WO2023087352A1 - 汽车用具有抗氧化性能的高塑热成形钢及热成形工艺 - Google Patents

汽车用具有抗氧化性能的高塑热成形钢及热成形工艺 Download PDF

Info

Publication number
WO2023087352A1
WO2023087352A1 PCT/CN2021/132955 CN2021132955W WO2023087352A1 WO 2023087352 A1 WO2023087352 A1 WO 2023087352A1 CN 2021132955 W CN2021132955 W CN 2021132955W WO 2023087352 A1 WO2023087352 A1 WO 2023087352A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel
oxidation resistance
thermoforming
thermoforming steel
plasticity
Prior art date
Application number
PCT/CN2021/132955
Other languages
English (en)
French (fr)
Inventor
董毅
时晓光
刘仁东
孙成钱
韩楚菲
王俊雄
Original Assignee
鞍钢股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 鞍钢股份有限公司 filed Critical 鞍钢股份有限公司
Priority to KR1020237002199A priority Critical patent/KR20230074702A/ko
Priority to JP2023519094A priority patent/JP2024505319A/ja
Priority to EP21955263.5A priority patent/EP4215636A4/en
Publication of WO2023087352A1 publication Critical patent/WO2023087352A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/02Stamping using rigid devices or tools
    • B21D22/022Stamping using rigid devices or tools by heating the blank or stamping associated with heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • C21D1/20Isothermal quenching, e.g. bainitic hardening
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/13Modifying the physical properties of iron or steel by deformation by hot working
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0068Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for particular articles not mentioned below
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/673Quenching devices for die quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the invention relates to the technical field of steel for automobiles, in particular to a high-plastic thermoforming steel with oxidation resistance for automobiles and a thermoforming process.
  • hot-formed steel on the market can be divided into coated hot-formed steel and uncoated hot-formed steel according to the surface state.
  • uncoated steel is easy to form oxide scale on the steel surface when it is heated in a heating furnace, and decarburization occurs.
  • the situation affects the performance of the steel, so it needs to use a protective atmosphere when heating, and at the same time, it needs to be shot peened after hot forming, which increases the cost and process; while the coated steel has a layer of aluminum-silicon coating or zinc on the surface of the steel plate.
  • the base coating can effectively prevent the surface decarburization and oxidation of the steel during heating, and the steel can be exempted from the shot peening process after hot forming, but compared with uncoated steel, the cost of coated hot formed steel is higher.
  • the strength level of hot-formed steel produced and used in large quantities in the prior art is 1500MPa, but its elongation after hot-forming is only about 6-9%, which does not meet the development needs of the automotive field, and there is no better steel
  • the technology can solve the problem of surface oxidation and decarburization while maintaining low cost after hot forming, and avoid the shot peening process.
  • the steel after hot forming also has high plasticity.
  • the patent with the publication number CN107354385B proposes a method for preparing ultra-high-strength hot-formed steel for automobiles, in which C: 0.5-0.6%, Mn: 0.5%-2.0%, Si: 1.5%-2.5%, Cr: 1.0 %-3.0%, Al: 1.0%-2.0%, Nb: 0.01%-0.03%, B: 0.001%-0.005%, the strength of the steel plate after hot forming reaches 1500-2000MPa, and the elongation is 10%-20%.
  • the steel plate proposed in this patent has good strength and plasticity matching, but its composition contains relatively high elements of Cr and Al, which increases the cost and difficulty of smelting. At the same time, the production process is complicated, the existing tooling equipment does not meet the production requirements, and atmosphere protection and shot blasting are required during production.
  • the patent with the publication number CN103255340B proposes a high-strength toughness hot-formed steel sheet for automobiles and its preparation method.
  • C 0.1-0.5%
  • Si 0.5-1.5%
  • Mn 1.2%-2.4%
  • Ti 0.01%-0.05%
  • B 0.001%-0.005%
  • S ⁇ 0.01%
  • P ⁇ 0.01%
  • the tensile strength of the steel plate after hot forming reaches 1600MPa
  • the elongation reaches 16%
  • the overall performance is good
  • the alloy The cost is lower.
  • the steel plate needs to be deformed during the heating process, and then quenched twice to obtain the final structure and mechanical properties.
  • the hot forming process is complicated and cannot be realized on the existing equipment. At the same time, it also needs to be protected by gas during heating. Shot peening is required after thermoforming.
  • thermoforming and thermoforming processes for automobiles with good oxidation resistance has good application prospects.
  • thermoforming steel with anti-oxidation performance for automobiles and a thermoforming process are provided.
  • thermoforming steel plate A high-plastic thermoforming steel with oxidation resistance for automobiles, the chemical composition mass percentage of the thermoforming steel plate is as follows:
  • the microstructure of the hot formed steel consists of ferrite, martensite and retained austenite.
  • the volume fraction of the ferrite is 5%-12%
  • the volume fraction of the martensite is 78%-89%
  • the volume fraction of the retained austenite is 6%-10%.
  • the tensile strength of the hot-formed steel is 1400MPa-1700MPa, the oxidation resistance rate is less than 0.1g/( m2 ⁇ h), the yield strength is 900MPa-1450MPa, and the elongation is ⁇ 18.0%.
  • the surface of the steel has no complete decarburization, decarburization
  • the thickness of the carbon layer is less than or equal to 15 ⁇ m, and the thickness of the hot-formed steel plate is 0.8mm-12.0mm.
  • C is the guarantee of steel strength, which is beneficial to increase the hardenability of steel. If the carbon content is too low, the strength of the steel after hot stamping will not reach the expected target; if the carbon content is too high, the strength of the steel after hot forming will be too high and the plasticity will decrease.
  • the increase of C content can reduce the phase transition temperature of steel, reduce the austenitization temperature, and help to obtain a shot-free surface. At the same time, the increase of C content is conducive to the production of sufficient content The supercooled austenite improves plasticity. Therefore, the optimal range of C in the present invention is 0.18%-0.28%.
  • Si is an element without carbide precipitation in steel, and has a good inhibitory effect on carbide precipitation during hot forming cooling and pressure holding, thereby ensuring the content and stability of retained austenite.
  • the Si content is too high, a large number of defects such as scale and color difference will appear on the surface of the hot-formed substrate, which will affect the surface quality of the hot-formed part. Higher temperature for heat preservation is easy to deteriorate the surface of steel. Therefore, the content of Si in the steel proposed by the present invention is ⁇ 0.20%.
  • Mn The main function of Mn in the present invention is to improve the hardenability of the steel, reduce the phase transition temperature, and make the steel austenitized at a lower temperature; if the Mn content is too high, the uniformity of the steel structure will be deteriorated, and it is easy to make the steel Severe banding defects appear in the tissue. Therefore, the selected Mn content in the present invention is 1.20%-2.0%.
