WO2023087351A1 - 汽车用具有抗氧化性的高强高塑热成形钢及热成形工艺 - Google Patents

汽车用具有抗氧化性的高强高塑热成形钢及热成形工艺 Download PDF

Info

Publication number
WO2023087351A1
WO2023087351A1 PCT/CN2021/132954 CN2021132954W WO2023087351A1 WO 2023087351 A1 WO2023087351 A1 WO 2023087351A1 CN 2021132954 W CN2021132954 W CN 2021132954W WO 2023087351 A1 WO2023087351 A1 WO 2023087351A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel
strength
thermoforming
plasticity
thermoforming steel
Prior art date
Application number
PCT/CN2021/132954
Other languages
English (en)
French (fr)
Inventor
董毅
刘仁东
时晓光
孙成钱
王俊雄
韩楚菲
Original Assignee
鞍钢股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 鞍钢股份有限公司 filed Critical 鞍钢股份有限公司
Priority to US18/025,277 priority Critical patent/US20240167136A1/en
Priority to JP2023519093A priority patent/JP2024505318A/ja
Priority to KR1020237002188A priority patent/KR20230074701A/ko
Priority to EP21955262.7A priority patent/EP4215635A4/en
Publication of WO2023087351A1 publication Critical patent/WO2023087351A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/02Stamping using rigid devices or tools
    • B21D22/022Stamping using rigid devices or tools by heating the blank or stamping associated with heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • C21D1/20Isothermal quenching, e.g. bainitic hardening
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/13Modifying the physical properties of iron or steel by deformation by hot working
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0068Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for particular articles not mentioned below
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/673Quenching devices for die quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention relates to the technical field of steel for automobiles, in particular to a high-strength and high-plastic thermoforming steel with oxidation resistance for automobiles and a thermoforming process.
  • hot-formed steel on the market can be divided into coated hot-formed steel and uncoated hot-formed steel according to the surface state.
  • uncoated steel is easy to form oxide scale on the steel surface when it is heated in a heating furnace, and decarburization occurs.
  • the situation affects the performance of the steel, so it needs to use a protective atmosphere when heating, and at the same time, it needs to be shot peened after hot forming, which increases the cost and process; while the coated steel has a layer of aluminum-silicon coating or zinc on the surface of the steel plate.
  • the base coating can effectively prevent the surface decarburization and oxidation of steel during heating, and the steel can be exempted from the shot peening process after hot forming, but compared with uncoated steel, the cost of coated hot formed steel is higher.
  • the strength level of hot-formed steel mass-produced and used in the prior art is 1500MPa, but its elongation after hot-forming is only about 6-9%, and there is no better technology to make the steel after hot-forming Solve the problem of surface oxidation and decarburization while maintaining a low cost, and avoid the shot peening process.
  • the steel after hot forming also has ultra-high strength and good plasticity.
  • the patent with the publication number CN106119693B proposes a hot-formed steel with a tensile strength ⁇ 2100 MPa directly rolled by thin slab and its production method. After the steel plate is smelted, hot-rolled and hot-formed, the tensile strength can reach more than 2100 MPa , but the production process and thermoforming process of the steel plate are controlled by the traditional process, and the elongation of the steel plate after thermoforming is lower than 6%, which does not have the performance characteristics of high strength and high plasticity, and does not meet the full requirements of free gas protection and free shot blasting Process low cost process requirements.
  • the patent with the publication number CN103255340B proposes a high-strength toughness hot-formed steel sheet for automobiles and its preparation method.
  • C 0.1-0.5%
  • Si 0.5-1.5%
  • Mn 1.2-2.4%
  • Ti 0.01-0.05%
  • B 0.001-0.005%
  • S ⁇ 0.01%
  • P ⁇ 0.01%
  • the tensile strength of the steel plate after hot forming reaches 1600MPa
  • the elongation reaches 16%
  • the comprehensive performance is good
  • the alloy cost is low .
  • the steel plate needs to be deformed during the heating process, and then quenched twice to obtain the final structure and mechanical properties.
  • the hot forming process is complicated and cannot be realized on the existing equipment. At the same time, it also needs to be protected by gas during heating. Shot peening is required after thermoforming.
  • thermoforming and thermoforming processes for automobiles with good oxidation resistance has good application prospects.
  • thermoforming steel with oxidation resistance and a thermoforming process for automobiles are provided.
  • thermoforming steel with oxidation resistance for automobiles the chemical composition percentages of the thermoforming steel are as follows: C: 0.35%-0.50%, Si: ⁇ 0.20%, Mn: 1.50%-2.50%, P: 0.050%-0.10%, S ⁇ 0.004%, Als: 0.02%-0.06%, Nb: 0.03%-0.07%, Ti: 0.020%-0.050%, V: 0.08%-0.15%, Cr: 1.50%- 3.20%, Mo: 0.10%-0.30%, B: ⁇ 0.0040%, N ⁇ 0.005%, and the balance is Fe and unavoidable impurities.
  • the structure of hot formed steel consists of ferrite, martensite and retained austenite.
