WO2023089926A1 - 排水の処理方法 - Google Patents

排水の処理方法 Download PDF

Info

Publication number
WO2023089926A1
WO2023089926A1 PCT/JP2022/034056 JP2022034056W WO2023089926A1 WO 2023089926 A1 WO2023089926 A1 WO 2023089926A1 JP 2022034056 W JP2022034056 W JP 2022034056W WO 2023089926 A1 WO2023089926 A1 WO 2023089926A1
Authority
WO
WIPO (PCT)
Prior art keywords
sludge
raw water
concentration
tank
flow rate
Prior art date
Application number
PCT/JP2022/034056
Other languages
English (en)
French (fr)
Inventor
優 渡邉
Original Assignee
栗田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 栗田工業株式会社 filed Critical 栗田工業株式会社
Publication of WO2023089926A1 publication Critical patent/WO2023089926A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • C02F1/62Heavy metal compounds
    • C02F1/64Heavy metal compounds of iron or manganese

Definitions

  • the present invention relates to a wastewater treatment method for flocculation and solid-liquid separation treatment of wastewater, particularly wastewater in which a part of flocculated sludge is returned to a reaction tank and an alkaline agent such as slaked lime is added to the returned sludge. related to the processing method of
  • High-density sludge such as the alkaline sludge method is a method of obtaining high-concentration sludge with excellent dehydration properties by flocculating and solid-liquid separation treatment of wastewater such as fluorine-containing wastewater, phosphorus-containing wastewater, and heavy metal-containing wastewater.
  • method (HDS method: High Density Sludge) is known.
  • an alkali such as slaked lime (Ca(OH) 2 ) is added to part of the sludge that is separated and returned in the solid-liquid separation treatment in the latter stage of the flocculation treatment.
  • Fig. 2 is a system diagram showing a typical apparatus for conventional high-density flocculated sludge treatment methods.
  • Raw water such as fluorine-containing waste water, phosphorus-containing waste water, and heavy metal-containing waste water is adjusted to pH 2.5 to 3.0 by adding a pH adjuster in the pH adjustment tank 1, and then introduced into the reaction tank 2, which will be described later. is mixed with the reformed sludge introduced from the reforming tank 8, and reacts.
  • This reaction liquid is then fed to the flocculating tank 3 , where a polymer flocculant is added by the polymer flocculant addition means 3 a to flocculate, and then solid-liquid separated in the sedimentation tank 4 .
  • the supernatant water in the sedimentation tank 4 is discharged out of the system as treated water.
  • a part of the separated sludge withdrawn from the sedimentation tank 4 by the pump 5 is returned to the reforming tank 8 through the sludge return line 7, and the remainder is discharged out of the system through the discharge line 6.
  • a slaked lime solution/dispersion liquid (liquid in which slaked lime is partly dissolved and the rest is dispersed) supplied from a slaked lime addition device 9 as an alkali agent addition means is mixed with the returned sludge. be.
  • This mixed liquid (modified sludge) is supplied to the reaction tank 2 .
  • the reaction in this reaction tank 2 is preferably carried out in a predetermined pH range (for example, 6 to 11, particularly 6 to 8). The amount of slaked lime supplied to the reforming tank 8 is adjusted based on the pH.
  • the amount of sludge returned to the reforming tank 8 is less than the appropriate amount, the viscosity of the sludge precipitated in the sedimentation tank 4 will increase, which may cause operational trouble.
  • An object of the present invention is to provide a wastewater treatment method that allows the appropriate amount of sludge to be returned to the reforming tank.
  • the gist of the wastewater treatment method of the present invention is as follows.
  • the raw water is fluorine-containing waste water
  • the alkaline agent is slaked lime
  • the suspended solid concentration c is (raw water fluorine concentration) ⁇ [(molecular weight of calcium fluoride) / (molecular weight of F2 )].
  • the raw water is Fe 3+ -containing waste water
  • the alkaline agent is slaked lime
  • the suspended solid concentration c is (raw water Fe 3+ concentration) ⁇ [(molecular weight of Fe (OH) 3 ) / (atomic weight of Fe )], the wastewater treatment method of [1].
  • the amount of sludge returned from the solid-liquid separation means to the reforming tank is appropriate, so the treated water quality and sludge properties are always good.
  • FIG. 10 is a flowchart for explaining a conventional wastewater treatment method.
