WO2023087770A1 - 一种粒子阱系统 - Google Patents

一种粒子阱系统 Download PDF

Info

Publication number
WO2023087770A1
WO2023087770A1 PCT/CN2022/107608 CN2022107608W WO2023087770A1 WO 2023087770 A1 WO2023087770 A1 WO 2023087770A1 CN 2022107608 W CN2022107608 W CN 2022107608W WO 2023087770 A1 WO2023087770 A1 WO 2023087770A1
Authority
WO
WIPO (PCT)
Prior art keywords
light beam
module
optical path
light
ion
Prior art date
Application number
PCT/CN2022/107608
Other languages
English (en)
French (fr)
Inventor
张梦翔
杨超
林毅恒
杜江峰
Original Assignee
华为技术有限公司
中国科学技术大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司, 中国科学技术大学 filed Critical 华为技术有限公司
Publication of WO2023087770A1 publication Critical patent/WO2023087770A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N10/00Quantum computing, i.e. information processing based on quantum-mechanical phenomena
    • G06N10/20Models of quantum computing, e.g. quantum circuits or universal quantum computers

Definitions

  • the present application relates to the technical field of quantum computing, in particular to a particle trap system.
  • quantum computing has attracted more and more attention.
  • the core of quantum computing is to use the quantum system to realize general quantum computing.
  • the basic principle of quantum computing is to use qubits (such as ions) to encode information.
  • the state (or quantum state) of a single qubit not only has two classical states of 0 and 1, but also a superposition state of 0 and 1.
  • the qubit can be in the 0 state with half the probability, half The probability is in 1 state.
  • n qubits can be in the superposition state of 2 n quantum states at the same time, thereby improving the calculation speed.
  • the ion trap system mainly includes the electrode structure and ions that trap ions.
  • the electrode structure By applying a specific electromagnetic field on the electrode structure and combining the Coulomb interaction between ions, ions can be trapped in a specific structure in space.
  • manipulation light or called addressing light
  • the quantum state manipulation of the ions can be realized, thereby obtaining the quantum state information of the ions.
  • the light is manipulated mainly through strong focusing (such as micron-scale focusing), for example, through a lens with a large numerical aperture (NA) and other optical elements to achieve strong focusing of the manipulated light
  • NA is a A dimensionless number that measures the ability of a lens to collect light.
  • the addressing of ions by strong focusing of the steering light is poorly scalable and difficult, and requires complex optical path design.
  • the present application provides a particle trap system for simplifying and accurately realizing particle addressing.
  • the present application provides a particle trap system, which may include a confinement module, a first light splitting module and a first relative delay module.
  • the imprisoning module is used to imprison at least two particles.
  • the first beam splitting module is used for splitting the received beam into a first beam and a second beam.
  • the first relative delay module is used to adjust the delay amount of the first beam and the second beam reaching the first target particle, the adjusted first beam and the second beam coincide at the first target particle, and the first target particle is a prisoner At least one of the at least two particles imprisoned in the module.
  • the delay refers to the absolute value of the difference between the first flight time and the second flight time
  • the first flight time refers to the flight time of the photons of the first light beam on the propagation optical path of the first light beam
  • the second time-of-flight refers to the time-of-flight of the photons of the second light beam on the propagation optical path of the second light beam.
  • the particle trap system may include, but is not limited to, an ion trap system.
  • the optical module splits the received light beam
  • the first light beam and the second light beam are obtained, and the delay amount of the first light beam and the second light beam reaching the first target particle can be adjusted through the first relative delay module, which can realize
  • the adjustment of the overlapping position of the first light beam and the second light beam can make the first light beam and the second light beam coincident (or called encounter) at different particles (that is, the position where the first light beam and the second light beam coincide with different target particles alignment).
  • the photon flight time it is possible to precisely control which particle the first light beam and the second light beam are aimed at and irradiate at the same time, so that high-precision independent addressing of different particles can be realized.
  • the complexity of optical path design can be simplified, thereby helping to reduce the noise of light manipulation, thereby improving the precision of manipulation of particles.
  • the particle trap system may further include a light source module, the light source module may emit light beams according to a first pulse width, and the first spatial distance corresponding to the first pulse width is smaller than that of at least two particles imprisoned by the confinement module. The distance between any two adjacent particles.
  • the first spatial distance corresponding to the first pulse width is smaller than the distance between any two adjacent particles, at the same time, the first light beam and the second light beam can only hit one particle at the same time, so that the single particle can be detected independent addressing.
  • the second spatial distance corresponding to the time interval between two adjacent light beams emitted by the light source module is greater than the distance between any two particles in the at least two particles in the confinement module.
  • the light source module may include but not limited to a femtosecond pulsed laser.
  • the first relative delay module is specifically configured to change the optical path of the received first light beam and/or the second light beam.
  • the first relative time delay module may be located on the propagation optical path of the first light beam.
  • the first relative time delay module is specifically used to change the optical path of the received first light beam.
  • the first relative time delay module may be located on the propagation optical path of the second light beam.
  • the first relative time delay module is specifically used to change the optical path of the second light beam received.
  • the first relative time delay module can be located on the propagation optical path of the first light beam and the second light beam, and correspondingly, the first relative time delay module is specifically used to change the optical path of the first light beam received and change The optical path of the second beam.
  • the time delay between the first light beam and the second light beam reaching the first target particle can be adjusted, and then independent addressing of different particles can be realized.
  • the first relative delay module includes a first driving component and an optical distance adjusting component.
  • the first driving component is used to send the first driving signal to the optical path adjustment component according to the received first control signal, and the first control signal is determined according to the position of the first target particle.
  • the optical distance adjusting component is used for changing the received optical distance of the first light beam and/or the second light beam according to the first driving signal.
  • the optical path adjusting component is driven by the first driving component, so that the optical path of the first light beam and/or the second light beam can be changed, and then the time delay between the first light beam and the second light beam reaching the first target particle can be adjusted.
  • the optical path adjustment component includes a vibrating mirror and a reflecting element; the vibrating mirror is used to change the optical path of the received first light beam and/or the second light beam according to the first driving signal, and direct The first light beam with the changed optical path and/or the second light beam with the changed optical path propagated to the reflective element; the reflective element is used to reflect the received first light beam with the changed optical path and/or the second light beam with the changed optical path to the first target particle.
  • the oscillating mirror may include, but not limited to, a micro-electro-mechanical system (micro electro-mechanical system, MEMS) mirror, or a MEMS waveguide.
  • Reflective elements may include, but are not limited to, mirrors, prisms, and the like.
  • the particle trap system further includes a first optical path module and a second optical path module.
  • the first optical path module is used to propagate the first light beam or the first light beam after the optical path change to the first target particle;
  • the second optical path module is used to propagate the second light beam or the second light beam after the optical path change to the first target particle. a target particle.
  • the first optical path module includes a first modulation component for modulating the timing and/or frequency of the first light beam; and/or the second optical path module includes a second modulation component for modulating the timing and/or frequency of the second light beam .
  • the timing and/or frequency of the first beam can be controlled by the first modulation component, and the timing and/or frequency of the second beam can be controlled by the second modulation component, so that quantum computing that meets the needs can be realized.
  • the first optical path module also includes a first polarization component
  • the second optical path module also includes a second polarization component
  • the first polarization component is used to convert the polarization state of the received first light beam into left-handed circularly polarized light
  • the second polarization The component is used to convert the polarization state of the received second light beam into right-handed circularly polarized light
  • the first polarization component is used to convert the polarization state of the received first light beam into right-handed circularly polarized light
  • the second polarization component It is used to convert the polarization state of the received second light beam into left-handed circularly polarized light.
  • the polarization state of the first beam and the second beam will affect the coupling strength of the first beam and the second beam, which will affect the quantum efficiency of the manipulation particle, therefore, the polarization state of the first beam and the polarization state of the right-handed circularly polarized light
  • the second beam of left-handed circular polarization or the first beam of left-handed circular polarization and the second beam of right-handed circular polarization
  • it helps to improve the quantum efficiency of the particle .
  • the particle trap system also includes a second beam splitting module, the first relative delay module includes N sub-relative delay modules, and N is an integer greater than 1; the second beam splitting module is used to The second light beam of the first light splitting module is divided into N third light beams, and a third light beam corresponds to a sub-relative delay module; the sub-relative time delay module is used to change the delay between the first light beam and the third light beam reaching the first target particle amount of time.
  • N third beams can be successively overlapped with the first beam at different particles, so that multiple particles can be addressed.
  • quantum computing parallel multi-bit computing can be performed, and the applicable quantum algorithms are more abundant.
  • the delay amount of two adjacent fourth light beams can be controlled, so as to realize the sequential addressing of different particles; moreover, the addressing of the addressed particles can also be changed.
  • the second relative delay module is used to change the optical path of the fourth light beam, and propagate the changed fourth light beam to the second light path module; the second light path module is also used to change the fourth light beam after the light path change The light beam propagates to the second target particle.
  • the initialization process of the propagation direction of the fourth light beam directly propagating to the second target particle can be omitted in the initialization process .
  • the particle trap system further includes a first filter module, configured to allow the fourth light beam from the first light beam recovery module to pass through in the first time domain, and propagate the fourth light beam to the second relative Delay module.
  • the fourth light beam is allowed to pass in the first time domain or the fourth light beam is prevented from passing in time domains other than the first time domain.
  • the particle trap system further includes a second light beam recovery module; the second light beam recovery module is used to return the first light beam from the first light path module to the first light path module in the second time domain, and return the first light beam from the first light path module to the second
  • the first light beam of an optical path module forms a pulse sequence with the first light beam from the first light splitting module; and is used for propagating the pulse sequence formed by the first light beam to the first confinement module in the third time domain.
  • the second light beam recovery module is used to return the first light beam from the second optical path module to the second optical path module in the fourth time domain, and the second light beam returned to the second optical path module and the second light beam from the first light splitting module forming a pulse sequence; and propagating the pulse sequence formed by the second light beam to the first confinement module in a fifth time domain.
  • the pulse sequence formed by the first beam coincides with the second beam at different particles, or the pulse sequence formed by the second beam coincides with the first beam at different particles, so that different particles can be detected Take control.
  • Fig. 1 a is the schematic diagram of the quantum state of a kind of ion provided by the present application
  • Figure 1b is a schematic diagram of the relationship between Rabi intensity and beam coordinates provided by the present application.
  • Figure 1c is a schematic diagram of the principle of a Raman light-controlled ion provided by the present application.
  • Figure 1d is a schematic diagram of overlapping of two beams of light at the position of ions provided by the present application
  • Figure 1e is a schematic diagram of the process of trapping ions provided by the present application.
  • Figure 2 is a schematic diagram of the structure of a particle trap system provided by the present application.
  • Figure 3a is a schematic structural diagram of an ion trapping module provided by the present application.
  • Figure 3b is a schematic diagram of the principle of a trapped ion provided by the present application.
  • Figure 3c is a schematic diagram of the working principle of a 3D-MOT provided by the present application.
  • Figure 3d is a schematic structural diagram of an atom trapping module provided by the present application.
  • Figure 3e is a schematic structural diagram of another atom trapping module provided by the present application.
  • Figure 4a is a schematic diagram of the distribution of ions trapped by a trapping module provided by the present application.
  • Figure 4b is a schematic diagram of the distribution of ions trapped by another trapping module provided by the present application.
  • Figure 4c is a schematic diagram of the distribution of ions trapped by another confinement module provided by the present application.
  • Figure 4d is a schematic diagram of the distribution of ions trapped by another confinement module provided by the present application.
  • Figure 4e is a schematic diagram of the distribution of ions trapped by another confinement module provided by the present application.
  • Figure 4f is a schematic diagram of the distribution of ions trapped by another confinement module provided by the present application.
  • FIG. 5 is a schematic diagram of a pulsed laser provided by the present application.
  • FIG. 6 is a schematic diagram of the light splitting principle of a polarizing beam splitter provided by the present application.
  • Figure 7 is a schematic diagram of the relationship between the amount of delay and the overlapping position of two beams of light provided by the present application.
  • Fig. 8a is a schematic structural diagram of a first relative delay module provided by the present application.
  • Fig. 8b is a schematic structural diagram of another first relative delay module provided by the present application.
  • Fig. 8c is a schematic structural diagram of another first relative delay module provided by the present application.
  • Fig. 8d is a schematic structural diagram of another first relative delay module provided by the present application.
  • FIG. 9 is a schematic structural diagram of another ion trap system provided by the present application.
  • Figure 10 is a schematic flow chart of an ion manipulation method provided by the present application.
  • Fig. 11 is a schematic structural diagram of another ion trap system provided by the present application.
  • FIG. 12 is a schematic structural diagram of another ion trap system provided by the present application.
  • FIG. 13 is a schematic diagram of a pulse sequence formed by a fourth light beam provided by the present application.
  • Fig. 14 is a schematic diagram of the relationship between another delay amount and the coincidence of the first beam and the fourth beam provided by the present application;
  • FIG. 15 is a schematic structural diagram of another ion trap system provided by the present application.
  • FIG. 16 is a schematic flow chart of an ion manipulation method provided in the present application.
  • Femtosecond pulsed laser is a kind of laser that operates in the form of pulses, and the duration is short, only a few femtoseconds (femtosecond, fs), and one femtosecond is equal to 10 -15 seconds, that is, one femtosecond is 10 million of a second. one billionth. It is thousands of times shorter than the shortest pulse ever achieved electronically.
  • Excitation transition refers to the process in which an atom transitions from a high-energy level to a low-energy level to emit photons, or transitions from a low-energy level to a high-energy level to absorb photons under the irradiation of light.
  • Raman light is a kind of scattered light.
  • the excited molecule basically does not stay in the excited state, it immediately releases energy at the same wavelength and randomly changes the direction of the incident light, which is called scattering; and when the excited molecule scatters, it is different from the original excitation
  • a wavelength of light releases energy, it is called Raman light.
  • the scanning of Rabi oscillation refers to loading beams with different time lengths on the particles to obtain different oscillation signals.
  • the oscillation period T is obtained by fitting different oscillation signals corresponding to different time lengths.
  • different Rabi intensities ⁇ can be obtained. That is to say, the position where the light beam irradiates on the particle is different, and the obtained Rabi intensity ⁇ is also different.
  • the measured Rabi intensity is the largest.
  • Fig. 1b shows a schematic diagram of the relationship between Rabi intensity and beam coordinates. When the beam coordinate is X 0 , the corresponding Rabi intensity is the largest, which is ⁇ 0 , which means that when the beam coordinate is X 0 , the beam and the irradiated particles are completely aligned.
  • FIG. 1 c is a schematic diagram of the principle of Raman light manipulation of ions provided in this application.
  • the three realizations represent the three energy levels of the ion,
  • the excited ions can be excited to undergo an excitation transition, so that the ions (such as a single ion or multiple ions) can be manipulated.
  • the frequencies of the two beams of Raman light are denoted as w 1 and w 2 respectively.
  • the two Raman light beams with frequencies w 1 and w 2 excite the ion transition compared to directly realizing the transition from the ground state to the excited state.
  • the frequencies of the two Raman light beams have a certain frequency detuning ⁇ , when the detuning ⁇ is sufficient Large enough that a single beam of Raman light cannot excite ions to undergo excitation transitions.
  • FIG. 1 e is a schematic diagram of a process of trapping ions provided in this application.
  • the atomic source heats up the atoms through electricity and/or light to generate atomic beams (or atomic vapors), ionizes the atomic beams to obtain ions, cools the ions, and traps the ions through electrodes and electromagnetic field generating devices (see The introduction of Figure 3a below). Further, the trapped ions interact with manipulated light (such as the two beams of Raman light mentioned above) to achieve specific quantum states. It should be understood that 5 examples are included in Figure 1e with trapped ions.
  • a lens with a large NA is mainly used to strongly focus and manipulate light to achieve addressing of particles.
  • multiple particles are imprisoned into a one-dimensional particle chain, and the control light is divided into two paths, one path is global Raman light, and the other path is independent Raman light.
  • site where the independent Raman light needs to be focused by a lens with a large NA to hit a certain particle in the particle chain. Based on this, the scalability and difficulty of achieving particle addressing through strong focusing of manipulated light is poor and requires complex optical path design.
  • the particle trap system can precisely address the particles by controlling the photon flight time.
  • the particle trap system 200 may include a confinement module 201 , a first light splitting module 202 and a first relative delay module 203 .
  • the confinement module 201 is used to confine at least two particles;
  • the first beam splitting module 202 is used to divide the received beam into a first beam and a second beam;
  • the first relative delay module 203 is used to adjust the first beam and the second beam.
  • the amount of delay for the light beam to reach the first target particle, the adjusted first light beam and the second light beam coincide at the first target particle, and the first target particle is at least one of the at least two particles imprisoned in the confinement module 201 .
  • the delay amount refers to the absolute value of the difference between the first flight time and the second flight time
  • the first flight time refers to the flight time of the photons of the first light beam on the propagation optical path of the first light beam
  • the second flight time refers to The time-of-flight of the photons of the second light beam on the propagation path of the second light beam.
  • the first light beam and the second light beam are obtained, and the delay amount of the first light beam and the second light beam reaching the first target particle is adjusted through the first relative delay module,
  • the adjustment of the overlapping position of the first light beam and the second light beam can be realized, so that the first light beam and the second light beam can be coincident (or called to meet) at different particles (that is, the position where the first light beam and the second light beam coincide are different from each other) target particle alignment).
  • the photon flight time it is possible to precisely control which particle the first light beam and the second light beam are aimed at and irradiate at the same time, so that high-precision independent addressing of different particles can be realized.
  • the complexity of optical path design can also be simplified, thereby helping to reduce the noise of manipulating light, thereby improving the precision of manipulating particles, and further helping to improve the performance and scalability of quantum technology calculations.
  • the first light beam and the second light beam may be two beams of Raman light, and also need to meet the above three conditions that the two beams of Raman light need to meet. It can also be understood that when the first light beam and the second light beam are aligned and irradiated to the same particle at the same time, the quantum state manipulation of the particle can be realized.
  • the initial quantum state of the first target particle is
  • the quantum state of the first target particle can be manipulated to be 1> when the first light beam and the second light beam reach the first target particle at the same time.
  • the first beam and the second beam are two beams of light separated by the beam splitting module for the same beam of light, that is, the first beam and the second beam come from the same beam, and the coherence between the two is relatively high. It can be considered that the first beam
  • the influence of the external environment (such as mechanical vibration, airflow disturbance, etc.) received by the first light beam and the second light beam when they are transmitted to the confinement module is basically similar or even the same.
  • the first light beam and the second light beam have a correlation, thereby helping to reduce the noise generated by the particles after the first light beam and the second light beam coincide.
  • each functional module shown in FIG. 2 is introduced and described below to give an exemplary specific implementation solution.
  • the prison module, the first optical splitting module and the first relative delay module are not marked with numbers in the following.
  • a trapping module is used to trap particles.
  • the particles may include but not limited to ions, or atoms. It can also be understood that the trapping module may be an ion trapping module, or may also be an atom trapping module.
  • the trapping module is an ion trapping module.
  • the imprisoning module includes direct current (direct current, DC) electrodes and radio frequency (radio frequency, RF) electrodes, and the DC electrodes and RF electrodes can be arranged on the substrate (for example, the electrodes can be etched on the substrate by means of micromachining, printed circuit, etc. ).
  • DC electrodes and RF electrodes may also be referred to as trapping electrodes.
  • the confinement module may also include an electromagnetic field generating device (such as a power supply). Both the DC electrode and the RF electrode are connected to an electromagnetic field generating device (such as a power supply).
  • the RF electrode can generate an alternating radio frequency electric field
  • the DC electrode can generate a DC electric field.
  • Potential well so that ions can be trapped
  • the curve in Figure 3b shows the distribution of electric field lines at a certain moment. After half a radio frequency cycle, the electric field lines are reversed, and the ion is trapped in the potential well where the electric field line changes rapidly. The average effect is that the ion is trapped in the potential well. trapped on the surface of the electrode. It should be understood that the structure of the trapping module given above is only illustrative, and any structure that can realize ion trapping is within the protection scope of the present application.
  • the trapping module can also include a "Paul ion trap" (also known as a quadrupole ion trap).
  • the quadrupole ion trap can be realized by adding a quadrupole structure to the front and rear end covers. It improves the storage capacity of ions, and helps avoid space charge effects and simplifies the electrode structure.
  • Quadrupole ion traps are also called linear ion traps.
  • the confinement module may also include a blade trap, or a surface trap, etc., which is not limited in this application.
  • the imprisoning module is an atomic imprisoning module.
  • the atom trapping module is mainly used to trap and trap atoms in the high-speed atomic beam from the atom source.
  • the atom trapping module may include a three-dimensional magneto-optical trap (3-dimension magneto-optical trap, 3D-MOT).
  • 3D-MOT three-dimensional magneto-optical trap
  • Fig. 3c it is a schematic diagram of the working principle of a 3D-MOT provided by the present application.
  • the working principle of 3D-MOT is to add three pairs of cooling lasers (that is, a total of 6 cooling lasers) with a frequency close to the atomic energy level difference in the gradient magnetic trap generated by a pair of Helmholtz coils carrying reverse currents.
  • each pair There are two pairs, the incident directions of each pair are opposite, and the three pairs of cooling lasers are emitted from three orthogonal directions (for example, XYZ three directions), and the intersection point is located at the center of the magnetic trap.
  • the atoms in the atomic beam continuously absorb photons with reverse momentum, and are subjected to the reverse force of the cooling laser, so that the atoms continue to decelerate, and are finally trapped in the center of the magnetic trap by the cooling.
  • the atomic trapping module includes the 3D-MOT and the evaporative cooling unit.
  • the atomic trapping module may include a 3D-MOT and an evaporative cooling unit.
  • the 3D-MOT can be used to trap the atomic beam from the atomic source; the evaporative cooling unit can be used to further evaporatively cool the atoms from the 3D-MOT.
  • the evaporative cooling unit can be a pure magnetic trap or a pure optical trap.
  • the evaporative cooling unit is a pure magnetic trap
  • the atomic beam is trapped under the action of the cooling laser and magnetic field of the 3D-MOT to obtain atoms in a certain temperature range, and then the atoms are transferred to the pure magnetic trap for evaporation cooling to achieve further cooling of the atom.
  • the pure magnetic trap means that after the cooling laser is turned off, the magnetic field gradient of the Helmholtz coil is rapidly increased to form a structure that only needs a magnetic field to trap atoms.
  • the RF coil can emit radio frequency with sweeping frequency to continuously excite the atoms in the trapped state in the magnetic field to the non-trapped state, and because only the atoms with higher temperature can become Therefore, the process of evaporative cooling is to continuously remove atoms with relatively high temperature in the atoms, and the remaining atoms reach thermal equilibrium through elastic collisions, and then generate atoms with relatively high temperatures, and then remove them. cooling effect.
  • Pure optical trap refers to a structure in which an optical trap formed by a far-infrared laser traps atoms. The trapping principle is similar to the aforementioned 1064nm optical trap laser.
  • the evaporative cooling process achieves the purpose of cooling atoms by continuously reducing the laser light intensity.
  • the atomic trapping module includes 3D-MOT and 2D-MOT.
  • the atomic trapping module may include 2D-MOT and 3D-MOT.
  • the 2D-MOT is used to cool and converge the atomic beam from the atomic source (the cooled and converged atomic beam is sprayed to the 3D-MOT; the 3D-MOT is used to cool and converge the atomic beam from the 2D-MOT
  • the atomic beam is cooled again to realize the trapping of atoms. As the velocity of the atomic beam is higher, it is more difficult for the atomic trapping module to trap atoms.
  • the high-speed atomic beam can be sprayed to the 2D-MOT first, and the 2D- MOT reduces the velocity of the atomic beam in advance to form a low-speed atomic beam, and 2D-MOT can also flow the atomic beam from one dimension to 3D-MOT, which can also realize the convergence of the atomic beam.
  • 3D- MOT is easier to trap atoms in the atomic beam, which can increase the number of atoms trapped by the atom trapping module.
  • 2D-MOT has one less dimension of cooling laser confinement, and only two dimensions Cool the atomic beam (Fig. 3e takes the two dimensions YZ as an example), and the atoms leak out from the remaining dimension (Z) to form a low-speed atomic beam.
  • Fig. 3e takes the two dimensions YZ as an example
  • the atomic trapping module includes 2D-MOT, 3D-MOT and evaporative cooling unit.
  • This structure 2.3 can be understood as a combination of the above structure 2.1 and structure 2.2.
  • the atom trapping module needs to optimize various parameters (such as the power of the cooling laser required by 3D-MOT, the frequency of the cooling laser, the polarization of the cooling laser, the size of the magnetic field, the timing of the cooling laser and the magnetic field, etc. ).
  • the particles trapped in the trapping module are taken as ions as an example, the ion trap system is taken as an example for the particle trap system, and the ion trapping module is taken as an example for the trapping module.
  • the trapped (or called bound) ions in the trapping module may be distributed in one dimension, two dimensions, or three dimensions, which will be described in detail below.
  • FIG. 4 a is a schematic diagram of distribution of ions trapped by a trapping module provided in the present application.
  • the trapped ions in the trapping module are distributed in one dimension and can form a one-dimensional ion chain.
  • the distance between any two adjacent ions on the one-dimensional ion chain can be equal or unequal.
  • Fig. 4a is an example of five ions with equal spacing between the ions.
  • the first beam and the second beam can achieve independent addressing of individual ions.
  • the propagating direction of the first light beam and the propagating direction of the second light beam may be parallel and opposite (refer to the above-mentioned Fig. 4a or Fig. 4b); or there may be a certain angle (refer to Fig. 4c), the angle Greater than 90° and less than 180°.
  • the propagation direction of the first light beam may also be referred to as the direction of the first light beam
  • the propagation direction of the second light beam may also be referred to as the direction of the second light beam.
  • FIG. 4d is a schematic diagram of the distribution of ions trapped by another confinement module provided in the present application.
  • the ions trapped in the trapping module are two-dimensionally distributed. It should be understood that the two-dimensional distribution can also be an irregular distribution.
  • Figure 4d is an example of a regular two-dimensional distribution. Not limited.
  • the first beam and the second beam can achieve independent addressing of individual ions.
  • the propagating direction of the first light beam and the propagating direction of the second light beam may have a certain included angle (refer to FIG. 4d or 4e), and the included angle is greater than 90° and less than 180°.
  • the first beam and the second beam are in the plane perpendicular to the two-dimensional ion, and the propagation direction of the first beam and the propagation direction of the second beam are on the same straight line and propagate relatively, the second beam and the second beam
  • the area where the beams overlap is slightly larger than the size of the ion.
  • the first beam and the second beam can also realize the addressing of single-stranded ions, that is, the first beam and the second
  • the area where the beams overlap can cover multiple ions.
  • the propagation direction of the first light beam and the propagation direction of the second light beam may be on the same straight line and propagate oppositely (refer to FIG. 4f above).
  • the propagation direction of the first light beam and the propagation direction of the second light beam may also have a certain angle, the angle is greater than 90° and less than 180°, specifically, the overlapping area of the first light beam and the second light beam can cover as many on the ion.
  • the size of the line segment depends on the size of the cross section of the beam.
  • the distance between adjacent ions is usually on the order of microns, for simultaneous addressing of single-strand ions, the line segment where the first beam and the second beam coincide can coincide with the single-strand of ions.
  • the types of ions trapped in the trapping modules may be the same, or may also be different, or may also be partly the same.
  • trapped ions may include, but not limited to, any one or combination of ytterbium (Yb) ions, calcium (Ca) ions, or beryllium (Be) ions. Different kinds of ions emit fluorescence at different wavelengths.
  • the trapping module in order to prevent other particles from the outside world from colliding with the trapped ions, thereby destroying the quantum state of the trapped ions or even causing the loss of the trapped ions, the trapping module usually needs to be set in a vacuum system or an ultra-high Vacuum system (or called vacuum chamber) to achieve isolation from the external environment.
  • the light source module is used to emit light beams with a first pulse width.
  • the first pulse width can be on the order of femtoseconds (fs); further, the time interval between two adjacent pulses (that is, two adjacent beams emitted by the light source module) is on the order of ns or ns magnitude above.
  • the first spatial distance (dL) corresponding to the first pulse width is smaller than the distance between any two adjacent ions, usually, dL is on the order of microns (um); further, the light source module emits two adjacent pulses
  • the second spatial distance DL corresponding to the time interval between them is greater than the distance between any two ions in the at least two ions in the trapping module, and generally, the DL is on the order of meters.
  • the first spatial distance corresponding to the first pulse width is smaller than the distance between any two adjacent ions
  • the second spatial distance corresponding to the time interval between two adjacent pulses is greater than that of at least two ions in the trapping module The distance between any two ions can achieve independent addressing of a single ion without affecting the surrounding ions of the addressed ion.