  • the volume fraction of ferrite is 4%-10%, the volume fraction of martensite is 78%-90%, and the volume fraction of retained austenite is 6%-12%.
  • the oxidation resistance rate of hot-formed steel is ⁇ 0.1g/(m 2 h), the oxidation resistance level reaches level 1, the tensile strength is ⁇ 2000MPa, the yield strength is ⁇ 1400MPa, the elongation is ⁇ 12.0%, and the surface of the steel is not completely decarburized , the thickness of the decarburized layer is ⁇ 15 ⁇ m, and the thickness of the hot-formed steel is 0.8mm-12.0mm.
  • composition of the hot-formed steel disclosed by the invention are:
  • C is the guarantee of steel strength, which is beneficial to increase the hardenability of steel. If the carbon content is too low, the strength of the steel after hot stamping will not reach the expected target; if the carbon content is too high, the strength of the steel after hot forming will be too high and the plasticity will decrease.
  • the increase of C content can reduce the phase transition temperature of steel, reduce the austenitization temperature, and help to obtain a shot-free surface. At the same time, the increase of C content is conducive to the production of sufficient content The supercooled austenite improves plasticity. Therefore, the optimal range of C in the present invention is 0.35%-0.50%.
  • Si is an element without carbide precipitation in steel, and has a good inhibitory effect on carbide precipitation during hot forming cooling and pressure holding, thereby ensuring the content and stability of retained austenite.
  • the Si content is too high, a large number of defects such as scale and color difference will appear on the surface of the hot-formed substrate, which will affect the surface quality of the hot-formed part. Higher temperature for heat preservation is easy to deteriorate the surface of steel. Therefore, the content of Si proposed by the present invention is ⁇ 0.20%.
  • Mn The main function of Mn in this hot forming steel is to improve the hardenability of the steel, reduce the phase transformation temperature, and realize the austenitization of the steel at a lower temperature; if the Mn content is too high, the uniformity of the structure of the steel will be deteriorated , prone to severe banding defects in the tissue. Therefore, the selected Mn content in the present invention is 1.50%-2.50%.
  • P The role of P in this hot-formed steel plate is similar to that of Si, which can inhibit the formation of cementite and increase the stability of retained austenite; at the same time, P can refine and evenly distribute martensite laths and improve toughness.
  • the content of P in the present invention is 0.050%-0.10%.
  • S is a harmful element in this hot-formed steel, and S will form MnS inclusions, which will deteriorate the microstructure and mechanical properties of the steel plate. Therefore, S is limited to 0.004% in the invention.
  • Als (acid-soluble aluminum) plays a role in deoxidation and nitrogen determination during the smelting process, but too much Als will lead to a large number of aluminum-based inclusions.
  • the range of Als in the present invention is 0.020%-0.060%.
  • Cr is an element that improves the hardenability of steel.
  • the main function of Cr element is to improve the high temperature oxidation resistance of steel, and at the same time improve the tempering stability of steel, so as to ensure that the steel does not appear tempering within the holding temperature range. fire martensite.
  • the optimum Cr content is between 1.50%-3.20%.
  • Mo is a medium-strong carbide-forming element that can improve the strength and toughness of steel.
  • Mo can lower the martensitic transformation temperature, significantly improve the stability of retained austenite, and at the same time, the addition of Mo element increases the oxidation resistance of the steel.
  • the Mo content is 0.10%-0.30%.
  • Nb, V: Nb and V mainly play the role of fine grain strengthening and precipitation strengthening in steel.
  • the two can effectively pin the original austenite grain boundary through the dispersion and precipitation of nano-scale fine carbides, thereby refining the structure of each phase in the steel plate after hot forming, and improving the comprehensive performance.
  • the dispersed and precipitated carbides can act as hydrogen traps to pin the diffusible hydrogen in the steel and improve the resistance to delayed fracture.
  • the VN precipitation formed by V and N can inhibit the BN precipitation and avoid the strength reduction caused by B precipitation.
  • the Nb content is 0.030%-0.070%
  • the V content is 0.080%-0.15%.
  • Ti is mainly used to fix nitrogen in boron steel to ensure that the hardening effect of boron can be exerted.
  • Ti can also precipitate fine carbides with C element performance, which reduces the hardness and strength of martensite in the structure after hot forming, and is beneficial to improve the plasticity and toughness of the steel plate.
  • the Ti content is between 0.020% and 0.050%.
  • B Adding boron to steel can significantly improve the hardenability of steel, and can ensure the stability of steel strength after quenching. If the B content is too high, it is easy to form B compounds with N in the steel, which will reduce the performance of the steel plate. Therefore, the B content in the present invention is ⁇ 0.0040%.
  • N The lower the content of N, the better, but too low will lead to production difficulties and increase costs, so the N content in the present invention is ⁇ 0.005%.
