WO2023088409A1 - 一种干涉三维形貌解算方法 - Google Patents

一种干涉三维形貌解算方法 Download PDF

Info

Publication number
WO2023088409A1
WO2023088409A1 PCT/CN2022/132783 CN2022132783W WO2023088409A1 WO 2023088409 A1 WO2023088409 A1 WO 2023088409A1 CN 2022132783 W CN2022132783 W CN 2022132783W WO 2023088409 A1 WO2023088409 A1 WO 2023088409A1
Authority
WO
WIPO (PCT)
Prior art keywords
point
zero
envelope curve
interference
interferogram
Prior art date
Application number
PCT/CN2022/132783
Other languages
English (en)
French (fr)
Inventor
姚东
梁瀚钢
Original Assignee
中国科学院长春光学精密机械与物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院长春光学精密机械与物理研究所 filed Critical 中国科学院长春光学精密机械与物理研究所
Publication of WO2023088409A1 publication Critical patent/WO2023088409A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/2441Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures using interferometry

Definitions

  • the invention belongs to the technical field of surface topography measurement, and in particular relates to an interference three-dimensional topography solution method.
  • Direct solution method specifically including interpolation method, phase shifting method, space frequency domain method
  • Weighted average method specifically including center of gravity method and coherent correlation method
  • Envelope curve fitting method specifically including polynomial fitting method, Gaussian fitting method, Fourier transform method, Hilbert transform method, wavelet transform method, envelope curve function calculation method based on sampling theorem.
  • each of the above methods will give a near-ideal solution, but when the spectrally degraded retroreflected signal or the intensity-attenuated retroreflected signal generates an interference pattern with the standard reflector retroreflected signal, it will Problems such as widening of the interference signal envelope curve and decrease in signal contrast will occur.
  • multi-level interference stray light signals will be mixed in, which will produce a more degraded interferogram to be processed (as shown in Figure 2a and Figure 2b). It is difficult to obtain the three-dimensional topography of the target surface with high restoration accuracy by using the above methods.
  • the present invention proposes an interference three-dimensional shape calculation method. Since the multi-level superimposed light field is generated inside the instrument, it is deterministic; the peak of the zero-order interference fringes on the same surface is unique ; and the "spectral degradation effect" does not affect the relative position of the peak of the envelope curve. Therefore, despite the influence of problems such as "envelope curve broadening" and "signal contrast drop", the spatial distribution of interference intensity of the measured target is still stable.
  • the real position Z d of the target to be measured can be obtained by summing the peak spatial offset ⁇ l in the state.
  • a method for calculating an interference three-dimensional shape comprising the steps of:
  • the standard mirror is an ideal standard plane mirror, a spherical mirror or an aspheric mirror;
  • the standard mirror has the same spectral reflection characteristics as the target to be measured.
  • step S3 includes the following steps:
  • N sampling points P(n, x i , y j ) located at the same pixel position (xi, y j ) in the time series interferogram array are extreme points P e (n, x i , y j ), or the transition point P t (n, x i , y j ), n ⁇ [1, M], M is the default value;
  • step S31 includes the following steps:
  • the construction model of data cube S is as follows:
  • I(n, x i , y j ) represents the intensity value of sampling point P(n, x i , y j ) on the nth interference image in the time series interferogram array;
  • I(n+1, x i , y j ) represents the intensity value of sampling point P(n+1, x i , y j ) on the n+1th interference image in the time series interferogram array;
  • I(n-1, x i , y j ) represents the intensity value of sampling point P(n-1, x i , y j ) on the n-1th interference image in the time series interferogram array;
  • sampling point P(n, x i , y j ) is the transition point P t (n, x i , y j ).
  • step S32 is:
  • I e (n a , x i , y j ) is the intensity value of the first extreme point P e (n a , x i , y j ),
  • I e (n b , x i , y j ) is the intensity value of the second extreme point P e (n b , x i , y j ),
  • I e (n c , x i , y j ) is the intensity value of the third extremum point P e (n c , x i , y j );
  • the first extremum point P e (n a , xi , y j ) and the third extremum point P e ( nc , xi , y j ) are located on the potential zero-order envelope curve.
  • step S4 includes the following steps:
  • the method for obtaining the zero-order extremum point Z 0 ( xi , y j ) is:
  • the fitting method includes at least one of fitting method, centroid method or interpolation method.
  • step S4 also includes the following steps:
  • the prior condition is: the continuous plane measurement data of the target to be measured has no elevation jump dislocation.
  • step S1 includes the following steps:
  • the interferometer is a wide-band white light interferometer or a narrow-band laser interferometer.
  • the present invention is carried out in the space domain, which avoids large calculation processes in the frequency domain such as Fourier transform and convolution, and improves the real-time performance of the algorithm.
  • the present invention has high fitting accuracy by fitting the sub-envelope curve, and can be applied to the three-dimensional shape calculation of the surface with low reflectivity.
  • the present invention is suitable for samples with low reflectivity, and has prospects in actual working conditions such as industrial measurement and scientific research.
  • Fig. 1 is a flow chart of an interference three-dimensional topography solution method according to an embodiment of the present invention
  • Figure 2a is a schematic diagram of the interference signal measured by the Michelson white light interferometry system in the background technology
  • Fig. 2b is a schematic diagram of the interference signal of the same system in the background technology that causes the interferogram to change due to the spectral degradation effect;
  • Fig. 3 is a graph showing the relative position relationship of the zero-order interference fringe maximum point Z 0 , the peak position Z d and the spatial position offset ⁇ l of the peak in the calibration state according to an embodiment of the present invention
  • Fig. 4a is a three-dimensional topography calculation diagram of a step in an embodiment of the present invention.
  • Fig. 4b is a sectional view of the center of gravity of Fig. 4a;
  • Figure 5a is a three-dimensional topography calculation diagram at the step obtained by Fourier transform method
  • Fig. 5b is a sectional view of the center of gravity of Fig. 5a;
  • Fig. 6a is the three-dimensional topography calculation diagram at the step obtained by using the center of gravity method
  • Fig. 6b is a center-of-gravity sectional view of Fig. 6a.
  • the object of the present invention is to provide a method for calculating the three-dimensional shape of interference.
  • the method for solving the three-dimensional shape of interference provided by the present invention will be described in detail below through specific embodiments.
  • the interference three-dimensional shape calculation method proposed in the present invention can obtain the real position Z d of the target to be measured by accurately calculating the position Z 0 of the zero-order interference fringe center and the peak position offset ⁇ l in the calibration state.
  • the method comprises the following steps:
  • Z(x i , y j ) is the deformation distribution of the standard mirror obtained by using an interference three-dimensional shape calculation method of the present invention.
  • a calibrated white light interferometer is used to obtain a time series interferogram array of each pixel acquisition point P( xi , y j ) in the acquisition field of the step.
  • the time series interferogram array is N interference images with interference fringes, and each pixel on the interference images has "space-intensity" change information.
