WO2023087280A1 - 微流控装置及其使用方法 - Google Patents

微流控装置及其使用方法 Download PDF

Info

Publication number
WO2023087280A1
WO2023087280A1 PCT/CN2021/131916 CN2021131916W WO2023087280A1 WO 2023087280 A1 WO2023087280 A1 WO 2023087280A1 CN 2021131916 W CN2021131916 W CN 2021131916W WO 2023087280 A1 WO2023087280 A1 WO 2023087280A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow channel
liquid
holes
microfluidic
assembly
Prior art date
Application number
PCT/CN2021/131916
Other languages
English (en)
French (fr)
Inventor
赵振涛
张宇宁
黎宇翔
云全新
董宇亮
章文蔚
徐讯
Original Assignee
深圳华大生命科学研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳华大生命科学研究院 filed Critical 深圳华大生命科学研究院
Priority to PCT/CN2021/131916 priority Critical patent/WO2023087280A1/zh
Priority to CN202180101484.7A priority patent/CN117795232A/zh
Publication of WO2023087280A1 publication Critical patent/WO2023087280A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves

Definitions

  • the present disclosure belongs to the field of microfluidic technology, and more specifically, the present disclosure provides a microfluidic device and a method for using the same.
  • Microfluidics is the science and technology involved in systems that use micropipes to process or manipulate tiny fluids. It is an emerging interdisciplinary subject involving chemistry, physics, microelectronics, new materials, biology and biomedical engineering. Because of its characteristics of miniaturization and integration, microfluidic technology is widely used in chemistry, medicine, life science and other fields.
  • Microfluidic valves can be divided into: rotary valves, paraffin valves, paraffin hot melt valves, magnet moving valves, pneumatic valves, mechanical valves, etc. Turning the valve is through the rotor, and the valve closes when the micro-pillar on the rotor contacts the micro-hole on the base.
  • Paraffin valves are generally used in chips where the liquid is driven by centrifugal force, and the paraffin valve is pushed open by the impulse of centrifugal force.
  • the paraffin hot-melt valve uses a heat source such as a laser to heat the valve part directionally to dissolve it and open the valve.
  • the magnet moving valve is to switch the valve through the movement of the magnet in the magnetic environment.
  • Pneumatic valves are inflated by gas, so that a certain part containing elastic components is bulged and filled to play the role of a valve.
  • the mechanical valve works through the cooperation of the device and the chip, and through the extension and retraction of a certain part of the device, the chip is squeezed to achieve the valve effect.
  • microfluidic valve only controls a single flow channel.
  • multiple valves need to be installed to control them separately.
  • the structure of the microfluidic device will be complicated and the cost will be high.
  • One of the purposes of the present disclosure is to design an improved microfluidic device for controlling dual-channel or multi-channel.
  • the present disclosure provides a microfluidic device, which includes a rotating mechanism, a rotating assembly, and a microfluidic assembly, the rotating assembly is rotatably connected to the microfluidic assembly through the rotating mechanism,
  • the rotating assembly includes a first limiting mechanism, a rotating assembly body and a sealing layer, the first limiting mechanism is detachably and fixedly connected to the rotating assembly body; the sealing layer is attached to the rotating assembly body; The lower surface of the sealing layer is provided with microchannel grooves for fluid passage,
  • the microfluidic assembly includes a cover plate and a flow channel plate, the cover plate is connected to the flow channel plate; the cover plate is provided with a flow channel opening, a second limit mechanism and a liquid hole; the flow channel There are multiple flow channel segments on the channel plate; each channel port communicates with one end of a channel segment as a liquid injection hole or a liquid outlet hole; each liquid passage hole communicates with one end of a channel segment, two or A group of liquid passage holes composed of a plurality of liquid passage holes can cooperate with the microchannel grooves on the sealing layer, so that the corresponding flow passage sections are connected;
  • the first limit mechanism and the second limit mechanism cooperate to limit the relative position of the rotating assembly and the microfluidic assembly
  • the rotating assembly is rotated to a first position relative to the microfluidic assembly, and one or more sets of liquid passage holes are connected through the microchannel grooves to connect the corresponding flow channel segments to form a through first flow channel. Both ends of the first flow channel have flow channel openings, which are respectively used as liquid injection holes and liquid outlet holes; the rotating assembly is rotated to the second position relative to the microfluidic assembly, and one or more sets of liquid passage holes pass through the micro flow channel
  • the grooves are connected to connect the corresponding flow channel sections to form a through second flow channel, and the two ends of the second flow channel have flow channel openings, which are respectively used as liquid injection holes and liquid outlet holes.
  • the through flow channel includes three flow channel sections, the two ends of the middle flow channel section are connected with liquid holes, the two ends of the flow channel sections on both sides are respectively connected with flow channel openings and liquid flow holes, and the middle flow channel
  • the liquid passage holes connected with the segments are respectively connected with the liquid passage holes connected with the flow channel segments on both sides to form a liquid passage group.
