した後、これをエジェクターにおいて圧縮エアによって牽引、延伸し、移動するネット上に捕集し、ポリプロピレン系長繊維からなるスパンボンド不織繊維ウェブを形成した。なお、形成した不織繊維ウェブを構成する芯鞘型複合繊維の特性は、平均単繊維径は14.0μmであり、これから換算した紡糸速度は2900m/分であった。紡糸性については、1時間の紡糸において糸切れは見られず良好であった。
(Example 1)
Polypropylene resin made of a homopolymer having a melt flow rate (MFR) of 35 g/10 minutes and a melting point of 163°C is used as a core component, and polypropylene resin made of a homopolymer having an MFR of 60 g/10 minutes and a melting point of 163°C is used as a sheath component. respectively melted in an extruder, from a spinneret with a hole diameter φ of 0.40 mm and a hole depth of 0.8 mm, a spinning temperature of 235 ° C., a single hole discharge rate of 0.40 g / min, and a sheath component ratio 30% by mass of concentric sheath-core composite fibers were spun. After the spun yarn was cooled and solidified, it was pulled and stretched by compressed air in an ejector and collected on a moving net to form a spunbond nonwoven fiber web made of polypropylene long fibers. As for the characteristics of the core-sheath type conjugate fibers forming the formed nonwoven fiber web, the average single fiber diameter was 14.0 μm, and the spinning speed converted from this was 2900 m/min. Spinnability was good with no yarn breakage observed after spinning for 1 hour.
 引き続き、形成した不織繊維ウェブを、以下の上ロール、下ロールから構成される上下一対の熱エンボスロールを用いて、線圧:500N/cm、熱接着温度:140℃の条件で熱接着し、融着部と非融着部を有する目付15g/mのスパンボンド不織布を得た。
(上ロール):金属製で水玉柄の彫刻がなされた、接着面積率11%のエンボスロール
(下ロール):金属製フラットロール
得られたスパンボンド不織布は地合が均一で、肌触りに優れたものであった。評価した結果を表1に示す。
Subsequently, the formed nonwoven fibrous web was thermally bonded using a pair of upper and lower thermal embossing rolls composed of the following upper roll and lower roll under the conditions of linear pressure: 500 N/cm and thermal bonding temperature: 140°C. , a spunbond nonwoven fabric having a basis weight of 15 g/m 2 and having fused and non-fused portions was obtained.
(Upper roll): An embossed roll made of metal with a polka dot pattern engraving and an adhesive area ratio of 11% (Lower roll): A flat roll made of metal The resulting spunbond nonwoven fabric had a uniform texture and was excellent in touch. It was something. Table 1 shows the evaluation results.
 (実施例2)
 目付を10g/mとしたこと以外は、実施例1と同じ方法により、融着部と非融着部を有するスパンボンド不織布を得た。形成したスパンボンド不織繊維ウェブを構成する繊維の特性は、平均単繊維径は14.0μmであり、これから換算した紡糸速度は2900m/分であった。紡糸性については、1時間の紡糸において糸切れは見られず良好であった。得られたスパンボンド不織布は地合が均一で、肌触りに優れたものであった。評価した結果を表1に示す。
(Example 2)
A spunbond nonwoven fabric having fused portions and non-fused portions was obtained in the same manner as in Example 1, except that the basis weight was 10 g/m 2 . The fibers constituting the formed spunbond nonwoven fibrous web had an average single fiber diameter of 14.0 μm, and the spinning speed converted from this was 2900 m/min. Spinnability was good with no yarn breakage observed after spinning for 1 hour. The resulting spunbond nonwoven fabric had a uniform texture and excellent touch. Table 1 shows the evaluation results.
 (実施例3)
 鞘成分比率を50質量%とし、熱接着温度を145℃としたこと以外は実施例1と同じ方法により、融着部と非融着部を有するスパンボンド不織布を得た。形成したスパンボンド不織繊維ウェブを構成する繊維の特性は、平均単繊維径は14.0μmであり、これから換算した紡糸速度は2900m/分であった。紡糸性については、1時間の紡糸において糸切れは見られず良好であった。得られたスパンボンド不織布は地合が均一で、肌触りに優れたものであった。評価した結果を表1に示す。
(Example 3)
