WO2024114096A1 - 一种自恢复高压脉冲驱动器 - Google Patents

一种自恢复高压脉冲驱动器 Download PDF

Info

Publication number
WO2024114096A1
WO2024114096A1 PCT/CN2023/122727 CN2023122727W WO2024114096A1 WO 2024114096 A1 WO2024114096 A1 WO 2024114096A1 CN 2023122727 W CN2023122727 W CN 2023122727W WO 2024114096 A1 WO2024114096 A1 WO 2024114096A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
pulse
resistor
self
capacitor
Prior art date
Application number
PCT/CN2023/122727
Other languages
English (en)
French (fr)
Inventor
郑明�
王优
相双红
Original Assignee
浙江迪谱诊断技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江迪谱诊断技术有限公司 filed Critical 浙江迪谱诊断技术有限公司
Publication of WO2024114096A1 publication Critical patent/WO2024114096A1/zh

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/53Generators characterised by the type of circuit or by the means used for producing pulses by the use of an energy-accumulating element discharged through the load by a switching device controlled by an external signal and not incorporating positive feedback
    • H03K3/57Generators characterised by the type of circuit or by the means used for producing pulses by the use of an energy-accumulating element discharged through the load by a switching device controlled by an external signal and not incorporating positive feedback the switching device being a semiconductor device

