WO2023088191A1 - 基站备电管理方法、装置、电子设备及计算机程序产品 - Google Patents

基站备电管理方法、装置、电子设备及计算机程序产品 Download PDF

Info

Publication number
WO2023088191A1
WO2023088191A1 PCT/CN2022/131461 CN2022131461W WO2023088191A1 WO 2023088191 A1 WO2023088191 A1 WO 2023088191A1 CN 2022131461 W CN2022131461 W CN 2022131461W WO 2023088191 A1 WO2023088191 A1 WO 2023088191A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
power
backup power
duration
backup
Prior art date
Application number
PCT/CN2022/131461
Other languages
English (en)
French (fr)
Inventor
钱会
罗伟民
李晖晖
李家乾
刘吉宁
陈思翰
Original Assignee
中国移动通信集团广东有限公司
中国移动通信集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国移动通信集团广东有限公司, 中国移动通信集团有限公司 filed Critical 中国移动通信集团广东有限公司
Publication of WO2023088191A1 publication Critical patent/WO2023088191A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/002Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which a reserve is maintained in an energy source by disconnecting non-critical loads, e.g. maintaining a reserve of charge in a vehicle battery for starting an engine
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting

Definitions

  • the present application relates to the technical field of communications, and in particular to a method, device, electronic equipment, and computer program product for managing backup power of a base station.
  • the power supply system in the communication site provides power supply support for the communication equipment.
  • the battery supplies power to the communication equipment to meet the requirements of safe and reliable operation of the communication network.
  • the base station equipment regularly performs energy-saving actions according to the preset time T1, T2, and T3, such as: reduce the transmission power of the radio frequency module after the power failure time reaches T1, close some transmission channels after the power failure time reaches T2, and turn off after the power failure time reaches T3 carrier.
  • the base station equipment is powered off according to the voltage level.
  • the zero-time power-off voltage such as: 46V
  • the load of the capacity layer is controlled to be powered off; when the voltage of the DC busbar of the power supply is lower than the first power-off When the voltage (such as: 44V), control the power-off of the covering layer load; when the voltage of the DC busbar of the power supply is lower than the secondary power-off voltage (such as: 43.2V), control the power-off of important loads at the site.
  • Both of the above two schemes perform energy-saving actions according to the preset fixed logic. Since the power backup capabilities of each base station and the business conditions of the base stations are different and change at any time, the above-mentioned one-size-fits-all power backup strategy cannot be fully utilized. The backup power capability of each base station leads to low reliability of the backup power supply of the base station, which cannot guarantee the reliability of the service operation of the site.
  • Embodiments of the present application provide a base station backup power management method, device, electronic equipment, and computer program products, which are used to solve the problem of low reliability of power supply for base station backup power in related technologies and the inability to guarantee the reliability of service operation at the site.
  • the embodiment of the present application provides a base station backup power management method, including:
  • the base station backup power information and the average power consumption demand of the load during the expected power supply period of the backup power are obtained in real time;
  • a consumption reduction instruction is issued to enable the base station to execute a preset power consumption reduction strategy
  • the load average power consumption requirement is calculated by a preset load power consumption prediction model based on historical power consumption data and current base station load power consumption; the backup power supply prediction duration is based on the accumulated power outage duration and The real-time remaining backup power prediction duration is calculated.
  • sending a power reduction instruction to enable the base station to execute a preset power consumption reduction strategy includes:
  • a first consumption reduction instruction is issued to enable the base station to execute a preset first power consumption reduction strategy
  • a second power consumption reduction instruction is issued to enable the base station to execute a second preset power consumption reduction strategy.
  • sending a power consumption reduction instruction to enable the base station to execute a preset power consumption reduction strategy further includes:
  • a third power consumption reduction instruction is issued to enable the base station to execute a third preset power consumption reduction strategy.
  • the preset first power consumption reduction strategy is to turn off related devices in the base station that undertake capacity layer services; the preset second power consumption reduction strategy is to turn off the related equipment in the base station that undertakes The related equipment is turned off; the third preset power consumption reduction strategy is to turn off the important load equipment in the base station.
  • the base station backup management method further includes:
  • a shutdown command is issued to enable the base station to shut down the power supply of the entire station equipment.
  • the base station backup management method further includes:
  • a preset capacity evaluation unit to evaluate based on the equipment configuration information of the base station, the network status information of the base station, and the power outage model information of the base station to obtain the base station backup power requirement information, and generate the base station backup power requirement information according to the base station backup power requirement information.
  • the backup power configuration scheme of the base station
  • the power outage model information of the base station is obtained through prediction according to historical power outage information of the base station.
  • the remaining battery capacity is obtained after being corrected according to the real-time health information of the battery.
  • the embodiment of the present application provides a base station backup power management device, including:
  • the information acquisition module is used to obtain real-time backup power information of the base station and the average power consumption demand of the load during the expected power supply period of the backup power when the utility power of the base station is monitored;
  • the backup power prediction module is used to determine whether the base station is a key point when the real-time remaining backup power prediction duration calculated based on the base station backup power information and the load average power consumption demand is less than the preset backup power maintenance threshold duration safeguard the site;
  • the maintenance notification module is used to generate a backup power maintenance work order and send it to the maintenance personnel terminal;
  • a consumption reduction strategy module configured to issue a consumption reduction instruction to enable the base station to execute a preset power consumption reduction strategy when it is judged that the predicted duration of the backup power supply is less than the preset maximum power outage duration;
  • the load average power consumption requirement is calculated by a preset load power consumption prediction model based on historical power consumption data and current base station load power consumption; the backup power supply prediction duration is based on the accumulated power outage duration and The real-time remaining backup power prediction duration is calculated.
  • an embodiment of the present application provides an electronic device, including a processor and a memory storing a computer program.
  • the processor executes the program, the steps of the base station backup power management method described in the first aspect are implemented.
  • an embodiment of the present application provides a computer program product, including a computer program, and when the computer program is executed by a processor, the steps of the method for managing base station backup power described in the first aspect are implemented.
  • the base station backup power management method, device, electronic equipment, and computer program product provided in the embodiments of the present application calculate the remaining backup power of the base station in real time by combining the base station backup power information acquired in real time and the average power consumption demand of the load during the expected power supply period of the future backup power. Power prediction duration, and trigger corresponding countermeasures based on the threshold duration of backup power maintenance. For key protection sites, dispatch orders to start the maintenance process. Prolong the power supply time of the backup power as much as possible and ensure the normal operation of the base station business to the greatest extent.
  • This application combines base station backup information and base station business information for comprehensive consideration, and matches different strategies for extending backup power according to the actual situation of the site, thereby effectively improving the reliability of the base station backup power supply, and further improving the business operation of the site. reliability.
  • FIG. 1 is a schematic flow diagram of a method for managing backup power of a base station provided in an embodiment of the present application
  • FIG. 2 is a schematic diagram of a site backup configuration evaluation model provided by an embodiment of the present application
  • Fig. 3 is a schematic diagram of the overall architecture of the linkage control of the base station and the energy system provided by the embodiment of the present application;
  • FIG. 4 is a schematic diagram of a logic flow diagram for implementing linkage control provided by an embodiment of the present application
  • FIG. 5 is a schematic diagram of a power consumption-time chart provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a base station backup power management device provided in an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • the base station After the mains power failure, the base station immediately enters the low power consumption mode to extend the power backup time of the site.
  • the power system and the base station business are not coordinated, and the information is not interoperable.
  • the base station does not combine the key data information of the power system to directly reduce the power consumption of the base station unilaterally in exchange for extending the backup time.
  • the main device After the mains power failure, the main device will perform energy-saving actions according to the preset time T1, T2, and T3, such as: reduce the transmission power of the RF module after T1 time after power failure, close part of the transmission channel after T2 time after power failure, and T3 time after power failure Turn off the carrier and other actions.
  • the base station side does not consider key performance data such as the remaining capacity of the site backup power, and regularly reduces the power consumption of the base station equipment, which is highly dependent on human experience, causing a large loss of site business, and cannot guarantee that the site is always online;
  • the site power system itself powers off the base station equipment loads according to the DC power supply busbar voltage, and relies on the multi-channel power distribution method to supply power to different devices separately, which has nothing to do with the base station.
  • the DC bus voltage of the power supply is lower than the zero power-off voltage (such as: 46V)
  • the control capacity layer load is powered off
  • the primary power-off voltage such as: 44V
  • the control layer load is controlled Power off
  • the DC bus voltage of the power supply is lower than the secondary power-off voltage (eg: 43.2V)
  • the important loads at the control site are powered off.
  • the power-off logic of the base station equipment is controlled according to the voltage of the DC busbar of the power supply, which cannot adapt to the goal of extending the load backup time of different sites in the lithium battery backup scenario.
  • the purpose of this application solution is to effectively cooperate with the site energy backup capacity through the study of the historical business load of the base station and the prediction of future business demand, so as to realize the site backup capacity in the state of mains power failure
  • Dynamic matching with site business requirements enables customers to make precise investments while improving the reliability of base station power supply.
  • Solve the problems existing in related technologies such as blindly reducing base station power consumption to reduce site backup power, unaware of site battery aging, complex control parameter configuration, one-size-fits-all site backup power strategy, and blind investment in site energy.
  • Fig. 1 is a method for managing backup power of a base station.
  • the embodiment of the present application provides a base station backup power management method, which may include steps:
  • the load average power consumption requirement is calculated by a preset load power consumption prediction model based on historical power consumption data and current base station load power consumption; the backup power supply prediction duration is based on the accumulated power outage duration and The real-time remaining backup power prediction duration is calculated.
  • the equipment of the base station will automatically become fully powered by the battery pack.
  • the base station backup power information and the average power consumption demand of the load during the expected power supply period of the base station are obtained in real time.
  • the base station backup power information mainly includes the remaining battery power information, and the load during the expected power supply period
  • the average power consumption requirement is calculated by a preset load power consumption prediction model based on historical power consumption data and current base station load power consumption.
  • the duration of the expected power supply period of the backup power can be preset according to the historical power outage situation (for example, it can be 80% to 90% of the cumulative power outage probability corresponding to the power outage duration).
  • the real-time remaining backup power prediction duration can be calculated according to the accumulated power outage duration obtained in real time and the real-time remaining backup power prediction duration. plus or minus a preset period of time for fine-tuning) to obtain the predicted duration of the backup power supply.
  • the base station is a key support site, it will directly generate a backup power maintenance work order and send it to the maintenance personnel terminal to notify the site operation and maintenance personnel to adjust the backup power capacity (oil generator emergency or battery capacity adjustment, etc.) to ensure site safety and reliability. Operation, the goal of providing stable business services.
  • the base station is an ordinary site, when it is judged that the predicted duration of the backup power supply is less than the preset maximum power outage duration, a power consumption reduction instruction is issued to enable the base station to execute a preset power consumption reduction strategy.
  • the maximum power outage duration can be found from the historical power outage data as the maximum power outage duration, or a preset value can be increased or decreased according to the maximum power outage duration for proper adjustment.
  • the base station backup power management method calculates the real-time remaining backup power prediction duration of the base station in real time by combining the base station backup power information acquired in real time and the expected load average power consumption demand of the future backup power during the power supply period, and uses the backup power
  • the maintenance threshold duration is used as the judgment basis to trigger corresponding countermeasures.
  • dispatch orders to start the maintenance process For common sites, implement equipment consumption reduction strategies on demand according to the predicted duration of backup power supply, so as to extend the duration of backup power supply as much as possible and Ensure the normal operation of base station services to the maximum extent.
  • This application combines base station backup information and base station business information for comprehensive consideration, and matches different strategies for extending backup power according to the actual situation of the site, thereby effectively improving the reliability of the base station backup power supply, and further improving the business operation of the site. reliability.
  • sending a power reduction instruction to enable the base station to execute a preset power consumption reduction strategy includes:
  • a first consumption reduction instruction is issued to enable the base station to execute a preset first power consumption reduction strategy
  • a second power consumption reduction instruction is issued to enable the base station to execute a second preset power consumption reduction strategy.
  • sending a power consumption reduction instruction to enable the base station to execute a preset power consumption reduction strategy further includes:
  • a third power consumption reduction instruction is issued to enable the base station to execute a third preset power consumption reduction strategy.
  • the preset first power consumption reduction strategy is to turn off related devices in the base station that undertake capacity layer services; the preset second power consumption reduction strategy is to turn off related devices in the base station that undertake overlay layer services Turn off; the third preset power consumption reduction strategy is to turn off important load devices in the base station.
  • the action of reducing power consumption can be performed once or multiple times.
  • a first consumption reduction command is issued so that all The base station implements the preset first power consumption reduction strategy.
  • the predicted duration of the backup power supply will inevitably be extended and once again greater than the preset maximum power outage duration.
  • the second consumption reduction command is triggered to make the base station execute the preset second Power reduction strategies, and so on.
  • the base station backup power management method provided by the embodiment of this application adopts a hierarchical power consumption reduction strategy for base station equipment, while ensuring the operation experience of basic network services to the greatest extent, and prolonging the duration of backup power supply as much as possible, thereby further improving
  • the reliability of the backup power supply of the base station further ensures that the base station business is not affected by power outages.
  • the base station backup management method further includes:
  • a shutdown command is issued to make the base station turn off the power supply of the entire station equipment.
  • the judgment logic can be set to directly trigger the shutdown of the entire station equipment of the base station when the remaining power reserve is judged to be less than the preset station shutdown threshold, and at the same time, an important alarm can be triggered to facilitate maintenance. Personnel should go to this base station for power maintenance as soon as possible.
  • the base station backup power management method in the embodiment of the present application immediately shuts off the backup power supply before the battery is exhausted, thereby ensuring that the battery will not cause irreversible damage due to power exhaustion, thereby further improving the reliability of the backup power supply .
  • the base station backup management method further includes:
  • a preset capacity evaluation unit to evaluate based on the equipment configuration information of the base station, the network status information of the base station, and the power outage model information of the base station to obtain the base station backup power requirement information, and generate the base station backup power requirement information according to the base station backup power requirement information.
  • the backup power configuration scheme of the base station
  • the power outage model information of the base station is obtained through prediction according to historical power outage information of the base station.
  • the capacity configuration of backup power equipment is based on the typical operating power consumption of site equipment, and the length of backup power at different levels is determined according to the quality of power grids in different regions. Backup power is 5 hours, and backup power is 7 hours for rural sites.
  • This simple battery capacity configuration method in order to ensure the reliability of the long-term operation of the base station, it is necessary to configure the specifications of the battery according to the requirements of the maximum power outage duration of the mains power supply. Generally, most of the power outage duration of mains power is much shorter than the maximum power outage duration, and the probability of reaching the maximum power outage duration is also low. Therefore, deploying batteries based on the maximum power outage duration will lead to large redundancy of energy configuration and high capital expenditure ( Capital Expenditure, CAPEX) input.
  • the backup power demand information of the base station is obtained by evaluating the equipment configuration information of the base station, the network status information of the base station, and the power outage model information of the base station by using the preset capacity evaluation unit, and then according to The base station backup power demand information is generated to obtain the backup power configuration plan of the base station, and the site configuration center can update the battery capacity configuration of the site according to the backup power configuration plan, such as expanding or shrinking capacity, to avoid insufficient or redundant battery configuration. Remain.
  • the remaining battery capacity is obtained after being corrected according to the real-time health information of the battery.
  • the obtained remaining power reserve information is corrected according to the real-time battery health information, and then used as data for calculating the predicted duration of remaining power reserve, which overcomes the battery power acquisition caused by battery aging or other reasons.
  • Inaccurate problems can avoid the problem of misjudgment of backup power forecasting, effectively improve the prediction accuracy of backup power supply, and further improve the reliability of backup power supply management.
  • the backup power configuration method of the embodiment of the application can be used for the initial configuration of the backup power capacity of the base station or subsequent backup power capacity update, specifically: combining the position of the site in the network, equipment configuration and The outage model information of the mains power at the site (predicted based on historical outage information), evaluates the site backup capacity demand, and obtains a one-site-one-strategy site backup configuration.
  • Real-time power consumption information of the base station obtain the power consumption data of the base station at the current moment, which is used to refresh the historical power consumption model data and calculate the real-time power consumption prediction of the base station (load average power consumption demand);
  • Q represents It is energy (equal to power multiplied by time), and the unit is watts, kilowatts, etc.
  • a sealed valve-regulated lead-acid battery (Valve-Regulated Lead-acid Battery, VRLA) battery is selected in ampere hours (A ⁇ h) indicates its capacity is more accurate.
  • Site backup maintenance threshold the minimum time for O&M personnel to arrive at the corresponding site after receiving the maintenance order
  • Site equipment starts hierarchical power consumption reduction: level 0 reduces power consumption for equipment undertaking capacity layer services in the base station; level 1 reduces power consumption for equipment undertaking coverage layer services in the base station; level 2 reduces power consumption Reduce power consumption of important load equipment in the base station;
  • Linkage method of site backup power and base station business demand According to the real-time power consumption prediction and site backup power capacity of the site power outage state, the risk of the site backup power duration is dynamically judged, and the importance of the remaining backup power time of the site reaching (lower than) the maintenance threshold in the power outage state When the mains power is not restored at the site, the site operation and maintenance personnel are notified to adjust the backup power capacity (oil generator emergency or battery capacity adjustment, etc.) through the operation and maintenance dispatch order, so as to achieve safe and reliable operation of the site and provide stable business services The goal.
  • the backup power capacity oil generator emergency or battery capacity adjustment, etc.
  • a hierarchical power consumption reduction strategy is adopted for the site, and the predicted backup power duration is extended to the preset duration to ensure the goal of basic network service operation experience.
  • the site and site energy equipment linkage control system architecture can be composed of elements such as network managers, base stations, site power systems, and operation and maintenance personnel.
  • the base station's historical power outage model and the prediction information of future site power outages determine the typical single power outage duration T 1 of the base station (80% to 90% of the cumulative power outage probability corresponds to the power outage duration, which can be set) and the longest single power outage duration T 2 .
  • Step1 After the mains power failure, the site power system supplies power, and enters the linkage logic between the site backup power and the base station business demand.
  • the network manager After the network manager detects the mains power failure alarm reported by the base station or the site power system, it obtains the site battery power information ( energy information) and base station equipment information (including historical power consumption information and current power consumption information);