  • P The role of P in the present invention is similar to that of Si, which can inhibit the formation of cementite and increase the stability of retained austenite; at the same time, P can make martensite laths thinner and evenly distributed, improving toughness.
  • the content of P in the present invention is 0.030%-0.080%.
  • S is a harmful element, and S will form MnS inclusions, which will deteriorate the microstructure and mechanical properties of the steel. Therefore, the present invention limits S ⁇ 0.004%.
  • Als (acid-soluble aluminum) plays a role in deoxidation and nitrogen determination during the smelting process, but too much Als will lead to a large number of aluminum-based inclusions. Therefore, the range of Als in the present invention is 0.020%-0.060%.
  • Cr is an element that improves the hardenability of steel.
  • the main function of the Cr element is to improve the high temperature oxidation resistance of steel, and at the same time improve the tempering stability of the steel plate to ensure that the steel plate does not temper within the holding temperature range. martensite.
  • the optimum Cr content is between 0.5%-2.50%.
  • Mo is a medium-strong carbide-forming element that can improve the strength and toughness of steel.
  • Mo can lower the martensitic transformation temperature, significantly improve the stability of retained austenite, and at the same time, the addition of Mo element increases the oxidation resistance of the steel.
  • the Mo content is 0.10%-0.30%.
  • Nb, V: Nb and V mainly play the role of fine grain strengthening and precipitation strengthening in steel.
  • the two can effectively pin the original austenite grain boundary through the dispersion and precipitation of nano-scale fine carbides, thereby refining the structure of each phase in the steel after hot forming, and improving the comprehensive performance.
  • the dispersed and precipitated carbides can act as hydrogen traps to pin the diffusible hydrogen in the steel and improve the resistance to delayed fracture.
  • the dispersed and precipitated carbides can act as hydrogen traps to pin the diffusible hydrogen in the steel and improve the resistance to delayed fracture.
  • the VN precipitation formed by V and N can inhibit the BN precipitation and avoid the strength reduction caused by B precipitation.
  • the Nb content is 0.020%-0.060%, and the V content is 0.050%-0.15%.
  • Ti is mainly used to fix nitrogen in boron steel to ensure that the hardening effect of boron can be exerted.
  • Ti can also precipitate fine carbides with C element, which reduces the hardness and strength of martensite in the structure after hot forming, which is beneficial to improve the plasticity and toughness of steel.
  • the Ti content is between 0.025% and 0.045%.
  • B Adding boron to the steel can significantly improve the hardenability of the steel, and can ensure the strength stability of the steel after quenching.
  • the B content is too low, the effect is not significant, but if the B content is too high, it is easy to form B compounds with N in the steel, reducing the performance of the steel.
  • the B content is 0.0015%-0.0035%.
  • N The lower the content of N, the better, but too low will lead to production difficulties and increase costs, so the N content in the present invention is ⁇ 0.005%.
  • the austenitization temperature is reduced, the hardenability of the steel plate is improved, and it is beneficial to inhibit the oxidation of the steel, and at the same time, the critical cooling rate of the steel after hot forming is reduced , can carry out the production of thick gauge hot forming steel; in addition, through the combination of chemical composition and hot forming process, a certain amount of ferrite can be obtained in the air cooling stage, and a certain amount of residual ferrite with good stability can be obtained in the pressure holding stage after cooling Austenite improves the plasticity of steel; the addition of Si and P elements in the composition inhibits the precipitation of carbides, ensures the residual austenite content in the steel plate, and improves the mechanical properties of the steel plate; in addition, the Cr and Mo elements in the steel plate composition It has an anti-oxidation effect, so that the steel plate can be heated and kept warm without protective atmosphere. After hot forming, it can be directly produced in the subsequent process without shot peening
  • thermoforming process of high-plasticity thermoforming steel with anti-oxidation performance for automobiles which includes the following steps:
  • thermoformed substrate containing the above ingredients into a heating furnace at a temperature of A C3 -A C3 +15°C for heating and heat preservation, and the heat preservation time is 180s-300s;
  • thermoformed base plate is obtained after smelting, hot rolling and cold rolling.
  • the smelted composition and its mass percentage are the composition and its mass percentage of the above-mentioned high-plastic hot forming steel with oxidation resistance for automobiles.
  • the present invention has the following advantages:
  • the oxidation resistance of the steel is improved, the oxidation resistance rate of the steel plate is less than 0.1g/(m 2 h), and the oxidation resistance level reaches level 1, and the steel does not need to be protected by atmosphere during hot forming , after hot forming, no shot blasting treatment is required, and the follow-up process can be directly carried out;
  • the present invention can be widely applied in the fields of steel for automobiles and the like.
  • the invention provides a high-plastic thermoforming steel with anti-oxidation performance for automobiles.
  • the mass percentage of the chemical composition of the thermoforming steel is as follows:
  • the microstructure of the hot formed steel consists of ferrite, martensite and retained austenite.
  • the volume fraction of the ferrite is 5%-12%
  • the volume fraction of the martensite is 78%-89%
  • the volume fraction of the retained austenite is 6%-10%.
  • the tensile strength of the hot-formed steel is 1400MPa-1700MPa, the oxidation resistance rate is less than 0.1g/( m2 ⁇ h), the yield strength is 900MPa-1450MPa, and the elongation is ⁇ 18.0%.
  • the surface of the steel has no complete decarburization, decarburization
  • the thickness of the carbon layer is ⁇ 15 ⁇ m, and the thickness of the hot-formed steel is 0.8mm-12.0mm.
  • thermoforming process specifically includes the following steps:
  • thermoformed substrate into a heating furnace with a temperature of A C3 -A C3 +15°C for heating and heat preservation, and the heat preservation time is 180s-300s;
  • the oxidation resistance of steel is improved, the oxidation resistance rate of steel is less than 0.1g/(m 2 h), and the oxidation resistance level reaches level 1, and the steel does not need to be protected by atmosphere during hot forming , there is no need for shot blasting after hot forming, and the follow-up process can be carried out directly; the cost of the whole process of the proposed hot forming steel and hot forming process is lower than the current production cost of hot forming parts, and it can be realized on existing equipment without equipment remodel.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