Definitions

  • the invention relates to the technical field of high-voltage pulse driving in electronic control, in particular to a self-recovering high-voltage pulse driver.
  • Time-of-flight mass spectrometry is a type of mass spectrometry that uses ion flight time as a measurement parameter. After being accelerated by an electric field, the ions enter a field-free drift tube and fly toward a detector at a constant speed to realize the ion flight process. The ion acceleration process is achieved by loading high voltage at both ends of the electric field to generate a potential difference to accelerate the ions. How to generate high-voltage pulses is one of the key technologies to realize time-of-flight mass spectrometry technology.
  • high-voltage pulse is used in high-tech fields such as life science and microbial identification.
  • the amplitude and frequency of high-voltage pulse will affect the ionization flight time of ions.
  • the amplitude must be large enough to meet the conditions for sample ionization, and secondly, the frequency will affect the detection speed of matrix-assisted laser desorption ionization time-of-flight mass spectrometer.
  • the Chinese invention patent CN114660046A discloses a DC pulse atmospheric pressure glow discharge atomic emission spectrometry system and detection method, which outputs a square pulse voltage and a synchronized TTL level signal through a DC pulse high voltage generating unit.
  • the pulse high voltage loading unit and the traveling wave pulse and timing control system are used to provide pulse high voltage, which solves the problem of insufficient heavy metal excitation efficiency in the current solution cathode glow discharge technology due to the discharge current being limited to 50-70mA.
  • the Chinese invention patent CN114597112A discloses a pulse switch type ion detector device and its preparation method, which provides a pulse voltage through a pulse high voltage loading unit and a traveling wave pulse and timing control system, and adjusts the timing of the pulse voltage to match the timing of the external control trigger signal.
  • the detector bias is intentionally reduced.
  • the detector high voltage is adjusted to the working state, and the ion signal-to-noise ratio is improved through the "open and close door” operation, effectively eliminating the background interference.
  • the adaptability of this type of detector under conditions of strong pulse radiation is expanded. Through pulse high voltage gating and timing control, the pulse noise interference at the front end can be greatly eliminated, and the detector is opened only within the ion arrival time period to achieve high signal-to-noise ratio ion signal acquisition.
  • the amplitude of the high-voltage pulses generated is mostly within 1KV, which is relatively small.
  • it will affect the detection speed of the matrix-assisted laser desorption ionization flight time mass spectrometer, resulting in a decrease in detection accuracy.
  • the integrated power supply solution is directly driven by the voltage difference of the power supply, which has high technical solution costs and slow response speed.
  • the boosting solution using a transformer causes a large startup delay and slow response speed due to the boosting coil.
  • the purpose of the present invention is to solve the problems in the prior art and to provide a self-recovering high-voltage pulse driver which has not only fast response and good stability but also high output voltage amplitude.
  • the present invention proposes a self-recovering high-voltage pulse driver, including a high-speed pulse driving unit and a high-voltage pulse generating unit, the high-speed pulse driving unit is provided with a high-voltage switch Q, the high-voltage pulse generating unit includes a high-voltage capacitor C and a resistor network, the high-voltage capacitor C is connected to the high-voltage switch Q, the first high voltage HV1, the second high voltage HV2, and the third high-voltage pulse HV3 through the resistor network; the high-speed pulse driving unit generates a third high-voltage pulse HV3 from the first high voltage HV1 and the second high voltage HV2 through the high-voltage switch Q and the high-voltage capacitor C, and the third high-voltage pulse HV3 automatically recovers to the second high voltage HV2 after the high-voltage pulse is output.
  • the high-speed pulse driving unit is provided with a high-voltage switch Q
  • the high-voltage pulse generating unit includes a high-
  • the output voltage of the third high-voltage pulse HV3 is equal to the voltage of the second high-voltage HV2; when the high-speed pulse driving unit has a driving pulse input, the output voltage of the third high-voltage pulse HV3 is equal to the voltage of the second high-voltage HV2 minus the voltage of the first high-voltage HV1, and recovers to the voltage of the second high-voltage HV2 after the driving pulse disappears.
  • the resistor network includes resistors R1, R2, R3, and R4.
  • One end of the high-voltage capacitor C is connected to the high-voltage switch Q through resistor R1, and is connected to the first high voltage HV1 through resistor R2.
  • the falling speed of the high-voltage pulse output is determined by the time constant of resistors R1, R3 and the high-voltage capacitor C.
  • the pulse delay recovery time after the high-voltage pulse output is determined by the time constant of resistors R2, R3 and the high-voltage capacitor C.
  • the other end of the high-voltage capacitor C is connected to the high-voltage switch Q through resistor R3.
  • the second high voltage HV2 is connected, and the third high voltage pulse HV3 is connected through the resistor R4.
  • the output voltage power of the third high voltage pulse HV3 is determined by the capacity of the high voltage capacitor C and the resistance value of the resistor R4.
  • the resistors R1, R2, R3 and R4 are power resistors, the resistance of the resistor R3 is greater than the resistance of the resistor R2, and the resistance of the resistor R2 is greater than the resistance of the resistor R4 and/or the resistor R1.
  • the high-speed pulse driving unit also includes a high-speed level driving circuit U, the input end of the high-speed level driving circuit U is connected to the input low voltage control signal, and the output end is connected to the gate stage of the high-voltage switch Q.
  • the input low voltage control signal passes through the high-speed level driving circuit U and is connected to the gate stage of the high-voltage switch Q.
