WO2023088228A1 - 质谱仪的离子筛选方法和系统、高压脉冲电路和选择电路 - Google Patents

质谱仪的离子筛选方法和系统、高压脉冲电路和选择电路 Download PDF

Info

Publication number
WO2023088228A1
WO2023088228A1 PCT/CN2022/131863 CN2022131863W WO2023088228A1 WO 2023088228 A1 WO2023088228 A1 WO 2023088228A1 CN 2022131863 W CN2022131863 W CN 2022131863W WO 2023088228 A1 WO2023088228 A1 WO 2023088228A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
signal
conductor
deflection
transistor switch
Prior art date
Application number
PCT/CN2022/131863
Other languages
English (en)
French (fr)
Inventor
蔡克亚
李向广
尚元贺
韩乐乐
陈世闯
吴云昭
张瑞峰
刘聪
Original Assignee
安图实验仪器(郑州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202122831001.9U external-priority patent/CN216437083U/zh
Priority claimed from CN202111370623.4A external-priority patent/CN114038731B/zh
Application filed by 安图实验仪器(郑州)有限公司 filed Critical 安图实验仪器(郑州)有限公司
Priority to EP22894762.8A priority Critical patent/EP4293703A1/en
Publication of WO2023088228A1 publication Critical patent/WO2023088228A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/022Circuit arrangements, e.g. for generating deviation currents or voltages ; Components associated with high voltage supply
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/06Electron- or ion-optical arrangements
    • H01J49/061Ion deflecting means, e.g. ion gates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • H01J49/34Dynamic spectrometers
    • H01J49/40Time-of-flight spectrometers