  • the austenitization temperature is reduced, the hardenability of the steel is improved, and the oxidation of the steel is beneficial to be suppressed.
  • the critical cooling time of the steel after hot forming is reduced.
  • the speed can be used for the production of thick gauge hot-formed steel; in addition, through the combination of chemical composition and hot-forming process, a certain amount of ferrite can be obtained in the air-cooling stage, and a certain amount of ferrite with good stability can be obtained in the pressure-holding stage after cooling.
  • Retained austenite improves the plasticity of steel; the addition of Si and P elements in the composition inhibits the precipitation of carbides, ensures the content of retained austenite in the steel, and improves the mechanical properties of the steel; in addition, the Cr, The Mo element acts as an anti-oxidation effect, so that the steel can be heated and kept warm without a protective atmosphere. After hot forming, it can be directly produced in subsequent processes without shot peening.
  • the invention also discloses a thermoforming process of high-strength and high-plasticity thermoforming steel with oxidation resistance for automobiles, which includes the following steps:
  • thermoformed substrate containing the above components into a heating furnace at a temperature of A C3 -A C3 +30°C for heating and heat preservation, and the heat preservation time is 180s-300s; the purpose is to make the thermoformed substrate completely austenitic and make it have a smaller prior-austenite grain size. At the same time, the lower austenitizing temperature is beneficial to reduce the surface oxidation of the thermoformed substrate;
  • thermoformed base plate is obtained after smelting, hot rolling and cold rolling.
  • the smelted composition and its mass percentage are the composition and its mass percentage of the above-mentioned high-strength and high-plasticity thermoforming steel with oxidation resistance for automobiles.
  • the invention provides that the steel plate does not need to be protected by atmosphere during hot forming, and does not need to be shot blasted after hot forming, and can directly carry out subsequent processes, and the cost of the whole process is lower than that of current hot formed products.
  • the present invention has the following advantages:
  • thermoforming steel is obtained, the tensile strength of the steel is ⁇ 2000MPa, and the elongation reaches and exceeds 12%;
  • the high-temperature oxidation resistance of the steel plate is improved, the oxidation resistance rate of the steel plate is ⁇ 0.1g/(m 2 h), the oxidation resistance level reaches level 1, and the steel plate does not need to be protected by atmosphere during hot forming. After hot forming, no shot blasting treatment is required, and the follow-up process can be directly carried out;
  • the present invention can be widely applied in the fields of steel for automobiles and the like.
  • the invention provides a high-strength and high-plastic thermoforming steel with oxidation resistance for automobiles.
  • the chemical composition mass percentage of the thermoforming steel is as follows: C: 0.35%-0.50%, Si: ⁇ 0.20%, Mn: 1.50%-2.50 %, P: 0.050%-0.10%, S ⁇ 0.004%, Als: 0.02%-0.06%, Nb: 0.03%-0.07%, Ti: 0.020%-0.050%, V: 0.08%-0.15%, Cr: 1.50 %-3.20%, Mo: 0.10%-0.30%, B: ⁇ 0.0040%, N ⁇ 0.005%, and the balance is Fe and unavoidable impurities.
  • the structure of hot formed steel consists of ferrite, martensite and retained austenite.
  • the volume fraction of ferrite is 4%-10%, the volume fraction of martensite is 78%-90%, and the volume fraction of retained austenite is 6%-12%.
  • the oxidation resistance rate of hot-formed steel is ⁇ 0.1g/(m 2 h), the oxidation resistance level reaches level 1, the tensile strength is ⁇ 2000MPa, the yield strength is ⁇ 1400MPa, the elongation is ⁇ 12.0%, and the surface of the steel is not completely decarburized , the thickness of the decarburized layer is ⁇ 15 ⁇ m, and the thickness of the hot-formed steel is 0.8-12.0mm.
  • thermoforming process specifically includes the following steps:
  • thermoformed substrate into a heating furnace with a temperature of A C3 -A C3 +30°C for heating and heat preservation, and the heat preservation time is 180s-300s; the purpose is to completely austenitize the thermoformed substrate and make it It has a smaller prior-austenite grain size. At the same time, the lower austenitizing temperature is beneficial to reduce the surface oxidation of the thermoformed substrate;
  • thermoforming steel is obtained through the cooperation of new chemical components and thermoforming processes.
  • the tensile strength of the steel is ⁇ 2000MPa, and the elongation is ⁇ 12%.
  • elements such as Cr and Mo the oxidation resistance of the steel is improved.
  • Performance, the oxidation resistance rate of steel is ⁇ 0.1g/(m 2 h), and the oxidation resistance level reaches level 1.
  • the steel does not need to be protected by atmosphere during hot forming, and it does not need to be shot blasted after hot forming, and can be directly processed Subsequent procedures; and the cost of the whole process of the proposed steel plate and hot forming process is lower than the current production cost of hot forming parts, and can be realized on existing equipment without equipment modification.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

