WO2023087834A1 - 采样装置 - Google Patents

采样装置 Download PDF

Info

Publication number
WO2023087834A1
WO2023087834A1 PCT/CN2022/115600 CN2022115600W WO2023087834A1 WO 2023087834 A1 WO2023087834 A1 WO 2023087834A1 CN 2022115600 W CN2022115600 W CN 2022115600W WO 2023087834 A1 WO2023087834 A1 WO 2023087834A1
Authority
WO
WIPO (PCT)
Prior art keywords
housing
collector
rock
casing
sampling
Prior art date
Application number
PCT/CN2022/115600
Other languages
English (en)
French (fr)
Inventor
赵忠贤
孙启臣
赵曾
林云成
高泽
赵帆
秦俊杰
杨海涛
王素萍
郭闯
全齐全
Original Assignee
北京卫星制造厂有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京卫星制造厂有限公司 filed Critical 北京卫星制造厂有限公司
Publication of WO2023087834A1 publication Critical patent/WO2023087834A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/04Devices for withdrawing samples in the solid state, e.g. by cutting

Definitions

  • the invention relates to a sampling device.
  • sampling methods such as drilling, mechanical arm shoveling, grinding and grabbing are usually used on the moon and Mars, but these methods have relatively large sampling reaction force and long sampling time.
  • some technologies adopt the sampling method of containing and recovering after the impact of the projectile. Although the sampling speed is relatively fast, the sampling volume is extremely small.
  • the object of the present invention is to provide a sampling device.
  • the present invention provides a sampling device, including a housing, a collector and a driver, one side of the housing is open, the collector is arranged inside the housing, and the driver is arranged in the housing and is connected with the collector, and also includes a rock-breaking assembly, and the rock-breaking assembly is arranged on the casing.
  • the rock-breaking assembly includes an igniter, a piston, a projectile, a launch tube and a limiting structure;
  • the launch tube is inclined toward a direction away from the center of the housing, and the inclination angle is less than 30°;
  • the piston and the projectile are arranged in the launch tube, and the igniter and the limiting structure are located at both ends of the launch tube;
  • the projectile is detachably arranged at the end of the piston away from the igniter;
  • Both the piston and the limiting structure are made of metal.
  • a bottom skirt assembly is also included, the bottom skirt assembly includes a thin plate and an elastic member;
  • the thin plate is rotatably arranged on the open side of the shell, and the elastic members are respectively connected with the thin plate and the shell.
  • the collector includes a disc cutter, a rotary shaft, a hammer and a brush;
  • the disc cutters are alternately arranged in the middle of the rotary shaft along the axial direction, and the hammers are arranged alternately between adjacent disc cutters along the circumferential direction, and can swing around their own installation shafts;
  • the brushes are arranged tangentially on the shaft body of the rotary shaft, and the brushes on both sides of the disc cutter are not on the same plane.
  • it further includes gas energizing nozzles, and the gas energizing nozzles are evenly distributed on the open side of the housing.
  • the present invention also includes a flow guide structure, the flow guide structure is arranged in the middle of the inside of the housing;
  • the side of the diversion structure facing the collector is an inclined surface, and the inner wall of the casing has an arc-shaped diversion surface.
  • the flow guiding structure is provided with secondary excitation nozzles.
  • the driving member and the rock-breaking assembly there are two collectors, the driving member and the rock-breaking assembly, and the running directions of the collectors are opposite.
  • the present invention also includes a collection channel, the collection channel is arranged on the housing, opposite to the open side of the housing;
  • the diameter of the collecting channel gradually narrows toward the direction away from the casing.
  • a ball hinge assembly is further included, the ball hinge assembly is arranged at the end of the collection channel away from the housing, and has a transmission channel.
  • a rock-breaking sampling device suitable for weakly gravitational extraterrestrial bodies.
  • the sampling device uses pyrotechnic bombs, disk knives, hair brushes and multiple simple tools combined with gas to simultaneously realize rock breaking and sample excitation collection. It can be adapted to attachment and contact sampling, and has the characteristics of low reaction force, short sampling time, strong adaptability to sampling objects, repeatable sampling, efficient and reliable sampling, etc.
  • a combination of multiple simple tools such as pyrotechnic projectiles, disc cutters, brushes and gas is used to simultaneously realize rock breaking, sample excitation collection and sample transmission.
  • the rock-breaking method adopts the non-contact rock-breaking method of pyrotechnic projectile and the contact-type rock-breaking method of disc cutter and rock-breaking hammer.
  • the excitation method adopts the combined design of brush and gas excitation, and the coupling of the two effects further improves the efficiency of excitation and greatly increases the sampling volume.
  • Such a composite design enables the sampling device to realize multi-working sampling conditions such as regolith, small and large-grained gravel, rocks, etc. It has the advantages of strong geological adaptability and high sampling efficiency, and is also applicable to the moon, Mars, etc. Sampling of the surface of extraterrestrial objects.