  • Step2 Refresh the base station load power consumption prediction model, statistically analyze the historical power consumption data for a period of time (such as a week), and combine the current base station load power consumption to predict the site load average power consumption demand P of the site backup time period (for a period of time in the future) av ;
  • Step6 If the remaining battery backup time T rb of the site battery is less than the set backup power maintenance threshold T s , further judge whether it is a key site, if it is a key protection site, start the order maintenance process, and arrange site maintenance personnel to back up the site Carry out on-site maintenance to ensure the normal operation of the site. Otherwise, the site will enter into the linkage state of back-up power and equipment with hierarchical low-power operation, gradually shut down the site equipment at different levels, reduce the power consumption of the base station, and prolong the time of site back-up power to the preset time;
  • Step7 If the calculated T outage + C remaining *V bat /P av ⁇ T 2 , where T outage represents the cumulative outage duration, notify the base station to reduce power consumption (assuming that the service power consumption of the capacity layer is reduced P 1 ); continue monitoring, If the subsequent calculation results in T outage + C remaining *V bat /(P av -P 1 ) ⁇ T 2 , further reduce the power consumption of the base station equipment, and so on;
  • Step8 The battery continues to discharge. If the remaining backup power capacity of the site is less than the estimated threshold for shutting down the site, in order to protect the battery life, an alarm for insufficient backup power will be reported and the power supply of the entire site equipment will be shut down.
  • Step9 If the mains power supply of any node is restored during the above process, the system exits the linkage logic between the site backup power and the base station business demand, and the business of the main equipment of the site returns to normal.
  • FIG. 5 The embodiment of the present application is illustrated below in conjunction with FIG. 5. First, some symbols in FIG. 5 are annotated as follows:
  • A’ the remaining power consumption after the capacity layer service reduces power consumption
  • T 1 The duration of a typical single power outage in the statistical period, for example, it can take a value of 80% to 90% of the cumulative power outage probability corresponding to the power outage duration;
  • T 2 The maximum power outage duration in the statistical period of the station.
  • the embodiment of this application breaks the shackles of traditional backup power, configures the site backup capacity according to the actual site importance, power outage model and site equipment conditions, and supports different strategies for extending backup power for different base stations, so as to solve the one-size-fits-all site backup strategy existing in related technologies ,
  • the site backup power investment is large, the income is low, the battery capacity change is difficult to perceive, and the actual site backup power duration is unpredictable, which effectively improves the reliability of the site power supply and improves the cost performance of the site backup power investment.
  • the following describes the base station backup power management device provided in the embodiment of the present application.
  • the base station backup power management device described below and the base station backup power management method described above can be referred to in correspondence.
  • a base station backup power management device which may include:
  • the information acquisition module 1 is used to obtain real-time backup power information of the base station and the average power consumption demand of the load during the expected power supply period of the backup power when the utility power of the base station is monitored;
  • the backup power forecasting module 2 is configured to determine whether the base station is when the real-time remaining backup power prediction duration calculated based on the base station backup power information and the load average power consumption demand is less than the preset backup power maintenance threshold duration Key security sites;
  • the maintenance notification module 3 is used to generate a backup power maintenance work order and send it to the maintenance personnel terminal;
  • the consumption reduction strategy module 4 is used to issue a consumption reduction instruction to enable the base station to execute a preset power consumption reduction strategy when it is judged that the predicted duration of the backup power supply is less than the preset maximum power outage duration;
  • the load average power consumption requirement is calculated by a preset load power consumption prediction model based on historical power consumption data and current base station load power consumption; the backup power supply prediction duration is based on the accumulated power outage duration and The real-time remaining backup power prediction duration is calculated.
  • the consumption reduction strategy module 4 is specifically used for:
  • a first consumption reduction instruction is issued to enable the base station to execute a preset first power consumption reduction strategy
  • a second power consumption reduction instruction is issued to enable the base station to execute a second preset power consumption reduction strategy.
  • the consumption reduction strategy module 4 is also specifically used for:
  • a third power consumption reduction instruction is issued to enable the base station to execute a third preset power consumption reduction strategy.
  • the preset first power consumption reduction strategy is to turn off related devices in the base station that undertake capacity layer services; the preset second power consumption reduction strategy is to turn off the related equipment in the base station that undertakes The related equipment is turned off; the third preset power consumption reduction strategy is to turn off the important load equipment in the base station.
  • the base station backup management device further includes:
  • the power outage control module is used to issue a shutdown command to make the base station turn off the power supply of the whole station equipment when it is judged according to the backup power information of the base station that the remaining backup power is less than the preset shutdown threshold value of the station.
  • the base station backup management device further includes:
  • a capacity configuration module configured to use a preset capacity evaluation unit to perform evaluation based on the equipment configuration information of the base station, the network status information of the base station, and the power outage model information of the base station to obtain the backup power demand information of the base station, according to the base station
  • the backup power requirement information is generated to obtain the backup power configuration scheme of the base station
  • the power outage model information of the base station is obtained through prediction according to historical power outage information of the base station.
  • the remaining battery capacity is obtained after being corrected according to the real-time health information of the battery.
  • the above device embodiment corresponds to the method embodiment of the present application
  • the base station backup management device provided by the embodiment of the present application can realize the base station backup power provided by any method embodiment of the present application. Management method.
  • FIG. 7 illustrates a schematic diagram of the physical structure of an electronic device.
  • the electronic device may include: a processor (processor) 710, a communication interface (Communication Interface) 720, a memory (memory) 730 and a communication bus 740, Wherein, the processor 710 , the communication interface 720 , and the memory 730 communicate with each other through the communication bus 740 .
  • the processor 710 can call the computer program in the memory 730 to execute the steps of the base station backup power management method, including, for example:
  • the base station backup power information and the average power consumption demand of the load during the expected power supply period of the backup power are obtained in real time;
  • a consumption reduction instruction is issued to enable the base station to execute a preset power consumption reduction strategy
  • the load average power consumption requirement is calculated by a preset load power consumption prediction model based on historical power consumption data and current base station load power consumption; the backup power supply prediction duration is based on the accumulated power outage duration and The real-time remaining backup power prediction duration is calculated.
  • the above-mentioned logic instructions in the memory 730 may be implemented in the form of software functional units and may be stored in a computer-readable storage medium when sold or used as an independent product.
  • the computer software product is stored in a storage medium, including several
  • the instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disc, etc., which can store program codes. .
  • the embodiment of the present application also provides a computer program product, the computer program product includes a computer program, the computer program can be stored on a non-transitory computer-readable storage medium, and the computer program is executed by a processor
  • the computer can execute the steps of the base station backup power management method provided by the above-mentioned embodiments, for example, including:
  • the base station backup power information and the average power consumption demand of the load during the expected power supply period of the backup power are obtained in real time;
  • a consumption reduction instruction is issued to enable the base station to execute a preset power consumption reduction strategy
  • the load average power consumption requirement is calculated by a preset load power consumption prediction model based on historical power consumption data and current base station load power consumption; the backup power supply prediction duration is based on the accumulated power outage duration and The real-time remaining backup power prediction duration is calculated.
  • the embodiment of the present application also provides a processor-readable storage medium, the processor-readable storage medium stores a computer program, and the computer program is used to make the processor execute the methods provided by the above-mentioned embodiments Steps include, for example:
  • the base station backup power information and the average power consumption demand of the load during the expected power supply period of the backup power are obtained in real time;
  • a consumption reduction instruction is issued to enable the base station to execute a preset power consumption reduction strategy
  • the load average power consumption requirement is calculated by a preset load power consumption prediction model based on historical power consumption data and current base station load power consumption; the backup power supply prediction duration is based on the accumulated power outage duration and The real-time remaining backup power prediction duration is calculated.
  • the processor-readable storage medium may be any available medium or data storage device that the processor can access, including but not limited to magnetic storage (such as floppy disk, hard disk, magnetic tape, magneto-optical disk (Magneto-Optical, MO), etc.), Optical storage (such as laser disc (Compact Disk, CD), digital versatile disc (Digital Versatile Disc, DVD), Blu-ray Disc (Blu-ray Disc, BD), high-definition universal disc (High-definition Versatile Disc, HVD), etc.
  • magnetic storage such as floppy disk, hard disk, magnetic tape, magneto-optical disk (Magneto-Optical, MO), etc.
  • Optical storage such as laser disc (Compact Disk, CD), digital versatile disc (Digital Versatile Disc, DVD), Blu-ray Disc (Blu-ray Disc, BD), high-definition universal disc (High-definition Versatile Disc, HVD), etc.
  • ROM Erasable Programmable Read-Only Memory
  • EPROM Erasable Programmable Read-Only Memory
  • EEPROM Electrically Erasable Programmable Read-Only Memory
  • NAND FLASH non-volatile Nonvolatile memory
  • SSD solid state hard disk
  • the device embodiments described above are only illustrative, and the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in One place, or it can be distributed to multiple network elements. Part or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment. It can be understood and implemented by those skilled in the art without any creative efforts.
  • each implementation can be implemented by means of software plus a necessary general-purpose hardware platform, and of course also by hardware.
  • the essence of the above technical solutions or the part that contributes to related technologies can be embodied in the form of software products, and the computer software products can be stored in computer-readable storage media, such as ROM/RAM, disk , CD, etc., including several instructions to make a computer device (which may be a personal computer, server, or network device, etc.) execute the methods described in each embodiment or some parts of the embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Stand-By Power Supply Arrangements (AREA)