本发明提供一种汽车用具有抗氧化性的高强高塑热成形钢及热成形工艺,所述热成形钢的化学成分质量百分比如下:C:0.35%-0.50%、Si:≤0.20%、Mn:1.50%-2.50%、P:0.050%-0.10%、S≤0.004%、Als:0.02%-0.06%、Nb:0.03%-0.07%、Ti:0.020%-0.050%、V:0.08%-0.15%、Cr:1.50%-3.20%、Mo:0.10%-0.30%、B:≤0.0040%、N≤0.005%,余量为Fe和不可避免杂质。本发明提供的热成形钢具有高抗氧化和高强高塑性,热成形时不需进行气氛保护,热成形后不需进行抛丸处理。

Description

汽车用具有抗氧化性的高强高塑热成形钢及热成形工艺 技术领域
本发明涉及汽车用钢技术领域,具体而言是一种汽车用具有抗氧化性的高强高塑热成形钢及热成形工艺。
背景技术
近年来,车身用新材料不断研发并在车身上获得应用,但1000MPa以上级别的冷冲压用超高强钢板,受到易开裂和回弹大等问题的制约,往往用于制造形状简单的构件。而热成形钢采用热成形工艺在奥氏体区成形,回弹量较小,能够满足装配精度的要求,通过保压淬火可得到1500MPa级别及以上的超高强构件,有效的简化了车身结构和零部件设计,更大幅度的降低了车重。
目前,市场上热成形钢按表面状态可分为带涂层热成形钢和无涂层热成形钢,其中无涂层钢在加热炉中加热时易于在钢表面形成氧化铁皮,并发生脱碳情况,影响钢的性能,因此其在加热时需要采用保护气氛,同时在热成形后要进行喷丸处理,增加成本和工序;而涂层钢是在钢板表面带有一层铝硅涂层或锌基涂层,可以有效阻止钢在加热过程中的表面脱碳和氧化,且钢在热成形后可免除喷丸工序,但相对于无涂层钢,涂层热成形钢的成本较高。目前,现有技术大批量生产和使用的热成形钢的强度级别为1500MPa级,但其热成形后延伸率仅在6-9%左右,还没有一种较好的技术能够使热成形后钢在保持较低成本的同时解决表面氧化脱碳问题,并避免喷丸工序,同时热成形后钢还具有超高的强度和良好的塑性。
公开号为CN106811689B的专利中提出了一种抗拉强度≥2000MPa的热成形钢的制备方法,其热轧基板具有较低的强度和较高的延伸率,有利于热成形前的剪切落料,同时其热成形后钢板的抗拉强度可达到2000MPa以上,但其化学成分中Si含量较高,不利于获得良好的表面质量,同时仅采用传统热成形工艺,仍需要气体保护和喷丸,热成形后钢板的强度虽然较高,但其延伸率低于9%。
公开号为CN106119693B的专利中提出了一种用薄板坯直接轧制的抗拉强度≥2100MPa热成形钢及生产方法,钢板经冶炼、热轧和热成形工艺处理后,抗拉强度可达到2100MPa以上,但钢板的生产工艺及热成形工艺均采用传统工艺控制,且热成形后钢板的延伸率低于6%,不具备高强高塑的性能特点,更不满足免气体保护和免抛丸的全流程低成本工艺要求。
公开号为CN103255340B的专利中提出了一种汽车用高强韧性热成形钢板及其制备方法,钢板化学成分中C:0.1-0.5%,Si:0.5-1.5%,Mn:1.2-2.4%,Ti:0.01-0.05%,B:0.001-0.005%,S:≤0.01%,P:≤0.01%,热成形后钢板的抗拉强度达到1600MPa,延伸率达到16%,综合性能良好,且合金成本较低。但钢板需要在加热过程中进行变形,然后进行两次淬火,获得最终的组织和力学性能,其热成形工艺复杂,在现有设备上无法实现,同时其在进行加热时同样需要进行气体保护,热成形后需要进行喷丸处理。
综上,开发具有良好抗氧化性能的汽车用高强高塑热成形和热成形工艺具有良好的应用前景。
发明内容
根据上述技术问题,而提供一种汽车用具有抗氧化性的高强高塑热成形钢及热成形工艺。
本发明采用的技术手段如下:
一种汽车用具有抗氧化性的高强高塑热成形钢,所述热成形钢的化学成分质量百分比如下:C:0.35%-0.50%、Si:≤0.20%、Mn:1.50%-2.50%、P:0.050%-0.10%、S≤0.004%、Als:0.02%-0.06%、Nb:0.03%-0.07%、Ti:0.020%-0.050%、V:0.08%-0.15%、Cr:1.50%-3.20%、Mo:0.10%-0.30%、B:≤0.0040%、N≤0.005%,余量为Fe和不可避免杂质。
热成形钢的组织由铁素体、马氏体和残余奥氏体组成。
铁素体的体积分数为4%-10%、马氏体的体积分数为78%-90%、残余奥氏体的体积分数为6%-12%。
热成形钢的抗氧化速率≤0.1g/(m 2·h),抗氧化性级别达到1级,抗拉强 度≧2000MPa,屈服强度≧1400MPa,延伸率≥12.0%,钢的表面无完全脱碳,脱碳层厚度≤15μm,热成形钢的厚度为0.8mm-12.0mm。
本发明公开的热成形钢的成分主要作用为:
C:C是钢强度的保证,有利于增加钢的淬透性。碳含量过低,钢在热冲压后强度达不到预期目标;碳含量过高,热成形后钢的强度过高,塑性下降。除此以外,C含量的增加可以降低钢的相变温度,使奥氏体化温度降低,有利于获得免抛丸表面,同时,C含量增加有利于钢在热成形保压过程中产生足够含量的过冷奥氏体,提高塑性。因此本发明中C的最优范围为0.35%-0.50%。
Si:Si在钢中为无碳化物析出元素,对热成形冷却和保压过程中碳化物析出具有良好的抑制作用,进而保证残余奥氏体含量和稳定性。然而,Si含量过高会使热成形基板表面出现大量氧化铁皮、色差等缺陷,影响热成形部件表面质量,同时,过高的Si元素扩大两相区,提高奥氏体化温度,使钢在较高的温度进行保温,易于恶化钢的表面。因此本发明提出的Si的含量为≤0.20%。
Mn:Mn在本热成形钢中主要作用为提高钢的淬透性,降低相变温度,使钢在较低的温度进行奥氏体化得以实现;Mn含量过高会恶化钢的组织均匀性,易于使组织中出现严重的带状组织缺陷。因此本发明中选定Mn含量为1.50%-2.50%。
P:P在本热成形钢板中的作用与Si相似,能够抑制渗碳体生成,增加残余奥氏体稳定性;同时P能够使马氏体板条细化,且均匀分布,提高韧性。本发明中P含量为0.050%-0.10%。
S:S在本热成形钢中是有害元素,S会形成MnS夹杂,恶化钢板显微组织和力学性能,因此发明中限定S≤0.004%。
Als:Als(酸溶铝)在冶炼过程中起到脱氧定氮作用,但Als过多会导致大量的铝系夹杂。本发明中Als的范围为0.020%-0.060%。
Cr:Cr是提高钢淬透性元素,在本发明中,Cr元素的主要作用为提高钢的高温抗氧化性,同时提高钢的回火稳定性,保证钢在保压温度范围内不出现回火马氏体。最佳的Cr含量在1.50%-3.20%之间。
Mo:Mo是中强碳化物形成元素,能够提高钢的强度和韧性。本发明中,Mo能够降低马氏体转变温度,显著提高残余奥氏体稳定性,同时,Mo元素的添加增加了钢的抗氧化性。本发明中Mo含量为0.10%-0.30%。