  • the high-speed level driving circuit U preferably includes but is not limited to an isolation driving point circuit of transformer coupling, isolation power supply coupling, and photoelectric isolation coupling, and the secondary circuit is directly driven, and the isolation driving point circuit of transformer coupling, isolation power supply coupling, and photoelectric isolation coupling corresponds one to one with the gate level of the high-voltage switch Q.
  • the input low voltage control signal is a TTL or CMOS signal.
  • the high-voltage switch Q is one of a high-voltage field effect transistor, a high-voltage transistor, and an insulated gate bipolar transistor, and the withstand voltage of the high-voltage switch Q is not lower than the first high voltage HV1.
  • the high-voltage switch Q is in single or multiple cascade connection mode, and the withstand voltage of the single or multiple cascade connections is not lower than the first high voltage HV1.
  • the withstand voltage of the high-voltage capacitor C is not lower than that of the second high voltage HV2.
  • the first high voltage HV1 and the second high voltage HV2 are high voltage power supplies that are grounded in the same phase.
  • the input end of the high-voltage switch Q is connected to a voltage-stabilizing diode D to prevent the high-voltage switch Q from receiving an input overvoltage.
  • the self-recovering high-voltage pulse driver of the present invention includes two high-voltage power supply inputs and one high-voltage output.
  • the high-speed pulse driving unit In addition to the two input voltages, the high-speed pulse driving unit generates a third high-voltage pulse from the first high voltage and the second high voltage, and the high-voltage pulse automatically recovers to the first high voltage after output.
  • the recovery time and the fall time of the high-voltage pulse can be configured, and the cycle is short and the frequency is high.
  • the amplitude of the high-voltage pulse output can be configured, and the configurable upper limit of the high-voltage output amplitude is much larger than the upper limit of the high-voltage amplitude that can be achieved by current technology.
  • the recovery time of the present invention is set by the time constant of the resistor and the capacitor, and the response rate is fast, which improves the response time of the whole system, promotes the in-depth development of mass spectrometry technology, and has a high output voltage amplitude, which is easy to expand the system.
  • the high-voltage pulse driver determines the pulse delay recovery time by the time constant of the resistors R2, R3 and the high-voltage capacitor C in a completely hardware manner, and determines the fall time of the high-voltage pulse output by the time constant of the resistors R1, R3 and the high-voltage capacitor C, so that the high-voltage pulse device has a fast response speed.
  • the high-voltage output can be stably and flexibly realized, and the output voltage of high voltage and ultra-high voltage can be achieved, thereby realizing high-voltage pulse output.
  • FIG1 is a schematic diagram of a self-recovering high-voltage pulse driver of the present invention.
  • FIG2 is a schematic diagram of a driving signal and an HV3 voltage output waveform
  • FIG3 is a schematic diagram of a high-speed level driving circuit.
  • a self-recovering high-voltage pulse driver of the present invention comprises: a first high voltage HV1, a second high voltage HV2, a third high voltage pulse HV3, a resistor network, and a capacitor C, wherein the first high voltage HV1 and the second high voltage HV2 are high voltage inputs, and the third high voltage pulse HV3 is a high voltage output.
  • the self-recovering high-voltage pulse driver also includes a high-speed pulse driving unit and a high-voltage pulse generating unit, wherein the high-speed pulse driving unit is provided with a high-voltage switch Q, and the high-voltage pulse generating unit includes a high-voltage capacitor C and a resistor network, wherein the high-voltage capacitor C is connected to the high-voltage switch Q, the first high voltage HV1, the second high voltage HV2, and the third high voltage pulse HV3 through the resistor network; the high-speed pulse driving unit generates a third high voltage pulse HV3 from the first high voltage HV1 and the second high voltage HV2 through the high-voltage switch Q and the high-voltage capacitor C, and the third high voltage pulse HV3 automatically recovers to the second high voltage HV2 after the high voltage pulse is output.
  • the high-speed pulse driving unit is provided with a high-voltage switch Q
  • the high-voltage pulse generating unit includes a high-voltage capacitor C and a resistor
  • the output voltage of the third high-voltage pulse HV3 is equal to the voltage of the second high-voltage HV2; when the high-speed pulse driving unit has a driving pulse input, the output voltage of the third high-voltage pulse HV3 is equal to the voltage of the second high-voltage HV2. It is instantaneously equal to the voltage of the second high voltage HV2 minus the voltage of the first high voltage HV1, and after a delay it recovers to the voltage of the first high voltage HV1, that is, the voltage at the output end HV3 is (HV2, HV2-HV1), thereby realizing the self-recovering high-voltage pulse output function.
  • the RC charging and discharging circuit uses the RC charging and discharging circuit to control the reset pin of the microcontroller to achieve the expected reset time.
  • the principle of the RC charging and discharging circuit is divided into two processes: the first process is the charging process. When the switch is closed, the power supply charges the capacitor through the resistor. Since there is no charge at both ends of the capacitor at the beginning of charging, the initial voltage is 0. As the capacitor is continuously charged, the voltage at both ends of the capacitor rises quickly, and the voltage at both ends of the resistor continues to decrease. When the charging voltage at both ends of the capacitor reaches the power supply voltage, the charging process ends; the second process is the discharging process. The capacitor discharges through the resistor.
  • the voltage at both ends of the capacitor is the power supply voltage.
  • the capacitor discharges very quickly.
  • the voltage at both ends of the capacitor quickly drops to 0, and the discharge ends, realizing the level change. Therefore, it is feasible to realize pulse high voltage through the RC charging and discharging principle in high-voltage circuits.
  • the implementation of the high-voltage pulse drive circuit includes: three high voltages HV1, HV2 and HV3, resistors R1, R2, R3, R4, and a high-voltage capacitor C, where HV1 and HV2 are high-voltage input terminals, and HV3 is a high-voltage output.