  • N sampling points P(n, x i , y j ) located at the same pixel position (xi, y j ) in the time series interferogram array are extreme points P e (n, x i , y j ), or the transition point P t (n, x i , y j ), n ⁇ [1, M], M is the default value;
  • each pixel acquisition point P(xi , y j ) corresponds to a sampling point P(n, x i , y j ) in the acquired step time series interferogram array, and the sampling point P( n, x i , y j ) is the extreme point P e (n, x i , y j ) or the transition point P t (n, x i , y j ).
  • Step S31 specifically includes the following steps:
  • i, j represents the position
  • n represents the sampling timing
  • M is a preset value, and the value of M is set according to the elevation value and sampling interval of the target to be measured.
  • the collection point (x 1 , y 1 ) corresponds to the sampling of each interference image in the time series interferogram array
  • the points are P(1, x 1 , y 1 ), P(2, x 1 , y 1 ), ..., P(n, x 1 , y 1 ), P(n+1, x 1 , y 1 ), ..., P(N, x 1 , y 1 ).
  • intensity values are I(1, x 1 , y 1 ), I(2, x 1 , y 1 ), . . . , I(N, x 1 , y 1 ).
  • I(n, x i , y j ) represents the intensity value of the sampling point P(n, x i , y j ) on the nth interference image in the time series interferogram array;
  • I(n+1, x i , y j ) represents the intensity value of sampling point P(n+1, x i , y j ) on the n+1th interference image in the time series interferogram array;
  • I(n-1, xi , y j ) represents the intensity value of the sampling point P(n-1, xi , y j ) on the n-1th interferometric image in the time series interferogram array.
  • sampling point P(n, x i , y j ) is the transition point P t (n, x i , y j ).
  • each pixel acquisition point P( xi , y j ) obtained is sorted corresponding to the extremum points on the time series interferogram array, and the first extremum whose intensity values are arranged in descending order is selected Point P e (n a , x i , y j ), the second extreme point P e (n b , x i , y j ) and the third extreme point P e (nc, x i , y j ).
  • the sub-envelope curve where the second extremum point P e (n b , x i , y j ) is located is the zero-order envelope curve
  • the sub-envelope curves where the first extreme point P e (n a , x i , y j ) and the third extreme point P e (n c , x i , y j ) are located are potential zero-order envelope curves.
  • the sub-envelope curve where the extreme point corresponding to the intermediate intensity value is located is the zero-order envelope curve, and other extreme points are located in the potential zero-order envelope curve.
  • the sub-envelope curve where the extremum point P(n g , x i , y j ) with larger intensity value is located is the zero-order envelope curve
  • the sub-envelope curve where the extreme point P(n f , x i , y j ) is located is a potential zero-order envelope curve.
  • the sub-envelope curve where the extreme point with the largest intensity value is located is the zero-order envelope curve, and other extreme points are located in the potential zero-order envelope curve.
  • the sub-envelope curve where the extreme point of the intensity maximum value in each outer envelope group is located can be selected as the zero-order envelope curve according to the actual situation.
  • Step S4 comprises the following steps:
  • the zero-order envelope is obtained by fitting The zero-order extremum point Z 0 (x i , y j ) of the curve.
  • the second extremum point P e (n b , xi , y j ) and four transition points P e (n b-2 , xi , y j ) nearby are selected , P e (n b-1 , x i , y j ), P e (n b+1 , x i , y j ) and P e (n b+2 , x i , y j ) jointly fit zero
  • the fitting method with relatively high fitting accuracy for the second extreme point P e (n b , x i , y j ), the first transition point P e (n b-2 , x i , y j ), the second transition point P e (n b-1 , x i , y j ), the third transition point P e (n b+1 , x i , y j ) and the fourth transition point P e (n b+ 2 , x i , y j ) for fitting, a continuous mathematical curve is obtained through calculation, and the zero-order extreme point Z 0 ( xi , yj) is obtained.
  • the fitting method is a prior art and will not be repeated here.
  • methods including but not limited to center of gravity method or interpolation method can also be selected to fit the above extreme points and transition points to obtain the zero-order extreme point Z 0 ( xi , y j ).
  • step S4 also includes:
  • the prior condition can be set according to the actual situation, and it can be set as: the continuous plane measurement data of the target to be measured has no elevation jump dislocation.
  • step S5 for the first extremum point P e (n a , xi , y j ) and the third extremum point P e (n c , xi , y j ) are fitted separately to obtain the zero-order extremum points Z′ 0 ( xi , y j ) and Z′′ 0 ( xi , y j ) of the potential zero-order envelope curve.
  • the interference three-dimensional shape calculation method proposed by the present invention does not use Gaussian function for filtering, which reduces the amount of calculation;
  • the sub-envelope curve has a greater steepness, which makes the algorithm's fitting accuracy higher.
  • the present invention is equally applicable to interferometers of narrow-band laser light sources, such as Fabry-Perot interferometers, Michelson interferometers, Mach-Zehnder interferometers, Signac interferometers, and Fizeau interferometers. wait.
  • the interferometer is calibrated in step S1 to obtain the peak spatial offset ⁇ l of the interferometer, which specifically includes the following steps:
  • the standard mirror is an ideal standard plane mirror, and a standard plane mirror with a known surface shape and an ideal plane is used to calibrate the wide-band white light interferometer.
  • the standard mirror can also select a spherical mirror or an aspheric mirror of known surface type; by selecting a standard mirror with the same spectral reflection characteristics as the target to be measured, the interferogram used for calibration can be compared with the actual The measured interferogram has better similarity, which is beneficial to improve the measurement accuracy.
  • the acquisition method of the extreme point and transition point of the zero-order envelope curve of the standard mirror in step S12 is the same as the acquisition method of the extreme point and transition point of the zero-order envelope curve of the step in the above-mentioned embodiment, and will not repeat them here .
  • Fig. 4a, Fig. 5a and Fig. 6a respectively show the three-dimensional topography solution map obtained by using the method of the present invention, the Fourier transform method and the center of gravity method at the same step, and Fig. 4b, Fig. 5b and Fig. 6b respectively show the corresponding Center of gravity sectional view.
  • the RMS value of the surface roughness of the upper surface of the step is 0.038 ⁇ m
  • the RMS value of the surface roughness of the lower surface is 0.009 ⁇ m
  • the height is 1.755 ⁇ m, which is the difference from the standard value of 1.761 ⁇ m. 6nm.
  • the RMS value of the upper surface is 0.045 ⁇ m, and the RMS value of the lower surface is 0.015 ⁇ m
  • the RMS value of the upper surface is reduced by 15.6%
  • the RMS value of the lower surface is reduced by 40%
  • the RMS value of the upper surface is 0.045 ⁇ m, and the RMS value of the lower surface is 0.017 ⁇ m
  • the RMS value of the upper surface is reduced by 15.6%
  • the RMS value of the lower surface is reduced by 47%.
  • the method of the present invention can show more accurate plane features, and the elevation measurement error obtained by measurement is in the range of ⁇ 0.01 ⁇ m (standard step given error range), which has very high reliability.
  • the step sample is made of silicon as the substrate and chemically etched.
  • the silicon material is black and has a relatively low spectral reflectance, resulting in a relatively low signal-to-noise ratio of the signal, so the solution effect is not ideal.
  • the accuracy of the surface shape (RMS value) can be greatly improved, and the height difference can be kept within the calibration range. It can be applied to samples with low reflectivity, and has the prospect of being applied to practical working conditions such as industrial measurement and scientific research.