Definitions

  • the invention relates to the technical field of ion detection, in particular to an ion screening method and system of a mass spectrometer, a high-voltage pulse circuit and an ion selection circuit.
  • Figure 1 is a schematic diagram of the structure of a commonly used mass spectrometer; the excitation laser is emitted to the sample by the laser pulse source, so that the ion source sample generates ions and the ions enter the field-free drift tube after being accelerated by the acceleration field, and at a constant speed Fly to the ion detector.
  • the excitation laser is emitted to the sample by the laser pulse source, so that the ion source sample generates ions and the ions enter the field-free drift tube after being accelerated by the acceleration field, and at a constant speed Fly to the ion detector.
  • the target ions that need to be detected, but only the target ions with a molecular weight within a specific range are the targets that need to be detected and analyzed.
  • the pulse signal is an electrical signal that is commonly used in various electronic and electrical equipment.
  • a rectangular pulse signal it can be used as a control signal for a relay switch and so on.
  • an ideal rectangular pulse signal there is no buffer delay in the process of falling from high level to low level, or rising from low level to high level.
  • the high level falls to the low level and the low level rises to the high level, it is impossible to achieve absolute no delay.
  • the delay time can be shortened to almost negligible during the process of falling from high level to low level and rising from low level to high level, but for high-voltage pulse signals, this It is difficult to shorten the buffer delay time to be short enough, which limits the control accuracy that can be achieved by using the high-voltage pulse signal, thus limiting the application of the high-voltage pulse signal to a certain extent.
  • the purpose of the present invention is to provide an ion screening method and system of a mass spectrometer, which can reduce the number of non-target ions reaching the detector to a certain extent, thereby prolonging the service life of the detector in the mass spectrometer; a high-voltage pulse circuit is also provided And the ion selection circuit can shorten the delay of the rising edge and falling edge of the high-voltage pulse signal to a certain extent, and improve the control accuracy of the high-voltage pulse signal.
  • the invention provides a kind of ion screening method of mass spectrometer, the side of the ion flight path between the accelerating electric field of mass spectrometer and detector is provided with deflection conductor; Described screening method comprises:
  • Detecting the laser synchronous pulse signal after the laser synchronous pulse signal is output, keep the deflection conductor connected to the first voltage signal unchanged, so as to deflect the flight direction of the non-target ions flying out from the accelerating electric field ;
  • the first voltage signal is connected to the deflection conductor.
  • the deflection conductors are at least one set of deflection conductor plates arranged on the side of the ion flight path; each set of deflection conductor plates includes a first conductor plate and a second deflection conductor plate. two conductor plates, the first conductor plate is grounded;
  • Connecting the first voltage signal to the deflection conductor includes:
  • Connecting the second voltage signal to the deflection conductor includes:
  • a voltage signal having the same magnitude as the ground voltage is connected to the second conductor plate.
  • the deflection conductor is a focusing pole in the mass spectrometer or a metal cylindrical shell of a field-free region of the mass spectrometer;
  • Connecting the first voltage signal to the deflection conductor includes:
  • Connecting the second voltage signal to the deflection conductor includes:
  • a high-voltage electrical signal having the same electrical property as the ion is connected to the deflection conductor.
  • it also includes alternately passing the first voltage signal and the second voltage signal to the deflection conductor multiple times; wherein, passing the first voltage signal each time
  • the signal and the duration of the second voltage signal are determined according to the molecular weights of non-target ions that need to be deflected and target ions that do not need to be deflected.
  • the application also provides an ion screening system of a mass spectrometer, comprising:
  • a controller whose input terminal is connected to a laser pulse source for outputting a laser pulse signal
  • the output terminal is connected to the deflection conductor provided in the mass spectrometer, and the input terminal is connected to the ion selection circuit of the controller;
  • the controller is used to control the ion selection circuit to output the first voltage signal and the second voltage signal to the deflection conductor, so as to execute the steps of realizing the ion screening method of the mass spectrometer as described in any one of the above.
  • the deflection conductors are at least one set of deflection conductor plates arranged on the side of the ion flight path; each set of deflection conductor plates includes a first conductor plate and a second deflection conductor plate. two conductor plates, the first conductor plate is grounded;
  • the second conductor plate is connected to the signal output end of the ion selection circuit, and the ion selection circuit includes a high-voltage power supply, a pulse circuit, and an RC series circuit;
  • the pulse circuit includes a voltage dividing element and a transistor switch connected in series; one end of the pulse circuit is connected to the output end of the high-voltage power supply, and the other end is grounded; the node where the voltage dividing element is connected to the transistor switch It is the signal output end of the ion selection circuit; the first end of the RC series circuit is connected to the signal output end of the ion selection circuit, and the second end is grounded;
  • the controller is connected to the control terminal of the transistor switch, and the controller is used to control the turn-on and turn-off of the transistor switch.
  • the first end of the voltage dividing element is connected to a high-voltage power supply, and the second end is connected to the first end of the transistor switch; the second end of the transistor switch terminal grounding;
  • the controller When the controller outputs a high level signal, the first terminal and the second terminal of the transistor switch are turned on.
  • the first end of the transistor switch is connected to the high-voltage power supply, and the second end is connected to the first end of the voltage dividing element; the second end of the voltage dividing element is grounded;
  • the controller When the controller outputs a low-level signal, the first terminal and the second terminal of the transistor switch are disconnected;
  • the controller When the controller outputs a high level signal, the first terminal and the second terminal of the transistor switch are turned on.
  • the ion selection circuit further includes an RC parallel circuit; the control terminal of the transistor switch is connected to the controller through the RC parallel circuit.
  • a deflection conductor is provided on the side of the ion flight path between the accelerating electric field of the mass spectrometer and the detector; the screening method comprises: connecting the first voltage signal to the deflection conductor, To make the deflection conductor generate a deflection electric field, when the ion flies through the deflection electric field, the flight direction is deflected and does not reach the detector; the laser synchronization pulse signal is detected, and after the laser synchronization pulse signal is output, the deflection conductor is kept connected to the first voltage signal without change, so as to deflect the flight direction of the non-target ions flying out from the accelerating electric field; when the target ions fly out from the accelerating electric field, turn on the second voltage signal to the deflection conductor, and do not generate a deflecting electric field that deflects the target ions, so that the target ions fly to the detector; when the target ions all pass through the de
  • the first voltage is connected to the deflection conductor in the mass spectrometer signal, so that after the laser pulse source is turned on, the deflection electric field generated by the deflection conductor can immediately deflect the flight direction of the non-target ions;
  • the detector only displays the detection results of the target ions, and also avoids the interference of non-target ions
  • the present application also provides an ion screening system for a mass spectrometer, which has the above beneficial effects.
  • the present application also provides a high-voltage pulse circuit, including a first voltage source, a second voltage source, a pulse circuit, and an RC series circuit; the voltage output by the first voltage source and the voltage output by the second voltage source The voltage difference between them is not less than the preset voltage difference;
  • the pulse circuit includes a voltage dividing element and a transistor switch connected in series; one end of the pulse circuit is connected to the first voltage source, and the other end is connected to the second voltage source; the voltage dividing element The node connected to the transistor switch is the signal output end of the high-voltage pulse circuit;
  • the first end of the RC series circuit is connected to the signal output end of the high-voltage pulse circuit, and the second end is connected to the second voltage source;
  • the transistor switch is used for switching on and off according to a switch control signal received by a control terminal of the transistor switch.
  • the first end of the voltage dividing element is connected to the first voltage source, and the second end is connected to the first end of the transistor switch; the second end is connected to the second voltage source;
  • the switch control signal is a high-level signal
  • the first terminal and the second terminal of the transistor switch are turned on
  • the switch control signal is a low level signal
  • the first terminal and the second terminal of the transistor switch are disconnected.
  • the first end of the transistor switch is connected to the first voltage source, and the second end is connected to the first end of the voltage dividing element;
  • the second end of the voltage element is connected to the second voltage source;
  • the switch control signal is a high level signal, the first end and the second end of the transistor switch are turned on;
  • the switch control signal is a low level signal
  • the first terminal and the second terminal of the transistor switch are disconnected.
  • the first voltage source is a high-voltage power supply, and the voltage output by the second voltage source is a ground voltage;
  • the first voltage source is a high-voltage power supply
  • the second voltage source is a negative high-voltage power supply
  • the voltage output by the first voltage source is a ground voltage
  • the second voltage source is a negative high voltage power supply.
  • an RC parallel circuit connected to the control terminal of the transistor switch is further included, and the control terminal of the transistor switch receives the switch control signal through the RC parallel circuit.
  • An ion selection circuit applied to a mass spectrometer, wherein, the inside of the mass spectrometer is provided with a conductor for deflecting the flight direction of non-target ions; the ion selection circuit includes a controller, as described in any one of the high-voltage pulse circuit;
  • the signal output end of the high-voltage pulse circuit is used to be connected to the conductor; the output end of the controller is connected to the control end of the transistor switch in the high-voltage pulse circuit;
  • the controller is used to switch and output two different switch control signals to the high-voltage pulse circuit, so that the high-voltage pulse circuit outputs a high-level signal and a low-level signal to switch the output high-voltage pulse signal.
  • the high-voltage pulse circuit includes a first voltage source, a second voltage source, a pulse circuit, and an RC series circuit; the voltage difference between the voltage output by the first voltage source and the voltage output by the second voltage source is not Less than the preset voltage difference; wherein, the pulse circuit includes a voltage dividing element and a transistor switch connected in series; one end of the pulse circuit is connected to the first voltage source, and the other end is connected to the second voltage source; the voltage dividing element and the transistor switch The connected node is the signal output end of the high-voltage pulse circuit; the first end of the RC series circuit is connected with the signal output end of the high-voltage pulse circuit, and the second end is connected with the second voltage source; The switch control signal received by the control terminal is switched on and off.
  • a transistor switch and a voltage dividing element are used as a pulse circuit in series between the first voltage source and the second voltage source, and by controlling the opening and closing of the transistor switch, the high voltage pulse circuit is connected between the transistor and the voltage dividing element.
  • the node output between the first voltage source is a high-level signal
  • the output voltage of the second voltage source is a high-voltage pulse signal as a low-level signal
  • the transistor switch and the voltage dividing element form an equivalent
  • the RC circuit causes the buffer delay of switching output between the high-level signal and the low-level signal; in this application, an RC circuit is further connected in parallel between the signal output terminal of the high-voltage pulse circuit and the second voltage source
  • the series circuit using the RC series circuit to charge and discharge the junction capacitance in the transistor switch, can reduce the time it takes for the switch control signal to control the transistor switch to turn off and on to a certain extent, and further reduce the high and low voltage in the high voltage pulse signal.
  • the buffering time of signal switching so as to output the high-voltage pulse signal with the buffering time of high-voltage and low-voltage signal switching in the order of nanoseconds, which is conducive to the wide application of high-voltage pulse signals.
  • the present application also provides an ion selection circuit, which has the above beneficial effects.
  • Fig. 1 is the structural representation of conventional mass spectrometer
  • Fig. 2 is the schematic flow chart of the ion screening method of the mass spectrometer provided by the embodiment of the present application;
  • Fig. 3 is the structural representation of the mass spectrometer provided by the embodiment of the present application.
  • Fig. 4 is the mass spectrogram that does not carry out screening corresponding detector to target ion and non-target ion to measure;
  • Fig. 5 is the mass spectrogram measured by the detector corresponding to the screening of target ions in an interval
  • Figure 6 is the mass spectrogram measured by the detector corresponding to the screening of target ions in multiple intervals
  • FIG. 7 is a schematic structural diagram of an ion selection circuit provided in an embodiment of the present application.
  • Fig. 8 is a schematic structural diagram of another ion selection circuit provided by the embodiment of the present application.
  • FIG. 9 is a schematic diagram of the circuit structure of the high-voltage pulse circuit provided by the embodiment of the present application.
  • FIG. 10 is a schematic circuit structure diagram of another high-voltage pulse circuit provided in an embodiment of the present application.
  • ion source sample 01 is subjected to the laser excitation of laser pulse source 2 output and comprises the ion of different molecular weight, and is different for the ion of different molecular weight in the acceleration electric field speed size, for the molecular weight the more Smaller ions accelerate faster in the accelerating electric field U; on the contrary, ions with larger molecular weights are accelerated to a smaller speed. to the detector 1, and the ions with larger molecular weights leave the accelerating electric field U and fly to the detector 1 through the field-free region.
  • this application considers that the mass difference of the target ion and the non-target ion causes the time of the target ion and the non-target ion to pass through the field-free zone to be different, and the target ion and the non-target ion are screened.
  • non-target ions are hindered from flying to the detector, and finally non-target ions cannot reach detector 1, but only target ions can reach detector 1 to be detected, which is beneficial to improve the service life of the detector and improve the detection results display clarity.
  • FIG. 2 is a schematic flowchart of the ion screening method of the mass spectrometer provided in the embodiment of the present application
  • FIG. 3 is a schematic structural diagram of the mass spectrometer provided in the embodiment of the present application.
  • a deflection conductor is also arranged on the side of the ion flight path.
  • the deflection conductor may be a flat conductor arranged in a field-free region.
  • the ion screening method of the mass spectrometer in this application can include:
  • S12 Detect the laser synchronous pulse signal. After the laser synchronous pulse signal is output, keep the first voltage signal on the deflection conductor unchanged, so as to deflect the flight direction of the non-target ions flying out from the accelerating electric field.
  • the laser synchronization pulse signal is also the signal for starting the laser pulse source 2 to emit laser light to the ion source sample 01 .
  • the laser synchronization pulse signal is also the signal for starting the laser pulse source 2 to emit laser light to the ion source sample 01 .
  • the first voltage signal is connected to the deflection conductor before the laser pulse signal triggers the laser pulse source 2, then as long as non-target ions are generated subsequently, they must be deflected by the deflection conductor and cannot reach the detector 1.
  • the magnitude of the first voltage signal should also meet a certain voltage magnitude, and a relatively large voltage magnitude should be used as much as possible. high voltage electrical signal.
  • the deflection conductors may be at least one set of deflection conductor plates arranged on the side of the ion flight path; each set of deflection conductor plates includes a first conductor plate and a second conductor plate, the second A conductor plate is grounded;
  • Connecting the first voltage signal to the deflection conductor includes:
  • a negative high-voltage pulse signal lower than the ground voltage is connected to the second conductor plate
  • Connecting the second voltage signal to the deflection conductor includes:
  • a voltage signal having the same magnitude as the ground voltage is connected to the second conductor plate.
  • the deflection conductor is a pair of conductor plates
  • the first conductor plate 31 is grounded
  • the second conductor plate 32 is connected to a high-voltage pulse signal
  • a deflection electric field can be formed in between, so that charged non-target ions flying between the first conductor plate 31 and the second conductor plate 32 can be deflected by the deflection electric field.
  • the deflection conductors arranged on both sides of the ion flight path it is not necessarily a pair of conductor plates, even if only one conductor is provided, the conductor
  • an electric field can also be formed around the conductor component, thereby deflecting the non-target ions; and when the target ion flies, the voltage of the conductor component is switched to the ground voltage, that is The electric field around the conductor can be made to disappear, thereby allowing non-target ions to pass through.
  • the deflection conductor can be the focusing pole 4 in the mass spectrometer or the metal cylindrical casing 5 of the field-free region of the mass spectrometer;
  • Connecting the first voltage signal to the deflection conductor includes:
  • Connecting the second voltage signal to the deflection conductor includes:
  • a high-voltage pulse signal with the same electrical property as the ion is connected to the deflection conductor.