  • the collector adopts a symmetrical rotating double-wheel structure, and the lateral force and moment generated when the two wheel sets interact with the surface of the asteroid are equal and opposite, so that rock breaking and sampling can cancel each other out.
  • the axial force generated by the rotating wheel is small, which can achieve rock breaking and sampling with low reaction force.
  • the rock-breaking components are also installed symmetrically and obliquely on both sides of the casing, and they are launched simultaneously when breaking rocks, which can offset the generated lateral force.
  • the principle of two-stage emission is adopted. After the piston moves in place, it hits the limit structure and stops moving.
  • the metals deform and fit together to seal the gas, which can avoid pollution to the sampled samples and reduce the reaction force generated by the emission.
  • the projectile rock breaking is a non-contact rock breaking, which does not produce reaction force on the sampling device. In this way, the sampling device realizes efficient rock breaking with low force.
  • the diversion structure is located in the middle of the shell, and its cross-section is triangular, which can divide the interior of the shell into two independent diversion spaces, and can guide the asteroid soil samples excited from both sides to the middle to realize excitation.
  • Direction is unified, so as to realize efficient directional excitation and collection.
  • the secondary excitation nozzle starts to spray air, so that the excited astral soil sample can be relayed upward. Since there is basically no influence of gravity, the air force can make the star soil sample quickly enter the collection channel, thus realizing the composite design of sample excitation and air blowing transmission.
  • the shell when the sampling device touches the surface of the planetary soil, the shell can relatively swing and pitch relative to the structure outside the ball joint assembly, so that the sampling device as a whole can also rotate, so as to adapt to the inclination of different terrain surfaces .
  • the underskirt assembly will automatically open under the pressure to seal the sampling area, and fill and adapt to the uneven terrain to prevent the star soil samples from escaping.
  • Fig. 1 schematically represents an axonometric view of a sampling device according to an embodiment of the present invention
  • Fig. 2 schematically represents a cross-sectional view of a sampling device according to an embodiment of the present invention
  • Fig. 3 schematically represents the structural diagram of the rock breaking assembly of the sampling device of an embodiment of the present invention
  • Fig. 4 schematically shows the structural diagram of the collector of the sampling device of an embodiment of the present invention
  • Fig. 5 schematically shows a directional excitation-directed diagram of a sampling device according to an embodiment of the present invention.
  • the sampling device of the present invention is suitable for rock-breaking sampling of weakly gravitational extraterrestrial bodies (asteroids, small celestial bodies, the moon or Mars, etc.), which includes a housing 1 , a collector 2 and a drive 3 .
  • the shell 1 is a square thin shell structure with an open bottom.
  • the collector 2 is set inside the casing 1, and is used for rock breaking and excitation through rotation;
  • the driving member 3 is arranged on the casing 1, and is connected with the collector 2 (through a transmission mechanism), so as to provide driving power for it.
  • two collectors 2 are provided, and the running directions are opposite, forming a symmetrical rotating double-wheel structure, which can simultaneously complete the excitation of broken rocks and star soil samples under the rotary motion.
  • driving parts 3 which are oppositely located on the outer side of the casing 1 .
  • a bottom skirt assembly 5 includes a multi-lobed thin plate 51 and an elastic member 52 , the thin plate 51 is arranged around the bottom of the housing 1 , and the elastic member 52 is respectively connected with the thin plate 51 and the outer housing 1 . Moreover, the thin plate 51 can rotate around its own installation axis, so as to realize the opening and closing of the bottom skirt.
  • the collection channel 9 is arranged at the upper end of the casing 1 , that is, opposite to the open side of the casing 1 .
  • the aperture of the collection channel 9 gradually narrows away from the outer shell 1, thereby forming a horn-shaped mouth, which facilitates the collection of star soil samples after they enter quickly.
  • the ball hinge assembly 10 is arranged at the end of the collection channel 9 away from the shell 1, and it is composed of a ball head and a ball socket, so that the shell 1 can swing and pitch relative to the external device, so that when the sampling device contacts the surface of the star soil, it can Rotate, so as to adapt to the tilted state of the surface of the star.
  • the ball joint assembly 10 since the ball joint assembly 10 is located at the upper end of the collecting channel 9, it should also allow the material to pass through. For this reason, the present invention provides a transmission channel 101 in the spherical hinge assembly 10, so as to facilitate the transmission of astronomical soil samples.
  • the gas excitation nozzle 6 and the flow guide structure 7 are also provided in the sampling device of the present invention.
  • the gas excitation nozzles 6 are evenly distributed on the bottom of the four sides of the shell 1, and are used for gas excitation to the star soil particles at the bottom.
  • the guide structure 7 is arranged in the middle of the casing 1, so that the collectors 2 are respectively located on both sides thereof.
