WO2023089757A1 - 吸引装置 - Google Patents

吸引装置 Download PDF

Info

Publication number
WO2023089757A1
WO2023089757A1 PCT/JP2021/042548 JP2021042548W WO2023089757A1 WO 2023089757 A1 WO2023089757 A1 WO 2023089757A1 JP 2021042548 W JP2021042548 W JP 2021042548W WO 2023089757 A1 WO2023089757 A1 WO 2023089757A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating
unit
temperature
suction device
aerosol
Prior art date
Application number
PCT/JP2021/042548
Other languages
English (en)
French (fr)
Inventor
拓磨 中野
一真 水口
Original Assignee
日本たばこ産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本たばこ産業株式会社 filed Critical 日本たばこ産業株式会社
Priority to CN202180104302.1A priority Critical patent/CN118251149A/zh
Priority to PCT/JP2021/042548 priority patent/WO2023089757A1/ja
Publication of WO2023089757A1 publication Critical patent/WO2023089757A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/57Temperature control

Definitions

  • the present invention relates to a suction device.
  • An object of the present invention is to provide an aspiration device capable of generating a predetermined amount or more of aerosol at an early stage while suppressing wasteful power consumption due to heating.
  • the first feature of the present invention completed for this purpose is a heating unit that heats an aerosol source that generates an aerosol when heated, a power supply unit that stores power, and a power supply unit to the heating unit. and a controller for controlling power supply to the aerosol source, wherein the controller controls the temperature of the aerosol source to be equal to or higher than a first temperature at which the aerosol source atomizes when the aerosol generation request is made. If the first heating is performed at 10:00 a.m., and an event in which the generation request is expected to be performed is detected before the generation request is performed, the temperature of the aerosol source is set to the second temperature or higher and It is a suction device that performs a second heating that heats before the first heating so that the temperature is lower than the first temperature.
  • a second feature may be that the control unit stops the second heating when a predetermined termination condition is satisfied after starting the second heating.
  • a third feature is that the control unit shifts the power in the first heating when shifting to the first heating during the second heating to the first heating without performing the second heating. It may be made smaller than the electric power in the first heating in the case.
  • a fourth feature includes an operation unit that can be operated by a user, the generation request is that a predetermined first operation is performed on the operation unit, and the event is the operation unit A second operation determined to be different from the first operation may be performed on the .
  • a fifth feature is provided with a gyro sensor, and the event indicates that the output value of the gyro sensor is higher than the altitude of the power supply unit from a value indicating that the altitude of the power supply unit and the heating unit is the same. may be changed to a value indicating that the height of the heating unit is higher.
  • a sixth feature includes a tactile sensor that detects that a user's hand is touching the suction device, and the event is that the output value of the tactile sensor indicates that the user's hand is touching the suction device. It may be what you have shown.
  • a seventh feature comprises an acceleration sensor, The event may indicate that the output value of the acceleration sensor has exceeded a predetermined threshold.
  • the first feature while suppressing wasteful power consumption associated with heating, it is possible to quickly create a state in which a predetermined amount or more of aerosol can be generated.
  • the second feature even if the generation request is not made after the second heating is performed, it is possible to suppress wasteful power consumption.
  • the third feature even if the priority of power supply to the heating section is the highest, it is possible to facilitate power supply to a portion other than the heating section.
  • the fourth feature since the second heating is performed based on the user's operation, it is possible to suppress the waste of electric power used for the second heating with higher accuracy.
  • the fifth feature it is possible to detect with a higher degree of certainty that the possibility of making a generation request has increased.
  • the sixth feature it is possible to detect with a higher degree of certainty that the possibility of making a generation request has increased.
  • the seventh feature it is possible to detect with a higher degree of certainty that the possibility of making a generation request has increased.
  • FIG. 4 is a flowchart showing an example of a procedure of heat treatment performed by a control unit; (a) is a timing chart when performing the first suction heating, and (b) is a timing chart when performing the second suction heating. It is a figure which shows an example of schematic structure of the sensor part and control part which concern on a modification.
  • FIG. 5 is a diagram showing the relationship between first suction heating power and second suction heating power; It is a figure which shows typically an example of schematic structure of the suction device which concerns on 2nd Embodiment.
  • FIG. 1 is a diagram schematically showing an example of the schematic configuration of a suction device 1 according to the first embodiment.
  • a suction device 1 according to the first embodiment is a device that generates a substance to be sucked by a user.
  • the substance generated by the suction device 1 is an aerosol.
  • the substance produced by the suction device 1 may be a gas.
  • the suction device 1 generates an aerosol by heating a substrate containing an aerosol source from inside the substrate.
  • the suction device 1 has a power supply unit 110 , a heating section 121 and a holding section 140 .
  • the suction device 1 also has a housing 10 that houses a power supply unit 110, a heating unit 121, and the like. In the suction device 1 , the user performs suction while the stick-shaped base material 150 , which is a stick-shaped member, is held by the holding portion 140 .
  • the power supply unit 110 includes a power supply unit 111, a sensor unit 112, a notification unit 113, a storage unit 114, a communication unit 115, a control unit 116, and an operation unit 117 that can be operated by a user. and a DC/DC converter 118 .
  • a power supply unit 111 includes a power supply unit 111, a sensor unit 112, a notification unit 113, a storage unit 114, a communication unit 115, a control unit 116, and an operation unit 117 that can be operated by a user. and a DC/DC converter 118 .
  • a DC/DC converter 118 Each component will be described in order below.
  • the power supply unit 111 accumulates power.
  • the power supply unit 111 supplies electric power to each component of the suction device 1 .
  • the power supply unit 111 may be composed of, for example, a rechargeable battery such as a lithium ion secondary battery.
  • the power supply unit 111 may be charged by being connected to an external power supply via a USB (Universal Serial Bus) cable or the like. Also, the power supply unit 111 may be charged in a state of being disconnected from the device on the power transmission side by wireless power transmission technology. Alternatively, only the power supply unit 111 may be removed from the suction device 1 or may be replaced with a new power supply unit 111 .
  • the sensor unit 112 detects various information regarding the suction device 1 .
  • the sensor section 112 has a temperature sensor 112 t that detects the temperature of the heating section 121 .
  • the sensor unit 112 then outputs the detected information to the control unit 116 .
  • the control unit 116 For example, when the temperature sensor 112 t detects the temperature of the heating unit 121 , the sensor unit 112 outputs information about the temperature to the control unit 116 .
  • the notification unit 113 notifies the user of information.
  • the notification unit 113 is configured by a light-emitting device such as an LED (Light Emitting Diode).
  • the notification unit 113 emits light in different light emission patterns when the power supply unit 111 is in a charging required state, when the power supply unit 111 is being charged, when an abnormality occurs in the suction device 1, and the like.
  • the light emission pattern here is a concept including color, timing of lighting/lighting out, and the like.
  • the notification unit 113 may be configured by a display device that displays an image, a sound output device that outputs sound, a vibration device that vibrates, or the like, together with or instead of the light emitting device.
  • the storage unit 114 stores various information for the operation of the suction device 1.
  • the storage unit 114 is configured by, for example, a non-volatile storage medium such as flash memory.
  • An example of the information stored in the storage unit 114 is information regarding the OS (Operating System) of the suction device 1, such as control details of various components by the control unit 116.
  • FIG. Another example of the information stored in the storage unit 114 is information related to suction by the user, such as the number of times of suction, suction time, total suction time, and the like.
  • the communication unit 115 is a communication interface for transmitting and receiving information between the suction device 1 and other devices.
  • the communication unit 115 performs communication conforming to any wired or wireless communication standard.
  • a communication standard for example, wireless LAN (Local Area Network), wired LAN, Wi-Fi (registered trademark), Bluetooth (registered trademark), or the like can be adopted.
  • the communication unit 115 transmits information regarding suction by the user to the smartphone in order to display the information regarding suction by the user on the smartphone.
  • the communication unit 115 receives new OS information from the server in order to update the OS information stored in the storage unit 114 .
  • the control unit 116 functions as an arithmetic processing device and a control device, and controls the general operations within the suction device 1 according to various programs.
  • the control unit 116 is realized by an electronic circuit such as a CPU (Central Processing Unit) and a microprocessor.
  • the control unit 116 may include a ROM (Read Only Memory) for storing programs to be used, calculation parameters, etc., and a RAM (Random Access Memory) for temporarily storing parameters, etc. that change as appropriate.
  • the suction device 1 executes various processes under the control of the controller 116 .
  • the operation unit 117 is composed of a button type switch, a touch panel, or the like.
  • the operating portion 117 is provided in a state of being exposed from the surface of the housing 10 .
  • Operation unit 117 outputs information operated by the user to control unit 116 .
  • the operation unit 117 outputs an activation command for the power supply unit 110 to the control unit 116 .
  • the control unit 116 activates the power supply unit 110 upon acquiring the activation command.
  • the predetermined activation operation by the operation unit 117 can be exemplified by pressing the operation unit 117 three times in rapid succession.
  • DC/DC converter 118 is connected between heating unit 121 and power supply unit 111 .
  • Control unit 116 is connected between DC/DC converter 118 and power supply unit 111 .
  • the DC/DC converter 118 is a booster circuit capable of boosting an input voltage, and is configured to be able to supply a voltage obtained by boosting the input voltage or the input voltage to the heating unit 121 .
  • the power supplied to the heating unit 121 can be adjusted by the DC/DC converter 118 .
  • a switching regulator can be used that converts an input voltage into a desired output voltage by controlling the on/off time of a switching element while monitoring the output voltage.
  • a switching regulator is used as the DC/DC converter 118, by controlling the switching element, the input voltage can be directly output without being boosted.
  • the temperature sensor 112t has a voltage sensor and a current sensor.
  • the voltage sensor measures and outputs the voltage value applied to the heating unit 121 .
  • the current sensor measures and outputs the current value flowing through the heating unit 121 .
  • the output of the voltage sensor and the output of the current sensor are respectively input to control section 116 .
  • Control unit 116 acquires the resistance value of heating unit 121 based on the output of the voltage sensor and the output of the current sensor, and acquires the temperature of heating unit 121 according to this resistance value.
  • the temperature of the heating section 121 can be considered to be approximately the same as the temperature of the aerosol source heated by the heating section 121 .
  • the temperature sensor 112t does not need to have a current sensor if a constant current is applied to the heating unit 121 when the resistance value of the heating unit 121 is obtained. Similarly, if a constant voltage is applied to the heating unit 121 when obtaining the resistance value of the heating unit 121, the temperature sensor 112t may not have a voltage sensor. Also, the temperature sensor 112t may be, for example, a thermistor arranged near the heating unit 121 .
  • the holding part 140 has an internal space 141 and holds the stick-shaped base material 150 while accommodating a part of the stick-shaped base material 150 in the internal space 141 .
  • the holding part 140 has an opening 142 that communicates the internal space 141 with the outside, and holds the stick-shaped substrate 150 inserted into the internal space 141 through the opening 142 .
  • the holding portion 140 is a cylindrical body having an opening 142 and a bottom portion 143 as a bottom surface, and defines a columnar internal space 141 .
  • the holding part 140 is configured such that the inner diameter is smaller than the outer diameter of the stick-shaped base material 150 at least in part in the height direction of the cylindrical body, and holds the stick-shaped base material 150 inserted into the internal space 141.
  • the stick-shaped substrate 150 can be held by pressing from the outer periphery.
  • the retainer 140 also functions to define air flow paths through the stick-shaped substrate 150 .
  • An air inlet hole which is an inlet for air into the flow path, is arranged, for example, in the bottom portion 143 .
  • the air outflow hole which is the exit of air from such a channel, is the opening 142 .
  • the stick-type base material 150 has a base material portion 151 and a mouthpiece portion 152 .
  • Substrate portion 151 includes an aerosol source.
  • the aerosol source is atomized by heating to produce an aerosol.
  • the aerosol source may be tobacco-derived, such as, for example, processed pieces of cut tobacco or tobacco material formed into granules, sheets, or powder. Aerosol sources may also include non-tobacco sources made from plants other than tobacco, such as mints and herbs. By way of example, the aerosol source may contain perfume ingredients such as menthol. If the inhalation device 1 is a medical inhaler, the aerosol source may contain a medicament for inhalation by the patient.
  • the aerosol source is not limited to solids, and may be, for example, polyhydric alcohols such as glycerin and propylene glycol, and liquids such as water. At least a portion of the base material portion 151 is accommodated in the internal space 141 of the holding portion 140 while the stick-shaped base material 150 is held by the holding portion 140 .
  • the mouthpiece part 152 is a part that is held by the user when inhaling. At least part of the mouthpiece 152 protrudes from the opening 142 when the stick-shaped base material 150 is held by the holding part 140 . Then, when the user holds the mouthpiece 152 protruding from the opening 142 and sucks, air flows into the inside of the holding part 140 from an air inlet hole (not shown). The air that has flowed in passes through the internal space 141 of the holding part 140 , that is, passes through the base material part 151 and reaches the inside of the user's mouth together with the aerosol generated from the base material part 151 .
  • the heating unit 121 heats the aerosol source to atomize the aerosol source and generate an aerosol.
  • the heating part 121 is made of any material such as metal or polyimide.
  • the heating part 121 is configured in a blade shape and arranged so as to protrude from the bottom part 143 of the holding part 140 into the internal space 141 of the holding part 140 . Therefore, when the stick-shaped base material 150 is inserted into the holding part 140, the blade-shaped heating part 121 is inserted into the stick-shaped base material 150 so as to pierce the base material part 151 of the stick-shaped base material 150. be done.
  • the heating part 121 when the heating part 121 generates heat, the aerosol source contained in the stick-shaped substrate 150 is heated from the inside of the stick-shaped substrate 150 and atomized to generate an aerosol.
  • the heating unit 121 generates heat when supplied with power from the power supply unit 111 .
  • the control unit 116 is activated when the suction device 1 is powered on. For example, when the operation unit 117 is pressed three times in succession, the suction device 1 is powered on and the control unit 116 is activated. Then, when there is a request for aerosol generation (hereinafter sometimes referred to as a “generation request”), the control unit 116 adjusts the temperature of the aerosol source included in the base material unit 151 so that the aerosol source is atomized. Electric power is supplied to the heating unit 121 so that the temperature is equal to or higher than the first temperature.