  • FIG. 1 is a flow diagram of a wastewater treatment facility to which a wastewater treatment method according to an embodiment of the present invention is applied.
  • the same parts as those in FIG. 2 are denoted by the same reference numerals.
  • the raw water is adjusted to about pH 2.5 to 3.5 by adding a pH adjuster in the pH adjustment tank 1, and then introduced into the reaction tank 2 to be reformed. It is mixed with the reformed sludge introduced from the quality tank 8 and reacts.
  • This reaction liquid is then fed to the flocculating tank 3 , where a polymer flocculant is added by the polymer flocculant addition means 3 a to flocculate, and then solid-liquid separated in the sedimentation tank 4 .
  • the supernatant water in the sedimentation tank 4 is discharged out of the system as treated water.
  • a part of the separated sludge withdrawn from the sedimentation tank 4 by the pump 5 is returned to the reforming tank 8 through the sludge return line 7, and the remainder is discharged out of the system through the discharge line 6.
  • the slaked lime solution/dispersion supplied from the slaked lime addition device 9 as the alkaline agent addition means is mixed with the returned sludge.
  • This mixed liquid (modified sludge) is supplied to the reaction tank 2 .
  • the slaked lime addition device 9 has a tank for storing the dissolved/dispersed solution of slaked lime and a chemical feeding pump for feeding the liquid in the tank to the reforming tank 8 .
  • the chemical injection amount by the chemical injection pump is controlled by inverter control or the like.
  • the reaction in the reaction tank 2 is preferably carried out in a predetermined pH range (eg 6-11, especially 6-8).
  • the amount of slaked lime supplied to the reforming tank 8 is adjusted by the dosing pump of the addition device 9 based on the pH detected by the pH meter 2a provided in the reaction tank 2 so as to achieve such a pH range.
  • the sludge discharge line 6 and the sludge return line 7 are provided with flow control valves 11 and 12.
  • the opening degree of the flow control valve 12 By adjusting the opening degree of the flow control valve 12 by the controller 15, the amount of sludge returned to the reforming tank 8 is controlled.
  • a flow meter 10 is provided to measure the flow rate of raw water flowing into the pH adjustment tank 1.
  • the sludge return line 7 is provided with a flow meter 13 and an SS meter 14 for measuring the concentration of suspended solids (SS) in the returned sludge. Detection signals from the flowmeters 10 and 13 and the SS meter 14 are input to the controller 15 , and the controller 15 controls the opening of the valve 12 .
  • the concentration c of suspended solids generated in the raw water by the addition of the alkaline agent is this relative to the total amount L (kg/hr) of the elements to be treated in the raw water flowing into the pH adjustment tank 1 per unit time (hr). It is the product of the ratio P/L of the solid matter amount P (kg/hr) when all the elements to be treated in the raw water become sediments and the concentration of the element to be treated (fluorine or Fe 3+ ) in the raw water.
  • the type and concentration of ions to be treated (for example, F ⁇ or Fe 3+ ) in raw water are constant, and when the flow rate of raw water changes over time, The amount W of solids produced is calculated as a ⁇ c (unit: 10 ⁇ 3 kg/hr, for example).
  • R It is empirically known for each site where the wastewater treatment apparatus shown in FIG. Therefore, let this empirical value be R. (For example, in the case of a wastewater treatment system where it is found appropriate to return 10 to 80 times, especially 30 to 60 times, of the produced sludge, R should be a value selected from 10 to 80, especially 30 to 60. is set.)
  • W a c R (10 -3 kg / hr) per unit time to the flow rate Q of the sludge slurry to be returned
  • raw water to be treated in the present invention examples include, but are not limited to, fluorine-containing wastewater, phosphorus-containing wastewater, and heavy metal-containing wastewater such as iron, zinc, copper, chromium, nickel, lead, and aluminum.
  • slaked lime is added as an alkali agent to the reforming tank 8, but it is not limited to this, and caustic soda or the like may be used especially in the case of heavy metal-containing waste water.
  • a sludge return pump may be provided in the sludge return line 7, and the sludge return amount may be controlled by inverter-controlling this sludge return pump.
  • reaction tank 3 coagulation reaction tank 4 sedimentation tank 8 reforming tank 9 slaked lime addition device 10, 13 flow meter 14 SS meter 15 control device