  • the side of the diversion structure 7 facing the collector 2 is inclined, so that its cross-section is triangular, so that the asteroid soil samples excited from both sides to the middle can be guided upwards to realize the function of directional excitation.
  • Both sides of the inner wall of the housing 1 have arc-shaped guide surfaces B (which can be understood as large arc fillets), so that the obstruction of sample flow can be reduced.
  • the diversion structure 7 is also provided with a secondary excitation nozzle 8 , and its air jet direction is divergent upward, which can realize the relay transmission of the excited star soil sample, so that the sample enters the collection channel 9 .
  • both the gas excitation nozzle 6 and the secondary excitation nozzle 8 can be connected with the gas supply system, so as to realize gas injection.
  • a rock-breaking assembly 4 is also provided in the sampling device, and the rock-breaking assembly 4 is arranged on the housing 1 , and two groups are also arranged symmetrically.
  • the rock-breaking assembly 4 includes an igniter 41 , a piston 42 , a projectile 43 , a launching tube 44 and a limiting structure 45 .
  • the launch tube 44 is a hollow cylindrical structure, which is inclined away from the center of the casing 1, and the inclination angle is below 30°, so that after the rock is crushed, the gravel can be directly rebounded to the excitation gas path, so as to facilitate the collection of samples .
  • the piston 42 and the projectile 43 are arranged in the launch tube 44 , the igniter 41 and the stop structure 45 are respectively located at the tail and the front end of the launch tube 44 , and the projectile 43 is detachably arranged at the end of the piston 42 away from the igniter 41 .
  • both the projectile 43 and the piston 42 are located at the tail of the launch tube 44.
  • the collector 2 includes a disc cutter 21 , a rotary shaft 22 , a hammer 23 and a brush 24 .
  • Two disc cutters 21 are arranged alternately in the middle of the rotary shaft 22 in the axial direction, so that they can rotate simultaneously to form two kerfs on the rock and produce overlapping crack propagation zones.
  • Punch hammers 23 are alternately arranged between two disk cutters 21 along the circumferential direction, and two are also arranged, and can swing around their own installation rotating shaft A. In this way, when the disc cutter 21 cuts the rock to a certain depth, the impact hammer 23 can strike the rock in the middle of the two kerfs, so that the whole rock particles are peeled off, thereby quickly obtaining massive rock samples.
  • the hair brush 24 is arranged on the shaft body of the rotary shaft 22 tangentially, and the hair brush 24 positioned at both sides of the disc cutter 21 is not on the same plane, so that the hair brush 24 can constantly brush the surrounding star soil in the process of revolution. Or the rock particles are excited to make it move at a high speed along the tangential direction of the rotary motion guide structure 7.
  • the sampling device configured as above approaches the surface of the asteroid, the driving member 3 starts to work, so that the collector 2 starts to rotate in advance.
  • the sampling device touches the surface of the asteroid, the bottom skirt assembly 5 at the front end first touches the surface of the asteroid, and under the action of the pressure, the multi-lobed thin plate 51 automatically opens to seal the sampling area, and fills and adapts to the uneven terrain. Prevent the star soil samples from escaping outwards.
  • the rock-breaking assembly 4 is ignited, launches projectiles 43 to the surface rock, and hits the rock surface to complete the rock-breaking action.
  • the disk cutter 21 and impact hammer 23 in the collector 2 start to cut and impact the rock on the surface, and the brush 24 excites the star soil on the surface and the rock particles produced by breaking the rock, making it move along the tangent of the rotary motion.
  • the direction guide structure 7 moves at a high speed, and the star soil particles flow upward after being guided or collided by the guide structure 7 , so as to quickly enter the collection channel 9 .
  • the hair brush 24 is excited, the gas excitation nozzle 6 is opened to make it eject high-pressure nitrogen gas outwards. Under the action of the air flow, the surface star soil is fluidized and excited to move towards the middle.
  • the star soil Since there is basically no gravity effect, the star soil The particles flow upward after being guided or collided by the diversion structure 7, and reach the upper end of the diversion structure 7. At this time, the secondary excitation nozzle 8 starts to spray upward along the moving direction of the particle sample, and relays the astral soil sample. Without the influence of gravity, the air force can make the star soil sample enter the collection channel 9 quickly to complete the sample collection work.
  • the sampling device of the present invention uses pyrotechnic projectiles, disc cutters, brushes, and multiple simple tools combined with gas to simultaneously realize rock breaking, sample excitation collection, and sample transmission, and can adapt to detector attachment and contact sampling. It has the characteristics of low reaction force, short sampling time, strong adaptability to sampling objects, and repeatable sampling, thereby overcoming the defects of existing extraterrestrial celestial body sampling equipment such as large reaction force, low adaptability to geological characteristics, and no rock-breaking ability.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