  • the first limiting mechanism is a limiting pin
  • the second limiting mechanism is a limiting groove or a limiting hole
  • the limiting pin can move in the limiting groove to limit the rotating assembly the relative position of the microfluidic component; or be fixed in the limiting hole to lock the relative position of the rotating component and the microfluidic component.
  • different channel segments and/or different parts of the same channel segment are located at different depths of the channel plate.
  • the microfluidic assembly includes a sealing gasket and a sensing device located under the flow channel plate, preferably the sealing gasket and the sensing device are detachable from the flow channel plate.
  • the rotating mechanism is a fixed shaft.
  • the cover plate is provided with two sets of runner openings and four pairs of liquid holes, and is provided with limiting grooves and limiting holes; the limiting pins move in the limiting grooves to control the passage of the first set of runner openings.
  • the flow channel on the flow channel plate, the first pair of liquid passage holes and the second pair of liquid passage holes are in communication; the limit pin corresponds to the limit hole so that the second group of flow channel openings pass through the flow channel plate
  • the flow channel, the third pair of liquid passage holes and the fourth pair of liquid passage holes are connected.
  • the first pair of liquid holes communicates with the second pair of liquid holes; the limit pin is at the other end of the limit groove. At one end, the first pair of liquid passage holes and the second pair of liquid passage holes are not connected.
  • the sealing layer is bonded to the rotating component body by heat fusion, ultrasonic welding, laser welding, gluing and the like.
  • the cover is a transparent cover.
  • the cover plate is combined with the flow channel plate by means of bonding, ultrasonic welding, laser welding, gluing and the like.
  • the present disclosure provides a method for using the microfluidic device of the first aspect, the method comprising:
  • the rotating assembly rotates around the rotating mechanism relative to the microfluidic assembly to the first position, and one or more sets of liquid passage holes are connected through the microchannel grooves to connect the corresponding flow channel segments to form a through hole
  • the first flow channel, the two ends of the first flow channel have flow channel openings, which are respectively used as liquid injection holes and liquid outlet holes;
  • the rotating assembly rotates around the rotating mechanism relative to the microfluidic assembly to a second position, and one or more groups of liquid passage holes are connected through the microchannel grooves, and the corresponding flow channel segments are connected to form a through hole
  • the second flow channel, the two ends of the second flow channel have flow channel openings, which are respectively used as liquid injection holes and liquid outlet holes;
  • the first limiting mechanism cooperates with the second limiting mechanism to limit the relative position of the rotating assembly and the microfluidic assembly.
  • 2) further includes: iii) the rotating assembly is rotated around the rotating mechanism relative to the microfluidic assembly to a third position, and no channel segments are connected, thus no through channel is formed.
  • the cover plate is provided with two sets of flow channel openings and four pairs of liquid holes, and is provided with limiting grooves and limiting holes;
  • the limit pin moves in the limit groove to control the opening of the first group of flow channels to form a passage with the first flow channel on the flow channel plate, and the first pair of flow passages on the first flow channel
  • the hole and the second pair of liquid holes are connected or closed through the corresponding micro-channel groove on the lower surface of the sealing layer, thereby controlling the connection or closure of the first flow channel;
  • the limit pin corresponds to the limit hole so that the second group of flow channel openings and the second flow channel on the flow channel plate form a passage, and the third pair of flow channel on the second flow channel
  • the liquid passage hole and the fourth pair of liquid passage holes are communicated through the corresponding micro-channel grooves on the lower surface of the sealing layer, so as to control the communication of the second flow channel.
  • the present disclosure can realize the control, sensing and temporary storage of microfluid, and the operation process is simple and convenient.
  • Fig. 1 shows a schematic diagram of the composition of a microfluidic device including a three-position valve according to an embodiment of the present disclosure.
  • Figure 2 shows a schematic diagram of a rotating assembly according to an embodiment of the present disclosure, A shows the lower surface of the rotating assembly; B shows an exploded view of the rotating assembly.
  • FIG. 3 shows a schematic diagram of a microfluidic assembly according to an embodiment of the present disclosure, A shows its exploded view; B shows a top view of a cover plate; C shows a top view of a channel plate.
  • Figure 4 shows a schematic diagram of the state where the microchannel groove closes the liquid hole pair (the liquid hole is separated) (A), and a state schematic diagram of the microchannel groove opening the liquid hole pair (the liquid hole is connected) (B).
  • Fig. 5 shows two schematic diagrams of user modes of a microfluidic assembly containing a three-position valve according to an embodiment of the present disclosure, A shows the open state of the user mode; B shows the closed state of the user mode.