本发明提供一种汽车用具有抗氧化性能的高塑热成形钢及热成形工艺,热成形钢的化学成分质量百分比如下:C:0.18%-0.28%、Si:≤0.20%、Mn:1.20%-2.0%、P:0.030%-0.080%、S≤0.004%、Als:0.02%-0.06%、Nb:0.02%-0.06%、Ti:0.025%-0.045%、V:0.05%-0.15%、Cr:0.5%-2.50%、Mo:0.10%-0.30%、B:0.0015%-0.0035%、N≤0.005%,余量为Fe和不可避免杂质。本发明提供的热成形钢具有高抗氧化和高塑性。且钢在进行热成形时不需进行气氛保护,热成形后不需进行抛丸处理。

Description

汽车用具有抗氧化性能的高塑热成形钢及热成形工艺 技术领域
本发明涉及汽车用钢技术领域,具体而言是一种汽车用具有抗氧化性能的高塑热成形钢及热成形工艺。
背景技术
近年来,车身用新材料不断研发并在车身上获得应用,但1000MPa以上级别的冷冲压用超高强钢板,受到易开裂和回弹大等问题的制约,往往用于制造形状简单的构件。而热成形钢采用热成形工艺在奥氏体区成形,回弹量较小,能够满足装配精度的要求,通过保压淬火可得到1500MPa级别及以上的超高强构件,有效的简化了车身结构和零部件设计,更大幅度的降低了车重。
目前,市场上热成形钢按表面状态可分为带涂层热成形钢和无涂层热成形钢,其中无涂层钢在加热炉中加热时易于在钢表面形成氧化铁皮,并发生脱碳情况,影响钢的性能,因此其在加热时需要采用保护气氛,同时在热成形后要进行喷丸处理,增加成本和工序;而涂层钢是在钢板表面带有一层铝硅涂层或锌基涂层,可以有效阻止钢加热过程中的表面脱碳和氧化,且钢在热成形后可免除喷丸工序,但相对于无涂层钢,涂层热成形钢的成本较高。目前,现有技术大批量生产和使用的热成形钢的强度级别为1500MPa级,但其热成形后延伸率仅在6-9%左右,不满足汽车领域发展需要,还没有一种较好的技术能够使钢在热成形后保持较低成本的同时解决表面氧化脱碳问题,并避免喷丸工序,同时热成形后钢还具有较高的塑性。
公开号为CN107354385B的专利中提出了一种汽车用超高强热成形钢制备方法,其成分中C:0.5-0.6%,Mn:0.5%-2.0%,Si:1.5%-2.5%,Cr:1.0%-3.0%,Al:1.0%-2.0%,Nb:0.01%-0.03%,B:0.001%-0.005%,热成形后钢板的强度达到1500-2000MPa,延伸率为10%-20%。该专利提出的钢板具有良好的强塑性匹配,但其成分中Cr、Al元素较高,增加成本和冶炼难度。同时,生产工艺复杂,现有工装设备不满足生产要求,且生 产时还需气氛保护和喷丸处理。
公开号为CN103255340B的专利中提出了一种汽车用高强韧性热成形钢板及其制备方法,钢板化学成分中C:0.1-0.5%,Si:0.5-1.5%,Mn:1.2%-2.4%,Ti:0.01%-0.05%,B:0.001%-0.005%,S:≤0.01%,P:≤0.01%,热成形后钢板的抗拉强度达到1600MPa,延伸率达到16%,综合性能良好,且合金成本较低。但钢板需要在加热过程中进行变形,然后进行两次淬火,获得最终的组织和力学性能,其热成形工艺复杂,在现有设备上无法实现,同时其在进行加热时同样需要进行气体保护,热成形后需要进行喷丸处理。
综上,开发具有良好抗氧化性能的汽车用高塑热成形和热成形工艺具有良好的应用前景。
发明内容
根据上述技术问题,而提供一种汽车用具有抗氧化性能的高塑热成形钢及热成形工艺。
本发明采用的技术手段如下:
一种汽车用具有抗氧化性能的高塑热成形钢,所述热成形钢板的化学成分质量百分比如下:
C:0.18%-0.28%、Si:≤0.20%、Mn:1.20%-2.0%、P:0.030%-0.080%、S≤0.004%、Als:0.02%-0.06%、Nb:0.02%-0.06%、Ti:0.025%-0.045%、V:0.05%-0.15%、Cr:0.5%-2.50%、Mo:0.10%-0.30%、B:0.0015%-0.0035%、N≤0.005%,余量为Fe和不可避免杂质。
所述热成形钢的组织由铁素体、马氏体和残余奥氏体组成。所述铁素体的体积分数为5%-12%、所述马氏体的体积分数为78%-89%、所述残余奥氏体的体积分数为6%-10%。