Abstract

本申请提供一种基站备电管理方法、装置、电子设备及计算机程序产品,涉及通信技术领域。所述方法包括:当监测到基站的市电掉电后,实时获取基站备电信息以及备电预计供电期间的负载平均功耗需求;当基于基站备电信息和负载平均功耗需求计算得到的实时剩余备电预测时长小于预设的备电维护门槛时长时,判断基站是否为重点保障站点;若是,则生成备电维护工单并发送至维护人员终端;若否,则在判断备电供电预测时长小于预设的最大停电时长时,发出降耗指令以使基站执行预设的功耗降低策略。

Description

基站备电管理方法、装置、电子设备及计算机程序产品
相关申请的交叉引用
本申请主张在2021年11月16日在中国提交的中国专利申请号No.202111358094.6的优先权,其全部内容通过引用包含于此。
技术领域
本申请涉及通信技术领域,具体涉及一种基站备电管理方法、装置、电子设备及计算机程序产品。
背景技术
通信站点中电源系统为通信设备提供供电支持,当市电中断时,由蓄电池给通信设备供电,满足通讯网络安全可靠运行的要求。
目前,在市电中断后,对于基站备电的管理控制主要有以下两种方案:
相关技术1:基站设备按照预设的时间T1、T2、T3定时执行节能动作,比如:停电时间达到T1后降低射频模块发射功率、停电时间达到T2后关闭部分发射通道、停电时间达到T3后关闭载波。
相关技术2:基站设备根据电压分级下电,当电源直流母排电压低于零次下电电压(如:46V)时,控制容量层负载下电;当电源直流母排电压低于一次下电电压(如:44V)时,控制覆盖层负载下电;当电源直流母排电压低于二次下电电压(如:43.2V)时,控制站点重要负载下电。
上述两种方案均是按照预设的固定逻辑执行节能动作,由于各个基站的备电能力和基站业务情况各不相同且随时都在变化,采用上述这种备电策略一刀切的方案,无法充分发挥各个基站的备电能力,导致基站备电供电可靠性较低,无法保证站点的业务运行的可靠性。
发明内容
本申请实施例提供一种基站备电管理方法、装置、电子设备及计算机程序产品,用以解决相关技术基站备电供电可靠性较低,无法保证站点的业务 运行可靠性的问题。
第一方面,本申请实施例提供一种基站备电管理方法,包括:
当监测到基站的市电掉电后,实时获取基站备电信息以及备电预计供电期间的负载平均功耗需求;
当基于所述基站备电信息和所述负载平均功耗需求计算得到的实时剩余备电预测时长小于预设的备电维护门槛时长时,判断所述基站是否为重点保障站点;
若是,则生成备电维护工单并发送至维护人员终端;
若否,则在判断备电供电预测时长小于预设的最大停电时长时,发出降耗指令以使所述基站执行预设的功耗降低策略;
其中,所述负载平均功耗需求是由预设的负载功耗预测模型根据历史功耗数据和当前基站负载功耗进行计算得到;所述备电供电预测时长是根据实时获取的累计停电时长和实时剩余备电预测时长计算得到。
在一个实施例中,所述在判断备电供电预测时长小于预设的最大停电时长时,发出降耗指令以使所述基站执行预设的功耗降低策略,包括:
在第一次判断所述备电供电预测时长小于预设的最大停电时长时,发出第一降耗指令以使所述基站执行预设的第一功耗降低策略;
在第二次判断所述备电供电预测时长小于预设的最大停电时长时,发出第二降耗指令以使所述基站执行预设的第二功耗降低策略。
在一个实施例中,所述在判断备电供电预测时长小于预设的最大停电时长时,发出降耗指令以使所述基站执行预设的功耗降低策略,还包括:
在第三次判断所述备电供电预测时长小于预设的最大停电时长时,发出第三降耗指令以使所述基站执行预设的第三功耗降低策略。
在一个实施例中,所述预设的第一功耗降低策略为将基站中承担容量层业务的相关设备进行关闭;所述预设的第二功耗降低策略为将基站中承担覆盖层业务的相关设备进行关闭;所述预设的第三功耗降低策略为将基站中的重要负载设备进行关闭。
在一个实施例中,所述的基站备电管理方法还包括:
当根据所述基站备电信息判断剩余备电量小于预设的站点关闭门槛值时, 发出关闭指令以使所述基站关闭整站设备供电。
在一个实施例中,所述的基站备电管理方法还包括:
利用预设的容量评估单元基于所述基站的设备配置信息、所述基站的网络地位信息以及所述基站的停电模型信息进行评估得到基站备电需求信息,根据所述基站备电需求信息生成得到所述基站的备电配置方案;
其中,所述基站的停电模型信息是根据所述基站的历史停电信息进行预测得到。
在一个实施例中,所述剩余备电量为根据电池实时健康度信息进行修正后得到。
第二方面,本申请实施例提供一种基站备电管理装置,包括:
信息获取模块,用于当监测到基站的市电掉电后,实时获取基站备电信息以及备电预计供电期间的负载平均功耗需求;
备电预测模块,用于当基于所述基站备电信息和所述负载平均功耗需求计算得到的实时剩余备电预测时长小于预设的备电维护门槛时长时,判断所述基站是否为重点保障站点;
维护通知模块,用于生成备电维护工单并发送至维护人员终端;
降耗策略模块,用于在判断备电供电预测时长小于预设的最大停电时长时,发出降耗指令以使所述基站执行预设的功耗降低策略;
其中,所述负载平均功耗需求是由预设的负载功耗预测模型根据历史功耗数据和当前基站负载功耗进行计算得到;所述备电供电预测时长是根据实时获取的累计停电时长和实时剩余备电预测时长计算得到。
第三方面,本申请实施例提供一种电子设备,包括处理器和存储有计算机程序的存储器,所述处理器执行所述程序时实现第一方面所述的基站备电管理方法的步骤。
第四方面,本申请实施例提供一种计算机程序产品,包括计算机程序,所述计算机程序被处理器执行时实现第一方面所述的基站备电管理方法的步骤。
本申请实施例提供的基站备电管理方法、装置、电子设备及计算机程序产品,通过结合实时获取的基站备电信息和未来备电预计供电期间的负载平 均功耗需求,实时计算基站的剩余备电预测时长,并以备电维护门槛时长为判断依据触发相应的应对措施,对于重点保障站点派单启动进行维护流程,对于普通站点根据备电供电预测时长按需执行设备降耗策略,以尽可能地延长备电供电时长并最大限度保证基站业务能够正常运行。本申请通过结合基站备电信息和基站业务信息进行综合考虑,根据站点实际情况匹配不同的延长备电的应对策略,从而有效提高了基站备电供电的可靠性,进而提高了站点的业务运行的可靠性。
附图说明
为了更清楚地说明本申请或相关技术中的技术方案,下面将对实施例或相关技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的基站备电管理方法的流程示意图;
图2是本申请实施例提供的站点备电配置评估模型示意图;
图3是本申请实施例提供的基站和能源系统联动控制整体架构示意图;
图4是本申请实施例提供的联动控制实现逻辑流程示意图;
图5是本申请实施例提供的功耗-时间图表示意图;
图6是本申请实施例提供的基站备电管理装置的结构示意图;
图7是本申请实施例提供的电子设备的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明的是,在市电中断后,对于基站备电的管理控制主要有以下两种方案:
相关技术一:市电停电后,基站立刻进入低功耗模式,延长站点备电时间。
相关技术电源系统与基站业务没有协同,信息不互通,基站未结合电源系统的关键数据信息而直接单边降低基站功耗,以换取备电时间延长。市电掉电后,主设备按预设时间T1、T2、T3定时执行节能动作,比如:停电后经过T1时间降低射频模块发射功率、停电后经过T2时间关闭部分发射通道、停电后经过T3时间关闭载波等动作。
相关技术一存在以下缺点:
1、基站侧未考虑站点备电剩余容量等关键性能数据,定时降低基站设备功耗,对人经验依赖性较强,站点业务损失大,且不能保证站点一直在线;
2、随着电池使用次数增加老化,导致不能准确判断电池容量,基站备电时间长度无法保证;
3、需根据站点配置,人为预测基站功耗,计算定时T1\T2\T3,参数配置复杂,导致特性开通困难;
4、站点内不同制式的低功耗模式没有协同,导致客户体验差。
相关技术二:市电停电后,电源配电进行分级下电,延长站点备电时间长度。
站点电源系统自身根据直流供电母排电压给基站设备负载下电,依赖于多路配电方式,分开给不同设备供电,与基站无关。当电源直流母排电压低于零次下电电压(如:46V)时,控制容量层负载下电;当电源直流母排电压低于一次下电电压(如:44V)时,控制覆盖层负载下电;当电源直流母排电压低于二次下电电压(如:43.2V)时,控制站点重要负载下电。
相关技术二存在如下缺点:
1、当电池放电到接近终止电压时才关闭所有基站负载,没有提前降低基站设备功耗,备电延长时间有限,且会导致基站业务中断;
2、随着电池使用和老化,电池放电电压与容量的对应关系变化较大,通过电压控制设备负载下电,误差大,一二次下电之间间隔时间短;
3、当前根据电源直流母排电压大小控制基站设备下电逻辑,无法适配锂电备电场景下不同站点负载备电时间延长的目标。
基于以上的相关技术,当前市电掉电场景下,基站业务与站点能源产品脱节,主要导致如下问题:
1、站点能源系统和基站业务没有协同,站点业务经常因为停电断站。
2、信息不互通,导致站点供电可靠性不足,业务可用率低,业务关键考核指标下降,导致终端客户投诉。
3、为了保证基站长期工作的可靠性,需按照市电最大停电时长的要求来配置蓄电池的规格。通常市电大部分的停电时长远小于最大停电时长,且达到最大停电时长的发生概率也较低,因此基于最大停电时长来配备蓄电池,会导致能源配置冗余大,造成较高的CAPEX投入。
为了解决上述相关技术存在的问题,本申请方案的目的在于通过对基站历史业务负荷的学习和未来业务需求的预测,与站点能源备电能力有效协同,实现在市电停电状态下站点备电能力和站点业务需求的动态匹配,使能客户精准投资的同时,提升基站供电可靠性。解决相关技术存在的盲目降基站功耗来减配站点备电、站点电池老化无感知、控制参数配置复杂、站点备电策略一刀切,站点能源盲目投资的问题。
图1为基站备电管理方法。参照图1,本申请实施例提供一种基站备电管理方法,可以包括步骤:
S1、当监测到基站的市电掉电后,实时获取基站备电信息以及备电预计供电期间的负载平均功耗需求;
S2、当基于所述基站备电信息和所述负载平均功耗需求计算得到的实时剩余备电预测时长小于预设的备电维护门槛时长时,判断所述基站是否为重点保障站点;
S3、若是,则生成备电维护工单并发送至维护人员终端;
S4、若否,则在判断备电供电预测时长小于预设的最大停电时长时,发出降耗指令以使所述基站执行预设的功耗降低策略;
其中,所述负载平均功耗需求是由预设的负载功耗预测模型根据历史功耗数据和当前基站负载功耗进行计算得到;所述备电供电预测时长是根据实时获取的累计停电时长和实时剩余备电预测时长计算得到。