  • Figure 6 shows a schematic view of the administrator mode of a microfluidic assembly containing a three-position valve according to an embodiment of the present disclosure, A shows a top perspective view of the administrator mode; B shows the flow channel in the administrator mode Partial flow diagram within the board; C shows an exploded view showing supervisor mode.
  • Figure 1 shows the composition of a microfluidic device containing a three-position valve according to an embodiment of the present disclosure.
  • the microfluidic device containing a three-position valve of the present disclosure may include a rotating mechanism 1, a rotating assembly 2.
  • the rotating mechanism 1 may be a rotating shaft, but the present disclosure does not exclude the rotating mechanism 1 in other ways, such as through gears.
  • the rotating assembly 2 is rotationally connected with the microfluidic assembly 3 through the rotating mechanism 1 , and the rotating assembly 2 can rotate relative to the microfluidic assembly 3 through the rotating mechanism 1 .
  • the bottom of the rotating component 2 is provided with a microfluidic groove, and the upper part of the microfluidic component 3 is provided with a liquid hole.
  • the microfluidic grooves are selectively connected through the liquid holes, thereby connecting the flow channel sections in the microfluidic assembly 3 to form a through flow channel.
  • the rotating assembly 2 rotates to a plurality of preset positions relative to the microfluidic assembly 3 .
  • multiple through-flow channels or no through-flow channels can be realized.
  • the relative positions of the rotating assembly 2 and the microfluidic assembly 3 can be limited by the limit mechanism.
  • the through flow channel usually includes three flow channel sections. The two ends of the middle flow channel section are connected with liquid passage holes. The liquid holes respectively connected with the flow channel sections on both sides form the liquid hole group.
  • the runner sections on both sides are generally shorter than the middle runner section, and the middle runner section is usually longer, and can be made into different shapes and have different volumes for various purposes.
  • the middle channel section can be located at different depths of the channel plate, and some parts have larger apertures, for example, to seal more pre-reserved liquid in order to form a larger airtight chamber.
  • the through flow channel is not limited to three flow channel segments, there can be 4, 5, 6, 7, 8, 10 or even more flow channel segments, only need to increase the number of intermediate flow channel segments .
  • a plurality of flow channel segments can be connected in series through liquid holes at the ends of the flow channel segments. This requires that the rotating assembly 2 is rotated to a certain preset position relative to the microfluidic assembly 3, and the corresponding microfluidic grooves are connected to the corresponding liquid hole groups.
  • the two flow channel sections can be communicated through the liquid passage hole connected at the ends of the two flow channel sections.
  • each flow channel section has a liquid passage hole to connect the two flow channel sections.
  • the present disclosure does not exclude the situation that two flow passage sections are connected through three or more liquid passage holes, for example, there are two or more liquid passage holes at the end of a flow passage section.
  • the present disclosure exemplifies a single flow channel, one liquid injection hole and one liquid outlet hole, it does not exclude the situation that the flow channel has bifurcations, and there are two or more liquid injection holes and liquid outlet holes. situation.
  • the through channels can branch in the middle and then join together, or they can be connected to the liquid outlets without joining.
  • flow path segments connected by multiple liquid injection holes may be connected to one liquid outlet hole.
  • Fig. 2 shows a schematic diagram of a rotating assembly according to an embodiment of the present disclosure
  • A shows the lower surface of the rotating assembly 2
  • B shows an exploded view of the rotating assembly 2.
  • the rotating assembly 2 includes a first limiting mechanism 22 , such as a limiting pin, a rotating assembly body 23 and a sealing layer 24 .
  • the rotating assembly 2 can also include a label 21 attached to the upper surface of the first limit mechanism 22, and the label can be printed with words or patterns for warning or prompting the user (such as "tearing is invalid"). Content is changeable.
  • the first limiting mechanism 22 is fixed on the rotating assembly body 23, for example, by bolts, and the first limiting mechanism can be removed by tools when needed.
  • the sealing layer 24 can be bonded to the rotating component body 23 by hot melting, ultrasonic welding, laser welding, gluing and the like.
  • the sealing layer 24 and the rotating assembly body 23 can be peeled off, and the sealing layer 24 can be replaced when necessary, so that it can be attached to the rotating assembly body 23 again.
  • the sealing layer 24 is provided with microchannel grooves 71-74 through which fluid can pass.
  • the microchannel groove is a short strip groove whose size and direction are adapted to the liquid passage hole pair described later, and is used to adjust the communication of the liquid passage hole pair.
  • the microfluidic component 3 shows a schematic diagram of a microfluidic assembly according to an embodiment of the present disclosure, and A shows an exploded view of the microfluidic assembly.
  • the microfluidic component 3 includes a cover plate 31 , such as a transparent cover plate, a channel plate 32 , a sealing gasket 33 and a sensing device 34 .
  • the cover plate 31 and the flow channel plate 32 are fixedly combined by bonding, ultrasonic welding, laser welding, gluing and the like.