所述热成形钢的抗拉强度为1400MPa-1700MPa,抗氧化速率<0.1g/(m 2·h),屈服强度为900MPa-1450MPa,延伸率≥18.0%,钢的表面无完全脱碳,脱碳层厚度≤15μm,所述热成形钢板的厚度为0.8mm-12.0mm。
本发明钢的成分主要作用为:
C:C是钢强度的保证,有利于增加钢的淬透性。碳含量过低,钢在热冲压后强度达不到预期目标;碳含量过高,热成形后钢的强度过高,塑性下降。除此以外,C含量的增加可以降低钢的相变温度,使奥氏体化温度降低,有利于获得免抛丸表面,同时,C含量增加有利于钢在热成形保压过程中产生足够含量的过冷奥氏体,提高塑性。因此本发明中C的最优范围为0.18%-0.28%。
Si:Si在钢中为无碳化物析出元素,对热成形冷却和保压过程中碳化物析出具有良好的抑制作用,进而保证残余奥氏体含量和稳定性。然而,Si含量过高会使热成形基板表面出现大量氧化铁皮、色差等缺陷,影响热成形部件表面质量,同时,过高的Si元素扩大两相区,提高奥氏体化温度,使钢在较高的温度进行保温,易于恶化钢的表面。因此本发明提出的钢中Si含量采用≤0.20%。
Mn:Mn在本发明中主要作用为提高钢的淬透性,降低相变温度,使钢在较低的温度进行奥氏体化得以实现;Mn含量过高会恶化钢组织均匀性,易于使组织中出现严重的带状组织缺陷。因此本发明中选定Mn含量为1.20%-2.0%。
P:P在本发明中的作用与Si相似,能够抑制渗碳体生成,增加残余奥氏体稳定性;同时P能够使马氏体板条细化,且均匀分布,提高韧性。本发明中P含量为0.030%-0.080%。
S:在本发明中S是有害元素,S会形成MnS夹杂,恶化钢的显微组织和力学性能,为此本发明限定了S≤0.004%。
Als:Als(酸溶铝)在冶炼过程中起到脱氧定氮作用,但Als过多会导致大量的铝系夹杂。因此本发明中Als的范围为0.020%-0.060%。
Cr:Cr是提高钢淬透性元素,在本发明中,Cr元素的主要作用为提高钢的高温抗氧化性,同时提高钢板回火稳定性,保证钢板在保压温度范围内不出现回火马氏体。最佳的Cr含量在0.5%-2.50%之间。
Mo:Mo是中强碳化物形成元素,能够提高钢的强度和韧性。本发明中,Mo能够降低马氏体转变温度,显著提高残余奥氏体稳定性,同时,Mo元素的添加增加了钢的抗氧化性。本发明中Mo含量为0.10%-0.30%。
Nb、V:Nb和V在钢中主要起细晶强化、析出强化等作用。在本发明中,两者通过纳米级细小碳化物弥散析出,能够有效钉扎原始奥氏体晶界,进而细化热成形后钢中的各相组织,提高综合性能。同时,弥散析出的碳化物能够作为氢陷阱,钉扎钢中可扩散氢,提高抗延迟断裂性能。同时,弥散析出的碳化物能够作为氢陷阱,钉扎钢中可扩散氢,提高抗延迟断裂性能。此外,V与N形成的VN析出可以抑制BN析出,避免因B析出导致的强度降低。本发明中Nb含量为0.020%-0.060%,V含量为0.050%-0.15%。
Ti:Ti在硼钢中主要用于固定氮,以保证硼的淬透效果得以发挥。此外,Ti还可与C元素性能细小碳化物析出,降低热成形后组织中马氏体的硬度和强度,有利于提高钢的塑性和韧性。本发明中Ti含量在0.025%-0.045%之间。
B:钢中加入硼能显著提高钢的淬透性,且在淬火后可以保证钢的强度稳定性。B含量过低时效果不显著,而B含量过高易于与钢中的N形成B的化合物,降低钢的性能。本发明中B含量为0.0015%-0.0035%.
N:N的含量越低越好,但过低会导致生产困难,增加成本,因此本发明中N含量≤0.005%。
本发明中,通过添加C、Mn、Cr、Mo等合金元素,降低奥氏体化温度,提高了钢板淬透性,有利于抑制钢的氧化,同时,降低了钢热成形后的临界冷却速率,可进行厚规格热成形钢的生产;另外,通过化学成分和热成形工艺配合,在空冷阶段获得一定含量的铁素体,并在冷却后的保压阶段获得一定含量稳定性较好的残余奥氏体,提高钢的塑性;成分中Si和P元素的添加,抑制了碳化物析出,保证了钢板中残余奥氏体含量,提高了钢板力学性能;另外,钢板成分中的Cr、Mo元素起到抗氧化作用,使钢板可以在无保护气氛条件下进行加热和保温,热成形后可以不经喷丸直接进行后续工序生产。
本发明还公开了一种汽车用具有抗氧化性能的高塑热成形钢的热成形工艺,包括如下步骤:
(1)将含有上述成分的热成形基板放入到温度为A C3-A C3+15℃的加热炉中进行加热及保温,保温时间为180s-300s;