Nb、V:Nb和V在钢中主要起细晶强化、析出强化等作用。在本发明中,两者通过纳米级细小碳化物弥散析出,能够有效钉扎原始奥氏体晶界,进而细化热成形后钢板中的各相组织,提高综合性能。同时,弥散析出的碳化物能够作为氢陷阱,钉扎钢中可扩散氢,提高抗延迟断裂性能。此外,V与N形成的VN析出可以抑制BN析出,避免因B析出导致的强度降低。本发明中Nb含量为0.030%-0.070%,V含量为0.080%-0.15%。
Ti:Ti在硼钢中主要用于固定氮,以保证硼的淬透效果得以发挥。此外,Ti还可与C元素性能细小碳化物析出,降低热成形后组织中马氏体的硬度和强度,有利于提高钢板塑性和韧性。本发明中Ti含量在0.020%-0.050%之间。
B:钢中加入硼能显著提高钢的淬透性,且在淬火后可以保证钢强度的稳定性。B含量过高易于与钢中的N形成B的化合物,降低钢板的性能。因此本发明中B含量为≤0.0040%。
N:N的含量越低越好,但过低会导致生产困难,增加成本,因此本发明中N含量≤0.005%。
本发明中,通过添加C、Mn、Cr、Mo等合金元素,降低奥氏体化温度,提高了钢的淬透性,有利于抑制钢的氧化,同时,降低了钢热成形后的临界冷却速率,可进行厚规格热成形钢的生产;另外,通过化学成分和热成形工艺配合,在空冷阶段获得一定含量的铁素体,并在冷却后的保压阶段获得一定含量稳定性较好的残余奥氏体,提高钢的塑性;成分中Si和P元素的添加,抑制了碳化物析出,保证了钢中残余奥氏体含量,提高了钢的力学性能;另外,钢成分中的Cr、Mo元素起到抗氧化作用,使钢可以在无保护气氛条件下进行加热和保温,热成形后可以不经喷丸直接进行后续工序生产。
本发明还公开了一种汽车用具有抗氧化性的高强高塑热成形钢的热成形工艺,包括如下步骤:
(1)将含有上述成分的热成形基板放入到温度为A C3-A C3+30℃的加热炉 中进行加热及保温,保温时间为180s-300s;目的为使热成形基板完全奥氏体化,并使其具有较小的原始奥氏体晶粒尺寸。同时,较低的奥氏体化温度有利于减轻热成形基板表面氧化;
(2)将加热后的热成形基板由加热炉中取出进行空冷,空冷至A r3温度后停留3s-5s后放入到热成形模具中进行变形和冷却,冷却速度≥10℃/s,冷却至250℃-300℃后进行保压,保压时间为60s-90s,保压后将成形的部件取出空冷至室温,得到热成形钢。
上述热成形基板是经冶炼、热轧和冷轧后获得。冶炼的成分及其质量百分比为上述一种汽车用具有抗氧化性的高强高塑热成形钢的成分及其质量百分比。
本发明提供钢板在进行热成形时不需进行气氛保护,热成形后不需进行抛丸处理,可直接进行后续工序,其全流程成本低于目前热成形产品。
较现有技术相比,本发明具有以下优点:
(1)通过本发明提供的化学成分和热成形工艺配合,获得高强高塑热成形钢,钢的抗拉强度≧2000MPa,延伸率达到并超过12%;
(2)通过添加Cr元素,提高钢板高温抗氧化性能,钢板抗氧化速率≤0.1g/(m 2·h),抗氧化性级别达到1级,钢板在进行热成形时不需进行气氛保护,热成形后不需进行抛丸处理,可直接进行后续工序;
(3)提出的热成形钢和热成形工艺在现有设备上可以实现,无需进行设备改造,且成本较低。
基于上述理由本发明可在汽车用钢等领域广泛推广。
具体实施方式
需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本发明及其应用或使用的任何限制。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明提供了一种汽车用具有抗氧化性的高强高塑热成形钢,热成形钢的化学成分质量百分比如下:C:0.35%-0.50%、Si:≤0.20%、Mn:1.50%-2.50%、P:0.050%-0.10%、S≤0.004%、Als:0.02%-0.06%、Nb:0.03%-0.07%、Ti:0.020%-0.050%、V:0.08%-0.15%、Cr:1.50%-3.20%、Mo:0.10%-0.30%、B:≤0.0040%、N≤0.005%,余量为Fe和不可避免杂质。
热成形钢的组织由铁素体、马氏体和残余奥氏体组成。
铁素体的体积分数为4%-10%、马氏体的体积分数为78%-90%、残余奥氏体的体积分数为6%-12%。
热成形钢的抗氧化速率≤0.1g/(m 2·h),抗氧化性级别达到1级,抗拉强度≧2000MPa,屈服强度≧1400MPa,延伸率≥12.0%,钢的表面无完全脱碳,脱碳层厚度≤15μm,热成形钢的厚度为0.8-12.0mm。
本具体实施方式中提出的抗氧化性能优良的高强热成形钢经冶炼、热轧和冷轧后,获得热成形基板,热成形基板的厚度为0.8mm-12.0mm。然后进行热成形工艺处理,热成形工艺具体包括以下步骤:
(1)将热成形基板放入到温度为A C3-A C3+30℃的加热炉中进行加热及保温,保温时间为180s-300s;目的为使热成形基板完全奥氏体化,并使其具有较小的原始奥氏体晶粒尺寸。同时,较低的奥氏体化温度有利于减轻热成形基板表面氧化;
(2)将加热后的热成形基板由加热炉中取出进行空冷,空冷至A r3温度后停留3s-5s后放入到热成形模具中进行变形和冷却,冷却速度≥10℃/s,冷却至250℃-300℃后进行保压,保压时间为60s-90s,保压后将成形的部件取出空冷至室温,得到热成形钢。
本发明的实施例的具体成分、热成形工艺参数及热成形后钢的组织和性能见表1~3。
表1本发明实施例的化学成分(wt,%)
Figure PCTCN2021132954-appb-000001
Figure PCTCN2021132954-appb-000002
表2本发明实施例的热成形工艺
Figure PCTCN2021132954-appb-000003
表3本发明实施例的组织及性能参数
Figure PCTCN2021132954-appb-000004
本具体实施方式中通过新型化学成分和热成形工艺配合,获得高强高塑热成形钢,钢的抗拉强度≥2000MPa,延伸率≥12%;通过添加Cr、Mo等元素,提高钢的抗氧化性能,钢抗氧化速率≤0.1g/(m 2·h),抗氧化性级别达到1级,钢在进行热成形时不需进行气氛保护,热成形后不需进行抛丸处理,可直接进行后续工序;而且提出的钢板和热成形工艺全流程成本低于目前热成形部件生产成本,且在现有设备上可以实现,无需进行设备改造。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修 改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (10)