  • the second spatial distance is greater than the spacing between any two ions in the at least two ions in the imprisoned module usually means: the second spatial distance is greater than the spacing between any two ions belonging to the same chain, or The second spatial distance is greater than the distance between any two ions belonging to the same region.
  • the first spatial distance corresponding to the first pulse width can be expressed by the following formula 1
  • the corresponding second spatial distance between two adjacent pulses can be expressed by the following formula 2.
  • dL represents the first space distance corresponding to the first pulse width
  • C represents the speed of light, which is a constant 3 ⁇ 10 8 m/s
  • dt represents the first pulse width
  • DL represents the second space corresponding between two adjacent pulses
  • Dt represents the time interval between two adjacent pulses.
  • FIG. 5 it is a schematic diagram of a pulsed laser provided in this application.
  • the distance between spatially adjacent overlapping positions of the first light beam and the second light beam is generally on the order of meters, wherein the first light beam and the second light beam may also be referred to as two pulses that collide.
  • the first beam and the second beam can overlap at position 1 or at position 2, if position 1 and position 2 If there are two adjacent positions, the distance between position 1 and position 2 is usually on the order of meters, which is much longer than the length of the ion chain trapped by the trapping module. It can thus be explained that the first light beam and the second light beam can only overlap at one position on the ion chain, and will not affect other ions.
  • the light source module may include but not limited to: a femtosecond pulse laser, a picosecond laser or an attosecond laser.
  • the beam emitted by the femtosecond pulse laser is a femtosecond pulse laser
  • the pulse width of the femtosecond pulse laser is on the order of femtosecond (fs) in the time domain, which can realize that the first spatial distance corresponding to the pulse width is less than at least two ions
  • the distance between any two adjacent ions in the ions; the repetition frequency is less than GHz, and the second spatial distance corresponding to the time interval of emitting two adjacent beams can be realized to be greater than the distance between any two ions in the at least two ions.
  • the space distance corresponding to the pulse width of femtosecond pulsed laser is on the order of um, and the space distance (on the order of meters) corresponding to the interval between two adjacent pulses is much larger than the total length of the general ion long chain.
  • the light source module may belong to the ion trap system, or may be independent of the ion trap system.
  • the first light splitting module can split the light beam from the light source module into the first light beam and the second light beam.
  • the first light beam and the second light beam may be two paths of light, or may be more than two paths of light.
  • the first light splitting module can split the light beam from the light source module into two or more than two paths of light. From the perspective of the imprisoned ions, each ion can only experience a pair of light beams (ie, the first beam and the second beam), which can also be understood as the two beams of light that hit a single ion at the same time, respectively called the second beam.
  • a beam and a second beam can be understood as the two beams of light that hit a single ion at the same time.
  • the first light splitting module performs beam splitting based on the intensity (or energy or amplitude) of the light beam from the light source module to obtain the first light beam and the second light beam.
  • the information carried by the first light beam and the second light beam are the same, and the information carried by the first light beam and the second light beam is the same as that carried by the light beam emitted by the light source module.
  • the sum of the intensity of the first light beam and the intensity of the second light beam is equal to or approximately equal to the intensity of the light beam emitted by the light source module.
  • the first light splitting module may be a polarizing beam splitter (PBS).
  • PBS polarizing beam splitter
  • FIG. 6 is a schematic diagram of a light splitting principle of a polarizing beam splitter provided in this application.
  • the polarizing beam splitter can be coated with one or more layers of thin films on the oblique surface of the right-angle prism, and then bonded through the glue layer. Utilizing the property that the transmittance of P-polarized light is 1 and the transmittance of S-polarized light is less than 1 when the beam is incident at Brewster's angle, after the beam passes through the film several times at Brewster's angle, the P-polarized component is completely transmitted, and absolutely An optical element that is mostly reflective (at least 90%) of the S-polarized component.
  • the polarizing beam splitter may split incident light (including P-polarized light and S-polarized light) into horizontally polarized light (ie, P-polarized light) and vertically polarized light (ie, S-polarized light).
  • incident light including P-polarized light and S-polarized light
  • the P-polarized light completely passes through, the S-polarized light is reflected at an angle of 45 degrees, and the outgoing direction of the S-polarized light and the outgoing direction of the P-polarized light form an angle of 90 degrees.
  • PBS has transmission and reflection characteristics, and generally, the reflectance for S-polarized light is above 99.5%, and the transmittance for P-polarized light is above 91%.
  • the polarizing beam splitter may also be other possible beam splitters (beam splitter, BS) or beam splitter plates.
  • a dichroic prism is formed by coating one or more layers of thin film (ie, a dichroic film) on the surface of the prism;
  • a dichroic plate is formed by coating one or more layers of thin films (ie, a dichroic film) on one surface of a glass plate. Both the beam-splitting prism and the beam-splitting plate use different transmittances and reflectances of the films to the incident light beams, so as to split the light beams transmitted from the light source module.
  • the first light splitting module can be a PBS array.
  • the first light splitting module may be a diffractive optical element (DOE).
  • DOE diffractive optical element
  • the DOE can divide the light beam from the light source module into the first light beam and the second light beam, and the propagation direction between the first light beam and the second light beam can be different or the same.
  • Practical application is OK. It can be understood that the quantity of the first beam and the second beam split by the DOE, and the distance between the first beam and the second beam may be determined by the physical structure of the DOE.
  • the structure of the first light splitting module given above is only an example, and this application does not limit it. Any structure that can realize the splitting of the light beam from the light source module into the first light beam and the second light beam is described in this document. within the scope of protection applied for.
  • the spectroscopic module may also be a perforated reflector, and the so-called perforated reflector refers to a reflector with holes.
  • the hole of the perforated reflector can transmit part of the light beam from the light source module to obtain the first light beam; the reflector of the perforated reflector can reflect part of the light beam from the light source module to obtain the second light beam; or, the hole The hole of the reflector can transmit part of the light beam from the light source module to obtain the second light beam; the reflector of the perforated reflector can reflect part of the light beam from the light source module to obtain the first light beam.
  • the first relative delay module is used to control the amount of delay (or referred to as time difference) between the first light beam and the second light beam reaching the target ion to be manipulated.
  • the amount of delay determines the overlapping position of the first beam and the second beam.
  • the target ion can be manipulated.
  • the time-of-flight of the light beam (first light beam or second light beam) passing through the first relative time delay module can be adjusted, so that the overlapping time of the first light beam and the second light beam can be adjusted.
  • the amount of delay is determined according to the position of the target ion to be manipulated. For details, please refer to the introduction of the ion trap initialization process.
  • the first relative delay module can be located on the propagating optical path of the first beam, and the optical path of the first beam can be changed, so that the time delay between the first beam and the second beam reaching the first target ion can be changed; further , the first light beam and the second light beam after the optical path has been changed reach the first target ion at the same time.
  • the first relative delay module can be located on the propagating optical path of the second light beam, and the optical path of the second light beam can be changed, so that the delay amount of the first light beam and the second light beam reaching the first target ion can be changed; further, the light The second light beam and the first light beam after the distance change reach the first target ion at the same time.
  • the first relative delay module can be located on the propagating optical path of the first light beam and the second light beam, and can change the optical path of the first light beam and the optical path of the second light beam, so that the first light beam and the second light beam can be changed to reach the second light beam.
  • FIG. 7 it is a schematic diagram of the relationship between the amount of delay and the overlapping position of two beams of light provided in the present application.
  • the ball represents the ion imprisoned by the trapping module.
  • a one-dimensional ion chain including 5 ions is taken as an example.
  • the arrows represent the propagation direction of the first beam and the propagation direction of the second beam respectively, and the rectangle represents the first beam and the second beam. second beam. If the time delay between the first beam and the second beam is dt, the first beam and the second beam do not overlap at any ion at time t 0 and reach the third ion at the same time at time t 1 .
  • the delay between the first beam and the second beam is dt
  • the first beam and the second beam overlap at the third ion
  • the third ion is the first target ion. If the time delay between the first beam and the second beam is dt', the first beam and the second beam do not overlap at any ion at time t 0 and reach the second ion at the same time at time t 1 '. It can also be understood that when the time delay between the first beam and the second beam is dt′, the first beam and the second beam overlap at the second ion, and the second ion is the first target ion.
  • the overlapping position of the first beam and the second beam can be adjusted, so that independent addressing of different ions can be realized. It can also be understood that when the time delay between the first light beam and the second light beam reaches the target ions is different, the ions simultaneously irradiated by the first light beam and the second light beam are different.
  • the first relative delay module includes a first driving component and an optical distance adjusting component.
  • the first drive component is used to send the first drive signal to the optical path adjustment component according to the received first control signal, and the first control signal is determined according to the position of the first target ion;
  • the first driving signal changes the received optical path of the first light beam and/or the second light beam.
  • the first drive component can input different first drive signals to the optical path adjustment component at different times, so as to control the first light beam and the second light beam at different times. Which ions overlap. It can also be understood that the delay amount of the first relative delay module can be controlled with high precision by the first driving signal of the first driving component.
  • the first driving component may be a voltage source, and the corresponding first driving signal may be a voltage signal; or, the first driving component may also be a current source, and the corresponding first driving signal may be a current signal.
  • optical path adjustment component Three possible structures of the optical path adjustment component are exemplarily shown below.
  • the light beam received by the first relative delay module is taken as the second light beam as an example in the following example. It should be understood that if the light beam received by the first relative delay module is the first light beam, the second light beam in the following examples may be replaced with the first light beam.
  • the optical path adjustment component includes a vibrating mirror and a reflective element.
  • the oscillating mirror may include but not limited to a micro electro-mechanical system (micro electro-mechanical system, MEMS) reflector, or a MEMS waveguide.
  • the reflective element may include but not limited to reflective mirrors, prisms, etc., and the prisms may be rectangular prisms, for example.
  • Using the right-angle prism as the reflective element helps to improve the utilization rate of the second light beam entering the first relative delay module.
  • the optical path of the second light beam can be changed by changing the position of the MEMS mirror, and the optical path of the second light beam can be changed by changing the position of the MEMS waveguide. It should be understood that the propagation direction of the second light beam after passing through the MEMS mirror remains unchanged.
  • the first relative delay module includes a first driving component and an optical distance adjustment component
  • the optical distance adjustment component includes a vibrating mirror and a prism.
  • the vibrating mirror reflects the received second light beam to the prism
  • the prism totally reflects the second light beam from the vibrating mirror.
  • the optical path of the second light beam passing through the first relative delay module is: reflected by the vibrating mirror to the first right-angled surface of the prism, completely reflected by the first right-angled surface of the prism to the second right-angled surface of the prism, and passed through the prism
  • the second rectangular surface of is reflected.
  • the vibrating mirror can generate the first driving signal A1 according to the first driving signal A1
  • the adjustment is at position A1, the corresponding propagation optical path of the second light beam is a dotted line, and the corresponding delay is dt.
  • the vibrating mirror can be adjusted to be in the position B1 according to the first driving signal B1, the corresponding propagation optical path of the second light beam is a solid line, and the corresponding delay The amount of time is dt'.
  • the first driving component inputs different first driving signals to the vibrating mirror
  • the adjustable vibrating mirror is in different positions
  • the corresponding optical paths of the second light beam passing through the vibrating mirrors in different positions are different.
  • the optical path of the second light beam can be changed by changing the position of the vibrating mirror.
  • the optical distance (or delay amount) of the second light beam passing through the first relative delay module is related to the position of the vibrating mirror. Specifically, there is a corresponding relationship between the delay amount and the position of the vibrating mirror. For details, please refer to the relevant introduction of the following initialization process, which will not be repeated here.
  • the optical path adjustment component includes a variable refractive index structure.
  • the structure with a variable refractive index may include, but not limited to, a photoelectric crystal, a thermo-optic crystal, and the like.
  • the optoelectronic crystal can be, for example, an electro-optic modulator (electro-optic modulator, EOM), and the refractive index of the EOM can be adjusted through an electrical signal to change the optical path of the second light beam.
  • EOM electro-optic modulator
  • Thermo-optic crystals can adjust the refractive index of thermo-optic crystals through thermal signals or electrical temperature control methods.
  • the first relative delay module includes a first driving component and an optical distance adjustment component, and the optical distance adjustment component includes a photoelectric crystal.
  • the first driving component can input different first driving signals to the photoelectric crystal, and the photoelectric crystal can be adjusted to have different refractive indices according to the first driving signal, and the optical path of the second light beam passing through the photoelectric crystals with different refractive indices is different.
  • the optical path of the second light beam passing through the first relative delay module is related to the refractive index of the electro-optic crystal. Specifically, there is a corresponding relationship between the optical path of the second light beam and the refractive index of the photoelectric crystal.
  • the relevant introduction of the initialization process which will not be repeated here.
  • the optical path adjustment component includes a helical wire.
  • the first relative time delay module includes a first driving component and an optical length adjustment component.
  • the optical length adjustment component includes a helix, and the line connecting any point on the helix to the center is perpendicular to the tangent of the arc at the arbitrary point.
  • the first driving component inputs the first driving signal to the center of the helix, and the helix can rotate around the center. At this time, the radius of the helix gradually increases. After the second beam is reflected by the helix, the optical path also becomes longer, and the second Both the incident direction and the outgoing direction of the beam remain unchanged.
  • the corresponding relationship between the optical path of the second light beam and the radius of the helix can be obtained during the initialization process, and details can be found in the initialization process, which will not be repeated here.
  • the structures of the three optical path adjustment components given above are only examples, and any structure that can realize the optical path of the received light beam (such as the second light beam or the first light beam) is within the protection scope of the present application.
  • it can also be a double reflector (the first reflector and the second reflector) and a lens (please refer to Fig. 8d).
  • a double reflector the first reflector and the second reflector
  • a lens please refer to Fig. 8d.
  • the range of the adjustable delay of the first relative delay module is more than millimeters, and the precision is less than micrometers, so that precise alignment and comprehensive coverage of ions trapped by the trapping module can be achieved.
  • the accuracy of the delay amount can be controlled at the femtosecond level, and the accuracy of the spatial distance corresponding to the delay amount can be controlled at the micron level.
  • multiple ions can share a first relative delay module.
  • the ion trap system may further include a first optical path module and a second optical path module. Further, a control module may also be included. The following are detailed introductions.
  • the first optical path module may correspond to the above-mentioned first relative delay module, and the second optical path module does not correspond to the first relative delay module; or, the first optical path module does not correspond to the above-mentioned first relative delay module, and the second The optical path module corresponds to the first relative delay module; or, the first optical path module corresponds to the first relative delay module, and the second optical path module also corresponds to the first relative delay module.
  • the first optical path module corresponding to the first relative delay module can be understood as the first light beam needs to pass through the first optical path module and the first relative delay module; the first optical path module not corresponding to the first relative delay module can be understood as the first relative delay module A light beam only needs to pass through the first optical path module, and does not need to pass through the first relative delay module.
  • the understanding that the second optical path module corresponds to or does not correspond to the first relative delay module is the same as that the first optical path module corresponds to or does not correspond to the first relative delay module. It can also be understood that, in the propagating optical paths of the first light beam and the second light beam for controlling ions, at least one light beam needs to pass through the first relative delay module.
  • the second optical path module corresponds to the first relative delay module, and the first optical path module does not correspond to the first relative delay module, and assume that the first light beam passes through the first optical path module,
  • the second light beam passing through the second optical path module is described as an example.
  • the first optical path module includes a first modulation component, and the first modulation component is configured to modulate the timing and/or frequency (or relative) of the first light beam.
  • the timing of the first light beam can be controlled by an optical switch, that is, the control of the timing of the first light beam is expressed as switching in the time dimension.
  • the first modulating component may modulate one first beam (corresponding to one ion), and may also modulate multiple first beams (corresponding to multiple ions).
  • the first modulation component may include but not limited to an acousto-optic modulator (AOM), and the AOM is composed of an acousto-optic medium and a piezoelectric transducer gas.
  • AOM acousto-optic modulator
  • the transducer gas When a specific carrier wave frequency of the RF driver drives the transducer, the transducer gas generates ultrasonic waves of the same frequency and transmits them to the acousto-optic medium, forming a refractive index change in the medium, and the light beam interacts and changes when passing through the medium Diffraction occurs in the propagation direction of the light beam, and the diffracted light can be emitted from the AOM.
  • the first modulation component may include at least one or a combination of single-channel modulators or multi-channel modulators.
  • the first modulation component may be controlled by a radio frequency driver, and the radio frequency driver may be controlled by a radio frequency (radio frequency, RF) source.
  • the RF source can control the timing and frequency of the radio frequency signal input to the first modulation component through the radio frequency modulator, and the RF source can be controlled through the control module.
  • the timing and frequency of the first light beam are related to the requirements of quantum computing. It can also be understood that according to the requirements of the quantum algorithm, it can be determined which ions need to be manipulated at which time, so as to realize the control of the timing of the radio frequency signal.
  • the first optical path module may further include a first polarization component, and the first polarization component is used to change the polarization state of the received first light beam.
  • the received first light beam is P-polarized light
  • the first polarization component can convert the polarization state of the first light beam into left-handed circularly polarized light.
  • the received first light beam is S-polarized light
  • the first polarization component can convert the polarization state of the first light beam into right-handed circularly polarized light.
  • the first polarizing component may be, for example, a polarizer, a polarizer or a Glan prism.
  • the first optical path module may further include a first scaling and/or shaping component, and the first scaling and/or shaping component is used to scale and/or shape the first light beam after polarization conversion.
  • the electrode for trapping ions will occupy a relatively large space near the ions, and the size of the spot can be restricted by the clear aperture. In order to prevent the beam from scattering around, it is usually necessary to spatially restrict the size of the spot of the first beam. If the spot of the first light beam is relatively large, the first optical path module may not include the first scaling and/or shaping component.
  • first scaling and/or shaping component and the first polarization component belong to passive devices, and the first modulation component belongs to active devices.
  • the components included in the second optical path module may be the same as those included in the first optical path module, or the components included in the second optical path module may also be more than the components included in the first optical path module, or the second optical path module may include more components than the first optical path module.
  • the components included in the second optical path module may also be less than those included in the first optical path module, which is not limited in this application. Specifically, "first" in the first optical path module can be replaced with "second".
  • the second modulation component included in the second optical path module is used to change the polarization state of the received second light beam. If the first polarizing component converts the polarization state of the first light beam into left-handed circularly polarized light, the second polarizing component can convert the polarization state of the second light beam into right-handed circularly polarized light. If the first polarizing component converts the polarization state of the first light beam into right-handed circularly polarized light, the second polarizing component can convert the polarization state of the second light beam into left-handed circularly polarized light.
  • the polarization state of the first beam and the second beam will affect the coupling strength of the first beam and the second beam, which will affect the quantum efficiency of the manipulated ion, therefore, the polarization state of the first beam and the polarization state of the right-handed circularly polarized light
  • the second beam with left-handed circular polarization or the first beam with left-handed circular polarization and the second beam with right-handed circular polarization
  • it helps to improve the quantum efficiency of the ion .
  • control module can control the amount of delay for the first light beam and the second light beam to reach the first target ion. Further, the control module is also used to control the timing and/or frequency of the first light beam and the second light beam, so as to achieve optical frequency locking. The situation is introduced below.
  • control module is used to control the first drive assembly.
  • control module drives the first relative delay module through the first drive component by controlling the first drive component, so as to realize the delay for the first beam and the second beam to reach the first target ion Quantity control.
  • the optical path adjustment component in the first relative time delay module includes the vibrating mirror and the reflective element as an example, and the second light beam passes through the first relative time delay module as an example.
  • the control module can generate the first control signal according to the corresponding relationship between the position of the first target ion to be manipulated and the first driving signal (for example, by looking up table 1). Specifically, the control module can determine the delay amount of the first beam and the second beam reaching the first target ion according to the position of the first target ion, determine the change amount of the optical path of the second beam according to the delay amount, and determine the change amount of the optical path of the second beam according to the second beam.
  • the change amount of the optical path of the light beam determines the target position of the vibrating mirror, determines the parameter information of the first driving component according to the target position, and generates the first control signal according to the parameter information of the first driving component.
  • the control module sends a first control signal to the first drive assembly.
  • the first control signal is used to control the first driving component to output the first driving signal, and the first control signal may include parameter information of the first driving component, for example. If the first driving component is a voltage source, the parameter information of the first driving component may include voltage; if the first driving component is a current source, the parameter information of the first driving component may include current; further, the parameter information of the first driving component may also include May include timing etc.
  • the first driving signal may be, for example, a signal required to move the vibrating mirror to a target position.
  • the control module needs to input a current of I A to the first driving component, or an input voltage of U A , so that the first driving component can drive the first relative delay module To change the delay amount of the first beam and the second beam reaching the first target ion, so that the first beam and the second beam can coincide at the ion A, that is, the first beam and the second beam reach the ion A at the same time.
  • the control module needs to input a current of I B or an input voltage of U B to the first driving component.
  • the first driving component drives the first relative delay module to change the first light beam and the delay amount of the second light beam, so that the first light beam and the second light beam can coincide at the ion B, that is, the first light beam and the second light beam reach the ion B at the same time; they will not be listed here.
  • the table 1 may be obtained and stored during the initialization process of the ion trap. This table 1 needs to be dynamically updated or calibrated when the positions of the ions in the trapping module are moved.
  • control module controls the radio frequency source.
  • control module is further configured to control parameters and timing of the radio frequency source, so as to control the timing and/or frequency of the first light beam and the second light beam.
  • control module can control the RF source to input a control signal 1 to the first RF driver, so as to control the timing and/or frequency of the first beam according to the requirements of quantum computing; and/or, the control module can control the RF source to send the second The radio frequency driver inputs a control signal 2 to control the timing and/or frequency of the second light beam according to the requirements of quantum computing.
  • control module may include one or more processing units, for example, the processing unit may be a field programmable gate array (field programmable gate array, FPGA), a proportional-integral-derivative (proportional-integral-derivative, PID) Controller, application processor (application processor, AP), graphics processing unit (graphics processing unit, GPU), image signal processor (image signal processor, ISP), controller, digital signal processor (digital signal processor, DSP) , application specific integrated circuit (ASIC), central processing unit (central processing unit, CPU), or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof.
  • different processing units may be independent devices, or may be integrated in one or more processors.
  • the ion trap system may further include a detection module.
  • the detection module can obtain the quantum state information of the ions by collecting the fluorescence generated by the ions.
  • the fluorescence can indicate whether the ion is in the 0 or 1 quantum state.
  • the detection module can send the read quantum state information of ions to the control module, so that the control module can re-adjust the first driving component and/or the radio frequency source, etc.
  • the control module can re-adjust the first driving component and/or the radio frequency source, etc.
  • the detection module can be, for example, an avalanche photodiode (avalanche photodiode, APD), a photomultiplier tube (photo multiplier tube, PMT), an electron multiplying charge coupled device (electron multiplying charge coupled deviceE, EMCCD), a four-quadrant photodetector devices, or complementary metal-oxide semiconductor (complementary metal-oxide semiconductor, CMOS) detectors, etc.
  • APD avalanche photodiode
  • PMT photo multiplier tube
  • EMCCD electron multiplying charge coupled device
  • CMOS complementary metal-oxide semiconductor
  • the ion trap system may further include a feedback module.
  • the input of the feedback module is the quantum state information of ions
  • the output is the voltage or current of the first relative delay module, which is mainly used for alignment debugging and alignment maintenance. It should be understood that the quantum state information of the ions can be obtained by detecting the probe light. Further, the influence of mechanical drift can be reduced or even eliminated through the feedback module, so that the first light beam and the second light beam can be aimed at the ions for a long time, thereby realizing long-term manipulation.
  • control module and the feedback module may be integrated on one piece of hardware, or may also be integrated on different pieces of hardware, which is not limited in this application.
  • the initialization process of the ion trap is exemplarily shown as follows.
  • the trapping module initialize the trapped ions in the trapping module to the initial quantum state, such as the 0 state. Then, the quantum state information of the ions is detected by the detection module, and the delay amount is adjusted according to the quantum state information of the ions, so as to determine the position of the addressed ion.
  • the control module cannot obtain the quantum state information of the ion, it means that the first beam and the second beam have not reached any ion at the same time, that is, no ion is lit, and the delay amount is continued to be adjusted; when the quantum state information of an ion is obtained Quantum state information, that is, the first beam and the second beam reach the ion at the same time, that is, the ion is lit, by constantly changing the propagation direction of the first beam and the second beam, and performing Rabi oscillation on the corresponding ion Scanning, the relationship between the Rabi intensity and the positions of the first beam and the second beam can be obtained.
  • the measured Rabi intensity ⁇ is the largest. Record the position of the ion at this time, the corresponding delay, and the initial propagation direction of the first beam and the initial propagation direction of the second beam; when the initial propagation directions of the first beam and the second beam are determined, they will not be changed later.
  • the propagating directions of the first light beam and the second light beam can address different ions only by adjusting the amount of time delay. If the acquired ion quantum state information is not the ion that needs to be addressed, continue to adjust the delay amount, and when a specific ion is lit, record the corresponding relationship between the position of the specific ion and the delay amount.
  • the delay amount can be adjusted until the quantum state information of the ion E is obtained, and then the ion E is recorded.
  • the corresponding relationship between the position of E and the delay amount E is recorded.
  • the size of the parameter that needs to be changed by the path adjustment component when the corresponding delay amount is satisfied can also be determined. If the optical path adjustment component includes a galvanometer and a reflective element, the target position of the galvanometer corresponding to each time delay in Table 2 can also be determined; if the optical path adjustment component includes a structure with a variable refractive index, it can also be determined. Determine the target refractive index of the variable refractive index structure corresponding to each time delay in Table 2. They are not listed here.
  • Table 3 takes the optical path adjustment component including the vibrating mirror and the reflecting element as an example, and shows the relationship between the delay amount and the position of the vibrating mirror.
  • the parameter information sent by the control module to the first driving component when the vibrating mirror is to be moved to the corresponding target position can also be determined, see Table 1 above.
  • the above Tables 2 to 3 can be stored separately, or the above Tables 2 to 3 can be combined into Table 1 for storage, which is not limited in this application.
  • the ion trap initialization process can be iteratively automatically calibrated and adjusted through a software program.
  • the ion trap system may include a trapping module 901 , a light source module 902 , a first light splitting module 903 , a first relative time delay module 904 , a first optical path module 905 and a second optical path module 906 . Further, optionally, the ion trap system may further include a control module 907 and a detection module 908 .
  • the second optical path module 906 corresponds to the first relative delay module 904 as an example, and the first light beam passes through the optical path 1 and the second light beam passes through the optical path 2 as an example.
  • each module please refer to the above-mentioned relevant content respectively, and will not repeat them here.
  • the propagation optical path based on the ion trap system shown in FIG. 9 is as follows: the light source module 902 emits a light beam according to a first pulse, and the light beam is divided into a first light beam and a second light beam by a first light splitting module 903 .