一种采样装置,包括外壳(1)、采集器(2)和驱动件(3),外壳(1)一侧敞开,采集器(2)设置在外壳(1)内部,驱动件(3)设置在外壳(1)上,并与采集器(2)连接,还包括破岩组件(4),破岩组件(4)设置在外壳(1)上。采样装置具有反作用力低、采样时间短、采样对象适应性强、可重复采样、采样高效可靠等特点。

Description

采样装置
本申请要求于2021年11月18日提交中国专利局、申请号为202111368755.3、申请名称为“采样装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及一种采样装置。
背景技术
对小天体进行科学探测的方式多种多样,主要包括利用地外探测器对天体进行飞越、绕飞、着陆及采样返回等。其中,采样是探测活动的核心手段,原因在于样品在返回地球后可在实验室内进行最全面直接的科学研究,而地外天体的采样则需要采样器具有地质特性适应性强、反作用力低、采样迅速等特点。
现有技术中,在月球与火星上通常使用钻取、机械臂铲挖、研磨和抓取等采样方式,但这些方式的采样反作用力较大,且采样时间较长。对此,一些技术采用射弹撞击后容纳回收的采样方法,虽然采样速度较快,但是采样量极其微小。还有一些技术采用气体激励的方法进行采样,这种方式的采样量虽然较为可观,但是其使用的采样器无破岩能力,因此无法对岩石表面的小行星进行采样。
技术问题
本发明的目的在于提供一种采样装置。
技术解决方案
为实现上述发明目的,本发明提供一种采样装置,包括外壳、采集器和驱动件,所述外壳一侧敞开,所述采集器设置在所述外壳内部,所述驱动件设置在所述外壳上,并与所述采集器连接,还包括破岩组件,所述破岩组件设置在所述外壳上。
根据本发明的一个方面,所述破岩组件包括点火器、活塞、射弹、发射筒和限位结构;
所述发射筒向着远离所述外壳中心的方向倾斜,且倾角在30°以下;
所述活塞和所述射弹设置在所述发射筒中,所述点火器和所述限位结构位于所述发射筒的两端;
所述射弹可脱离的设置在所述活塞远离所述点火器的一端;
所述活塞和所述限位结构的材质均为金属。
根据本发明的一个方面,还包括底裙组件,所述底裙组件包括薄板和弹性件;
所述薄板可转动的设置在所述外壳敞开一侧,所述弹性件分别与所述薄板和所述外壳连接。
根据本发明的一个方面,所述采集器包括盘刀、回转轴、冲锤和毛刷;
所述盘刀沿轴向相间设置在所述回转轴的中部,所述冲锤沿周向相间设置在相邻所述盘刀之间,且可绕自身的安装转轴摆动;
所述毛刷相切的设置在所述回转轴的轴体上,且位于所述盘刀两侧的所述毛刷不在同一平面上。
根据本发明的一个方面,还包括气体激励喷嘴,所述气体激励喷嘴均匀分布在所述外壳敞开一侧。
根据本发明的一个方面,还包括导流结构,所述导流结构设置在所述外壳内部中间;
所述导流结构面对所述采集器的侧为斜面,所述外壳内壁具有弧形导流面。
根据本发明的一个方面,所述导流结构上设有二次激励喷嘴。
根据本发明的一个方面,所述采集器、所述驱动件和所述破岩组件均设置两个,且所述采集器的运行方向相反。
根据本发明的一个方面,还包括收集通道,所述收集通道设置在所述外壳上,与所述外壳敞开一侧相对;
所述收集通道的口径向着远离所述外壳的方向逐渐缩小。
根据本发明的一个方面,还包括球铰组件,所述球铰组件设置在所述收集通道远离所述外壳的一端,且具有传输通道。
有益效果
根据本发明的构思,提出一种适用于弱引力地外天体的破岩采样装置,采样装置采用火工弹、盘刀、毛刷与气体多种简单工具复合,同步实现破岩、样品激励采集与样品传输,可以适应于附着与接触采样,具有反作用力低、采样时间短、采样对象适应性强、可重复采样、采样高效可靠等特点。
根据本发明的一个方案,采用火工射弹、盘刀、毛刷与气体多种简单工具组合,同步实现破岩、样品激励采集与样品传输。破岩方式则采用火工射弹非接触式破岩以及盘刀与破岩冲锤的接触式破岩两种方式,均具有低反作用力、快速高效的特点,并且两种破岩方式可以互为备份,从而可以提高破岩的可靠性。激励方式上采用毛刷与气体激励复合设计,二者作用耦合从而进一步提高激励的效率,并能极大地提高采样量。如此的复合式设计使得采样装置可实现风化层、小颗粒与大颗粒碎石、岩石等多工况的采样,具有地质适应性强、采样效率高的优点,并同样适用于月球、火星等其他地外天体表面的采样。