  • the focusing pole 4 is a metal cylinder arranged at the outlet of the accelerating electric field U.
  • the flying direction of the ions generated by the excitation of the ion source sample 01 after being accelerated from the accelerating electric field U cannot be guaranteed to point to the detector 1, but may be deflected from a certain angle.
  • the ion flight trajectory driven by the electric field can move closer to the central axis of the focusing pole 4, so that the final flight trajectory of the ion is almost the same as that of the focusing pole 4
  • the straight line where the central axis is located coincides.
  • a negative voltage needs to be connected to the focusing electrode 4, so that the direction of the electric field lines in the barrel of the focusing electrode 4 is directed from the central axis of the focusing electrode 4 to the focusing electrode 4 inner wall.
  • the target ions and non-target ions flying out from the accelerating electric field U after being excited by the laser are ions with the same charge.
  • the first voltage signal connected to the focusing electrode is a negative voltage electrical signal less than 0V voltage, and the focusing electrode 4 pairs
  • the adsorption of ions causes non-target ions to deviate from the central axis of the focusing pole 4 and deflect to the sidewall of the focusing pole 4 , so that they cannot reach the detector 1 .
  • the second voltage signal connected to the focusing electrode 4 can also be a positive voltage signal greater than 0V.
  • the force of the focusing electrode 4 on the ions is a repulsive force , so that the flight trajectory of the target ions moves closer to the central axis of the focusing pole 4 , so as to reach the detector 1 more smoothly.
  • the first voltage signal is a positive voltage signal greater than 0V
  • the second voltage signal is a negative voltage signal less than 0V.
  • the metal cylindrical shell 5 of the field-free region of the mass spectrometer When the metal cylindrical shell 5 of the field-free region of the mass spectrometer is used as the deflection conductor, its working mode and principle are the same as that of the focusing pole 4 as the deflection conductor, and the first voltage signal is also the voltage opposite to the ion electric property signal, and when the second voltage signal is a voltage signal opposite to the ion charge, it will not be repeated in this application.
  • the non-target ions with a molecular weight larger than the target ion fly slower than the target ions, therefore, after the target ions have flown to the detector 1, some non-target ions with a molecular weight larger than the target ion may fly to the detector 1 , in order to avoid the non-target ions from reaching the detector 1 to the greatest extent, after the target ions fly through the field-free region, the first voltage signal is further connected to the deflection conductor so as to realize the deflection of the non-target ions whose molecular weight is larger than the target ion, Finally, only the target ions can reach the detector 1 smoothly.
  • the target ions that need to be detected may be distributed in multiple discontinuous molecular weight ion intervals, for example, for (0, a1], (a1, a2], (a2, a3], (a3, a4 ], (a4, a5] a plurality of molecular weight ion intervals, wherein (a1, a2] and (a3, a4] ions in the two multi-molecular weight ion intervals are target ions, (0, a1], (a2, a3],
  • the ions in the three molecular weight ion intervals such as (a4, a5] are non-target ions, then in the process of screening the ions, the first voltage signal and the second voltage signal can be alternately connected to the deflection conductor multiple times, wherein each The duration of the first voltage signal and the second voltage signal is determined according to the molecular weight of the non-target ions that need to be deflected and the target ions that do not need to be deflecte
  • the first voltage signal is connected to the deflection conductor, and when (a1, a2] and (a3, a4] the target ions in the two multi-molecular weight ion intervals
  • the second voltage signal is connected to the deflection conductor.
  • Fig. 4 is the mass spectrogram measured by the detector corresponding to the screening of target ions and non-target ions
  • Fig. 5 is the mass spectrogram measured by the detector corresponding to the screening of target ions in an interval
  • Fig. 6 is the mass spectrogram measured by the detector corresponding to the screening of target ions in multiple intervals.
  • the mass spectrogram in Fig. 4 contains a large amount of small molecular weight matrix peaks in the mass spectrogram in Fig. It belongs to the noise peak, which will reduce the signal-to-noise ratio of the spectrum and make the operation of the instrument more complicated.
  • target ions in a predetermined molecular weight range are selected to reach the detector, and non-target ions in the remaining ranges are deflected so that they cannot reach the detector;
  • Figure 6 is obtained by selecting target ions in two preset molecular weight ranges to reach the detector Ion mass spectrometry, so that only the target ions in the target molecular weight range reach the detector by selection, and useless non-target ions are screened out, which greatly reduces the loss of the detector, improves the service life of the detector, and reduces the noise of the spectrum
  • the signal greatly improves the signal-to-noise ratio, and only the ion spectrum of the target molecular weight range needs to be processed and analyzed in the follow-up, which makes the operation of the instrument relatively simple and efficient.
  • the deflection conductor can generate a deflection electric field, thereby ensuring that the first to enter The non-target ions in the field-free area can be completely deflected and not received by the detector; when the target ions enter the field-free area, the voltage signal connected to the deflection conductor is switched so that the deflection conductor does not deflect the target ions.
  • the voltage signal connected to the deflection conductor is switched again, so that the deflection conductor can deflect the non-target ions whose molecular weight is larger than the target ion, so as to realize the detection of non-target ions to the greatest extent.
  • the deflection reduces the non-target ions that can reach the detector as much as possible, thereby slowing down the attenuation of the detector to a certain extent, thereby prolonging the service life of the detector.
  • the ion screening system may include:
  • a controller whose input terminal is connected to a laser pulse source for outputting a laser pulse signal
  • the output terminal is connected with the deflection conductor in the mass spectrometer, and the input terminal is connected with the ion selection circuit of the controller;
  • the controller is used to control the ion selection circuit to output the first voltage signal and the second voltage signal to the deflection conductor, so as to execute the steps of realizing the ion screening method of any one of the above mass spectrometers.
  • the deflection conductor needs to realize the screening of target ions and non-target ions, and the voltage signal switched on is to switch back and forth between two different constant voltage signals. It can be seen that for the deflection conductor The switched-on voltage can be regarded as a square wave pulse signal. Therefore, in practical applications, the ion selection circuit can adopt a circuit structure capable of outputting square wave pulse signals.
  • the voltage difference between the high-level signal and the low-level signal of the square wave pulse signal should reach a certain size difference to ensure
  • the complete deflection of non-target ions means that the pulse voltage signal output by the ion selection circuit is required to be a high-voltage pulse signal.
  • the deflection conductor is at least one group of deflection conductor plates arranged on the side of the ion flight path; each group of deflection conductor plates includes a first conductor plate and a second conductor plate, and the first conductor plate is grounded; the second conductor plate and the ion selection circuit as an example.
  • FIG. 7 is a schematic structural diagram of an ion selection circuit provided in an embodiment of the present application
  • FIG. 8 is a schematic structural diagram of another ion selection circuit provided in an embodiment of the present application.
  • the ion selection circuit may include:
  • High-voltage power supply HV, pulse circuit, and RC series circuit includes a high-voltage resistance capacitor C2 and a high-voltage resistance resistance R3 in series, and the high-voltage resistance R3 has a large power.
  • the resistance should be smaller than the resistance of the pressure element R2.
  • the pulse circuit includes a voltage dividing element R2 and a transistor switch Q connected in series;
  • One end of the pulse circuit is connected to the output end of the high-voltage power supply HV, and the other end is grounded;
  • the node connecting the voltage dividing element R2 and the transistor switch Q is the signal output terminal OUT of the ion selection circuit
  • One end of the RC series circuit is connected to the signal output terminal OUT of the ion selection circuit, and the other end is grounded;
  • the controller is connected with the control terminal of the transistor switch Q, and the controller is used to control the turn-on and turn-off of the transistor switch.
  • an RC parallel circuit may be further provided between the controller and the control terminal of the transistor switch Q; the RC parallel circuit may be a circuit structure composed of a resistance element R1 and a capacitance element C1 connected in parallel.
  • the output of the high-voltage pulse signal is mainly realized by the pulse circuit composed of the voltage dividing element R2 and the transistor switch Q.
  • One end of the pulse circuit is connected to the output terminal of the high-voltage power supply HV and the other end is grounded; at the same time, the control of the transistor switch Q
  • the terminal and the output terminal of the controller are connected through an RC parallel circuit, so that the controller can control the opening and closing of the transistor switch Q by outputting corresponding control signals; and the opening and closing of the transistor switch Q also determines the transistor Whether the voltage at the node between the switch Q and the voltage dividing element R2 is the ground voltage or the output voltage of the high-voltage power supply HV, so that the output voltage of the pulse circuit can be switched back and forth between the high-voltage signal and the ground signal.
  • the voltage dividing element R2 can be a voltage dividing resistor or other voltage dividing elements with a certain resistance value
  • the transistor switch Q can be a triode, MOS tube or other similar
  • the semiconductor switch which is not specifically limited in this application.
  • the controller can control the turn-off and turn-on of the transistor switch Q, which can be determined based on the basic operating characteristics of the transistor switch Q.
  • the control signal of the controller to control the transistor switch Q can also use a pulse signal for switching between high and low levels. , but compared to the high-voltage pulse signal required to deflect the conductor, the controller only needs to output a low-voltage pulse signal to the control terminal of the transistor switch Q.
  • the working characteristics of the pulse circuit formed by the voltage dividing element R2 and the transistor switch Q can be approximately regarded as an RC series circuit, based on the charging and discharging process of the transistor switch Q similar to a capacitor, the junction capacitance of the transistor switch Q and the voltage dividing element R2 An equivalent RC series circuit is formed between them, and the junction capacitance of the transistor switch Q makes it have a certain delay in the switching process, which in turn causes the buffer delay time of the rising and falling edges of the final output pulse signal.
  • the ion selection circuit in this embodiment can further connect the RC series circuit in parallel to the output terminal of the sum signal between OUT and ground.
  • the high-voltage capacitor C2 circuit in the RC series circuit can charge it when the transistor switch Q is turned on. , absorbing the charge of the transistor switch Q when it is turned off, can reduce the buffer delay time of the rising and falling edges of the output high-voltage pulse signal to a certain extent, so that it can quickly switch the high-voltage level, and the high-voltage pulse can be realized
  • the extremely fast falling and rising speed of the signal output can reach the nanosecond level, which ensures the accuracy of switching between high and low level signals in high voltage pulse signals.
  • the R circuit and the C circuit have a certain filtering effect to remove high-order harmonics and make the high-voltage pulse waveform more regular.
  • controller is further passed through the RC parallel circuit and the control terminal of the transistor switch Q, so that the charging and discharging function of the capacitive element C1 in the RC parallel circuit is used to shorten the time required for the switch control signal to control the start-up transistor switch Q to be turned on or off. The amount of time spent.
  • the delay of the rising edge and the falling edge can be reduced to several nanometers, thereby greatly shortening the rising and falling edges.
  • the ion selection circuit is applied to various control systems, the control accuracy of the control system is improved.
  • the pulse circuit may include:
  • the first end of the voltage dividing element R2 is connected to the high-voltage power supply HV, and the second end is connected to the first end of the transistor switch Q; the second end of the transistor switch Q is grounded; the control end of the transistor switch Q is controlled by an RC parallel circuit and device connected;
  • the controller When the controller outputs a low level signal, the first terminal and the second terminal of the transistor switch Q are disconnected.
  • the first end of the transistor switch Q is connected to the output end of the high voltage power supply HV through the voltage dividing element R2;
  • the transistor switch Q in Figure 7 as an example of an NPN triode
  • the controller when the controller outputs a low-level signal to the base of the transistor switch Q through an RC parallel circuit, the collector and emitter of the transistor switch Q are also disconnected from each other.
  • the collector of the transistor switch Q and the voltage dividing element R2 connected to each other serves as the output terminal of the pulse circuit, and at this time, the output terminal of the pulse circuit also outputs a high-voltage voltage signal.
  • the controller when the controller outputs a high-level pulse signal to the base of the transistor switch Q, the collector and the emitter of the transistor switch Q are turned on, and the collector of the transistor switch Q passes through the voltage dividing element R2 and the high-voltage power supply HV is connected, and the collector of the transistor switch Q is used as the output terminal of the pulse circuit to output a grounded 0V voltage signal, thereby realizing the rapid switching of the output voltage of the ion selection circuit between the high voltage signal and the grounded 0V voltage signal.
  • the pulse circuit may include:
  • the first end of the transistor switch Q is connected to the high voltage power supply HV, the second end is connected to the first end of the voltage dividing element R2, the control end of the transistor switch Q is connected to the second end of the RC parallel circuit; the voltage dividing element R2 The second end of the ground;
  • the controller When the controller outputs a high level signal, the first terminal and the second terminal of the transistor switch Q are turned on.
  • the end connected to the transistor switch Q and the voltage dividing element R2 is the emitter of the transistor switch Q, that is, the emitter voltage of the transistor switch Q is used as a pulse circuit output voltage signal.
  • the RC series circuit is connected in parallel at both ends of the voltage dividing element R2.
  • the controller outputs a high-level pulse signal to the base of the transistor switch Q through the RC parallel circuit, the collector and emitter of the transistor switch Q are disconnected from each other, at this time, the transistor switch Q The emitter is connected to the ground terminal through the voltage dividing element R2, and the voltage signal output by the pulse circuit is the voltage signal of the ground terminal.
  • the controller When the controller inputs a high-level signal to the base of the transistor switch Q, the collector and emitter of the transistor are turned on, and the emitter of the transistor switch Q is directly connected to the high-voltage power supply HV. Obviously, At this time, the voltage of the emitter of the transistor switch Q is equal to the high-level pulse signal, so that the voltage signal output by the pulse circuit can be switched back and forth between the high-voltage signal and the grounded 0V voltage signal, thereby forming a high-voltage pulse signal.
  • the pulse circuit mainly outputs a high-voltage pulse signal, and the high-voltage signal is a high-level signal, and the ground voltage signal is a low-level signal.
  • the output high-voltage pulse signal requires the ground voltage to be a high-level signal and the negative high-voltage signal (that is, lower than the ground voltage, and the voltage is relatively large) Large voltage signal) is a low-level signal; at this time, the high-voltage power supply in Figure 7 and Figure 8 can be replaced with a ground voltage source, and the ground terminal in Figure 7 and Figure 8 can be replaced with a negative high-voltage voltage source.
  • the high-voltage pulse signal output by the ion selection circuit be a high-level signal
  • a negative high-voltage signal be a low-level signal.
  • the transistor switch Q when the controller outputs a high-level signal to the control terminal of the transistor switch Q, the transistor switch Q is closed; when the controller outputs a low-level signal to the control terminal of the transistor switch Q, the transistor switch Q is opened.
  • the high-voltage power supply HV is a power supply of tens of volts to one thousand volts.
  • the first end of the voltage dividing element R2 is reached through the transistor switch Q, and the voltage dividing element R2 can be a resistor with high withstand voltage and high power.
  • the node where the voltage dividing element R2 is connected to the transistor switch Q is connected to the first end of the high-voltage capacitor C2, and the second end of the high-voltage capacitor C2 is connected to the first end of the high-voltage resistor R3.
  • the high-voltage resistor R3 is equivalent to a filter , a high-voltage-resistant, high-power resistor can be used, its resistance value is much smaller than that of the voltage-dividing element R2, and the second end of the high-voltage resistant resistor R3 is grounded.
  • the second end of the voltage dividing element R2 is also grounded, and the end of the voltage dividing element R2 connected to the transistor switch Q and the high voltage capacitor C2 is the signal output end of the ion selection circuit.
  • the controller When the controller outputs a high-level signal to the control terminal of the transistor switch Q, the transistor switch Q is closed to form a path, and the high-voltage power supply HV goes directly to the ground through the transistor switch Q and the voltage dividing element R2, and the transistor switch Q and the voltage dividing element R2 and The node where the high-voltage-resistant capacitor C2 is connected together, that is, the signal output terminal OUT of the ion selection circuit outputs a high-level signal;
  • the controller When the controller outputs a low-level signal to the control terminal of the transistor switch Q, the transistor switch Q is disconnected to form an open circuit, and the signal output terminal of the ion selection circuit is grounded through the voltage dividing element R2 to output a low-level signal.
  • the RC series circuit composed of the high-voltage capacitor C1 and the high-voltage resistor R3 is charged, discharged and filtered when the high-voltage pulse changes, the extremely fast drop and rise speed of the high-voltage pulse signal output can reach the nanosecond level, ensuring Accuracy of high and low level signal switching in high voltage pulse signal.