  • the optical path passed by the first light beam may be referred to as optical path 1, specifically: the first light beam propagates to the first target ion through the first optical path module 905 .
  • the optical path passed by the second light beam can be called optical path 2, specifically: the second light beam propagates to the second optical path module 906 after passing through the first relative delay module 904, and the optical path of the second light beam can be changed by the first relative delay module 904 In this way, the time delay between the first light beam and the second light beam reaching the first target ion can be changed; and then propagated to the first target ion through the second optical path module 906 . Based on this, the first beam and the second beam reach the first target ion at the same time to realize the addressing of the first target ion.
  • the first beam reaching the first target ion is a left-handed circularly polarized
  • the second light beam of the target ion is right-handed circularly polarized light; or, the first light beam reaching the first target ion is right-handed circularly polarized light, and the second light beam reaching the first target ion is left-handed circularly polarized light.
  • the detection module 908 can also detect the quantum state information of the first target ion. For details, please refer to the introduction of the aforementioned detection module, which will not be repeated here.
  • the first spatial distance corresponding to the first pulse width is smaller than the distance between any two adjacent ions, then the addressing of a single ion can be realized; if the first pulse width corresponds to If the first spatial distance is greater than the spacing between two adjacent ions, then the entanglement addressing of these two ions or more ions can be realized.
  • the delay amount of the first beam and the second beam reaching the first target ion is adjusted through the first relative delay module, and it can also be understood that the photon flight time can be controlled through the first relative delay module, thereby The coincidence of the first light beam and the second light beam at different ions can be precisely controlled, so that high-precision independent addressing of different ions can be realized.
  • first optical path module 905 in FIG. 9 may be interchanged, and the order of the various components included in the second optical path module 906 may also be interchanged.
  • positions of the second optical path module 906 and the first relative delay module 904 can be exchanged, and the structure shown in FIG. 9 is only a possible example.
  • FIG. 10 is a schematic structural diagram of another ion trap system provided by the present application.
  • the ion trap system may include a trapping module 1001 , a light source module 1002 , a first light splitting module 1003 , a first relative time delay module 1004 , a first light path module 1005 , a second light path module 1006 and a second light splitting module 1007 . Further, optionally, the ion trap system may further include a control module 1008 and a detection module 1009 .
  • the second optical path module 1006 corresponds to the first relative delay module 1004 as an example, and the first light beam passes through the optical path 1 and the second light beam passes through the optical path 2 as an example.
  • the first relative delay module 1004 includes N sub-relative delay modules;
  • the second modulation component included in the second optical splitting module 1007 may be a modulator including at least N channels, and one sub-relative delay module 1004 corresponds to one channel or the second modulation component can also be N modulators, and a sub-relative delay module 1004 corresponds to a modulator; or the second modulation component can also be a modulator comprising m single channels and a modulator comprising Nm channels , one sub-relative delay module 1004 corresponds to one channel or corresponds to a single-channel modulator.
  • FIG. 10 is an example where one sub-relative delay module 1004 corresponds to one modulator.
  • the second beam splitting module 1007 is used to split the second beam from the first beam splitting module into N third beams, and one third beam corresponds to one sub-relative delay module 1004 .
  • the second light splitting module 1007 please refer to the above-mentioned introduction to the first light splitting module.
  • the difference between the second light splitting module 1007 and the first light splitting module is that the number of light beams split by the second light splitting module 1007 may be different from that of the first light splitting module 1003. different.
  • the propagation optical path based on the ion trap system shown in Figure 10 is: after the light source module 1002 emits a beam according to the first pulse width, it is divided into a first beam and a second beam by the first beam splitting module 1003; the optical path passed by the first beam can be called It is optical path 1, specifically: the first light beam propagates to the first target ion through the first optical path module 1005 .
  • the optical path through which the second light beam passes can be referred to as optical path 2, specifically: the second light beam is divided into N third light beams by the second light splitting module 1007, and each third light beam propagates to the second light beam after passing through the corresponding sub-relative delay module 1004
  • the corresponding second modulation component in the second optical path module 1006 can change the optical path of the second light beam through the corresponding sub-relative delay module, thereby changing the delay amount of the first light beam and the second light beam reaching the first target ion; propagate to the first target ion through the second optical path module 1006 .
  • the N third light beams coincide with the first light beams successively at different ions, so that multiple ions can be addressed.
  • quantum computing parallel multi-qubit computing can be performed, and the applicable quantum algorithms based on the ion trap system are more abundant.
  • the detection module 1009 can also detect the quantum state information of the first target ion.
  • the detection module 1009 can also detect the quantum state information of the first target ion.
  • the polarization state of the third light beam is the same as that of the second light beam. Therefore, in order to improve quantum efficiency, the first light beam reaching the first target ion is left-handed circularly polarized light, and the third light beam reaching the first target ion is right-handed circularly polarized light; or, the first light beam reaching the first target ion is right-handed circularly polarized light Circularly polarized light, the third beam reaching the first target ion is left-handed circularly polarized light.
  • first optical path module 1005 in FIG. 10 can be interchanged, and the order of the various components included in the second optical path module 1006 can also be interchanged.
  • positions of the second optical path module 1006 and the first relative delay module 1004 can be interchanged, and the sequence shown in FIG. 10 is only a possible example.
  • FIG. 11 is a schematic structural diagram of another ion trap system provided by the present application.
  • the ion trap system may include a confinement module 1101, a light source module 1102, a first beam splitting module 1103, a first relative delay module 1104, a first optical path module 1105, a second optical path module 1106, a first light beam recovery module 1107 and a second relative Delay module 1108 ; further, optionally, the ion trap system may further include a control module 1109 and a detection module 1110 . Further, optionally, the ion trap system may further include a first filtering module 1111 . In this example, it is taken that the first relative delay module 1104 corresponds to the second optical path module 1106 as an example.
  • the confinement module 1101, the light source module 1102, the first spectroscopic module 1103, the first relative delay module 1104, the first optical path module 1105, the second optical path module 1106, the control module 1109 and the detection module 1110 can refer to the above-mentioned related introductions, here I won't repeat them here.
  • the first light beam recovery module 1107 can be used to recover the fourth light beam, which is the remaining light of the first light beam after manipulating the first target ions or the remaining light of the second light beam after manipulating the first target ions.
  • FIG. 11 exemplifies that the fourth light beam is the remaining light of the second light beam.
  • the first light beam recycling module 1107 may include but not limited to: a reflector, a diffraction grating, or a polarizing beam splitter, and the like.
  • the second relative delay module 1108 is used to adjust the delay amount of the fourth beam and the first beam reaching the second target ion, and the adjusted fourth beam and the first beam overlap at the second target ion.
  • the second target ion is an ion other than the first target ion among the at least two ions.
  • the first relative delay module adjusts the optical path of the second beam, while the second relative delay module adjusts the The optical path of the fourth beam.
  • the optical path of the fourth light beam is equal to the sum of k times the second spatial distance corresponding to the time interval between two adjacent light beams emitted by the light source module and twice the distance between the first target ion and the second target ion, and k is positive integer.
  • the optical path of the fourth beam is equal to k times the second space distance and m of the distance ⁇ between two adjacent ions
  • the sum of times, k and m are both positive integers.
  • the order of addressing ions (or called the arrangement and combination of addressed ions) can be realized by controlling the size of m.
  • the first filtering module 1111 is configured to allow the received fourth light beam to pass through in the first time domain, and propagate the fourth light beam to the second relative delay module 1108 . It can also be understood that the first filtering module is mainly used for wave selection or filtering in the first time domain.
  • the first filtering module may be a filter (or called a wave selector), and the filter may have at least two states, an off (or transfer) state and a pass state.
  • the filter In the first time domain, the filter is in the passing state, indicating that the filter allows the fourth beam to pass in the first time domain; in the time domains other than the first time domain, the filter is in the off state, indicating that the filter is in the off state except in the first time domain
  • the time domain does not allow the fourth beam to pass.
  • the fourth light beam can be allowed to pass; when the filter is in the off state, the fourth light beam cannot pass through, or the fourth light beam is diverted to the trash can (or light collection bucket).
  • the light source module 1102 Based on the propagating optical path of the ion trap system shown in FIG. 11 , the light source module 1102 emits a beam according to the first pulse width, and is divided into a first beam and a second beam by the first beam splitting module 1103 .
  • the optical path passed by the first light beam may be referred to as optical path 1, specifically: the first light beam propagates to the first target ion through the first optical path module 1105 .
  • the optical path passed by the second light beam can be called optical path 2, specifically: the second light beam propagates to the second optical path module 1106 after passing through the first relative delay module 1104, and the light of the second light beam can be changed by the first relative delay module 1104 In this way, the time delay between the first light beam and the second light beam reaching the first target ion can be changed; and then propagated to the first target ion through the second optical path module 1106 . Based on this, the first light beam and the second light beam reach the first target ion at the same time, so as to realize the addressing of the first target ion.
  • the remaining light after the second beam manipulates the first target ion (may be referred to as the fourth beam) is recovered by the first beam recovery module 1107 and propagated to the first filter module 1111, and the first filter module 1111 allows in the first time domain
  • the fourth beam passes through and propagates to the second relative delay module 1108, and the fourth beam propagates to the second target ion after the optical path is adjusted by the second relative delay module 1108.
  • the first beam also continues to move forward in the propagation direction propagates and coincides with the fourth beam at the second target ion.
  • the first light beam coincident with the fourth light beam and the first light beam coincident with the second light beam are not the first light beam split from the same light beam emitted by the light source module, but may be two of the multiple light beams emitted by the light source module.
  • the first beams are split into beams respectively.
  • the light source module sequentially emits light beam A, light beam B, and light beam C.
  • the light beam A is divided into the first light beam A1 and the second light beam A2 by the first light splitting module
  • the light beam B is divided into the first light beam B1 and the second light beam B1 by the first light splitting module.
  • the light beam B2 and the light beam C are divided into the first light beam C1 and the second light beam C2 by the first beam splitting module.
  • the first light beam that coincides with the fourth light beam may be the first light beam C1
  • the first light beam that coincides with the second light beam A2 is the second light beam.
  • the detection module 1110 can also detect the quantum state information of the first target ion; when the first beam and the fourth beam manipulate the second target ion, the detection module 1110 can also detect The quantum state information of the second target ion can be detected.
  • a first beam recycling module and a third relative time delay module can also be set, and the first beam recycling module can be used to recover the first beam to manipulate the first target ion After the remaining light (may be referred to as the fifth beam), the third relative delay module can change the optical path of the fifth beam, so as to realize the adjustment of the delay amount of the fifth beam and the fourth beam reaching the second target ion.
  • optical path of the fifth beam can be changed through the third relative delay module
  • optical path of the fourth beam can be changed through the second relative delay module, that is, through the third relative delay module and the second relative delay module jointly changing the delay amount of the fourth light beam and the fifth light beam reaching the second target ion.
  • first optical path module 1105 in FIG. 11 may be interchanged, and the order of the various components included in the second optical path module 1106 may also be interchanged.
  • positions of the second optical path module 1106 and the first relative delay module 1104 can be interchanged, and the positions of the second relative delay module 1108 and the first filter module 1111 can also be interchanged.
  • the architecture shown in FIG. 11 is only one Possible example.
  • FIG. 12 is a schematic structural diagram of another ion trap system provided by the present application.
  • the ion trap system may include a confinement module 1201, a light source module 1202, a first beam splitting module 1203, a first relative delay module 1204, a first optical path module 1205, a second optical path module 1206, a first light beam recovery module 1207 and a second relative Delay module 1208 ; further, optionally, the ion trap system may further include a first filter module 1209 and a third optical path module 1210 . Further, optionally, the ion trap system may further include a control module 1211 and a detection module 1212 .
  • the first relative delay module 1204 corresponds to the second optical path module 1206 .
  • the confinement module 1201, the light source module 1202, the first spectroscopic module 1203, the first relative delay module 1204, the first optical path module 1205, the second optical path module 1206, the control module 1211 and the detection module 1212 can refer to the above-mentioned related introductions, here I won't repeat them here.
  • the first light beam recycling module 1207, the second relative delay module 1208 and the first filtering module 1209 refer to the relevant introduction in the above-mentioned FIG. 11 , which will not be repeated here.
  • the third optical circuit module 1210 lacks the first modulation component, and compared with the second optical circuit module, it lacks the second modulation component.
  • the third optical path module 1210 may include a third scaling and/or shaping component, and further, may also include a third polarizer.
  • the third scaling and/or shaping component refer to the introduction of the first scaling and/or shaping component
  • the third polarizer refer to the introduction of the aforementioned first polarizing plate.
  • the polarization state of the fourth light beam is the same as that of the second light beam. Therefore, if the third optical path module 1210 includes a third polarizer, the polarization state allowed to pass by the third polarization state is the same as the polarization state allowed to pass by the above-mentioned second polarizer.
  • the light source module 1202 Based on the propagation optical path of the ion trap system shown in FIG. 12 , the light source module 1202 emits a beam according to the first pulse width, and is divided into a first beam and a second beam by the first beam splitting module 1203 .
  • the optical path passed by the first light beam may be called optical path 1, specifically: the first light beam propagates to the first target ion through the first optical path module 1205 .
  • the optical path passed by the second light beam can be called optical path 2, specifically: the second light beam propagates to the second optical path module 1206 after passing through the second relative delay module 1208, and the light of the second light beam can be changed by the first relative delay module 1204 In this way, the delay time between the first light beam and the second light beam reaching the first target ion can be changed; and then propagated to the first target ion through the second optical path module 1206 . Based on this, the first beam and the second beam reach the first target ion at the same time, so as to realize the addressing of the first target ion.
  • the remaining light (may be referred to as the fourth beam) after the second beam manipulates the first target ion is recovered by the first beam recovery module 1207 and propagated to the third optical path module 1210, and then transmitted to the first filter module by the third optical path module 1210 1209, the first filtering module 1209 allows the fourth beam to pass through in the first time domain, and propagates the fourth beam to the second relative delay module 1208, changes the optical path of the fourth beam through the second relative delay module 1208, and
  • the fourth light beam after the optical path change is transmitted to the first relative delay module 1204 in the optical path 2, and the fourth light beam and the first light beam can be adjusted to reach the first relative delay module 1204 and the second relative delay module 1208.
  • the optical path passed by the fourth light beam before returning to the optical path may be referred to as optical path 3 .
  • first optical path module 1205 in FIG. 12 may be interchanged, and the order of the various components included in the second optical path module 1206 may also be interchanged.
  • positions of the second optical path module 1206 and the first relative delay module 1204 can be interchanged, and the positions of the second relative delay module 1208, the first filter module 1209 and the third optical path module 1210 can also be interchanged, as shown in FIG. 12
  • the architecture shown is only one possible example.
  • the optical path of the fourth beam can be changed through the second relative delay module, so that the delay amount of the fourth beam and the first beam reaching the second target ion can be adjusted, In this way, multiple ions can be addressed successively.
  • the arrangement and combination of addressed ions can also be changed by adjusting the time delay between the fourth beam and the first beam reaching the second target ion.
  • the arrangement and combination of addressing can be the first ion, the second ion , the third ion, etc., or may also be the first ion, the third ion, the second ion, etc., which will not be listed here.
  • recycling the remaining energy of the first beam or the second beam after controlling the ions it helps to improve the utilization rate of energy, and in the simultaneous addressing of multiple ions, the power consumption and system complexity of the ion trap system can be reduced.
  • the distance between the first target ion and the second target ion corresponds to the third spatial distance (such as the order of several microns) corresponding to the delay amount of the fourth beam and the first beam reaching the second target ion (for example, on the order of 10 fs).
  • the distances ⁇ 12 between them are equal, so that different fourth beams can be overlapped with the colliding first beams at the second target ions.
  • FIG. 13 it is a schematic diagram of a pulse group formed by a recycled fourth light beam provided in this application.
  • the beam A is divided into the first beam A 1 and the second beam A 2 by the first beam splitting module
  • the beam B is divided into the first beam B 1 and the second beam B 2 by the first beam splitting module
  • the beam C is divided into the first beam C 1 and the second beam C 2 by the first beam splitting module
  • the beam D is split by the first beam splitting module
  • the beam E is divided into the first beam E 1 and the second beam E 2 by the first beam splitting module
  • the beam F is divided into the first beam F 1 and the second beam F by the first beam splitting module
  • the light beam G is divided into the first light beam G 1 and the second light beam G 2 by the first light splitting module.
  • the fourth beam a can be recovered; after the first beam B 1 and the second beam B 2 manipulate the corresponding first target ions, they can be recovered The fourth beam b is obtained; after the first beam C 1 and the second beam C 2 control the corresponding first target ions, the fourth beam c can be recovered. Based on this, the fourth light beam a, the fourth light beam b and the fourth light beam c have been recovered in the optical path.
  • the fourth light beam a, the fourth light beam b, and the fourth light beam c can form a pulse sequence, which is equivalent to expanding a single pulse into a pulse sequence. It should be noted that the fourth light beam can also be recovered and reused to form a pulse sequence.
  • the second relative delay module can control the first beam D1 and the fourth beam a may not be coincident (see Figure 14 (a)), the fourth beam a may coincide with the first beam E1 at the second target ion A (see (b) in Figure 14 below), the fourth beam b may coincide with the first beam F1 at Coincident at the second target ion B (can refer to (c) in the following Figure 14), the fourth light beam c and the first light beam G1 coincide at the second target ion C (can refer to (d in the following Figure 14) )).
  • the delay of the fourth beam a and the first beam E1 can be controlled by the second relative delay module to be dt3_1, the delay of the fourth beam b and the first beam F1 is dt3_2, and the fourth The delay of the beam c and the first beam G1 is dt3_3, and when the fourth beam a, the fourth beam b and the fourth beam c merge, the pulse sequences with delays of dt3_1, dt3_2 and dt3_3 appear respectively.
  • the fourth beam a and the first beam D 1 do not overlap at the ion, and there is no manipulation of the ion; at time t 0 +2*dti, the fourth beam a and the first beam E 1 overlap at At the ion A; at the time t 0 +3*dti, the fourth beam b and the first beam F 1 coincide at the ion B; at the time t 0 +4*dti, the fourth beam c and the first beam G 1 coincide at Ion C.
  • the pulse sequence formed by the fourth beam a, the fourth beam b, and the fourth beam c can coincide with the first beam colliding with it at different ions, so as to realize the detection of different ions addressing. Since the time difference of different ions being manipulated is on the order of 10 fs, the pulse interval of the pulse sequence formed by the fourth beam a, the fourth beam b and the fourth beam c is much smaller than the period of manipulation of the manipulation of ions, therefore, it can be considered that based on this Enables multiple ions to be addressed simultaneously.
  • FIG. 15 is a schematic structural diagram of another ion trap system provided by the present application.
  • the ion trap system may include a confinement module 1501, a light source module 1502, a first light splitting module 1503, a first relative delay module 1504, a first optical path module 1505, a second optical path module 1506 and a second light beam recovery module 1507; further, it may Optionally, the ion trap system may further include a control module 1508 and a detection module 1509 .
  • the first relative delay module 1504 corresponds to the second optical path module 1506 as an example.
  • the confinement module 1501, the light source module 1502, the first spectroscopic module 1503, the first relative delay module 1504, the first optical path module 1505, the second optical path module 1506, the control module 1508 and the detection module 1509 can refer to the above-mentioned related introductions, here I won't repeat them here.
  • the second light beam recovery module 1507 is used to return the first light beam from the first light path module 1505 to the first light path module 1505 in the second time domain to form a pulse sequence;
  • the pulse train is propagated to the confinement module 1501 .
  • the second light beam recycling module 1507 may include but not limited to: a mirror group, a diffraction grating, or a polarizing beam splitter, and the like.
  • the second time domain and the third time domain can be controlled by the control module 1508, and the pulse interval of the pulse sequence formed by the first light beam can be adjusted through the control of the second time domain;
  • the control in the time domain can adjust the interval of the pulse sequence formed by the second beam.
  • the propagation optical path based on the ion trap system shown in Figure 15 is: after the light source module 1502 emits the beam according to the first pulse width, it is divided into the first beam and the second beam by the first beam splitting module 1503; the optical path passed by the first beam can be called It is optical path 1, specifically: the first light beam propagates through the first optical path module 1505 and is returned to the first optical path module 1505 by the second light beam recycling module 1507 to form a pulse sequence.
  • the optical path passed by the second light beam can be called optical path 2, specifically: the second light beam propagates to the second optical path module 1506 after passing through the first relative delay module 1504, and the light of the second light beam can be changed by the first relative delay module 1504 In this way, the time delay between the first light beam and the second light beam reaching the first target ion can be changed; and then propagated to the third target ion through the second optical path module 1506 . Based on this, when the pulse sequence formed by the first beam and the second beam reach the third target ion at the same time, the addressing of the third target ion can be realized. Furthermore, after the first light beam and the second light beam manipulate the third target ion, the detection module 1509 can also detect the quantum state information of the third target ion.
  • the pulse sequence formed by the first beam overlaps with the second beam at different ions successively, so that multiple ions can be addressed.
  • quantum computing parallel multi-qubit computing can be performed, and the applicable quantum algorithms based on the ion trap system are more abundant.
  • the above-mentioned Figure 15 is an example of recovering the first light beam to form a pulse sequence
  • the ion trap system can also recover the second light beam to the second optical path module 1506 to form a pulse sequence, so as to realize the addressing of different ions .
  • the second light beam recovery module is used to return the first light beam from the second optical path module to the second optical path module in the fourth time domain, and the second light beam returned to the second optical path module is combined with the second light beam from the first light splitting module.
  • the beam forms a train of pulses.
  • the present application provides an ion manipulation method, please refer to the introduction of FIG. 16 .
  • the ion manipulation method can be applied to the ion trap system shown in any of the above-mentioned embodiments in FIG. 2 to FIG. 15 . It can also be understood that the ion manipulation method can be implemented based on the ion trap system shown in any one of the above-mentioned embodiments in FIG. 2 to FIG. 15 .
  • the second light beam passing through the first relative delay module is taken as an example for illustration.
  • FIG. 16 it is a schematic flowchart of an ion manipulation method provided by the present application. The method includes the following steps:
  • Step 1601 the control module generates a first control signal according to the position of the first target ion.
  • Step 1602 the control module sends a first control signal to the first drive assembly.
  • the first driving component receives the first control signal from the control module.
  • the first control signal is used to control the first driving component to adjust the first relative delay module to change the optical path of the second light beam.
  • the first control signal can control the first driving component to adjust the position of the vibrating mirror.
  • the first control signal can be used to control the first driving component to drive the vibrating mirror to the target position.
  • the optical length adjusting component included in the first relative delay module is the structure 2 above, the first control signal can be used to control the first driving component to adjust the refractive index of the photoelectric crystal.
  • the first control signal can be used to control the first driving component to adjust the refractive index of the photoelectric crystal to a target refractive index.
  • the specific adjustment size can be combined with the introduction of the initialization process, and will not be repeated here.
  • Step 1603 the first driving component generates a first driving signal according to the first control signal, and sends the first driving signal to the first relative delay module.
  • the first driving signal is used to drive the first relative delay module. If the optical path adjustment component included in the first relative time delay module is the above-mentioned structure one, the first driving signal is used to drive the vibrating mirror to move to the target position. If the optical path adjustment component included in the first relative time delay module is the above-mentioned structure two, the first driving signal is used to drive the photoelectric crystal to change the refractive index to the target refractive index.
  • Step 1604 the first relative delay module changes the optical path of the received second light beam according to the first driving signal.
  • the vibrating mirror can be moved to the target position under the action of the first driving signal, so as to realize the change of the second light beam.
  • the photoelectric crystal can adjust the refractive index to the target refractive index under the action of the first driving signal, so as to change the optical path of the second light beam.
  • the optical path of the second beam received by the first relative delay module can be controlled to change, and the delay amount of the first beam and the second beam reaching the ion can be changed, In this way, it can be realized that the first light beam and the second light beam overlap at different ions.
  • the first relative delay module can be controlled to move the vibrating mirror to position A, so that the delay amount of the first beam and the second beam is ⁇ A, so that the first beam and the second beam can be Ion A overlaps.
  • the first relative delay module can be controlled to move the galvanometer to position B, so that the delay amount of the first beam and the second beam is ⁇ B, so that the first beam and the second beam can be Coincident at ion B.
  • Step 1605 the control module determines the parameter information of the radio frequency source according to the requirement of quantum computing, and generates a second control signal according to the parameter information of the radio frequency source.
  • the second control signal is used to control the timing and/or frequency of modulating the first beam by the first modulation component through the first radio frequency driver, and control the timing and/or frequency of modulating the second beam by the second modulation component through the second radio frequency driver .
  • Step 1606 the control module sends a second control signal to the radio frequency source.
  • the radio frequency source receives the second control signal from the control module.
  • the radio frequency source controls the first radio frequency source driver to drive the first modulation component and the second radio frequency driver to drive the second modulation component according to the second control signal.
  • the timing and/or frequency of the first light beam and/or the second light beam can be realized, so that the required quantum calculation can be realized.
  • step 1601 to step 1604 can be understood as the process of the control module controlling the first relative delay module
  • step 1605 to step 1607 can be understood as the process of the control module controlling the radio frequency source, and there is no sequence before these two processes , it can also be understood that these two processes are executed simultaneously, and the order of the steps given above is only for the convenience of solution description.
  • control module in each of the above embodiments can flexibly set the delay amount and each time domain (such as the first time domain, the second time domain, the third time domain, etc.) according to the requirements of quantum computing. specific time.
  • the method steps in the embodiments of the present application may be implemented by means of hardware, or may be implemented by means of a processor executing software instructions.
  • Software instructions can be composed of corresponding software modules, and software modules can be stored in random access memory (random access memory, RAM), flash memory, read-only memory (read-only memory, ROM), programmable read-only memory (programmable ROM) , PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically erasable programmable read-only memory (electrically EPROM, EEPROM), register, hard disk, mobile hard disk, CD-ROM or known in the art any other form of storage medium.
  • An exemplary storage medium is coupled to the processor such the processor can read information from, and write information to, the storage medium.
  • the storage medium may also be a component of the processor.
  • the processor and storage medium can be located in the ASIC.
  • the ASIC may be located in the ion trap system.
  • the processor and storage medium can also exist as discrete components in the ion trap system.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • a computer program product consists of one or more computer programs or instructions. When the computer programs or instructions are loaded and executed on the computer, the processes or functions of the embodiments of the present application are executed in whole or in part.
  • the computer can be a general purpose computer, special purpose computer, computer network, network equipment, user equipment, or other programmable apparatus.
  • Computer programs or instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, computer programs or instructions may be Wired or wireless transmission to another website site, computer, server or data center.
  • a computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrating one or more available media.
  • Available media can be magnetic media, for example, floppy disk, hard disk, magnetic tape; also can be optical media, for example, digital video disc (digital video disc, DVD); can also be semiconductor media, for example, solid state drive (solid state drive, SSD) ).
  • vertical does not refer to absolute verticality, and certain engineering errors may be allowed.
  • Multiple means two or more.
  • And/or describes the association relationship of associated objects, indicating that there may be three types of relationships, for example, A and/or B, which can mean: A exists alone, A and B exist at the same time, and B exists alone, where A, B can be singular or plural. "At least one of the following" or similar expressions refer to any combination of these items, including any combination of single or plural items.
  • At least one item (piece) of a, b or c can mean: a, b, c, "a and b", “a and c", “b and c", or "a and b and c ", where a, b, c can be single or multiple.
  • the character “/” generally indicates that the contextual objects are an "or” relationship.
  • the character “/” indicates that the front and back related objects are in a “division” relationship.
  • the word “exemplarily” is used to mean an example, illustration or illustration. Any embodiment or design described herein as “example” is not to be construed as preferred or advantageous over other embodiments or designs. Or it can be understood that the use of the word example is intended to present a concept in a specific manner, and does not constitute a limitation to the application.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Artificial Intelligence (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