  • the generation request can be exemplified by pressing the operation unit 117 continuously for a predetermined period of time (for example, two seconds) or longer.
  • the target of the generation request may be an operation unit different from the operation unit 117, which is the target of the predetermined activation operation to turn on the power of the suction device 1.
  • FIG. The first temperature can be exemplified as 230 degrees.
  • the suction device 1 may be powered on when the connection with a device provided separately from the suction device 1 (for example, a device for charging the suction device 1) is disconnected.
  • a period from the start of heating to raise the temperature of the heating unit 121 to the first temperature or higher until the stick-shaped base material 150 reaches a state in which it is possible to generate a predetermined amount or more of aerosol is referred to as a "preheating period".
  • the period after the mold substrate 150 reaches a state where it can generate a predetermined amount or more of aerosol may be referred to as a "suctionable period”.
  • the preheating period ends when the temperature of heating unit 121 reaches the first temperature.
  • the preheating period may end when a predetermined time (for example, 10 seconds) elapses after the temperature of the heating unit 121 reaches the first temperature.
  • the preheating period may end when a predetermined time (for example, 30 seconds) elapses after starting heating to raise the temperature of the heating unit 121 to the first temperature or higher.
  • a predetermined time for example, 30 seconds
  • the control unit 116 notifies the user of the suction-enabled period via the notification unit 113 .
  • the temperature of the heating unit 121 is maintained within a predetermined temperature range (for example, 230 degrees to 295 degrees).
  • control unit 116 heats the temperature of the aerosol source included in the base material unit 151 to the first temperature at which the aerosol source is atomized or higher. Electric power is supplied to the unit 121 to heat the heating unit 121 .
  • heating the heating unit 121 by supplying power to the heating unit 121 so that the temperature of the aerosol source is equal to or higher than the first temperature may be referred to as “suction heating”.
  • Control unit 116 starts suction heating when a generation request is made.
  • suction heating end condition a predetermined condition for ending suction heating (hereinafter sometimes referred to as "suction heating end condition") is satisfied.
  • the suction heating end condition can be exemplified by elapse of a predetermined time (for example, 6 minutes) after the start of the suctionable period.
  • a predetermined time for example, 6 minutes
  • the suction operation has been performed a predetermined number of times (for example, 14 times) after the start of the suction-enabled period.
  • the suction operation is an operation in which the user holds the mouthpiece 152 of the stick-shaped base material 150 in his/her mouth and sucks.
  • the control unit 116 When heating the heating unit 121, the control unit 116 performs heating via the DC/DC converter 118 so as to realize the time series transition of the target temperature specified in the heating profile stored in the storage unit 114 in advance. It controls the power supplied to the unit 121 . For example, the control unit 116 adjusts the power supplied to the heating unit 121 based on the deviation between the target temperature specified in the heating profile and the actual temperature of the heating unit 121 (hereinafter sometimes referred to as “actual temperature”). Control. This temperature control of the heating unit 121 can be realized by, for example, known feedback control.
  • the control unit 116 detects an event in which the generation request is expected to be made before the generation request is made, the control unit 116 sets the temperature of the aerosol source to the high second temperature or higher and the first Electric power is supplied to the heating unit 121 so that the temperature is lower than the temperature.
  • Detecting an event in which a generation request is expected to be made is, for example, detecting that a predetermined operation (for example, pressing once) has been performed on the operation unit 117 . can do.
  • the target of the predetermined operation may be an operation unit different from the operation unit 117 that is the target of the predetermined activation operation to turn on the power supply unit 110 .
  • the target of the predetermined operation may be an operation unit different from the operation unit 117 that is the target of the generation request.
  • the second temperature can be exemplified as 40 degrees, for example.
  • the control unit 116 sets the temperature of the aerosol source to the second temperature or higher and the first temperature. Electric power is supplied to the heating unit 121 to heat the heating unit 121 so that the temperature is lower than the temperature.
  • heating the heating unit 121 by supplying power to the heating unit 121 so that the temperature of the aerosol source is equal to or higher than the second temperature and lower than the first temperature may be referred to as “preheating”. be.
  • the control unit 116 starts preheating when it detects an event in which a generation request is expected.
  • An event in which a production request is expected to be made may be referred to as a "preliminary event.”
  • the control unit 116 controls, for example, the power value supplied to the heating unit 121 to be a predetermined power value for performing preheating.
  • the predetermined power value can be exemplified as a value that is obtained by performing an experiment or the like in advance and stored in the storage unit 114 or the ROM. Further, the predetermined power value can be exemplified so that the temperature of the heating unit 121 during preheating becomes a preheating target temperature, which will be described later.
  • the control unit 116 sets the target temperature of the heating unit 121 during preheating to a temperature equal to or higher than the second temperature and lower than the temperature at which the aerosol source atomizes, and the temperature of the heating unit 121 during preheating is
  • the power supply may be controlled so that is the target temperature.
  • the target temperature of the heating unit 121 during preheating may be referred to as "preheating target temperature”.
  • the preheating target temperature can be exemplified as 100 degrees.
  • the control unit 116 supplies electric power to the heating unit 121 via the DC/DC converter 118 so that the temperature of the heating unit 121 detected by the temperature sensor 112t becomes the preheating target temperature. may be controlled.
  • the control unit 116 controls the power supplied to the heating unit 121 based on the difference between the preheating target temperature stored in the storage unit 114 and the actual temperature of the heating unit 121 detected by the temperature sensor 112t. may be controlled.
  • This temperature control of the heating unit 121 can be realized by, for example, known feedback control.
  • control unit 116 controls the heating unit 121 based on the deviation between the actual temperature and the temperature set to a value smaller than the preheating target temperature (for example, 95 degrees). You may control the electric power supplied to.
  • the control unit 116 makes the power for preheating lower than the power for suction heating.
  • the control unit 116 makes the duty ratio of the PWM signal output to the DC/DC converter 118 smaller when performing preheating than when performing suction heating. For example, a duty ratio of 90% when performing suction heating and a duty ratio of 30% when performing preheating can be exemplified.
  • control unit 116 fixes the duty ratio to 30% until the actual temperature reaches the preheating target temperature, and after the actual temperature reaches the preheating target temperature, the actual temperature The duty ratio may be changed based on the deviation from the preheating target temperature.
  • the control unit 116 performs suction heating when a generation request is made while preheating is being performed. Therefore, in the suction device 1, the control unit 116 controls power supply to the heating unit 121 as described above to shift to suction heating. In some cases, the process proceeds to suction heating without preheating.
  • suction heating when shifting to suction heating after performing preheating is referred to as “first suction heating”
  • suction heating when shifting to suction heating without performing preheating is referred to as "second suction heating.”
  • heating suction heating when shifting to suction heating without performing preheating
  • control unit 116 sets a predetermined condition (hereinafter sometimes referred to as "preheating end condition") to end preheating without issuing a generation request. ) is established, preheating is stopped. This is for suppressing wasteful power consumption associated with preheating.
  • the preheating end condition can be exemplified by elapse of a predetermined time (for example, 60 seconds) after starting preheating.
  • the suction device 1 configured as described above, the first suction heating in which preheating is performed before suction heating is performed earlier than the second suction heating in which preheating is not performed. 1 temperature is easily reached. Therefore, in the suction device 1, when performing the first suction heating, it is easier to reach the suction possible period earlier than when performing the second suction heating.
  • FIG. 2 is a flow chart showing an example of the procedure of the heat treatment performed by the control unit 116.
  • the control unit 116 repeatedly executes this process, for example, at a predetermined control cycle (for example, every 1 millisecond).
  • Control unit 116 determines whether or not a preliminary event has been detected (S201). If a preliminary event is detected (YES in S201), control unit 116 performs preliminary heating (S202). After that, the control unit 116 determines whether or not a generation request has been made (S203). If the generation request has been made (YES in S203), the control unit 116 performs the first suction heating (S204). After that, it is determined whether or not the suction heating end condition is satisfied (S205).
  • control unit 116 When it is determined that the suction heating end condition is not satisfied (NO in S205), the control unit 116 performs the processes after S204. If the suction heating end condition is satisfied (YES in S205), the control unit 116 stops power supply from the power supply unit 111 to the heating unit 121 to stop heating (S206).
  • control unit 116 determines whether or not the preheating end condition is satisfied (S207). If the preheating end condition is not satisfied (NO in S207), the control unit 116 performs the processes from S202 onwards. On the other hand, if the preheating end condition is satisfied (YES in S207), control unit 116 stops power supply from power supply unit 111 to heating unit 121 to stop heating (S206).
  • the control unit 116 determines whether or not a generation request has been made (S208). If the generation request has not been made (NO in S208), the control unit 116 terminates this process. On the other hand, if the generation request has been made (YES in S208), the control unit 116 performs the second suction heating (S209). After that, it is determined whether or not the suction heating end condition is satisfied (S210). When it is determined that the suction heating end condition is not satisfied (NO in S210), the control unit 116 performs the processing from S209 onwards. If the suction heating end condition is satisfied (YES in S210), the control unit 116 stops power supply from the power supply unit 111 to the heating unit 121 to stop heating (S206).
  • FIG. 3(a) is a timing chart for performing the first suction heating
  • FIG. 3(b) is a timing chart for performing the second suction heating.
  • FIG. 3A shows that at time t1, an operation for turning on the power of the suction device 1 (for example, an operation of quickly pressing the operation unit 117 three times in succession (an example of the first operation)) is performed, and then At time t2, a preliminary event is detected (for example, it is detected that the operation unit 117 has been pressed once (an example of a second operation)), and at time t3, a generation request is made (the operation unit 117 is held for a predetermined period (for example, two seconds). It shows the change in the temperature of the heating unit 121 when the continuous pressing is performed.
  • FIG. 3(b) shows changes in the temperature of the heating unit 121 when an operation for turning on the power of the suction device 1 is performed at time t1, and a generation request is performed at time t3. .
  • the first temperature reaches the first temperature earlier than in the second suction heating shown in FIG. 3(b). easy to reach. Therefore, in the case of the first suction heating, it is easier to reach the suckable period earlier than in the case of the second suction heating.
  • the suction device 1 includes the heating unit 121 that heats the aerosol source that generates aerosol when heated, the power supply unit 111 that stores power, and the power supply unit 111 that supplies power to the heating unit 121. and a control unit 116 for controlling. Then, when an aerosol generation request is made, the control unit 116 performs suction heating as an example of the first heating so that the temperature of the aerosol source is equal to or higher than the first temperature at which the aerosol source is atomized.
  • control unit 116 sets the temperature of the aerosol source to the second temperature or higher and the first Preheating is performed as an example of second heating to heat before suction heating so that the temperature is lower than the temperature.
  • the suction device 1 configured in this way, by performing suction heating after preheating, a predetermined amount or more of aerosol is generated earlier than when suction heating is performed without preheating. reach a possible state.
  • the second temperature has been exemplified as 40 degrees, it is not particularly limited to 40 degrees. Since the purpose of preheating is to raise the temperature of the aerosol source in advance before suction heating, the second temperature should be higher than the temperature of the location where the suction device 1 is used. For example, if the area where the suction device 1 is used is Japan, the second temperature should be higher than the air temperature in Japan. Since the temperature changes according to the season, the second temperature may be changed according to the season. Also, although the preheating target temperature is exemplified as 100 degrees, it is not particularly limited to 100 degrees. The preheating target temperature may be changed in the same manner as the second temperature, such as by setting the second temperature +60 degrees.
  • the predetermined power value may be changed in the same manner as the change in the second temperature. good. That is, the predetermined electric power value and preheating target temperature may be changed according to the region and season in which the suction device 1 is used.
  • preheating is performed when an event in which a generation request is expected to be made is detected before a generation request is made. Wasteful power consumption associated with preheating can be suppressed as compared with the case where preheating is started. That is, for example, even if the power of the suction device 1 is turned on, the user does not necessarily immediately issue a generation request. If the user does not issue a generation request after preheating is started when the power of the suction device 1 is turned on, the power required for preheating is wasted. On the other hand, according to the suction device 1, when an event in which a generation request is expected to be issued is detected after the power of the suction device 1 is turned on, for example, a predetermined operation is performed on the operation unit 117.
  • Preheating is started when (for example, one press) is performed. Then, if an event expected to generate a generation request leads to a generation request by the user with a higher degree of certainty than other matters (for example, turning on the power of the suction device 1), preheating is performed. Since suction heating is performed with high accuracy after heating, the power required for preheating is less likely to be wasted.
  • a modified example of detection of an event (preliminary event) in which a generation request is expected to be made will be described below.
  • preheating by performing preheating before an aerosol generation request is made, it is possible to quickly create a state in which a predetermined amount or more of aerosol can be generated. Otherwise, power for preheating is wasted.
  • preheating should be started before the minimum heating time at which the generation request is made after preheating. For example, power consumption for maintaining the preheating target temperature after reaching the preheating target temperature can be suppressed.
  • the minimum heating time depends on the specifications of the heating unit 121 and the preheating target temperature, it can be exemplified to be 10 seconds or less.
  • the minimum heating time is 5 seconds, if preheating is started 5 seconds before the production request is made, the preheating target temperature can be sufficiently reached when the production request is made. From the above, it is desirable to start preheating before the minimum heating time for which the generation request is made with high accuracy.