  • the gasket 33 and sensing device 34 are generally detachable.
  • B shows a top view of the cover plate 31, showing the holes and slots on the top.
  • the flow channel plate 32 is provided with a plurality of flow channel segments, and the plurality of flow channel segments may be discontinuous.
  • the cover plate 31 is provided with runner openings 41-44, two in a group.
  • the flow channel openings 41-44 are respectively connected with one end of a flow channel segment, and can be used as liquid injection holes or liquid outlet holes of the flow channel.
  • the transparent cover plate 31 is also provided with pairs of liquid holes 61-64.
  • the pairs of liquid passage holes 61-64 are respectively located at the ends of the two flow channel sections, and the two flow passage sections are communicated through the pairs of liquid passage holes 61-64.
  • Each pair of liquid passage holes 61-64 is adapted to a microchannel groove 71-74 of the sealing layer 24 of the rotating assembly above, and by adjusting the relative positions of the liquid passage hole pair 61-64 and the microchannel groove 71-74, The connection or disconnection of the pair of liquid passage holes 61-64 can be adjusted, so as to control the connection or disconnection of the flow channel segments. For example, adjusting the direction of the microchannel groove to be consistent with the direction of the liquid passage hole pair makes the liquid passage hole pair connected; adjusts the liquid passage hole not on the microchannel groove so that the liquid passage hole pair is disconnected.
  • the application scenarios of the microfluidic components can be divided into user mode and administrator mode.
  • the administrator mode the microfluidic component is packaged with the reaction solution when it leaves the factory. The user cannot use the administrator mode. After the user returns to the factory after use, the reaction solution can be added.
  • the flow channel openings 41 and 44 are liquid injection holes or liquid outlet holes used by the flow channel in user mode.
  • the flow channel openings 41 and 44 are respectively located at two ends of a through flow channel. When one of them is a liquid injection hole, the other is a liquid outlet hole, and the two can be used interchangeably.
  • the flow channel openings 42 and 43 are liquid injection holes or liquid outlet holes used in administrator mode.
  • the flow channel openings 42 and 43 are respectively located at the two ends of a through flow channel. When one of them is a liquid injection hole, the other is a liquid injection hole.
  • the outlet hole, the two can be used interchangeably.
  • the cover includes a second limit mechanism, and the first limit mechanism cooperates with the second limit mechanism to limit the relative position of the rotating component and the microfluidic component.
  • the first limiting mechanism is a limiting pin 22
  • the second limiting mechanism includes a limiting slot 50 and a limiting hole 51 .
  • the limiting slot 50 is used to limit the range of movement of the limiting pin 22, and is used in the user mode in this example.
  • the limit hole 51 is used to limit the position of the limit pin 22 and is used in the administrator mode in this example. In different modes, that is, when the rotating assembly 2 is at different angles, the four pairs of liquid holes 61-64 can realize communication and isolation.
  • the microfluidic assembly containing a three-position valve according to an embodiment of the present disclosure includes two user mode states, A shows the open state of the user mode; B shows the closed state of the user mode.
  • the rotating assembly 2 When the rotating assembly 2 is in the position A of Figure 5 (this position is user mode 1, the two pairs of liquid holes are open, and the liquid injection or liquid discharge operation can be implemented), the two pairs of liquid holes 62 and 64 respectively pass through the micro
  • the flow channel grooves 74 and 73 communicate with each other to form a flow channel in the direction indicated by the arrow.
  • Liquid injection or liquid discharge can be performed through the channel port 41 or 44 .
  • the direction of the arrow shown in A of FIG. 5 is the fluid direction when 44 is the liquid injection hole and 41 is the liquid discharge hole.
  • 41 is a liquid injection hole and 44 is a liquid discharge hole
  • the fluid movement direction is opposite to the direction of the arrow.
  • the flow channel openings 42 and 43 are blocked by the rotating assembly body 23, which avoids misoperation by the user.
  • A-C the states of the supervisor mode of the microfluidic assembly with a three-position valve according to one embodiment of the present disclosure are represented by A-C.
  • A shows a top perspective view of the administrator mode
  • B shows a partial flow diagram in the runner plate in the administrator mode
  • C shows an exploded view showing the administrator mode.
  • the rotating assembly 2 is in the position shown in FIG. 6 (this position is the supervisor mode)
  • the two pairs of liquid passage holes 61 and 63 are communicated through the microchannel grooves 72 and 71 respectively.
  • Liquid injection or liquid discharge can be performed through the flow port 42 or 43 .
  • the direction of the arrow shown in A of FIG. 6 is the fluid direction when 43 is a liquid injection hole and 42 is a liquid discharge hole.
  • 42 is the liquid injection hole and 43 is the liquid discharge hole
  • the fluid movement direction is opposite to the direction of the arrow; at this time, the flow channel openings 41 and 44 are blocked by the rotating component body 23 to avoid user misoperation.