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Removal Of Specific Substances (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Abstract

原水を反応槽2に導入し、改質槽8からの消石灰添加返送汚泥と混合した後、凝集槽3で高分子凝集剤を添加して凝集処理する。凝集処理液を沈殿槽4に導入して汚泥を分離する。汚泥の一部を汚泥返送ライン7で改質槽8に導入する。前記原水の流量aと、前記返送汚泥の濃度bと、アルカリ剤の添加で原水中に発生する懸濁物質濃度cと、定数Rとに基づいて返送汚泥の目標流量を設定し、この目標流量となるように汚泥返送量を制御する。

Description

排水の処理方法
 本発明は、排水を凝集及び固液分離処理する排水の処理方法に係り、特に凝集汚泥の一部を反応槽に返送すると共に、この返送汚泥に消石灰等のアルカリ剤を添加するようにした排水の処理方法に関する。
 フッ素含有排水、リン含有排水、重金属含有排水などの排水を凝集及び固液分離処理して、濃縮性に富み、脱水性に優れた高濃度汚泥を得る方法として、アルカリ汚泥法等の高密度汚泥法(HDS法:High Density Sludge)が知られている。アルカリ汚泥法では、凝集処理の後段の固液分離処理で分離されて返送される汚泥の一部に消石灰(Ca(OH))等のアルカリを添加する。
 図2は、従来の高密度凝集汚泥処理法の代表的な装置を示す系統図である。フッ素含有排水、リン含有排水、重金属含有排水などの原水はpH調整槽1にてpH調整剤が添加されてpH2.5~3.0程度に調整された後、反応槽2に導入され、後述の改質槽8から導入される改質汚泥と混合され、反応する。この反応液は、次いで凝集槽3に送給され、高分子凝集剤添加手段3aにより高分子凝集剤が添加されて凝集処理された後、沈殿槽4で固液分離される。沈殿槽4の上澄水は処理水として系外へ排出される。沈殿槽4からポンプ5により引き抜かれた分離汚泥の一部は汚泥返送ライン7により改質槽8に返送され、残部は排出ライン6により系外へ排出される。
 改質槽8では、アルカリ剤添加手段としての消石灰添加装置9により供給される消石灰の溶解/分散液(消石灰の一部は溶解し、残部は分散している液)と返送汚泥とが混合される。この混合液(改質汚泥)は反応槽2に供給される。この反応槽2における反応は所定のpH範囲(例えば6~11、特に6~8)で行うのが好ましく、このようなpH範囲となるように、反応槽2に設けられたpH計2aの検出pHに基づいて改質槽8に供給される消石灰の量が調節される。
特開平5-7879号公報 特開2003-71469号公報 特開2013-208599号公報
 改質槽8への汚泥の返送量が適正量よりも少ないと、沈殿槽4で沈殿した汚泥の粘性が高くなり、運転トラブルが生じるおそれがある。
 逆に、改質槽8への汚泥の返送量が適正量よりもが多いと、沈殿槽4の上澄水中の微粒子SS(懸濁物質)が増加し、処理水にリークするおそれがある。
 本発明は、改質槽への汚泥返送量を適正量とすることができる排水の処理方法を提供することを課題とする。
 上記課題を解決するために、本発明の排水の処理方法は次を要旨とする。
[1] 排水排出源からの原水にアルカリ剤添加返送汚泥を添加して反応させ、次いで凝集処理した後、固液分離処理して汚泥を処理水から分離し、
 分離した汚泥の一部を返送汚泥とし、この返送汚泥を改質槽に導入して前記アルカリ剤を添加した後、前記原水に添加し、
 汚泥の残部を引き抜き汚泥として排出する排水の処理方法において、
 前記原水の流量aと、前記返送汚泥の濃度bと、アルカリ剤の添加で原水中に発生する懸濁物質濃度cと、定数Rとに基づいて返送汚泥の目標流量を設定し、この目標流量となるように汚泥返送量を制御することを特徴とする排水の処理方法。
[2] 前記原水はフッ素含有排水であり、前記アルカリ剤は消石灰であり、前記懸濁物質濃度cを(原水フッ素濃度)×[(フッ化カルシウムの分子量)/(Fの分子量)]とする、[1]の排水の処理方法。
[3] 前記原水はFe3+含有排水であり、前記アルカリ剤は消石灰であり、前記懸濁物質濃度cを(原水Fe3+濃度)×[(Fe(OH)の分子量)/(Feの原子量)]とする、[1]の排水の処理方法。
[4] 前記Rは、前記排出源について得られている経験値である、[1]~[3]のいずれかの排水の処理方法。
[5] 前記返送汚泥の目標流量を(a・c・R)/bとする、[4]の排水の処理方法。
 本発明の排水の処理方法によると、固液分離手段からの改質槽への汚泥返送量が適正量となるので、処理水質及び汚泥性状が常に良好となる。
実施の形態に係る排水の処理方法を説明するためのフロー図である。 従来例に係る排水の処理方法を説明するためのフロー図である。
 以下、図面を参照して実施の形態について説明する。図1は本発明の実施の形態に係る排水の処理方法が適用された排水処理設備のフロー図である。なお、図2と同一部分には同一符号を付してある。
 この実施の形態においても、図2と同様に、原水はpH調整槽1にてpH調整剤が添加されてpH2.5~3.5程度に調整された後、反応槽2に導入され、改質槽8から導入される改質汚泥と混合され、反応する。この反応液は、次いで凝集槽3に送給され、高分子凝集剤添加手段3aにより高分子凝集剤が添加されて凝集処理された後、沈殿槽4で固液分離される。沈殿槽4の上澄水は処理水として系外へ排出される。沈殿槽4からポンプ5により引き抜かれた分離汚泥の一部は汚泥返送ライン7により改質槽8に返送され、残部は排出ライン6により系外へ排出される。