  • the controller controls the turn-off and conduction of the transistor switch by outputting a low-voltage pulse signal, thereby controlling the output of the high-voltage pulse signal of the ion selection circuit. Therefore, in this application, the low-voltage pulse output by the controller The signal realizes the output control of the high-voltage pulse signal.
  • an isolation circuit is further set up between the controller and the control terminal of the transistor switch in this application. Specifically, isolation can be added between the controller and the RC parallel circuit chip, so as to avoid the negative interference of high-voltage pulse signal to the controller.
  • the high-voltage pulse circuit involved in this application mainly refers to a square wave pulse signal used to output high-level and low-level signals to switch back and forth, wherein there is a large voltage difference between the high-level and low-level signals.
  • the high-level and low-level output of the high-voltage pulse circuit are alternately switched repeatedly, the rising and falling edges of the voltage are switched instantaneously, but in practical applications, the rising and falling edges of the voltage cannot be completely switched.
  • Instantaneous switching but there is a certain buffer delay between the rising and falling edges of the voltage, and the greater the voltage difference between the high level and the low level, the longer the buffer delay.
  • the present application provides a high-voltage pulse circuit that shortens the buffering time of rising and falling edges on the basis of outputting a high-voltage pulse signal with a large voltage difference between high-level and low-level.
  • FIG. 9 is a schematic circuit structure diagram of a high-voltage pulse circuit provided by an embodiment of the present application
  • FIG. 10 is a schematic circuit structure diagram of another high-voltage pulse circuit provided by an embodiment of the present application.
  • the high voltage pulse circuit may include:
  • the voltage difference between the voltage output by the first voltage source HV+ and the voltage output by the second voltage source HV- in this embodiment Not less than the preset voltage difference. That is to say, there is a relatively large voltage difference between the voltage output by the first voltage source HV+ and the voltage output by the second voltage source HV-.
  • the voltage difference between the high and low levels of the signal is proportional.
  • the first voltage source HV+ is a high-voltage power supply
  • the voltage output by the second voltage source HV- is a ground voltage
  • the first voltage source HV+ is a high-voltage power supply
  • the second voltage source HV- is a negative high-voltage power supply
  • the voltage output by the first voltage source HV+ is a ground voltage
  • the second voltage source HV- is a negative high voltage power supply.
  • the high-voltage power supply in this embodiment may specifically refer to a high-voltage power supply of tens of volts to one thousand volts.
  • the negative high-voltage power supply refers to a negative voltage source of tens of volts to one thousand volts.
  • the high-voltage pulse circuit may further include: a pulse circuit, and an RC series circuit.
  • the pulse circuit includes a voltage dividing element R2 and a transistor switch Q connected in series;
  • One end of the pulse circuit is connected to the first voltage source HV+, and the other end is connected to the second voltage source HV-;
  • the node where the voltage dividing element R2 is connected to the transistor switch Q is the signal output terminal OUT of the high-voltage pulse circuit;
  • the transistor switch Q The control terminal is used to receive a switch control signal, and the switch control signal is used to control the conduction and disconnection of the transistor switch Q;
  • the first terminal of the RC series circuit is connected to the signal output terminal OUT of the high-voltage pulse circuit, and the second terminal of the RC series circuit is connected to the second voltage source HV-.
  • an RC parallel circuit can be further connected in series at the control terminal of the crystal switch Q; the first terminal of the RC parallel circuit is used to receive the switch control signal, and the second terminal of the RC parallel circuit is used to connect with the transistor switch Q The control terminal is connected; the switch control signal is used to control the conduction and disconnection of the transistor switch Q.
  • the RC parallel circuit may be a circuit structure composed of a resistance element R1 and a capacitance element C1 connected in parallel.
  • the voltage dividing element R2 in the pulse circuit can use a voltage dividing resistor or other circuit elements with a certain resistance value
  • the transistor switch Q can use semiconductor switching devices such as transistors and MOS transistors.
  • the pulse circuit As for the pulse circuit, it is connected in series with the first voltage source HV+ and the second voltage source HV-, thereby forming a main circuit for outputting a high-voltage pulse signal.
  • the series sequence in which the voltage dividing element R2 and the transistor switch Q are connected in series between the first voltage source HV+ and the second voltage source HV ⁇ in the pulse circuit may include two different forms.
  • the first terminal of the voltage dividing element R2 is connected to the first voltage source, and the second terminal is connected to the first terminal of the transistor switch Q; the second terminal of the transistor switch Q The end is connected with the second voltage source; the control end of the transistor switch Q is connected with the second end of the RC parallel circuit.
  • the control terminal of the transistor switch Q in the pulse circuit receives a switch control signal through an RC parallel circuit, and the switch control signal can specifically be a low-voltage pulse signal generated by a controller or other pulse sources.
  • the first voltage source HV+ is a high-voltage power supply
  • the second voltage source HV- is a ground voltage source
  • the transistor switch Q is an NPN triode as an example for illustration.
  • the control terminal of the transistor switch Q is also the base of the NPN transistor, the first terminal is the collector of the NPN transistor, and the second terminal is the emitter of the NPN transistor.
  • the first terminal and the second terminal of the transistor switch Q are disconnected from each other; the voltage dividing element R2 connected to the first terminal of the transistor switch Q and the second terminal of the transistor switch Q The second voltage sources HV- connected to the terminals are disconnected from each other.
  • the first end of the voltage dividing element R2 is connected to the high-voltage power supply and the second end is used as the output end of the high-voltage pulse circuit.
  • the voltage of the second end of the voltage dividing element R2 is equal to the voltage signal output by the high-voltage power supply. That is, a high voltage electrical signal.
  • the control terminal of the transistor switch Q When the control terminal of the transistor switch Q is connected to a high-level signal, the first terminal and the second terminal of the transistor switch Q are closed to each other, and the voltage dividing element R2 connected to the first terminal of the transistor switch Q is also connected to the transistor switch Q.
  • the second voltage source connected to the second end of the switch Q is connected.
  • the first end of the voltage dividing element R2 is connected to the first voltage source HV+
  • the second end is connected to the second voltage source HV-
  • its second end As the output terminal of the high-voltage pulse circuit, it is obvious that the voltage of the second terminal of the voltage dividing element R2 is equal to the voltage output by the second voltage source HV-, and the second voltage source HV- is a ground voltage source.
  • the The voltage signal output from the output end of the high-voltage pulse circuit is also the 0V voltage signal grounded.
  • the voltage signal output by the high-voltage pulse circuit can be output by the first voltage signal output by the first voltage source and output by the second voltage source. Switch back and forth between the second voltage signals to form a high-voltage pulse voltage signal.
  • the first end of the transistor switch Q is connected to the first voltage source HV-, the second end is connected to the first end of the voltage dividing element R2, and the transistor switch Q
  • the control terminal of the switch Q is connected to the second terminal of the RC parallel circuit; the second terminal of the voltage dividing element R2 is connected to the second voltage source.
  • the first voltage source HV+ is used as a high-voltage power supply
  • the second voltage source HV- is a grounded voltage source
  • the transistor switch Q is a PNP triode as an example.
  • the control terminal of the transistor switch Q is also PNP The base of the transistor, the first end is the collector of the PNP transistor, and the second end is the emitter of the PNP transistor. Similar to the working principle of the circuit structure shown in FIG. 9 above, when the switch control signal is a low-level signal, the first terminal and the second terminal of the transistor switch Q are disconnected; when the switch control signal is a high-level signal, The first terminal and the second terminal of the transistor switch Q are turned on.
  • the high-voltage pulse circuit in this application mainly relies on the pulse connected in series between the first voltage source HV+ and the second voltage source HV-
  • the circuit realizes the output of the high-voltage pulse signal, wherein the voltage output from the signal output terminal OUT of the high-voltage pulse signal is the node voltage at which the transistor switch Q and the voltage dividing element R2 are connected to each other in the pulse circuit.
  • the pulse circuit formed by the two Both can be approximately regarded as an equivalent RC series circuit formed between the junction capacitance of the transistor switch Q and the voltage divider R2, and the junction capacitance of the transistor switch Q causes a certain delay in the process of turning off and turning on, resulting in The buffer delay time of the rising and falling edges of the final output high-voltage pulse signal is determined.
  • the ion selection circuit in this embodiment can further connect the RC series circuit in parallel to the output terminal of the sum signal between OUT and the second power supply HV-.
  • the RC series circuit may include a high voltage resistant capacitor C2 and a high voltage resistant resistor R3 connected in series.
  • the high voltage resistant resistor R3 has a large power and its resistance should be smaller than that of the pressure element. Since the RC series circuit composed of the high-voltage capacitor C2 and the high-voltage resistor R3 is charged, discharged and filtered when the high-voltage pulse changes, the high-voltage capacitor C2 circuit in the RC series circuit can charge the transistor switch Q when it is turned on, and when it is disconnected Absorbing the charge of the transistor switch Q can reduce the buffer delay time of the rising edge and falling edge of the output high-voltage pulse signal to a certain extent, so that it can quickly switch the high-voltage level, and can realize the extreme output of the high-voltage pulse signal.
  • the fast falling and rising speed can reach the nanosecond level, which ensures the accuracy of switching between high and low level signals in high voltage pulse signals.
  • the R circuit and the C circuit have a certain filtering effect to remove high-order harmonics and make the high-voltage pulse waveform more regular.
  • the switch control signal is further connected to the transistor switch Q control signal through the RC parallel circuit, so that the charge and discharge function of the capacitive element C1 in the RC parallel circuit is used to shorten the time required for the switch control signal to control the start-up transistor switch Q to be turned on or off. The time it takes.
  • the delay of rising and falling edges can be reduced to several nanometers, thus greatly shortening the time between rising and falling
  • the control accuracy of the control system is improved.
  • the voltage dividing element and the transistor switch are connected in series between two voltage sources with a relatively large voltage difference, and at the same time the transistor switch is turned off and on
  • the switch control signal connected to the control terminal of the receiving transistor switch is controlled based on the switching of different switch control signals, and the switching output of the high-level signal and low-level signal of the high-voltage pulse signal is realized, and the control terminal of the transistor switch is used in series.
  • the RC parallel circuit greatly shortens the delay of the rising and falling edges of switching between high-level signals and low-level signals, which is conducive to the wide application of high-voltage pulse signals and improves the time when high-voltage pulse circuits are used in various equipment. control precision.
  • the present application also provides an embodiment in which the above-mentioned high-voltage pulse circuit is applied to a mass spectrometer to screen target ions and non-target ions.
  • the present application further discloses an ion selection circuit, which is applied to a mass spectrometer, and a conductor for deflecting the flight direction of non-target ions is arranged inside the mass spectrometer.
  • the ion selection circuit may include:
  • the signal output terminal of the high-voltage pulse circuit is used to connect with the conductor; the output terminal of the controller is connected with the control terminal of the transistor switch in the high-voltage pulse circuit;
  • the controller is used to switch and output two different switch control signals to the high-voltage pulse circuit, so that the high-voltage pulse circuit outputs a high-level signal and a low-level signal to switch the output high-voltage pulse signal.
  • the two kinds of switch control signals output by the controller in this embodiment are voltage signals of two different states of the switch control signal input to the control terminal of the transistor switch in the high-voltage pulse circuit;
  • the switch control signal output by the controller is a low-voltage pulse signal as an example.
  • the two switch control signals can be low-voltage pulse signals including low-level signals and high-level signals; the controller outputs a switch control signal to the high-voltage pulse circuit.
  • the high-voltage pulse circuit can output a corresponding pulse signal.
  • the high-voltage pulse circuit when the controller inputs a low-level signal to the control terminal of the transistor switch in the high-voltage pulse circuit, the high-voltage pulse circuit outputs a high-level signal of the high-voltage pulse signal; otherwise, When the controller inputs a high-level signal to the control terminal of the transistor switch in the high-voltage pulse circuit, the high-voltage pulse circuit outputs a low-level signal of the high-voltage pulse signal.
  • the controller outputs a switch control signal
  • the voltage applied by the high-voltage pulse circuit to the conductor can cause the conductor to generate an electric field that deflects non-target ions
  • the controller outputs another switch control signal
  • the high-voltage pulse can be made
  • the circuit applies a voltage to the conductor so that the conductor cannot generate an electric field that deflects the target ions.
  • the working process of the high-voltage pulse circuit outputting the corresponding high-voltage pulse signal can refer to the above-mentioned embodiment of the high-voltage pulse circuit, and will not be repeated in this application.
  • controller and the pulse circuit are connected through an isolation circuit.
  • FIG. 3 is a schematic cross-sectional structure diagram of a mass spectrometer provided in an embodiment of the present application.
  • the ion source sample 01 is excited by the laser output from the laser pulse source 2, including ions of different molecular weights, and the acceleration speed of ions with different molecular weights in the accelerating electric field U is different.
  • the target ions and non-target ions are screened by using the different masses of the target ions and non-target ions resulting in different time for the target ions and non-target ions to pass through the field-free region.
  • Conductors are set in the field-free area of the mass spectrometer, and when the target ions and non-target ions pass through the field-free area respectively, different electrical signals are connected to the target ions and non-target ions, so that the conductors are separated in the target ions and non-target ions.
  • different electric fields are generated, so that when the target ions pass near the conductor, the flight direction does not change, and continue to fly to the detector.
  • the non-target ions pass near the conductor, they receive the electric field force generated by the conductor. However, deflection occurs, and thus cannot reach the detector, so as to achieve the function of screening target ions and non-target ions.
  • the two conductor plates are respectively arranged on both sides of the ion flight path.
  • the first conductor plate 31 is grounded, and the second conductor plate 32 is connected with the output end of the ion selection circuit.
  • the controller can control the ion selection circuit to output the ground voltage. Obviously, there is no electric field between the first conductor plate 31 and the second conductor plate 32 at this time, and the target ions can pass through the zone smoothly. Arrives at detector 1 without field.
  • the controller can control the high-voltage pulse circuit to output a high-voltage electric signal.
  • an electric field is generated between the first conductor plate 31 and the second conductor plate 32, and the direction of the electric field lines of the electric field is consistent with the non-field line
  • the flight directions of the target ions are perpendicular to each other, so that when the non-target ions fly through the electric field, the flight direction is deflected and cannot fly to the detector 1, thereby realizing the screening of the target ions and non-target ions.
  • the conductor does not necessarily have to be two conductor plates, but can also be a metal cylinder.
  • the ions fly, they fly out from the inside of the metal cylinder along the direction parallel to the central axis of the metal cylinder.
  • the first voltage source HV+ can be a high-voltage voltage source
  • the second voltage source HV+ is a negative high-voltage voltage source
  • the high-voltage pulse circuit can output high-level high-voltage electrical signals
  • low-level is High voltage pulse signal of negative high voltage electrical signal.
  • the controller controls the high-voltage pulse circuit to connect the high-voltage electrical signal to the metal cylinder, so that the electric field inside the metal cylinder drives the target ion flight trajectory to the metal cylinder.
  • the central axis of the cylinder is close, and then reaches the detector 1 smoothly, and when the non-target ions fly through the metal cylinder, the high-voltage pulse circuit is controlled to connect the negative high-voltage electric signal to the metal cylinder, so that the electric field inside the metal cylinder drives the non-target ions It is deflected toward the inner wall of the metal cylinder, so that it cannot reach the detector, and the screening of target ions and non-target ions is realized.
  • the target ions and non-target ions pass through the field-free area successively, and the specific sequence depends on the molecular weight of the target ions and non-target ions.
  • the time difference between the two ions passing through the field-free region is relatively small, which requires that the two different voltage signals connected to the conductor can meet the rapid rise and fall of the voltage when switching.
  • the high-voltage pulse circuit provided in this application can greatly reduce the time delay when the high-level signal and the low-level signal switch between each other, so as to meet the two requirements of screening target ions and non-target ions in the ion selection circuit.
  • the requirement of short voltage signal switching time delay is conducive to improving the accuracy of ion screening in the mass spectrometer, which in turn is conducive to improving the service life of the detector and the clarity of the display of detection results.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