  • the flow direction of the flow path when the administrator mode is turned on and off is described below through A-C in FIG. 6 .
  • inject the pre-stored liquid through the liquid injection hole 43, through the arrows 1 and 2; through the liquid hole pair 63; sink into the arrow 3; then flow through the arrows 4, 5, 6; flow up through the arrow 7; 8, 9, 10, 11, 12; then pass through the liquid hole pair 61; through arrows 13, 14; flow out from the liquid outlet hole 42 after being filled.
  • the pair of liquid passage holes 63 and 61 are closed, and the pair of liquid passage holes 63 and 61 constitute a sealed chamber for sealing the pre-stored liquid.
  • the administrator mode can be used for a specific operator to add solution or replace the solution to the sealed chamber formed by the pair of liquid outlet holes 63 and 61 .
  • the administrator or a user with management authority can tear off the label 21 and remove the limit pin 22, so that the rotating assembly 2 can rotate 360°, and when it is rotated to the position shown in Figure 6, install the limit pin 22, Make the tail of the limiting pin snap into the limiting hole 51 .
  • the rotating assembly is limited to the position shown in FIG. 6 .
  • the limit pin 22 can be removed, so that the rotating assembly can return to the position indicated by A or B in Figure 5, and the limit pin 22 can be installed so that the tail of the limit pin snaps into the arc groove within 50.
  • the present disclosure can realize the communication and isolation of the first flow channel (the flow channel in which the flow channel openings 41 and 44 communicate) through the two positions of the limit pin 22 in the arc groove (while the second flow channel is blocked at this time);
  • the positioning pin is in the limiting hole 51
  • the communication of the second flow channel (the flow channel in which the flow channel openings 42 and 43 are connected) can be realized (the first flow channel is blocked at this time).
  • the rotating component body can cover other useless runner openings, so as to avoid problems caused by user misoperation.