  • the output voltage of HV3 is the voltage of HV2 voltage connected in series with resistors R3, R4, and C, which is equal to the HV2 voltage;
  • the HV3 high voltage is instantly equal to HV2 minus HV1, and after a delay, it recovers to the HV1 voltage.
  • the output terminal HV3 voltage is (HV2, HV2-HV1), thereby realizing the self-recovering high-voltage pulse output function.
  • the resistor network includes resistor R1, resistor R2, resistor R3, and resistor R4.
  • One end of the high-voltage capacitor C is connected to the high-voltage switch Q through resistor R1, and is connected to the first high-voltage HV1 through resistor R2.
  • the falling speed of the high-voltage pulse output is determined by the time constant of resistors R1, R3 and the high-voltage capacitor C.
  • the pulse delay recovery time t after the high-voltage pulse output is determined by the time constant of resistors R2, R3 and the high-voltage capacitor C; the other end of the high-voltage capacitor C is connected to the second high-voltage HV2 through resistor R3, and is connected to the third high-voltage pulse HV3 through resistor R4.
  • the output voltage power of the third high-voltage pulse HV3 is determined by the capacity of the high-voltage capacitor C and the resistance value of resistor R4.
  • the resistors R1, R2, R3, and R4 are power resistors.
  • the resistance value of the resistor R3 is much greater than the resistance value of the resistor R2, and the resistance value of the resistor R2 is much greater than the resistance value of the resistor R4 or/and the resistance value of the resistor R1.
  • the high-speed pulse drive unit also includes a high-speed level drive circuit U (gate driver MCP1416T-E/OT), which includes but is not limited to a transformer network, an isolated power supply network or a gate driver.
  • the input end of the high-speed level drive circuit U is connected to an input low voltage, and the output end is connected to a high-voltage switch Q.
  • the input low voltage is connected to the high-voltage switch Q after passing through the level conversion circuit U.
  • the input low voltage is a TTL or CMOS signal.
  • the input end of the high-voltage switch Q is at least connected to, but not limited to, a voltage regulator diode D to prevent the high-voltage switch Q from inputting overvoltage.
  • the withstand voltage of the high-voltage capacitor C is not lower than the second high voltage HV2 to prevent the high-voltage capacitor C from being broken down and failing.
  • the high-voltage switch Q uses one of a high-voltage field effect transistor, a high-voltage transistor, and an insulated gate bipolar transistor, and the withstand voltage of the high-voltage switch Q is not lower than the first high voltage HV1 to prevent the high-voltage switch Q from being broken down and failing.
  • the first high voltage HV1 and the second high voltage HV2 are high voltage power supplies with the same phase as the ground.
  • the first high voltage HV1 and the second high voltage HV2 are high voltage inputs, and the third high voltage pulse HV3 is a high voltage output;
  • the voltage level of the first high voltage HV1 includes but is not limited to 1kV, 2kV, 3kV, 4kV, 6kV, 8kV, 9kV, 10kV;
  • the voltage level of the second high voltage HV2 includes but is not limited to 5kV, 10kV, 15kV, 20kV, 25kV, 30kV, 50kV.
  • the high-voltage switch Q is a high-voltage transistor or field-effect transistor; I/P1 is a high-speed pulse input signal, and VCC is a power supply that shares a common ground with the high-voltage switch Q; the high-speed level drive circuit U includes an isolation drive point circuit of transformer coupling, isolation power supply coupling, and optoelectronic isolation coupling; the withstand voltage of the high-voltage capacitor C is not less than HV2; the resistor network includes resistors R1, R2, R3, and R4; the pulse delay recovery time is determined by the time constant of resistors R2, R3 and the high-voltage capacitor C; the falling speed of the high-voltage pulse output is determined by the time constant of resistors R1, R3 and the high-voltage capacitor C; the output voltage power of the third high-voltage pulse HV3 is determined by the capacity of the high-voltage capacitor C and the resistance value of the resistor R4; DC is a voltage source.
  • R is the series resistance of the charging circuit, which is equal to R2+R3
  • R' is the series resistance of the discharge circuit, which is equal to R3+R1
  • C0 is the high-voltage capacitor C
  • V1 is the full charge voltage
  • V0 is the initial voltage of the capacitor
  • VT is the voltage value on the capacitor at time t.
  • the frequency of the third high-voltage pulse HV3 is determined by the frequency of I/P1, and the rising and falling edges are determined by R2, R3, C and R3, C, R1 respectively.
  • HV1 10Kv
  • HV2 50Kv
  • R1 100K
  • R2 100K
  • R3 20M
  • HV1 5Kv
  • HV2 40Kv
  • R1 1K
  • R2 1K
  • R3 200K
  • HV1 5Kv
  • HV2 40Kv
  • R1 10K
  • R2 10K
  • R3 200K
  • a self-recovering high-voltage pulse driver of the present invention includes a high-speed level driving circuit, wherein U1 is a gate driver, L1 and L2 are isolation transformers, U2 is a photocoupler, VCC is a power supply that shares a common ground with the high-voltage switch Q, VCC2 is an isolated power supply that does not share a common ground with the high-voltage switch Q, VCC1 can select a power supply that shares a common ground with or does not share a common ground with the high-voltage switch Q, and I/P1 is a high-speed pulse input signal.
  • the input low voltage is a TTL or CMOS signal
  • the output of the high-speed level driving circuit is a high level, turning on the high-voltage switch Q.
  • I/P1 is a high-speed pulse input signal
  • gate driver U1 includes but is not limited to MC33151DR2G.
  • the isolation transformers L1 and L2 include but are not limited to EE16 transformer single-circuit or multi-circuit coils
  • the photocoupler includes but is not limited to HCPL2530
  • the isolation power supplies VCC1 and VCC2 include but are not limited to F0503S-2W isolation power supply modules.
  • the connection methods of the high-voltage switch Q include but are not limited to single or series connection.
  • the gate driver U1 includes but is not limited to TF2190M-TAH
  • the isolation transformers L1 and L2 include but are not limited to EE25 transformer single-channel or multi-channel coils
  • the photocoupler includes but is not limited to APV1122
  • the isolation power supplies VCC1 and VCC2 include but are not limited to isolation power supply modules RS1-03S05H.
  • the connection methods of the high-voltage switch Q include but are not limited to single or series.