Abstract

一种干涉三维形貌解算方法,包括:S1、对干涉仪进行标定,获得干涉仪的顶峰空间偏移量Δl;S2、利用干涉仪获取待测目标上每个像素采集点P(x i,y j)的时序干涉图阵列;时序干涉图阵列为N张具有干涉条纹的干涉图像;S3、获取时序干涉图阵列的零级子包络曲线以及潜在零级子包络曲线;S4、利用零级子包络曲线得到零级子包络曲线的零级极值点Z 0(x i,y j);S5、根据零级极值点Z 0(x i,y j)求解待测目标的高程位置Z d(x i,y j)。在空域进行解算,避免了傅里叶变换、卷积等频域大计算量过程,提高了算法的实时性;通过对子包络曲线拟合进行具有较高的拟合精度,可用于低反射率物体表面的三维形貌解算。

Description

一种干涉三维形貌解算方法
本申请要求于2021年11月18日提交至中国专利局、申请号为202111370114.1、发明名称为“一种干涉三维形貌解算方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明属于表面貌形测量技术领域,具体涉及一种干涉三维形貌解算方法。
背景技术
现有技术中已有众多学者围绕白光干涉图解算问题开展了一系列研究工作,将这些研究工作可以总结为三个主要技术发展方向:
1、直接求解法,具体包括插值法、移相法、空间频域法;
2、加权平均法,具体包括重心法、相干相关法;
3、包络曲线拟合法,具体包括多项式拟合法、高斯拟合法、傅里叶变换法、希尔伯特变换法、小波变换法、基于采样定理的包络曲线函数计算法。
在面对完美的信号时,上述每一种方法均会得出近于理想的解,但当光谱退化回射信号或者强度衰减回射信号与标准反射镜的回射信号生成干涉图时,将会发生干涉信号包络曲线展宽、信号对比度下降等问题,同时夹杂多级干涉杂光信号,将产生更为劣化的待处理干涉图(如图2a、图2b所示)。利用上述方法均难以获取高还原精度的目标表面三维形貌。
发明内容
本发明为了解决现有技术中的缺陷,提出了一种干涉三维形貌 解算方法,由于多级叠加光场是仪器内部产生的,具有确定性;相同表面零级干涉条纹的顶峰具有唯一性;以及“光谱退化效应”不影响包络曲线峰值相对位置。因此,尽管在“包络曲线展宽”、“信号对比度下降”等问题的影响下,被测目标的干涉强度空间分布依然具有稳定性,通过获取零级干涉条纹位置Z 0,将Z 0与标定状态下顶峰空间偏移量Δl做和便可求得待测目标的真实位置Z d
为实现上述目的,本发明采用以下具体技术方案:
一种干涉三维形貌解算方法,包括步骤:
S1、利用标准镜对干涉仪进行标定,获得干涉仪的顶峰空间偏移量Δl;
S2、利用干涉仪获取待测目标上每个像素采集点P(x i,y j)的时序干涉图阵列;时序干涉图阵列为N张具有干涉条纹的干涉图像;
S3、获取时序干涉图阵列的零级包络曲线以及潜在零级包络曲线;
S4、利用零级包络曲线得到零级包络曲线的零级极值点Z 0(x i,y j);
S5、根据零级极值点Z 0(x i,y j)求解待测目标的高程位置Zd (x i,yj )
Z d(x i,y j)=Δl(x i,y j)+Z 0(x i,y j)   (1)。
优选地,标准镜为理想标准平面反射镜、球面镜或非球面镜;
标准镜与待测目标具有相同的光谱反射特性。
优选地,步骤S3包括以下步骤:
S31、判断N个位于时序干涉图阵列中同一像素位置(x i,y j)处的采样点P(n,x i,y j)是否为极值点P e(n,x i,y j),或为过渡点P t(n,x i,y j),n∈[1,M],M为预设值;
S32、根据极值点P e(n,x i,y j)得到时序干涉图阵列的零级包络曲线以及潜在零级包络曲线。
优选地,步骤S31包括以下步骤:
S311、对N张干涉图像上的各个采样点P(n,x i,y j)进行曝光,获得各个采样点P(n,x i,y j)在干涉图像上的强度值I(n,x i,y j);
S312、根据位于时序干涉图阵列中同一位置的N个采样点P(n,x i,y j)所在的干涉图像上的强度值I(n,x i,y j),构建数据立方体S;
数据立方体S的构建模型如下:
S(n,i,j)=[I(n+1,x i,y j)-I(n,x i,y j)]×[I(n,x i,y j)-I(n-1,x i,y j)]   (2);
其中,
I(n,x i,y j)表示采样点P(n,x i,y j)在时序干涉图阵列中第n张干涉图像上的强度值;
I(n+1,x i,y j)表示采样点P(n+1,x i,y j)在时序干涉图阵列中第n+1张干涉图像上的强度值;
I(n-1,x i,y j)表示采样点P(n-1,x i,y j)在时序干涉图阵列中第n-1张干涉图像上的强度值;
S313、判断采样点P(n,x i,y j)是否为时序干涉图阵列的极值点:
若S(n,i,j)≤0,则采样点P(n,x i,y j)为极值点P e(n,x i,y j);
若S(n,i,j)>0,则采样点P(n,x i,y j)为过渡点P t(n,x i,y j)。
优选地,步骤S32的方法为:
将每个像素采集点P(x i,y j)对应在时序干涉图阵列上的极值点排序,选取至少三个强度值按降序排列的第一极值点P e(n a,x i,y j)、第二极值点P e(n b,x i,y j)和第三极值点P e(n c,x i,y j),存在如下关系:
I e(n a,x i,y j)<I e(n b,x i,y j);
I e(n b,x i,y j)>I e(n c,x i,y j);