  • This disclosure provides a three-position valve capable of controlling the on-off of the double flow channel. Based on this valve, the user mode and the administrator mode can be realized. This design can effectively avoid the need to use multiple valves to control the double flow channel. cumbersome.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

一种微流控装置,包括旋转机构(1)、旋转组件(2)和微流控组件(3),所述旋转组件(2)与所述微流控组件(3)通过所述旋转机构(1)转动连接;所述旋转组件(2)包括第一限位机构(22)、旋转组件本体(23)和密封层(24),所述密封层(24)下表面设置有用于流体通过的微流道槽(71,72,73,74);所述微流控组件(3)包括盖板(31)和流道板(32),所述盖板(31)上设有流道口(41,42,43,44)和过液孔对(61,62,63,64),所述流道板(32)上设有多个流道段,过液孔对(61,62,63,64)可与所述密封层(24)上的微流道槽(71,72,73,74)配合,使得相应流道段连通。

Description

微流控装置及其使用方法 技术领域
本公开属于微流控技术领域,更具体而言本公开提供了一种微流控装置及其使用方法。
背景技术
微流控技术是使用微管道处理或操纵微小流体的系统所涉及的科学和技术,是一门涉及化学、物理、微电子、新材料、生物学和生物医学工程的新兴交叉学科。因为其具有微型化、集成化等特征,微流控技术被广泛应用于化学、医药、生命科学等领域。
微流控阀门可分为:转动阀门、石蜡阀门、石蜡热熔阀、磁铁移动阀门、气动阀门、机械阀门等。转动阀门是通过转子,当转子上的微柱与底座上的微孔相接触时阀门关闭。石蜡阀门一般用于液体由离心力驱动的芯片内,通过离心力的冲力顶开石蜡阀门。石蜡热熔阀是用激光等热源定向加热阀门部位,使其溶解,打开阀门。磁铁移动阀门是通过磁铁在磁力环境下的运动来开关阀门。气动阀门是通过气体充气,使某一含有弹性组分的部位鼓起填充,起到阀门的效果。机械阀门是通过设备和芯片配合,通过设备的伸出缩回某一部位,挤压芯片,起到阀门效果。
上述微流控阀门仅对单一流道进行控制,当需要对双流道或多流道进行控制,则需要安装多个阀门分别进行控制,此时会造成微流控装置结构复杂,成本偏高。
发明内容
为了对双流道或多流道进行控制,本公开的目的之一在于设计一种改进的微流控装置。
因此,在第一方面,本公开提供了一种微流控装置,其包括旋转机构、旋转组件和微流控组件,所述旋转组件与所述微流控组件通过所述旋转机构转动连接,
所述旋转组件包括第一限位机构、旋转组件本体和密封层,所述第一限位机构与所述旋转组件本体可拆卸固定连接;所述密封层与所 述旋转组件本体贴合;所述密封层下表面设置有用于流体通过的微流道槽,
所述微流控组件包括盖板和流道板,所述盖板连接于所述流道板上;所述盖板上设有流道口、第二限位机构和过液孔;所述流道板上设有多个流道段;每个流道口与一个流道段的一端连通,作为注液孔或出液孔;每个过液孔与一个流道段的一端连通,两个或多个过液孔组成的过液孔组可与所述密封层上的微流道槽配合,使得相应流道段连通;
所述第一限位机构和所述第二限位机构配合对所述旋转组件和所述微流控组件的相对位置进行限定;
所述旋转组件相对于所述微流控组件转动到第一位置,一组或多组过液孔通过微流道槽连通,将相应的流道段连通,形成贯通的第一流道,所述第一流道的两端具有流道口,分别作为注液孔和出液孔;所述旋转组件相对于所述微流控组件转动到第二位置,一组或多组过液孔通过微流道槽连通,将相应的流道段连通,形成贯通的第二流道,所述第二流道的两端具有流道口,分别作为注液孔和出液孔。
优选地,所述旋转组件相对于所述微流控组件转动到第三位置,无流道段连通,因而无贯通的流道形成。
优选地,所述贯通的流道包括三个流道段,中间流道段的两端连接有过液孔,两侧流道段的两端分别连接有流道口和过液孔,中间流道段连接的过液孔分别与两侧流道段连接的过液孔组成过液孔组。
优选地,所述第一限位机构为限位销钉,所述第二限位机构为限位槽或限位孔,所述限位销钉可以在所述限位槽中移动,限制所述旋转组件与所述微流控组件的相对位置;或者固定于所述限位孔中,锁定所述旋转组件与所述微流控组件的相对位置。
优选地,不同流道段和/或同一流道段的不同部分位于流道板的不同深度。
优选地,所述微流控组件包括位于所述流道板下的密封垫和感测装置,优选所述密封垫和所述感测装置与所述流道板是可拆卸的。
优选地,所述旋转机构为固定轴。
优选地,所述盖板上设有两组流道口和四对过液孔,并设有限位槽和限位孔;所述限位销钉在所述限位槽中移动控制第一组流道口通 过所述流道板上的流道、第一对过液孔和第二对过液孔连通;所述限位销钉对应于所述限位孔使得第二组流道口通过所述流道板上的流道、第三对过液孔和第四对过液孔连通。
优选地,所述限位销钉在所述限位槽的一端时,所述第一对过液孔和所述第二对过液孔连通;所述限位销钉在所述限位槽的另一端时,所述第一对过液孔和所述第二对过液孔不连通。
优选地,所述密封层与所述旋转组件本体贴合通过热熔、超声波焊接、激光焊接、胶粘等方式。