Landscapes

  • Electronic Switches (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

本发明提出了一种自恢复高压脉冲驱动器,包括高速脉冲驱动单元和高压脉冲生成单元,所述高速脉冲驱动单元设有高压开关Q,所述高压脉冲生成单元包括高压电容C和电阻网络,所述高压电容C通过电阻网络连接高压开关Q、第一路高压HV1、第二路高压HV2、第三路高压脉冲HV3;所述高速脉冲驱动单元通过高压开关Q及高压电容C将第一路高压HV1和第二路高压HV2生成第三路高压脉冲HV3,高压脉冲输出后第三路高压脉冲HV3自动恢复到第二路高压HV2。该自恢复高压脉冲驱动器不仅响应快、稳定性好,而且输出电压幅值高,并且恢复时间以电阻和电容的时间常数来设置,响应速率快,提高整个系统的响应时间,并且输出电压幅值高,易于系统的扩展。

Description

一种自恢复高压脉冲驱动器 技术领域
本发明涉及电子控制中高压脉冲驱动的技术领域,特别是一种自恢复高压脉冲驱动器。
背景技术
飞行时间质谱(TOF-MS)是以离子飞行时间为测量参数的质谱类型,离子在电场加速后进入无场漂移管,并以恒定的速度飞向检测器实现离子飞行的过程,其中离子的加速过程是由高压加载在电场两端产生电势差对离子进行加速实现的,如何产生高压脉冲是是实现飞行时间质谱技术的关键技术之一。
高压脉冲作为基质辅助激光解吸电离飞行时间质谱仪的重要输入之一,应用在生命科学、微生物鉴定等高科技领域中。高压脉冲的幅值大小、频率等会影响离子的电离飞行时间,首先是幅值足够大,达到样本离子化的条件,再者是频率的大小,影响基质辅助激光解吸电离飞行时间质谱仪的检测速度。
关于脉冲电路已有相关研究,例如:CN114660046A(专利申请号CN202210285342.7)的中国发明专利公开了一种直流脉冲式大气压辉光放电原子发射光谱系统及检测方法,通过直流脉冲高压发生单元输出方形脉冲电压和一个同步的TTL电平信号。脉冲高压加载单元和行波脉冲与时序控制系统,用于提供脉冲高压,其解决了现在溶液阴极辉光放电技术因放电电流局限于50-70mA导致重金属激发效率不够的问题。CN114597112A(专利申请号CN202210180291.1)的中国发明专利公开了一种脉冲开关型离子探测器装置及其制备方法,通过脉冲高压加载单元和行波脉冲与时序控制系统提供脉冲电压,同时将所述脉冲电压的时序调整为与外控触发信号的时序相匹配,在干扰光到达探测器的时刻,有意降低探测器偏压,当离子信号到达探测器时,将探测器高压调高至工作状态,通过“开关门”操作,提升离子信噪比,有效剔除背景的干扰。扩展了该类探测器在有强脉冲辐射条件下的适应能力,通过脉冲高压选通与时序控制,能够极大的剔除前端的脉冲噪声干扰,仅对离子到达时间段内的探测器开门,实现高信噪比的离子信号获取。
现有技术虽有脉冲电路相关研究,但是产生高压脉冲幅值多在1KV以内,幅值比较小,用于离子飞行时间测量时会影响基质辅助激光解吸电离飞行时间质谱仪的检测速度,造成检测精确度下降。另外,采用集成电源的方案,用电源的压差直接驱动,技术方案成本高,而且响应速度慢。采用变压器的升压方案,升压线圈造成启动延迟大,响应速度慢。
发明内容
本发明的目的就是解决现有技术中的问题,提出一种自恢复高压脉冲驱动器,不仅响应快、稳定性好,而且输出电压幅值高。
为实现上述目的,本发明提出了一种自恢复高压脉冲驱动器,包括高速脉冲驱动单元和高压脉冲生成单元,所述高速脉冲驱动单元设有高压开关Q,所述高压脉冲生成单元包括高压电容C和电阻网络,所述高压电容C通过电阻网络连接高压开关Q、第一路高压HV1、第二路高压HV2、第三路高压脉冲HV3;所述高速脉冲驱动单元通过高压开关Q及高压电容C将第一路高压HV1和第二路高压HV2生成第三路高压脉冲HV3,高压脉冲输出后第三路高压脉冲HV3自动恢复到第二路高压HV2。
作为优选,当所述高速脉冲驱动单元无驱动输入时,所述第三路高压脉冲HV3的输出电压等于第二路高压HV2的电压;当所述高速脉冲驱动单元有驱动脉冲输入时,所述第三路高压脉冲HV3的输出电压等于第二路高压HV2的电压减去第一路高压HV1的电压,驱动脉冲消失后恢复至第二路高压HV2的电压。
作为优选,所述电阻网络包括电阻R1、电阻R2、电阻R3、电阻R4,所述高压电容C的一端通过电阻R1连接所述高压开关Q,通过电阻R2连接所述第一路高压HV1,高压脉冲输出的下降速度由电阻R1、R3与高压电容C的时间常数确定,高压脉冲输出后脉冲延时恢复时间由电阻R2、R3与高压电容C的时间常数确定;所述高压电容C的另一端通过电阻R3 连接第二路高压HV2,通过电阻R4连接第三路高压脉冲HV3,所述第三路高压脉冲HV3的输出电压功率通过高压电容C的容量及电阻R4的阻值确定。
作为优选,所述电阻R1、电阻R2、电阻R3、电阻R4为功率电阻,所述电阻R3的阻值大于电阻R2的阻值,所述电阻R2的阻值大于电阻R4或/和电阻R1的阻值。
作为优选,所述高速脉冲驱动单元还包括高速电平驱动电路U,所述高速电平驱动电路U的输入端连接输入低电压控制信号,输出端连接高压开关Q门级,输入低电压控制信号经过高速电平驱动电路U后接入高压开关Q门级。
作为优选,所述高速电平驱动电路U优选包含但不限于变压器耦合、隔离电源耦合、光电隔离耦合的隔离驱动点电路,次选电路直接驱动,所述变压器耦合、隔离电源耦合、光电隔离耦合的隔离驱动点电路与高压开关Q门级一一对应。
作为优选,所述输入低电压控制信号为TTL或CMOS信号。
作为优选,所述高压开关Q采用高压场效应管、高压晶体管、绝缘栅双极型晶体管中的一种,所述高压开关Q的耐压值不低于第一路高压HV1。
作为优选,所述高压开关Q为单个或多个级联方式,单个或多个级联后的耐压不低于第一路高压HV1。
作为优选,所述高压电容C的耐压值不低于第二路高压HV2。
作为优选,所述第一路高压HV1与所述第二路高压HV2为同相接地的高压电源。
作为优选,所述高压开关Q的输入端连接稳压二极管D,防止高压开关Q输入过电压。
本发明的有益效果:本发明的自恢复高压脉冲驱动器包含两路高压电源的输入和一路高压输出,除了两路输入电压以外,以高速脉冲驱动单元将第一路高压和第二路高压生成第三路高压脉冲,高压脉冲输出后自动恢复到第一路高压。通过改变高压脉冲驱动器内部元器件,能够配置高压脉冲的恢复时间和下降时间,且周期短,频率高,通过改变高压脉冲驱动器内部元器件,能够配置高压脉冲输出的幅值,可配置的高压输出幅值上限值远大于目前技术所能达到的高压幅值上限值。
本发明的恢复时间以电阻和电容的时间常数来设置,响应速率快,提高整个系统的响应时间,推动质谱技术的深度发展,并且输出电压幅值高,易于系统的扩展。此外,高压脉冲驱动器通过完全硬件方式由电阻R2、R3与高压电容C的时间常数确定脉冲延时恢复时间,由电阻R1、R3与高压电容C的时间常数确定高压脉冲输出的下降时间,使高压脉冲器的响应速度快。通过改变C容值/耐压及R4阻值/耐压调整高压输出,稳定灵活的实现高电压的输出,可达到高压、特高压的输出电压,从而实现高电压脉冲输出。
本发明的特征及优点将通过实施例结合附图进行详细说明。
附图说明
图1是本发明一种自恢复高压脉冲驱动器的示意图;
图2是驱动信号和HV3电压输出波形示意图;
图3是高速电平驱动电路示意图。
具体实施方式