一种质谱仪的离子筛选方法和系统,在质谱仪设有偏转导体,筛选方法包括激光同步脉冲信号输出之前,偏转导体接通第一电压信号,以产生偏转电场对非目标离子的飞行进行偏转;当目标离子从加速电场中飞出时,对偏转导体接通第二电压信号,以便目标离子到达检测器;当目标离子均通过偏转导体时,对偏转导体接通第一电压信号。本申请提升了检测器使用寿命,避免非目标离子的干扰。一种高压脉冲电路及离子选择电路,包括第一电压源、第二电压源、脉冲电路、RC串联电路组成的电路;第一电压源和第二电压源输出的电压差值不小于预设电压差值;晶体管开关进行导通和断开切换,以实现高低电平切换。本申请缩小了高压脉冲信号中高低电平切换的缓冲时长。

Description

质谱仪的离子筛选方法和系统、高压脉冲电路和选择电路
本申请要求于2021年11月18日提交中国专利局、申请号为202111370623.4、发明名称为“一种质谱仪的离子筛选方法和系统”,以及2021年11月18日提交中国专利局、申请号为202122831001.9、发明名称为“一种高压脉冲电路和离子选择电路”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及离子检测技术领域,特别是涉及一种质谱仪的离子筛选方法和系统、一种高压脉冲电路和离子选择电路。
背景技术
如图1所示,图1为常用的质谱仪的结构示意图;通过激光脉冲源向样品发射激发激光,使得离子源样品产生离子且离子经过加速场加速后进入无场漂移管,并以恒定速度飞向离子检测器。而在实际对离子源样品中激发产生的离子并非所有的离子都是需要检测的目标离子,而仅仅分子量在特定区间范围内的目标离子才是需要重点检测分析检测的目标。但是目前常规的质谱仪中,离子源样品受激产生的所有离子均会向离子检测器飞行,并最终被离子检测器所接收。而对于离子检测器而言,其能够接收检测的离子数是有限制的,随着使用时间的累计,一旦离子检测器检测的离子数达到上限,该离子检测器将不可用。由此可见,在离子检测器接收检测的离子中存在大量无用的非目标离子,在一定程度上损耗了离子检测器的使用寿命。由此可见,如果能够阻止离子源样品产生的非目标离子被离子检测器接收,能够在很大程度上提升离子检测器的使用寿命。
脉冲信号是各种电子电气设备中应用较为普遍的电信号,例如对于矩形脉冲信号而言,可以用做继电器开关的控制信号等等。理想的矩形脉冲信号,从高电平下降到低电平,或者是低电平上升到高电平过程中,是不存在缓冲延时的。但是在实际情况中高电平下落到低电平以及低电平上升到高电平时,是无法做到绝对的无延时。目前,对于低压脉冲信号而言, 高电平下落到低电平以及低电平上升到高电平过程中,可以将延时时长缩短到几乎可以忽略不计,但是对于高压脉冲信号而言,这一缓冲延时时长则难以缩短到足够短,这使得利用高压脉冲信号能够实现的控制精度有限,从而在一定程度上限制了高压脉冲信号的应用。
发明内容
本发明的目的是提供一种质谱仪的离子筛选方法和系统,能够在一定程度上减少非目标离子到达检测器的数量,从而延长质谱仪中检测器的使用寿命;还提供一种高压脉冲电路和离子选择电路,能够在一定程度上缩短高压脉冲信号的上升沿和下降沿的延时,提升高压脉冲信号的控制精度。
为解决上述技术问题,本发明提供一种质谱仪的离子筛选方法,在质谱仪的加速电场和检测器之间的离子飞行路径的侧面设有偏转导体;所述筛选方法包括:
对所述偏转导体接通第一电压信号,以使所述偏转导体产生偏转电场,当所述离子飞行经过所述偏转电场时,飞行方向发生偏转而不到达所述检测器;
检测激光同步脉冲信号,当所述激光同步脉冲信号输出之后,保持所述偏转导体接通所述第一电压信号不变,以便对从所述加速电场飞出的非目标离子的飞行方向进行偏转;
当目标离子从所述加速电场中飞出时,对所述偏转导体接通第二电压信号,不产生使所述目标离子偏转的偏转电场,以便所述目标离子飞行到达所述检测器;
当所述目标离子均通过所述偏转导体时,则对所述偏转导体接通所述第一电压信号。
在本申请的一种可选地实施例中,所述偏转导体为设置在所述离子飞行路径的侧面的至少一组偏转导体板;每组所述偏转导体板中包括第一导体板和第二导体板,所述第一导体板接地;
对所述偏转导体接通第一电压信号,包括:
对所述第二导体板接入大于接地电压的高压电信号;
或者,对所述第二导体板接入低于接地电压的负高压电信号;
对所述偏转导体接通第二电压信号,包括:
对所述第二导体板接入和接地电压的大小相同的电压信号。
在本申请的一种可选地实施例中,所述偏转导体为所述质谱仪中的聚焦极或者为所述质谱仪的无场区的金属圆柱壳体;
对所述偏转导体接通第一电压信号,包括:
对所述偏转导体接通和所述离子的电性相反的高压电信号;
对所述偏转导体接通第二电压信号,包括:
对所述偏转导体接通和所述离子的电性相同的高压电信号。
在本申请的一种可选地实施例中,还包括对所述偏转导体多次交替通入所述第一电压信号和所述第二电压信号;其中,每次通入所述第一电压信号和所述第二电压信号持续时长根据需要偏转的非目标离子和不需要偏转的目标离子的分子量确定。
本申请还提供了一种质谱仪的离子筛选系统,包括:
输入端和用于输出激光脉冲信号的激光脉冲源相连接的控制器;
输出端和设于所述质谱仪中的偏转导体相连接,输入端和所述控制器相连接的离子选择电路;
所述控制器用于控制所述离子选择电路向所述偏转导体输出第一电压信号和第二电压信号,以执行实现如上任一项所述的质谱仪的离子筛选方法的步骤。
在本申请的一种可选地实施例中,所述偏转导体为设置在所述离子飞行路径的侧面的至少一组偏转导体板;每组所述偏转导体板中包括第一导体板和第二导体板,所述第一导体板接地;
所述第二导体板和所述离子选择电路的信号输出端相连接,所述离子选择电路包括高压电源、脉冲电路、以及RC串联电路;
所述脉冲电路包括相互串联的分压元件和晶体管开关;所述脉冲电路的一端和所述高压电源的输出端相连接,另一端接地;所述分压元件和所述晶体管开关相连接的节点为所述离子选择电路的信号输出端;所述RC串联电路的第一端和所述离子选择电路的信号输出端相连接,第二端和接地;
所述控制器和所述晶体管开关的控制端相连接,所述控制器用于控制所述晶体管开关的导通和断开。
在本申请的一种可选地实施例中,所述分压元件的第一端和高压电源相连接,第二端和所述晶体管开关的第一端相连接;所述晶体管开关的第二端接地;
当所述控制器输出低电平信号时,所述晶体管开关的第一端和第二端断开;
当所述控制器输出高电平信号时,所述晶体管开关的第一端和第二端导通。
在本申请的一种可选地实施例中,晶体管开关的第一端和高压电源相连接,第二端和分压元件的第一端相连接;分压元件的第二端接地;
当控制器输出低电平信号时,晶体管开关的第一端和第二端断开;
当控制器输出高电平信号时,晶体管开关的第一端和第二端导通。
在本申请的一种可选地实施例中,所述离子选择电路还包括RC并联电路;所述晶体管开关的控制端通过所述RC并联电路和所述控制器相连接。
本发明所提供的一种质谱仪的离子筛选方法,在质谱仪的加速电场和检测器之间的离子飞行路径的侧面设有偏转导体;筛选方法包括:对偏转导体接通第一电压信号,以使偏转导体产生偏转电场,当离子飞行经过偏转电场时,飞行方向发生偏转而不到达检测器;检测激光同步脉冲信号,当激光同步脉冲信号输出之后,保持偏转导体接通第一电压信号不变,以便对从加速电场飞出的非目标离子的飞行方向进行偏转;当目标离子从加速电场中飞出时,对偏转导体接通第二电压信号,不产生使目标离子偏转的偏转电场,以便目标离子飞行到达检测器;当目标离子均通过偏转导体时,则对偏转导体接通第一电压信号。
本申请中依据不同分子量的离子按照不同的先后顺序依次经过质谱仪的无场漂移管飞向检测器这一原理,在激光脉冲源开启之前,先对质谱仪中的偏转导体接通第一电压信号,使得激光脉冲源开启之后,偏转导体产生的偏转电场即可立即对非目标离子的飞行方向产生偏转;并在目标离子 开始飞行时对偏转导体接通第二电压信号,使得偏转导体不产生使离子偏转的电场,并在目标离子全部飞行通过之后,再次向偏转导体接通第一电压信号,从而进一步保证比目标离子分子量大和比目标离子分子量小的离子均可以被偏转导体产生的电场偏转而无法到达检测器,从而在一定程度上提升检测器的使用寿命,与此同时,检测器仅仅显示对目标离子的检测结果,也在一定程度上避免了非目标离子对目标离子检测结果的干扰。
本申请还提供了一种质谱仪的离子筛选系统,具有上述有益效果。
本申请还提供了一种高压脉冲电路,包括第一电压源、第二电压源、脉冲电路、以及RC串联电路;所述第一电压源输出的电压和所述第二电压源输出的电压之间的电压差值不小于预设电压差值;
其中,所述脉冲电路包括相互串联的分压元件和晶体管开关;所述脉冲电路的一端和所述第一电压源相连接,另一端和所述第二电压源相连接;所述分压元件和所述晶体管开关相连接的节点为高压脉冲电路的信号输出端;
所述RC串联电路的第一端和所述高压脉冲电路的信号输出端相连接,第二端和所述第二电压源相连接;
所述晶体管开关用于根据所述晶体管开关的控制端接收的开关控制信号进行导通和断开切换。
在本申请的一种可选地实施例中,所述分压元件的第一端和第一电压源相连接,第二端和所述晶体管开关的第一端相连接;所述晶体管开关的第二端和所述第二电压源相连接;
当所述开关控制信号为高电平信号时,所述晶体管开关的第一端和第二端导通;
当所述开关控制信号为低电平信号时,所述晶体管开关的第一端和第二端断开。
在本申请的一种可选地实施例中,所述晶体管开关的第一端和所述第一电压源相连接,第二端和所述分压元件的第一端相连接;所述分压元件的第二端和所述第二电压源相连接;
当所述开关控制信号为高电平信号时,所述晶体管开关的第一端和第 二端导通;
当所述开关控制信号为低电平信号时,所述晶体管开关的第一端和第二端断开。
在本申请的一种可选地实施例中,所述第一电压源为高压电源,第二电压源输出的电压为接地电压;
或者,所述第一电压源为高压电源,所述第二电压源为负高压电源;
或者,所述第一电压源输出的电压为接地电压,所述第二电压源为负高压电源。
在本申请的一种可选地实施例中,还包括和所述晶体管开关的控制端相连接的RC并联电路,所述晶体管开关的控制端通过所述RC并联电路接收所述开关控制信号。
一种离子选择电路,应用于质谱仪,其中,所述质谱仪的内部设置有用于对非目标离子飞行方向进行偏转的导体;所述离子选择电路包括控制器,如上任一项所述的高压脉冲电路;
所述高压脉冲电路的信号输出端用于和所述导体相连接;所述控制器的输出端和所述高压脉冲电路中的所述晶体管开关的控制端相连接;
其中,所述控制器用于向所述高压脉冲电路切换输出两种不同的开关控制信号,以使所述高压脉冲电路输出高电平信号和低电平信号切换输出的高压脉冲信号。
本申请所提供的高压脉冲电路,包括第一电压源、第二电压源、脉冲电路、以及RC串联电路;第一电压源输出的电压和第二电压源输出的电压之间的电压差值不小于预设电压差值;其中,脉冲电路包括相互串联的分压元件和晶体管开关;脉冲电路的一端和第一电压源相连接,另一端和第二电压源相连接;分压元件和晶体管开关相连接的节点为高压脉冲电路的信号输出端;RC串联电路的第一端和高压脉冲电路的信号输出端相连接,第二端和第二电压源相连接;晶体管开关用于根据晶体管开关的控制端接收的开关控制信号进行导通和断开切换。
本申请中采用晶体管开关和分压元件作为脉冲电路串联在第一电压源和第二电压源之间,并通过控制晶体管开关的断开和接通,使得高压脉冲 电路在晶体管和分压元件之间的节点输出以第一电压源的输出电压作为高电平信号,而第二电压源的输出电压作为低电平信号的高压脉冲信号;其中,晶体管开关和分压元件之间形成等效的RC电路,在一定程度上造成了高电平信号和低电平信号之间切换输出的缓冲延时;本申请中进一步地在高压脉冲电路的信号输出端和第二电压源之间并联一个RC串联电路,利用RC串联电路对晶体管开关中的结电容的充放电功能,能够在一定程度上减小开关控制信号控制晶体管开关断开和接通所耗费的时长,进一步地缩小高压脉冲信号中高低压信号切换的缓冲时长,从而输出高低压信号切换的缓冲时长在纳秒量级的高压脉冲信号,有利于高压脉冲信号的广泛应用。
本申请还提供了一种离子选择电路,具有上述有益效果。
附图说明
为了更清楚的说明本发明实施例或现有技术的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单的介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为常用的质谱仪的结构示意图;
图2为本申请实施例提供的质谱仪的离子筛选方法的流程示意图;
图3为本申请实施例提供的质谱仪的结构示意图;
图4为未对目标离子和非目标离子进行筛选对应的检测器测得的质谱图谱;
图5为对一个区间的目标离子进行筛选对应的检测器测得的质谱图谱;
图6为对多个区间的目标离子进行筛选对应的检测器测得的质谱图谱
图7为本申请实施例提供的一种离子选择电路的结构示意图;
图8为本申请实施例提供的另一种离子选择电路的结构示意图;
图9为本申请实施例提供的高压脉冲电路的电路结构示意图;
图10为本申请实施例提供的另一高压脉冲电路的电路结构示意图。
具体实施方式
参照图1,在质谱仪中离子源样品01受激光脉冲源2输出的激光激发的离子包括不同分子量的离子,且对于不同分子量的离子在加速电场中加速的速度大小是不同的,对于分子量越小的离子在加速电场U中加速的速度越大;反之,分子量越大的离子加速后的速度越小,相应的,对于分子量越小的离子也就先离开加速电场U进入无场区并飞向检测器1,而分子量越大的离子,也就后离开加速电场U并经过无场区飞向检测器1。
而在实际对离子进行检测时,往往只需要检测特定分子量区间的目标离子,而其他分子量区间的离子都属于非目标离子,当该非目标离子达到检测器1,并被检测器1所检测,不仅仅影响检测器1的使用寿命还影响目标离子检测结果显示的清晰度。
为此,本申请中考虑到利用目标离子和非目标离子的质量不同导致目标离子和非目标离子经过无场区的时间不同,对目标离子和非目标离子进行筛选,在当非目标离子经过无场区时,阻碍非目标离子向检测器的飞行,最终使得非目标离子无法到达检测器1,而仅仅目标离子能够达到检测器1被检测,进而有利于提升检测器的使用寿命和提升检测结果显示的清晰度。
为了使本技术领域的人员更好地理解本发明方案,下面结合附图和具体实施方式对本发明作进一步的详细说明。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图2和图3所示,图2为本申请实施例提供的质谱仪的离子筛选方法的流程示意图,图3为本申请实施例提供的质谱仪的结构示意图。本申请中的质谱仪的离子筛选方法中,在质谱仪的加速电场和检测器之间的无场区域中,在离子飞行路径的侧面还设置有偏转导体。以图3中示出的质谱仪为例,该偏转导体可以是设置在无场区的平板导体。在此基础上,本申请中质谱仪的离子筛选方法可以包括:
S11:对偏转导体接通第一电压信号,以使偏转导体产生偏转电场,当离子飞行经过偏转电场时,飞行方向发生偏转而不到达检测器。
对于在无场区飞行的离子而言,其飞行方向是沿直线飞行的,也即是沿图3中加速电场U的出口指向检测器1的方向飞行。在无场区域因为没有外力的作用,离子会保持其速度方向不变的飞行。而当偏转导体接通第一电压信号之后,偏转导体在其周围即可产生一个电场,显然,当离子飞行经过该电场所在空间区域时,飞行方向受电场影响必然会产生偏转,进而使得该离子无法飞行达到检测器1。
S12:检测激光同步脉冲信号,当激光同步脉冲信号输出之后,保持偏转导体接通第一电压信号不变,以便对从加速电场飞出的非目标离子的飞行方向进行偏转。
激光同步脉冲信号也即是启动激光脉冲源2向离子源样品01发射激光的信号。一般情况下,只需要在激光同步脉冲信号开始输出时,同步对偏转导体接通第一电压信号即可。但是,本实施例中考虑到,在检测到激光同步脉冲信号输出之后,难以同步控制偏转导体立即接通第一电压信号,使得偏转导体接通第一电压信号的时刻相对于激光同步脉冲信号而言或多或少的存在一定的延时,而在这一延时阶段,就可能存在非目标离子已经被激发且飞行到达检测器,为此,本实施例中为了提升对非目标离子筛选的准确性,在激光脉冲信号触发激光脉冲源2之前就对偏转导体接通第一电压信号,那么此时后续只要一产生非目标离子,必然被偏转导体偏转而无法到达检测器1。