优选地,所述盖板是透明盖板。
优选地,所述盖板结合于所述流道板上是通过键合、超声波焊接、激光焊接、胶粘等方式。
在第二方面,本公开提供了第一方面的微流控装置的使用方法,所述方法包括:
1)取消所述第一限位机构与所述第二限位机构的固定;
2)进行如下的一项或多项:
i)所述旋转组件绕所述旋转机构相对于所述微流控组件转动到第一位置,一组或多组过液孔通过微流道槽连通,将相应的流道段连通,形成贯通的第一流道,所述第一流道的两端具有流道口,分别作为注液孔和出液孔;
ii)所述旋转组件绕所述旋转机构相对于所述微流控组件转动到第二位置,一组或多组过液孔通过微流道槽连通,将相应的流道段连通,形成贯通的第二流道,所述第二流道的两端具有流道口,分别作为注液孔和出液孔;
3)所述第一限位机构与所述第二限位机构配合对所述旋转组件和所述微流控组件的相对位置进行限定。
优选地,在2)中还包括:iii)所述旋转组件绕所述旋转机构相对于所述微流控组件转动到第三位置,无流道段连通,因而无贯通的流道形成。
优选地,所述盖板上设有两组流道口和四对过液孔,并设有限位槽和限位孔;
在i)中,所述限位销钉在所述限位槽中移动控制所述第一组流道口与所述流道板上的第一流道组成通路,所述第一流道上的第一对过 液孔和第二对过液孔通过所述密封层下表面的对应微流道槽的连通或关闭,从而控制所述第一流道连通或关闭;
在ii)中,所述限位销钉对应于所述限位孔使得所述第二组流道口与所述流道板上的第二流道组成通路,所述第二流道上的第三对过液孔和第四对过液孔通过所述密封层下表面的对应微流道槽的连通,从而控制所述第二流道的连通。
本公开可实现对微量流体的控制、感测及临时存贮,操作过程简单方便。
附图说明
下面参照附图将对公开的特征、优点以及示例性实施方式的技术上和工业上的意义进行描述。在附图中,相同的附图标记指示相同的元件,并且其中:
图1示出了根据本公开一个实施方案的含三位阀门的微流控装置的构成示意图。
图2示出了根据本公开一个实施方案的旋转组件的示意图,A示出了旋转组件的下表面;B示出了旋转组件的分解图。
图3示出了根据本公开一个实施方案的微流控组件的示意图,A示出了其分解图;B示出了盖板的俯视图;C示出了流道板的俯视图。
图4示出了微流道槽将过液孔对关闭的状态示意图(过液孔被隔开)(A),和微流道槽将过液孔对开启的状态示意图(过液孔连通)(B)。
图5示出了根据本公开一个实施方案的含三位阀门的微流控组件的用户模式的两种状态示意图,A示出了用户模式的打开状态;B示出了用户模式的关闭状态。
图6示出了根据本公开一个实施方案的含三位阀门的微流控组件的管理员模式的状态示意图,A示出了管理员模式的俯视透视图;B示出了管理员模式下流道板内部分流向图;C示出了示出了管理员模式的分解图。
具体实施方式
为了使本公开的上述以及其他特征和优点更加清楚,下面结合附图进一步描述本公开。附图构成本申请一部分,并与本公开的实施例 一起用于阐释本公开。为了清楚和简化目的,当其可能使本公开的主题模糊不清时,对本文所描述的器件的已知功能和结构的详细具体说明将省略。应当理解,本文给出的具体实施例是出于向本领域技术人员解释的目的,仅是示例性的,而非限制性的。
在以下描述中,阐述了许多具体细节以提供对本公开的透彻理解。然而,对于本领域普通技术人员来说将明显的是,不需要采用所述具体细节来实践本公开。在其他情况下,未详细描述众所周知的步骤或操作,以避免模糊本公开。
图1示出了根据本公开一个实施方案的含三位阀门的微流控装置的构成,如图1所示,本公开的含三位阀门的微流控装置可以包括旋转机构1、旋转组件2、微流控组件3。在本公开中,旋转机构1可以为旋转轴,但本公开不排除旋转机构1为其他的方式,例如通过齿轮。旋转组件2通过旋转机构1与微流控组件3转动连接,旋转组件2可以通过旋转机构1相对于微流控组件3旋转。在本公开中,旋转组件2底部设置有微流道槽,微流控组件3上部设置有过液孔。通过旋转组件2相对于微流控组件3转动,微流道槽选择性连通过液孔,从而在微流控组件3中将流道段连通,而形成贯通的流道。
在本公开中,旋转组件2相对于微流控组件3转动到多个预设位置。在每个预设的位置,可以实现多个贯通的流道,或者无贯通的流道。在预设的位置上,通过限位机构可以将旋转组件2和微流控组件3的相对位置进行限定。贯通的流道通常包括三个流道段,中间流道段的两端连接有过液孔,两侧流道段的两端分别连接有流道口和过液孔,中间流道段连接的过液孔分别与两侧流道段连接的过液孔组成过液孔组。两侧流道段一般比中间流道段短小,中间流道段通常较长,为了各种目的可以做成不同形状,并且具有不同的容积。例如,中间流道段的不同部分可以位于流道板的不同深度,并且有些部分具有更大的孔径,例如为了构成较大密闭腔室而封存更多预存液。在本公开中,贯通的流道并不限于三个流道段,可以有4、5、6、7、8、10甚至更多个流道段,仅需要增加中间流道段的数量即可。本领域技术人员可以理解,为了形成贯通的流道,需要将多个流道段头尾相连。在本公开中,多个流道段可以通过流道段端部的过液孔实现串联。这需要旋转组件2相对于微流控组件3转动到某个预设位置,有相应的微流道 槽将相应过液孔组连通。