 改質槽8では、アルカリ剤添加手段としての消石灰添加装置9により供給される消石灰の溶解/分散液と返送汚泥とが混合される。この混合液(改質汚泥)は反応槽2に供給される。消石灰添加装置9は、消石灰の溶解/分散液を貯留するタンクと、該タンク内の液を改質槽8へ送液する薬注ポンプ等を有する。薬注ポンプによる薬注量はインバータ制御等により制御される。この反応槽2における反応は所定のpH範囲(例えば6~11、特に6~8)で行うのが好ましい。このようなpH範囲となるように、反応槽2に設けられたpH計2aの検出pHに基づいて改質槽8に供給される消石灰の量が添加装置9の薬注ポンプにより調節される。
 汚泥排出ライン6及び汚泥返送ライン7には流量調整バルブ11、12が設けられている。流量調整バルブ12を制御装置15によって開度調整することにより、改質槽8への汚泥返送量が制御される。
 この実施の形態においては、pH調整槽1に流入する原水流量を測定するように流量計10が設けられている。また、汚泥返送ライン7に、流量計13と返送汚泥中の懸濁物質(Suspended Solids : SS)濃度を測定するSS計14とが設けられている。これらの流量計10,13及びSS計14の検出信号が制御装置15に入力され、制御装置15によってバルブ12の開度が制御される。
 この制御装置15は、流量計13で検出される汚泥返送流量Qが
 Q=(a・c・R)/b
(ただし、a:流量計10による原水流量(m/hr)
     c:アルカリ剤の添加で原水中に発生する懸濁物質濃度
       (mg/L)
     R:定数
     b:SS計14による汚泥濃度(mg/L=10-3kg/m
となるようにバルブ12を制御する。
 なお、アルカリ剤の添加で原水中に発生する懸濁物質濃度cは、単位時間(hr)当りにpH調整槽1に流入した原水中の処理対象元素の全量L(kg/hr)に対する、この原水中の処理対象元素の全量が沈殿物になったときの固形物量P(kg/hr)の比P/Lと原水中の処理対象元素(フッ素またはFe3+)の濃度との積である。
 処理対象元素(イオン)がFの場合、生成する沈殿物はCaFである。F、CaFの分子量は、38,78であるので、流入F量がFとして1(kg/hr)の場合、生成固形物量(CaF量)は1×(78/38)(kg/hr)であり、原水のフッ素濃度が100(mg/L)の場合、c=100×78/38=205(mg/L)となる。
 処理対象元素(イオン)がFe3+の場合、生成する沈殿物はFe(OH)である。Feの原子量は55.85、Fe(OH)の分子量は106.85であるので、流入Fe量がFeとして1(kg/hr)の場合、生成固形物量(Fe(OH)量)は1×(106.85/55.85)(kg/hr)であり、原水のFe3+濃度が100(mg/L)の場合、c=100×106.85/55.85=191(mg/L)となる。
 原水中の処理対象イオン(例えばF又はFe3+)の種類及び濃度は一定であり、原水の流量が経時的に変化する場合は、原水流量aに基づいて、沈殿槽4における単位時間当りの生成固形物量Wはa・c(単位は、例えば10-3kg/hr)として算出される。
 沈殿槽4で単位時間当りに生成する固形物量a・cのうちどれ位を改質槽8に返送すればよいかは、図1に示す排水処理装置が設置された現場毎に経験的に分かっているので、この経験値をRとする。(例えば、生成汚泥の10~80倍特に30~60倍を返送するのが適正であると分かっている排水処理装置の場合、Rは10~80特に30~60の間から選択された値に設定される。)
 従って、汚泥返送ライン7を介して改質槽8に送られる単位時間当りの汚泥(固形物)返送量W(10-3kg/hr)をW=[単位時間当りの汚泥(固形物)生成量]・R=a・c・Rとすることにより、適正な処理が行われる。
 単位時間当りの固形物返送量W=a・c・R(10-3kg/hr)を、返送する汚泥スラリーの流量Qに換算するには、Wをスラリー濃度b(mg/L=10-3kg/m)で除算すればよい。即ち、Q=W/b=(a・c・R)/bとなる。従って、流量計13の検出流量が(a・c・R)/bとなるようにバルブ12を制御することにより、常に適正な処理が行われる。
 本発明で処理対象とする原水としては、フッ素含有排水、リン含有排水、鉄、亜鉛、銅、クロム、ニッケル、鉛、またはアルミニウムなどの重金属含有排水が例示されるが、これらに限定されない。
 上記実施の形態では、改質槽8にアルカリ剤として消石灰を添加しているが、これに限定されるものではなく、特に重金属含有排水の場合、苛性ソーダなどであってもよい。
 上記実施の形態は本発明の一例であり、本発明は上記以外の態様とされてもよい。例えば、バルブ12の開度調節だけでなく、汚泥返送ライン7に汚泥返送ポンプを設け、この汚泥返送ポンプをインバータ制御して汚泥返送量を制御してもよい。
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
 本出願は、2021年11月19日付で出願された日本特許出願2021-188497に基づいており、その全体が引用により援用される。
 2 反応槽
 3 凝集反応槽
 4 沈殿槽
 8 改質槽
 9 消石灰添加装置
 10,13 流量計
 14 SS計
 15 制御装置