参阅图1,本发明的一种自恢复高压脉冲驱动器,包括:第一路高压HV1、第二路高压HV2、第三路高压脉冲HV3、电阻网络、电容C,其中,所述第一路高压HV1和第二路高压HV2为高压输入,所述第三路高压脉冲HV3为高压输出。在本实施例中,自恢复高压脉冲驱动器还包括高速脉冲驱动单元和高压脉冲生成单元,所述高速脉冲驱动单元设有高压开关Q,所述高压脉冲生成单元包括高压电容C和电阻网络,所述高压电容C通过电阻网络连接高压开关Q、第一路高压HV1、第二路高压HV2、第三路高压脉冲HV3;所述高速脉冲驱动单元通过高压开关Q及高压电容C将第一路高压HV1和第二路高压HV2生成第三路高压脉冲HV3,高压脉冲输出后第三路高压脉冲HV3自动恢复到第二路高压HV2。具体的,当所述高速脉冲驱动单元无驱动输入时,所述第三路高压脉冲HV3的输出电压等于第二路高压HV2的电压;当所述高速脉冲驱动单元有驱动脉冲输入时,所述第三路高压脉冲HV3的输出电压 瞬时等于第二路高压HV2的电压减去第一路高压HV1的电压,经过延时后恢复至第一路高压HV1的电压,即输出端HV3的电压为(HV2,HV2-HV1),由此实现自恢复的高压脉冲输出功能。
阻容(RC)充放电路以RC充放电路对单片机的复位引脚进行电平控制,达到预期的复位时间。RC充放电路的原理分为两个过程:第一个过程是是充电过程,当开关闭合,电源通过电阻对电容进行充电,由于刚开始充电的时候电容两端没有电荷,初始的电压为0,随着电容不断被充电,电容两端的电压很快上升,电阻两端的电压不断减小,当电容两端的充电电压达到电源电压时,充电过程结束;第二个过程是放电过程,电容通过电阻放电,刚开始放电的时候电容两端的电压为电源电压,电容放电很快,随着电容不断放电电容两端的电压很快下降到0,放电结束,实现电平的高低变化。因此在高压电路中通过RC充放电原理实现脉冲高压具有一定的可行性。
结合RC充放电原理,高压脉冲驱动电路的实现包括:HV1、HV2和HV3三个高压、电阻R1、R2、R3、R4、高压电容C,其中HV1和HV2为高压输入端,HV3为高压输出,当无驱动脉冲输入时HV3的输出电压为HV2电压串接电阻R3、R4、C后的电压,等于HV2电压;当有驱动脉冲输入时HV3高压瞬间等于HV2减去HV1,经过延时后恢复至HV1电压,输出端HV3电压为(HV2,HV2-HV1),由此实现自恢复的高压脉冲输出功能。
所述电阻网络包括电阻R1、电阻R2、电阻R3、电阻R4,所述高压电容C的一端通过电阻R1连接所述高压开关Q,通过电阻R2连接所述第一路高压HV1,高压脉冲输出的下降速度通过电阻R1、R3与高压电容C的时间常数确定,高压脉冲输出后脉冲延时恢复时间t通过电阻R2、R3与高压电容C的时间常数确定;所述高压电容C的另一端通过电阻R3连接第二路高压HV2,通过电阻R4连接第三路高压脉冲HV3,所述第三路高压脉冲HV3的输出电压功率通过高压电容C的容量及电阻R4的阻值确定。具体的,所述电阻R1、电阻R2、电阻R3、电阻R4为功率电阻,所述电阻R3的阻值远大于电阻R2的阻值,所述电阻R2的阻值远大于电阻R4或/和电阻R1的阻值。
高速脉冲驱动单元还包括高速电平驱动电路U(栅极驱动器MCP1416T-E/OT),所述高速电平驱动电路包括但不限于变压器网络、隔离电源网络或栅极驱动器,所述高速电平驱动电路U的输入端连接输入低电压,输出端连接高压开关Q,输入低电压经过电平变换电路U后接入高压开关Q。具体的,所述输入低电压为TTL或CMOS信号。所述高压开关Q的输入端至少连接但不限于稳压二极管D,防止高压开关Q输入过电压。
高压电容C的耐压值不低于第二路高压HV2,以防止高压电容C被击穿而失效。高压开关Q采用高压场效应管、高压晶体管、绝缘栅双极型晶体管中的一种,所述高压开关Q的耐压值不低于第一路高压HV1,以防止高压开关Q被击穿而失效。
第一路高压HV1与所述第二路高压HV2为同相接地的高压电源。所述第一路高压HV1和第二路高压HV2为高压输入,所述第三路高压脉冲HV3为高压输出;第一路高压HV1的电压等级包含但不限于1kV、2kV、3kV、4kV、6kV、8kV、9kV、10kV;第二路高压HV2的电压等级包含但不限于5kV、10kV、15kV、20kV、25kV、30kV、50kV。
参阅图1,高压开关Q为高压晶体管或场效应管;I/P1为高速脉冲输入信号,VCC为和高压开关Q共地的电源;高速电平驱动电路U包括变压器耦合、隔离电源耦合、光电隔离耦合的隔离驱动点电路;高压电容C的耐压不低于HV2;电阻网络包括电阻R1、电阻R2、电阻R3、电阻R4;脉冲延时恢复时间由电阻R2、R3与高压电容C的时间常数确定;高压脉冲输出的下降速度由电阻R1、R3与高压电容C的时间常数确定;第三路高压脉冲HV3输出电压功率由高压电容C容量及电阻R4的阻值确定;DC为电压源。
参阅图2,当接通电源开始工作后,I/P1为低电平时,高压开关Q未打开时,此时第三路高压脉冲HV3的电压保持稳定,当I/P1为低电平变化到高电平时,高压开关Q打开,放电回路打开,第三路高压脉冲HV3端的电压下降,当I/P1为高电平变化到低电平时,高压开关Q关闭,放电回路断开,充电回路打开,第三路高压脉冲HV3端的电压上升。
其中,恢复时间
放电时间
R为充电电路的串接电阻,等于R2+R3,R'为放电回路的串接电阻,等于R3+R1,C0为高压电容C,V1为充满电压,V0为电容的初始电压,VT为t时刻电容上的电压值。
其中,第三路高压脉冲HV3的幅值为HV3=HV2-HV1。
I/P1频率决定第三路高压脉冲HV3的频率,上升沿和下降沿分别由R2、R3、C和R3、C、R1决定。
实施例1
当HV1=10Kv,HV2=50Kv,R1=100K、R2=100K、R3=20M、C=2000pf,则HV3=HV2-HV1=40Kv。
V0=15Kv,VT=39.6Kv,V1=40Kv
上升沿时间:
下降沿时间:
实施例2
当HV1=5Kv,HV2=40Kv,R1=1K、R2=1K、R3=200K、C=2000pf,则HV3=HV2-HV1=35Kv。
V0=20Kv,VT=34.6Kv,V1=35Kv
上升沿时间:
下降沿时间:
实施例3
当HV1=5Kv,HV2=40Kv,R1=10K、R2=10K、R3=200K、C=1000pf,则HV3=HV2-HV1=35Kv。
V0=20Kv,VT=34.6Kv,V1=35Kv
上升沿时间:
下降沿时间:
参阅图3,本发明的一种自恢复高压脉冲驱动器,包括高速电平驱动电路,其中U1为栅极驱动器,L1、L2为隔离变压器,U2为光电耦合器,VCC为和高压开关Q共地的电源,VCC2为隔离电源,与高压开关Q不共地,VCC1可以选择和高压开关Q共地或不共地的电源,I/P1为高速脉冲输入信号。当输入低电压为TTL或CMOS信号,高速电平驱动电路的输出为高电平,开启高压开关Q。
实施例4
参阅图3,I/P1为高速脉冲输入信号,栅极驱动器U1为包含但不限于MC33151DR2G, 隔离变压器L1、L2为包含但不限于EE16变压器单路或多路线圈,光电耦合器为包含但不限于HCPL2530,隔离电源VCC1、VCC2为隔离电源模块包含但不限于F0503S-2W。高压开关Q的连接方式包括但不限于单个或串联。
实施例5
栅极驱动器U1为包含但不限于TF2190M-TAH,隔离变压器L1、L2为包含但不限于EE25变压器单路或多路线圈,光电耦合器为包含但不限于APV1122,隔离电源VCC1、VCC2为包含但不限于隔离电源模块RS1-03S05H。高压开关Q的连接方式包括但不限于单个或串联。
上述实施例是对本发明的说明,不是对本发明的限定,任何对本发明简单变换后的方案均属于本发明的保护范围。