一种粒子阱系统,用于解决现有技术中寻址粒子的较复杂的问题。可应用量子计算等领域。该粒子阱系统可包括囚禁模块、第一分光模块和第一相对延时模块;囚禁模块用于囚禁至少两个粒子;第一分光模块用于将接收到光束分为第一光束和第二光束;第一相对延时模块用于调节第一光束和第二光束到达第一目标粒子的延时量,调节后的第一光束和第二光束重合于第一目标粒子处,第一目标粒子为囚禁模块中的至少一个。通过第一相对延时模块调节第一光束和第二光束到达第一目标粒子的延时量,即通过控制光子飞行时间,可以实现第一光束和第二光束重合位置的调整,使得第一光束和第二光束重合于不同的粒子处,从而可实现对粒子的寻址。

Description

一种粒子阱系统
相关申请的交叉引用
本申请要求在2021年11月16日提交中国专利局、申请号为202111356743.9、申请名称为“一种粒子阱系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及量子计算技术领域,尤其涉及一种粒子阱系统。
背景技术
随着信息技术的发展,量子计算越来越受关注。量子计算的核心是利用量子体系实现通用的量子计算。量子计算的基本原理是利用量子比特(比如离子)对信息进行编码。单个量子比特的状态(或称为量子态)不仅有0和1两种经典态,还可以是0和1的叠加态,如图1a所示,量子比特可以处在一半几率在0态,一半几率在1态。n个量子比特可以同时处于2 n个量子态的叠加状态,从而可提高计算的速度。
在量子计算的物理实现方面,目前主流的方案是离子阱系统和超导系统。其中,离子阱系统主要包括囚禁离子的电极结构和离子,通过在电极结构上施加特定的电磁场、并结合离子之间的库伦作用,可将离子在空间以特定结构囚禁。通过对囚禁的离子的寻址(即使用操控光(或称为寻址光)对准囚禁的离子),可实现对离子的量子态操控,从而获得离子的量子态信息。
现有技术中,主要是通过强聚焦(如微米级的聚焦)操控光,例如,通过一个大数值孔径(numerical aperture,NA)的透镜并配合其它光学元件对操控光实现强聚焦,NA是一个无量纲的数,用于衡量透镜能够收集光的能力。通过对操控光进行强聚焦实现离子的寻址的可拓展性差且难度高,而且还需要复杂的光路设计。
发明内容
本申请提供一种粒子阱系统,用于简化且可精确的实现粒子的寻址。
第一方面,本申请提供一种粒子阱系统,该粒子阱系统可包括囚禁模块、第一分光模块和第一相对延时模块。其中,囚禁模块用于囚禁至少两个粒子。第一分光模块用于将接收到光束分为第一光束和第二光束。第一相对延时模块用于调节第一光束和第二光束到达第一目标粒子的延时量,调节后的第一光束和第二光束在第一目标粒子处重合,第一目标粒子为囚禁模块中囚禁的至少两个粒子中的至少一个。
在一种可能的实现方式中,延时量指第一飞行时间与第二飞行时间的差的绝对值,第一飞行时间是指第一光束的光子在第一光束的传播光路上的飞行时间,第二飞行时间是指第二光束的光子在第二光束的传播光路上的飞行时间。进一步,第一光束和第二光束重合于第一目标粒子处,从而可寻址到第一目标粒子,进而可操控第一目标粒子。
当粒子为离子时,该粒子阱系统可以包括但不限于离子阱系统。
基于上述方案,光模块对接收到的光束分光后,得到第一光束和第二光束,通过第一 相对延时模块调节第一光束和第二光束到达第一目标粒子的延时量,可以实现第一光束和第二光束重合位置的调整,从而可以使得第一光束和第二光束重合(或称为相遇)于不同的粒子处(即第一光束和第二光束重合的位置与不同目标粒子对准)。也可以理解为,通过控制光子飞行时间,可以精确的控制第一光束和第二光束同时对准并照射到哪个粒子上,从而可实现对不同的粒子的高精度的独立寻址。而且,基于上述粒子阱系统,可简化光路设计的复杂度,从而有助于降低操控光的噪声,进而可提升操控粒子的精度。
在一种可能的实现方式中,粒子阱系统还可包括光源模块,光源模块可按第一脉冲宽度发射光束,第一脉冲宽度对应的第一空间距离小于囚禁模块囚禁中的至少两个粒子中任意相邻两个粒子间的间距。
由于第一脉冲宽度对应的第一空间距离小于任意相邻两个粒子之间的间距,因此,同一时刻,第一光束和第二光束只能同时打到一个粒子上,从而可以实现对单个粒子的独立寻址。
进一步,可选的,光源模块发射相邻两个光束的时间间隔对应的第二空间距离大于囚禁模块中的至少两个粒子中任意两个粒子间的间距。
如此,可以在实现对单个粒子的独立寻址的情况下,不会对被寻址的粒子的周围的粒子产生影响。
示例性地,光源模块可以包括但不限于飞秒脉冲激光器。
在一种可能的实现方式中,第一相对延时模块具体用于改变接收到的第一光束和/或第二光束的光程。
例如,第一相对延时模块可位于第一光束的传播光路上,相应地,第一相对延时模块具体用于改变接收到的第一光束的光程。再比如,第一相对延时模块可位于第二光束的传播光路上,相应地,第一相对延时模块具体用于改变接收到的第二光束的光程。再比如,第一相对延时模块可位于第一光束和第二光束的传播光路上,相应地,第一相对延时模块具体用于改变接收到的第一光束的光程以及改变接收到的第二光束的光程。
通过改变第一光束和/或第二光束的光程,从而可实现调节第一光束和第二光束到达第一目标粒子的延时量,进而可以实现对不同的粒子的独立寻址。
在一种可能的实现方式中,第一相对延时模块包括第一驱动组件和光程调节组件。其中,第一驱动组件用于根据接收到的第一控制信号,向光程调节组件发送第一驱动信号,第一控制信号是根据第一目标粒子的位置确定的。光程调节组件用于根据第一驱动信号,改变接收到的第一光束和/或第二光束的光程。
通过第一驱动组件驱动光程调节组件,从而可实现改变第一光束和/或第二光束的光程,进而可实现调节第一光束和第二光束到达第一目标粒子的延时量。
在一种可能的实现方式中,光程调节组件包括振镜和反射元件;振镜用于根据第一驱动信号,改变接收到的第一光束和/或第二光束的光程,并将光程改变后的第一光束和/或光程改变后第二光束传播至反射元件;反射元件用于将接收到的光程改变后的第一光束和/或光程改变后的第二光束反射至第一目标粒子上。
示例性地,振镜可以包括但不限微机电系统(micro electro-mechanical system,MEMS)反射镜、或MEMS波导等。反射元件可以包括但不限于反射镜、棱镜等。
在一种可能的实现方式中,粒子阱系统还包括第一光路模块和第二光路模块。其中,第一光路模块用于将第一光束或光程改变后的第一光束传播至第一目标粒子;第二光路模 块用于将第二光束或光程改变后的第二光束传播至第一目标粒子。
进一步,第一光路模块包括第一调制组件,用于调制第一光束的时序和/或频率;和/或第二光路模块包括第二调制组件,用于调制第二光束的时序和/或频率。
通过第一调制组件可以实现对第一光束的时序和/或频率的控制,通过第二调制组件可以实现对第二光束的时序和/或频率的控制,从而可以实现满足需要的量子计算。
进一步,第一光路模块还包括第一偏振组件,第二光路模块还包括第二偏振组件;第一偏振组件用于将接收到的第一光束的偏振态转换为左旋圆偏振光;第二偏振组件用于将接收到的第二光束的偏振态转换为右旋圆偏光;或者,第一偏振组件用于将接收到的第一光束的偏振态转换为右旋圆偏振光;第二偏振组件用于将接收到的第二光束的偏振态转换为左旋圆偏光。
由于第一光束和第二光束的偏振态会影响第一光束和第二光束的耦合强度,进而会影响操控粒子的量子效率,因此,通过偏振态为右旋圆偏光的第一光束和偏振态为左旋圆偏光的第二光束(或者偏振态为左旋圆偏光的第一光束和偏振态为右旋圆偏光的第二光束)同时到达某个目标粒子时,有助于提高对粒子的量子效率。
在一种可能的实现方式中,粒子阱系统还包括第二分束模块,第一相对延时模块包括N个子相对延时模块,N为大于1的整数;第二分束模块用于将来自第一分光模块的第二光束分为N个第三光束,一个第三光束对应一个子相对延时模块;子相对延时模块用于改变第一光束和第三光束到达第一目标粒子的延时量。
通过第二分束模块和N个子相对延时模块,可以使得N个第三光束先后分别与第一光束在不同的粒子处重合,从而可实现对多个粒子进行寻址。而且,在量子计算时,可以执行并行的多比特计算,可应用的量子算法更为丰富。
在一种可能的实现方式中,粒子阱系统还包括第一光束回收模块和第二相对延时模块;第一光束回收模块用于将第四光束传播至第二相对延时模块,第四光束为操控第一目标粒子后的第一光束剩余的光或操控第一目标粒子后的第二光束剩余的光;第二相对延时模块用于调节第四光束和第一光束到达第二目标粒子的延时量,调节后的第四光束和第一光束在第二目标粒子处重合,第二目标粒子为至少两个粒子中除第一目标粒子外的粒子;其中,第四光束的光程等于第二空间距离的k倍与第一目标粒子和所述第二目标粒子间的间距的2倍的和,所述k为正整数。也可以理解为,第四光束的光程=k×第二空间距离+2×(第一目标粒子和第二目标粒子间的间距)。
通过调节第二相对延时模块在不同时刻的延时量,可以控制相邻两个第四光束的延时量,从而实现对不同粒子的先后寻址;而且还可以改变被寻址的粒子的排列组合方式(或称为寻址粒子的顺序)。进一步,操控粒子的后第一光束或第二光束剩余的能量被回收利用后,有助于提升能量的利用率,在多粒子同时寻址中,还可降低粒子阱系统的功耗和系统的复杂度。
进一步,第二相对延时模块用于改变第四光束的光程,并将光程改变后的第四光束传播至第二光路模块;第二光路模块还用于将光程改变后的第四光束传播至第二目标粒子。
通过将第四光束传播至第二光路模块,再经第二光路模块传播至第二目标粒子,在初始化过程中可以省略掉对第四光束的直接传播至第二目标粒子的传播方向的初始化过程。
在一种可能的实现方式中,粒子阱系统还包括第一滤波模块,用于在第一时域,允许来自第一光束回收模块的第四光束通过,并将第四光束传播至第二相对延时模块。
通过控制第一滤波模块,可以实现在第一时域允许第四光束通过或在除第一时域外的时域阻止第四光束通过。
在一种可能的实现方式中,粒子阱系统还包括第二光束回收模块;第二光束回收模块用于在第二时域将来自第一光路模块的第一光束返回第一光路模块,返回第一光路模块的第一光束与来自第一分光模块的第一光束形成脉冲序列;以及用于在第三时域,将由第一光束形成的脉冲序列传播至第一囚禁模块。或者,第二光束回收模块用于在第四时域,将来自第二光路模块的第一光束返回第二光路模块,返回第二光路模块的第二光束与来自第一分光模块的第二光束形成脉冲序列;以及用于在第五时域,将由第二光束形成的脉冲序列传播至第一囚禁模块。
通过由第一光束形成的脉冲序列分别与第二光束重合于不同的粒子处,或者通过由第二光束形成的脉冲序列分别与第一光束重合于不同的粒子处,从而可实现对不同的粒子进行操控。
附图说明
图1a为本申请提供的一种离子的量子态的示意图;
图1b为本申请提供的一种拉比强度与光束坐标之间的关系示意图;
图1c为本申请提供的一种拉曼光操控离子的原理示意图;
图1d为本申请提供的一种两束光在离子的位置处重合示意图;
图1e为本申请提供的一种囚禁离子的过程示意图;
图2为本申请提供的一种粒子阱系统的架构示意图;
图3a为本申请提供的一种离子囚禁模块的结构示意图;
图3b为本申请提供的一种囚禁离子的原理示意图;
图3c为本申请提供的一种3D-MOT的工作原理示意图;
图3d为本申请提供的一种原子囚禁模块的结构示意图;
图3e为本申请提供的另一种原子囚禁模块的结构示意图;
图4a为本申请提供的一种囚禁模块囚禁的离子的分布示意图;
图4b为本申请提供的另一种囚禁模块囚禁的离子的分布示意图;
图4c为本申请提供的又一种囚禁模块囚禁的离子的分布示意图;
图4d为本申请提供的又一种囚禁模块囚禁的离子的分布示意图;
图4e为本申请提供的又一种囚禁模块囚禁的离子的分布示意图;
图4f为本申请提供的又一种囚禁模块囚禁的离子的分布示意图;
图5为本申请提供的一种脉冲激光的示意图;
图6为本申请提供的一种偏振光分束器的分光原理示意图;
图7为本申请提供的一种延时量与两束光重合位置的关系示意图;
图8a为本申请提供的一种第一相对延时模块的结构示意图;
图8b为本申请提供的另一种第一相对延时模块的结构示意图;
图8c为本申请提供的另一种第一相对延时模块的结构示意图;
图8d为本申请提供的另一种第一相对延时模块的结构示意图;
图9为本申请提供的又一种离子阱系统的架构示意图;
图10为本申请提供的一种离子操控方法流程示意图;
图11为本申请提供的又一种离子阱系统的架构示意图;
图12为本申请提供的又一种离子阱系统的架构示意图;
图13为本申请提供的一种由第四光束形成的脉冲序列示意图;
图14为本申请提供的另一种延时量与第一光束和第四光束重合的关系示意图;
图15为本申请提供的又一种离子阱系统的架构示意图;
图16为本申请提供的一种离子操控方法的方法流程示意图。
具体实施方式
下面将结合附图,对本申请实施例进行详细描述。
以下,对本申请中的部分用语进行解释说明。需要说明的是,这些解释是为了便于本领域技术人员理解,并不是对本申请所要求的保护范围构成限定。
一、飞秒脉冲激光
飞秒脉冲激光是一种以脉冲形式运转的激光,持续时间较短,只有几个飞秒(femto second,fs),一飞秒等于10 -15秒,即一飞秒是1秒的千万亿分之一。它比利用电子学方法所获得的最短脉冲要短几千倍。
二、激发跃迁
激发跃迁是指原子在光的照射下,从高能级跃迁到低能级发射光子的过程,或者从低能级跃迁到高能级吸收光子的过程。
三、拉曼光
拉曼光是一种散射光。当被激发的分子在激发态基本上不停留,立即以相同的波长、随机地改变入射光的方向把能量释放出来,称为散射;而当被激发的分子,在散射时以不同于原来激发光的波长释放出能量时,称为拉曼光。
四、拉比振荡的扫描
拉比振荡的扫描是指给粒子加载不同时长的光束得到不同的振荡信号,通过对不同时长对应的不同的振荡信号的拟合得到振荡周期T,根据拉比强度与振荡周期的关系Ω=1/T,可确定出一个位置的拉比强度。通过改变光束照射到粒子上的位置,可得到不同的拉比强度Ω。即光束照射到粒子上的位置不同,得到的拉比强度Ω也不同,当光束和粒子完全对准时,测得的拉比强度最大。图1b示出了一种拉比强度与光束坐标之间的关系示意图。光束坐标为X 0时,对应的拉比强度最大,为Ω 0,说明光束坐标为X 0时,光束和照射的粒子完全对准。
前文介绍了本申请所涉及到的一些用语,下面介绍本申请涉及的技术特征及原理。需要说明的是,这些解释是为了便于本领域技术人员理解,并不是对本申请所要求的保护范围构成限定。
一、拉曼光操控离子的原理和配置。
请参阅图1c,为本申请提供的一种拉曼光操控离子的原理示意图。其中,三条实现表示离子的三个能级,|0>和|1>为离子的基态能级,两个基态能级的能级差为w rf,|e>为激发态能级。离子在光的照射下,可以吸收光子,从基态跃迁到激发态。
当两束拉曼光同时满足以下三个关系时,可以实现激发离子发生激发跃迁,从而可对离子(如单个离子或多个离子)进行操控。其中,两束拉曼光的频率分别表示为w 1和w 2
关系1,频率差满足能量守恒:w 1-w 2=w rf
关系2,动量满足动量守恒;
关系3,两束光同时与离子相互作用,即两束光在离子的位置处重合(可参见图1d)。
应理解,由于光激发离子跃迁,需要满足能力守恒。而且,频率为w 1和w 2的两束拉曼光激发离子跃迁相比于直接实现基态到激发态的跃迁,两束拉曼光的频率具有一定的频率失谐△,当失谐△足够大使得单束拉曼光无法激发离子发生激发跃迁。
需要说明的是,拉曼光操控其它粒子(如原子)的原理与上述操控离子的原理相同,此处不再赘述。
二、囚禁模块囚禁离子的过程。
请参阅图1e,为本申请提供的一种囚禁离子的过程示意图。原子源经过电和/或者光加热升温原子,产生原子束流(或原子蒸汽),对原子束流电离后得到离子,对离子冷却、并通过电极和电磁场产生装置等将离子进行囚禁(可参见下述图3a的介绍)。进一步,被囚禁的离子与操控光(如上述的两束拉曼光)相互作用,可以达到特定的量子态。应理解,图1e中以被囚禁的离子包括5个示例。
如背景技术所介绍,目前主要是通过具有大NA的透镜来强聚焦操控光,以实现对粒子的寻址。具体的,多个粒子被囚禁成一维粒子链,操控光分成两路,一路为全局拉曼光,另一路为独立拉曼光,每个独立拉曼光需要单独对准一个粒子以实现独立寻址,其中,独立拉曼光需要经过一个具有较大NA的透镜聚焦,以打到粒子链的某个粒子上。基于此,通过对操控光进行强聚焦实现粒子的寻址的可拓展性差且难度高,而且还需要复杂的光路设计。
鉴于此,本申请提出一种粒子阱系统。该粒子阱系统通过控制光子飞行时间,可以精确的对粒子进行寻址。
基于上述内容,下面结合附图2至附图15,对本申请提出的粒子阱系统进行具体阐述。
如图2所示,为本申请提供的一种粒子阱系统的架构示意图。该粒子阱系统200可包括囚禁模块201、第一分光模块202和第一相对延时模块203。其中,囚禁模块201用于囚禁至少两个粒子;第一分光模块202用于将接收到光束分为第一光束和第二光束;第一相对延时模块203用于调节第一光束和第二光束到达第一目标粒子的延时量,调节后的第一光束和第二光束重合于第一目标粒子处,第一目标粒子为囚禁模块201中囚禁的至少两个粒子中的至少一个。
其中,延时量指第一飞行时间与第二飞行时间的差的绝对值,第一飞行时间是指第一光束的光子在第一光束的传播光路上的飞行时间,第二飞行时间是指第二光束的光子在第二光束的传播光路上的飞行时间。
基于上述粒子阱系统,分光模块对接收到的光束分光后,得到第一光束和第二光束,通过第一相对延时模块调节第一光束和第二光束到达第一目标粒子的延时量,可以实现第一光束和第二光束重合位置的调整,从而可以使得第一光束和第二光束重合(或称为相遇)于不同的粒子处(即第一光束和第二光束重合的位置与不同目标粒子对准)。也可以理解为,通过控制光子飞行时间,可以精确的控制第一光束和第二光束同时对准并照射到哪个粒子上,从而可实现对不同的粒子的高精度的独立寻址。而且,基于上述粒子阱系统,还可简化光路设计的复杂度,从而有助于降低操控光的噪声,进而可提升操控粒子的精度, 进而有助于提高量子技计算的性能和可扩展性。
其中,第一光束和第二光束可以为两束拉曼光,也需满足上述两束拉曼光需要满足的三个条件。也可以理解为,第一光束和第二光束同时对准并照射到同一个粒子时,可以实现对该粒子进行量子态操控。例如,第一目标粒子的初始量子态为|0>,当第一光束和第二光束同时到达该第一目标粒子后可以将该第一目标粒子的量子态操控为1>。
进一步,可选的,第一光束和第二光束针对同一束光经分光模组分开的两束光,即第一光束和第二光束来自同一光束,二者的相干性较高,可以认为第一光束和第二光束在传输至囚禁模块时受到的外界环境的影响(例如机械振动、气流扰动等)基本是相近甚至相同的。第一光束和第二光束具有相关性,从而有助于减小第一光束和第二光束重合后对粒子产生的噪声。
下面对图2所示的各个功能模块分别进行介绍说明,以给出示例性的具体实现方案。为方便说明,下文中的囚禁模块、第一分光模块和第一相对延时模块均未加数字标识。
一、囚禁模块
在一种可能的实现方式中,囚禁模块用于囚禁粒子。其中,粒子可以包括但不限于离子、或原子等。也可以理解为,囚禁模块可以是离子囚禁模块、或者也可以是原子囚禁模块。
结构1,囚禁模块为离子囚禁模块。
如图3a所示,为本申请提供的一种用于囚禁离子的囚禁模块的结构示意图。该囚禁模块包括直流(direct current,DC)电极和射频(radio frequency,RF)电极,DC电极和RF电极可设置于基底上(例如可将电极用微加工、印刷电路等方式刻蚀在基底上)。DC电极和RF电极也可以称为囚禁电极。进一步,该囚禁模块还可包括电磁场产生装置(如电源)。DC电极和RF电极均与电磁场产生装置(如电源)连接,在通电后,RF电极可以产生交变的射频电场,DC电极可以产生直流电场,射频电场与直流电场配合产生用于囚禁离子的囚禁势阱,从而可实现将离子囚禁,原理可参见图3b。图3b中的曲线表示某一时刻的电场线分布,经过半个射频周期的时间,电场线反向,离子在电场线快速往复变化的囚禁势阱中,平均效果是离子被囚禁势阱稳定的囚禁在电极的表面。应理解,上述给出的囚禁模块的结构仅是示意,凡是可以实现将离子囚禁的结构均在本申请的保护范围内。例如,囚禁模块还可以包括“保罗离子阱”(也称为四极离子阱),四极离子阱可使用四级杆的结构加入前后端盖的方式实现,离子聚焦在一条线上,可增加了离子的存储量,且有助于避免空间电荷效应和简化电极结构,四极离子阱也有被称为线型离子阱。再比如,囚禁模块还可以包括刀片阱(blade trap)、或者是芯片阱(surface trap)等,本申请对此不作限定。
结构2、囚禁模块为原子囚禁模块。
在一种可能的实现方式中,原子囚禁模块主要用于对来自原子源的高速原子束流中的原子进行捕获并囚禁。示例性地,原子囚禁模块可包括三维磁光阱(3-dimension magneto-optical trap,3D-MOT)。如图3c所示,为本申请提供的一种3D-MOT的工作原理示意图。3D-MOT的工作原理是在由一对载有反向电流的亥姆霍兹线圈产生的梯度磁阱中,加上频率接近原子能级差的三对冷却激光(即一共6个冷却激光),每两个一对,每一对的入射方向相对,三对冷却激光从三个正交方向(例如XYZ三个方向)对射,交叉点位于磁阱中心。原子束流中的原子不断吸收具有反向动量的光子,受到冷却激光的反向作用 力,使原子持续减速,最终被冷却囚禁在磁阱中心。
如下示例性地提供了三种可能的原子囚禁模块的结构。
结构2.1,原子囚禁模块包括3D-MOT和蒸发冷却单元。
如图3d所示,为本申请提供的一种原子囚禁模块的结构示意图。该原子囚禁模块可包括3D-MOT和蒸发冷却单元。3D-MOT可用于对来自原子源的原子束流进行囚禁;蒸发冷却单元可用于对来自3D-MOT的原子进行进一步的蒸发冷却。通过上述进一步的蒸发冷却,可使得被囚禁的原子进一步降温,如此,可使得原子囚禁模块中囚禁的原子的相空间密度增加。其中,蒸发冷却单元可为纯磁阱或纯光阱。示例性地,若蒸发冷却单元为纯磁阱,原子束流在3D-MOT的冷却激光和磁场的作用下,被囚禁,得到一定温度范围的原子,再将原子转移至纯磁阱中进行蒸发冷却,以实现对该原子的进一步降温。其中,纯磁阱指关闭冷却激光后,迅速提高亥姆霍兹线圈的磁场梯度,形成只需要磁场就能囚禁原子的结构。应理解,由于原子存在较多的能级,RF线圈可发射频率扫描变化的射频,持续地将磁场中囚禁态的原子激发为非囚禁态,又因为只有温度较高的原子才能大概率变成非囚禁态,因此,蒸发冷却的过程是不断剔除原子中温相对高的原子,剩下的原子通过弹性碰撞,达到热平衡,再产生温度相对高的原子,再剔除,如此重复该过程,实现对原子进行冷却的效果。纯光阱是指一种由远红外激光形成的光阱囚禁原子的结构,囚禁原理与前述的1064nm光阱激光类似。其蒸发冷却过程是通过持续降低激光光强,达到使原子降温的目的。
结构2.2,原子囚禁模块包括3D-MOT和2D-MOT。
如图3e所示,为本申请提供的另一种原子囚禁模块的结构示意图。该原子囚禁模块可包括2D-MOT和3D-MOT。2D-MOT用于对来自原子源的原子束流(进行冷却和汇聚,将冷却且汇聚后的原子束流喷向3D-MOT;3D-MOT用于将来自2D-MOT的冷却且汇聚后的原子束流进行再次冷却,以实现对原子的囚禁。由于原子束流的速率越高,原子囚禁模块囚禁原子越困难。因此,可先将来自高速原子束流喷向2D-MOT,采用2D-MOT预先降低原子束流的速率,形成低速原子束流,而且2D-MOT还可将原子束流从一个维度流向3D-MOT,即还可实现对原子束流的汇聚。如此,可使得3D-MOT更容易囚禁原子束流中的原子,从而可增加原子囚禁模块囚禁的原子数。需要说明的是,2D-MOT相比于3D-MOT,少一个维度的冷却激光束缚,只在两个维度对原子束流进行冷却(图3e以在YZ两个维度为例),原子从剩余的维度(Z)泄流出来,形成低速原子束流,其余可参见图3a的介绍,此处不再赘述。
结构2.3,原子囚禁模块包括2D-MOT、3D-MOT和蒸发冷却单元。
该结构2.3可以理解为是将上述结构2.1和结构2.2相结合,详细结构可参见上述结构2.1和结构2.2的介绍,此处不再一一赘述。
需要说明的是,原子囚禁模块为了囚禁原子,需要优化各种参数(例如3D-MOT所需要的冷却激光的功率、冷却激光的频率、冷却激光的偏振,磁场大小、冷却激光与磁场的时序等)。
在下文的介绍中,为了便于方案的说明,以囚禁模块中囚禁的粒子为离子为例进行介绍,粒子阱系统以离子阱系统为例,囚禁模块以离子囚禁模块为例。
在一种可能的实现方式中,囚禁模块中囚禁(或称为束缚)的离子可以是一维分布、也可以二维分布、或者也可以是三维分布,下面分别详细介绍。
请参阅图4a,为本申请提供的一种囚禁模块囚禁的离子的分布示意图。该囚禁模块中 囚禁的离子是一维分布,可形成一维离子链,一维离子链上任意相邻两个离子之间的间距可以相等,也可以不相等。应理解,图4a是以五个离子、且离子的间距相等为例说明的。
在一种可能的实现方式中,当囚禁的离子是一维分布时,第一光束和第二光束可以实现单个离子的独立寻址。具体的,第一光束的传播方向与第二光束的传播方向可以是平行且相对(可参见上述图4a或图4b);或者也可以是有一定夹角(可参见图4c),该夹角大于90°且小于180°。需要说明的是,第一光束的传播方向也可以称为第一光束的指向,第二光束的传播方向也可以称为第二光束的指向。
请参阅图4d,为本申请提供的另一种囚禁模块囚禁的离子的分布示意图。该囚禁模块中囚禁的离子是二维分布的。应理解,二维分布也可以是不规则的分布,图4d是以规则的二维分布为例,即图4d以二维离子的分布为5×4的阵列为例示例的,本申请对此不作限定。
在一种可能的实现方式中,当囚禁的离子是二维分布时,第一光束和第二光束可以实现单个离子的独立寻址。具体的,第一光束的传播方向与第二光束的传播方向可以是有一定夹角(可参见图4d或图4e),该夹角大于90°且小于180°。或者也可以是第一光束和第二光束在垂直于二维离子所在的面内、且第一光束的传播方向和第二光束的传播方向在同一直线上且相对传播,第二光束和第二光束重合的区域略大于离子的大小。
在另一种可能的实现方式中,当囚禁模块中囚禁的离子是二维分布时,第一光束和第二光束也可以实现单链离子的寻址,也就是说,第一光束和第二光束重合的区域可以覆盖多个离子。具体的,第一光束的传播方向与第二光束的传播方向可以是在同一直线上且相对传播(可参见上述图4f)。或者第一光束的传播方向与第二光束的传播方向也可以是有一定夹角,该夹角大于90°且小于180°,具体的,第一光束和第二光束重合的区域可以覆盖到多个离子上。需要说明的是,当第一光束和第二光束在空间上重合的部分为一个线段,该线段的大小取决于光束截面的尺寸。此外,由于相邻离子之间的间距通常为微米级别,因此对于单链离子同时寻址,可将第一光束和第二光束重合的线段与离子单链重合。
在一种可能的实现方式中,囚禁模块中囚禁的离子的种类可以相同,或者也可以不同,或者也可以部分相同。例如,囚禁的离子可以包括但不限于镱(Yb)离子、钙(Ca)离子或铍(Be)离子等中的任一种或任多种的组合。不同种类的离子发出的荧光的波长不同。
需要说明的是,为了防止外界其它粒子等对被囚禁的离子碰撞,从而破坏被囚禁的离子的量子态甚至造成被囚禁的离子丢失等问题,因此,囚禁模块通常需要设置于真空系统或超高真空系统(或称为真空腔),以实现与外界环境的隔离。
二、光源模块