在本申请实施例中,在市电掉电(或中断)后,基站的设备会自动变为 完全由蓄电池组进行供电。当监测到市电掉电(或中断)后,实时获取基站备电信息以及备电预计供电期间的负载平均功耗需求,基站备电信息主要包括电池剩余电量信息,备电预计供电期间的负载平均功耗需求由预设的负载功耗预测模型根据历史功耗数据和当前基站负载功耗进行计算得到。备电预计供电期间的时长可以根据历史停电情况进行预设(例如可以是80%~90%累积停电概率对应停电时长)。
可以理解的是,根据实时获取的累计停电时长和实时剩余备电预测时长可以计算得到实时剩余备电预测时长,将累计停电时长加上实时剩余备电预测时长(也可以根据实际需要在此基础上再加上或减去一段预设的时长进行微调)即可得到备电供电预测时长。
然后,当判断实时剩余备电预测时长小于预设的备电维护门槛时长(运维人员接到维护派单后能赶到对应站点的最小时间)时,根据站点的重要地位分不同情况采用应对措施。若基站是重点保障站点,则直接生成备电维护工单并发送至维护人员终端,通知站点运维人员上站调整备电能力(油机应急或调整电池容量等),以达到站点安全、可靠运行,提供稳定业务服务的目标。若基站是普通站点,则在判断备电供电预测时长小于预设的最大停电时长时,发出降耗指令以使所述基站执行预设的功耗降低策略。可以理解的是,可以从历史停电数据中找出停电时长最大值作为最大停电时长,也可以是根据该停电时长最大值进行增加或减少预设值以适当进行调整。
本申请实施例提供的基站备电管理方法,通过结合实时获取的基站备电信息和未来备电预计供电期间的负载平均功耗需求,实时计算基站的实时剩余备电预测时长,并以备电维护门槛时长为判断依据触发相应的应对措施,对于重点保障站点派单启动进行维护流程,对于普通站点根据备电供电预测时长按需执行设备降耗策略,以尽可能地延长备电供电时长并最大限度保证基站业务能够正常运行。本申请通过结合基站备电信息和基站业务信息进行综合考虑,根据站点实际情况匹配不同的延长备电的应对策略,从而有效提高了基站备电供电的可靠性,进而提高了站点的业务运行的可靠性。
在一个实施例中,所述在判断备电供电预测时长小于预设的最大停电时长时,发出降耗指令以使所述基站执行预设的功耗降低策略,包括:
在第一次判断所述备电供电预测时长小于预设的最大停电时长时,发出第一降耗指令以使所述基站执行预设的第一功耗降低策略;
在第二次判断所述备电供电预测时长小于预设的最大停电时长时,发出第二降耗指令以使所述基站执行预设的第二功耗降低策略。
在一个实施例中,所述在判断备电供电预测时长小于预设的最大停电时长时,发出降耗指令以使所述基站执行预设的功耗降低策略,还包括:
在第三次判断所述备电供电预测时长小于预设的最大停电时长时,发出第三降耗指令以使所述基站执行预设的第三功耗降低策略。
进一步地,所述预设的第一功耗降低策略为将基站中承担容量层业务的相关设备进行关闭;所述预设的第二功耗降低策略为将基站中承担覆盖层业务的相关设备进行关闭;所述预设的第三功耗降低策略为将基站中的重要负载设备进行关闭。
可以理解的是,降耗的动作可以是执行一次也可以是执行多次,在第一次判断所述备电供电预测时长小于预设的最大停电时长时,发出第一降耗指令以使所述基站执行预设的第一功耗降低策略,基站在执行预设的第一功耗降低策略后,备电供电预测时长必然会延长并再一次大于预设的最大停电时长,而随着时间的推移,有可能会在一段时间后(电池性能变化等原因)判断得到备电供电预测时长再一次小于最大停电时长,此时触发第二降耗指令以使所述基站执行预设的第二功耗降低策略,以此类推。
本申请实施例提供的基站备电管理方法,通过对基站设备采取分级降功耗策略,在最大程度保障了网络基础业务运营体验的同时,尽可能地延长了备电供电时长,从而进一步提高了基站备电供电的可靠性,进而进一步保障了基站业务不受停电影响。
在一个实施例中,所述的基站备电管理方法还包括:
当根据所述基站备电信息判断剩余备电量小于预设的站点关闭门槛值时,发出关闭指令以使所述基站关闭整站设备供电。
需要说明的是,出于保护电池寿命的考虑,可以设置判断逻辑为当判断剩余备电量小于预设的站点关闭门槛值时,直接触发基站整站设备的关闭,同时可以触发重要告警以使维护人员尽快到此基站进行电源维护。本申请实 施例的基站备电管理方法通过在电池电量耗尽前立刻关闭备电供电,从而保证了电池不会因电量耗尽而造成不可逆的损伤,从而进一步地提高了备电供电的可靠性。
在一个实施例中,所述的基站备电管理方法还包括:
利用预设的容量评估单元基于所述基站的设备配置信息、所述基站的网络地位信息以及所述基站的停电模型信息进行评估得到基站备电需求信息,根据所述基站备电需求信息生成得到所述基站的备电配置方案;
其中,所述基站的停电模型信息是根据所述基站的历史停电信息进行预测得到。
需要说明的是,相关技术中,备电设备的容量配置都是按照站点设备典型运行功耗,以不同区域电网的质量确定不同等级的备电时间长度,比如城区站点备电3小时,郊区站点备电5小时,农村站点备电7小时。这种简单的电池容量配置方法,为了保证基站长期工作的可靠性,需按照市电最大停电时长的要求来配置蓄电池的规格。通常市电大部分的停电时长远小于最大停电时长,且达到最大停电时长的发生概率也较低,因此基于最大停电时长来配备蓄电池,会导致能源配置冗余大,造成较高的资本性支出(Capital Expenditure,CAPEX)投入。
在本申请实施例中,通过利用预设的容量评估单元基于所述基站的设备配置信息、所述基站的网络地位信息以及所述基站的停电模型信息进行评估得到基站备电需求信息,继而根据所述基站备电需求信息生成得到所述基站的备电配置方案,站点配置中心即可根据备电配置方案对该站点的电池容量配置进行更新,例如扩容或缩容,避免电池配置不足或冗余。从而在保证基站备电供电能力的同时,尽可能地减少了资源的浪费和基站投入成本,解决了备电策略一刀切,站点能源盲目投资的问题,实现基站备电精准配置的目的。
在一个实施例中,所述剩余备电量为根据电池实时健康度信息进行修正后得到。
在本申请实施例中,根据电池实时健康度信息将获取剩余备电量信息进行修正后,再作为用于计算剩余备电预测时长的数据,克服了随着电池老化 或其他原因造成的电池电量获取不准确的问题,从而能够避免因此而导致的备电预测误判的问题,有效提高了备电供电的预测准确性,进一步提高了备电供电管理的可靠性。
基于上述方案,为便于更好的理解本申请实施例提供的基站备电管理方法,以下进行具体说明。
请参加图2,首先,在基站的备电容量初次配置或后续的备电容量更新,均可以采用本申请实施例的备电配置方法,具体为:结合站点在网络中的地位、设备配置以及该站点市电的停电模型信息(根据历史停电信息进行预测得到),对站点备电容量需求进行评估,获得一站一策的站点备电配置。
以下为对本申请实施例中的站点备电与基站业务联动控制实现的部分节点进行注释说明:
基站实时功耗信息:获取当前时刻基站的功耗数据,用于刷新历史功耗模型数据和计算基站实时功耗预测(负载平均功耗需求);
基站实时备电时长预测:根据基站实时功耗预测需求P和站点实时电池电量Q,预估站点实时剩余备电时间T;公式为T=Q/P,需要说明的是,这里的Q代表的是能量(等于功率乘以时间),单位为瓦、千瓦等,在电池容量的标识中,通常使用的电量标识单位为毫安时、安时等,则此时的剩余备电时间T为:T=C*U/P,其中,C为电池电量(单位为AH等),U为电池的额定输出电压。可以理解的是,通常电源设备的容量用kV·A或kW来表示,然而,作为电源的密封式阀控铅酸蓄(Valve-Regulated Lead-acid Battery,VRLA)电池,选用安时(A·h)表示其容量则更为准确。
站点备电维护门槛:运维人员接到维护派单后能赶到对应站点的最小时间;
重要站点:市电停电后,基站业务能力不能受损的站点;
普通站点:市电停电后,基站业务能力能接受受损的站点;
站点设备启动分级降功耗:0级降功耗,对基站中承担容量层业务的设备降功耗;1级降功耗,对基站中承担覆盖层业务的设备降功耗;2级降功耗,对基站中重要负载设备进行降功耗;
站点备电与基站业务需求联动方法:根据站点停电状态实时功耗预测和 站点备电容量,动态判断站点备电时长风险,对停电状态下站点剩余备电时长达到(低于)维护门槛的重要站点,市电没有恢复的情况下,通过运维派单,通知站点运维人员上站调整备电能力(油机应急或调整电池容量等),以达到站点安全、可靠运行,提供稳定业务服务的目标。
对于普通站点,根据站点剩余备电容量、站点停电时长和基站实时功耗,对站点分别采取分级降功耗策略,将预测备电时长延长到预设时长,保障网络基础业务运营体验的目标。
请参见图3,站点和站点能源设备联动控制系统架构可以由网络管理器、基站、站点电源系统、运维人员等要素组成。
首先,根据基站历史停电模型和对未来站点停电预测信息,确定基站的典型单次停电时长T 1(80%~90%累积停电概率对应停电时长,可设置)和最长单次停电时长T 2
请参加图4,站点联动控制实现逻辑具体如下:
Step1:在市电停电后,由站点电源系统供电,进入站点备电与基站业务需求联动逻辑,网络管理器检测到基站或站点电源系统上报的市电掉电告警后,获取站点电池电量信息(能源信息)和基站设备信息(包括历史功耗信息和当前功耗信息);
Step2:刷新基站负载功耗预测模型,统计分析一段时间(如一周)的历史功耗数据,结合当前基站负载功耗,预测站点备电时间周期(未来一段时间)的站点负载平均功耗需求P av
Step3:获取站点备电的电量状态(State Of Charge,SOC),根据站点配置容量C,得到电池剩余容量:C 剩余=C*SOC;
Step4:获取电池健康度(State of Health,SOH),补偿修正C 剩余,SOC检测误差,得到修正后的电池容量:C 剩余=C*SOC*SOH;
Step5:再根据修正后的剩余容量绝对值C ma、未来的负载平均功耗P av和电池电压V bat,预估得到站点电池剩余备电时间T rb=C ma/(P av/V bat);
Step6:若站点电池剩余备电时间T rb<设定的备电维护门槛时长T s,进一步判断是否是重点站点,若是重点保障站点,则启动派单维护流程,安排站点维护人员对站点备电进行现场维护,保障站点正常工作。否则,站点进入 分级低功耗运行的备电和设备联动状态,逐步关闭不同层级的站点设备,降低基站功耗,延长站点备电时间到预设时长;
Step7:若计算得到T 停电+C 剩余*V bat/P av<T 2,其中,T 停电代表累计停电时长,则通知基站降低功耗(假设降低容量层业务功耗P 1);继续监测,若后续计算得到T 停电+C 剩余*V bat/(P av-P 1)<T 2,则进一步降低基站设备功耗,以此类推;
Step8:电池继续放电,若站点剩余备电容量小于预算出来的站点关闭门槛值,出于保护电池寿命考虑,上报备电不足告警,关闭整站设备的供电。