A spunbonded nonwoven fabric having fused and non-fused portions was obtained in the same manner as in Example 1, except that the sheath component ratio was 50% by mass and the thermal bonding temperature was 145°C. The fibers constituting the formed spunbond nonwoven fibrous web had an average single fiber diameter of 14.0 μm, and the spinning speed converted from this was 2900 m/min. Spinnability was good with no yarn breakage observed after spinning for 1 hour. The resulting spunbond nonwoven fabric had a uniform texture and excellent touch. Table 1 shows the evaluation results.
 (実施例4)
 鞘成分比率を50質量%とし、偏心芯鞘型複合繊維とし、熱接着温度を145℃としたこと以外は実施例1と同じ方法により、スパンボンド不織布を得た。形成した融着部と非融着部を有するスパンボンド不織繊維ウェブを構成する繊維の特性は、平均単繊維径は14.0μmであり、これから換算した紡糸速度は2900m/分であった。紡糸性については、1時間の紡糸において糸切れは見られず良好であった。得られたスパンボンド不織布は地合が均一で、肌触りに優れたものであった。評価した結果を表1に示す。
(Example 4)
A spunbonded nonwoven fabric was obtained in the same manner as in Example 1, except that the sheath component ratio was 50% by mass, an eccentric core-sheath type composite fiber was used, and the heat bonding temperature was 145°C. The fibers constituting the spunbond nonwoven web having fused and unfused portions had an average single fiber diameter of 14.0 μm and a spinning speed of 2900 m/min. Spinnability was good with no yarn breakage observed after spinning for 1 hour. The resulting spunbond nonwoven fabric had a uniform texture and excellent touch. Table 1 shows the evaluation results.
 (実施例5)
 エジェクターにおいて圧縮エアの圧力を調整したこと以外は、実施例1と同じ方法により、融着部と非融着部を有するスパンボンド不織布を得た。形成したスパンボンド不織繊維ウェブを構成する繊維の特性は、平均単繊維径は11.2μmであり、これから換算した紡糸速度は4400m/分であった。紡糸性については、1時間の紡糸において糸切れは見られず良好であった。得られたスパンボンド不織布は地合が均一で、肌触りに優れたものであった。評価した結果を表1に示す。
(Example 5)
A spunbond nonwoven fabric having fused portions and non-fused portions was obtained in the same manner as in Example 1, except that the pressure of the compressed air in the ejector was adjusted. The fibers constituting the formed spunbond nonwoven fibrous web had an average single fiber diameter of 11.2 μm, and the spinning speed converted from this was 4400 m/min. Spinnability was good with no yarn breakage observed after spinning for 1 hour. The resulting spunbond nonwoven fabric had a uniform texture and excellent touch. Table 1 shows the evaluation results.
 (実施例6)
 MFRが170g/10分、融点が161℃のホモポリマーからなるポリプロピレン樹脂を鞘成分として使用したこと以外は、実施例1と同じ方法により、融着部と非融着部を有するスパンボンド不織布を得た。形成したスパンボンド不織繊維ウェブを構成する繊維の特性は、平均単繊維径は14.0μmであり、これから換算した紡糸速度は2900m/分であった。紡糸性については、1時間の紡糸において糸切れは見られず良好であった。得られたスパンボンド不織布は地合が均一で、肌触りに優れたものであった。評価した結果を表1に示す。
(Example 6)
A spunbond nonwoven fabric having fused and non-fused portions was prepared in the same manner as in Example 1, except that a polypropylene resin comprising a homopolymer having an MFR of 170 g/10 min and a melting point of 161°C was used as the sheath component. Obtained. The fibers constituting the formed spunbond nonwoven fibrous web had an average single fiber diameter of 14.0 μm, and the spinning speed converted from this was 2900 m/min. Spinnability was good with no yarn breakage observed after spinning for 1 hour. The resulting spunbond nonwoven fabric had a uniform texture and excellent touch. Table 1 shows the evaluation results.
 (実施例7)
 MFRが30g/10分、融点が148℃のホモポリマーからなるポリプロピレン樹脂を鞘成分として使用し、上下一対の熱エンボスロールによる熱接着温度を130℃としたこと以外は、実施例1と同じ方法により、融着部と非融着部を有するスパンボンド不織布を得た。形成したスパンボンド不織繊維ウェブを構成する繊維の特性は、平均単繊維径は14.0μmであり、これから換算した紡糸速度は2900m/分であった。紡糸性については、1時間の紡糸において糸切れは見られず良好であった。得られたスパンボンド不織布は地合が均一で、肌触りに優れたものであった。評価した結果を表1に示す。
(Example 7)