Claims (11)

  1. 一种自恢复高压脉冲驱动器,其特征在于:包括高速脉冲驱动单元和高压脉冲生成单元,所述高速脉冲驱动单元设有高压开关Q,所述高压脉冲生成单元包括高压电容C和电阻网络,所述高压电容C通过电阻网络连接高压开关Q、第一路高压HV1、第二路高压HV2、第三路高压脉冲HV3;所述高速脉冲驱动单元通过高压开关Q及高压电容C将第一路高压HV1和第二路高压HV2生成第三路高压脉冲HV3,高压脉冲输出后第三路高压脉冲HV3自动恢复到第二路高压HV2。
  2. 如权利要求1所述的一种自恢复高压脉冲驱动器,其特征在于:当所述高速脉冲驱动单元无驱动输入时,所述第三路高压脉冲HV3的输出电压等于第二路高压HV2的电压;当所述高速脉冲驱动单元有驱动脉冲输入时,所述第三路高压脉冲HV3的输出电压等于第二路高压HV2的电压减去第一路高压HV1的电压,驱动脉冲消失后恢复至第二路高压HV2的电压。
  3. 如权利要求1所述的一种自恢复高压脉冲驱动器,其特征在于:所述电阻网络包括电阻R1、电阻R2、电阻R3、电阻R4,所述高压电容C的一端通过电阻R1连接所述高压开关Q,通过电阻R2连接所述第一路高压HV1;所述高压电容C的另一端通过电阻R3连接第二路高压HV2,通过电阻R4连接第三路高压脉冲HV3。
  4. 如权利要求3所述的一种自恢复高压脉冲驱动器,其特征在于:所述电阻R1、电阻R2、电阻R3、电阻R4为功率电阻,所述电阻R3的阻值大于电阻R2的阻值,所述电阻R2的阻值大于电阻R4或/和电阻R1的阻值。
  5. 如权利要求1所述的一种自恢复高压脉冲驱动器,其特征在于:所述高速脉冲驱动单元还包括高速电平驱动电路U,所述高速电平驱动电路U的输入端连接输入低电压控制信号,输出端连接高压开关Q门级,输入低电压控制信 号经过高速电平驱动电路U后接入高压开关Q门级。
  6. 如权利要求5所述的一种自恢复高压脉冲驱动器,其特征在于:所述高速电平驱动电路U包括变压器耦合、隔离电源耦合、光电隔离耦合的隔离驱动点电路,所述变压器耦合、隔离电源耦合、光电隔离耦合的隔离驱动点电路与高压开关Q门级一一对应。
  7. 如权利要求5所述的一种自恢复高压脉冲驱动器,其特征在于:所述输入低电压控制信号为TTL或CMOS信号。
  8. 如权利要求1所述的一种自恢复高压脉冲驱动器,其特征在于:所述高压开关Q采用高压场效应管、高压晶体管、绝缘栅双极型晶体管中的一种,所述高压开关Q的耐压值不低于第一路高压HV1。
  9. 如权利要求5至8中任意一项所述的一种自恢复高压脉冲驱动器,其特征在于:所述高压开关Q为单个或多个级联方式,单个或多个级联后的耐压不低于第一路高压HV1。
  10. 如权利要求1所述的一种自恢复高压脉冲驱动器,其特征在于:所述高压电容C的耐压值不低于第二路高压HV2。
  11. 如权利要求1所述的一种自恢复高压脉冲驱动器,其特征在于:所述第一路高压HV1与所述第二路高压HV2为同相接地的高压电源。
PCT/CN2023/122727 2022-11-29 2023-09-28 一种自恢复高压脉冲驱动器 WO2024114096A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211503653.2A CN115549652A (zh) 2022-11-29 2022-11-29 一种自恢复高压脉冲驱动器
CN202211503653.2 2022-11-29

Publications (1)

Publication Number Publication Date
WO2024114096A1 true WO2024114096A1 (zh) 2024-06-06

Family

ID=84722248

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/122727 WO2024114096A1 (zh) 2022-11-29 2023-09-28 一种自恢复高压脉冲驱动器

Country Status (3)

Country Link
JP (1) JP2024078415A (zh)
CN (1) CN115549652A (zh)
WO (1) WO2024114096A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115549652A (zh) * 2022-11-29 2022-12-30 浙江迪谱诊断技术有限公司 一种自恢复高压脉冲驱动器