  • the following events can be considered as preliminary events. That is, the suction device 1 has been moved to a position where the operation portion 117 can be visually recognized. This is because the user moves the suction device 1 to a position where the operation unit 117 can be operated before requesting aerosol generation (for example, pressing the operation unit 117 for a predetermined period of time (for example, two seconds) or longer).
  • FIG. 4 is a diagram showing an example of schematic configurations of the sensor unit 112 and the control unit 116 according to the modification.
  • the control unit 116 can exemplify detecting a preliminary event as follows. It is conceivable that the user picks up and lifts up the suction device 1 placed on a desk or table, for example, before making the generation request. Therefore, the sensor unit 112 has a gyro sensor 112j, and the control unit 116 detects a preliminary event when the output value of the gyro sensor 112j indicates that the orientation of the suction device 1 has been changed from horizontal to vertical. can be exemplified.
  • the gyro sensor 112j can be exemplified as being provided inside the housing 10 .
  • the suction device 1 is placed on a desk or table
  • the power supply unit 111 and the heating unit 121 are oriented sideways so that the altitude is the same.
  • the heating unit 121 is positioned above the power supply unit 110, in other words, the height of the heating unit 121 is higher than the height of the power supply unit 111. Become.
  • the control unit 116 determines that the output value of the gyro sensor 112j is closer to the altitude of the heating unit 121 than the altitude of the power supply unit 111 from the value indicating that the altitude of the power supply unit 111 and that of the heating unit 121 are the same. Detecting a preliminary event can be exemplified when C changes to a value indicative of a large condition.
  • the state in which the power supply unit 111 and the heating unit 121 have the same altitude is not limited to the case where the power supply unit 111 and the heating unit 121 have the same altitude. may be 1 cm or less. This is because when the height difference between the power supply unit 111 and the heating unit 121 is 1 cm or less, it can be considered that the suction device 1 is oriented sideways.
  • the sensor unit 112 since the user touches the suction device 1 with a hand before making a generation request, the sensor unit 112 has a tactile sensor 112s, and the control unit 116 controls the output value of the tactile sensor 112s so that the hand touches the suction device 1. A preliminary event may be detected when it indicates that the is being touched.
  • the tactile sensor 112s can be exemplified by being mounted on the housing 10 in a state of being exposed from the surface of the housing 10 that accommodates the power supply unit 110, for example.
  • the suction device 1 may be moved from near the waist to a position where the operation unit 117 can be operated. Therefore, the sensor unit 112 may include the acceleration sensor 112a, and the control unit 116 may detect the preliminary event when the output value of the acceleration sensor 112a exceeds a predetermined threshold value.
  • the suction device 1 is moved from bottom to top, a downward inertial force acts, and the acceleration sensor 112a indicates positive acceleration.
  • An upward inertial force acts, and the acceleration sensor 112a indicates negative acceleration. Therefore, when the output value of the acceleration sensor 112a exceeds a predetermined threshold, it can be considered that the user has moved the suction device 1 from the vicinity of the waist to the mouth in order to perform a suction operation.
  • the sensor unit 112 may include an altitude sensor 112h, and the control unit 116 may detect a preliminary event when the amount of change in the output value of the altitude sensor 112h exceeds a predetermined threshold.
  • the control unit 116 uses the pressure sensor instead of using the output value of the altitude sensor 112h.
  • a preliminary event may be detected by estimating that the suction device 1 has been moved from the vicinity of the waist to the mouth when the amount of change in the output value of the sensor is greater than or equal to a predetermined threshold value.
  • the suction device 1 has at least two of the above-described gyro sensor 112j, tactile sensor 112s, acceleration sensor 112a, and altitude sensor 112h. Preliminary events may be detected based on For example, the controller 116 determines that the output value of the gyro sensor 112j indicates that the suction device 1 is oriented vertically, and that the output value of the acceleration sensor 112a indicates that the suction device 1 has moved from bottom to top. A preliminary event may be detected when This makes it possible to detect preliminary events with higher accuracy.
  • the suction device 1 has at least three of the above-described gyro sensor 112j, tactile sensor 112s, acceleration sensor 112a, and altitude sensor 112h, and the control unit 116 controls output values from these three sensors. Preliminary events may be detected based on For example, the control unit 116 causes the output value of the gyro sensor 112j to indicate that the suction device 1 is oriented vertically, and the output value of the tactile sensor 112s to indicate that the hand is touching the suction device 1, In addition, the preliminary event may be detected when the output value of the acceleration sensor 112a indicates that the suction device 1 has moved from bottom to top.
  • control unit 116 stops preheating when the preheating end condition is satisfied after performing preheating. For example, control unit 116 stops preheating when a predetermined time (for example, 60 seconds) has elapsed after starting preheating. Therefore, compared to a configuration in which preheating is continued until an aerosol generation request is made by the user after starting preheating, the preheating period can be shortened when the generation request is not made. Therefore, power consumption for preheating can be suppressed.
  • a predetermined time for example, 60 seconds
  • the preheating end condition may be the following condition other than the elapse of a predetermined time (for example, 60 seconds) after the preheating is started as described above.
  • the control unit 116 sets the preheating end condition to that the output value of the gyro sensor 112j indicates that the orientation of the suction device 1 has been changed from vertical to horizontal.
  • the control unit 116 determines that the altitude of the power supply unit 111 and that of the heating unit 121 are the same, based on the value indicating that the altitude of the heating unit 121 is higher than the altitude of the power supply unit 111, based on the output value of the gyro sensor 112j.
  • a change to a value indicating a state is set as the preheating end condition. This is because, if the suction device 1 is placed, for example, on a desk or table, it is considered difficult for the user to issue a generation request.
  • control unit 116 may set the fact that the output value of the tactile sensor 112s no longer indicates that the hand is touching the suction device 1 as the preheating end condition. This is because it is considered difficult for the user to make a generation request when the user releases the suction device 1 .
  • control unit 116 determines that the output value of the acceleration sensor, which becomes a negative acceleration when the suction device 1 is moved from top to bottom, has become equal to or less than a predetermined negative threshold. It is good as This is because, for example, when the user moves the suction device 1 from a position where the operation unit 117 is visible to near the waist, the user is unlikely to make a generation request.
  • the control unit 116 sets the amount of change in the output value of the altitude sensor 112h to a predetermined value.
  • the preheating end condition may be set to be equal to or less than a negative threshold. This is because, for example, when the user moves the suction device 1 from the mouth to the vicinity of the waist, it is considered difficult for the user to make the generation request.
  • the control unit 116 controls the suction device 1 to move from the mouth to the vicinity of the waist when the amount of change in the output value of the pressure sensor is equal to or less than a predetermined negative threshold value. It may be assumed that the preheating end condition is established by estimating that the preheating end condition is satisfied.
  • the suction device 1 has at least two of the above-described gyro sensor 112j, tactile sensor 112s, acceleration sensor 112a, and altitude sensor 112h. may be used to determine whether or not the preheating end condition is satisfied.
  • the controller 116 determines that the output value of the acceleration sensor 112a indicates that the suction device 1 has moved from top to bottom, and that the output value of the gyro sensor 112j indicates that the suction device 1 is oriented sideways. In this case, it may be determined that the preheating end condition is satisfied. This makes it possible to more accurately determine that the suction operation is not performed within the minimum heating time.
  • control unit 116 can quickly determine with high accuracy that the user is unlikely to issue a generation request and stop preheating. It is possible to suppress wasteful power consumption associated with
  • control unit 116 starts preheating when an event (preliminary event) in which a generation request is expected to be made is detected, but the present invention is not particularly limited to this aspect.
  • Control unit 116 may initiate preheating without detecting a preliminary event.
  • the control unit 116 may start preheating immediately after the suction device 1 is powered on and activated. That is, for example, when the operation unit 117 is quickly pressed three times in succession, the suction device 1 may be powered on, the control unit 116 may be activated, and the preheating may be started immediately.
  • preheating it is possible to shorten the time from receiving a generation request to reaching a state where a predetermined amount or more of aerosol can be generated.
  • By stopping preheating when the above-described preheating end condition is satisfied wasteful power consumption associated with preheating can be suppressed.
  • the control unit 116 adjusts the power supplied to the heating unit 121 when performing the first suction heating (hereinafter sometimes referred to as “first suction heating power”) to the heating unit 121 when performing the second suction heating. may be smaller than the electric power (hereinafter sometimes referred to as "second suction heating power”) supplied to the first suction heating power ⁇ second suction heating power).
  • FIG. 5 is a diagram showing the relationship between the first suction heating power and the second suction heating power.
  • FIG. 5(a) is a timing chart for performing the first suction heating
  • FIG. 5(b) is a timing chart for performing the second suction heating.
  • FIG. 5(c) shows the case where the suction device 1 performs the first suction heating as shown in FIG. 5(a) and the case where the second suction heating is performed as shown in FIG. 5(b).
  • 3 is a diagram showing changes in the temperature of the heating unit 121.
  • FIG. FIG. 5(a) shows changes in power when the suction device 1 is powered on at time t1, a preliminary event is detected at time t2, and a generation request is made at time t3.
  • FIG. 5(b) shows changes in electric power when the suction device 1 is turned on at time t1 and a generation request is made at time t3.
  • the control unit 116 makes the duty ratio of the PWM signal output to the DC/DC converter 118 when performing the first suction heating smaller than the duty ratio when performing the second suction heating.
  • the controller 116 can set the duty ratio when performing the first suction heating to 50% and the duty ratio when performing the second suction heating to 90%. Note that when performing the first suction heating, the control unit 116 fixes the duty ratio to 50% until the actual temperature reaches the first temperature, and after the actual temperature reaches the first temperature, the actual temperature and the target temperature, the duty ratio may be changed. Further, when performing the second suction heating, the control unit 116 fixes the duty ratio to 90% until the actual temperature reaches the first temperature, and after the actual temperature reaches the first temperature, the actual temperature and the target temperature, the duty ratio may be changed.
  • the first suction heating power By making the first suction heating power smaller than the second suction heating power, when the first suction heating is performed, a portion other than the heating unit 121 (for example, the notification unit 113 or the communication unit 113) is used more than when performing the second suction heating.
  • the power that can be supplied to the unit 115) can be increased. For example, during the preheating period, it is conceivable to give the highest priority to power supply to the heating portion 121 and lower the priority to power supply to other parts.
  • the priority of power supply to the heating unit 121 is set to the highest and the duty ratio of the preheating period in the second suction heating is set to 90%, it is impossible to supply power to other parts during the preheating period. Have difficulty.
  • the duty ratio of the preheating period in the first suction heating is, for example, 50%
  • the duty ratio of the preheating period in the first suction heating is, for example, 50%
  • the remaining 50% power supply to other parts Therefore, it becomes easier to supply power to other parts during the preheating period.
  • the duty ratio when performing the first suction heating is set to 50%, and the duty ratio when performing the second suction heating is set to 90%. Although illustrated, it is not particularly limited to these duty ratios.
  • the time from the start of suction heating until the first temperature is reached is the time when the second suction heating is started. It is desirable to set both duty ratios so as to be shorter than the time from when the temperature reaches the first temperature. As a result, it is possible to increase the power that can be supplied to parts other than the heating part 121 while shortening the time from receiving an aerosol generation request to reaching a state where a predetermined amount or more of aerosol can be generated.
  • FIG. 6 is a diagram schematically showing an example of the schematic configuration of the suction device 2 according to the second embodiment.
  • the suction device 2 according to the second embodiment differs from the suction device 1 according to the first embodiment in that it includes a heating unit 221 instead of the heating unit 121 and also includes a heat insulating unit 244 . Differences from the first embodiment will be described below.
  • the same reference numerals are used for the same items in the first embodiment and the second embodiment, and detailed descriptions thereof are omitted.
  • the heat insulating part 244 prevents heat transfer from the heating part 221 to other components of the suction device 2 .
  • the heat insulating part 244 is arranged so as to cover at least the outer periphery of the heating part 221 .
  • the heat insulating part 244 is made of a vacuum heat insulating material, an airgel heat insulating material, or the like.
  • a vacuum insulation material is, for example, a heat insulation material in which heat conduction due to gas is nearly zero by wrapping glass wool and silica (powder of silicon) in a resin film to create a high vacuum state. be.
  • control unit 116 heats the heating unit 221 in the same manner as described in the first embodiment, so that preheating is performed. It is possible to quickly create a state in which a predetermined amount or more of aerosol can be generated while suppressing the accompanying wasteful power consumption.
  • control unit 116 heats the heating unit 121 and the heating unit 221 in the same manner as described in the first embodiment. , while suppressing wasteful power consumption associated with preheating, it is possible to quickly create a state in which a predetermined amount or more of aerosol can be generated.
  • the heat insulating portion 444 has a heat insulating portion 444-1 and a heat insulating portion 444-2.
  • the heat insulating part 444-1 and the heat insulating part 444-2 prevent heat transfer from the heating part 421-1 and the heating part 421-2 to other components of the suction device 4.
  • FIG. Adiabatic portion 444 - 1 is located in first housing 445 .
  • the heat insulating portion 444-1 is arranged so as to cover at least the outer periphery of the heating portion 421-1.
  • a heat insulator 444 - 2 is located in the second housing 446 .
  • the heat insulating portion 444-2 is arranged so as to cover at least the outer periphery of the heating portion 421-2.
  • the heat insulating part 444-1 and the heat insulating part 444-2 are made of vacuum heat insulating material, airgel heat insulating material, or the like.
  • a vacuum insulation material is an insulation material in which, for example, glass wool and silica (powder of silicon) are wrapped in a resin film to create a high-vacuum state. be.
  • FIG. 9 is a diagram schematically showing an example of the schematic configuration of the suction device 5 according to the fifth embodiment.
  • the suction device 5 according to the fifth embodiment generates an aerosol by heating a substrate including an aerosol source by induction heating (IH (Induction Heating)).
  • IH Induction Heating