在一种可能的实现方式中,光源模块用于按第一脉冲宽度发射光束。在时域上,第一脉冲宽度例如可以为飞秒(fs)量级;进一步,相邻两个脉冲(即光源模块发射的相邻两个光束)之间的时间间隔在ns量级或ns量级以上。在空间上,第一脉冲宽度对应的第一空间距离(dL)小于任意相邻两个离子之间的间距,通常,dL在微米(um)量级;进一步,光源模块发射相邻两个脉冲之间的时间间隔对应的第二空间距离DL大于囚禁模块中的至少两个离子中任意两个离子间的间距,通常,DL在米量级。由于第一脉冲宽度对应的第一空间距离小于任意相邻两个离子之间的间距,且相邻两个脉冲之间的时间间隔对应的第二空间距离大于囚禁模块中的至少两个离子中任意两个离子间的间距,从而可以在实现对单个离子的独立寻址的情况,且不会对被寻址的离子的周围的离子产生影响。
需要说明的是,第二空间距离大于囚禁模块中的至少两个离子中任意两个离子间的间距通常是指:第二空间距离大于属于同一条链上的任意两个离子间的间距,或者第二空间距离大于属于同一区域的任意两个离子间的间距。
进一步,可选的,第一脉冲宽度对应的第一空间距离可用下述公式1表示,相邻两个脉冲之间对应的第二空间距离可用下述公式2表示。
dL=C×dt   公式1
DL=C×Dt   公式1
其中,dL表示第一脉冲宽度对应的第一空间距离,C表示光速,为常数3×10 8m/s,dt表示第一脉冲宽度,DL表示相邻两个脉冲之间对应的第二空间距离,Dt表示相邻两个脉冲之间的时间间隔。
如图5所示,为本申请提供的一种脉冲激光的示意图。第i个脉冲和第i+1个脉冲的脉冲宽度均为第一脉冲宽度,为fs量级,第一脉冲宽度对应的第一空间距离dL=C×dt=3×10 8m/s×10 -15s=3×10 -7m=3um,第i个脉冲与第i+1个脉冲之间的时间间隔大于3ns,相邻两个脉冲之间对应的第二空间距离DL=C×Dt=3×10 8m/s×3ns=3×10 8m/s×3×10 -9s=0.9m。
进一步,可选的,第一光束和第二光束在空间上相邻的重合位置的间距通常在米量级,其中,第一光束和第二光束也可以称为对打的两个脉冲。举例说明,通过改变第一光束和第二光束到达第一目标离子的延时量,可以使得第一光束与第二光束可以在位置1重合,也可以在位置2重合,若位置1和位置2为相邻两个位置,则位置1和位置2之间的间距通常在米量级,远大于囚禁模块囚禁的离子链的长度。由此可以说明,第一光束和第二光束在离子链上只能在一个位置重合,且不会对其它的离子产生影响。
示例性的,光源模块可以包括但不限于:飞秒脉冲激光器、皮秒激光器或阿秒激光。其中,飞秒脉冲激光器发射的光束为飞秒脉冲激光,飞秒脉冲激光的脉冲宽度在时域上为飞秒(fs)量级,可以实现脉冲宽度对应的第一空间距离小于至少两个离子中任意相邻两个离子的间距;重复频率小于GHz,可以实现发射相邻两个光束的时间间隔对应的第二空间距离大于至少两个离子中任意两个离子间的距离。在空间上,飞秒脉冲激光的脉冲宽度对应的空间距离为um量级,相邻两个脉冲之间间隔对应的空间距离(米量级)远大于一般的离子长链的总长。
需要说明的是,该光源模块可以属于离子阱系统,或者也可以独立于离子阱系统。
三、第一分光模块
在一种可能的实现方式中,第一分光模块可以将来自光源模块的光束分为第一光束和第二光束。应理解,第一光束和第二光束可以是两路光,也可以是多于两路的光。换言之,第一分光模块可以将来自光源模块的光束分为两路或两路以上的光。从被囚禁的离子的角度来看,每个离子只能感受到一对光(即第一光束和第二光束),也可以理解为,同时打到单个离子上的两束光分别称为第一光束和第二光束。
需要说明的是,第一分光模块基于来自光源模块的光束的强度(或称为能量或称为振幅)进行分束,得到第一光束和第二光束。第一光束和第二光束携带的信息相同,第一光束和第二光束携带的信息均与光源模块发射的光束携带的信息相同。其中,第一光束的强度与第二光束的强度的总和等于或近似等于光源模块发射的光束的强度。
如下,示例性的给出了第一分光模块两种可能的结构。
结构一,第一分光模块可以为偏振光分束器(polarizing beam splitter,PBS)。
请参阅图6,为本申请提供的一种偏振光分束器的分光原理示意图。偏振光分束器可通过在直角棱镜的斜面镀制一层或多层薄膜,然后通过胶层相贴合。利用光束以布鲁斯特角入射时P偏振光透射率为1而S偏振光透射率小于1的性质,在光束以布鲁斯特角多次通过薄膜以后,达到使的P偏振分量完全透过,而绝大部分S偏振分量反射(至少90%以上)的一个光学元件。示例性地,偏振光分束器可将入射光(包括P偏振光和S偏振光)分为的水平偏振光(即P偏振光)和垂直偏振光(即S偏振光)。其中,P偏振光完全通过,S偏振光以45度角被反射,且S偏振光的出射方向与P偏振光的出射方向成90度角。也可以理解为,PBS具有透射和反射特性,通常,对S偏振光的反射率在99.5%以上,对P偏振光的透过率在91%以上。
需要说明的是,偏振光分束器也可以是其它可能的分光棱镜(beam splitter,BS)或分光平板。分光棱镜是通过在棱镜的表面镀制一层或多层薄膜(即分光膜)形成的;分光平板是通过在玻璃平板的一个表面镀制一层或多层薄膜(即分光膜)形成的。分光棱镜和分光平板均是利用薄膜对射入的光束的透射率和反射率不同,以实现对光源模块传播过来的光束进行分光。
还需要说明的是,若需要将来自光源模块的光束分为多于两束的光,第一分光模块可以是PBS阵列。
结构二,第一分光模块可以为衍射光学器件(diffractive optical elements,DOE)。
在一种可能的实现方式中,DOE可以将来自光源模块的光束分为第一光束和第二光束接,第一光束和第二光束之间的传播方向可以不同,也可以相同,具体可根据实际应用确定。可以理解的是,DOE分出的第一光束和第二光束的数量、以及第一光束和第二光束之间的间距可由DOE的物理结构来决定。
需要说明的是,上述给出的第一分光模块的结构仅是示例,本申请对此不作限定,凡是可以是实现将来自光源模块的光束分为第一光束和第二光束的结构均在本申请的保护范围内。例如,分光模块还可以是打孔反射镜,所谓打孔反射镜是指带孔的反射镜。打孔反射镜的孔可使得来自光源模块的光束的部分透过,得到第一光束;打孔反射镜的反射镜可对来自光源模块的光束的部分进行反射,得到第二光束;或者,孔反射镜的孔可使得来自光源模块的光束的部分透过,得到第二光束;打孔反射镜的反射镜可对来自光源模块的光束的部分进行反射,得到第一光束。
四、第一相对延时模块
在一种可能的实现方式中,第一相对延时模块用于控制第一光束和第二光束到达待操控的目标离子的延时量(或称为时间差)。该延时量决定了第一光束和第二光束重合的位置,当第一光束和第二光束重合在某个目标离子处,即可实现对该目标离子的操控。也可以理解为,通过第一相对延时模块,可以调整经过该第一相对延时模块的光束(第一光束或第二光束)的飞行时间,从而可调整第一光束和第二光束重合的位置。需要说明的是,延时量是根据需要操控的目标离子的位置确定的,具体可参见离子阱初始化过程的介绍。
具体的,第一相对延时模块可位于第一光束的传播光路上,可改变第一光束的光程,从而可以实现改变第一光束和第二光束到达第一目标离子的延时量;进一步,光程改变后的第一光束与第二光束同时达到第一目标离子处。或者第一相对延时模块可位于第二光束的传播光路上,可改变第二光束的光程,从而可以实现改变第一光束和第二光束到达第一目标离子的延时量;进一步,光程改变后的第二光束和第一光束同时达到第一目标离子处。 或者第一相对延时模块可位于第一光束和第二光束的传播光路上,可以改变第一光束的光程和第二光束的光程,从而可以实现改变第一光束和第二光束到达第一目标离子的延时量;进一步,光程改变后的第一光束和光程改变后的第二光束同时到达第一目标离子处。可以理解的是,第一光束和第二光束重合于第一目标离子时,第一光束的光程的改变量可能与第二光束的光程的改变量相同,也可能不同。
需要说明的是,第一光束和第二光束到达第一目标离子的延时量与第一目标离子的位置之间存在对应关系,这两者的对应关系可以是离子阱初始化过程中确定的,具体可参见离子阱初始化过程的介绍。
如图7所示,为本申请提供的一种延时量与两束光重合位置的关系示意图。其中,圆球表示囚禁模块囚禁的离子,该示例中以包括5个离子的一维离子链为例,箭头分别表示第一光束的传播方向和第二光束的传播方向,矩形表示第一光束和第二光束。若第一光束和第二光束的延时量为dt,第一光束和第二光束在t 0时刻未在任意的离子处有重合,在t 1时刻同时到达第三个离子。也可以理解为,第一光束和第二光束的延时量为dt时,第一光束和第二光束重合于第三个离子处,第三个离子即为第一目标离子。若第一光束和第二光束的延时量为dt’,第一光束和第二光束在t 0时刻未在任意离子处有重合,在t 1’时刻同时到达第二个离子。也可以理解为,第一光束和第二光束的延时量为dt’时,第一光束和第二光束重合于第二个离子处,第二个离子即为第一目标离子。
基于此,通过控制第一光束和第二光束到达第一目标离子的延时量,可调节第一光束和第二光束重合的位置,从而可以实现对不同的离子的独立寻址。也可以理解为,第一光束和第二光束到达目标离子的延时量不同时,第一光束和第二光束同时照射到的离子不同。
在一种可能的实现方式中,第一相对延时模块包括第一驱动组件和光程调节组件。其中,第一驱动组件用于根据接收到的第一控制信号,向光程调节组件发送第一驱动信号,第一控制信号是根据第一目标离子的位置确定的;光程调节组件用于根据第一驱动信号,改变接收到的第一光束和/或第二光束的光程。
进一步,可选的,在分时寻址的场景中,第一驱动组件可在不同的时刻,向光程调节组件输入不同的第一驱动信号,从而可实现控制第一光束和第二光束在哪个离子处重合。也可以理解为,第一相对延时模块的延时量可由第一驱动组件的第一驱动信号来高精度控制。
示例性地,第一驱动组件可以是电压源,对应的第一驱动信号可以为电压信号;或者,第一驱动组件也可以是电流源,对应的第一驱动信号可以为电流信号。
下面示例性地的示出了光程调节组件可能的三种结构。
为了便于方案的说明,如下示例中以第一相对延时模块接收的光束为第二光束为例介绍。应理解,若第一相对延时模块接收到的光束为第一光束,可将下述示例中的第二光束用第一光束替换。
结构1,光程调节组件包括振镜和反射元件。
其中,振镜可以包括但不限微机电系统(micro electro-mechanical system,MEMS)反射镜、或MEMS波导等。反射元件可以包括但不限于反射镜、棱镜等,棱镜例如可以是直角棱镜。通过直角棱镜作为反射元件,有助于提高射入第一相对延时模块的第二光束的利用率。进一步,可通过改变MEMS反射镜的位置来改变第二光束的光程,可通过改变MEMS 波导的位置来改变第二光束的光程。应理解,第二光束经MEMS反射镜后的传播方向不变。
如图8a所示,为本申请提供的一种第一相对延时模块的结构示意图。该第一相对延时模块包括第一驱动组件和光程调节组件,光程调节组件包括振镜和棱镜。振镜将接收到的第二光束反射至棱镜,棱镜将来自振镜的第二光束全反射出去。也可以理解为,第二光束经过第一相对延时模块的光路为:经振镜反射至棱镜的第一直角面,经棱镜的第一直角面全反射至棱镜的第二直角面,经棱镜的第二直角面反射出去。
在一种可能的实现方式中,若第一驱动组件可根据接收到的第一控制信号生成第一驱动信号A1,并向振镜输入第一驱动信号A1,振镜根据第一驱动信号A1可调节处于位置A1,相应的第二光束的传播光路为虚线,对应的延时量为dt。若第一驱动组件可根据接收到的第一控制信号生成第一驱动信号B1,振镜根据第一驱动信号B1可调节处于位置B1,相应的第二光束的传播光路为实线,对应的延时量为dt’。也就是说,第一驱动组件向振镜输入不同的第一驱动信号,可调节振镜处于不同的位置,第二光束经过处于不同位置的振镜对应的光程不同。换言之,可通过改变振镜的位置来改变第二光束的光程。可以理解的是,第二光束经过第一相对延时模块的光程(或延时量)与振镜的位置有关。具体的,延时量与振镜的位置之间存在对应关系,具体可参见下述初始化过程的相关介绍,此处不再赘述。
结构2,光程调节组件包括折射率可变的结构。
在一种可能的实现方式中,折射率可变的结构可以包括但不限于光电晶体、热光晶体等。其中,光电晶体例如可以是光电调制器(electro-optic modulator,EOM),可通过电信号调节EOM的折射率以实现对第二光束的光程的改变。热光晶体可通过热信号或电控温方式等调节热光晶体的折射率。
如图8b所示,为本申请提供的另一种第一相对延时模块的结构示意图。该第一相对延时模块包括第一驱动组件和光程调节组件,光程调节组件包括光电晶体。第一驱动组件可向光电晶体输入不同的第一驱动信号,光电晶体可根据第一驱动信号调节为不同的折射率,第二光束经过折射率不同的光电晶体的光程不同。可以理解的为,第二光束经过第一相对延时模块的光程与电光晶体的折射率有关。具体的,第二光束的光程与光电晶体的折射率之间存在对应关系,具体可参见初始化过程的相关介绍,此处不再赘述。
结构3,光程调节组件包括螺旋线。
如图8c所示,为本申请提供的又一种第一相对延时模块的结构示意图。该第一相对延时模块包括第一驱动组件和光程调节组件,光程调节组件包括螺旋线,螺旋线上的任意点与中心的连线均垂直于该任意点处的圆弧的切线。第一驱动组件向螺旋线的中心输入第一驱动信号,螺旋线可围绕中心旋转,此时螺旋线的半径逐渐变大,第二光束经螺旋线反射后,光程也变大,且第二光束的入射方向和出射方向均不变。关于第二光束的光程与螺旋线的半径的对应关系可以在初始化过程中获得,具体可参见初始化过程,此处不再赘述。
需要说明的是,上述给出的三种光程调节组件的结构仅是示例,凡是可以实现接收到的光束(如第二光束或第一光束)光程的结构均在本申请的保护范围,例如还可以是双反射镜(第一反射镜和第二反射镜)和透镜(请参与图8d),可通过改变双反射镜中至少一个反射镜的反射角度,可实现改变接收到的第二光束的光程。
需要说明的是,第一相对延时模块可调控的延时量的范围在毫米以上,精度在微米以下,从而可实现对囚禁模块囚禁的离子的精确对准和全面覆盖。例如,延时量的精度可控 制在飞秒量级,延时量对应的空间距离的精度可控制在微米量级。另外,多个离子可以共用一个第一相对延时模块。
本申请中,离子阱系统还可包括第一光路模块和第二光路模块。进一步,还可包括控制模块。下面分别详细介绍。
需要说明的是,第一光路模块可对应上述第一相对延时模块,第二光路模块不对应第一相对延时模块;或者,第一光路模块不对应上述第一相对延时模块,第二光路模块对应第一相对延时模块;或者,第一光路模块对应上述第一相对延时模块,第二光路模块也对应第一相对延时模块。应理解,第一光路模块对应第一相对延时模块可以理解为第一光束需要经过第一光路模块和第一相对延时模块;第一光路模块不对应第一相对延时模块可以理解为第一光束仅需要经过第一光路模块,不需要经过第一相对延时模块。第二光路模块对应或不对应第一相对延时模块的理解与第一光路模块对应或不对应第一相对延时模块相同。也可以理解为,在操控离子的第一光束和第二光束的传播光路中,至少有一路光束需经过第一相对延时模块。
在下文的介绍中,为了便于方案的说明,以第二光路模块对应第一相对延时模块、第一光路模块不对应第一相对延时模块为例,以第一光束经过第一光路模块,第二光束经过第二光路模块为例说明。
五、第一光路模块和第二光路模块
在一种可能的实现方式中,第一光路模块包括第一调制组件,第一调制组件用于调制第一光束的时序和/或频率(或相对)。具体的,第一光束的时序可通过光开关控制,也就是说,第一光束的时序的控制,在时间维度上表现为开关切换。可以理解的是,第一调制组件可以调制一个第一光束(对应一个离子),也可以调制多个第一光束(对应多个离子)。
示例性地,第一调制组件可以包括但不限于声光调制器(acousto-optic modulator,AOM),AOM由声光介质和压电换能气构成。当射频驱动器的某种特定载波的波频率驱动换能器时,换能气即产生同一频率的超声波并传入声光介质,在介质内形成折射率变化,光束通过介质时发生相互作用而改变光束的传播方向即产生衍射,即可从AOM出射衍射光。
进一步,可选的,第一调制组件可以包括单通道的调制器、或多通道的调制器中的至少一项或多项的组合。
在一种可能的实现方式中,第一调制组件可以通过射频驱动器控制,射频驱动器可以通过射频(radio frequency,RF)源控制。进一步,RF源可通过射频调制器控制输入第一调制组件的射频信号的时序以及频率,RF源可通过控制模块控制,具体可参见下述情形二的介绍。需要说明的是,第一光束的时序和频率与量子计算的需求相关。也可以理解为,根据量子算法的需求,可确定出哪些时刻需要操控哪些离子,以实现射频信号时序的控制。
进一步,可选的,第一光路模块还可包括第一偏振组件,第一偏振组件用于改变接收到的第一光束的偏振态。例如,接收到的第一光束为P偏振光,第一偏振组件可以将该第一光束的偏振态转换为左旋圆偏光。再比如,接收到的第一光束为S偏振光,第一偏振组件可将该第一光束的偏振态转换为右旋圆偏光。
示例性地,第一偏振组件例如可以是偏振片、偏振器或格兰棱镜。
进一步,可选的,第一光路模块还可包括第一缩放和/或整形组件,第一缩放和/或整 形组件用于对偏振态转换后的第一光束进行缩放和/或整形。应理解,囚禁离子的电极会占据离子附近较大的空间,可以通过通光孔径约束光斑大小,为了防止光束四处散射,通常需要在空间上约束第一光束的光斑的大小。若第一光束的光斑较大,第一光路模块也可以不包括该第一缩放和/或整形组件。
可以理解的是,第一缩放和/或整形组件和第一偏振组件属于无源器件,第一调制组件属于有源器件。
在一种可能的实现方式中,第二光路模块包括的各个组件可以与第一光路模块包括的组件相同,或者第二光路模块包括的组件也可以多于第一光路模块包括的组件,或者第二光路模块包括的组件也可以少于第一光路模块包括的组件,本申请对此不作限定。具体的,可将第一光路模块中的“第一”用“第二”替换。
需要说明的是,第二光路模块包括的第二调制组件用于改变接收到的第二光束的偏振态。若第一偏振组件将第一光束的偏振态转换为左旋圆偏光,第二偏振组件可将第二光束的偏振态转换为右旋圆偏光。若第一偏振组件将第一光束的偏振态转换为右旋圆偏光,第二偏振组件可将第二光束的偏振态转换为左旋圆偏光。由于第一光束和第二光束的偏振态会影响第一光束和第二光束的耦合强度,进而会影响操控离子的量子效率,因此,通过偏振态为右旋圆偏光的第一光束和偏振态为左旋圆偏光的第二光束(或者偏振态为左旋圆偏光的第一光束和偏振态为右旋圆偏光的第二光束)同时到达某个目标离子时,有助于提高对离子的量子效率。
六、控制模块
在一种可能的实现方式中,控制模块可对第一光束和第二光束到达第一目标离子的延时量进行控制。进一步,控制模块还用于对第一光束和第二光束的时序和/或频率进行控制,从而可以实现光频率的锁定。下面分情形介绍。
情形一,控制模块用于控制第一驱动组件。
在一种可能的实现方式中,控制模块通过控制第一驱动组件,从而通过第一驱动组件驱动第一相对延时模块,从而实现对第一光束和第二光束到达第一目标离子的延时量的控制。
在下文的介绍中,以第一相对延时模块中的光程调节组件包括振镜和反射元件为例,以第二光束经过第一相对延时模块为例介绍。
在一种可能的实现方式中,控制模块可根据需要操控的第一目标离子的位置与第一驱动信号的对应关系(例如可通过查表1),生成第一控制信号。具体的,控制模块可根据第一目标离子的位置,确定第一光束和第二光束到达第一目标离子的延时量,根据延时量确定第二光束的光程的改变量,根据第二光束的光程的改变量确定振镜的目标位置,根据目标位置确定第一驱动组件的参数信息,根据第一驱动组件的参数信息生成第一控制信号。进一步,控制模块向第一驱动组件发送第一控制信号。第一控制信号用于控制第一驱动组件输出第一驱动信号,第一控制信号例如可以包括第一驱动组件的参数信息。若第一驱动组件为电压源,第一驱动组件的参数信息可以包括电压;若第一驱动组件为电流源,第一驱动组件的参数信息可以包括电流;进一步,第一驱动组件的参数信息还可包括时序等。第一驱动信号例如可以是将振镜移动到目标位置所需要的信号。
表1离子的位置与第一驱动组件的参数信息的对应的关系
离子的标识 位置 第一驱动组件的参数信息
离子A 位置1 I A(或U A)
离子B 位置2 I B(或U B)
离子N 位置N I N(或U N)
通过上述表1,若需要操控离子A时,控制模块需要向第一驱动组件输入的电流大小为I A,或输入的电压大小为U A,从而第一驱动组件可驱动第一相对延时模块来改变第一光束和第二光束到达第一目标离子的延时量,从而可使得第一光束和第二光束在离子A处重合,即第一光束和第二光束同时到达离子A。若需要操控离子B时,控制模块需要向第一驱动组件输入的电流大小为I B、或输入的电压大小为U B,此时,第一驱动组件驱动第一相对延时模块改变第一光束和第二光束的延时量,从而可使得第一光束和第二光束在离子B处重合,即第一光束和第二光束同时到达离子B;此处不再一一列举。
需要说明的是,该表1可以是在离子阱初始化过程中获得后并存储的。当囚禁模块中的离子的位置有移动时,该表1需要动态更新或校准。
情形二,控制模块控制射频源。
在一种可能的实现方式中,控制模块还用于控制射频源的参数和时序,从而实现对第一光束和第二光束的时序和/或频率的控制。具体的,控制模块可控制RF源向第一射频驱动器输入控制信号1,以按量子计算的需求,控制第一光束的时序和/或频率;和/或,控制模块可控制RF源向第二射频驱动器输入控制信号2,以按量子计算的需求,控制第二光束的时序和/或频率。
示例性地的,控制模块例如可以包括一个或多个处理单元,处理单元例如可以是现场可编程门阵列(field programmable gate array,FPGA)、比例-积分-微分(proportional–integral–derivative,PID)控制器、应用处理器(application processor,AP)、图形处理器(graphics processing unit,GPU)、图像信号处理器(image signal processor,ISP)、控制器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、中央处理单元(central processing unit,CPU)、或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合等。其中,不同的处理单元可以是独立的器件,也可以集成在一个或多个处理器中。
当完成量子态操控后,还可对离子进行量子态探测。基于此,离子阱系统还可包括探测模块。探测光照射到对应离子上,离子会发生光致发光从而产生荧光,探测模块通过收集离子产生的荧光可以获得离子的量子态信息。例如,该荧光可以表征出离子所处的量子态为0态还是1态。进一步,探测模块可将读取到的离子的量子态信息发送给控制模块,以便于控制模块重新调控第一驱动组件和/或射频源等,具体可参见控制模块的介绍。
示例性的,探测模块例如可以是雪崩光电二极管(avalanche photodiode,APD)、光电倍增管(photo multiplier tube,PMT)、电子倍增式电荷耦合元件(electron multiplying charge coupled deviceE,EMCCD)、四象限光电探测器、或互补金属氧化物半导体元件(complementary metal-oxide semiconductor,CMOS)探测器等。
进一步,随着时间的推移,囚禁模块中囚禁的离子的位置可能会发生改变,为了实现 第一光束和第二光束精确的寻址到对应的离子,还需要动态的调整离子阱系统中部分或全部模块的参数。基于此,离子阱系统还可以包括反馈模块。反馈模块的输入是离子的量子态信息,输出是第一相对延时模块的电压或电流,主要用于对准的调试,可以实现对准的保持。应理解,离子的量子态信息可以是通过检测探测光获取的。进一步,通过反馈模块还可以减小甚至消除机械漂移带来影响,从而可使得第一光束和第二光束可以长时间都能对准离子,进而可实现长时间的操控。
需要说明的是,控制模块的功能和反馈模块的功能可以集成在一个硬件上,或者也可以集成在不同的硬件上,本申请对此不作限定。
如下示例性地的示出了离子阱的初始化过程。
首先将囚禁模块中囚禁的离子初始化为量子初态,例如0态。然后通过探测模块探测离子的量子态信息,根据离子的量子态信息来调节延时量,进而确定被寻址的离子的位置。具体的,当控制模块无法获取到离子的量子态信息时,说明第一光束和第二光束未同时到达任意离子,即没有离子被点亮,继续调节延时量;当获取到某个离子的量子态信息时,即第一光束和第二光束同时到达了该离子,即有离子被点亮,通过不断改变第一光束和第二光束的传播方向,并对对应的离子进行拉比振荡的扫描,可得到拉比强度与第一光束和第二光束的位置之间的关系图,当第一光束和第二光束的位置与对应的离子完全对准时,测得的拉比强度Ω最大,记录此时该离子的位置、对应的延时量,以及第一光束的初始传播方向和第二光束的初始传播方向;当第一光束和第二光束的初始传播方向确定后,后续不再改变第一光束和第二光束的传播方向,仅通过调节延时量来实现寻址不同的离子。若获取到离子的量子态信息不是需要寻址的离子,继续调节延时量,当特定的离子被点亮后,记录该特定离子的位置与延时量的对应关系。
例如,当获取离子A的量子态信息后,基于上述相同的方法,记录离子A的位置与延时量A的对应关系;当获取到离子B的量子态信息时,记录离子B的位置与延时量B的对应关系;依次类推;当需要寻址离子E时,但再次获取到了离子C的量子态信息时,可继续调节延时量,直到获取到离子E的量子态信息,再记录离子E的位置和延时量E的对应关系。
表2离子的位置与延时量的对应的关系
离子 延时量
离子A ΔA
离子B ΔB
离子E ΔE
进一步,可选的,在离子阱的初始化过程中,还可以确定出满足对应的延时量时光程调节组件需要改变的参数的大小。若光程调节组件包括振镜和反射元件,还可确定出要满足表2中每个延时量时对应的振镜的目标位置;若光程调节组件包括折射率可变的结构,还可确定出满足表2中的每个延时量对应的折射率可变的结构的目标折射率。此处不再一一列举。
表3以光程调节组件包括振镜和反射元件为例,给出了延时量与振镜的位置关系。
表3延时量与振镜的位置的对应的关系
延时量 振镜的位置
ΔA 位置A
ΔB 位置B
ΔE 位置E
进一步,在离子阱系统的初始化过程中,还可以确定振镜要移动到对应的目标位置时控制模块发送给第一驱动组件的参数信息,可参见上述表1。
需要说明的是,在离子阱系统初始化完成后,可以将上述表2至表3分别进行存储,或者也可以将上述表2至表3合成为表1进行存储,本申请对此不作限定。
可以理解的是,离子阱初始化过程可以是通过软件程序进行迭代自动校准和调节的。
基于上述内容,下面给出上述离子阱系统的五种具体可能的实现方式。以便于进一步理解上述离子阱系统的架构及寻址离子的过程。需要说明的是,上述给出各个模块中,如果没有特殊说明以及逻辑冲突,根据其内在的逻辑关系可以组合形成其它可能的离子阱系统。下面给出的四种离子阱系统仅是示例。
如图9所示,为本申请提供的又一种离子阱系统的架构示意图。该离子阱系统可包括囚禁模块901、光源模块902、第一分光模块903、第一相对延时模块904、第一光路模块905和第二光路模块906。进一步,可选的,该离子阱系统还可包括控制模块907和探测模块908。该示例中以第二光路模块906对应第一相对延时模块904为例、以第一光束经过光路1且第二光束经过光路2为例。关于各个模块的详细介绍,可分别参见前述相关内容,此处不再重复赘述。