根据本发明的一个方案,采集器采用对称式旋转双轮的结构,两个轮组与小行星表面作用时产生的横向力与力矩相等且反向,使得破岩与采样时能够相互抵消。同时,旋转轮产生的轴向作用力小,能够实现低反作用力的破岩与采样。破岩组件同样采用对称、倾斜安装在外壳两侧,破岩时同时发射作用,能够抵消产生的横向作用力。并且,采用二级发射作用原理,活塞运动到位后撞击限位结构并停止运动,金属相互变形嵌合后密封燃气,能够避免对采样的样品产生污染,同时减小发射产生的反作用力。而射弹破岩为非接触式破岩,对采样装置不产生反作用力。如此,使得采样装置实现了低作用力的高效破岩。
根据本发明的一个方案,导流结构位于外壳的中部,其截面为三角形,能够将外壳内部分隔成两个独立的导流空间,可将两侧向中间激励的星壤样品向上导向,实现激励方向的统一,从而实现高效的定向激励与采集。
根据本发明的一个方案,当星壤样品通过毛刷与气体激励后被导流到导流结构的上端时,二次激励喷嘴开始喷气,从而能够对激励后的星壤样品进行接力向上传输。而由于基本没有重力影响,气力能够使星壤样品快速进入收集通道,从而实现样品激励与气吹传输的复合设计。
根据本发明的一个方案,当采样装置接触星壤表面时,外壳可相对于球铰组件外部的结构进行相对摆动与俯仰,使得采样装置整体也可进行转动,从而自适应不同地形表面倾斜的状态。同时,底裙组件在压力的作用下会自动张开,从而对采样区域进行密闭,并针对不平地形进行填充与自适应,以防止星壤样品向外逃逸。
附图说明
图1示意性表示本发明的一种实施方式的采样装置的轴测图;
图2示意性表示本发明的一种实施方式的采样装置的剖视图;
图3示意性表示本发明的一种实施方式的采样装置的破岩组件的结构图;
图4示意性表示本发明的一种实施方式的采样装置的采集器的结构图;
图5示意性表示本发明的一种实施方式的采样装置的定向激励导向图。
本发明的实施方式
为了更清楚地说明本发明实施方式或现有技术中的技术方案,下面将对实施方式中所需要使用的附图作简单地介绍。显而易见地,下面描述中的附图仅仅是本发明的一些实施方式,对于本领域普通技术人员而言,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
在针对本发明的实施方式进行描述时,术语“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”所表达的方位或位置关系是基于相关附图所示的方位或位置关系,其仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此上述术语不能理解为对本发明的限制。
下面结合附图和具体实施方式对本发明作详细地描述,实施方式不能在此一一赘述,但本发明的实施方式并不因此限定于以下实施方式。
参见图1和图2,本发明的采样装置适用于弱引力地外天体(小行星、小天体、月球或火星等)的破岩采样,其包括外壳1、采集器2和驱动件3。外壳1为底部敞开的四方形薄壳体结构。采集器2设置在外壳1内部,用于通过回转实现破岩与激励;驱动件3设置在外壳1上,并(通过传动机构)与采集器2连接,从而为其提供驱动动力。本发明中,采集器2设置两个,且运行方向相反,形成对称式旋转双轮结构,可在回转的运动下同时完成破岩与星壤样品的激励。与此配合的,驱动件3(电机)也设置两个,相对的位于外壳1外侧。
同时,外壳1上还设置了底裙组件5、收集通道9和球铰组件10。其中,底裙组件5包括多瓣薄板51和弹性件52,薄板51的设置在外壳1的底部周边,弹性件52分别与薄板51和外壳1连接。并且,薄板51可绕自身的安装轴转动,从而实现底裙的张开与收拢。收集通道9设置在外壳1上端,即与外壳1敞开一侧相对。收集通道9的口径向着远离外壳1的方向逐渐缩小,从而形成喇叭收口状,便于星壤样品快速进入后的收集。球铰组件10设置在收集通道9远离外壳1的一端,其由球头和球窝组成,从而使得外壳1可相对于外部装置进行摆动与俯仰,这样,当采样装置接触星壤表面时可进行转动,从而自适应星体表面倾斜的状态。另外,由于球铰组件10位于收集通道9的上端,因此其还应当允许物料的通过。为此,本发明在球铰组件10中设置了传输通道101,从而便于星壤样品的传输。