另外,为了满足偏转导体所产生的电场强度能够保证对非目标离子产生足够大的偏转电场力,第一电压信号的大小也应当满足一定的电压大小,应当尽可能地采用电压大小相对较大的高压电信号。
S13:当目标离子从加速电场中飞出时,对偏转导体接通第二电压信号,不产生使目标离子偏转的偏转电场,以便目标离子飞行到达检测器。
需要说明的是,对于第二电压信号具体是什么样的电信号,和偏转导体是什么样的偏转导体存在较大的关联性。
在本申请的一种可选地实施例中,偏转导体可以为设置在离子飞行路径的侧面的至少一组偏转导体板;每组偏转导体板中包括第一导体板和第二导体板,第一导体板接地;
对偏转导体接通第一电压信号,包括:
对第二导体板接入大于接地电压的高压脉冲信号;
或者,对第二导体板接入低于接地电压的负高压脉冲信号;
对偏转导体接通第二电压信号,包括:
对第二导体板接入和接地电压的大小相同的电压信号。
如图3所示,在偏转导体为成对的导体板时,第一导体板31接地,当第二导体板32接入高电压脉冲信号时,第一导体板31和第二导体板32之间即可形成一个偏转电场,使得从第一导体板31和第二导体板32之间飞过的带电的非目标离子时可以被该偏转电场偏转。
在此基础上,当目标离子开始进入第一导体板31和第二导体板32之间的区域时,此时显然不能再产生会使得离子偏转的电场,此时可以对第二导体板32接通接地电压信号。那么此时第一导体板31和第二导体板32之间也就不存在电场。当目标离子飞行通过时,也就不会发生偏转从而顺利到达检测器1。
但在实际应用过程中,可以理解的是,对于设置在离子飞行路径两侧的偏转导体而言也并不必然是成对的导体板,即便在仅仅设置一个导体件的情况下,对该导体件接通的电压设置为高压脉冲电信号时,也同样可以在导体件周边形成电场,进而对非目标离子进行偏转;而当目标离子飞行时,将该导体件的电压切换为接地电压,即可使得导体件周围的电场消失,进而允许非目标离子通过。
在本申请的另一可选地实施例中,偏转导体可以为质谱仪中的聚焦极4或者为质谱仪的无场区的金属圆柱壳体5;
对偏转导体接通第一电压信号,包括:
对偏转导体接通和离子的电性相反的高压脉冲信号;
对偏转导体接通第二电压信号,包括:
对偏转导体接通和离子的电性相同的高压脉冲信号。
以偏转导体为聚焦极4为例。在质谱仪中聚焦极4是设置在加速电场U的出口处的金属筒。在常规质谱仪中,离子源样品01受激发产生的离子从加速电场U加速之后的飞行方向并不能保证全部是指向检测器1,而是 可能从在一定的偏转角度,为此,需要在质谱仪中设置聚焦极4。当受激光激发的离子源样品01产生的离子均为带正电荷的离子时,就对聚焦极4保持接通正电压,使得该聚焦极4的金属筒内产生电场线指向金属筒中心轴的电场;那么如果离子在偏离该聚焦极4的中心轴的方向飞行,受该电场的驱动作用离子飞行轨迹即可向聚焦极4的中心轴靠拢,使得离子最终的飞行轨迹几乎和聚焦极4的中心轴所在直线重合。同理,当被激发产生的离子为带负电荷的离子是,此时需要对聚焦极4接通负电压,进而使得聚焦极4的筒内电场线方向由聚焦极4的中心轴指向聚焦极4的内侧壁。
需要说明的是,对于同一种目标源样品受激光激发后从加速电场U飞出的目标离子和非目标离子都是带同一种电荷的离子。
为此,本申请中利用目标离子和非目标离子经过该聚焦极4时,分别对聚焦极4接通不同的电压信号,以实现目标离子和非目标离子的筛选。
以目标离子和非目标离子均带正电电荷为例,当非目标离子经过该聚焦极4时,对聚焦极接通的第一电压信号为小于0V电压的负电压电信号,聚焦极4对离子产生吸附作用,使得非目标离子飞行轨迹向聚焦极4的中心轴偏离而向聚焦极4的侧壁偏转飞行,进而无法到达检测器1。
当目标离子飞行经过聚焦极4的筒内时,对聚焦极4接通的第二电压信号也即可以为大于0V电压的正电压电信号,此时聚焦极4对离子的作用力是排斥力,进而使得目标离子的飞行轨迹向聚焦极4的中心轴靠拢,从而更顺利的达到检测器1。
同理,当目标离子和非目标离子均为带负电电荷时,则第一电压信号也即为大于0V电压的正电压电信号,而第二电压信号也即为小于0V电压的负电压电信号。
当以质谱仪的无场区的金属圆柱壳体5作为偏转导体时,其工作方式和原理均和聚焦极4为偏转导体相同,也同样是将第一电压信号为和离子电性相反的电压信号,而当第二电压信号为和离子电性相反的电压信号,对此本申请中不再重复赘述。
S14:当目标离子均通过偏转导体时,则对偏转导体接通第一电压信号。
一般情况下,离子源样品01被激发后产生的离子中,存在比目标离子的分子量大的非目标离子,也存在比目标离子的分子量小的非目标离子。显然,比目标离子的分子量大的非目标离子比目标离子飞行的速度慢,因此,当目标离子已经飞行达到检测器1之后,还可能存在部分分子量大于目标离子的非目标离子向检测器1飞行,为了能够最大程度上避免非目标离子到达检测器1,在目标离子飞行经过无场区之后,进一步地对偏转导体接通第一电压信号从而实现对分子量大于目标离子的非目标离子的偏转,最终使得只有目标离子可以顺利到达检测器1。
此外,对于需要检测的目标离子而言,可能分布在多个相互间断不连通的分子量离子区间,例如,对于(0,a1]、(a1,a2]、(a2,a3]、(a3,a4]、(a4,a5]多个分子量离子区间,其中(a1,a2]和(a3,a4]两个多分子量离子区间中的离子为目标离子,(0,a1]、(a2,a3]、(a4,a5]等三个分子量离子区间的离子为非目标离子,那么在对离子进行筛选过程中,即可通过多次交替对偏转导体接通第一电压信号和第二电压信号,其中每次通入第一电压信号和第二电压信号持续时长根据需要偏转的非目标离子和不需要偏转的目标离子的分子量确定。在(0,a1]、(a2,a3]、(a4,a5]等三个分子量离子区间的非目标离子飞行通过无场区时,对偏转导体接通第一电压信号,而当(a1,a2]和(a3,a4]两个多分子量离子区间中的目标离子时,对偏转导体接通第二电压信号。
参照图4至图6,图4为未对目标离子和非目标离子进行筛选对应的检测器测得的质谱图谱;图5为对一个区间的目标离子进行筛选对应的检测器测得的质谱图谱;图6为对多个区间的目标离子进行筛选对应的检测器测得的质谱图谱。由图4对照图5可知,图4中的质谱图谱中小分子量的基质分子图谱峰中含有大量的小分子量的基质峰,其不仅降低了检测器的使用寿命,且因基质小分子离子的图谱峰属于噪音峰,会降低图谱的信噪比,使仪器的运算更加复杂。图5中选择一个预定分子量范围的目标离子到达检测器,其余区间范围的非目标离子进行偏转,使其不能到达检测器;图6选择两个预设分子量区间的目标离子到达检测器而获得的离子质谱图谱,从而通过选择,使仅目标分子量范围的目标离子到达检测器,筛 选掉无用的非目标离子,大大降低了检测器的损耗,提高了检测器的使用寿命,同时降低了图谱的噪音信号,大大提高了信噪比,后续只需要对目标分子量范围的离子图谱进行处理分析,使仪器运算相对简单高效。
综上所述,本申请中通过在质谱仪中离子飞行的无场区设置偏转导体,并在激光脉冲源启动之前,对该偏转导体接通能够使得偏转导体产生偏转电场,进而保证最先进入无场区的非目标离子能够完全被偏转而不被检测器所接收到;而在目标离子进入无场区时则对偏转导体接通的电压信号进行切换,使得偏转导体不对目标离子进行偏转,并且在目标离子飞行达到检测器之后,再次通过对偏转导体接通的电压信号进行切换,使得偏转导体能够对分子量大于目标离子的非目标离子进行偏转,从而在最大程度上实现对非目标离子进行偏转,使得能够达到检测器的非目标离子尽可能的减少,进而在一定程度上减缓检测器的衰减,从而延长检测器的使用寿命。
本申请中还公开了一种质谱仪的离子筛选系统的实施例,该离子筛选系统可以包括:
输入端和用于输出激光脉冲信号的激光脉冲源相连接的控制器;
输出端和设于质谱仪中的偏转导体相连接,输入端和控制器相连接的离子选择电路;
控制器用于控制离子选择电路向偏转导体输出第一电压信号和第二电压信号,以执行实现如上任一项的质谱仪的离子筛选方法的步骤。
基于上述质谱仪的离子筛选方法可知,偏转导体要实现对目标离子和非目标离子的筛选,其接通的电压信号是在两种不同的恒定电压信号之间来回切换,由此可见对于偏转导体接通的电压可以视为方波脉冲信号。因此,在实际应用中该离子选择电路可以采用能够输出方波脉冲信号的电路结构。但基于偏转导体所产生的电场对非目标离子偏转能力的需求,一般而言,方波脉冲信号的高电平信号和低电平信号之间的电压差应当达到一定大小的差值,才能保证非目标离子的完全偏转,也即是说要求离子选择电路输出的脉冲电压信号要求为高压脉冲信号。
可以理解的是,对于方波脉冲信号而言,其高电平和低电平之间切换 时,理论上而言电压信号的上升沿和下降沿是瞬间切换的,但是在实际应用中,上升沿和下降沿都存在一定的缓冲时间,尤其是高电平和低电平之间的电压差相差较大的高压脉冲信号,在高低电平来回切换过程中,电压信号难以做到快速上升和快速下降。但是对于目标离子和非目标离子而言,其飞行经过质谱仪的先后时间差是非常短,基本上是处于几个纳秒量级,对此也就要求离子选择电路在切换输出的两种不同的电压信号时,需要实现高低电平信号的快速上升和快速下降,以便能够更准确的实现非目标离子和目标离子之间的筛选。
以偏转导体为设置在离子飞行路径的侧面的至少一组偏转导体板;每组偏转导体板中包括第一导体板和第二导体板,第一导体板接地;第二导体板和离子选择电路为例。参照图7和图8,图7为本申请实施例提供的一种离子选择电路的结构示意图,图8为本申请实施例提供的另一种离子选择电路的结构示意图。
在本申请的一种可选地实施例中,该离子选择电路可以包括:
高压电源HV、脉冲电路、以及RC串联电路;如图7和图8所示,该RC串联电路中包含有耐高压电容C2和耐高压电阻R3串联而成,该耐高压电阻R3功率大,其阻值应当比分压元件R2的阻值小。
脉冲电路包括相互串联的分压元件R2和晶体管开关Q;
脉冲电路的一端和高压电源HV的输出端相连接,另一端接地;
分压元件R2和晶体管开关Q相连接的节点为离子选择电路的信号输出端OUT;
RC串联电路的一端和离子选择电路的信号输出端OUT相连接,另一端接地;
控制器和晶体管开关Q的控制端相连接,控制器用于控制晶体管开关的导通和断开。
可选地,在控制器和晶体管开关Q的控制端之间还可以进一步地设置RC并联电路;该RC并联电路可以为电阻元件R1和电容元件C1并联组成的电路结构。
本实施例中主要通过分压元件R2和晶体管开关Q组成的脉冲电路实 现高压脉冲信号的输出,该脉冲电路一端连接高压电源HV的输出端而另一端接地;与此同时,晶体管开关Q的控制端和控制器的输出端通过RC并联电路相连接,以使得控制器可以通过输出相应的控制信号控制晶体管开关Q的断开和接通;而晶体管开关Q的断开和接通也就决定晶体管开关Q和分压元件R2之间的节点处的电压为接地电压还是高压电源HV的输出电压,从而实现脉冲电路输出电压在高压信号和接地信号之间来回切换。
对于分压元件R2和晶体管开关Q组成的脉冲电路而言,分压元件R2可以是分压电阻或其他带有一定阻值的分压元件,而晶体管开关Q可以是三极管、MOS管或者其他类似的半导体开关,对此,本申请中不做具体限制。
如前所述,控制器可以控制晶体管开关Q的断开和接通,基于晶体管开关Q的基本工作特性可以确定,该控制器控制晶体管开关Q的控制信号也可以采用高低电平切换的脉冲信号,只是相对于偏转导体所需的高压脉冲信号而言,控制器只需要向晶体管开关Q的控制端输出低压脉冲信号即可。
此外,分压元件R2和晶体管开关Q形成的脉冲电路的工作特性可以近似视为一个RC串联电路,基于晶体管开关Q类似于电容的充放电过程,晶体管开关Q的结电容和分压元件R2之间形成等效的RC串联电路,晶体管开关Q的结电容使得其在开关过程中存在一定的延时,进而造成了最终输出的脉冲信号上升沿和下降沿的缓冲延时时长。
为了减小离子选择电路切换输出高电平信号和低电平信号时上升沿和下降沿的延时时长,本实施例中的离子选择电路还可以进一步地将RC串联电路并联在和信号输出端OUT和接地端之间。
由于RC串联电路中耐高压电容C2与耐高压电阻R3组成的RC串联电路在高压脉冲变化时进行充放电与滤波,RC串联电路中的耐高压电容C2电路可以在晶体管开关Q打开时给其充电,断开时吸收晶体管开关Q的电荷,能够在一定程度上减小输出的高压脉冲信号的上升沿和下降沿的缓冲延时时间,使其可以快速切换高压电平,即可实现高压脉冲信号输出的极快的下降与上升速度,可达到纳秒级别,保证高压脉冲信号中高低电 平信号切换的准确性。并且R电路与C电路一起又具有一定的滤波效果,去除高次谐波,使得高压脉冲波形更加规则。
此外,还进一步地将控制器通过RC并联电路和晶体管开关Q的控制端,从而利用RC并联电路中电容元件C1的充放电功能,缩短开关控制信号控制启动晶体管开关Q接通或断开所需要耗费的时长。
基于上述离子选择电路输出的高压脉冲信号,在高电压信号和低电压信号交替切换的过程中,能够将上升沿和下降沿的延时缩小至几个纳米级别,从而大大缩短了上升沿和下降沿的延时,在该离子选择电路应用于各种控制系统中时,提升控制系统的控制精度。
对于脉冲电路而言,可以存在多种不同的电路连接结构。
参照图7,在本申请的一种可选的实施例中,该脉冲电路可以包括:
分压元件R2的第一端和高压电源HV相连接,第二端和晶体管开关Q的第一端相连接;晶体管开关Q的第二端接地;晶体管开关Q的控制端通过RC并联电路和控制器相连接;
当控制器输出高电平信号时,晶体管开关Q的第一端和第二端导体;
当控制器输出低电平信号时,晶体管开关Q的第一端和第二端断开。
参照图7,晶体管开关Q的第一端通过分压元件R2和高压电源HV的输出端相连接;而晶体管开关Q的第二端接地,此时RC串联电路并联在晶体开关Q的两端。以图7中晶体管开关Q为NPN三极管为例,当控制器通过RC并联电路向晶体管开关Q的基极输出低电平信号,此时晶体管开关Q的集电极和发射极也即相互断开,而晶体管开关Q和分压元件R2相互连接的集电极此时充当脉冲电路的输出端,此时脉冲电路的输出端也即输出高压电压信号。而当控制器向晶体管开关Q的基极输出高电平脉冲信号时,则晶体管开关Q的集电极和发射极之间导通,此时晶体管开关Q的集电极通过分压元件R2和高压电源HV相连接,晶体管开关Q的集电极作为脉冲电路的输出端,输出接地的0V电压信号,由此实现离子选择电路输出的电压在高压信号和接地的0V电压信号之间快速的切换。
参照图8,在本申请的另一可选地实施例中,该脉冲电路可以包括:
晶体管开关Q的第一端和高压电源HV相连接,第二端和分压元件 R2的第一端相连接,晶体管开关Q的控制端和RC并联电路的第二端相连接;分压元件R2的第二端接地;
当控制器输出低电平信号时,晶体管开关Q的第一端和第二端断开;
当控制器输出高电平信号时,晶体管开关Q的第一端和第二端导通。
参照图8,以晶体开关Q为PNP型三极管为例,此时晶体管开关Q和分压元件R2相连接的一端为晶体管开关Q的发射极,也即晶体管开关Q的发射极电压是作为脉冲电路输出的电压信号。此时RC串联电路并联在分压元件R2的两端。和图7中原理近似,当控制器通过RC并联电路向晶体管开关Q的基极输出高电平脉冲信号时,该晶体管开关Q的集电极和发射极相互断开,此时,晶体管开关Q的发射极通过分压元件R2和接地端相连接,脉冲电路输出的电压信号为接地端的电压信号。
而当控制器向晶体管开关Q的基极输入高电平信号时,该晶体管的集电极和发射极之间导通,晶体管开关Q的发射极相当于直接和高压电源HV直接导通,显然,此时晶体管开关Q发射极的电压也即等于高电平脉冲信号,由此也可以实现脉冲电路输出的电压信号在高压信号和接地0V电压信号之间来回切换,进而形成高压脉冲信号。
需要说明的是,针对图7和图8中的实施例,脉冲电路主要是输出高压脉冲信号是以高压信号为高电平信号,而接地电压信号为低电平信号为例进行说明的。但是在实际应用过程中,对于离子选择电路而言,也不排除要求其输出的高压脉冲信号以接地电压为高电平信号而负高压信号(也即是低于接地电压,而电压大小相对较大的电压信号)为低电平信号;此时,可以将图7和图8中的高压电源换成接地电压源,图7和图8中的接地端换成连接负高压电压源即可。