Step9:若在上述过程中任何节点市电恢复供电,则系统退出站点备电与基站业务需求联动逻辑,站点主设备业务恢复正常。
以下结合图5对本申请实施例进行举例说明,首先图5中的部分符号注释如下:
A——承担容量层业务功耗;
A’——容量层业务降功耗后剩余功耗;
B——承担覆盖层业务功耗;
B’——覆盖层业务降功耗后剩余功耗;
C——重要负载业务功耗;
C’——重要负载业务降功耗后剩余功耗;
Other(其他)——不可业务有损的业务,如传输等;
T 1——统计周期内典型单次停电时长,例如可以取值80%~90%累积停电概率对应停电时长;
T 2——站点统计周期内最大停电时长。
首先,基站总功耗P =other+A+B+C,判断备电剩余电量是否可以支撑(other+A+B+C)到T 2,如可以则无动作,每隔一段时间检测一次(如每15分检测一次),如不可以支持到T 2(图5的(1)),则T a时刻容量层业务执行降功耗;其中各参数满足公式:(A-A’)*(T 1-T a)=(P -(A-A’))*(T 2-T 1);
如图5的(2),继续检测,备电剩余电量是否可以支撑(other+A’+B+C)到T 2,如可以则无动作,每隔一段时间检测一次(如每15分检测一次),如不可以支持到T 2,则T b时刻覆盖层业务执行降功耗;其中各参数满足公式: (A-A’)*(T 1-T a)+(B-B’)*(T 1-T b)=(P -(A-A’)-(B-B’))*(T 2-T 1);
如图5的(3),继续检测,备电剩余电量否可以支撑(other+A’+B’+C)到T 2,如可以则无动作,每隔一段时间检测一次(如每15分检测一次),如不可以支持到T 2,则T c时刻重要负载业务执行降功耗(如图5的(4)所示);
其中各参数满足公式:
(A-A’)*(T 1-T a)+(B-B’)*(T 1-T b)+(C-C’)*(T 1-T C)=(P总-(A-A’)-(B-B’)-(C-C’))*(T 2-T 1)。
需要说明的是,本申请实施例的关键点主要包括以下几点:
1、根据站点历史停电信息、站点重要程度和站点设备配置进行站点备电容量精准配置;
2、根据当前基站负载功耗和历史功耗数据,预测基站未来的一段时间负载功耗需求;
3、根据基站未来一段时间负载功耗需求和站点电池剩余电量,预估站点剩余备电时间;
4、在市电停电状态下,提前学习和预判站点备电时长,针对站点剩余备电时间少于预设维护门槛时长的场景,对重要站点,自动上报网管,派单通知运维人员在规定时间内对站点进行备电维护,确保重要站点业务性能正常和连续;
5、在市电停电状态下,提前学习和预判站点备电时长,对于普通站点,针对站点剩余备电时间不足以支撑站点到市电恢复时的场景,根据网管提前下发的预设策略保留基站基础业务需求,分级降低基站的设备功耗,延长站点备电时间到预期的指定时长,解决预期停电时长内的基站备电不足;
6、对于有断站率考核的补忙和补盲站点(重要性不高的站点),在作为普通站点处置备电策略的基础上,仅为站点的核心设备进行长时间备电。
与相关技术相比,本申请实施例具有如下有益效果:
本申请实施例打破传统备电束缚,根据实际站点重要程度、停电模型和站点设备情况配置站点备电容量,针对不同基站配套不同延长备电的应对策略,解决相关技术存在的站点备电策略一刀切,站点备电投资大、收益低,电池容量变化难感知,实际站点备电时长无法预知的问题,有效改善了站点 供电的可靠性,提高了站点备电的投资性价比。
下面对本申请实施例提供的基站备电管理装置进行描述,下文描述的基站备电管理装置与上文描述的基站备电管理方法可相互对应参照。
请参见图6,本申请实施例提供了一种基站备电管理装置,可以包括:
信息获取模块1,用于当监测到基站的市电掉电后,实时获取基站备电信息以及备电预计供电期间的负载平均功耗需求;
备电预测模块2,用于当基于所述基站备电信息和所述负载平均功耗需求计算得到的实时剩余备电预测时长小于预设的备电维护门槛时长时,判断所述基站是否为重点保障站点;
维护通知模块3,用于生成备电维护工单并发送至维护人员终端;
降耗策略模块4,用于在判断备电供电预测时长小于预设的最大停电时长时,发出降耗指令以使所述基站执行预设的功耗降低策略;
其中,所述负载平均功耗需求是由预设的负载功耗预测模型根据历史功耗数据和当前基站负载功耗进行计算得到;所述备电供电预测时长是根据实时获取的累计停电时长和实时剩余备电预测时长计算得到。
在一个实施例中,降耗策略模块4具体用于:
在第一次判断所述备电供电预测时长小于预设的最大停电时长时,发出第一降耗指令以使所述基站执行预设的第一功耗降低策略;
在第二次判断所述备电供电预测时长小于预设的最大停电时长时,发出第二降耗指令以使所述基站执行预设的第二功耗降低策略。
在一个实施例中,降耗策略模块4具体还用于:
在第三次判断所述备电供电预测时长小于预设的最大停电时长时,发出第三降耗指令以使所述基站执行预设的第三功耗降低策略。
在一个实施例中,所述预设的第一功耗降低策略为将基站中承担容量层业务的相关设备进行关闭;所述预设的第二功耗降低策略为将基站中承担覆盖层业务的相关设备进行关闭;所述预设的第三功耗降低策略为将基站中的重要负载设备进行关闭。
在一个实施例中,所述的基站备电管理装置还包括:
停电控制模块,用于当根据所述基站备电信息判断剩余备电量小于预设 的站点关闭门槛值时,发出关闭指令以使所述基站关闭整站设备供电。
在一个实施例中,所述的基站备电管理装置还包括:
容量配置模块,用于利用预设的容量评估单元基于所述基站的设备配置信息、所述基站的网络地位信息以及所述基站的停电模型信息进行评估得到基站备电需求信息,根据所述基站备电需求信息生成得到所述基站的备电配置方案;
其中,所述基站的停电模型信息是根据所述基站的历史停电信息进行预测得到。
在一个实施例中,所述剩余备电量为根据电池实时健康度信息进行修正后得到。
可以理解的是上述装置项实施例,是与本申请方法项实施例相对应的,本申请实施例提供的基站备电管理装置,可以实现本申请任意一项方法项实施例提供的基站备电管理方法。
图7示例了一种电子设备的实体结构示意图,如图7所示,该电子设备可以包括:处理器(processor)710、通信接口(Communication Interface)720、存储器(memory)730和通信总线740,其中,处理器710,通信接口720,存储器730通过通信总线740完成相互间的通信。处理器710可以调用存储器730中的计算机程序,以执行基站备电管理方法的步骤,例如包括:
当监测到基站的市电掉电后,实时获取基站备电信息以及备电预计供电期间的负载平均功耗需求;
当基于所述基站备电信息和所述负载平均功耗需求计算得到的实时剩余备电预测时长小于预设的备电维护门槛时长时,判断所述基站是否为重点保障站点;
若是,则生成备电维护工单并发送至维护人员终端;
若否,则在判断备电供电预测时长小于预设的最大停电时长时,发出降耗指令以使所述基站执行预设的功耗降低策略;
其中,所述负载平均功耗需求是由预设的负载功耗预测模型根据历史功耗数据和当前基站负载功耗进行计算得到;所述备电供电预测时长是根据实时获取的累计停电时长和实时剩余备电预测时长计算得到。
此外,上述的存储器730中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对相关技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
另一方面,本申请实施例还提供一种计算机程序产品,所述计算机程序产品包括计算机程序,所述计算机程序可存储在非暂态计算机可读存储介质上,所述计算机程序被处理器执行时,计算机能够执行上述各实施例所提供的基站备电管理方法的步骤,例如包括:
当监测到基站的市电掉电后,实时获取基站备电信息以及备电预计供电期间的负载平均功耗需求;
当基于所述基站备电信息和所述负载平均功耗需求计算得到的实时剩余备电预测时长小于预设的备电维护门槛时长时,判断所述基站是否为重点保障站点;
若是,则生成备电维护工单并发送至维护人员终端;
若否,则在判断备电供电预测时长小于预设的最大停电时长时,发出降耗指令以使所述基站执行预设的功耗降低策略;
其中,所述负载平均功耗需求是由预设的负载功耗预测模型根据历史功耗数据和当前基站负载功耗进行计算得到;所述备电供电预测时长是根据实时获取的累计停电时长和实时剩余备电预测时长计算得到。
另一方面,本申请实施例还提供一种处理器可读存储介质,所述处理器可读存储介质存储有计算机程序,所述计算机程序用于使处理器执行上述各实施例提供的方法的步骤,例如包括:
当监测到基站的市电掉电后,实时获取基站备电信息以及备电预计供电期间的负载平均功耗需求;
当基于所述基站备电信息和所述负载平均功耗需求计算得到的实时剩余备电预测时长小于预设的备电维护门槛时长时,判断所述基站是否为重点保障站点;
若是,则生成备电维护工单并发送至维护人员终端;
若否,则在判断备电供电预测时长小于预设的最大停电时长时,发出降耗指令以使所述基站执行预设的功耗降低策略;
其中,所述负载平均功耗需求是由预设的负载功耗预测模型根据历史功耗数据和当前基站负载功耗进行计算得到;所述备电供电预测时长是根据实时获取的累计停电时长和实时剩余备电预测时长计算得到。
所述处理器可读存储介质可以是处理器能够存取的任何可用介质或数据存储设备,包括但不限于磁性存储器(例如软盘、硬盘、磁带、磁光盘(Magneto-Optical,MO)等)、光学存储器(例如激光光盘(Compact Disk,CD)、数字通用光盘(Digital Versatile Disc,DVD)、蓝光光盘(Blu-ray Disc,BD)、高清晰度通用光盘(High-definition Versatile Disc,HVD)等)、以及半导体存储器(例如ROM、可擦除可编程只读存储器(Erasable Programmable Read-Only Memory,EPROM)、带电可擦可编程只读存储器(Electrically Erasable Programmable Read Only Memory,EEPROM)、非易失性存储器(NAND FLASH)、固态硬盘(Solid State Disk,SSD))等。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,上述技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台 计算机设备(可以是个人计算机,服务器,或者网络设备等)执行各个实施例或者实施例的某些部分所述的方法。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (10)