此外,本发明的采样装置中还设置了气体激励喷嘴6和导流结构7。其中,气体激励喷嘴6均匀分布在外壳1四边的底部,用于对底部星壤颗粒进行气体激励。导流结构7设置在外壳1内部中间,使得采集器2分别位于其两侧。导流结构7面对采集器2的侧为斜面,使得其截面为三角形,从而可将两侧向中间激励的星壤样品进行向上的导向,实现定向激励的功能。外壳1内壁两侧具有弧形导流面B(可理解为大弧度圆角),从而可以减少样品流动的阻碍。并且,导流结构7上还设有二次激励喷嘴8,其喷气方向为向上发散,可实现对激励起来的星壤样品进行接力传送,使样品进入收集通道9。本发明中,气体激励喷嘴6和二次激励喷嘴8均可与供气系统连接,从而实现喷气。
参见图3,本发明中,采样装置中还设置了破岩组件4,破岩组件4设置在外壳1上,并且也对称的设置两组。破岩组件4包括点火器41、活塞42、射弹43、发射筒44和限位结构45。发射筒44为中空筒状结构,其向着远离外壳1中心的方向倾斜,且倾角在30°以下,从而可以在将岩石击碎后使碎石直接回弹至激励气路上,以便于样品的收集。活塞42和射弹43设置在发射筒44中,点火器41和限位结构45分别位于发射筒44的尾部和前端,射弹43可脱离的设置在活塞42远离点火器41的一端。在初始状态下,射弹43以及活塞42均位于发射筒44尾部,当接到破岩信号后,点火器41(通过火药)进行起爆,从而产生高温高压燃气,当燃气作用在活塞42上时,可推动活塞42与射弹43沿发射筒44向前快速运动,当活塞42撞击到限位结构45后停止,而金属之间相互变形实现嵌合,从而能够密封后端燃气,以避免对采样的样品产生污染,而射弹43在撞击后则脱离活塞42继续向前高速运动,直至撞击岩石表面从而完成破岩动作。
参见图4,采集器2包括盘刀21、回转轴22、冲锤23和毛刷24。盘刀21沿轴向相间设置在回转轴22的中部,且设置两个,从而能够同时回转而对岩石形成两道切缝,并产生裂纹扩展区交叠。冲锤23沿周向相间设置在两个盘刀21之间,也设置两个,且可绕自身的安装转轴A摆动。如此,当盘刀21对岩石切削到一定深度时,冲锤23能够对两道切缝中间的岩石进行敲击,使得整块岩石颗粒剥落,从而快速获得块状岩石样品。毛刷24则相切的设置在回转轴22的轴体上,且位于盘刀21两侧的毛刷24不在同一平面上,从而使得毛刷24可在回转的过程中不断对周边的星壤或岩石颗粒进行激励,使其沿回转运动的切线方向向导流结构7高速运动。
结合图2和图5,按照上述设置的采样装置接近小行星表面时,驱动件3开始工作,使采集器2提前开始转动。当采样装置接触小行星表面时,前端的底裙组件5首先接触星壤表面,在压力的作用下多瓣薄板51自动张开,对采样区域进行密闭,并针对不平地形进行填充与自适应,防止星壤样品向外逃逸。底裙组件5张开后,破岩组件4进行点火工作,向表面岩石发射射弹43,撞击岩石表面完成破岩动作。同时,采集器2中的盘刀21、冲锤23开始对表面岩石进行切削与冲击破岩,毛刷24对表面的星壤以及破岩产生的岩石颗粒进行激励,使其沿回转运动的切线方向向导流结构7高速运动,星壤颗粒经导流结构7导向或碰撞后向上流动,从而快速进入收集通道9。在毛刷24激励的同时,开启气体激励喷嘴6,使其向外喷出高压氮气,在气流的作用下,使表面星壤流体化并激励起来向中间运动,由于基本没有重力影响,星壤颗粒经导流结构7导向或碰撞后向上流动,到达导流结构7的上端,此时二次激励喷嘴8开始顺着颗粒样品运动的方向向上喷气,将星壤样品进行接力传输,同样由于基本没有重力影响,气力能够使星壤样品快速进入收集通道9,完成样品的采集工作。
综上所述,本发明的采样装置采用火工射弹、盘刀、毛刷与气体多种简单工具复合,同步实现破岩、样品激励采集与样品传输,可以适应探测器附着与接触采样,具有反作用力低、采样时间短、采样对象适应性强、可重复采样等特点,从而克服了现有的地外天体采样设备反作用力大、地质特性适应性低、无破岩能力等缺陷。
以上所述仅为本发明的一个实施方式而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包括在本发明的保护范围之内。