(2)将加热后的热成形基板由加热炉中取出进行空冷,空冷至A r3温度 后停留5s-8s后放入到热成形模具中进行变形和冷却,冷却速度≥18℃/s,冷却至180℃-250℃后进行保压,保压时间为40s-80s,保压后将成形的部件取出空冷至室温,得到所述热成形钢。
钢在进行热成形时不需进行气氛保护,热成形后不需进行抛丸处理,可直接进行后续工序,其全流程成本低于目前热成形产品。
上述热成形基板是经冶炼、热轧和冷轧后获得。冶炼的成分及其质量百分比为上述一种汽车用具有抗氧化性能的高塑热成形钢的成分及其质量百分比。
较现有技术相比,本发明具有以下优点:
(1)通过化学成分和热成形工艺配合,在传统全马氏体组织中引入一定含量的铁素体和残余奥氏体组织,提高了钢的塑性,使其在保证抗拉强度大于1400MPa条件下,延伸率达到并超过18%;
(2)通过添加Cr等元素,提高钢的抗氧化性能,钢板抗氧化速率<0.1g/(m 2·h),抗氧化性级别达到1级,钢在进行热成形时不需进行气氛保护,热成形后不需进行抛丸处理,可直接进行后续工序;
(3)提出的热成形钢和热成形工艺在现有设备上可以实现,无需进行设备改造,且成本较低。
基于上述理由本发明可在汽车用钢等领域广泛推广。
具体实施方式
需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本发明及其应用或使用的任何限制。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明提供了一种汽车用具有抗氧化性能的高塑热成形钢,所述热成形钢的化学成分质量百分比如下:
C:0.18%-0.28%、Si:≤0.20%、Mn:1.20%-2.0%、P:0.030%-0.080%、 S≤0.004%、Als:0.02%-0.06%、Nb:0.02%-0.06%、Ti:0.025%-0.045%、V:0.05%-0.15%、Cr:0.5%-2.50%、Mo:0.10%-0.30%、B:0.0015%-0.0035%、N≤0.005%,余量为Fe和不可避免杂质。
所述热成形钢的组织由铁素体、马氏体和残余奥氏体组成。所述铁素体的体积分数为5%-12%、所述马氏体的体积分数为78%-89%、所述残余奥氏体的体积分数为6%-10%。
所述热成形钢的抗拉强度为1400MPa-1700MPa,抗氧化速率<0.1g/(m 2·h),屈服强度为900MPa-1450MPa,延伸率≥18.0%,钢的表面无完全脱碳,脱碳层厚度≤15μm,所述热成形钢的厚度为0.8mm-12.0mm。
本具体实施方式中提出的抗氧化性能优良的高强热成形钢经冶炼、热轧和冷轧后,获得热成形基板,热成形基板的厚度为0.8mm-12.0mm。然后进行热成形工艺处理,热成形工艺具体包括以下步骤:
(1)将热成形基板放入到温度为A C3-A C3+15℃的加热炉中进行加热及保温,保温时间为180s-300s;
(2)将加热后的热成形基板由加热炉中取出进行空冷,空冷至A r3温度后停留5s-8s后放入到热成形模具中进行变形和冷却,冷却速度≥18℃/s,冷却至180℃-250℃后进行保压,保压时间为40s-80s,保压后将成形的部件取出空冷至室温,得到所述热成形钢。
本发明的实施例的具体成分、热成形工艺参数及热成形后钢板的组织和性能见表1~3。
表1本发明实施例的化学成分(wt,%)
Figure PCTCN2021132955-appb-000001
表2本发明实施例的热成形工艺
Figure PCTCN2021132955-appb-000002
表3本发明实施例的组织及性能参数
Figure PCTCN2021132955-appb-000003
本实施例中通过化学成分和热成形工艺配合,在传统全马氏体组织中引入一定含量的铁素体和残余奥氏体组织,提高了钢的塑性,使其在保证抗拉强度大于1400MPa条件下,延伸率达到18%以上。通过添加Cr、Mo等元素,提高钢的抗氧化性能,钢的抗氧化速率<0.1g/(m 2·h),抗氧化性级别达到1级,钢在进行热成形时不需进行气氛保护,热成形后不需进行抛丸处理,可直接进行后续工序;提出的热成形钢和热成形工艺全流程成本低于目前热成形部件生产成本,且在现有设备上可以实现,无需进行设备改造。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (10)