其中,I e(n a,x i,y j)为第一极值点P e(n a,x i,y j)的强度值,
I e(n b,x i,y j)为第二极值点P e(n b,x i,y j)的强度值,
I e(n c,x i,y j)为第三极值点P e(n c,x i,y j)的强度值;
则第二极值点P e(n b,x i,y j)位于零级包络曲线;
第一极值点P e(n a,x i,y j)和第三极值点P e(n c,x i,y j)位于潜在零级包络曲线。
优选地,步骤S4包括以下步骤:
S41、根据位于零级包络曲线的极值点P e(n k,x i,y j)及过渡点P t(n k,x i,y j)获取零级包络曲线的零级极值点Z 0(x i,y j)。
优选地,零级极值点Z 0(x i,y j)的获取方法为:
选取至少两个位于零级包络曲线的极值点P e(n k,x i,y j)附近的第一过渡点P t(n k+1,x i,y j)和第二过渡点P t(n k-1,x i,y j),利用拟合的方法,对零级包络曲线的极值点P e(n k,x i,y j)、第一过渡点P t(n k+1,x i,y j)和第二过渡点P t(n k-1,x i,y j)进行拟合,得到零级极值点Z 0(x i,y j)。
优选地,拟合的方法包括拟合法、重心法或插值法中的至少一种。
优选地,步骤S4还包括以下步骤:
S42、拟合潜在零级包络曲线的零级极值点Z′ 0(x i,y j),利用先验条件对错误的零级极值点Z 0(x i,y j)进行替换;
先验条件为:待测目标的连续平面测量数据无高程跳变错位。
优选地,步骤S1包括以下步骤:
S11、利用已知面型的标准镜对干涉仪进行标定,得到的标准镜的标准面型分布
Figure PCTCN2022132783-appb-000001
S12、通过利用干涉仪获取标准镜上每个像素采集点的时序干涉图阵列,计算获得标准镜的变形分布Z(x i,y j);
S13、计算干涉仪内部由于光程不匹配所引起的顶峰空间偏移量Δl(x i,y j):
Δl(x i,y j)=Z(x i,y j)-Z(x i,y j)   (3)。
优选地,干涉仪为宽谱段白光干涉仪或窄谱段激光干涉仪。
本发明能够取得以下技术效果:
1、本发明在空间域中进行,避免了傅里叶变换、卷积等频域 大计算量过程,提高了算法的实时性。
2、本发明通过对子包络曲线拟合,具有较高的拟合精度,可以应用于低反射率表面的三维形貌解算。
3、本发明适用于低反射率样品,在工业测量、科学研究等实际工况下具有前景。
附图说明
图1是本发明一个实施例的一种干涉三维形貌解算方法的流程图;
图2a是背景技术中利用迈克尔逊白光干涉系统测量获得的干涉信号示意图
图2b是背景技术中的相同系统由于光谱退化效应而导致干涉图发生改变的干涉信号示意图;
图3是本发明一个实施例的零级干涉条纹极大值点Z 0、顶峰位置Z d和标定状态下顶峰空间位置偏移量Δl的相对位置关系图;
图4a是本发明一个实施例的台阶处三维形貌解算图;
图4b是图4a的重心截面图;
图5a是利用傅里叶变换法获得的台阶处三维形貌解算图;
图5b是图5a的重心截面图;
图6a是利用重心法获得的台阶处三维形貌解算图;
图6b是图6a的重心截面图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及具体实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,而不构成对本发明的限制。
本发明的目的是提供一种干涉三维形貌解算方法,下面将对本 发明提供的一种干涉三维形貌解算方法,通过具体实施例来进行详细说明。
在常规白光干涉图中,由于“多重干涉叠加效应”、“光谱退化效应”等因素影响,外包络曲线的顶峰值Z d和零级干涉条纹(子包络曲线)的中心位置Z 0往往不重合,存在如图3所示的位置关系。因此,本发明提出的干涉三维形貌解算方法通过精确求解出零级干涉条纹中心所在位置Z 0和标定状态下顶峰位置偏移Δl,便可获得待测目标的真实位置Z d
参照图1示出的干涉三维形貌解算方法的流程,该方法包括以下步骤:
S1、利用标准镜对干涉仪进行标定,获得干涉仪的顶峰空间偏移量Δl,存在如下表达式:
Figure PCTCN2022132783-appb-000002
其中,
Figure PCTCN2022132783-appb-000003
为经干涉仪得到的标准镜的标准面型分布;
Z(x i,y j)为利用本发明的一种干涉三维形貌解算方法得到的标准镜的变形分布。
S2、利用干涉仪获取待测目标上每个像素采集点P(x i,y j)的时序干涉图阵列。
在本发明的一个优选实施例中,以待测目标为台阶为例,利用完成标定的白光干涉仪获取台阶的采集域内每一个像素采集点P(x i,y j)的时序干涉图阵列。时序干涉图阵列为N张具有干涉条纹的干涉图像,干涉图像上的每一个像素点具有“空间-强度”的变化信息。
S3、获取时序干涉图阵列的零级包络曲线以及潜在零级包络曲线,具体包括以下步骤:
S31、判断N个位于时序干涉图阵列中同一像素位置(x i,y j)处的采样点P(n,x i,y j)是否为极值点P e(n,x i,y j),或为过渡点P t(n,x i,y j),n∈[1,M],M为预设值;
在台阶的采集域内,每一个像素采集点P(x i,y j)都对应一个获取的台阶时序干涉图阵列中的采样点P(n,x i,y j),判断该采样点P(n,x i,y j)是极值点P e(n,x i,y j)还是过渡点P t(n,x i,y j)。
步骤S31具体包括以下步骤:
S311、对N张干涉图像上的各个采样点P(n,x i,y j)进行曝光,获得每一个采样点P(n,x i,y j)在干涉图像上的强度值I(n,x i,y j);
其中,i,j代表位置,n代表采样时序,
n∈[1,M],M为预设值,M的取值根据待测目标的高程值与采样间隔设定。
S312、根据位于时序干涉图阵列中同一位置的N个采样点P(n,x i,y j)所在的干涉图像上的强度值I(n,x i,y j),构建数据立方体S。
以任意一个采集点(x 1,y 1)为例,因时序干涉图阵列由N个干涉图像组成,因此,采集点(x 1,y 1)对应在时序干涉图阵列中各个干涉图像的采样点为P(1,x 1,y 1)、P(2,x 1,y 1)、…、P(n,x 1,y 1)、P(n+1,x 1,y 1)、…、P(N,x 1,y 1)。对应得到的强度值为I(1,x 1,y 1)、I(2,x 1,y 1)、…、I(N,x 1,y 1)。
同理,获得同一位置(x i,y j),不同时序的所有采样点P(n,x i,y j)在干涉图像上的强度值I(n,x i,y j),建立如下的数据立方体S模型:S(n,i,j)=[I(n+1,x i,y j)-I(n,x i,y j)]×[I(n,x i,y j)-I(n-1,x i,y j)]
(2);
其中,I(n,x i,y j)表示采样点P(n,x i,y j)在时序干涉图阵列中第n张干涉图像上的强度值;
I(n+1,x i,y j)表示采样点P(n+1,x i,y j)在时序干涉图阵列中第n+1张干涉图像上的强度值;
I(n-1,x i,y j)表示采样点P(n-1,x i,y j)在时序干涉图阵列中第n-1张干涉图像上的强度值。
S313、判断采样点P(n,x i,y j)为时序干涉图阵列的极值点,否则 为过渡点:
若S(n,i,j)≤0,则采样点P(n,x i,y j)为极值点P e(n,x i,y j);
若S(n,i,j)>0,则采样点P(n,x i,y j)为过渡点P t(n,x i,y j)。
S32、根据极值点P e(n,x i,y j)得到时序干涉图阵列的零级包络曲线以及潜在零级包络曲线。
在本发明的一个优选实施例中,将得到的每个像素采集点P(x i,y j)对应在时序干涉图阵列上的极值点排序,选取强度值按降序排列的第一极值点P e(n a,x i,y j)、第二极值点P e(n b,x i,y j)和第三极值点P e(nc,x i,y j)。
即存在第一极值点P e(n a,x i,y j)的强度值I e(n a,x i,y j)<第二极值点P e(n b,x i,y j)的强度值I e(n b,x i,y j);同时第二极值点P e(n b,x i,y j)的强度值I e(n b,x i,y j)>第三极值点P e(n c,x i,y j)的强度值I e(n c,x i,y j)。
则第二极值点P e(n b,x i,y j)所在的子包络曲线为零级包络曲线;
第一极值点P e(n a,x i,y j)和第三极值点P e(n c,x i,y j)所在的子包络曲线为潜在零级包络曲线。
对于选取任意前奇数个强度值最大的极值点,中间强度值对应的极值点所在的子包络曲线为零级包络曲线,其他极值点位于潜在零级包络曲线。
在本发明的另一个实施例中,还可以选取两个强度值最大的第四极值点P(n f,x i,y j)和第五极值点P(n g,x i,y j),对应如下的强度关系:I e(n f,x i,y j)<I e(n g,x i,y j);
则强度值较大的极值点P(n g,x i,y j)所在的子包络曲线为零级包络曲线;
极值点P(n f,x i,y j)所在的子包络曲线为潜在零级包络曲线。
对于选取任意前偶数个强度值最大的极值点,强度值最大的极值点所在的子包络曲线为零级包络曲线,其他极值点位于潜在零级 包络曲线。
对于如图2b所示的多层膜系的情况,可根据实际情况选择各个外包络组中强度极大值的极值点所在的子包络曲线为零级包络曲线。
S4、利用零级包络曲线得到零级包络曲线的零级极值点Z 0(x i,y j)。
步骤S4包括以下步骤:
S41,根据位于零级包络曲线的极值点P e(n k,x i,y j)及过渡点P t(n k,x i,y j)通过拟合的方法获取零级包络曲线的零级极值点Z 0(x i,y j)。
在本发明的一个优选实施例中,选择第二极值点P e(n b,x i,y j)及其附近的四个过渡点P e(n b-2,x i,y j)、P e(n b-1,x i,y j)、P e(n b+1,x i,y j)和P e(n b+2,x i,y j)共同拟合出零级包络曲线的零级极值点Z 0(x i,y j)。
进一步的,选则相对拟合精度较高的拟合法对第二极值点P e(n b,x i,y j)、第一过渡点P e(n b-2,x i,y j)、第二过渡点P e(n b-1,x i,y j)、第三过渡点P e(n b+1,x i,y j)和第四过渡点P e(n b+2,x i,y j)进行拟合,通过计算获得连续的数学曲线,获得零级极值点Z 0(x i,yj)。拟合法为现有技术,不在此赘述。
在本发明的另一个实施例中,还可以选择包括但不限于重心法或插值法的方法对上述极值点和过渡点进行拟合,得到零级极值点Z 0(x i,y j)。
S5、根据零级极值点Z 0(x i,y j)求解出待测目标的高程位置Z d(x i,y j):
Z d(x i,y j)=Δl(x i,y j)+Z 0(x i,y j)   (1)。