The same method as in Example 1 except that a polypropylene resin made of a homopolymer having an MFR of 30 g/10 min and a melting point of 148° C. was used as a sheath component, and the heat bonding temperature by a pair of upper and lower heat embossing rolls was set to 130° C. A spunbond nonwoven fabric having fused portions and non-fused portions was obtained. The fibers constituting the formed spunbond nonwoven fibrous web had an average single fiber diameter of 14.0 μm, and the spinning speed converted from this was 2900 m/min. Spinnability was good with no yarn breakage observed after spinning for 1 hour. The resulting spunbond nonwoven fabric had a uniform texture and excellent touch. Table 1 shows the evaluation results.
 (比較例1)
 メルトフローレート(MFR)が35g/10分、融点が163℃のホモポリマーからなるポリプロピレン樹脂のみを使用した単成分繊維とし、熱接着温度を150℃としたこと以外は、実施例1と同じ方法により、融着部と非融着部を有するスパンボンド不織布を得た。形成したスパンボンド不織繊維ウェブを構成する繊維の特性は、平均単繊維径は14.0μmであり、これから換算した紡糸速度は2900m/分であった。紡糸性については、1時間の紡糸において糸切れが2回発生した。得られたスパンボンド不織布について評価した結果を表1に示す。なお、熱接着温度を155℃とした場合、シート端部が熱ロールへ貼り付く問題が発生し、搬送性が不良であった。
(Comparative example 1)
The method was the same as in Example 1, except that the single-component fiber was made of a polypropylene resin consisting of a homopolymer having a melt flow rate (MFR) of 35 g/10 min and a melting point of 163°C, and the heat bonding temperature was 150°C. A spunbond nonwoven fabric having fused portions and non-fused portions was obtained. The fibers constituting the formed spunbond nonwoven fibrous web had an average single fiber diameter of 14.0 μm, and the spinning speed converted from this was 2900 m/min. As for spinnability, yarn breakage occurred twice in one hour of spinning. Table 1 shows the evaluation results of the obtained spunbond nonwoven fabric. When the thermal adhesion temperature was set to 155° C., a problem occurred in which the sheet ends stuck to the heat roll, resulting in poor transportability.
 (比較例2)
 MFRが45g/10分、融点が163℃のホモポリマーからなるポリプロピレン樹脂を鞘成分として使用し、熱接着温度を150℃としたこと以外は、実施例1と同じ方法により、融着部と非融着部を有するスパンボンド不織布を得た。形成したスパンボンド不織繊維ウェブを構成する繊維の特性は、平均単繊維径は14.0μmであり、これから換算した紡糸速度は2900m/分であった。紡糸性については、1時間の紡糸において糸切れは見られず良好であった。得られたスパンボンド不織布について評価した結果を表1に示す。
(Comparative example 2)
The fusion-bonded portion and the non-bonded portion were formed in the same manner as in Example 1, except that a polypropylene resin made of a homopolymer having an MFR of 45 g/10 min and a melting point of 163°C was used as the sheath component, and the heat bonding temperature was set to 150°C. A spunbond nonwoven fabric having fused portions was obtained. The fibers constituting the formed spunbond nonwoven fibrous web had an average single fiber diameter of 14.0 μm, and the spinning speed converted from this was 2900 m/min. Spinnability was good with no yarn breakage observed after spinning for 1 hour. Table 1 shows the evaluation results of the obtained spunbond nonwoven fabric.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例1~7の、ポリプロピレン系樹脂を主成分とする芯鞘型複合繊維からなり、最高の軟化温度Tsh(℃)と最低の軟化温度Tsl(℃)との差(Tsh-Tsl)が5℃以上30℃以下を満足するスパンボンド不織布は、低目付でも優れた強度を有し、柔軟性や肌触りに優れたものであった。 The difference (Tsh-Tsl) between the highest softening temperature Tsh (°C) and the lowest softening temperature Tsl (°C) is 5. C. to 30.degree. C., the spunbond nonwoven fabric had excellent strength even with a low basis weight, and was excellent in softness and touch.
 一方、比較例1の単一のポリプロピレン樹脂からなるスパンボンド不織布や比較例2の(Tsh-Tsl)が5℃よりも小さいスパンボンド不織布は、強度や柔軟性に劣るものであった。
 