  1. 一种汽车用具有抗氧化性能的高塑热成形钢,其特征在于,所述热成形钢的化学成分质量百分比如下:
    C:0.18%-0.28%、Si:≤0.20%、Mn:1.20%-2.0%、P:0.030%-0.080%、S≤0.004%、Als:0.02%-0.06%、Nb:0.02%-0.06%、Ti:0.025%-0.045%、V:0.05%-0.15%、Cr:0.5%-2.50%、Mo:0.10%-0.30%、B:0.0015%-0.0035%、N≤0.005%,余量为Fe和不可避免杂质。
  2. 根据权利要求1所述的一种汽车用具有抗氧化性能的高塑热成形钢,其特征在于,所述热成形钢的组织由铁素体、马氏体和残余奥氏体组成。
  3. 根据权利要求2所述的一种汽车用具有抗氧化性能的高塑热成形钢,其特征在于,所述铁素体的体积分数为5%-12%、所述马氏体的体积分数为78%-89%、所述残余奥氏体的体积分数为6%-10%。
  4. 根据权利要求1所述的一种汽车用具有抗氧化性能的高塑热成形钢,其特征在于,所述热成形钢的抗拉强度为1400MPa-1700MPa。
  5. 根据权利要求1所述的一种汽车用具有抗氧化性能的高塑热成形钢,其特征在于,所述热成形钢的抗氧化速率<0.1g/(m 2·h)。
  6. 根据权利要求1所述的一种汽车用具有抗氧化性能的高塑热成形钢,其特征在于,所述热成形钢的屈服强度为900MPa-1450MPa。
  7. 根据权利要求1所述的一种汽车用具有抗氧化性能的高塑热成形钢,其特征在于,所述热成形钢的延伸率≥18.0%。
  8. 根据权利要求1所述的一种汽车用具有抗氧化性能的高塑热成形钢,其特征在于,所述热成形钢的表面无完全脱碳,脱碳层厚度≤15μm。
  9. 根据权利要求1所述的一种汽车用具有抗氧化性能的高塑热成形钢,其特征在于,所述热成形钢的厚度为0.8mm-12.0mm。
  10. 一种汽车用具有抗氧化性能的高塑热成形钢的热成形工艺,其特征在于,包括如下步骤:
    (1)将含有权利要求1~9任一权利要求所述成分的热成形基板放入到温度为A C3-A C3+15℃的加热炉中进行加热及保温,保温时间为180s-300s;
    (2)将加热后的热成形基板由加热炉中取出进行空冷,空冷至A r3温度后停留5s-8s后放入到热成形模具中进行变形和冷却,冷却速度≥18℃/s,冷却至180℃-250℃后进行保压,保压时间为40s-80s,保压后将成形的部件取出空冷至室温,得到所述热成形钢。
PCT/CN2021/132955 2021-11-19 2021-11-25 汽车用具有抗氧化性能的高塑热成形钢及热成形工艺 WO2023087352A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020237002199A KR20230074702A (ko) 2021-11-19 2021-11-25 항산화성능을 구비한 자동차용 고가소성 열성형 강 및 열성형 공정
JP2023519094A JP2024505319A (ja) 2021-11-19 2021-11-25 抗酸化性を有する自動車用の高塑性の熱間成形鋼及び熱間成形工程
EP21955263.5A EP4215636A4 (en) 2021-11-19 2021-11-25 HIGHLY FORMABLE HOT FORMABLE STEEL WITH OXIDATION RESISTANCE FOR AUTOMOTIVE AND HOT FORMING PROCESSES