  1. 一种基站备电管理方法,包括:
    当监测到基站的市电掉电后,实时获取基站备电信息以及备电预计供电期间的负载平均功耗需求;
    当基于所述基站备电信息和所述负载平均功耗需求计算得到的实时剩余备电预测时长小于预设的备电维护门槛时长时,判断所述基站是否为重点保障站点;
    若是,则生成备电维护工单并发送至维护人员终端;
    若否,则在判断备电供电预测时长小于预设的最大停电时长时,发出降耗指令以使所述基站执行预设的功耗降低策略;
    其中,所述负载平均功耗需求是由预设的负载功耗预测模型根据历史功耗数据和当前基站负载功耗进行计算得到;所述备电供电预测时长是根据实时获取的累计停电时长和实时剩余备电预测时长计算得到。
  2. 根据权利要求1所述的基站备电管理方法,其中,所述在判断备电供电预测时长小于预设的最大停电时长时,发出降耗指令以使所述基站执行预设的功耗降低策略,包括:
    在第一次判断所述备电供电预测时长小于预设的最大停电时长时,发出第一降耗指令以使所述基站执行预设的第一功耗降低策略;
    在第二次判断所述备电供电预测时长小于预设的最大停电时长时,发出第二降耗指令以使所述基站执行预设的第二功耗降低策略。
  3. 根据权利要求2所述的基站备电管理方法,其中,所述在判断备电供电预测时长小于预设的最大停电时长时,发出降耗指令以使所述基站执行预设的功耗降低策略,还包括:
    在第三次判断所述备电供电预测时长小于预设的最大停电时长时,发出第三降耗指令以使所述基站执行预设的第三功耗降低策略。
  4. 根据权利要求3所述的基站备电管理方法,其中,所述预设的第一功耗降低策略为将基站中承担容量层业务的相关设备进行关闭;所述预设的第二功耗降低策略为将基站中承担覆盖层业务的相关设备进行关闭;所述预设 的第三功耗降低策略为将基站中的重要负载设备进行关闭。
  5. 根据权利要求1所述的基站备电管理方法,其中,还包括:
    当根据所述基站备电信息判断剩余备电量小于预设的站点关闭门槛值时,发出关闭指令以使所述基站关闭整站设备供电。
  6. 根据权利要求1所述的基站备电管理方法,其中,还包括:
    利用预设的容量评估单元基于所述基站的设备配置信息、所述基站的网络地位信息以及所述基站的停电模型信息进行评估得到基站备电需求信息,根据所述基站备电需求信息生成得到所述基站的备电配置方案;
    其中,所述基站的停电模型信息是根据所述基站的历史停电信息进行预测得到。
  7. 根据权利要求1所述的基站备电管理方法,其中,所述剩余备电量为根据电池实时健康度信息进行修正后得到。
  8. 一种基站备电管理装置,包括:
    信息获取模块,用于当监测到基站的市电掉电后,实时获取基站备电信息以及备电预计供电期间的负载平均功耗需求;
    备电预测模块,用于当基于所述基站备电信息和所述负载平均功耗需求计算得到的实时剩余备电预测时长小于预设的备电维护门槛时长时,判断所述基站是否为重点保障站点;
    维护通知模块,用于生成备电维护工单并发送至维护人员终端;
    降耗策略模块,用于在判断备电供电预测时长小于预设的最大停电时长时,发出降耗指令以使所述基站执行预设的功耗降低策略;
    其中,所述负载平均功耗需求是由预设的负载功耗预测模型根据历史功耗数据和当前基站负载功耗进行计算得到;所述备电供电预测时长是根据实时获取的累计停电时长和实时剩余备电预测时长计算得到。
  9. 一种电子设备,包括处理器和存储有计算机程序的存储器,所述处理器执行所述计算机程序时实现权利要求1至7任一项所述的基站备电管理方法的步骤。
  10. 一种计算机程序产品,包括计算机程序,所述计算机程序被处理器执行时实现权利要求1至7任一项所述的基站备电管理方法的步骤。
PCT/CN2022/131461 2021-11-16 2022-11-11 基站备电管理方法、装置、电子设备及计算机程序产品 WO2023088191A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111358094.6 2021-11-16
CN202111358094.6A CN116137456A (zh) 2021-11-16 2021-11-16 一种基站备电管理方法及装置