Landscapes

  • Thermotherapy And Cooling Therapy Devices (AREA)
  • Central Heating Systems (AREA)

Abstract

加熱されることでエアロゾルを生成するエアロゾル源を加熱する加熱部と、電力を蓄積する電源部と、電源部から加熱部への給電を制御する制御部と、を備え、制御部は、エアロゾルの生成要求が行われた場合に、エアロゾル源の温度をエアロゾル源が霧化する第1温度以上となるように第1加熱を行い、生成要求が行われる前に生成要求が行われると予想される事象を検知した場合には、エアロゾル源の温度を、第2温度以上であり、かつ、第1温度よりも低い温度となるように第1加熱の前に加熱する第2加熱を行う。

Description

吸引装置
 本発明は、吸引装置に関する。
 例えば、特許文献1に記載された装置は、例えばエアロゾル源が添加又は担持されている固形物であるエアロゾル基材を加熱することによりエアロゾルを生成する装置において、ユーザからの入力エアロゾル生成の要求を受けてから負荷の加熱を開始する。加熱を開始した後、エアロゾル基材から既定量以上のエアロゾルを生成不能な準備状態から、エアロゾル基材から既定量以上のエアロゾルを生成可能な使用状態に遷移する。ユーザは、準備状態ではエアロゾルを吸引することが許可されず、使用状態に遷移した後にエアロゾルを吸引することが許可される。
WO2019/186670
 エアロゾル生成の要求を受けてから、ユーザがエアロゾルを吸引可能となるまでの時間は短いことが望ましい。そえゆえ、エアロゾル生成の要求を受ける前に、加熱を開始することが考えられる。しかしながら、エアロゾルの生成要求を受ける前に加熱を開始した後に、生成要求が行われなかった場合には、加熱を行った分の電力消費が無駄となってしまう。
 本発明は、加熱に伴う無駄な電力消費を抑制しつつ、早期に既定量以上のエアロゾルを生成可能な状態にすることができる吸引装置を提供することを目的とする。
 かかる目的のもと完成させた本発明の第1の特徴は、加熱されることでエアロゾルを生成するエアロゾル源を加熱する加熱部と、電力を蓄積する電源部と、前記電源部から前記加熱部への給電を制御する制御部と、を備え、前記制御部は、前記エアロゾルの生成要求が行われた場合に、前記エアロゾル源の温度を当該エアロゾル源が霧化する第1温度以上となるように第1加熱を行い、当該生成要求が行われる前に当該生成要求が行われると予想される事象を検知した場合には、当該エアロゾル源の温度を、第2温度以上であり、かつ、当該第1温度よりも低い温度となるように当該第1加熱の前に加熱する第2加熱を行う吸引装置である。
 第2の特徴は、前記制御部は、前記第2加熱を開始した後、予め定められた終了条件が成立した場合に、当該第2加熱を停止することであっても良い。
 第3の特徴は、前記制御部は、前記第2加熱中に前記第1加熱に移行した場合の当該第1加熱における電力を、当該第2加熱を行うことなしに当該第1加熱に移行した場合の当該第1加熱における電力よりも小さくすることであっても良い。
 第4の特徴は、ユーザが操作可能な操作部を備え、前記生成要求は、前記操作部に対して予め定められた第1操作が行われたことであり、前記事象は、前記操作部に対して前記第1操作とは異なるように定められた第2操作が行われたことであっても良い。
 第5の特徴は、ジャイロセンサを備え、前記事象は、前記ジャイロセンサの出力値が、前記電源部と前記加熱部との高度が同じである状態を示す値から、当該電源部の高度よりも当該加熱部の高度の方が大きい状態を示す値に変わったことであっても良い。
 第6の特徴は、ユーザの手が吸引装置を触っていることを検知する触覚センサを備え、前記事象は、前記触覚センサの出力値が、ユーザの手が吸引装置を触っていることを示したことであっても良い。
 第7の特徴は、加速度センサを備え、
 前記事象は、前記加速度センサの出力値が予め定められた閾値以上になったことを示したことであっても良い。
 第1の特徴によれば、加熱に伴う無駄な電力消費を抑制しつつ、早期に既定量以上のエアロゾルを生成可能な状態にすることができる。
 第2の特徴によれば、仮に第2加熱を行った後に生成要求が行われなかったとしても、無駄となる電力消費を抑制することができる。
 第3の特徴によれば、加熱部への給電の優先度を最も高くしても、加熱部とは異なる他の部位に給電し易くすることができる。
 第4の特徴によれば、ユーザの操作に基づいて第2加熱を行うので、より確度高く第2加熱に用いる電力が無駄になることを抑制することができる。
 第5の特徴によれば、生成要求が行われる可能性が高まったことをより確度高く検知することができる。
 第6の特徴によれば、生成要求が行われる可能性が高まったことをより確度高く検知することができる。
 第7の特徴によれば、生成要求が行われる可能性が高まったことをより確度高く検知することができる。
第1実施形態に係る吸引装置の概略構成の一例を模式的に示す図である。 制御部が行う加熱処理の手順の一例を示すフローチャートである。 (a)は、第1吸引加熱を行う場合のタイミングチャートであり、(b)は、第2吸引加熱を行う場合のタイミングチャートである。 変形例に係るセンサ部及び制御部の概略構成の一例を示す図である。 第1吸引加熱電力、第2吸引加熱電力の関係を示す図である。 第2実施形態に係る吸引装置の概略構成の一例を模式的に示す図である。 第3実施形態に係る吸引装置の概略構成の一例を模式的に示す図である。 第4実施形態に係る吸引装置の概略構成の一例を模式的に示す図である。 第5実施形態に係る吸引装置の概略構成の一例を模式的に示す図である。 第6実施形態に係る吸引装置の概略構成の一例を模式的に示す図である。
 以下、添付図面を参照して、本発明に係る実施の形態について詳細に説明する。
<第1実施形態>
 図1は、第1実施形態に係る吸引装置1の概略構成の一例を模式的に示す図である。
 第1実施形態に係る吸引装置1は、ユーザにより吸引される物質を生成する装置である。以下では、吸引装置1により生成される物質が、エアロゾルであるものとして説明する。他に、吸引装置1により生成される物質は、気体であってもよい。
 吸引装置1は、エアロゾル源を含む基材を基材内部から加熱することでエアロゾルを生成する。
 吸引装置1は、電源ユニット110と、加熱部121と、保持部140とを有する。また、吸引装置1は、電源ユニット110、加熱部121等を収容するハウジング10を有する。吸引装置1においては、保持部140に、スティック型の部材であるスティック型基材150が保持された状態で、ユーザによる吸引が行われる。
 図1に示すように、電源ユニット110は、電源部111と、センサ部112と、通知部113と、記憶部114と、通信部115と、制御部116と、ユーザが操作可能な操作部117と、DC/DCコンバータ118とを有する。以下、各構成要素について順に説明する。
 電源部111は、電力を蓄積する。そして、電源部111は、吸引装置1の各構成要素に、電力を供給する。電源部111は、例えば、リチウムイオン二次電池等の充電式バッテリにより構成され得る。電源部111は、USB(Universal Serial Bus)ケーブル等により外部電源に接続されることで、充電されてもよい。また、電源部111は、ワイヤレス電力伝送技術により送電側のデバイスに非接続な状態で充電されてもよい。他にも、電源部111のみを吸引装置1から取り外すことができてもよく、新しい電源部111と交換することができてもよい。
 センサ部112は、吸引装置1に関する各種情報を検出する。一例として、センサ部112は、加熱部121の温度を検出する温度センサ112tを有する。そして、センサ部112は、検出した情報を制御部116に出力する。例えば、センサ部112は、温度センサ112tが加熱部121の温度を検出した場合に、温度に関する情報を制御部116に出力する。
 通知部113は、情報をユーザに通知する。一例として、通知部113は、LED(Light Emitting Diode)などの発光装置により構成される。その場合、通知部113は、電源部111の状態が要充電である場合、電源部111が充電中である場合、及び吸引装置1に異常が発生した場合等に、それぞれ異なる発光パターンで発光する。ここでの発光パターンとは、色、及び点灯/消灯のタイミング等を含む概念である。通知部113は、発光装置とともに、又は代えて、画像を表示する表示装置、音を出力する音出力装置、及び振動する振動装置等により構成されてもよい。
 記憶部114は、吸引装置1の動作のための各種情報を記憶する。記憶部114は、例えば、フラッシュメモリ等の不揮発性の記憶媒体により構成される。記憶部114に記憶される情報の一例は、制御部116による各種構成要素の制御内容等の、吸引装置1のOS(Operating System)に関する情報である。記憶部114に記憶される情報の他の一例は、吸引回数、吸引時刻、吸引時間累計等の、ユーザによる吸引に関する情報である。
 通信部115は、吸引装置1と他の装置との間で情報を送受信するための、通信インタフェースである。通信部115は、有線又は無線の任意の通信規格に準拠した通信を行う。かかる通信規格としては、例えば、無線LAN(Local Area Network)、有線LAN、Wi-Fi(登録商標)、又はBluetooth(登録商標)等が採用され得る。一例として、通信部115は、ユーザによる吸引に関する情報をスマートフォンに表示させるために、ユーザによる吸引に関する情報をスマートフォンに送信する。他の一例として、通信部115は、記憶部114に記憶されているOSの情報を更新するために、サーバから新たなOSの情報を受信する。
 制御部116は、演算処理装置及び制御装置として機能し、各種プログラムに従って吸引装置1内の動作全般を制御する。制御部116は、例えばCPU(Central Processing Unit)、及びマイクロプロセッサ等の電子回路によって実現される。他に、制御部116は、使用するプログラム及び演算パラメータ等を記憶するROM(Read Only Memory)、並びに適宜変化するパラメータ等を一時記憶するRAM(Random Access Memory)を含んでいてもよい。吸引装置1は、制御部116による制御に基づいて、各種処理を実行する。電源部111から他の各構成要素への給電、電源部111の充電、センサ部112による情報の検出、通知部113による情報の通知、記憶部114による情報の記憶及び読み出し、並びに通信部115による情報の送受信は、制御部116により制御される処理の一例である。各構成要素への情報の入力、及び各構成要素から出力された情報に基づく処理等、吸引装置1により実行されるその他の処理も、制御部116により制御される。
 操作部117は、ボタン式のスイッチ又はタッチパネル等から構成される。操作部117は、ハウジング10の表面から露出した状態で設けられている。操作部117は、ユーザにより操作された情報を制御部116に出力する。例えば、電源ユニット110が電源OFFの状態において、操作部117に対して所定の起動操作が行われると、操作部117が電源ユニット110の起動指令を制御部116に出力する。制御部116は、この起動指令を取得すると、電源ユニット110を起動させる。操作部117による所定の起動操作は、操作部117が連続で素早く3回押されることであることを例示することができる。
 DC/DCコンバータ118は、加熱部121と電源部111との間に接続される。制御部116は、DC/DCコンバータ118と電源部111との間に接続される。
 DC/DCコンバータ118は、入力電圧を昇圧可能な昇圧回路であり、入力電圧を昇圧した電圧又は入力電圧を加熱部121に供給可能に構成されている。DC/DCコンバータ118によれば加熱部121に供給される電力を調整できる。DC/DCコンバータ118としては、例えば、出力電圧を監視しながらスイッチング素子のオン/オフ時間を制御することで、入力電圧を希望する出力電圧に変換するスイッチングレギュレータを用いることができる。DC/DCコンバータ118としてスイッチングレギュレータを用いる場合には、スイッチング素子を制御することで、入力電圧を昇圧せずに、そのまま出力させることもできる。
 温度センサ112tは、電圧センサと電流センサとを有している。電圧センサは、加熱部121に印加される電圧値を測定して出力する。電流センサは、加熱部121を貫流する電流値を測定して出力する。電圧センサの出力と、電流センサの出力は、それぞれ、制御部116に入力される。制御部116は、電圧センサの出力と電流センサの出力に基づいて加熱部121の抵抗値を取得し、この抵抗値に応じた加熱部121の温度を取得する。加熱部121の温度は、加熱部121によって加熱されるエアロゾル源の温度とほぼ同じとみなすことができる。
 なお、加熱部121の抵抗値を取得する際に、加熱部121に定電流を流す構成とすれば、温度センサ112tは電流センサを有していなくても良い。同様に、加熱部121の抵抗値を取得する際に、加熱部121に定電圧を印加する構成とすれば、温度センサ112tは電圧センサを有していなくても良い。
 また、温度センサ112tは、加熱部121の近傍に配置される、例えばサーミスタであっても良い。
 保持部140は、内部空間141を有し、内部空間141にスティック型基材150の一部を収容しながらスティック型基材150を保持する。保持部140は、内部空間141を外部に連通する開口142を有し、開口142から内部空間141に挿入されたスティック型基材150を保持する。例えば、保持部140は、開口142及び底部143を底面とする筒状体であり、柱状の内部空間141を画定する。保持部140は、筒状体の高さ方向の少なくとも一部において、内径がスティック型基材150の外径よりも小さくなるように構成され、内部空間141に挿入されたスティック型基材150を外周から圧迫するようにしてスティック型基材150を保持し得る。保持部140は、スティック型基材150を通る空気の流路を画定する機能も有する。かかる流路内への空気の入り口である空気流入孔は、例えば底部143に配置される。他方、かかる流路からの空気の出口である空気流出孔は、開口142である。
 スティック型基材150は、基材部151と、吸口部152とを有する。
 基材部151は、エアロゾル源を含む。エアロゾル源は、加熱されることで霧化され、エアロゾルが生成される。エアロゾル源は、例えば、刻みたばこ又はたばこ原料を、粒状、シート状、又は粉末状に成形した加工物などの、たばこ由来のものであってもよい。また、エアロゾル源は、たばこ以外の植物(例えばミント及びハーブ等)から作られた、非たばこ由来のものを含んでいてもよい。一例として、エアロゾル源は、メントール等の香料成分を含んでいてもよい。吸引装置1が医療用吸入器である場合、エアロゾル源は、患者が吸入するための薬剤を含んでもよい。なお、エアロゾル源は固体に限られるものではなく、例えば、グリセリン及びプロピレングリコール等の多価アルコール、並びに水等の液体であってもよい。基材部151の少なくとも一部は、スティック型基材150が保持部140に保持された状態において、保持部140の内部空間141に収容される。
 吸口部152は、吸引の際にユーザに咥えられる部位である。吸口部152の少なくとも一部は、スティック型基材150が保持部140に保持された状態において、開口142から突出する。そして、開口142から突出した吸口部152をユーザが咥えて吸引すると、図示しない空気流入孔から保持部140の内部に空気が流入する。流入した空気は、保持部140の内部空間141を通過して、すなわち、基材部151を通過して、基材部151から発生するエアロゾルと共に、ユーザの口内に到達する。