在实际零级包络曲线的极大值点Z 0(x i,y j)求解过程中,可能发生解算错位现象,即误把潜在零级包络曲线代替零级包络曲线重新生成测量数据,因此步骤S4还包括:
S42、拟合潜在零级包络曲线的零级极值点Z′ 0(x i,y j),利用先验 条件对错误的零级极值点Z 0(x i,y j)进行替换;
先验条件可根据实际情况设定,可以设定为:待测目标的连续平面测量数据无高程跳变错位。
具体的,按照步骤S5中的方法,对位于潜在零级包络曲线的第一极值点P e(n a,x i,y j)和第三极值点P e(n c,x i,y j)分别进行拟合,获取潜在零级包络曲线的零级极值点Z′ 0(x i,y j)和Z″ 0(x i,y j)。
即对第一极值点P e(n a,x i,y j)以及第一极值点附近的四个过渡点P e(n a-2,x i,y j)、P e(n a-1,x i,y j)、P e(n a+1,x i,y j)和P e(n a+2,x i,y j)进行拟合,得到潜在零级包络曲线的零级极值点Z′ 0(x i,y j);
对第三极值点P e(n c,x i,y j)以及第三极值点附近的四个过渡点P e(n c-2,x i,y j)、P e(n c-1,x i,y j)、P e(n c+1,x i,y j)和P e(n c+2,x i,y j)进行拟合,得到潜在零级包络曲线的零级极值点Z″ 0(x i,y j)。
假设已知待测台阶的表面为平滑表面,而得到的解算后的三维貌形数据发生了断崖式跳变,则考虑用潜在零级包络曲线的零级极值点Z′ 0(x i,y j)或Z″ 0(x i,y j)替代错误的零级极值点Z 0(x i,y j),利用式(1)重新求解出待测目标的高程位置Z d(x i,y j)。
因此,本发明提出的干涉三维形貌解算方法,一方面没有使用高斯函数进行滤波,降低了计算量;
一方面不需要对全部的采样点进行滤波,提高了算法的实时性;同时利用了子包络曲线具有更大的陡度的特点,使得算法的拟合精度高。
另一方面,本发明同样适用于窄谱段激光光源的干涉仪,如法布里-珀罗干涉仪、迈克尔逊干涉仪、马赫曾德干涉仪、塞格纳克干涉仪、斐索干涉仪等。
在本发明的一个优选实施例中,步骤S1中对干涉仪进行标定,获得干涉仪的顶峰空间偏移量Δl,具体包括以下步骤:
S11、利用已知面型的标准镜对干涉仪进行标定,计算经干涉仪获得的标准镜的标准面型分布
Figure PCTCN2022132783-appb-000004
在本发明的另一个优选实施例中,标准镜选取理想标准平面反射镜,利用已知面型的具有理想平面的标准平面反射镜对宽谱段白光干涉仪进行标定。
由于标准镜的反射信号强,对比度高,因此可利用常规方法,如小波变换法计算获取标准平面反射镜的面型分布
Figure PCTCN2022132783-appb-000005
将其视为标准值。
在本发明的另一个实施例中,标准镜还可选取已知面型的球面镜或非球面镜;通过选择与待测目标具有相同的光谱反射特性的标准镜,可以使用于标定的干涉图与实际测量的干涉图具有更好的相似度,有利于提高测量准确度。
S12、通过利用干涉仪获取标准镜上每个像素采集点的时序干涉图阵列,计算获得标准镜的变形分布Z(x i,y j)。
具体包括以下步骤:
S121、获取标准镜的时序干涉图阵列的零级包络曲线;
S122、利用标准镜的时序干涉图阵列的零级包络曲线得到标准镜的零级包络曲线的极值点和过渡点;
S123、利用标准镜的零级包络曲线的极值点和过渡点获取标准镜上每个像素采集点的零级包络曲线的极点高程位置;
S124、根据高程位置计算获得标准镜的变形分布Z(x i,y j)。
步骤S12中标准镜的零级包络曲线的极值点和过渡点的获取方法与上述实施例中台阶的零级包络曲线的极值点和过渡点的获取方法相同,在此不再赘述。
S13、计算干涉仪内部由于光程不匹配所引起的顶峰空间偏移量Δl(x i,y j):
Figure PCTCN2022132783-appb-000006
图4a、图5a和图6a分别示出了利用本发明的方法、傅里叶变换法以及重心法获取同一台阶处三维形貌解算图,图4b、图5b和图6b分别示出了对应的重心截面图。
从图中可以看出,利用本发明计算获取台阶上表面面型平整度RMS值为0.038μm,下表面面型平整度RMS值为0.009μm,高度为1.755μm,与标准值1.761μm的差值为6nm。
相比于传统的傅里叶变换法(上表面RMS值为0.045μm,下表面RMS值为0.015μm),上表面RMS值减小了15.6%,下表面RMS值减小了40%;
相比于传统的重心法(上表面RMS值为0.045μm,下表面RMS值为0.017μm),上表面RMS值减小了15.6%,下表面RMS值减小了47%。
通过上述数据可以发现,本发明的方法能够表现出更为准确的平面特征,测量获取的高程测量误差位于±0.01μm区间(标准台阶给定误差带范围),具有非常高的可信度。
另一方面,台阶样品以硅为基底,经过化学刻蚀而制成,硅材质偏黑色,具有相对较低的光谱反射率,导致信号的信噪比相对较低,因此解算效果并不理想。但利用本发明提出的方法,即可以大幅提高表面面型精度(RMS值),又使得高度差在标定范围内。可应用于低反射率样品,具有应用于工业测量、科学研究等实际工况的前景。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。
以上本发明的具体实施方式,并不构成对本发明保护范围的限定。任何根据本发明的技术构思所作出的各种其他相应的改变与变形,均应包含在本发明权利要求的保护范围内。