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111401590.5A CN114058968A (zh) 2021-11-19 2021-11-19 汽车用具有抗氧化性能的高塑热成形钢及热成形工艺
CN202111401590.5 2021-11-19

Publications (1)

Publication Number Publication Date
WO2023087352A1 true WO2023087352A1 (zh) 2023-05-25

Family

ID=80275679

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/132955 WO2023087352A1 (zh) 2021-11-19 2021-11-25 汽车用具有抗氧化性能的高塑热成形钢及热成形工艺

Country Status (5)

Country Link
EP (1) EP4215636A4 (zh)
JP (1) JP2024505319A (zh)
KR (1) KR20230074702A (zh)
CN (1) CN114058968A (zh)
WO (1) WO2023087352A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114807777B (zh) * 2022-04-27 2023-06-16 鞍钢股份有限公司 一种热冲压用500MPa级汽车桥壳用钢及其生产方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5061325A (en) * 1989-03-29 1991-10-29 Nippon Steel Corporation Method of producing high tension steel superior in weldability and low-temperature toughness
CN103255340A (zh) 2012-12-28 2013-08-21 中北大学 一种汽车用高强韧性热成形钢板及其制备方法
CN104278216A (zh) * 2014-10-15 2015-01-14 山东钢铁股份有限公司 一种厚度大于60mm屈服强度690MPa级钢板及其制备方法
CN104384283A (zh) * 2014-09-25 2015-03-04 中南林业科技大学 一种22MnB5高强度薄钢板热冲压成形工艺
CN106119694A (zh) * 2016-08-24 2016-11-16 武汉钢铁股份有限公司 用中薄板坯直接轧制的抗拉强度≥1900MPa热成形钢及生产方法
CN106119692A (zh) * 2016-08-24 2016-11-16 武汉钢铁股份有限公司 用中薄板坯直接轧制的抗拉强度≥1500MPa热成形钢及生产方法
CN106191678A (zh) * 2016-08-24 2016-12-07 武汉钢铁股份有限公司 用中薄板坯直接轧制的抗拉强度≥1700MPa热成形钢及生产方法
CN107354385A (zh) 2017-07-11 2017-11-17 北京科技大学 一种汽车用超高强热成形钢的制备方法
CN109622706A (zh) * 2018-12-11 2019-04-16 吉林省正轩车架有限公司 用中厚硼合金钢板材热冲压成型制造汽车零件的工艺方法
CN110029274A (zh) * 2019-04-25 2019-07-19 首钢集团有限公司 一种1600MPa级高强高塑性热冲压用钢及其制备方法
CN110129670A (zh) * 2019-04-25 2019-08-16 首钢集团有限公司 一种1300MPa级高强高塑性热冲压用钢及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104195443A (zh) * 2014-05-19 2014-12-10 首钢总公司 汽车用高抗弯性能热成形钢及其制造方法
CN108707823A (zh) * 2018-05-31 2018-10-26 攀钢集团攀枝花钢铁研究院有限公司 超高强度钢板及其制备方法和超高强度钢板制品
CN111041382A (zh) * 2019-12-03 2020-04-21 马鞍山钢铁股份有限公司 一种具有低高温摩擦系数的1800MPa级无镀层热成形钢及其制备方法
CN111020124A (zh) * 2019-12-13 2020-04-17 首钢集团有限公司 一种锌基镀层涂覆的热冲压用钢及其制备方法
CN111411295B (zh) * 2020-03-24 2021-06-15 首钢集团有限公司 一种多相钢构件及其制备方法、应用