基于图9所示的离子阱系统的传播光路为:光源模块902按第一脉冲发射光束,该光束经第一分光模块903分为第一光束和第二光束。第一光束经过的光路可称为光路1,具体的:第一光束经第一光路模块905传播至第一目标离子。第二光束经过的光路可称为光路2,具体的:第二光束经第一相对延时模块904后传播到第二光路模块906,通过第一相对延时模块904可以改变第二光束的光程,从而可改变第一光束和第二光束到达第一目标离子的延时量;再经第二光路模块906传播至第一目标离子。基于此,第一光束和第二光束同时到达第一目标离子,以实现对第一目标离子的寻址,为了提高量子效率,到达第一目标离子的第一光束为左旋圆偏光,到达第一目标离子的第二光束为右旋圆偏光;或者,到达第一目标离子的第一光束为右旋圆偏光,到达第一目标离子的第二光束为左旋圆偏光。进一步,第一光束和第二光束操控第一目标离子后,探测模块908还可探测第一目标离子的量子态信息,具体可参见前述探测模块的介绍,此处不再赘述。
可以理解的是,基于图9所示的离子阱系统,可以实现单个离子的独立寻址,或者也可以实现两个或多个离子的纠缠寻址。具体与光源模块发射光束的第一脉冲宽度相关,第一脉冲宽度对应的第一空间距离小于任意相邻两个离子之间的间距,则可以实现单个离子的寻址;若第一脉冲宽度对应的第一空间距离大于相邻两个离子之间的间距,则可以实现对这两个离子或更多离子的纠缠寻址。
基于上述离子阱系统,通过第一相对延时模块调节第一光束和第二光束到达第一目标离子的延时量,也可以理解为,通过第一相对延时模块可以控制光子飞行时间,从而可以 精确的控制第一光束和第二光束重合于不同的离子处,即可实现对不同的离子的高精度的独立寻址。
需要说明的是,上述图9中的第一光路模块905中包括的各个组件的顺序可以互换,第二光路模块906中包括的各个组件顺序也可以互换。此外,第二光路模块906可以与第一相对延时模块904的位置互换,图9所示架构仅是一种可能的示例。
[根据细则91更正 30.09.2022] 
请参阅图10,为本申请提供的又一种离子阱系统的架构示意图。该离子阱系统可包括囚禁模块1001、光源模块1002、第一分光模块1003、第一相对延时模块1004、第一光路模块1005、第二光路模块1006和第二分光模块1007。进一步,可选的,该离子阱系统还可包括控制模块1008和探测模块1009。该示例中以第二光路模块1006对应第一相对延时模块1004为例、以第一光束经过光路1且第二光束经过光路2为例。其中,第一相对延时模块1004包括N个子相对延时模块;第二分光模块1007包括的第二调制组件可以是一个包括至少N个通道的调制器,一个子相对延时模块1004对应一个通道;或者第二调制组件也可以是N个调制器,一个子相对延时模块1004对应一个调制器;或者第二调制组件也可以是包括m个单通道的调制器和包括N-m个通道的调制器,一个子相对延时模块1004对应一个通道或对应一个单通道调制器。图10是以一个子相对延时模块1004对应一个调制器为例示例的。第二分光模块1007用于将来自第一分光模块的第二光束分为N个第三光束,一个第三光束对应一个子相对延时模块1004。关于第二分光模块1007可参见上述对第一分光模块的介绍,第二分光模块1007与第一分光模块的区别在于:第二分光模块1007分出的光束的数量可能与第一分光模块1003的不同。关于囚禁模块1001、光源模块1002、第一分光模块1003、第一相对延时模块1004、第一光路模块1005、第二光路模块1006、第二分光模块1007、控制模块1008和探测模块1009的相关介绍,可参见前述相关描述,此处不再赘述。
基于图10所示的离子阱系统的传播光路为:光源模块1002按第一脉冲宽度发射光束后,经第一分光模块1003分为第一光束和第二光束;第一光束经过的光路可称为光路1,具体的:第一光束经第一光路模块1005传播至第一目标离子。第二光束经过的光路可称为光路2,具体的:第二光束经第二分光模块1007分为N个第三光束,每个第三光束经对应的子相对延时模块1004后传播到第二光路模块1006中对应的第二调制组件,通过对应的子相对延时模块可以改变第二光束的光程,从而可改变第一光束和第二光束到达第一目标离子的延时量;再经第二光路模块1006传播至第一目标离子。基于此,N个第三光束先后分别与第一光束在不同的离子处重合,从而可实现对多个离子进行寻址。而且,在量子计算时,可以执行并行的多量子比特计算,基于该离子阱系统可应用的量子算法更为丰富。
进一步,第一光束和第三光束操控第一目标离子后,探测模块1009还可探测第一目标离子的量子态信息,具体可参见前述探测模块的介绍,此处不再赘述。
需要说明的是,第三光束的偏振态与第二光束的偏振态相同。因此,为了提高量子效率,到达第一目标离子的第一光束为左旋圆偏光,到达第一目标离子的第三光束为右旋圆偏光;或者,到达第一目标离子的第一光束为右旋圆偏光,到达第一目标离子的第三光束为左旋圆偏光。
还需要说明的是,上述图10中的第一光路模块1005中包括的各个组件的顺序可以互换,第二光路模块1006中包括的各个组件顺序也可以互换。此外,第二光路模块1006可以与第一相对延时模块1004的位置互换,图10所示顺序仅是一种可能的示例。
请参阅图11,为本申请提供的又一种离子阱系统的架构示意图。该离子阱系统可包括囚禁模块1101、光源模块1102、第一分光模块1103、第一相对延时模块1104、第一光路模块1105、第二光路模块1106、第一光束回收模块1107和第二相对延时模块1108;进一步,可选的,该离子阱系统还可包括控制模块1109和探测模块1110。进一步,可选的,该离子阱系统还可包括第一滤波模块1111。该示例中以第一相对延时模块1104与第二光路模块1106对应为例。其中,囚禁模块1101、光源模块1102、第一分光模块1103、第一相对延时模块1104、第一光路模块1105、第二光路模块1106、控制模块1109和探测模块1110可参见前述相关介绍,此处不再赘述。
第一光束回收模块1107可用于回收第四光束,第四光束为操控第一目标离子后的第一光束剩余的光或操控第一目标离子后的第二光束剩余的光。图11是以第四光束为第二光束剩余的光为例示例的。示例性地,第一光束回收模块1107可以包括但不限于:反射镜、衍射光栅、或偏振光分束器等。
第二相对延时模块1108用于调节第四光束和第一光束到达第二目标离子的延时量,调节后的第四光束和第一光束在第二目标离子处重合。第二目标离子为至少两个离子中除第一目标离子外的离子。关于第二相对延时模块1108的结构可参见前述第一相对延时模块的介绍,区别在于第一相对延时模块调节的是第二光束的光程,而第二相对延时模块调节的是第四光束的光程。其中,第四光束的光程等于光源模块发射相邻两个光束的时间间隔对应的第二空间距离的k倍与第一目标离子和第二目标离子间的间距的2倍之和,k为正整数。具体的,L 4=k×DL+2×Δ 12=k×C×Dt+2×Δ 12,Δ 12表示第一目标离子和第二目标离子间的间距。
一种可能的应用场景中,若囚禁模块囚禁的离子为一维等间隔分布的离子时,第四光束的光程等于第二空间距离的k倍与相邻两个离子间的间距Δ的m倍之和,k和m均为正整数。具体的,L 4=k×DL+2mΔ=k×C×Dt+2mΔ。示例性地,若初始状态第一光束和第二光束操控的是第一个离子,当m等于1且k=1时,第一光束和第四光束可寻址到第二个离子;当m=2且k=1时,第一光束和第四光束可寻址到第三个离子,依次类推。也可以理解为,通过控制m的大小可以实现寻址离子的顺序(或称为被寻址离子的排列组合方式)。
第一滤波模块1111用于在第一时域,允许接收到的第四光束通过,并将第四光束传播至第二相对延时模块1108。也可以理解为,第一滤波模块主要用于在第一时域上选波或称为滤波。示例性地,第一滤波模块可以为滤波器(或称为选波器),该滤波器可以有至少两个状态,关闭(或转移)状态和通过状态。在第一时域,滤波器处于通过状态,说明在第一时域上滤波器允许第四光束通过;在除第一时域外的时域上,滤波器处于关闭状态,说明除第一时域外的时域不允许第四光束通过。换言之,当滤波器置于通过状态时,可以允许第四光束通过;当滤波器置于关闭状态,第四光束不能通过,或者第四光束被转移至垃圾桶(或称为光收集桶)。
基于上述图11所示的离子阱系统的传播光路为:光源模块1102按第一脉冲宽度发射光束,经第一分光模块1103分为第一光束和第二光束。第一光束经过的光路可称为光路1,具体的:第一光束经第一光路模块1105传播至第一目标离子。第二光束经过的光路可称为光路2,具体的:第二光束经第一相对延时模块1104后传播到第二光路模块1106,通过第一相对延时模块1104可以改变第二光束的光程,从而可改变第一光束和第二光束到达第一目标离子的延时量;再经第二光路模块1106传播至第一目标离子。基于此,第一光束和第 二光束同时到达第一目标离子后,以实现对第一目标离子的寻址。进一步,第二光束操控第一目标离子后剩余的光(可称为第四光束)经第一光束回收模块1107回收并传播至第一滤波模块1111,第一滤波模块1111在第一时域允许第四光束通过并传播至第二相对延时模块1108,第四光束经第二相对延时模块1108调节光程后传播至第二目标离子,此时,第一光束也在传播方向继续向前传播,并与第四光束重合于第二目标离子处。需要说明的是,与第四光束重合的第一光束和与第二光束重合的第一光束不是光源模块发射的同一个光束分出的第一光束,可能是光源模块发射的多个光束中两个光束分别分束的第一光束。例如,光源模块依次发射光束A、光束B、光束C,光束A经第一分光模块分为第一光束A1和第二光束A2,光束B经第一分光模块分为第一光束B1和第二光束B2,光束C经第一分光模块分为第一光束C1和第二光束C2,与第四光束重合的第一光束可能是第一光束C1,与第二光束A2重合的第一光束为第一光束A1。
进一步,第一光束和第二光束操控第一目标离子后,探测模块1110还可探测第一目标离子的量子态信息;当第一光束和第四光束操控第二目标离子后,探测模块1110还可探测第二目标离子的量子态信息。
需要说明的是,上述图11所示的离子阱系统中也可以再设置一个第一光束回收模块和第三相对延时模块,该第一光束回收模块可用于回收第一光束操控第一目标离子后剩余的光(可称为第五光束),第三相对延时模块可以改变第五光束的光程,从而实现调节第五光束和第四光束到达第二目标离子的延时量。也可以理解为,可通过第三相对延时模块改变第五光束光程,通过第二相对延时模块改变第四光束的光程,即通过第三相对延时模块和第二相对延时模块共同改变第四光束和第五光束到达第二目标离子的延时量。
还需要说明的是,上述图11中的第一光路模块1105中包括的各个组件的顺序可以互换,第二光路模块1106中包括的各个组件顺序也可以互换。此外,第二光路模块1106可以与第一相对延时模块1104的位置互换,第二相对延时模块1108、第一滤波模块1111的位置也可以互换,图11所示架构仅是一种可能的示例。
请参阅图12,为本申请提供的又一种离子阱系统的架构示意图。该离子阱系统可包括囚禁模块1201、光源模块1202、第一分光模块1203、第一相对延时模块1204、第一光路模块1205、第二光路模块1206、第一光束回收模块1207和第二相对延时模块1208;进一步,可选的,该离子阱系统还可包括第一滤波模块1209和第三光路模块1210。进一步,可选的,该离子阱系统还可包括控制模块1211和探测模块1212。该示例中以第一相对延时模块1204与第二光路模块1206对应。其中,囚禁模块1201、光源模块1202、第一分光模块1203、第一相对延时模块1204、第一光路模块1205、第二光路模块1206、控制模块1211和探测模块1212可参见前述相关介绍,此处不再赘述。第一光束回收模块1207、第二相对延时模块1208和第一滤波模块1209可参见上述图11中的相关介绍,此处不再赘述。
第三光路模块1210与上述第一光路模块相比少了第一调制组件,与第二光路模块相比少了第二调制组件。也可以理解为,第三光路模块1210可包括第三缩放和/或整形组件,进一步,还可包括第三偏振片。其中,第三缩放和/或整形组件可参见上述第一缩放和/或整形组件的介绍,第三偏振片可参见前述第一偏振片的介绍。为了实现量子效率的最大化,第四光束的偏振态与第二光束的偏振态相同。因此,若第三光路模块1210包括第三偏振片,则第三偏振态允许通过的偏振态与上述第二偏振片允许通过的偏振态相同。
[根据细则91更正 30.09.2022] 
基于上述图12所示的离子阱系统的传播光路为:光源模块1202按第一脉冲宽度发射光束,经第一分光模块1203分为第一光束和第二光束。第一光束经过的光路可称为光路1,具体的:第一光束经第一光路模块1205传播至第一目标离子。第二光束经过的光路可称为光路2,具体的:第二光束经第二相对延时模块1208后传播到第二光路模块1206,通过第一相对延时模块1204可以改变第二光束的光程,从而可改变第一光束和第二光束到达第一目标离子的延时量;再经第二光路模块1206传播至第一目标离子。基于此,第一光束和第二光束同时到达第一目标离子后,以实现对第一目标离子的寻址。进一步,第二光束操控第一目标离子后剩余的光(可称为第四光束)经第一光束回收模块1207回收并传播第三光路模块1210,经第三光路模块1210传播至第一滤波模块1209,第一滤波模块1209在第一时域允许第四光束通过,并将第四光束传播至第二相对延时模块1208,通过第二相对延时模块1208改变第四光束的光程,并将光程改变后的第四光束传播至光路2中的第一相对延时模块1204,经第一相对延时模块1204和第二相对延时模块1208可调节第四光束和第一光束到达第二目标离子的延时量。其中,第四光束再返回光路之前经过的光路可称为光路3。
需要说明的是,上述图12中的第一光路模块1205中包括的各个组件的顺序可以互换,第二光路模块1206中包括的各个组件顺序也可以互换。此外,第二光路模块1206可以与第一相对延时模块1204的位置互换,第二相对延时模块1208、第一滤波模块1209和第三光路模块1210的位置也可以互换,图12所示架构仅是一种可能的示例。
通过上述图11或图12所示的离子阱系统,通过第二相对延时模块可以改变第四光束的光程,从而可调节第四光束和第一光束到达第二目标离子的延时量,从而可实现先后对多个离子进行寻址。而且,还可以通过调节第四光束和第一光束到达第二目标离子的延时量,来改变被寻址的离子的排列组合方式,例如寻址的排列组合可以第一个离子、第二离子、第三个离子等等,或者也可以为第一离子、第三个离子、第二离子等等,此处不再一一列举。进一步,通过回收操控离子的后第一光束或第二光束剩余的能量,有助于提升能量的利用率,在多离子同时寻址中,可降低离子阱系统的功耗和系统的复杂度。
下面针对上述给出的有益效果进一步分析。
以上述图12所示的离子阱系统为例,第四光束的光程L 4=k×DL+2×Δ 12=k×C×Dt+2×Δ 12。基于此,第四光束和第一光束达到第二目标离子的延时量(例如为10fs量级)对应的第三空间距离(如几微米量级)与第一目标离子和第二目标离子之间的间距Δ 12相等,因此可实现不同的第四光束与对打的第一光束重合在第二目标离子处。
参阅图13,为本申请提供的一种回收的第四光束形成的脉冲组的示意图。以光源模块依次发射光束A、光束B、光束C、光束D、光束E、光束F、和光束G为例,光束A经第一分光模块分为第一光束A 1和第二光束A 2,光束B经第一分光模块分为第一光束B 1和第二光束B 2,光束C经第一分光模块分为第一光束C 1和第二光束C 2,光束D经第一分光模块分为第一光束D 1和第二光束D 2,光束E经第一分光模块分为第一光束E 1和第二光束E 2,光束F经第一分光模块分为第一光束F 1和第二光束F 2,光束G经第一分光模块分为第一光束G 1和第二光束G 2。第一光束A 1和第二光束A 2操控对应的第一目标离子后,可回收得到第四光束a;第一光束B 1和第二光束B 2操控对应的第一目标离子后,可回收得到第四光束b;第一光束C 1和第二光束C 2操控对应的第一目标离子后,可回收得到第四光束c。基于此,光路中已回收到第四光束a、第四光束b和第四光束c。第四光束a、 第四光束b、第四光束c可形成脉冲序列,相当于将单脉冲拓展成脉冲序列。需要说明的是,第四光束也可以被回收再利用,形成脉冲序列。
基于由第四光束a、第四光束b和第四光束c形成的脉冲序列,经第二相对延时模块可控制第一光束D 1和第四光束a可能无法重合(可参见图14中的(a)),第四光束a可能与第一光束E 1在第二目标离子A处重合(可参见下述图14中的(b)),第四光束b可能与第一光束F 1在第二目标离子B处重合(可参见下述图14中的(c)),第四光束c和第一光束G 1在第二目标离子C处重合(可参见下述图14中的(d))。也可以理解为,经第二相对延时模块可控制第四光束a和第一光束E 1的延时量为dt3_1,第四光束b和第一光束F 1的延时量为dt3_2,第四光束c和第一光束G 1的延时量为dt3_3,当第四光束a、第四光束b和第四光束c汇合后,呈现的延时量分别为dt3_1、dt3_2和dt3_3的脉冲序列。具体的,在t 0时刻,第四光束a和第一光束D 1未在离子处重合,对离子无操控;在t 0+2*dti时刻,第四光束a和第一光束E 1重合在离子A处;在t 0+3*dti时刻,第四光束b和第一光束F 1重合在离子B处;在t 0+4*dti时刻,第四光束c和第一光束G 1重合在离子C处。
通过第二相对延时模块,可使得第四光束a、第四光束b和第四光束c形成的脉冲序列和与之对打的第一光束重合在不同的离子处,从而实现对不同离子的寻址。由于不同离子被操控的时间差在10fs量级,第四光束a、第四光束b和第四光束c形成的脉冲序列的脉冲间隔远小于操控离子的操控的周期,因此,可以认为是基于此可以实现多个离子被同时寻址。
请参阅图15,为本申请提供的又一种离子阱系统的架构示意图。该离子阱系统可包括囚禁模块1501、光源模块1502、第一分光模块1503、第一相对延时模块1504、第一光路模块1505、第二光路模块1506和第二光束回收模块1507;进一步,可选的,该离子阱系统还可包括控制模块1508和探测模块1509。该示例中以第一相对延时模块1504与第二光路模块1506对应为例。其中,囚禁模块1501、光源模块1502、第一分光模块1503、第一相对延时模块1504、第一光路模块1505、第二光路模块1506、控制模块1508和探测模块1509可参见前述相关介绍,此处不再赘述。
[根据细则91更正 30.09.2022] 
其中,第二光束回收模块1507用于在第二时域,将来自第一光路模块1505的第一光束返回第一光路模块1505,形成脉冲序列;在第三时域,将由第一光束形成的脉冲序列传播至囚禁模块1501。示例性地,第二光束回收模块1507可以包括但不限于:反射镜组、衍射光栅、或偏振光分束器等。
在一种可能的实现方式中,可通过控制模块1508控制第二时域和第三时域,通过第二时域的控制,可调节由第一光束形成的脉冲序列的脉冲间隔;通过第三时域的控制,可调节第二光束形成的脉冲序列的间隔。
[根据细则91更正 30.09.2022] 
基于图15所示的离子阱系统的传播光路为:光源模块1502按第一脉冲宽度发射光束后,经第一分光模块1503分为第一光束和第二光束;第一光束经过的光路可称为光路1,具体的:第一光束经第一光路模块1505传播后被第二光束回收模块1507返回至第一光路模块1505,形成脉冲序列。第二光束经过的光路可称为光路2,具体的:第二光束经第一相对延时模块1504后传播到第二光路模块1506,通过第一相对延时模块1504可以改变第二光束的光程,从而可改变第一光束和第二光束到达第一目标离子的延时量;再经第二光路模块1506传播至第三目标离子。基于此,第一光束形成的脉冲序列和第二光束同时到达第三目标离子时,可以实现对第三目标离子的寻址。进一步,第一光束和第二光束操控第三 目标离子后,探测模块1509还可探测第三目标离子的量子态信息,具体可参见前述探测模块的介绍,此处不再赘述。基于此,第一光束形成的脉冲序列先后分别与第二光束在不同的离子处重合,从而可实现对多个离子进行寻址。而且,在量子计算时,可以执行并行的多量子比特计算,基于该离子阱系统可应用的量子算法更为丰富。
需要说明的是,上述图15是以回收第一光束形成脉冲序列示例的,该离子阱系统也可以将第二光束回收至第二光路模块1506形成脉冲序列,以实现对不同的离子的寻址。具体的,第二光束回收模块用于在第四时域,将来自第二光路模块的第一光束返回第二光路模块,返回第二光路模块的第二光束与来自第一分光模块的第二光束形成脉冲序列。
基于上述内容和相同的构思,本申请提供一种离子操控方法,请参阅图16的介绍。该离子操控方法可应用于上述图2至图15任一实施例所示的离子阱系统。也可以理解为,可以基于上述图2至图15任一实施例所示的离子阱系统来实现离子操控方法。
下文的介绍中,以第二光束经过第一相对延时模块为例说明。
如图16所示,为本申请提供的一种离子操控方法流程示意图。该方法包括以下步骤:
步骤1601,控制模块根据第一目标离子的位置,生成第一控制信号。
该过程可参见上述情形一中控制模块控制第一驱动组件的介绍,此处不再赘述。
步骤1602,控制模块向第一驱动组件发送第一控制信号。相应的,第一驱动组件接收来自控制模块的第一控制信号。
其中,第一控制信号用于控制第一驱动组件调节第一相对延时模块,以改变第二光束的光程。若第一相对延时模块包括的光程调节组件为上述结构一,第一控制信号可控制第一驱动组件调节振镜的位置。例如,第一控制信号可用于控制第一驱动组件将振镜驱动至目标位置。若第一相对延时模块包括的光程调节组件为上述结构二,第一控制信号可用于控制第一驱动组件调节光电晶体的折射率。例如,第一控制信号可用于控制第一驱动组件将光电晶体的折射率调节为目标折射率。具体调节多大,可结合初始化过程的介绍,此处不再赘述。
步骤1603,第一驱动组件根据第一控制信号,生成第一驱动信号,并向第一相对延时模块发送第一驱动信号。
其中,第一驱动信号用于驱动第一相对延时模块。若第一相对延时模块包括的光程调节组件为上述结构一,第一驱动信号用于驱动振镜移动至目标位置。若第一相对延时模块包括的光程调节组件为上述结构二,第一驱动信号用于驱动光电晶体将折射率改变为目标折射率。
步骤1604,第一相对延时模块根据第一驱动信号,改变接收到的第二光束的光程。
在一种可能的实现方式中,若第一相对延时模块包括的光程调节组件为上述结构一,振镜可在第一驱动信号的作用下移动至目标位置,以实现改变第二光束的光程。若第一相对延时模块包括的光程调节组件为上述结构二,光电晶体可在第一驱动信号的作用下将折射率调节为目标折射率,以实现改变第二光束的光程。
基于上述步骤1601至步骤1604,在不同的时刻,可控制改变第一相对延时模块对接收到的第二光束的光程,可实现改变第一光束和第二光束到达离子的延时量,从而可实现第一光束和第二光束重合在不同的离子处。例如,在t A时刻,可控制第一相对延时模块将振镜移动至位置A,以实现第一光束和第二光束的延时量为ΔA,从而可使得第一光束和第 二光束在离子A处重合。再比如,在t B时刻,可控制第一相对延时模块将振镜移动至位置B,以实现第一光束和第二光束的延时量为ΔB,从而可使得第一光束和第二光束在离子B处重合。
步骤1605,控制模块根据量子计算的需求,确定射频源的参数信息,并根据射频源的参数信息生成第二控制信号。
其中,第二控制信号用于通过第一射频驱动器控制第一调制组件调制第一光束的时序和/或频率,以及通过第二射频驱动器控制第二调制组件调制第二光束的时序和/或频率。
步骤1606,控制模块向射频源发送第二控制信号。相应的,射频源接收来自控制模块的第二控制信号。
步骤1607,射频源根据第二控制信号,控制第一射频源驱动器驱动第一调制组件、以及控制第二射频驱动器驱动第二调制组件。
基于上述步骤1605至步骤1607,可以实现对第一光束和/或第二光束的时序和/或频率,从而可实现需求的量子计算。
需要说明的是,上述步骤1601至步骤1604可以理解为控制模块控制第一相对延时模块的过程,步骤1605至步骤1607可以理解为控制模块控制射频源的过程,这两个过程之前没有先后顺序,也可以理解为,这两个过程是同时执行的,上述给出的步骤的顺序仅是为了便于方案的说明。
需要说明的是,上述各个实施例中控制模块对时延量、各个时域(如第一时域、第二时域、第三时域等)的控制,可以根据量子计算的需求,灵活设置具体的时间。
本申请的实施例中的方法步骤可以通过硬件的方式来实现,也可以由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器(random access memory,RAM)、闪存、只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于离子阱系统中。当然,处理器和存储介质也可以作为分立组件存在于离子阱系统中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。计算机程序产品包括一个或多个计算机程序或指令。在计算机上加载和执行计算机程序或指令时,全部或部分地执行本申请实施例的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、网络设备、用户设备或者其它可编程装置。计算机程序或指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机程序或指令可以从一个网站站点、计算机、服务器或数据中心通过有线或无线方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存取的任何可用介质或者是集成一个或多个可用介质的服务器、数据中心等数据存储设备。可用介质可以是磁性介质,例如,软盘、硬盘、磁带;也可以是光介质,例如, 数字视频光盘(digital video disc,DVD);还可以是半导体介质,例如,固态硬盘(solid state drive,SSD)。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
本申请中,“垂直”不是指绝对的垂直,可以允许有一定工程上的误差。“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。“以下至少一项(个)”或其类似表达,是指这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,“a和b”,“a和c”,“b和c”,或“a和b和c”,其中a,b,c可以是单个,也可以是多个。在本申请的文字描述中,字符“/”,一般表示前后关联对象是一种“或”的关系。在本申请的公式中,字符“/”,表示前后关联对象是一种“相除”的关系。另外,在本申请中,“示例性地”一词用于表示作例子、例证或说明。本申请中被描述为“示例”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。或者可理解为,使用示例的一词旨在以具体方式呈现概念,并不对本申请构成限定。
可以理解的是,在本申请中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定。术语“第一”、“第二”等类似表述,是用于分区别类似的对象,而不必用于描述特定的顺序或先后次序。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元。方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的方案进行示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (14)