  1. 一种汽车用具有抗氧化性的高强高塑热成形钢,其特征在于,所述热成形钢的化学成分质量百分比如下:C:0.35%-0.50%、Si:≤0.20%、Mn:1.50%-2.50%、P:0.050%-0.10%、S≤0.004%、Als:0.02%-0.06%、Nb:0.03%-0.07%、Ti:0.020%-0.050%、V:0.08%-0.15%、Cr:1.50%-3.20%、Mo:0.10%-0.30%、B:≤0.0040%、N≤0.005%,余量为Fe和不可避免杂质。
  2. 根据权利要求1所述的一种汽车用具有抗氧化性的高强高塑热成形钢,其特征在于,所述热成形钢的组织由铁素体、马氏体和残余奥氏体组成。
  3. 根据权利要求2所述的一种汽车用具有抗氧化性的高强高塑热成形钢,其特征在于,所述铁素体的体积分数为4%-10%、所述马氏体的体积分数为78%-90%、所述残余奥氏体的体积分数为6%-12%。
  4. 根据权利要求1所述的一种汽车用具有抗氧化性的高强高塑热成形钢,其特征在于,所述热成形钢的抗拉强度≧2000MPa。
  5. 根据权利要求1所述的一种汽车用具有抗氧化性的高强高塑热成形钢,其特征在于,所述热成形钢的抗氧化速率≤0.1g/(m 2·h)。
  6. 根据权利要求1所述的一种汽车用具有抗氧化性的高强高塑热成形钢,其特征在于,所述热成形钢的屈服强度≧1400MPa。
  7. 根据权利要求1所述的一种汽车用具有抗氧化性的高强高塑热成形钢,其特征在于,所述热成形钢的延伸率≥12.0%。
  8. 根据权利要求1所述的一种汽车用具有抗氧化性能的高塑热成形钢,其特征在于,所述热成形钢的表面无完全脱碳,脱碳层厚度≤15μm。
  9. 根据权利要求1所述的一种汽车用具有抗氧化性的高强高塑热成形钢,其特征在于,所述热成形钢的厚度为0.8mm-12.0mm。
  10. 一种汽车用具有抗氧化性的高强高塑热成形钢的热成形工艺,其特征在于,包括如下步骤:
    (1)将含有权利要求1~9任一权利要求所述成分的热成形基板放入到温度为A C3-A C3+30℃的加热炉中进行加热及保温,保温时间为180s-300s;
    (2)将加热后的热成形基板由加热炉中取出进行空冷,空冷至A r3温度后停留3s-5s后放入到热成形模具中进行变形和冷却,冷却速度≥10℃/s,冷却至250℃-300℃后进行保压,保压时间为60s-90s,保压后将成形的部件取出空冷至室温,得到所述热成形钢。
PCT/CN2021/132954 2021-11-19 2021-11-25 汽车用具有抗氧化性的高强高塑热成形钢及热成形工艺 WO2023087351A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US18/025,277 US20240167136A1 (en) 2021-11-19 2021-11-25 High strength and high plasticity hot-forming steel with oxidation resistance for automobiles and hot-forming process
JP2023519093A JP2024505318A (ja) 2021-11-19 2021-11-25 抗酸化性を有する自動車用の高強度、高塑性の熱間成形鋼及び熱間成形工程
KR1020237002188A KR20230074701A (ko) 2021-11-19 2021-11-25 항산화성을 구비한 자동차용 고강성 고가소성 열성형 강 및 열성형 공정
EP21955262.7A EP4215635A4 (en) 2021-11-19 2021-11-25 HIGH-STRENGTH AND HIGH-PLASTICITY THERMOFORMED STEEL HAVING OXIDATION RESISTANCE FOR AUTOMOBILE, AND THERMOFORMING METHOD