Publications (1)

Publication Number Publication Date
WO2023088191A1 true WO2023088191A1 (zh) 2023-05-25

Family

ID=86334236

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/131461 WO2023088191A1 (zh) 2021-11-16 2022-11-11 基站备电管理方法、装置、电子设备及计算机程序产品

Country Status (2)

Country Link
CN (1) CN116137456A (zh)
WO (1) WO2023088191A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117375245A (zh) * 2023-12-04 2024-01-09 碳丝路文化传播(成都)有限公司 一种基于物联网的电源控制系统及电源控制方法
CN117939602A (zh) * 2024-01-24 2024-04-26 铁塔能源有限公司 通信基站的控制方法、装置、电子设备及存储介质

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117134467B (zh) * 2023-10-23 2024-01-30 成都秦川物联网科技股份有限公司 基于物联网的气体流量计电源管理方法、系统、设备
CN117592770B (zh) * 2024-01-19 2024-04-12 成都秦川物联网科技股份有限公司 一种智慧燃气工商户流量计调控方法、物联网系统和介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1852449A (zh) * 2005-07-15 2006-10-25 华为技术有限公司 一种备电系统及其实现供电的方法
CN209642391U (zh) * 2018-12-06 2019-11-15 中国移动通信集团贵州有限公司 供电控制电路及通信基站
CN112421701A (zh) * 2019-08-22 2021-02-26 上海华为技术有限公司 一种备电控制方法、装置及系统
JP2021164178A (ja) * 2020-03-30 2021-10-11 大和ハウス工業株式会社 電力供給システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1852449A (zh) * 2005-07-15 2006-10-25 华为技术有限公司 一种备电系统及其实现供电的方法
CN209642391U (zh) * 2018-12-06 2019-11-15 中国移动通信集团贵州有限公司 供电控制电路及通信基站
CN112421701A (zh) * 2019-08-22 2021-02-26 上海华为技术有限公司 一种备电控制方法、装置及系统
JP2021164178A (ja) * 2020-03-30 2021-10-11 大和ハウス工業株式会社 電力供給システム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117375245A (zh) * 2023-12-04 2024-01-09 碳丝路文化传播(成都)有限公司 一种基于物联网的电源控制系统及电源控制方法
CN117375245B (zh) * 2023-12-04 2024-02-09 碳丝路文化传播(成都)有限公司 一种基于物联网的电源控制系统及电源控制方法
CN117939602A (zh) * 2024-01-24 2024-04-26 铁塔能源有限公司 通信基站的控制方法、装置、电子设备及存储介质

Also Published As

Publication number Publication date
CN116137456A (zh) 2023-05-19

Similar Documents

Publication Publication Date Title
WO2023088191A1 (zh) 基站备电管理方法、装置、电子设备及计算机程序产品
CN107219470B (zh) 蓄电池组在线核对性放电装置及方法
US9711976B2 (en) Lead storage battery system
US10998756B2 (en) Microgrid system and method for managing malfunction
CN104466994A (zh) 通信电源错峰储能系统
US20120249152A1 (en) Charging/discharging determination apparatus and computer-readable non-transitory medium storing charging/discharging determination program
US10482548B2 (en) Method and apparatus for performing energy management in a power supply grid
JP2013160582A (ja) 組電池システムおよび組電池システムの管理方法
US20200295567A1 (en) Hierarchical power control system
JP7014903B2 (ja) 機器管理サーバ、機器管理システム及び機器管理方法
US11312264B2 (en) ESS charging and discharging operation method
US20240136818A1 (en) Backup power supply method and related device
KR20140044029A (ko) 셀 저전압 방지용 에너지 저장 장치 및 제어방법
KR101736717B1 (ko) 에너지 저장 장치 및 그의 제어 방법
CN116111712A (zh) 供电方法、装置、电子设备及可读存储介质
KR20170108578A (ko) 피크컷 모드 운전이 가능한 에너지 저장 시스템의 제어 방법 및 그 장치
US20100312411A1 (en) Ac consumption controller, method of managing ac power consumption and a battery plant employing the same
KR20190098724A (ko) 지역 기반 에너지 저장 장치의 제어 시스템 및 이를 이용한 에너지 관리 방법
US20230327472A1 (en) Elevator emergency power systems and methods
KR20190130859A (ko) Pms일체형 pcs가 구비되는 ess 및 운용방법
CN115912556A (zh) 一种电池充电方法、装置、电子设备和存储介质
JP7208095B2 (ja) サーバ装置及び制御方法
CN104009489A (zh) 一种微电网管理系统及其管理方法
WO2020080284A1 (ja) 電力管理装置、電力管理システム及び電力管理方法
KR102703337B1 (ko) 축전지 감시 시스템 및 축전지 감시 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22894727

Country of ref document: EP

Kind code of ref document: A1