  1. 一种粒子阱系统,其特征在于,包括囚禁模块、第一分光模块和第一相对延时模块;
    所述囚禁模块,用于囚禁至少两个粒子;
    所述第一分光模块,用于将接收到光束分为第一光束和第二光束;
    所述第一相对延时模块,用于调节所述第一光束和所述第二光束到达第一目标粒子的延时量,调节后的所述第一光束和所述第二光束重合于所述第一目标粒子处,所述第一目标粒子为所述至少两个粒子中的至少一个。
  2. 如权利要求1所述的系统,其特征在于,所述粒子阱系统还包括光源模块,用于:
    按第一脉冲宽度发射所述光束,所述第一脉冲宽度对应的第一空间距离小于所述囚禁模块中的所述至少两个粒子中任意相邻两个粒子间的间距。
  3. 如权利要求2所述的系统,其特征在于,发射相邻两个所述光束的时间间隔对应的第二空间距离大于所述囚禁模块中的所述至少两个粒子中任意两个粒子间的间距。
  4. 如权利要求1~3任一项所述的系统,其特征在于,所述第一相对延时模块,具体用于:
    改变接收到的所述第一光束和/或所述第二光束的光程。
  5. 如权利要求1~4任一项所述的系统,其特征在于,所述第一相对延时模块包括第一驱动组件和光程调节组件;
    所述第一驱动组件,用于根据接收到的第一控制信号,向所述光程调节组件发送第一驱动信号,所述第一控制信号是根据所述第一目标粒子的位置确定的;
    所述光程调节组件,用于根据所述第一驱动信号,改变接收到的所述第一光束和/或所述第二光束的光程。
  6. 如权利要求5所述的系统,其特征在于,所述光程调节组件包括振镜和反射元件;
    所述振镜,用于根据所述第一驱动信号,改变接收到的所述第一光束和/或所述第二光束的光程,并将光程改变后的第一光束和/或光程改变后第二光束传播至所述反射元件;
    所述反射元件,用于将接收到的所述光程改变后的第一光束和/或所述光程改变后的第二光束反射至所述第一目标粒子上。
  7. 如权利要求2~6任一项所述的系统,其特征在于,所述粒子阱系统还包括第一光路模块和第二光路模块;
    所述第一光路模块,用于将所述第一光束或光程改变后的第一光束传播至所述第一目标粒子;
    所述第二光路模块,用于将所述第二光束或光程改变后的第二光束传播至所述第一目标粒子。
  8. 如权利要求7所述的系统,其特征在于,所述第一光路模块包括第一调制组件,用于调制所述第一光束的时序和/或频率;和/或,
    所述第二光路模块包括第二调制组件,用于调制所述第二光束的时序和/或频率。
  9. 如权利要求8所述的系统,其特征在于,所述第一光路模块还包括第一偏振组件,所述第二光路模块还包括第二偏振组件;
    所述第一偏振组件,用于将接收到的所述第一光束的偏振态转换为左旋圆偏振光;所述第二偏振组件,用于将接收到的所述第二光束的偏振态转换为右旋圆偏光;或者,
    所述第一偏振组件,用于将接收到的所述第一光束的偏振态转换为右旋圆偏振光;所述第二偏振组件,用于将接收到的所述第二光束的偏振态转换为左旋圆偏光。
  10. 如权利要求1~9任一项所述的系统,其特征在于,所述粒子阱系统还包括第二分束模块,所述第一相对延时模块包括N个子相对延时模块,所述N为大于1的整数;
    所述第二分束模块,用于将来自所述第一分光模块的所述第二光束分为N个第三光束,一个第三光束对应一个子相对延时模块;
    所述子相对延时模块,用于改变所述第一光束和所述第三光束到达所述第一目标粒子的延时量。
  11. 如权利要求1~10任一项所述的系统,其特征在于,所述粒子阱系统还包括第一光束回收模块和第二相对延时模块;
    所述第一光束回收模块,用于将第四光束传播至所述第二相对延时模块,所述第四光束为操控所述第一目标粒子后的第一光束剩余的光或操控所述第一目标粒子后的第二光束剩余的光;
    所述第二相对延时模块,用于调节所述第四光束和所述第一光束到达第二目标粒子的延时量,调节后的所述第四光束和所述第一光束在所述第二目标粒子处重合,所述第二目标粒子为所述至少两个粒子中除所述第一目标粒子外的粒子;
    其中,所述第四光束的光程等于第二空间距离的k倍与所述第一目标粒子和所述第二目标粒子间的间距的2倍之和,所述k为正整数。
  12. 如权利要求11所述的系统,其特征在于,所述粒子阱系统还包括第一滤波模块;
    所述第一滤波模块,用于在第一时域,允许来自所述第一光束回收模块的所述第四光束通过,并将所述第四光束传播至所述第二相对延时模块。
  13. 如权利要求11或12所述的系统,其特征在于,所述第二相对延时模块,用于:
    改变所述第四光束的光程,并将光程改变后的第四光束传播至第二光路模块;
    所述第二光路模块,还用于将所述光程改变后的第四光束传播至所述第二目标粒子。
  14. 如权利要求2~13任一项所述的系统,其特征在于,所述光源模块包括飞秒脉冲激光器。
PCT/CN2022/107608 2021-11-16 2022-07-25 一种粒子阱系统 WO2023087770A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111356743.9A CN116136965A (zh) 2021-11-16 2021-11-16 一种粒子阱系统
CN202111356743.9 2021-11-16