Claims (11)

  1. 一种干涉三维形貌解算方法,其特征在于,包括步骤:
    S1、利用标准镜对干涉仪进行标定,获得所述干涉仪的顶峰空间偏移量Δl;
    S2、利用所述干涉仪获取待测目标上每个像素采集点P(x i,y j)的时序干涉图阵列;所述时序干涉图阵列为N张具有干涉条纹的干涉图像;
    S3、获取所述时序干涉图阵列的零级子包络曲线以及潜在零级子包络曲线;
    S4、利用所述零级子包络曲线得到所述零级子包络曲线的零级极值点Z 0(x i,y j);
    S5、根据所述零级极值点Z 0(x i,y j)求解待测目标的高程位置Z d(x i,y j):
    Z d(x i,y j)=Δl(x i,y j)+Z 0(x i,y j)  (1)。
  2. 根据权利要求1所述的干涉三维形貌解算方法,其特征在于,所述标准镜为理想标准平面反射镜、球面镜或非球面镜;
    所述标准镜与待测目标具有相同的光谱反射特性。
  3. 根据权利要求1所述的干涉三维形貌解算方法,其特征在于,所述步骤S3包括以下步骤:
    S31、判断N个位于所述时序干涉图阵列中同一像素位置(x i,y j)处的采样点P(n,x i,y j)是否为极值点P e(n,x i,y j),或为过渡点P t(n,x i,y j),n∈[1,M],M为预设值;
    S32、根据所述极值点P e(n,x i,y j)得到所述时序干涉图阵列的零级子包络曲线以及潜在零级子包络曲线。
  4. 根据权利要求3所述的干涉三维形貌解算方法,其特征在于,所述步骤S31包括以下步骤:
    S311、对N张干涉图像上的各个采样点P(n,x i,y j)进行曝光,获 得各个采样点P(n,x i,y j)在所述干涉图像上的强度值I(n,x i,y j);
    S312、根据位于所述时序干涉图阵列中同一位置的N个所述采样点P(n,x i,y j)所在的所述干涉图像上的强度值I(n,x i,y j),构建数据立方体S;
    所述数据立方体S的构建模型如下:
    S(n,i,j)=[I(n+1,x i,y j)-I(n,x i,y j)]×[I(n,x i,y j)-I(n-1,x i,y j)](2);
    其中,
    I(n,x i,y j)表示采样点P(n,x i,y j)在所述时序干涉图阵列中第n张干涉图像上的强度值;
    I(n+1,x i,y j)表示采样点P(n+1,x i,y j)在所述时序干涉图阵列中第n+1张干涉图像上的强度值;
    I(n-1,x i,y j)表示采样点P(n-1,x i,y j)在所述时序干涉图阵列中第n-1张干涉图像上的强度值;
    S313、判断所述采样点P(n,x i,y j)是否为所述时序干涉图阵列的极值点:
    若S(n,i,j)≤0,则所述采样点P(n,x i,y j)为所述极值点P e(n,x i,y j);
    若S(n,i,j)>0,则所述采样点P(n,x i,y j)为过渡点P t(n,x i,y j)。
  5. 根据权利要求3所述的干涉三维形貌解算方法,其特征在于,所述步骤S32的方法为:
    将每个像素采集点P(x i,y j)对应在所述时序干涉图阵列上的所述极值点排序,选取至少三个强度值按降序排列的第一极值点P e(n a,x i,y j)、第二极值点P e(n b,x i,y j)和第三极值点P e(n c,x i,y j),存在如下关系:
    I e(n a,x i,y j)<I e(n b,x i,y j);
    I e(n b,x i,y j)<I e(n c,x i,y j)
    其中,I e(n a,x i,y j)为所述第一极值点P e(n a,x i,y j)的强度值,
    I e(n b,x i,y j)为所述第二极值点P e(n b,x i,y j)的强度值,
    I e(n c,x i,y j)为所述第三极值点P e(n c,x i,y j)的强度值;
    则所述第二极值点P e(n b,x i,y j)位于所述零级子包络曲线;
    所述第一极值点P e(n a,x i,y j)和所述第三极值点P e(n c,x i,y j)位于所述潜在零级子包络曲线。
  6. 根据权利要求1所述的干涉三维形貌解算方法,其特征在于,所述步骤S4包括以下步骤:
    S41、根据位于零级子包络曲线的极值点P e(n k,x i,y j)及过渡点P t(n k,x i,y j)获取零级子包络曲线的零级极值点Z 0(x i,y j)。
  7. 根据权利要求6所述的干涉三维形貌解算方法,其特征在于,所述零级极值点Z 0(x i,y j)的获取方法为:
    选取至少两个位于所述零级子包络曲线的极值点P e(n k,x i,y j)附近的第一过渡点P t(n k+1,x i,y j)和第二过渡点P t(n k-1,x i,y j),利用拟合的方法,对所述零级子包络曲线的极值点P e(n k,x i,y j)、所述第一过渡点P t(n k+1,x i,y j)和所述第二过渡点P t(n k-1,x i,y j)进行拟合,得到所述零级极值点Z 0(x i,y j)。
  8. 根据权利要求7所述的干涉三维形貌解算方法,其特征在于,所述拟合的方法包括拟合法、重心法或插值法中的至少一种。
  9. 根据权利要求1所述的干涉三维形貌解算方法,其特征在于,所述步骤S4还包括以下步骤:
    S42、拟合所述潜在零级子包络曲线的零级极值点Z′ 0(x i,y j),利用先验条件对错误的零级极值点Z 0(x i,y j)进行替换;
    所述先验条件为:待测目标的连续平面测量数据无高程跳变错位。
  10. 根据权利要求1所述的干涉三维形貌解算方法,其特征在于,所述步骤S1包括以下步骤:
    S11、利用已知面型的标准镜对所述干涉仪进行标定,得到的所述标准镜的标准面型分布
    Figure PCTCN2022132783-appb-100001
    S12、通过利用所述干涉仪获取所述标准镜上每个像素采集点的 时序干涉图阵列,计算获得所述标准镜的变形分布Z(x i,y j);
    S13、计算所述干涉仪内部由于光程不匹配所引起的顶峰空间偏移量Δl(x i,y j):
    Figure PCTCN2022132783-appb-100002
  11. 根据权利要求1或10所述的干涉三维形貌解算方法,其特征在于,所述干涉仪为宽谱段白光干涉仪或窄谱段激光干涉仪。
PCT/CN2022/132783 2021-11-18 2022-11-18 一种干涉三维形貌解算方法 WO2023088409A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111370114.1A CN114088010B (zh) 2021-11-18 2021-11-18 一种干涉三维形貌解算方法
CN202111370114.1 2021-11-18

Publications (1)

Publication Number Publication Date
WO2023088409A1 true WO2023088409A1 (zh) 2023-05-25

Family

ID=80301745

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/132783 WO2023088409A1 (zh) 2021-11-18 2022-11-18 一种干涉三维形貌解算方法

Country Status (2)