On the other hand, the spunbond nonwoven fabric made of a single polypropylene resin of Comparative Example 1 and the spunbond nonwoven fabric of Comparative Example 2 in which (Tsh-Tsl) was smaller than 5° C. were inferior in strength and flexibility.

Claims (6)

  1.  ポリプロピレン系樹脂を主成分とする複合繊維からなるスパンボンド不織布であって、前記スパンボンド不織布は融着部と非融着部とを有し、前記非融着部の複合繊維が少なくとも2つ以上の軟化温度Ts(℃)を有し、かつ、最高の軟化温度Tsh(℃)と最低の軟化温度Tsl(℃)との差(Tsh-Tsl)が5℃以上30℃以下である、スパンボンド不織布。 A spunbonded nonwoven fabric made of conjugated fibers containing a polypropylene-based resin as a main component, the spunbonded nonwoven fabric having a fused portion and a non-fused portion, wherein the non-fused portion includes at least two conjugated fibers. and a difference (Tsh-Tsl) between the highest softening temperature Tsh (°C) and the lowest softening temperature Tsl (°C) of 5 ° C or higher and 30 ° C or lower. non-woven fabric.
  2.  前記スパンボンド不織布が示差走査型熱量測定法で単一の融解ピーク温度Tm(℃)を有する、請求項1に記載のスパンボンド不織布。 The spunbond nonwoven fabric according to claim 1, wherein the spunbond nonwoven fabric has a single peak melting temperature Tm (°C) by differential scanning calorimetry.
  3.  前記融解ピーク温度Tm(℃)と前記軟化温度Tsl(℃)との差(Tm-Tsl)が10℃以上40℃以下である、請求項2に記載のスパンボンド不織布。 The spunbond nonwoven fabric according to claim 2, wherein the difference (Tm-Tsl) between the melting peak temperature Tm (°C) and the softening temperature Tsl (°C) is 10°C or higher and 40°C or lower.
  4.  前記スパンボンド不織布の目付あたりの引張強伸度積が1.20(N/50mm)/(g/m)以上である、請求項1または2に記載のスパンボンド不織布。 The spunbond nonwoven fabric according to claim 1 or 2, wherein the tensile strength/elongation product per basis weight of the spunbond nonwoven fabric is 1.20 (N/50mm)/(g/m2 ) or more.
  5.  前記複合繊維が芯鞘型複合繊維である、請求項1または2に記載のスパンボンド不織布。 The spunbond nonwoven fabric according to claim 1 or 2, wherein the composite fibers are core-sheath type composite fibers.
  6.  鞘成分のポリプロピレン系樹脂のメルトフローレートが芯成分のポリプロピレン系樹脂のメルトフローレートよりも10g/10分~200g/10分大きい、請求項5に記載のスパンボンド不織布。
     
    6. The spunbond nonwoven fabric according to claim 5, wherein the melt flow rate of the polypropylene-based resin as the sheath component is higher than that of the polypropylene-based resin as the core component by 10 g/10 minutes to 200 g/10 minutes.
PCT/JP2022/041499 2021-11-18 2022-11-08 Spunbond nonwoven fabric WO2023090200A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-187508 2021-11-18
JP2021187508 2021-11-18

Publications (1)

Publication Number Publication Date
WO2023090200A1 true WO2023090200A1 (en) 2023-05-25

Family

ID=86396873

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/041499 WO2023090200A1 (en) 2021-11-18 2022-11-08 Spunbond nonwoven fabric

Country Status (1)