Publications (1)

Publication Number Publication Date
WO2023087770A1 true WO2023087770A1 (zh) 2023-05-25

Family

ID=86334219

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/107608 WO2023087770A1 (zh) 2021-11-16 2022-07-25 一种粒子阱系统

Country Status (2)

Country Link
CN (1) CN116136965A (zh)
WO (1) WO2023087770A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116598040B (zh) * 2023-05-26 2024-02-09 华南理工大学 一种离子阱离子操控实验系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103941407A (zh) * 2014-05-12 2014-07-23 苏州大学 部分相干多模高斯光束的产生系统、产生方法及测量装置
EP3540501A1 (en) * 2018-03-12 2019-09-18 Harris Corporation Multi-channel laser system including an acousto-optic modulator (aom) with beam stabilizer and related methods
CN112735626A (zh) * 2019-10-14 2021-04-30 华为技术有限公司 一种离子囚禁装置及离子囚禁方法
CN112750681A (zh) * 2019-10-29 2021-05-04 华为技术有限公司 一种离子阱系统及离子操控方法
CN113223744A (zh) * 2021-04-21 2021-08-06 太原理工大学 一种超快调控矢量涡旋光场的光学微操纵装置和方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103941407A (zh) * 2014-05-12 2014-07-23 苏州大学 部分相干多模高斯光束的产生系统、产生方法及测量装置
EP3540501A1 (en) * 2018-03-12 2019-09-18 Harris Corporation Multi-channel laser system including an acousto-optic modulator (aom) with beam stabilizer and related methods
CN112735626A (zh) * 2019-10-14 2021-04-30 华为技术有限公司 一种离子囚禁装置及离子囚禁方法
CN112750681A (zh) * 2019-10-29 2021-05-04 华为技术有限公司 一种离子阱系统及离子操控方法
CN113223744A (zh) * 2021-04-21 2021-08-06 太原理工大学 一种超快调控矢量涡旋光场的光学微操纵装置和方法

Also Published As

Publication number Publication date
CN116136965A (zh) 2023-05-19

Similar Documents

Publication Publication Date Title
JP7189579B2 (ja) 中性原子量子情報プロセッサー
Maunz et al. Heralded quantum gate between remote quantum memories
Zhao et al. All-optical beam control with high speed using image-induced blazed gratings in coherent media
Moehring et al. Quantum networking with photons and trapped atoms
Walsh et al. Demonstration of sub-luminal propagation of single-cycle terahertz pulses for particle acceleration
WO2023087770A1 (zh) 一种粒子阱系统
WO2020135086A1 (zh) 一种离子阱系统
Xiao et al. Slow light beam splitter
WO2011073656A1 (en) Quantum memory
JP2016516219A (ja) ランダムアクセス誘導放出抑制(sted)顕微鏡
Zhu et al. Coherent optical memory based on a laser-written on-chip waveguide
US11964340B2 (en) Device for fabricating quartz microfluidic chip by femtosecond pulse cluster
Jiang et al. Dynamical zeroing of spin-wave momentum to suppress motional dephasing in an atomic-ensemble quantum memory
Okoth et al. Idealized Einstein-Podolsky-Rosen states from non–phase-matched parametric down-conversion
JP2010048952A (ja) 量子計算機および量子計算方法
CA2931603C (en) Acousto-optic deflector comprising multiple electro-acoustic transducers
Tu et al. Angular multiplexing storage of light pulses and addressable optical buffer memory in Pr 3+: Y 2 SiO 5 based on electromagnetically induced transparency
U'ren et al. Managing photons for quantum information processing
Wu et al. Compact photonic integrated spatial mode controller based on thin film lithium niobate
JP3988398B2 (ja) 光スイッチ、光信号変換装置および光信号変換方法
Rowland et al. High-bandwidth warm-atom quantum memory using hollow-core photonic crystal fibers
CN103048843A (zh) 连续变量量子态频率变换装置
Huang All-optical electron acceleration with ultrafast THz pulses
Okoth et al. Idealised EPR states from non-phase matched parametric down conversion
KR20230119143A (ko) 레이저 빔을 증폭시키기 위한 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22894313

Country of ref document: EP

Kind code of ref document: A1