Claims (10)

  1. 一种采样装置,包括外壳(1)、采集器(2)和驱动件(3),所述外壳(1)一侧敞开,所述采集器(2)设置在所述外壳(1)内部,所述驱动件(3)设置在所述外壳(1)上,并与所述采集器(2)连接,其特征在于,还包括破岩组件(4),所述破岩组件(4)设置在所述外壳(1)上。
  2. 根据权利要求1所述的装置,其特征在于,所述破岩组件(4)包括点火器(41)、活塞(42)、射弹(43)、发射筒(44)和限位结构(45);
    所述发射筒(44)向着远离所述外壳(1)中心的方向倾斜,且倾角在30°以下;
    所述活塞(42)和所述射弹(43)设置在所述发射筒(44)中,所述点火器(41)和所述限位结构(45)位于所述发射筒(44)的两端;
    所述射弹(43)可脱离的设置在所述活塞(42)远离所述点火器(41)的一端;
    所述活塞(42)和所述限位结构(45)的材质均为金属。
  3. 根据权利要求1所述的装置,其特征在于,还包括底裙组件(5),所述底裙组件(5)包括薄板(51)和弹性件(52);
    所述薄板(51)可转动的设置在所述外壳(1)敞开一侧,所述弹性件(52)分别与所述薄板(51)和所述外壳(1)连接。
  4. 根据权利要求1所述的装置,其特征在于,所述采集器(2)包括盘刀(21)、回转轴(22)、冲锤(23)和毛刷(24);
    所述盘刀(21)沿轴向相间设置在所述回转轴(22)的中部,所述冲锤(23)沿周向相间设置在相邻所述盘刀(21)之间,且可绕自身的安装转轴(A)摆动;
    所述毛刷(24)相切的设置在所述回转轴(22)的轴体上,且位于所述盘刀(21)两侧的所述毛刷(24)不在同一平面上。
  5. 根据权利要求1所述的装置,其特征在于,还包括气体激励喷嘴(6),所述气体激励喷嘴(6)均匀分布在所述外壳(1)敞开一侧。
  6. 根据权利要求1所述的装置,其特征在于,还包括导流结构(7),所述导流结构(7)设置在所述外壳(1)内部中间;
    所述导流结构(7)面对所述采集器(2)的侧为斜面,所述外壳(1)内壁具有弧形导流面(B)。
  7. 根据权利要求6所述的装置,其特征在于,所述导流结构(7)上设有二次激励喷嘴(8)。
  8. 根据权利要求1所述的装置,其特征在于,所述采集器(2)、所述驱动件(3)和所述破岩组件(4)均设置两个,且所述采集器(2)的运行方向相反。
  9. 根据权利要求1所述的装置,其特征在于,还包括收集通道(9),所述收集通道(9)设置在所述外壳(1)上,与所述外壳(1)敞开一侧相对;
    所述收集通道(9)的口径向着远离所述外壳(1)的方向逐渐缩小。
  10. 根据权利要求1所述的装置,其特征在于,还包括球铰组件(10),所述球铰组件(10)设置在所述收集通道(9)远离所述外壳(1)的一端,且具有传输通道(101)。
PCT/CN2022/115600 2021-11-18 2022-08-29 采样装置 WO2023087834A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111368755.3 2021-11-18
CN202111368755.3A CN114323729B (zh) 2021-11-18 2021-11-18 采样装置

Publications (1)

Publication Number Publication Date
WO2023087834A1 true WO2023087834A1 (zh) 2023-05-25

Family

ID=81045936

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/115600 WO2023087834A1 (zh) 2021-11-18 2022-08-29 采样装置

Country Status (2)

Country Link
CN (1) CN114323729B (zh)
WO (1) WO2023087834A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114323729B (zh) * 2021-11-18 2024-05-28 北京卫星制造厂有限公司 采样装置

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5768940A (en) * 1995-12-07 1998-06-23 The Director-General Of The Institute Of Space And Astronautical Science Sample collector
CN102879218A (zh) * 2012-09-26 2013-01-16 浙江大学 一种深空小行星样品采集探测器的采样装置
CN109580273A (zh) * 2018-11-28 2019-04-05 北京卫星制造厂有限公司 一种适用于小行星的碎岩装置
CN109632370A (zh) * 2018-12-14 2019-04-16 北京卫星制造厂有限公司 一种适用于小行星的对称旋挖与气力传输复合采样器
CN111122215A (zh) * 2018-10-30 2020-05-08 哈尔滨工业大学 一种刷式小行星表面星壤采样装置
CN111122219A (zh) * 2018-10-30 2020-05-08 哈尔滨工业大学 盘刀切削采样及样品袋拉绳送样式小行星表面星壤采样器
CN111122217A (zh) * 2018-10-30 2020-05-08 哈尔滨工业大学 机械式自适应地形的小行星表面星壤采样装置
CN111947966A (zh) * 2020-07-17 2020-11-17 北京卫星制造厂有限公司 一种适用于地外天体的快速破岩采样装置
CN111947970A (zh) * 2020-07-08 2020-11-17 北京卫星制造厂有限公司 一种适用于地外天体的低反力复合采样装置
CN111947965A (zh) * 2020-07-16 2020-11-17 北京卫星制造厂有限公司 一种适用于地外天体的触碰采样器
CN114323729A (zh) * 2021-11-18 2022-04-12 北京卫星制造厂有限公司 采样装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3148888B2 (ja) * 1997-07-01 2001-03-26 ワイケイケイアーキテクチュラルプロダクツ株式会社 カーテンウオール
IL148919A0 (en) * 2002-03-26 2003-07-31 Rafael Armament Dev Authority System and method for low signature launch of projectile
JP2008057231A (ja) * 2006-08-31 2008-03-13 Kojima Press Co Ltd 開閉カバーのばね外れ防止構造
JP4592716B2 (ja) * 2007-02-16 2010-12-08 三菱重工業株式会社 試料片採取方法、翼の温度推定方法
WO2010115306A1 (zh) * 2009-04-09 2010-10-14 Peng Weijie 榨汁机
CN203427260U (zh) * 2013-06-07 2014-02-12 南通超达机械科技有限公司 蜂窝板成型冲切模具
CN205410631U (zh) * 2015-11-30 2016-08-03 马忠超 一种应急头/颈枕
CN105699234B (zh) * 2016-01-27 2019-03-01 清华大学 实现高速切削的实验装置
CN206262296U (zh) * 2016-11-09 2017-06-20 江苏瑞帆环保装备股份有限公司 旋风灭星除尘器
CN206974804U (zh) * 2017-06-14 2018-02-06 湖南科技大学 一种用于冲击载荷作用下刀具破岩的试验装置
CN208059681U (zh) * 2018-06-14 2018-11-06 北京思创天罡装备科技有限公司 电击发无声笔枪
CN208607024U (zh) * 2018-06-25 2019-03-15 江西省全南县石磊矿业有限责任公司 一种矿产开采用检测取样装置
CN111366396B (zh) * 2020-03-20 2022-07-29 北京空间飞行器总体设计部 一种具有磨削及夹持功能的小天体一体化取样器
CN212513725U (zh) * 2020-07-14 2021-02-09 王秋玲 一种农业植保用土壤取样工具
CN213516377U (zh) * 2020-07-22 2021-06-22 苏州佳华印刷包装有限公司 一种用于纸板取样的手动取样机
CN112857874B (zh) * 2021-01-19 2023-09-01 南京望天科技有限公司 一种均匀采样的煤矿地质勘探采样保存装置
CN113418739B (zh) * 2021-07-26 2022-12-20 中核安徽计量检测有限公司 一种检测土壤采样装置
CN113606629A (zh) * 2021-08-13 2021-11-05 杭州老板电器股份有限公司 集烟装置及油烟机