Country Link
WO (1) WO2023090200A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5438214B1 (en) * 1971-02-16 1979-11-20
JPH1088455A (en) * 1996-09-11 1998-04-07 Chisso Corp Nonwoven fabric of filament
JP2000064168A (en) * 1998-08-17 2000-02-29 Japan Polychem Corp Polypropylene-based nonwoven fabric
JP2001146674A (en) * 1999-09-07 2001-05-29 Chisso Corp Spunbonded nonwoven fabric, method for producing the same and absorptive article using the same
JP2001355176A (en) * 2000-06-08 2001-12-26 Chisso Corp Nonwoven fabric and textile product produced by using the same
US20050041321A1 (en) * 2003-08-18 2005-02-24 Settje Chris Thomas Selecting physical cylinders in a disc drive employing discs with pre-written servo patterns
JP2007523233A (en) * 2004-01-26 2007-08-16 ザ プロクター アンド ギャンブル カンパニー Fibers and non-woven fabrics comprising polyethylene blends and mixtures
JP2007308868A (en) * 2001-01-29 2007-11-29 Mitsui Chemicals Inc Crimped fiber nonwoven fabric and laminate thereof
JP2022132044A (en) * 2021-02-26 2022-09-07 東レ株式会社 Spun-bonded nonwoven fabric, and core-sheath type conjugate fiber

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5438214B1 (en) * 1971-02-16 1979-11-20
JPH1088455A (en) * 1996-09-11 1998-04-07 Chisso Corp Nonwoven fabric of filament
JP2000064168A (en) * 1998-08-17 2000-02-29 Japan Polychem Corp Polypropylene-based nonwoven fabric
JP2001146674A (en) * 1999-09-07 2001-05-29 Chisso Corp Spunbonded nonwoven fabric, method for producing the same and absorptive article using the same
JP2001355176A (en) * 2000-06-08 2001-12-26 Chisso Corp Nonwoven fabric and textile product produced by using the same
JP2007308868A (en) * 2001-01-29 2007-11-29 Mitsui Chemicals Inc Crimped fiber nonwoven fabric and laminate thereof
US20050041321A1 (en) * 2003-08-18 2005-02-24 Settje Chris Thomas Selecting physical cylinders in a disc drive employing discs with pre-written servo patterns
JP2007523233A (en) * 2004-01-26 2007-08-16 ザ プロクター アンド ギャンブル カンパニー Fibers and non-woven fabrics comprising polyethylene blends and mixtures
JP2022132044A (en) * 2021-02-26 2022-09-07 東レ株式会社 Spun-bonded nonwoven fabric, and core-sheath type conjugate fiber

Similar Documents

Publication Publication Date Title
JP5635653B2 (en) Elastic nonwoven fabric and fiber product using the same
JP7283386B2 (en) spunbond nonwoven fabric
US11124907B2 (en) Spun-bonded nonwoven fabric
JP2016507012A (en) A bat made of crimped bicomponent or multicomponent fibers
JP2022132044A (en) Spun-bonded nonwoven fabric, and core-sheath type conjugate fiber
KR101302804B1 (en) Spunbond nonwoven fabric having improved mechanical property and preparing method thereof
JP2017179658A (en) Spun-bonded nonwoven fabric and sanitary material
JP7247884B2 (en) spunbond nonwoven fabric
JP6907560B2 (en) Spun bond non-woven fabric
WO2021010357A1 (en) Spun-bonded nonwoven fabric and laminated nonwoven fabric
TWI776814B (en) Heat-fusible composite fibers and nonwoven fabrics and products using the same
JP5567836B2 (en) Eccentric hollow composite long fiber, long fiber nonwoven fabric comprising the same, and use thereof
JP2019026955A (en) Spun-bonded nonwoven fabric
WO2023090200A1 (en) Spunbond nonwoven fabric
JP7409524B2 (en) spunbond nonwoven fabric
JP7173022B2 (en) LAMINATED NONWOVEN FABRIC AND METHOD FOR MANUFACTURING SAME
JP7040122B2 (en) Spunbond non-woven fabric
JP7172250B2 (en) spunbond nonwoven fabric
WO2022181590A1 (en) Spunbond nonwoven fabric and conjugated fiber
WO2022181591A1 (en) Spun-bonded nonwoven fabric and sheath-core type composite fiber
WO2021039553A1 (en) Multilayer nonwoven fabric
JP2022183506A (en) Spun-bonded nonwoven fabric and core-sheath type conjugate fiber
JP2009120975A (en) Blended filament nonwoven fabric
JP7211070B2 (en) spunbond nonwoven fabric
JP2023131245A (en) Spun-bonded non-woven fabric

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022568595

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22895482

Country of ref document: EP

Kind code of ref document: A1