Country Link
CN (1) CN114088010B (zh)
WO (1) WO2023088409A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114088010B (zh) * 2021-11-18 2022-08-19 中国科学院长春光学精密机械与物理研究所 一种干涉三维形貌解算方法
CN117870573A (zh) * 2024-03-12 2024-04-12 板石智能科技(深圳)有限公司 一种白光干涉三维形貌解算方法、装置、设备及存储介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080174785A1 (en) * 2006-12-27 2008-07-24 Heliotis Ag Apparatus for the contact-less, interferometric determination of surface height profiles and depth scattering profiles
JP2008224568A (ja) * 2007-03-15 2008-09-25 Fujitsu Ltd 表面形状計測装置及び表面形状計測方法
CN108759709A (zh) * 2018-03-15 2018-11-06 北京航空航天大学 一种适用于表面形貌检测的白光干涉三维重建方法
CN109163672A (zh) * 2018-08-03 2019-01-08 广东工业大学 一种基于白光干涉零光程差位置拾取算法的微观形貌测量方法
CN113066083A (zh) * 2021-04-25 2021-07-02 青岛海信医疗设备股份有限公司 流体的多普勒参数确定方法和电子设备
CN113091634A (zh) * 2021-03-01 2021-07-09 南京理工大学 一种适用于白光扫描干涉的微观形貌快速测量方法
CN113446930A (zh) * 2020-03-26 2021-09-28 山东大学 一种基于希尔伯特变换的白光干涉信号非均匀采样的校正方法
CN114088010A (zh) * 2021-11-18 2022-02-25 中国科学院长春光学精密机械与物理研究所 一种干涉三维形貌解算方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102916339B (zh) * 2012-04-19 2016-08-17 广东工业大学 一种基于干涉条纹图像相位反馈的激光控制器装置及其方法
CN110488292B (zh) * 2019-08-23 2021-04-13 长沙天仪空间科技研究院有限公司 一种基于卫星编队的遥感系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080174785A1 (en) * 2006-12-27 2008-07-24 Heliotis Ag Apparatus for the contact-less, interferometric determination of surface height profiles and depth scattering profiles
JP2008224568A (ja) * 2007-03-15 2008-09-25 Fujitsu Ltd 表面形状計測装置及び表面形状計測方法
CN108759709A (zh) * 2018-03-15 2018-11-06 北京航空航天大学 一种适用于表面形貌检测的白光干涉三维重建方法
CN109163672A (zh) * 2018-08-03 2019-01-08 广东工业大学 一种基于白光干涉零光程差位置拾取算法的微观形貌测量方法
CN113446930A (zh) * 2020-03-26 2021-09-28 山东大学 一种基于希尔伯特变换的白光干涉信号非均匀采样的校正方法
CN113091634A (zh) * 2021-03-01 2021-07-09 南京理工大学 一种适用于白光扫描干涉的微观形貌快速测量方法
CN113066083A (zh) * 2021-04-25 2021-07-02 青岛海信医疗设备股份有限公司 流体的多普勒参数确定方法和电子设备
CN114088010A (zh) * 2021-11-18 2022-02-25 中国科学院长春光学精密机械与物理研究所 一种干涉三维形貌解算方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SHEN, LU ET AL.: "The Recovery of the3D Surface Profile of Micro Device Through White-light Interference", JOURNAL OF FOSHAN UNIVERSITY (NATURAL SCIENCE EDITION), no. 04, 15 July 2012 (2012-07-15), pages 36 - 40, XP009546482 *
ZHANG CHUNYUE, SHUYAN XU, BOQIAN XU, XIN QI, AND GUOHAO JU: "Correction for Effect of Calibration Error on Accuracy of Co-Phasing Error Detection of Dispersed Fringe", ACTA OPTICA SINICA, vol. 38, no. 7, 1 July 2018 (2018-07-01), pages 0711003 - 0711003-8, XP093068247, DOI: 10.3788/AOS201838.0711003 *

Also Published As

Publication number Publication date
CN114088010B (zh) 2022-08-19
CN114088010A (zh) 2022-02-25

Similar Documents

Publication Publication Date Title
WO2023088409A1 (zh) 一种干涉三维形貌解算方法
CN109163672B (zh) 一种基于白光干涉零光程差位置拾取算法的微观形貌测量方法
CN109307480B (zh) 一种透射元件多表面面形检测方法
CN108759709A (zh) 一种适用于表面形貌检测的白光干涉三维重建方法
CN101949691A (zh) 非零位补偿浅度光学非球面面形检测方法
CN108362226B (zh) 提高图像过曝区域相位测量精度的双四步相移法
CN113091634A (zh) 一种适用于白光扫描干涉的微观形貌快速测量方法
CN109737892B (zh) 基于区域定位拟合算法的数字莫尔移相干涉面形测量方法
CN109358334B (zh) 基于部分相干光的纳米位移台精密定位方法
TW201738529A (zh) 最佳化干涉儀之光學性能之方法以及裝置
Lehmann et al. Reduction of chromatic aberration influences in vertical scanning white-light interferometry
CN111307063A (zh) 一种消除单幅干涉条纹波面恢复中的符号模糊问题的方法
CN108303038A (zh) 基于二维光学点阵的反射型面形测量方法和装置
CN117409138A (zh) 基于白光显微干涉的高信噪比三维重建方法及装置
CN106123805B (zh) 基于白光扫描干涉的镀膜器件三维形貌测量方法
CN102620680A (zh) 一种三平面绝对测量光学面形的检测装置及方法
CN104330027B (zh) 一种基于误差互补修正的移相干涉测量位相提取方法
CN111121661B (zh) 用于光滑表面形貌测量的窄带非单色光n+1幅相移测试算法
CN107328740B (zh) 偏振频域光学相干层析成像光谱校准方法
US7158914B2 (en) Precision surface measurement
WO2023124867A1 (zh) 基于伪Wigner-Ville分布的白光扫描干涉三维重建方法
CN107942339B (zh) 一种光子计数激光干涉测距方法
Lowitzsch et al. Vision and modeling of specular surfaces
CN111089537B (zh) 一种多普勒差分干涉仪成像位置偏移的检测方法及系统
CN114967368A (zh) 一种用于成像系统波像差高精度在线测量装置和测量方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22894939

Country of ref document: EP

Kind code of ref document: A1