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101127516A (zh) * 2007-09-14 2008-02-20 东南大学 高压脉冲电路
CN103956932A (zh) * 2014-04-02 2014-07-30 上海大学 一种用于飞行时间质谱仪的高压脉冲电源
JP2015159051A (ja) * 2014-02-25 2015-09-03 株式会社島津製作所 高電圧電源装置及び該装置を用いた質量分析装置
CN105355533A (zh) * 2015-11-24 2016-02-24 安图实验仪器(郑州)有限公司 适于质谱仪的高压脉冲发生器
CN205122533U (zh) * 2015-11-24 2016-03-30 安图实验仪器(郑州)有限公司 适于质谱仪的高压脉冲发生器
US9461642B1 (en) * 2015-08-26 2016-10-04 Southwest Research Institute Radiation-tolerant high-speed high-voltage pulser
CN107464738A (zh) * 2017-09-19 2017-12-12 珠海美华医疗科技有限公司 一种高压耦合脉冲发生器及飞行时间质谱仪
CN208572059U (zh) * 2018-08-08 2019-03-01 南京力仕达焊接科技有限公司 一种隔离驱动电路
CN112769415A (zh) * 2021-01-14 2021-05-07 中国科学院合肥物质科学研究院 一种产生脉冲信号的电路及产生脉冲信号的方法
US20210202229A1 (en) * 2017-11-02 2021-07-01 Shimadzu Corporation Time-of-flight mass spectrometer
US20210210328A1 (en) * 2018-05-31 2021-07-08 Micromass Uk Limited Mass spectrometer
US20210233762A1 (en) * 2018-05-31 2021-07-29 Shimadzu Corporation Time-of-flight mass spectrometer
CN216437083U (zh) * 2021-11-18 2022-05-03 安图实验仪器(郑州)有限公司 一种高压脉冲电路和离子选择电路
CN114999887A (zh) * 2022-06-20 2022-09-02 天津国科医工科技发展有限公司 一种多级高压脉冲发生器及飞行时间质谱仪多级聚焦装置
CN115549652A (zh) * 2022-11-29 2022-12-30 浙江迪谱诊断技术有限公司 一种自恢复高压脉冲驱动器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101951146B (zh) * 2010-09-21 2012-08-29 哈尔滨工业大学 陡下降沿低功耗的等离子浸没离子注入用高压脉冲调制器及调制方法
CN104753512A (zh) * 2015-01-09 2015-07-01 中国科学院合肥物质科学研究院 一种用于计数光电倍增管的快速开关调制系统
CN216531275U (zh) * 2021-11-04 2022-05-13 北京滨松光子技术股份有限公司 一种门控光电倍增管模块及探测器

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101127516A (zh) * 2007-09-14 2008-02-20 东南大学 高压脉冲电路
JP2015159051A (ja) * 2014-02-25 2015-09-03 株式会社島津製作所 高電圧電源装置及び該装置を用いた質量分析装置
CN103956932A (zh) * 2014-04-02 2014-07-30 上海大学 一种用于飞行时间质谱仪的高压脉冲电源
US9461642B1 (en) * 2015-08-26 2016-10-04 Southwest Research Institute Radiation-tolerant high-speed high-voltage pulser
CN105355533A (zh) * 2015-11-24 2016-02-24 安图实验仪器(郑州)有限公司 适于质谱仪的高压脉冲发生器
CN205122533U (zh) * 2015-11-24 2016-03-30 安图实验仪器(郑州)有限公司 适于质谱仪的高压脉冲发生器
CN107464738A (zh) * 2017-09-19 2017-12-12 珠海美华医疗科技有限公司 一种高压耦合脉冲发生器及飞行时间质谱仪
US20210202229A1 (en) * 2017-11-02 2021-07-01 Shimadzu Corporation Time-of-flight mass spectrometer
US20210210328A1 (en) * 2018-05-31 2021-07-08 Micromass Uk Limited Mass spectrometer
US20210233762A1 (en) * 2018-05-31 2021-07-29 Shimadzu Corporation Time-of-flight mass spectrometer
CN208572059U (zh) * 2018-08-08 2019-03-01 南京力仕达焊接科技有限公司 一种隔离驱动电路
CN112769415A (zh) * 2021-01-14 2021-05-07 中国科学院合肥物质科学研究院 一种产生脉冲信号的电路及产生脉冲信号的方法
CN216437083U (zh) * 2021-11-18 2022-05-03 安图实验仪器(郑州)有限公司 一种高压脉冲电路和离子选择电路
CN114999887A (zh) * 2022-06-20 2022-09-02 天津国科医工科技发展有限公司 一种多级高压脉冲发生器及飞行时间质谱仪多级聚焦装置
CN115549652A (zh) * 2022-11-29 2022-12-30 浙江迪谱诊断技术有限公司 一种自恢复高压脉冲驱动器

Also Published As

Publication number Publication date
CN115549652A (zh) 2022-12-30
JP2024078415A (ja) 2024-06-10

Similar Documents

Publication Publication Date Title
WO2024114096A1 (zh) 一种自恢复高压脉冲驱动器
US9431226B2 (en) High-voltage power unit and mass spectrometer using the power unit
CN109458260B (zh) 一种航空发动机变频变能点火装置放电触发保持电路
CN109630369B (zh) 一种射频离子推力器及脉冲产生方法
CN103204570B (zh) 一种利用电磁切变场提高污水处理溶气效率的溶气装置
JP5158582B2 (ja) 電源装置及び高周波回路システム
CN108365743A (zh) 一种磁隔离型带负电压偏置的多路同步触发电路
CN105743341A (zh) 一种电压倍增电路
CN201765188U (zh) 光电直读光谱仪激发光源
US6262536B1 (en) Crowbar circuit for linear beam device having multi-stage depressed collector
Mayes et al. Sub-nanosecond jitter operation of Marx generators
CN110445480B (zh) 一种多级快前沿高压脉冲触发器及其同步方法
CN107681995A (zh) 一种用于多路Trigatron气体开关的同步触发电路
CN116313734A (zh) 一种可实现高压电场快速切换离子阱射频装置
US11443935B2 (en) Time-of-flight mass spectrometer
CN114999887A (zh) 一种多级高压脉冲发生器及飞行时间质谱仪多级聚焦装置
CN113285627B (zh) 一种脉冲电源系统及中子发生器
CN107464738B (zh) 一种高压耦合脉冲发生器及飞行时间质谱仪
Zhou et al. Time delay of a triggered vacuum switch
CN217768292U (zh) 一种多级高压脉冲发生器及飞行时间质谱仪多级聚焦装置
Hu et al. An experimental investigation on initial plasma characteristics of triggered vacuum switch
CN102023153B (zh) 光电直读光谱仪激发光源
CN105355533A (zh) 适于质谱仪的高压脉冲发生器
Bokhan et al. Generation of High-Voltage Pulses with a Picosecond Front in a Cascade Kivotron Connection
CN108678920A (zh) 点火电路及固体烧蚀脉冲式电推力器