 加熱部121は、エアロゾル源を加熱することで、エアロゾル源を霧化してエアロゾルを生成する。加熱部121は、金属又はポリイミド等の任意の素材で構成される。例えば、加熱部121は、ブレード状に構成され、保持部140の底部143から保持部140の内部空間141に突出するようにして配置される。そのため、保持部140にスティック型基材150が挿入されると、ブレード状の加熱部121は、スティック型基材150の基材部151に突き刺さるようにして、スティック型基材150の内部に挿入される。そして、加熱部121が発熱すると、スティック型基材150に含まれるエアロゾル源がスティック型基材150の内部から加熱されて霧化され、エアロゾルが生成される。加熱部121は、電源部111から給電されると発熱する。
(制御部116による加熱部121の加熱制御)
 制御部116は、吸引装置1の電源がONにされると起動する。例えば、操作部117が連続で素早く3回押された場合に、吸引装置1の電源がONとなり、制御部116が起動する。そして、制御部116は、エアロゾル生成の要求(以下、「生成要求」と称する場合がある。)があった場合に、基材部151に含まれるエアロゾル源の温度を、当該エアロゾル源が霧化する第1温度以上にするべく加熱部121への給電を行う。生成要求は、操作部117が所定期間(例えば2秒)以上継続して押されることであることを例示することができる。なお、生成要求を行う対象は、吸引装置1の電源をONにするために所定の起動操作を行う対象である操作部117とは異なる操作部であっても良い。第1温度は、230度であることを例示することができる。なお、吸引装置1は、吸引装置1とは別体に設けられた装置(例えば吸引装置1に充電を行う装置)との接続が解除されたときに電源がONとなっても良い。
 加熱部121の温度を第1温度以上にするべく加熱を開始してから、スティック型基材150が既定量以上のエアロゾルを生成可能な状態に至るまでの期間を「予熱期間」と称し、スティック型基材150が既定量以上のエアロゾルを生成可能な状態に至った後の期間を「吸引可能期間」と称する場合がある。予熱期間は、加熱部121の温度が、第1温度となったときに終了する。あるいは、予熱期間は、加熱部121の温度が第1温度となった後、予め定められた時間(例えば10秒)が経過したときに終了するようにしても良い。また、予熱期間は、加熱部121の温度を第1温度以上にするべく加熱を開始してから、予め定められた時間(例えば30秒)が経過したときに終了するようにしても良い。制御部116は、予熱期間が終了して吸引可能期間となったときに、通知部113を介して、吸引可能期間となった旨をユーザに通知する。吸引可能期間においては、加熱部121の温度が、予め定められた温度範囲(例えば230度~295度)内に維持される。
 このように、制御部116は、例えば、ユーザにより生成要求が行われた場合に、基材部151に含まれるエアロゾル源の温度を、当該エアロゾル源が霧化する第1温度以上にするべく加熱部121へ給電して加熱部121を加熱する。以下、エアロゾル源の温度を第1温度以上とするべく加熱部121へ給電して加熱部121を加熱することを「吸引加熱」と称する場合がある。制御部116は、吸引加熱を、生成要求が行われたことを契機として開始する。
 吸引可能期間は、吸引加熱を終了するために予め定められた条件(以下、「吸引加熱終了条件」と称する場合がある。)が成立した場合には、吸引加熱を停止する。吸引加熱終了条件は、吸引可能期間が始まった後、予め定められた時間(例えば6分)が経過したことであることを例示することができる。あるいは、吸引可能期間が始まった後、予め定められた回数(例えば14回)の吸引動作が行われたことであることを例示することができる。吸引動作は、ユーザがスティック型基材150の吸口部152を咥えて吸引をする動作である。
 加熱部121を加熱するにあたっては、制御部116は、予め記憶部114に記憶された加熱プロファイルに規定された目標温度の時系列推移を実現するように、DC/DCコンバータ118を介して、加熱部121に供給する電力を制御する。例えば、制御部116は、加熱プロファイルにおいて規定された目標温度と加熱部121の実際の温度(以下「実温度」と称する場合がある。)との偏差に基づき、加熱部121に供給する電力を制御する。この加熱部121の温度制御は、例えば公知のフィードバック制御によって実現することができる。
 一方、制御部116は、生成要求が行われる前に当該生成要求が行われると予想される事象を検知した場合には、エアロゾル源の温度を、高い第2温度以上であり、かつ、第1温度よりも低い温度とするべく加熱部121への給電を行う。生成要求が行われると予想される事象を検知した場合とは、例えば、操作部117に対して予め定められた所定の操作(例えば1回の押下)が行われたことを検知したことを例示することができる。なお、所定の操作を行う対象は、電源ユニット110をONにするために所定の起動操作を行う対象である操作部117とは異なる操作部であっても良い。また、所定の操作を行う対象は、生成要求を行う対象である操作部117とは異なる操作部であっても良い。第2温度は、例えば40度であることを例示することができる。
 このように、制御部116は、生成要求が行われる前に当該生成要求が行われると予想される事象を検知した場合に、エアロゾル源の温度を、第2温度以上であり、かつ、第1温度よりも低い温度とするべく加熱部121へ給電して加熱部121を加熱する。以下、エアロゾル源の温度を、第2温度以上であり、かつ、第1温度よりも低い温度とするべく加熱部121へ給電して加熱部121を加熱することを「予備加熱」と称する場合がある。制御部116は、予備加熱を、生成要求が行われると予想される事象を検知したことを契機として開始する。生成要求が行われると予想される事象を、「予備事象」と称する場合がある。
 予備加熱を行う際、制御部116は、例えば、加熱部121に供給する電力値が、予備加熱を行う際の電力値として予め定められた電力値となるように制御する。予め定められた電力値は、予め実験を行う等して求め、記憶部114またはROMに記憶された値であることを例示することができる。また、予め定められた電力値は、予備加熱の際の加熱部121の温度が後述する予備加熱目標温度となるように定められていることを例示することができる。
 制御部116は、予備加熱の際の加熱部121の目標温度を、第2温度以上でありかつエアロゾル源が霧化する温度よりも低い温度に設定し、予備加熱の際の加熱部121の温度がこの目標温度となるように給電を制御しても良い。以下、予備加熱の際の加熱部121の目標温度を「予備加熱目標温度」と称する場合がある。予備加熱目標温度は、100度であることを例示することができる。
 予備加熱を行う際、制御部116は、例えば、温度センサ112tが検出した加熱部121の温度が予備加熱目標温度となるように、DC/DCコンバータ118を介して、加熱部121に供給する電力を制御しても良い。例えば、制御部116は、記憶部114に記憶された予備加熱目標温度と、温度センサ112tが検出した加熱部121の実際の温度(実温度)との偏差に基づき、加熱部121に供給する電力を制御しても良い。この加熱部121の温度制御は、例えば公知のフィードバック制御によって実現することができる。なお、制御部116は、実温度が予備加熱目標温度を超えないように、予備加熱目標温度よりも小さい値(例えば95度)に設定された温度と実温度との偏差に基づき、加熱部121に供給する電力を制御しても良い。
 また、予備加熱目標温度は吸引加熱の際の目標温度よりも低いことから、制御部116は、予備加熱を行う際の電力を、吸引加熱を行う際の電力よりも小さくする。例えば、制御部116は、DC/DCコンバータ118へ出力するPWM信号の、吸引加熱を行う際のデューティ比よりも予備加熱を行う際のデューティ比を小さくする。例えば、吸引加熱を行う際のデューティ比を90%、予備加熱を行う際のデューティ比を30%にすることを例示することができる。
 なお、制御部116は、予備加熱を行う際、実温度が予備加熱目標温度に到達するまではデューティ比を30%に固定し、実温度が予備加熱目標温度に到達した後は、実温度と予備加熱目標温度との偏差に基づいてデューティ比を変更しても良い。
 制御部116は、予備加熱を行っているときに生成要求が行われた場合には、吸引加熱を行う。
 それゆえ、吸引装置1においては、上述したように制御部116が加熱部121への給電を制御することで吸引加熱に移行する過程として、予備加熱を行った後に吸引加熱に移行する場合と、予備加熱を行うことなく吸引加熱に移行する場合とがある。以下の説明において、予備加熱を行った後に吸引加熱に移行した場合の吸引加熱を、「第1吸引加熱」、予備加熱を行うことなく吸引加熱に移行した場合の吸引加熱を、「第2吸引加熱」と称する場合がある。
 一方、制御部116は、予備加熱を行っているときに、生成要求が行われることなく、予備加熱を終了するために予め定められた条件(以下、「予備加熱終了条件」と称する場合がある。)が成立した場合には、予備加熱を停止する。予備加熱に伴う無駄な電力消費を抑制するためである。予備加熱終了条件は、予備加熱を開始した後、予め定められた時間(例えば60秒)が経過したことであることを例示することができる。
 以上のように構成された吸引装置1においては、吸引加熱を行う前に予備加熱を行う第1吸引加熱の場合の方が、予備加熱を行わない第2吸引加熱の場合よりも、早期に第1温度に到達し易い。それゆえ、吸引装置1においては、第1吸引加熱を行う場合の方が、第2吸引加熱を行う場合よりも、早期に吸引可能期間に到達し易い。
 図2は、制御部116が行う加熱処理の手順の一例を示すフローチャートである。
 制御部116は、この処理を、例えば予め定めた制御周期にて(例えば1ミリ秒毎に)繰り返し実行する。
 制御部116は、予備事象を検知したか否かを判定する(S201)。予備事象を検知した場合(S201でYES)、制御部116は、予備加熱を行う(S202)。その後、制御部116は、生成要求が行われたか否かを判定する(S203)。生成要求が行われた場合(S203でYES)、制御部116は、第1吸引加熱を行う(S204)。その後、吸引加熱終了条件が成立したか否かを判定する(S205)。吸引加熱終了条件が成立していないと判定した場合(S205でNO)、制御部116は、S204以降の処理を行う。吸引加熱終了条件が成立した場合(S205でYES)、制御部116は、電源部111から加熱部121への給電を停止させて加熱を停止させる(S206)。
 他方、S203にて、生成要求が行われていないと判定した場合(S203でNO)、制御部116は、予備加熱終了条件が成立したか否かを判定する(S207)。予備加熱終了条件が成立していない場合(S207でNO)、制御部116は、S202以降の処理を行う。他方、予備加熱終了条件が成立した場合(S207でYES)、制御部116は、電源部111から加熱部121への給電を停止させて加熱を停止させる(S206)。
 一方、S201にて、予備事象を検知していないと判定した場合(S201でNO)、制御部116は、生成要求が行われたか否かを判定する(S208)。生成要求が行われていない場合(S208でNO)、制御部116は、本処理を終了する。他方、生成要求が行われた場合(S208でYES)、制御部116は、第2吸引加熱を行う(S209)。その後、吸引加熱終了条件が成立したか否かを判定する(S210)。吸引加熱終了条件が成立していないと判定した場合(S210でNO)、制御部116は、S209以降の処理を行う。吸引加熱終了条件が成立した場合(S210でYES)、制御部116は、電源部111から加熱部121への給電を停止させて加熱を停止させる(S206)。
 図3(a)は、第1吸引加熱を行う場合のタイミングチャートであり、図3(b)は、第2吸引加熱を行う場合のタイミングチャートである。
 図3(a)は、時刻t1において吸引装置1の電源をONにするための操作(例えば操作部117が連続で素早く3回押される操作(第1操作の一例))が行われ、その後の時刻t2において予備事象を検知(例えば操作部117が1回押されたこと(第2操作の一例)を検知)し、その後の時刻t3において生成要求(操作部117が所定期間(例えば2秒)以上継続して押されること)が行われた場合の加熱部121の温度の変化を示している。
 図3(b)は、時刻t1において吸引装置1の電源をONにするための操作が行われ、その後の時刻t3において生成要求が行われた場合の加熱部121の温度の変化を示している。
 図3(a)に示した、第1吸引加熱においては、吸引加熱を行う前に予備加熱を行うため、図3(b)に示した、第2吸引加熱の場合よりも早期に第1温度に到達し易い。それゆえ、第1吸引加熱の場合においては、第2吸引加熱の場合よりも早期に吸引可能期間に到達し易い。
 以上説明したように、吸引装置1は、加熱されることでエアロゾルを生成するエアロゾル源を加熱する加熱部121と、電力を蓄積する電源部111と、電源部111から加熱部121への給電を制御する制御部116と、を備える。そして、制御部116は、エアロゾルの生成要求が行われた場合に、エアロゾル源の温度を当該エアロゾル源が霧化する第1温度以上となるように第1加熱の一例としての吸引加熱を行う。また、制御部116は、当該生成要求が行われる前に当該生成要求が行われると予想される事象を検知した場合には、エアロゾル源の温度を、第2温度以上であり、かつ、第1温度よりも低い温度となるように吸引加熱の前に加熱する第2加熱の一例としての予備加熱を行う。
 このように構成された吸引装置1によれば、予備加熱を行った後に吸引加熱を行うことで、予備加熱を行うことなく吸引加熱を行う場合よりも、早期に、既定量以上のエアロゾルを生成可能な状態に至る。
 なお、第2温度は、40度であることを例示したが、特に40度に限定されない。予備加熱は、吸引加熱を行う前に予めエアロゾル源の温度を高めておくことが目的であるため、第2温度は、吸引装置1が使用される場所の温度よりも高ければ良い。例えば、吸引装置1が使用される地域が日本である場合には、第2温度は、日本の気温よりも高ければ良い。気温は季節に応じて変わることから、季節に応じて第2温度を変更しても良い。また、予備加熱目標温度は、100度であることを例示したが、特に100度に限定されない。予備加熱目標温度を、第2温度+60度と設定する等して、第2温度の変化と同様に変化させても良い。同様に、予備加熱を行う際に加熱部121に供給する電力値を予め定められた電力値とする場合には、予め定められた電力値を、第2温度の変化と同様に変化させても良い。すなわち、この予め定められた電力値や予備加熱目標温度を、吸引装置1が使用される地域や季節に応じて変化させても良い。
 そして、吸引装置1においては、生成要求が行われる前に生成要求が行われると予想される事象を検知した場合に予備加熱を行うので、例えば、吸引装置1の電源がONにされたときに予備加熱を開始する場合と比べて、予備加熱に伴う無駄な電力消費を抑制することができる。すなわち、例えば、吸引装置1の電源がONにされたとしても、必ずしもユーザにより直ちに生成要求が行われるとは限らない。もし、吸引装置1の電源がONにされたときに予備加熱を開始した後に、ユーザにより生成要求が行われなかった場合には、予備加熱を行うのに要した電力が無駄となってしまう。これに対して、吸引装置1によれば、吸引装置1の電源がONにされた後に、生成要求が行われると予想される事象を検知した場合、例えば、操作部117に対して所定の操作(例えば1回の押下)が行われた場合に、予備加熱を開始する。そして、生成要求が行われると予想される事象が、他の事項(例えば吸引装置1の電源がONにされたこと)よりも、ユーザによる生成要求に確度高くつながる場合には、予備加熱を行った後に確度高く吸引加熱を行うことになるので、予備加熱を行うのに要した電力が無駄となり難い。