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111401625.5A CN114045440B (zh) 2021-11-19 2021-11-19 汽车用具有抗氧化性的高强高塑热成形钢及热成形工艺
CN202111401625.5 2021-11-19

Publications (1)

Publication Number Publication Date
WO2023087351A1 true WO2023087351A1 (zh) 2023-05-25

Family

ID=80210786

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/132954 WO2023087351A1 (zh) 2021-11-19 2021-11-25 汽车用具有抗氧化性的高强高塑热成形钢及热成形工艺

Country Status (6)

Country Link
US (1) US20240167136A1 (zh)
EP (1) EP4215635A4 (zh)
JP (1) JP2024505318A (zh)
KR (1) KR20230074701A (zh)
CN (1) CN114045440B (zh)
WO (1) WO2023087351A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001226744A (ja) * 2000-02-15 2001-08-21 Kawasaki Steel Corp 焼付け硬化性および耐衝撃性に優れた高張力熱延鋼板およびその製造方法
CN103255340A (zh) 2012-12-28 2013-08-21 中北大学 一种汽车用高强韧性热成形钢板及其制备方法
CN103614640A (zh) * 2013-12-12 2014-03-05 马鸣图 一种抗高温氧化的非镀层热冲压成形用钢
CN106119693A (zh) 2016-08-24 2016-11-16 武汉钢铁股份有限公司 用薄板坯直接轧制的抗拉强度≥2100MPa薄热成形钢及生产方法
CN106811689A (zh) 2017-01-17 2017-06-09 北京科技大学 一种抗拉强度≥2000MPa的热成形钢的制备方法
CN108642373A (zh) * 2018-04-18 2018-10-12 江苏理工学院 一种高温抗氧化奥氏体耐热钢及其制备工艺
CN111926248A (zh) * 2020-07-14 2020-11-13 辽宁科技学院 一种添加Ce合金的热冲压成形钢及热冲压成形工艺
CN113106338A (zh) * 2021-03-22 2021-07-13 北京科技大学 一种超高强度高塑性热冲压成形钢的制备方法
CN113388773A (zh) * 2021-05-21 2021-09-14 鞍钢股份有限公司 1.5GPa级高成形性抗氢脆超高强汽车钢及制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103805840B (zh) * 2012-11-15 2016-12-21 宝山钢铁股份有限公司 一种高成形性热镀锌超高强度钢板及其制造方法
CN106086684B (zh) * 2016-08-24 2018-01-12 武汉钢铁有限公司 用薄板坯直接轧制的抗拉强度≥1900MPa薄热成形钢及生产方法
CN106119694B (zh) * 2016-08-24 2018-01-23 武汉钢铁有限公司 用中薄板坯直接轧制的抗拉强度≥1900MPa热成形钢及生产方法
KR101879104B1 (ko) * 2016-12-23 2018-07-16 주식회사 포스코 TWB 용접 특성이 우수한 열간성형용 Al-Fe 합금화 도금강판, 열간성형 부재 및 그들의 제조방법
CN114703427A (zh) * 2018-04-28 2022-07-05 育材堂(苏州)材料科技有限公司 热冲压成形用钢材、热冲压成形工艺及热冲压成形构件
CN109972061A (zh) * 2019-04-26 2019-07-05 北京科技大学 热冲压成形用抗氧化超高强钢板及其低温热成形工艺
CN111893377B (zh) * 2020-07-13 2021-10-26 首钢集团有限公司 一种1900MPa级高强韧性热冲压用铝硅镀层钢板及其制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001226744A (ja) * 2000-02-15 2001-08-21 Kawasaki Steel Corp 焼付け硬化性および耐衝撃性に優れた高張力熱延鋼板およびその製造方法
CN103255340A (zh) 2012-12-28 2013-08-21 中北大学 一种汽车用高强韧性热成形钢板及其制备方法
CN103614640A (zh) * 2013-12-12 2014-03-05 马鸣图 一种抗高温氧化的非镀层热冲压成形用钢
CN106119693A (zh) 2016-08-24 2016-11-16 武汉钢铁股份有限公司 用薄板坯直接轧制的抗拉强度≥2100MPa薄热成形钢及生产方法
CN106811689A (zh) 2017-01-17 2017-06-09 北京科技大学 一种抗拉强度≥2000MPa的热成形钢的制备方法
CN108642373A (zh) * 2018-04-18 2018-10-12 江苏理工学院 一种高温抗氧化奥氏体耐热钢及其制备工艺
CN111926248A (zh) * 2020-07-14 2020-11-13 辽宁科技学院 一种添加Ce合金的热冲压成形钢及热冲压成形工艺
CN113106338A (zh) * 2021-03-22 2021-07-13 北京科技大学 一种超高强度高塑性热冲压成形钢的制备方法
CN113388773A (zh) * 2021-05-21 2021-09-14 鞍钢股份有限公司 1.5GPa级高成形性抗氢脆超高强汽车钢及制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4215635A4