Claims (7)

  1.  排水排出源からの原水にアルカリ剤添加返送汚泥を添加して反応させ、次いで凝集処理した後、固液分離処理して汚泥を処理水から分離し、
     分離した汚泥の一部を返送汚泥とし、この返送汚泥を改質槽に導入して前記アルカリ剤を添加した後、前記原水に添加し、
     汚泥の残部を引き抜き汚泥として排出する排水の処理方法において、
     前記原水の流量aと、前記返送汚泥の濃度bと、アルカリ剤の添加で原水中に発生する懸濁物質濃度cと、定数Rとに基づいて返送汚泥の目標流量を設定し、この目標流量となるように汚泥返送量を制御することを特徴とする排水の処理方法。
  2.  前記原水はフッ素含有排水であり、前記アルカリ剤は消石灰であり、前記原懸濁物質濃度cを(原水フッ素濃度)×[(フッ化カルシウムの分子量)/(Fの分子量)]とする、請求項1の排水の処理方法。
  3.  前記原水はFe3+含有排水であり、前記アルカリ剤は消石灰であり、前記懸濁物質濃度cを(原水Fe3+濃度)×[(Fe(OH)の分子量)/(Feの原子量)]とする、請求項1の排水の処理方法。
  4.  前記Rは、前記排出源について得られている経験値である、請求項1~3のいずれかの排水の処理方法。
  5.  前記Rは10~80の間から選択された値である請求項4の排水の処理方法。
  6.  前記Rは30~60の間から選択された値である請求項4の排水の処理方法。
  7.  前記返送汚泥の目標流量を(a・c・R)/bとする、請求項4の排水の処理方法。
PCT/JP2022/034056 2021-11-19 2022-09-12 排水の処理方法 WO2023089926A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021188497A JP2023075534A (ja) 2021-11-19 2021-11-19 排水の処理方法
JP2021-188497 2021-11-19