(生成要求が行われると予想される事象の検知の変形例)
 以下に、生成要求が行われると予想される事象(予備事象)の検知の変形例について説明する。
 ここで、エアロゾルの生成要求が行われる前に予備加熱を行うことで、早期に既定量以上のエアロゾルを生成可能な状態とすることができるが、予備加熱を行った後に、生成要求が行われなければ予備加熱のための電力が無駄となってしまう。また、予備加熱を開始した後、予備加熱目標温度に達するまでの時間を、「最小加熱時間」と称すると、予備加熱を行った後に生成要求が行われる最小加熱時間前に予備加熱を開始すれば、予備加熱目標温度に達した後に予備加熱目標温度に維持するための電力消費を抑制することができる。最小加熱時間は、加熱部121の仕様や予備加熱目標温度にも依るが、10秒以下であることを例示することができる。最小加熱時間が5秒である場合、生成要求の5秒前に予備加熱を開始すれば、生成要求が行われるときには十分に予備加熱目標温度にすることができる。
 以上のことより、生成要求が確度高く行われる最小加熱時間前に予備加熱を開始することが望ましい。
 予備事象としては、上述した操作部117に対する所定の操作(例えば1回の押下)以外にも以下のことが考えられる。すなわち、吸引装置1が、操作部117を視認可能な位置へ移動させられたことである。ユーザは、エアロゾル生成の要求(例えば所定期間(例えば2秒)以上の操作部117の押下)を行う前に吸引装置1を、操作部117を操作可能な位置へ移動させるからである。
 図4は、変形例に係るセンサ部112及び制御部116の概略構成の一例を示す図である。
 以上の事項に鑑み、制御部116は、以下のようにして予備事象を検知することを例示することができる。
 ユーザが生成要求を行う前に、例えば机やテーブルの上に置いてある吸引装置1を手に取って持ち上げることが考えられる。そこで、センサ部112がジャイロセンサ112jを有し、制御部116は、ジャイロセンサ112jの出力値が吸引装置1の向きが横から縦に変えられたことを示した場合に、予備事象を検知することを例示することができる。ジャイロセンサ112jは、ハウジング10内に設けられていることを例示することができる。なお、吸引装置1は、机やテーブルの上に置かれている場合には、電源部111と加熱部121との高度が同じである状態の横向きとなる。他方、ユーザが生成要求を行うときには、加熱部121が電源ユニット110よりも上方に位置する状態、言い換えれば、電源部111の高度よりも加熱部121の高度の方が大きい状態である縦向きとなる。それゆえ、制御部116は、ジャイロセンサ112jの出力値が、電源部111と加熱部121との高度が同じである状態を示す値から、電源部111の高度よりも加熱部121の高度の方が大きい状態を示す値に変わった場合に、予備事象を検知することを例示することができる。なお、電源部111と加熱部121との高度が同じである状態とは、電源部111と加熱部121との高度が全く同じである場合に限定されず、例えば電源部111と加熱部121との高度差が1cm以下である場合であっても良い。電源部111と加熱部121との高度差が1cm以下である場合には、吸引装置1が横向きであるとみなすことができるからである。
 また、ユーザが生成要求を行う前には手で吸引装置1を触ることから、センサ部112が触覚センサ112sを有し、制御部116は、触覚センサ112sの出力値が、手が吸引装置1を触っていることを示した場合に、予備事象を検知しても良い。なお、触覚センサ112sは、例えば電源ユニット110を収容するハウジング10の表面から露出した状態でハウジング10に装着されていることを例示することができる。
 また、ユーザが生成要求を行う前に、例えば腰付近から操作部117を操作可能な位置へ吸引装置1を移動させることが考えられる。そこで、センサ部112が加速度センサ112aを有し、制御部116は、加速度センサ112aの出力値が予め定められた閾値以上になった場合に、予備事象を検知しても良い。なお、吸引装置1が下から上へ移動させられた場合には下方向の慣性力が働き、加速度センサ112aは正の加速度を示し、吸引装置1が上から下へ移動させられた場合には上方向の慣性力が働き、加速度センサ112aは負の加速度を示す。それゆえ、加速度センサ112aの出力値が予め定められた閾値以上になった場合には、ユーザが吸引動作を行うために吸引装置1を腰付近から口元へと移動させたと考えることができる。
 また、腰付近から口元へ吸引装置1が移動させられた場合には、吸引装置1の高度が、腰付近と口元との間の高さの分、変化することが考えられる。そこで、センサ部112が高度センサ112hを有し、制御部116は、高度センサ112hの出力値の変化量が、予め定められた閾値以上になった場合に、予備事象を検知しても良い。なお、センサ部112がユーザによる吸引に伴う数値を検出するためにマイクロホンコンデンサ等の圧力センサ(不図示)を有する場合には、制御部116は、高度センサ112hの出力値を用いる代わりに、圧力センサの出力値の変化量が予め定められた閾値以上になった場合に、吸引装置1が腰付近から口元へと移動させられたと推定して、予備事象を検知しても良い。
 なお、吸引装置1は、上述した、ジャイロセンサ112j、触覚センサ112s、加速度センサ112a、及び、高度センサ112hの少なくとも2以上を有し、制御部116は、2以上のセンサ等からの出力値に基づいて予備事象を検知しても良い。例えば、制御部116は、吸引装置1の向きが縦向きであることをジャイロセンサ112jの出力値が示し、かつ、吸引装置1が下から上へ移動したことを加速度センサ112aの出力値が示した場合に予備事象を検知しても良い。これにより、より精度高く予備事象を検知することが可能となる。
 また、吸引装置1は、上述した、ジャイロセンサ112j、触覚センサ112s、加速度センサ112a、及び、高度センサ112hの少なくとも3以上を有し、制御部116は、これら3つのセンサ等からの出力値に基づいて予備事象を検知しても良い。例えば、制御部116は、吸引装置1の向きが縦向きであることをジャイロセンサ112jの出力値が示し、かつ、手が吸引装置1を触っていることを触覚センサ112sの出力値が示し、かつ、吸引装置1が下から上へ移動したことを加速度センサ112aの出力値が示した場合に予備事象を検知しても良い。
(予備加熱終了について)
 以上説明したように、吸引装置1においては、制御部116は、予備加熱を行った後、予備加熱終了条件が成立した場合に、予備加熱を停止する。例えば、制御部116は、予備加熱を開始した後、予め定められた時間(例えば60秒)が経過した場合に予備加熱を停止する。それゆえ、予備加熱を開始した後にユーザによりエアロゾルの生成要求が行われるまで予備加熱を継続する構成と比較すると、生成要求が行われなかった場合に、予備加熱を行う期間を短くすることができるので、予備加熱のための電力消費を抑制することができる。
 なお、予備加熱終了条件は、上述した、予備加熱を開始した後、予め定められた時間(例えば60秒)が経過したこと以外にも以下の条件であっても良い。
 制御部116は、ジャイロセンサ112jの出力値が吸引装置1の向きが縦から横に変えられたことを示したことを、予備加熱終了条件とすることを例示することができる。言い換えれば、制御部116は、ジャイロセンサ112jの出力値が、電源部111の高度よりも加熱部121の高度の方が大きい状態を示す値から、電源部111と加熱部121との高度が同じである状態を示す値に変わったことを、予備加熱終了条件とすることを例示することができる。吸引装置1が、例えば机やテーブルに置かれた場合には、ユーザにより生成要求が行われ難いと考えられるからである。
 また、制御部116は、触覚センサ112sの出力値が、手が吸引装置1を触っていることを示さなくなったことを、予備加熱終了条件としても良い。ユーザが吸引装置1から手を離した場合には、ユーザにより生成要求が行われ難いと考えられるからである。
 また、制御部116は、吸引装置1が上から下へ移動させられた場合に負の加速度となる加速度センサの出力値が予め定められた負の閾値以下になったことを、予備加熱終了条件としても良い。ユーザが、例えば操作部117を視認可能な位置から腰付近へ吸引装置1を移動させた場合には、ユーザにより生成要求が行われ難いと考えられるからである。
 また、制御部116は、吸引装置1が上から下へ移動させられた場合に高度の変化量が負の値になることに鑑み、高度センサ112hの出力値の変化量が、予め定められた負の閾値以下になったことを、予備加熱終了条件としても良い。ユーザが、例えば口元から腰付近へ吸引装置1を移動させた場合には、ユーザにより生成要求が行われ難いと考えられるからである。なお、制御部116は、高度センサ112hの出力値を用いる代わりに、圧力センサの出力値の変化量が予め定められた負の閾値以下になった場合に、吸引装置1が口元から腰付近へと移動させられたと推定して、予備加熱終了条件が成立したとしても良い。
 なお、吸引装置1は、上述した、ジャイロセンサ112j、触覚センサ112s、加速度センサ112a、及び、高度センサ112hの少なくとも2以上を有し、制御部116は、2以上のセンサからの出力値に基づいて予備加熱終了条件が成立したか否かを判定しても良い。
 例えば、制御部116は、吸引装置1が上から下へ移動したことを加速度センサ112aの出力値が示し、かつ、吸引装置1の向きが横向きであることをジャイロセンサ112jの出力値が示した場合に予備加熱終了条件が成立したと判定しても良い。これにより、より精度高く最小加熱時間以内に吸引動作が行われないと判定することが可能となる。
 予備加熱終了条件を上述した条件とすることで、制御部116は、ユーザにより生成要求が行われる可能性が低いことを早期に確度高く判定して予備加熱を停止することができるので、予備加熱に伴う無駄な電力消費を抑制することができる。
 なお、上述した実施形態において、制御部116は、生成要求が行われると予想される事象(予備事象)を検知した場合に予備加熱を開始しているが特にかかる態様に限定されない。制御部116は、予備事象を検知することなく、予備加熱を開始しても良い。例えば、制御部116は、吸引装置1の電源がONにされて起動したら直ちに予備加熱を開始しても良い。すなわち、例えば、操作部117が連続で素早く3回押された場合に、吸引装置1の電源がONとなり、制御部116が起動し、直ちに予備加熱を開始しても良い。予備加熱を行うことで、生成要求を受けてから既定量以上のエアロゾルを生成可能な状態に至るまでの時間を短くすることができる。そして、上述した予備加熱終了条件が成立したときに予備加熱を停止とすることで、予備加熱に伴う無駄な電力消費を抑制することができる。
(吸引加熱を行う際に供給する電力の変形例)
 制御部116は、第1吸引加熱を行う際に加熱部121に供給する電力(以下、「第1吸引加熱電力」と称する場合がある。)を、第2吸引加熱を行う際に加熱部121に供給する電力(以下、「第2吸引加熱電力」と称する場合がある。)よりも小さくしても良い(第1吸引加熱電力<第2吸引加熱電力)。
 図5は、第1吸引加熱電力、第2吸引加熱電力の関係を示す図である。図5(a)は、第1吸引加熱を行う場合のタイミングチャートであり、図5(b)は、第2吸引加熱を行う場合のタイミングチャートである。図5(c)は、吸引装置1が、図5(a)に示すように第1吸引加熱を行った場合と、図5(b)に示すように第2吸引加熱を行った場合とにおける、加熱部121の温度の変化を示す図である。図5(a)は、時刻t1において吸引装置1の電源がONとなり、その後の時刻t2において予備事象を検知し、その後の時刻t3において生成要求が行われた場合の電力の変化を示している。図5(b)は、時刻t1において吸引装置1の電源がONとなり、その後の時刻t3において生成要求が行われた場合の電力の変化を示している。
 例えば、制御部116は、DC/DCコンバータ118へ出力するPWM信号の、第1吸引加熱を行う際のデューティ比を第2吸引加熱を行う際のデューティ比よりも小さくする。制御部116は、例えば、第1吸引加熱を行う際のデューティ比を50%、第2吸引加熱を行う際のデューティ比を90%とすることを例示することができる。なお、制御部116は、第1吸引加熱を行う際に、実温度が第1温度に到達するまではデューティ比を50%に固定し、実温度が第1温度に到達した後は、実温度と目標温度との偏差に基づいてデューティ比を変更しても良い。また、制御部116は、第2吸引加熱を行う際に、実温度が第1温度に到達するまではデューティ比を90%に固定し、実温度が第1温度に到達した後は、実温度と目標温度との偏差に基づいてデューティ比を変更しても良い。
 第1吸引加熱電力を第2吸引加熱電力よりも小さくすることで、第1吸引加熱を行う際に、第2吸引加熱を行う際よりも、加熱部121以外の部位(例えば通知部113や通信部115)に供給可能な電力を大きくすることができる。例えば、予熱期間においては加熱部121への給電の優先度を最も高くし他の部位への給電の優先度を低くすることが考えられる。そして、加熱部121への給電の優先度を最も高くする場合であって、第2吸引加熱における予熱期間のデューティ比を90%とする場合には、予熱期間に他の部位に給電することは困難である。これに対して、第1吸引加熱における予熱期間のデューティ比が例えば50%である場合には、加熱部121への給電の優先度が最も高いとしても、残り50%分、他の部位に給電することが可能となるため、予熱期間に他の部位に給電し易くなる。その結果、例えば、通知部113を介してユーザに情報を通知したり、通信部115を介して他の装置と情報を送受信したりし易くなる。
 なお、第2吸引加熱電力よりも第1吸引加熱電力を小さくするべく、第1吸引加熱を行う際のデューティ比を50%、第2吸引加熱を行う際のデューティ比を90%とすることを例示しているが特にこれらのデューティ比に限定されない。予備加熱目標温度に到達した後に第1吸引加熱を開始した場合における、吸引加熱を開始してから第1温度に到達するまでの時間が、第2吸引加熱を開始した場合における、吸引加熱を開始してから第1温度に到達するまでの時間よりも短くなるように、両デューティ比を設定することが望ましい。これにより、エアロゾルの生成要求を受けてから既定量以上のエアロゾルを生成可能な状態に至るまでの時間を短くしつつ、加熱部121以外の部位に供給可能な電力を大きくすることができる。
<第2実施形態>
 図6は、第2実施形態に係る吸引装置2の概略構成の一例を模式的に示す図である。
 第2実施形態に係る吸引装置2は、第1実施形態に係る吸引装置1に対して、加熱部121に代えて加熱部221を備えるとともに断熱部244を備える点が異なる。以下、第1実施形態と異なる点について説明する。第1実施形態と第2実施形態とで、同じものについては同じ符号を用い、その詳細な説明は省略する。
 加熱部221は、金属又はポリイミド等の任意の素材で構成される。例えば、加熱部221は、フィルム状に構成され、保持部140の外周を覆うように配置される。そして、加熱部221が発熱すると、スティック型基材150に含まれるエアロゾル源がスティック型基材150の外周から加熱されて霧化され、エアロゾルが生成される。加熱部221は、電源部111から給電されると発熱する。