Also Published As

Publication number Publication date
CN114045440A (zh) 2022-02-15
JP2024505318A (ja) 2024-02-06
US20240167136A1 (en) 2024-05-23
CN114045440B (zh) 2023-03-03
KR20230074701A (ko) 2023-05-31
EP4215635A4 (en) 2024-06-26
EP4215635A1 (en) 2023-07-26

Similar Documents

Publication Publication Date Title
JP6475861B2 (ja) ホットスタンピングに使用される鋼板、ホットスタンピングプロセスおよびホットスタンピングコンポーネント
CN114369768A (zh) 热冲压成形用钢材、热冲压成形工艺及成形构件
CN103614640B (zh) 一种抗高温氧化的非镀层热冲压成形用钢
JP2012530847A (ja) 熱間プレス硬化コンポーネントの製造方法、熱間プレス硬化コンポーネントを製造する鋼製品の使用、および熱間プレス硬化コンポーネント
CN110863138B (zh) 一种1800MPa级热成形钢及其制造方法
EP3395993A1 (en) High yield ratio type high-strength cold-rolled steel sheet and manufacturing method thereof
CN108374118A (zh) 一种具有易于成型特性的热镀锌双相钢板及其制造方法
CN113316650B (zh) 高强度钢带材
CN116334489A (zh) 一种具有超强高温抗氧化的热冲压成形钢及其制备方法
CN113802065B (zh) 热冲压成形构件、热冲压成形用钢板以及热冲压工艺
WO2023087352A1 (zh) 汽车用具有抗氧化性能的高塑热成形钢及热成形工艺
CN114934228B (zh) 一种热成形钢板及其生产方法
CN111575602A (zh) 车轮用1500MPa级热成形钢板及其生产方法
CN114990434B (zh) 热成形钢材及其制备方法
WO2023087351A1 (zh) 汽车用具有抗氧化性的高强高塑热成形钢及热成形工艺
WO2012172185A1 (en) Method for manufacturing a medium carbon steel product and a hot rolled medium carbon steel product
RU2812417C1 (ru) Способ получения высокопрочного стального листа
CN113930675B (zh) 一种2200MPa级低碳无B热成形钢及其制备方法
RU2813064C1 (ru) Способ получения высокопрочного стального листа
TWI703220B (zh) 汽車用鋼及其製造方法
CN116219287A (zh) 一种1500MPa级汽车轻量化冷轧热成形钢及其生产方法
KR20230157997A (ko) 열간-성형 부품 또는 열처리 사전성형 부품을 제조하는 방법과 강철 스트립, 시트 또는 블랭크
CN116145028A (zh) QP热处理车轮用1200MPa级热轧钢板及生产方法
JP2023534825A (ja) 成形性及び加工硬化率に優れた鋼板
CN116926421A (zh) 低Si1600MPa级免涂层温成形中锰钢及制备方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 18025277

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2023519093

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2021955262

Country of ref document: EP

Effective date: 20230323