此外,还可能要求离子选择电路输出的高压脉冲信号以高压信号为高电平信号,而负高压信号为低电平信号。此时,将图7和图8中的接地端换成连接负高压电压源即可。显然,这一实施例对应的离子选择电路可以应用于偏转导体为聚焦极4和金属圆柱壳体5的实施例。
以图8为例,当控制器向晶体管开关Q的控制端输出高电平信号时,晶体管开关Q闭合;控制器向晶体管开关Q的控制端输出低电平信号时, 晶体管开关Q断开。高压电源HV为几十伏到一千伏的电源。经过晶体管开关Q到达分压元件R2的第一端,该分压元件R2可以采用耐压高,功率大的电阻。且分压元件R2与晶体管开关Q连接的节点与耐高压电容C2的第一端相连,耐高压电容C2的第二端连接耐高压电阻R3的第一端,该耐高压电阻R3相当于滤波器,可以采用耐高压,功率大的电阻,其阻值比分压元件R2小的多,耐高压电阻R3的第二端接地。同时分压元件R2的第二端也接地,分压元件R2与晶体管开关Q、耐高压电容C2共同相连的一端即为离子选择电路的信号输出端。
当控制器向晶体管开关Q的控制端输出高电平信号时,晶体管开关Q闭合,构成通路,高压电源HV经过晶体管开关Q与分压元件R2直接到地,晶体管开关Q与分压元件R2及耐高压电容C2共同相连的节点,即离子选择电路的信号输出端OUT输出高电平信号;
当控制器向晶体管开关Q的控制端输出低电平信号时,晶体管开关Q断开,构成断路,离子选择电路的信号输出端经过分压元件R2接地,输出低电平信号。其中由于耐高压电容C1与耐高压电阻R3组成的RC串联电路在高压脉冲变化时进行充放电与滤波,即可实现高压脉冲信号输出的极快的下降与上升速度,可达到纳秒级别,保证高压脉冲信号中高低电平信号切换的准确性。
如前所述,控制器通过输出低压脉冲信号实现对晶体管开关的断开和导通的控制,从而控制离子选择电路的高压脉冲信号的输出,因此,本申请中是通过控制器输出的低压脉冲信号实现高压脉冲信号的输出控制,为了保证电路安全性,本申请中进一步地将控制器和晶体管开关的控制端之间设置隔离电路,具体地,可以在控制器和RC并联电路之间增加隔离芯片,从而避免高压脉冲信号对控制器产生负面干扰。
本申请中涉及的高压脉冲电路主要是指用于输出高电平和低电平信号来回切换的方波脉冲信号,其中高电平和低电平之间存在较大的电压差。在理论条件下,高压脉冲电路输出的高电平和低电平反复交替切换时,电压上升沿和电压下降沿是瞬时切换完成的,但在实际应用中电压上升沿和 下降沿无法做到完全的瞬时切换,而是在电压上升沿和下降沿存在一定的缓冲延时,且高电平和低电平之间的电压差越大,该缓冲延时的时间越长。
为此,本申请中提供了一种在输出高电平和低电平存在较大的电压差的高压脉冲信号的基础上,缩短上升沿和下降沿的缓冲时长的高压脉冲电路。
为了使本技术领域的人员更好地理解本申请方案,下面结合附图和具体实施方式对本申请作进一步的详细说明。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
如图9和图10所示,图9为本申请实施例提供的高压脉冲电路的电路结构示意图,图10为本申请实施例提供的另一高压脉冲电路的电路结构示意图。该高压脉冲电路可以包括:
第一电压源HV+、第二电压源HV-;
基于高压脉冲电路需要输出的高电平和低电平需要存在相对较大的电压差,本实施例中第一电压源HV+输出的电压和第二电压源HV-输出的电压之间的电压差值不小于预设电压差值。也即是说第一电压源HV+输出的电压和第二电压源HV-输出的电压之间也存在相对较大的电压差,对于该电压差具体大小,和高压脉冲电路所需要输出的高压脉冲信号的高低电平之间的电压差呈正比。
可选地,第一电压源HV+为高压电源,第二电压源HV-输出的电压为接地电压;
或者,第一电压源HV+为高压电源,第二电压源HV-为负高压电源;
或者,第一电压源HV+输出的电压为接地电压,第二电压源HV-为负高压电源。
本实施例中的高压电源具体可以是指几十伏到一千伏的高压电源,同理,负高压电源是指电压大小为几十伏到一千伏的负电压源。
该高压脉冲电路还可以进一步地包括:脉冲电路、以及RC串联电路。
其中,脉冲电路包括相互串联的分压元件R2和晶体管开关Q;
脉冲电路的一端和第一电压源HV+相连接,另一端和第二电压源HV-相连接;分压元件R2和晶体管开关Q相连接的节点为高压脉冲电路的信号输出端OUT;晶体管开关Q的控制端用于接收开关控制信号,通过该开关控制信号控制晶体管开关Q的导通和断开;
RC串联电路的第一端和高压脉冲电路的信号输出端OUT相连接,RC串联电路的第二端和第二电压源HV-相连接。
可选地,在晶体开关Q的控制端还可以进一步地串联连接一个RC并联电路;该RC并联电路的第一端用于接收开关控制信号,RC并联电路的第二端用于和晶体管开关Q的控制端相连接;开关控制信号用于控制晶体管开关Q的导通和断开。
如图9和图10所示,RC并联电路可以是电阻元件R1和电容元件C1并联组成的电路结构。
需要说明的是,脉冲电路中的分压元件R2可以采用分压电阻或其他具有一定阻值大小的电路元件,对于晶体管开关Q可以采用三极管、MOS管等等半导体开关器件。
对于脉冲电路而言,其和第一电压源HV+以及第二电压源HV-之间串联连接,进而形成输出高压脉冲信号的主要电路。并且,脉冲电路中分压元件R2和晶体管开关Q串联在第一电压源HV+和第二电压源HV-之间的串联顺序可以包括两种不同的形式。
参考图9,在一种可选地实施例中,分压元件R2的第一端和第一电压源相连接,第二端和晶体管开关Q的第一端相连接;晶体管开关Q的第二端和第二电压源相连接;晶体管开关Q的控制端和RC并联电路的第二端相连接。
脉冲电路中晶体管开关Q的控制端通过RC并联电路接收开关控制信号,该开关控制信号具体可以采用控制器或者其他脉冲源产生的低压脉冲信号。图9所示,以第一电压源HV+为高压电源,第二电压源HV-为接地电压源,晶体管开关Q为NPN三极管为例进行说明。晶体管开关Q的控制端也即是NPN三极管的基极,第一端即为NPN三极管的集电极,第二端即为NPN三极管的发射极。
当晶体管开关Q的控制端接入低电平信号时,晶体管开关Q的第一端和第二端相互断开;晶体管开关Q的第一端连接的分压元件R2和晶体管开关Q的第二端连接的第二电压源HV-之间相互断开。此时相当于分压元件R2的第一端接通高压电源而第二端作为高压脉冲电路的输出端,显然此时分压元件R2的第二端电压也即等于高压电源输出的电压信号,也即是高压电信号。
而当晶体管开关Q的控制端接入高电平信号时,晶体管开关Q的第一端和第二端之间相互闭合,晶体管开关Q的第一端连接的分压元件R2也即是和晶体管开关Q的第二端连接的第二电压源相连接,显然,此时分压元件R2的第一端连接第一电压源HV+,第二端连接第二电压源HV-,而其第二端又作为高压脉冲电路的输出端,显然此时分压元件R2的第二端的电压大小等于第二电压源HV-输出的电压大小,而第二电压源HV-为接地电压源,相应地,此时高压脉冲电路的输出端输出的电压信号也即是接地的0V电压信号。
由此,随着开关控制信号在高电平信号和低电平信号之间来回的切换,进而实现高压脉冲电路输出的电压信号在第一电压源输的第一电压信号和第二电压源输出的第二电压信号之间来回切换,进而形成高压脉冲电压信号。
参考图10,在本申请的另一可选地实施例中,晶体管开关Q的第一端和第一电压源HV-相连接,第二端和分压元件R2的第一端相连接,晶体管开关Q的控制端和RC并联电路的第二端相连接;分压元件R2的第二端和第二电压源相连接。
图10中是以第一电压源HV+为高压电源,第二电压源HV-为接地电压源,晶体管开关Q为PNP三极管为例进行说明的,同理,晶体管开关Q的控制端也即是PNP三极管的基极,第一端即为PNP三极管的集电极,第二端即为PNP三极管的发射极。和上述图9所示的电路结构的工作原理相似,当开关控制信号为低电平信号时,晶体管开关Q的第一端和第二端断开;当开关控制信号为高电平信号时,晶体管开关Q的第一端和第二端导通。
无论是图9所示的实施例,还是图10所示的实施例,本申请中的高压脉冲电路中均是主要依赖于串联在第一电压源HV+和第二电压源HV-之间的脉冲电路实现高压脉冲信号的输出,其中该高压脉冲信号的信号输出端OUT输出的电压即为脉冲电路中晶体管开关Q和分压元件R2相互连接的节点电压。
并且,对于串联在第一电压源HV+和第二电压源HV-之间的脉冲电路而言,如论分压元件R2和晶体管开关Q之间是什么样的串联顺序,二者形成的脉冲电路均可以近似视为晶体管开关Q的结电容和分压元件R2之间形成等效的RC串联电路,晶体管开关Q的结电容使得其在断开和导通过程中存在一定的延时,进而造成了最终输出的高压脉冲信号上升沿和下降沿的缓冲延时时长。
为了减小离子选择电路切换输出高电平信号和低电平信号时上升沿和下降沿的延时时长,本实施例中的离子选择电路还可以进一步地将RC串联电路并联在和信号输出端OUT和第二电源HV-之间。
该RC串联电路中可以包含有耐高压电容C2和耐高压电阻R3串联而成,该耐高压电阻R3功率大,其阻值应当比分压元件的阻值小。由于耐高压电容C2与耐高压电阻R3组成的RC串联电路在高压脉冲变化时进行充放电与滤波,RC串联电路中的耐高压电容C2电路可以在晶体管开关Q打开时给其充电,断开时吸收晶体管开关Q的电荷,能够在一定程度上减小输出的高压脉冲信号的上升沿和下降沿的缓冲延时时间,使其可以快速切换高压电平,即可实现高压脉冲信号输出的极快的下降与上升速度,可达到纳秒级别,保证高压脉冲信号中高低电平信号切换的准确性。并且R电路与C电路一起又具有一定的滤波效果,去除高次谐波,使得高压脉冲波形更加规则。
此外,还进一步地将开关控制信号通过RC并联电路接入晶体管开关Q控制信号,从而利用RC并联电路中电容元件C1的充放电功能,缩短开关控制信号控制启动晶体管开关Q接通或断开所需要耗费的时长。
基于上述高压脉冲电路输出的高压脉冲信号,在高电压信号和低电压信号交替切换的过程中,能够将上升沿和下降沿的延时缩小至几个纳米级 别,从而大大缩短了上升沿和下降沿的延时,在该高压脉冲电路应用于各种控制系统中时,提升控制系统的控制精度。
综上所述,本申请中所提供的高压脉冲电路中,通过分压元件和晶体管开关串接在两个存在相对较大的电压差的电压源之间,同时晶体管开关的断开和接通收晶体管开关的控制端接入的开关控制信号控制,基于不同的开关控制信号的切换,实现高压脉冲信号的高电平信号和低电平信号的切换输出,并利用晶体管开关的控制端串联的RC并联电路,使得高电平信号和低电平信号之间切换的上升沿和下降沿的延时大大缩短,进而有利于高压脉冲信号的广泛应用,提升高压脉冲电路应用于各种设备中时的控制精度。
基于上述实施例,本申请中还提供了上述高压脉冲电路应用于质谱仪中筛选目标离子和非目标离子的实施例。具体地,本申请还进一步地公开了一种离子选择电路,该离子选择电路应用于质谱仪,该质谱仪内部设置有用于对非目标离子飞行方向进行偏转的导体。该离子选择电路可以包括:
控制器以及如上任一项所述的高压脉冲电路;
高压脉冲电路的信号输出端用于和导体相连接;控制器的输出端和高压脉冲电路中的晶体管开关的控制端相连接;
其中,控制器用于向高压脉冲电路切换输出两种不同的开关控制信号,以使高压脉冲电路输出高电平信号和低电平信号切换输出的高压脉冲信号。
参照上述高压脉冲电路的实施例,本实施例中控制器输出的两种开关控制信号也即是输入高压脉冲电路中的晶体管开关的控制端的开关控制信号的两种不同状态的电压信号;以该控制器输出的开关控制信号为低压脉冲信号为例,两种开关控制信号即可以是包括低电平信号和高电平信号的低压脉冲信号;控制器向高压脉冲电路输出一种开关控制信号,高压脉冲电路即可输出一个对应的脉冲信号,例如,可以是控制器向高压脉冲电路中晶体管开关的控制端输入低电平信号时,高压脉冲电路输出高压脉冲信号的高电平信号;反之,当控制器向高压脉冲电路中晶体管开关的控制端 输入高电平信号时,高压脉冲电路输出高压脉冲信号的低电平信号。最终只要控制器输出一种开关控制信号可以使得高压脉冲电路对导体施加的电压能够使得导体产生对非目标离子产生偏转的电场,而当控制器输出另一种开关控制信号时,可以使得高压脉冲电路对导体施加电压,使得导体无法产生是目标离子偏转的电场即可。
对于控制器输出高低电平两种不同的开关控制信号之后,高压脉冲电路输出对应的高压脉冲信号的工作过程参照上述高压脉冲电路的实施例即可,在此本申请中不再重复赘述。
此外,可选地,控制器和脉冲电路之间通过隔离电路相连接。
需要说明的是,参照图3,图3为本申请实施例提供的质谱仪的剖面结构示意图。在质谱仪中离子源样品01受激光脉冲源2输出的激光激发的离子包括不同分子量的离子,且对于不同分子量的离子在加速电场U中加速的速度大小是不同的,对于分子量越小的离子在加速电场U中加速的速度越大,也就先离开加速电场U进入无场区并飞向检测器1;反之,分子量越小的离子加速后的速度越小,也就后离开加速电场U并经过无场区飞向检测器1。
而在实际对离子进行检测时,往往只需要检测特定的目标离子,而其他离子都属于非目标离子,当该非目标离子达到检测器1,并被检测器1所检测,不仅仅影响检测器1的使用寿命还影响目标离子检测结果显示的清晰度。
为此,本实施例中利用目标离子和非目标离子的质量不同导致目标离子和非目标离子经过无场区的时间不同,对目标离子和非目标离子进行筛选。在质谱仪的无场区设置导体,并在目标离子和非目标离子分别经过无场区时,为目标离子和非目标离子接通不同的电信号,进而使得导体在目标离子和非目标离子分别经过无场区时,产生不同的电场,使得目标离子经过导体附近时,飞行方向不发生改变,继续向检测器飞行,而当非目标离子经过导体附近时,收到导体产生的电场力的作用而发生偏转,进而无法达到检测器,实现对目标离子和非目标离子筛选的作用。
以导体包括第一导体板31和第二导体板32为例,在两个导体板分别 设置在离子飞行路径的两侧。其中第一导体板31接地,而第二导体板32和离子选择电路的输出端相连接。
那么,当目标离子飞行经过无场区时,控制器可以控制离子选择电路输出接地电压,显然此时第一导体板31和第二导体板32之间不存在电场,目标离子可以顺利穿过该无场区而到达检测器1。
当非目标离子飞行经过无场区时,控制器可以控制高压脉冲电路输出高压电信号,此时第一导体板31和第二导体板32之间产生电场,且该电场的电场线方向和非目标离子的飞行方向相互垂直,进而使得非目标离子飞行经过该电场时,飞行方向发生偏转进而无法飞行到达检测器1,进而实现了目标离子和非目标离子的筛选。
当然,在实际应用中,该导体也并不必然为两块导体板,还可以是一个金属圆筒,离子飞行时从金属圆筒的内部沿金属圆筒的中心轴平行方向穿出飞行,此时所需要采用的高压脉冲电路中第一电压源HV+可以是高压电压源,而第二电压源HV+为负高压电压源;该高压脉冲电路可以输出高电平为高压电信号,低电平为负高压电信号的高压脉冲信号。
以离子为正电离子为例,当目标离子飞行穿过金属圆筒时,控制器控制高压脉冲电路对金属圆筒接通高压电信号,使得金属圆筒内部电场驱动目标离子飞行轨迹向金属圆筒中心轴靠拢,进而顺利到达检测器1,而当非目标离子飞行穿过金属圆筒时,控制高压脉冲电路对金属圆筒接通负高压电信号,使得金属圆筒内部电场驱动非目标离子向金属圆筒内壁方向偏转,进而无法达到检测器,实现目标离子和非目标离子的筛选。可以理解的是,当离子为带负电荷的离子时,只需要在目标离子飞行时对金属圆筒接通负高压电信号,而在非目标离子飞行通过时对金属圆筒接通高压电信号即可。
对于目标离子和非目标离子是先后经过无场区的,具体先后顺序,有目标离子和非目标离子的分子量大小而定。但是两种离子先后通过无场区的时间差相对较小,也就要求导体所接通的两种不同电压信号在切换时能够满足电压的迅速上升和迅速下降。而本申请中所提供的高压脉冲电路,能够很大程度上减小高电平信号和低电平信号相互切换时的延时,从而满 足离子选择电路中筛选目标离子和非目标离子的两种电压信号切换时间延时短的需求,有利于提升质谱仪中离子筛选的准确性,进而有利于提升检测器的使用寿命和提升检测结果显示的清晰度。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。另外,本申请实施例提供的上述技术方案中与现有技术中对应技术方案实现原理一致的部分并未详细说明,以免过多赘述。
本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。