 断熱部244は、加熱部221から吸引装置2の他の構成要素への伝熱を防止する。断熱部244は、少なくとも加熱部221の外周を覆うように配置される。例えば、断熱部244は、真空断熱材、及びエアロゲル断熱材等により構成される。なお、真空断熱材とは、例えば、グラスウール及びシリカ(ケイ素の粉体)等を樹脂製のフィルムで包んで高真空状態にすることで、気体による熱伝導を限りなくゼロに近づけた断熱材である。
 以上のように構成された第2実施形態に係る吸引装置2においても、制御部116が、第1実施形態において説明したのと同様な手法で加熱部221の加熱を行うことで、予備加熱に伴う無駄な電力消費を抑制しつつ、早期に既定量以上のエアロゾルを生成可能な状態にすることができる。
<第3実施形態>
 図7は、第3実施形態に係る吸引装置3の概略構成の一例を模式的に示す図である。
 第3実施形態に係る吸引装置3は、第1実施形態に係る吸引装置1に対して、加熱部121に加えて加熱部221を備えるとともに、断熱部244を備える点が異なる。以下、第1実施形態と異なる点について説明する。第1実施形態と第3実施形態とで、同じものについては同じ符号を用い、その詳細な説明は省略する。
 以上のように構成された第3実施形態に係る吸引装置3においても、制御部116が、第1実施形態において説明したのと同様な手法で加熱部121及び加熱部221の加熱を行うことで、予備加熱に伴う無駄な電力消費を抑制しつつ、早期に既定量以上のエアロゾルを生成可能な状態にすることができる。
 なお、制御部116は、加熱部221の温度が、加熱部121の温度よりも低くなるように制御しても良い。加熱部221から発せられる熱は、加熱部121から発せられる熱と比較して、吸引装置3の他の構成要素へ伝搬され易いためである。
 また、図7では、加熱部221が、保持部140の外周に配置される例を示したが、本構成例はかかる例に限定されない。例えば、加熱部221は、保持部140の底部143を覆うように配置されても良い。
<第4実施形態>
 図8は、第4実施形態に係る吸引装置4の概略構成の一例を模式的に示す図である。
 第4実施形態に係る吸引装置4は、第1実施形態に係る吸引装置1に対して、加熱部121、保持部140に代えて、加熱部421、保持部440を備えるとともに、断熱部444を備える点が異なる。以下、第1実施形態と異なる点について説明する。第1実施形態と第4実施形態とで、同じものについては同じ符号を用い、その詳細な説明は省略する。
 保持部440は、内部空間441を有し、内部空間441にスティック型基材150の一部を収容しながらスティック型基材150を保持する。保持部440は、内部空間441を外部に連通する開口442を有し、開口442から内部空間441に挿入されたスティック型基材150を保持する。例えば、保持部440は、開口442及び底部443を底面とする筒状体であり、柱状の内部空間441を画定する。保持部440は、筒状体の高さ方向の少なくとも一部において、内径がスティック型基材150の外径よりも小さくなるように構成され、内部空間441に挿入されたスティック型基材150を外周から圧迫するようにしてスティック型基材150を保持し得る。保持部440は、スティック型基材150を通る空気の流路を画定する機能も有する。かかる流路内への空気の入り口である空気流入孔は、例えば底部443に配置される。他方、かかる流路からの空気の出口である空気流出孔は、開口442である。
 ただし、保持部440が有する内部空間441は、第1のハウジング445と第2のハウジング446とにより挟まれる空間として、実現される。保持部440は、第1のハウジング445を矢印493に示す方向に開閉する機構である、開閉機構447をさらに含む。開閉機構447は、例えば、ヒンジである。保持部440は、開閉機構447により第1のハウジング445を開閉させて、スティック型基材150を第1のハウジング445と第2のハウジング446とで挟んで保持する。
 加熱部421は、加熱部421-1と、加熱部421-2とを有する。加熱部421-1及び加熱部421-2は、エアロゾル源を加熱することで、エアロゾル源を霧化してエアロゾルを生成する。加熱部421-1及び加熱部421-2は、金属又はポリイミド等の任意の素材で構成される。例えば、加熱部421-1及び加熱部421-2は、フィルム状に構成され、保持部440の外周を覆うように配置される。ただし、加熱部421-1は、第1のハウジング445に配置され、加熱部421-2は、第2のハウジング446に配置される。そして、加熱部421-1及び加熱部421-2が発熱すると、スティック型基材150に含まれるエアロゾル源がスティック型基材150の外周から加熱されて霧化され、エアロゾルが生成される。加熱部421-1及び加熱部421-2は、電源部111から給電されると発熱する。
 断熱部444は、断熱部444-1と、断熱部444-2とを有する。断熱部444-1及び断熱部444-2は、加熱部421-1及び加熱部421-2から吸引装置4の他の構成要素への伝熱を防止する。断熱部444-1は、第1のハウジング445に配置される。そして、断熱部444-1は、少なくとも加熱部421-1の外周を覆うように配置される。断熱部444-2は、第2のハウジング446に配置される。そして、断熱部444-2は、少なくとも加熱部421-2の外周を覆うように配置される。例えば、断熱部444-1及び断熱部444-2は、真空断熱材、及びエアロゲル断熱材等により構成される。なお、真空断熱材とは、例えば、グラスウール及びシリカ(ケイ素の粉体)等を樹脂製のフィルムで包んで高真空状態にすることで、気体の熱伝導を限りなくゼロに近づけた断熱材である。
 以上のように構成された第4実施形態に係る吸引装置4においても、制御部116が、第1実施形態において説明したのと同様な手法で加熱部421-1及び加熱部421-2の加熱を行うことで、予備加熱に伴う無駄な電力消費を抑制しつつ、早期に既定量以上のエアロゾルを生成可能な状態にすることができる。
<第5実施形態>
 図9は、第5実施形態に係る吸引装置5の概略構成の一例を模式的に示す図である。
 第5実施形態に係る吸引装置5は、第1実施形態に係る吸引装置1に対して、エアロゾル源を含む基材を、誘導加熱(IH(Induction Heating))により加熱することで、エアロゾルを生成する点が異なる。以下、第1実施形態と異なる点について説明する。第1実施形態と第5実施形態とで、同じものについては同じ符号を用い、その詳細な説明は省略する。
 吸引装置5は、図9に示すように、電源ユニット110と、保持部140と、サセプタ561と、電磁誘導源562と、を有する。
 サセプタ561は、スティック型基材150に含まれる。サセプタ561は、電磁誘導により発熱する。サセプタ561は、金属等の導電性の素材により構成される。一例として、サセプタ561は、金属片である。サセプタ561は、エアロゾル源に近接して配置される。図9に示した例では、サセプタ561は、スティック型基材150の基材部151に含まれる。
 電磁誘導源562は、電磁誘導によりサセプタ561を発熱させる。電磁誘導源562は、例えば、コイル状の導線により構成され、保持部140の外周に巻き付くように配置される。電磁誘導源562は、電源部111から交流電流が供給されると、磁界を発生させる。電磁誘導源562は、発生させた磁界に保持部140の内部空間141が重畳する位置に配置される。よって、保持部140にスティック型基材150が保持された状態で磁界が発生すると、サセプタ561において渦電流が発生して、ジュール熱が発生する。そして、かかるジュール熱によりスティック型基材150に含まれるエアロゾル源が加熱されて霧化され、エアロゾルが生成される。
 なお、図9では、サセプタ561が、スティック型基材150の基材部151に含まれる例を示したが、本構成例はかかる例に限定されない。例えば、保持部140が、サセプタ561の機能を担っても良い。この場合、電磁誘導源562が発生させた磁界によって、保持部140において渦電流が発生して、ジュール熱が発生する。そして、かかるジュール熱によりスティック型基材150に含まれるエアロゾル源が加熱されて霧化され、エアロゾルが生成される。
 以上のように構成された第5実施形態に係る吸引装置5においても、制御部116が、第1実施形態において説明したのと同様な手法で電磁誘導源562の加熱を行うことで、予備加熱に伴う無駄な電力消費を抑制しつつ、早期に既定量以上のエアロゾルを生成可能な状態にすることができる。
<第6実施形態>
 図10は、第6実施形態に係る吸引装置6の概略構成の一例を模式的に示す図である。
 第6実施形態に係る吸引装置6は、第2実施形態に係る吸引装置2に対して、エアロゾル源を含む基材を加熱することでエアロゾルを生成するのに加えて、液体としてのエアロゾル源を加熱することでエアロゾルを生成する点が異なる。以下、第1実施形態と異なる点について説明する。第1実施形態と第6実施形態とで、同じものについては同じ符号を用い、その詳細な説明は省略する。
 吸引装置6は、電源ユニット110と、加熱部221と、保持部140と、液誘導部622と、液貯蔵部623と、加熱部621とを有する。また、吸引装置6には、空気流路680が形成される。吸引装置6においては、保持部140にスティック型基材150が保持された状態で、ユーザによる吸引が行われる。
 液貯蔵部623は、エアロゾル源を貯蔵する。エアロゾル源は、加熱されることで霧化され、エアロゾルが生成される。エアロゾル源は、例えば、グリセリン及びプロピレングリコール等の多価アルコール、並びに水等の液体である。エアロゾル源は、加熱されることによって香味成分を放出する、たばこ原料又はたばこ原料由来の抽出物をさらに含んでいてもよい。エアロゾル源は、ニコチンをさらに含んでいてもよい。吸引装置6がネブライザなどの医療用吸入器である場合、エアロゾル源は、患者が吸入するための薬剤を含んでもよい。
 液誘導部622は、液貯蔵部623に貯蔵された液体であるエアロゾル源を、液貯蔵部623から誘導し、保持する。液誘導部622は、例えば、ガラス繊維等の繊維素材又は多孔質状のセラミック等の多孔質状素材を撚って形成されるウィックである。液誘導部622は液貯蔵部623と液体連通している。そのため、液貯蔵部623に貯蔵されたエアロゾル源は、毛細管効果によって、液誘導部622の全体に行き渡る。
 加熱部621は、液貯蔵部623に貯蔵された液体であるエアロゾル源を加熱することで、エアロゾル源を霧化してエアロゾルを生成する。加熱部621は、コイル状、フィルム状又はブレード状等の任意の形状に、金属又はポリイミド等の任意の素材で構成される。加熱部621は、液誘導部622に近接して配置される。図10に示した例では、加熱部621は、金属製のコイルにより構成され、液誘導部622に巻き付けられる。よって、加熱部621が発熱すると、液誘導部622に保持されたエアロゾル源が加熱されて霧化され、エアロゾルが生成される。加熱部621は、電源部111から給電されると発熱する。一例として、上述した吸引可能期間である場合に、ユーザによる吸引が行われたことがセンサ部112に設けられた圧力センサ(不図示)により検出された場合に、加熱部621に給電され、エアロゾルが生成されても良い。そして、ユーザによる吸引が行われたことがセンサ部112に設けられた圧力センサにより検出されている期間において、加熱部621に給電され、エアロゾルが生成されてもよい。
 空気流路680は、ユーザに吸引される空気の流路である。空気流路680は、空気流路680内への空気の入り口である空気流入孔681と、空気流路680からの空気の出口である空気流出孔682とを両端とする管状構造を有する。ユーザによる吸引に伴い、空気流入孔681から空気流路680内に空気が流入し、空気流出孔682から保持部140の内部空間141に空気が流出する。一例として、空気流入孔681は、吸引装置6の任意の位置に配置される。他方、空気流出孔682は、保持部140の底部143に配置される。空気流路680の途中には、液誘導部622が配置される。加熱部621により生成されたエアロゾルは、空気流入孔681から流入した空気と混合される。次いで、ユーザによる吸引に伴い、エアロゾルと空気との混合流体は、矢印690に示すように、空気流出孔682を経由して保持部140の内部空間141へ輸送される。そして、保持部140の内部空間141へ輸送されたエアロゾルと空気との混合流体は、加熱部221により生成されたエアロゾルと共に、ユーザの口内に到達する。
 以上のように構成された第6実施形態に係る吸引装置6においても、制御部116が、第1実施形態において説明したのと同様な手法で加熱部221の加熱を行うことで、予備加熱に伴う無駄な電力消費を抑制しつつ、早期に既定量以上のエアロゾルを生成可能な状態にすることができる。
 また、上述した吸引可能期間が開始したときに、液体の温度を、第2温度以上であり、かつ、液体の沸点よりも低い温度(例えば50度)とするべく加熱部621を加熱開始するとともに、その後、ユーザによる吸引が行われたことがセンサ部112に設けられた圧力センサにより検出された場合に、液体の温度を沸点以上とするべく加熱部621を加熱し、エアロゾルを生成するようにしても良い。これにより、吸引初期から高霧化量を吸引可能とすることができる。
 なお、本構成例において、加熱部621による加熱に代えて、振動又は誘導加熱により、エアロゾルの生成が行われてもよい。
 振動によりエアロゾルの生成が行われる場合、吸引装置6は、加熱部621に代えて、振動部を備える。例えば、振動部は、超音波振動子として機能する圧電セラミックスを含む板状の部材により構成される。そして、振動部が振動すると、液誘導部622により振動部の表面に誘導されたエアロゾル源が、振動部による振動に伴い発生した超音波により霧化され、エアロゾルが生成される。
 誘導加熱によりエアロゾルの生成が行われる場合、吸引装置6は、加熱部621に代えて、サセプタ及び電磁誘導源を備える。サセプタは、電磁誘導により発熱する。サセプタは、金属等の導電性の素材により構成される。サセプタは、液誘導部622に近接して配置される。例えば、サセプタは、金属製の導線により構成され、液誘導部622に巻き付けられる。電磁誘導源は、電磁誘導によりサセプタを発熱させる。電磁誘導源は、例えば、コイル状の導線により構成される。電磁誘導源は、電源部111から交流電流が供給されると、磁界を発生させる。電磁誘導源は、発生させた磁界にサセプタが重畳する位置に配置される。よって、磁界が発生すると、サセプタにおいて渦電流が発生して、ジュール熱が発生する。そして、かかるジュール熱により液誘導部622に保持されたエアロゾル源が加熱されて霧化され、エアロゾルが生成される。
 同様に、本構成例において、加熱部221に代えて、又は、加熱部221に加えて、加熱部121を備えても良い。また、加熱部221に代えて、加熱部421を備えても良い。また、加熱部221に代えて、電磁誘導源562を備え、誘導加熱により、エアロゾルの生成を行っても良い。その場合、スティック型基材150は、サセプタをさらに含むと良い。
1,2,3,4,5,6…吸引装置、10…ハウジング、110…電源ユニット、111…電源部、112…センサ部、112t…温度センサ、116…制御部、117…操作部、118…DC/DCコンバータ、121,221,421,621…加熱部、140…保持部、150…スティック型基材