Publications (1)

Publication Number Publication Date
WO2023089926A1 true WO2023089926A1 (ja) 2023-05-25

Family

ID=86396717

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/034056 WO2023089926A1 (ja) 2021-11-19 2022-09-12 排水の処理方法

Country Status (3)

Country Link
JP (1) JP2023075534A (ja)
TW (1) TW202321164A (ja)
WO (1) WO2023089926A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0824877A (ja) * 1994-07-13 1996-01-30 Kurita Water Ind Ltd 金属イオン含有排水の処理方法
JPH08132069A (ja) * 1994-11-02 1996-05-28 Kurita Water Ind Ltd 金属含有排水の処理方法
JP2010234300A (ja) * 2009-03-31 2010-10-21 Kurita Water Ind Ltd 無機イオン含有排水の処理方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0824877A (ja) * 1994-07-13 1996-01-30 Kurita Water Ind Ltd 金属イオン含有排水の処理方法
JPH08132069A (ja) * 1994-11-02 1996-05-28 Kurita Water Ind Ltd 金属含有排水の処理方法
JP2010234300A (ja) * 2009-03-31 2010-10-21 Kurita Water Ind Ltd 無機イオン含有排水の処理方法

Also Published As

Publication number Publication date
TW202321164A (zh) 2023-06-01
JP2023075534A (ja) 2023-05-31

Similar Documents

Publication Publication Date Title
US20080135478A1 (en) Method for Treating Wastewater or Produced Water
US5401420A (en) Sulfide ion-selective electrodes for control of chemical feed of organic sulfide products for metal ion precipitation from waste water
US20130037463A1 (en) Wastewater treatment system
CN106746108A (zh) 一种脱硫废水资源化处理系统及方法
KR101930250B1 (ko) 응집제 자동 조절 시스템
WO2023089926A1 (ja) 排水の処理方法
JP6819809B1 (ja) 排水処理システム及び排水処理方法
US6344142B1 (en) Waste water treatment method and apparatus
TW201945294A (zh) 水處理方法及水處理裝置
WO2023026661A1 (ja) フッ素含有水の処理方法
JP2005270752A (ja) 凝集処理方法および装置
JP2000263086A (ja) 排水処理装置
WO2023089927A1 (ja) 排水の処理方法及び装置
JP2010234300A (ja) 無機イオン含有排水の処理方法
JP5644491B2 (ja) 鉄鋼圧延廃水の水処理システム
JP2020151672A (ja) カルシウム含有排水の処理方法及び処理装置
JP2021065803A (ja) フッ素含有排水の処理方法
JPH0729101B2 (ja) 無機系排水の凝集処理装置
CN111712467A (zh) 优化水处理厂和废水处理厂中的化学沉淀过程的方法
JP2019171285A (ja) 排水浄化装置
CN115259429B (zh) 返排液的处理装置
LU503889B1 (en) A desulfurization wastewater treatment system and process
JP2023075533A (ja) 排水の処理方法及び装置
KR20070028079A (ko) 폴리수산화염화황산알루미늄(pahcs)을 이용한 과량응집공정을 포함하는 정수처리방법
WO2012111369A1 (ja) 凝集処理装置及び凝集処理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22895213

Country of ref document: EP

Kind code of ref document: A1