Claims (14)

  1. 一种质谱仪的离子筛选方法,其特征在于,在质谱仪的加速电场和检测器之间的离子飞行路径的侧面设有偏转导体;所述筛选方法包括:
    对所述偏转导体接通第一电压信号,以使所述偏转导体产生偏转电场,当所述离子飞行经过所述偏转电场时,飞行方向发生偏转而不到达所述检测器;
    检测激光同步脉冲信号,当所述激光同步脉冲信号输出之后,保持所述偏转导体接通所述第一电压信号不变,以便对从所述加速电场飞出的非目标离子的飞行方向进行偏转;
    当目标离子从所述加速电场中飞出时,对所述偏转导体接通第二电压信号,不产生使所述目标离子偏转的偏转电场,以便所述目标离子飞行到达所述检测器;
    当所述目标离子均通过所述偏转导体时,则对所述偏转导体接通所述第一电压信号;
    所述偏转导体为设置在所述离子飞行路径的侧面的至少一组偏转导体板;每组所述偏转导体板中包括第一导体板和第二导体板,所述第一导体板接地;
    对所述偏转导体接通第一电压信号,包括:
    对所述第二导体板接入大于接地电压的高压电信号;
    或者,对所述第二导体板接入低于接地电压的负高压电信号;
    对所述偏转导体接通第二电压信号,包括:
    对所述第二导体板接入和接地电压的大小相同的电压信号。
  2. 如权利要求1所述的质谱仪的离子筛选方法,其特征在于,所述偏转导体为所述质谱仪中的聚焦极或者为所述质谱仪的无场区的金属圆柱壳体;
    对所述偏转导体接通第一电压信号,包括:
    对所述偏转导体接通和所述离子的电性相反的高压电信号;
    对所述偏转导体接通第二电压信号,包括:
    对所述偏转导体接通和所述离子的电性相同的高压电信号。
  3. 如权利要求1或2所述的质谱仪的离子筛选方法,其特征在于,还包括:
    对所述偏转导体多次交替通入所述第一电压信号和所述第二电压信号;其中,每次通入所述第一电压信号和所述第二电压信号持续时长根据需要偏转的非目标离子和不需要偏转的目标离子的分子量确定。
  4. 一种质谱仪的离子筛选系统,其特征在于,包括:
    输入端和用于输出激光脉冲信号的激光脉冲源相连接的控制器;
    输出端和设于所述质谱仪中的偏转导体相连接,输入端和所述控制器相连接的离子选择电路;
    所述控制器用于控制所述离子选择电路向所述偏转导体交替输出第一电压信号和第二电压信号,以执行实现如权利要求1至3任一项所述的质谱仪的离子筛选方法的步骤。
  5. 如权利要求4所述的质谱仪的离子筛选系统,其特征在于,所述偏转导体为设置在所述离子飞行路径的侧面的至少一组偏转导体板;每组所述偏转导体板中包括第一导体板和第二导体板,所述第一导体板接地;
    所述第二导体板和所述离子选择电路的信号输出端相连接,所述离子选择电路包括高压电源、脉冲电路、以及RC串联电路;
    所述脉冲电路包括相互串联的分压元件和晶体管开关;所述脉冲电路的一端和所述高压电源的输出端相连接,另一端接地;所述分压元件和所述晶体管开关相连接的节点为所述离子选择电路的信号输出端;所述RC串联电路的第一端和所述离子选择电路的信号输出端相连接,第二端和接地;
    所述控制器和所述晶体管开关的控制端相连接,所述控制器用于控制所述晶体管开关的导通和断开。
  6. 如权利要求5所述的质谱仪的离子筛选系统,其特征在于,所述分压元件的第一端和所述高压电源相连接,第二端和所述晶体管开关的第一端相连接;所述晶体管开关的第二端接地;
    当所述控制器输出低电平信号时,所述晶体管开关的第一端和第二端断开;
    当所述控制器输出高电平信号时,所述晶体管开关的第一端和第二端导通。
  7. 如权利要求5所述的质谱仪的离子筛选系统,其特征在于,所述晶体管开关的第一端和所述高压电源相连接,第二端和所述分压元件的第一端相连接;所述分压元件的第二端接地;
    当所述控制器输出低电平信号时,所述晶体管开关的第一端和第二端断开;
    当所述控制器输出高电平信号时,所述晶体管开关的第一端和第二端导通。
  8. 如权利要求5所述的质谱仪的离子筛选系统,其特征在于,所述离子选择电路还包括RC并联电路;所述晶体管开关的控制端通过所述RC并联电路和所述控制器相连接。
  9. 一种高压脉冲电路,其特征在于,包括第一电压源、第二电压源、脉冲电路、以及RC串联电路;所述第一电压源输出的电压和所述第二电压源输出的电压之间的电压差值不小于预设电压差值;
    其中,所述脉冲电路包括相互串联的分压元件和晶体管开关;所述脉冲电路的一端和所述第一电压源相连接,另一端和所述第二电压源相连接;所述分压元件和所述晶体管开关相连接的节点为高压脉冲电路的信号输出端;
    所述RC串联电路的第一端和所述高压脉冲电路的信号输出端相连接,第二端和所述第二电压源相连接;
    所述晶体管开关用于根据所述晶体管开关的控制端接收的开关控制信号进行导通和断开切换。
  10. 如权利要求9所述的高压脉冲电路,其特征在于,所述分压元件的第一端和第一电压源相连接,第二端和所述晶体管开关的第一端相连接;所述晶体管开关的第二端和所述第二电压源相连接;
    当所述开关控制信号为高电平信号时,所述晶体管开关的第一端和第二端导通;
    当所述开关控制信号为低电平信号时,所述晶体管开关的第一端和第 二端断开。
  11. 如权利要求9所述的高压脉冲电路,其特征在于,所述晶体管开关的第一端和所述第一电压源相连接,第二端和所述分压元件的第一端相连接;所述分压元件的第二端和所述第二电压源相连接;
    当所述开关控制信号为高电平信号时,所述晶体管开关的第一端和第二端导通;
    当所述开关控制信号为低电平信号时,所述晶体管开关的第一端和第二端断开。
  12. 如权利要求9所述的高压脉冲电路,其特征在于,所述第一电压源为高压电源,所述第二电压源输出的电压为接地电压;
    或者,所述第一电压源为高压电源,所述第二电压源为负高压电源;
    或者,所述第一电压源输出的电压为接地电压,所述第二电压源为负高压电源。
  13. 如权利要求9至12任一项所述的高压脉冲电路,其特征在于,还包括和所述晶体管开关的控制端相连接的RC并联电路,所述晶体管开关的控制端通过所述RC并联电路接收所述开关控制信号。
  14. 一种离子选择电路,其特征在于,应用于质谱仪,其中,所述质谱仪的内部设置有用于对非目标离子飞行方向进行偏转的导体;所述离子选择电路包括控制器,如权利要求9至13任一项所述的高压脉冲电路;
    所述高压脉冲电路的信号输出端用于和所述导体相连接;所述控制器的输出端和所述高压脉冲电路中的所述晶体管开关的控制端相连接;
    其中,所述控制器用于向所述高压脉冲电路切换输出两种不同的开关控制信号,以使所述高压脉冲电路输出高电平信号和低电平信号切换输出的高压脉冲信号。
PCT/CN2022/131863 2021-11-18 2022-11-15 质谱仪的离子筛选方法和系统、高压脉冲电路和选择电路 WO2023088228A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22894762.8A EP4293703A1 (en) 2021-11-18 2022-11-15 Ion screening method and system for mass spectrometer, high-voltage pulse circuit, and selection circuit

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202122831001.9 2021-11-18
CN202111370623.4 2021-11-18
CN202122831001.9U CN216437083U (zh) 2021-11-18 2021-11-18 一种高压脉冲电路和离子选择电路
CN202111370623.4A CN114038731B (zh) 2021-11-18 2021-11-18 一种质谱仪的离子筛选方法和系统

Publications (1)

Publication Number Publication Date
WO2023088228A1 true WO2023088228A1 (zh) 2023-05-25

Family

ID=86396258

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/131863 WO2023088228A1 (zh) 2021-11-18 2022-11-15 质谱仪的离子筛选方法和系统、高压脉冲电路和选择电路

Country Status (2)

Country Link
EP (1) EP4293703A1 (zh)
WO (1) WO2023088228A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090272890A1 (en) * 2006-05-30 2009-11-05 Shimadzu Corporation Mass spectrometer
CN104135270A (zh) * 2014-07-17 2014-11-05 青岛歌尔声学科技有限公司 高脉冲输出电路及应用高脉冲输出电路的设备
CN107331597A (zh) * 2017-06-23 2017-11-07 江苏天瑞仪器股份有限公司福建分公司 基质辅助激光解析电离飞行时间质谱仪的离子推斥方法
CN114038731A (zh) * 2021-11-18 2022-02-11 安图实验仪器(郑州)有限公司 一种质谱仪的离子筛选方法和系统
CN216437083U (zh) * 2021-11-18 2022-05-03 安图实验仪器(郑州)有限公司 一种高压脉冲电路和离子选择电路

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090272890A1 (en) * 2006-05-30 2009-11-05 Shimadzu Corporation Mass spectrometer
CN104135270A (zh) * 2014-07-17 2014-11-05 青岛歌尔声学科技有限公司 高脉冲输出电路及应用高脉冲输出电路的设备
CN107331597A (zh) * 2017-06-23 2017-11-07 江苏天瑞仪器股份有限公司福建分公司 基质辅助激光解析电离飞行时间质谱仪的离子推斥方法
CN114038731A (zh) * 2021-11-18 2022-02-11 安图实验仪器(郑州)有限公司 一种质谱仪的离子筛选方法和系统
CN216437083U (zh) * 2021-11-18 2022-05-03 安图实验仪器(郑州)有限公司 一种高压脉冲电路和离子选择电路

Also Published As

Publication number Publication date
EP4293703A1 (en) 2023-12-20

Similar Documents

Publication Publication Date Title
US9431226B2 (en) High-voltage power unit and mass spectrometer using the power unit
JP5914461B2 (ja) 質量分析法のための超高速のパルサ極性切り替えを伝達するためのトリプルスイッチトポロジ
RU2249275C2 (ru) Способы управления установкой с квадрупольной ионной ловушкой и устройство для их осуществления
JP6337970B2 (ja) 質量分析装置
US20190164739A1 (en) Frequency and amplitude scanned quadrupole mass filter and methods
US10229822B2 (en) Mass spectrometer with high-voltage power source
EP2557590A1 (en) Quadrupolar mass analysis device
EP2027596A2 (en) Power supply regulation using a feedback circuit comprising an ac and dc component
WO2008072326A1 (ja) イオントラップ飛行時間型質量分析装置
US10984998B2 (en) Mass spectrometer
CN114038731B (zh) 一种质谱仪的离子筛选方法和系统
JP6658904B2 (ja) 質量分析装置
WO2023088228A1 (zh) 质谱仪的离子筛选方法和系统、高压脉冲电路和选择电路
CN216437083U (zh) 一种高压脉冲电路和离子选择电路
US9870910B2 (en) High speed polarity switch time-of-flight spectrometer
CN217768292U (zh) 一种多级高压脉冲发生器及飞行时间质谱仪多级聚焦装置
AU2022389627A1 (en) Ion screening method and system for mass spectrometer, high-voltage pulse circuit, and selection circuit
Westerdick et al. Planar Lab-On-A-Chip Micro Mass Spectrometer with Time-Of-Flight Separation
JP2024078415A (ja) 自己復帰型高電圧パルスドライバ
CN105911130B (zh) 一种激光解析离子源装置
CN114999887A (zh) 一种多级高压脉冲发生器及飞行时间质谱仪多级聚焦装置
CN214753644U (zh) 离子抓取装置和质谱仪
CN107464738B (zh) 一种高压耦合脉冲发生器及飞行时间质谱仪
CN214337820U (zh) 脉冲输出电路和高压脉冲输出电路
WO2024114096A1 (zh) 一种自恢复高压脉冲驱动器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22894762

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022894762

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022894762

Country of ref document: EP

Effective date: 20230914

WWE Wipo information: entry into national phase

Ref document number: AU2022389627

Country of ref document: AU