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5061325A (en) * 1989-03-29 1991-10-29 Nippon Steel Corporation Method of producing high tension steel superior in weldability and low-temperature toughness
CN103255340A (zh) 2012-12-28 2013-08-21 中北大学 一种汽车用高强韧性热成形钢板及其制备方法
CN104384283A (zh) * 2014-09-25 2015-03-04 中南林业科技大学 一种22MnB5高强度薄钢板热冲压成形工艺
CN104278216A (zh) * 2014-10-15 2015-01-14 山东钢铁股份有限公司 一种厚度大于60mm屈服强度690MPa级钢板及其制备方法
CN106119694A (zh) * 2016-08-24 2016-11-16 武汉钢铁股份有限公司 用中薄板坯直接轧制的抗拉强度≥1900MPa热成形钢及生产方法
CN106119692A (zh) * 2016-08-24 2016-11-16 武汉钢铁股份有限公司 用中薄板坯直接轧制的抗拉强度≥1500MPa热成形钢及生产方法
CN106191678A (zh) * 2016-08-24 2016-12-07 武汉钢铁股份有限公司 用中薄板坯直接轧制的抗拉强度≥1700MPa热成形钢及生产方法
CN107354385A (zh) 2017-07-11 2017-11-17 北京科技大学 一种汽车用超高强热成形钢的制备方法
CN109622706A (zh) * 2018-12-11 2019-04-16 吉林省正轩车架有限公司 用中厚硼合金钢板材热冲压成型制造汽车零件的工艺方法
CN110029274A (zh) * 2019-04-25 2019-07-19 首钢集团有限公司 一种1600MPa级高强高塑性热冲压用钢及其制备方法
CN110129670A (zh) * 2019-04-25 2019-08-16 首钢集团有限公司 一种1300MPa级高强高塑性热冲压用钢及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4215636A4

Also Published As

Publication number Publication date
CN114058968A (zh) 2022-02-18
EP4215636A4 (en) 2024-06-26
KR20230074702A (ko) 2023-05-31
EP4215636A1 (en) 2023-07-26
JP2024505319A (ja) 2024-02-06

Similar Documents

Publication Publication Date Title
JP6475861B2 (ja) ホットスタンピングに使用される鋼板、ホットスタンピングプロセスおよびホットスタンピングコンポーネント
JP7269588B2 (ja) ホットスタンピングに使用される鋼、ホットスタンピング方法および成形された構成要素
WO2017092104A1 (zh) 用于冲压成形的钢材及其成形构件与热处理方法
CN103614640B (zh) 一种抗高温氧化的非镀层热冲压成形用钢
CN110863138B (zh) 一种1800MPa级热成形钢及其制造方法
CN108374118A (zh) 一种具有易于成型特性的热镀锌双相钢板及其制造方法
CN116334489A (zh) 一种具有超强高温抗氧化的热冲压成形钢及其制备方法
CN108707823A (zh) 超高强度钢板及其制备方法和超高强度钢板制品
CN113737087A (zh) 一种超高强双相钢及其制造方法
CN106834941A (zh) 一种热冲压成形钢及其生产方法
WO2023087352A1 (zh) 汽车用具有抗氧化性能的高塑热成形钢及热成形工艺
CN114934228B (zh) 一种热成形钢板及其生产方法
CN114990434B (zh) 热成形钢材及其制备方法
CN114045440B (zh) 汽车用具有抗氧化性的高强高塑热成形钢及热成形工艺
RU2812417C1 (ru) Способ получения высокопрочного стального листа
CN113930675B (zh) 一种2200MPa级低碳无B热成形钢及其制备方法
TWI703220B (zh) 汽車用鋼及其製造方法
RU2813064C1 (ru) Способ получения высокопрочного стального листа
KR20230157997A (ko) 열간-성형 부품 또는 열처리 사전성형 부품을 제조하는 방법과 강철 스트립, 시트 또는 블랭크
CN116219287A (zh) 一种1500MPa级汽车轻量化冷轧热成形钢及其生产方法
JP2023534825A (ja) 成形性及び加工硬化率に優れた鋼板
CN115679208A (zh) 一种1500Mpa级冷硬热成形钢及其生产方法
CN115647162A (zh) 一种具有硅铝镀层的热冲压成形钢及其制备方法和用途
JP2022548259A (ja) 均一延伸率及び加工硬化率に優れた鋼板及びその製造方法
CN116926421A (zh) 低Si1600MPa级免涂层温成形中锰钢及制备方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 18022613

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2023519094

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2021955263

Country of ref document: EP

Effective date: 20230323