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5768940A (en) * 1995-12-07 1998-06-23 The Director-General Of The Institute Of Space And Astronautical Science Sample collector
CN102879218A (zh) * 2012-09-26 2013-01-16 浙江大学 一种深空小行星样品采集探测器的采样装置
CN111122215A (zh) * 2018-10-30 2020-05-08 哈尔滨工业大学 一种刷式小行星表面星壤采样装置
CN111122219A (zh) * 2018-10-30 2020-05-08 哈尔滨工业大学 盘刀切削采样及样品袋拉绳送样式小行星表面星壤采样器
CN111122217A (zh) * 2018-10-30 2020-05-08 哈尔滨工业大学 机械式自适应地形的小行星表面星壤采样装置
CN109580273A (zh) * 2018-11-28 2019-04-05 北京卫星制造厂有限公司 一种适用于小行星的碎岩装置
CN109632370A (zh) * 2018-12-14 2019-04-16 北京卫星制造厂有限公司 一种适用于小行星的对称旋挖与气力传输复合采样器
CN111947970A (zh) * 2020-07-08 2020-11-17 北京卫星制造厂有限公司 一种适用于地外天体的低反力复合采样装置
CN111947965A (zh) * 2020-07-16 2020-11-17 北京卫星制造厂有限公司 一种适用于地外天体的触碰采样器
CN111947966A (zh) * 2020-07-17 2020-11-17 北京卫星制造厂有限公司 一种适用于地外天体的快速破岩采样装置
CN114323729A (zh) * 2021-11-18 2022-04-12 北京卫星制造厂有限公司 采样装置

Also Published As

Publication number Publication date
CN114323729A (zh) 2022-04-12
CN114323729B (zh) 2024-05-28

Similar Documents

Publication Publication Date Title
CN109804131B (zh) 增强的钻井系统
CA3002341C (en) Ram accelerator system with rail tube
US7500477B2 (en) Method and apparatus for moving a mass
US10180030B2 (en) Ram accelerator system
US10344534B2 (en) Ram accelerator system with endcap
WO2023087834A1 (zh) 采样装置
CN109632370B (zh) 一种适用于小行星的对称旋挖与气力传输复合采样器
CA3020652C (en) Ram accelerator system with baffles
US3190372A (en) Methods and apparatus for drilling bore holes
US6494139B1 (en) Hole boring charge assembly
CN111947966B (zh) 一种适用于地外天体的快速破岩采样装置
CN111947970B (zh) 一种适用于地外天体的低反力复合采样装置
CN112240730B (zh) 一种辅助外星球矿物取样的聚能装药结构
CN204944328U (zh) 线性聚能切割器
CN111044317A (zh) 一种适用于天体的气体激励采样器
CN113375962B (zh) 一种行星表面远距离采样器
Ivanov et al. Mass and impact velocity of the meteorite formed the Sterlitamak crater in 1990
CN221593679U (zh) 起爆弹壳
Walton et al. Vertical-Screw-Auger Conveyer Feeder
Ahrens et al. Near Earth asteroid orbit perturbation and fragmentation
CN115493466A (zh) 基于杆射流群的岩石快速爆破开挖方法
nuclear Irradiated Deflection and fragmentation of near-Earth

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22894374

Country of ref document: EP

Kind code of ref document: A1