Claims (7)

  1.  加熱されることでエアロゾルを生成するエアロゾル源を加熱する加熱部と、
     電力を蓄積する電源部と、
     前記電源部から前記加熱部への給電を制御する制御部と、
    を備え、
     前記制御部は、前記エアロゾルの生成要求が行われた場合に、前記エアロゾル源の温度を当該エアロゾル源が霧化する第1温度以上となるように第1加熱を行い、当該生成要求が行われる前に当該生成要求が行われると予想される事象を検知した場合には、当該エアロゾル源の温度を、第2温度以上であり、かつ、当該第1温度よりも低い温度となるように当該第1加熱の前に加熱する第2加熱を行う
    吸引装置。
  2.  前記制御部は、前記第2加熱を開始した後、予め定められた終了条件が成立した場合に、当該第2加熱を停止する
    請求項1に記載の吸引装置。
  3.  前記制御部は、前記第2加熱中に前記第1加熱に移行した場合の当該第1加熱における電力を、当該第2加熱を行うことなしに当該第1加熱に移行した場合の当該第1加熱における電力よりも小さくする
    請求項1に記載の吸引装置。
  4.  ユーザが操作可能な操作部を備え、
     前記生成要求は、前記操作部に対して予め定められた第1操作が行われたことであり、
     前記事象は、前記操作部に対して前記第1操作とは異なるように定められた第2操作が行われたことである
    請求項1から3のいずれか1項に記載の吸引装置。
  5.  ジャイロセンサを備え、
     前記事象は、前記ジャイロセンサの出力値が、前記電源部と前記加熱部との高度が同じである状態を示す値から、当該電源部の高度よりも当該加熱部の高度の方が大きい状態を示す値に変わったことである
    請求項1から4のいずれか1項に記載の吸引装置。
  6.  ユーザの手が吸引装置を触っていることを検知する触覚センサを備え、
     前記事象は、前記触覚センサの出力値が、ユーザの手が吸引装置を触っていることを示したことである
    請求項1から5のいずれか1項に記載の吸引装置。
  7.  加速度センサを備え、
     前記事象は、前記加速度センサの出力値が予め定められた閾値以上になったことを示したことである
    請求項1から6のいずれか1項に記載の吸引装置。
PCT/JP2021/042548 2021-11-19 2021-11-19 吸引装置 WO2023089757A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180104302.1A CN118251149A (zh) 2021-11-19 2021-11-19 吸引装置
PCT/JP2021/042548 WO2023089757A1 (ja) 2021-11-19 2021-11-19 吸引装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/042548 WO2023089757A1 (ja) 2021-11-19 2021-11-19 吸引装置

Publications (1)

Publication Number Publication Date
WO2023089757A1 true WO2023089757A1 (ja) 2023-05-25

Family

ID=86396489

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/042548 WO2023089757A1 (ja) 2021-11-19 2021-11-19 吸引装置

Country Status (2)

Country Link
CN (1) CN118251149A (ja)
WO (1) WO2023089757A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021516053A (ja) * 2018-03-07 2021-07-01 ニコベンチャーズ トレーディング リミテッド 電子エアロゾル供給装置
WO2021199159A1 (ja) * 2020-03-30 2021-10-07 日本たばこ産業株式会社 制御装置、制御方法、及びプログラム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021516053A (ja) * 2018-03-07 2021-07-01 ニコベンチャーズ トレーディング リミテッド 電子エアロゾル供給装置
WO2021199159A1 (ja) * 2020-03-30 2021-10-07 日本たばこ産業株式会社 制御装置、制御方法、及びプログラム

Also Published As

Publication number Publication date
CN118251149A (zh) 2024-06-25

Similar Documents

Publication Publication Date Title
JP6545226B2 (ja) 電子式吸入装置
WO2021260894A1 (ja) 吸引装置、制御方法、及びプログラム
JP2024038391A (ja) 吸引装置、方法、及びプログラム
US20220264958A1 (en) Control device, control method, and nonvolatile computer readable medium
WO2023089757A1 (ja) 吸引装置
JP7148032B2 (ja) 蒸気供給システム
US20230000152A1 (en) Inhaling device, control method, and non-transitory computer readable medium
EP4218438A1 (en) Suction device, control device, and control method
WO2023089754A1 (ja) 吸引装置
WO2023089753A1 (ja) 吸引装置
WO2023089752A1 (ja) 吸引装置
WO2023089756A1 (ja) 吸引装置
TW202224583A (zh) 控制方法、吸嚐裝置、終端裝置及程式
WO2023119387A1 (ja) 香味吸引器具又はエアロゾル生成装置、その動作方法及びそのプログラム
WO2023188103A1 (ja) エアロゾル生成装置、制御方法、及びプログラム
WO2023021546A1 (ja) エアロゾル生成装置
CN118354689A (zh) 吸引装置
WO2024127657A1 (ja) 吸引装置の電源ユニット、制御方法、及び制御プログラム
WO2023007525A1 (ja) エアロゾル生成システム
WO2024127658A1 (ja) 吸引装置の電源ユニット、制御方法、及び制御プログラム
WO2024038530A1 (ja) 吸引装置、制御方法、及びプログラム
WO2024127662A1 (ja) 吸引装置、制御方法、及び制御プログラム
WO2023021545A1 (ja) エアロゾル生成装置
WO2023275952A1 (ja) エアロゾル生成システム
WO2023188100A1 (ja) エアロゾル生成装置、制御方法、及びプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21964772

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023562036

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2021964772

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021964772

Country of ref document: EP

Effective date: 20240619