在本公开中,通过两个流道段端部连接的过液孔可以将这两个流道段连通。一般而言,每个流道段上各有一个过液孔即可将两个流道段连通。然而,本公开不排除通过三个或更多个过液孔连通两个流道段的情形,例如一个流道段端部有两个或更多个过液孔。另外,虽然本公开中以单流道、一个注液孔和一个出液孔进行了举例说明,但不排除流道具有分叉的情形,以及具有两个或多个注液孔和出液孔的情形。例如,贯通的流道可以中间分叉,然后再汇合,也可以不汇合而分别连接出液孔。再例如,多个注液孔连接的流道段可以汇合连接一个出液孔。本领域技术人员应理解,这样的实施方案在本公开的范围内。
下面介绍本装置的旋转组件2和微流控组件3的组成及连接方式。
图2示出了根据本公开一个实施方案的旋转组件的示意图,A示出了旋转组件2的下表面;B示出了旋转组件2的分解图。如图所示,旋转组件2包括第一限位机构22,例如限位销钉、旋转组件本体23和密封层24。旋转组件2还可以包括标贴21贴在第一限位机构22的上表面,标贴上可以印有用于警告或提示用户的文字或图案(例如“撕毁无效”),标贴21的上印内容是可更改的。第一限位机构22固定在旋转组件本体23上,例如通过螺栓,在需要时可通过工具将第一限位机构拆下。密封层24可通过热熔、超声波焊接、激光焊接、胶粘等方式与旋转组件本体23贴合在一起。密封层24与旋转组件本体23可以剥离,在需要时可以更换密封层24,使之重新与旋转组件本体23进行贴合。密封层24上设置有可使流体通过的微流道槽71-74。微流道槽为短条状槽,其尺寸和走向与后述过液孔对相适应,用于调节过液孔对的连通。
图3示出了根据本公开一个实施方案的微流控组件的示意图,A示出了微流控组件的分解图。如A所示,微流控组件3包括盖板31,例如为透明盖板、流道板32、密封垫33和感测装置34。通常情况下,盖板31和流道板32是固定结合在一起的,结合方式可以是键合、超声波焊接、激光焊接、胶粘等方式。密封垫33和感测装置34通常是可以拆卸的。B中示出了盖板31的俯视图,显示了上各孔位及槽位。C示出了流道板32的俯视图,流道板32上设有多个流道段,所述多个 流道段可以是不连续的。如B所示,盖板31上设有流道口41-44,两个一组。流道口41-44分别与一个流道段的一端相接,可以作为流道的注液孔或出液孔。透明盖板31上还设有过液孔对61-64。过液孔对61-64分别位于两个流道段的末端,通过过液孔对61-64连通而将两个流道段连通。每对过液孔61-64与上文旋转组件的密封层24的一个微流道槽71-74相适应,通过调整过液孔对61-64与微流道槽71-74的相对位置,可以调整过液孔对61-64连通或断开,从而控制流道段的连通或断开。例如,调整微流道槽的走向与过液孔对的方向一致,使得过液孔对连通;调整过液孔不在微流道槽上,使得过液孔对断开。图4中A和B分别示出了微流道槽将过液孔对关闭的状态(过液孔被隔开)和微流道槽将过液孔对开启的状态(过液孔连通)。如在A中示例性所示,密封层24将过液孔对61断开;如在B中示例性所示,微流道槽72使过液孔对61连通。
在一个具体实施方案中,为方便区分该微流控组件的使用场景,这里可以将微流控组件的应用场景分为用户模式和管理员模式。在管理员模式下,微流控组件在出厂时即封装有反应溶液,用户不能使用管理员模式,在用户用完后返厂,可以再将反应液加入。流道口41和44是用户模式时流道所使用的注液孔或出液孔。流道口41和44分别位于一个贯通流道的两端,当其中之一为注液孔时,另一个则为出液孔,二者可以交换使用。流道口42和43是管理员模式时所使用的注液孔或出液孔,流道口42和43分别位于一个贯通流道的两端,当其中之一为注液孔时,另一个则为出液孔,二者可以交换使用。所述盖板上包括第二限位机构,所述第一限位机构和所述第二限位机构配合对所述旋转组件和所述微流控组件的相对位置进行限定。这里,第一限位机构为限位销钉22,第二限位机构包括限位槽50和限位孔51。限位槽50是用来限制限位销钉22的活动范围的,在本例中在用户模式下使用。限位孔51是用来限制限位销钉22的位置,在本例中在管理员模式下使用。在不同的模式下即旋转组件2在不同角度时,四对过液孔61-64可实现连通和隔断。
如下通过图5和6示例性描述了本公开一个实施方案的含三位阀门的微流控装置的具体实施过程。为了清楚起见,图中仅示出了旋转组件、盖板和流道板。如图5所示,根据本公开一个实施方案的含三 位阀门的微流控组件包括两种用户模式状态,A示出了用户模式的打开状态;B示出了用户模式的关闭状态。
当旋转组件2处于图5的A位置时(此位置为用户模式1,两对过液孔均呈打开状态,可实施注液或排液操作),62和64两对过液孔分别通过微流道槽74和73而连通,形成箭头标注方向的流道。通过流道口41或44可进行注液或排液操作。图5的A所示的箭头方向是在44为注液孔、41为排液孔时的流体方向。当41为注液孔,44为排液孔时,流体运动方向则与箭头方向相反。而在此时,流道口42和43则被旋转组件本体23遮挡,避免了用户误操作。
当旋转组件2处于图5的B位置时(此位置为用户模式2,各过液孔对均呈关闭状态,不可实施注液或排液操作),此时,各对过液孔均未通过密封层处的微流槽所连接。且各流道口被旋转组件本体23遮挡,用户无法进行注液或排液操作。
如图6所示,根据本公开一个实施方案的含三位阀门的微流控组件的管理员模式的状态用A-C表示。其中,A示出了管理员模式的俯视透视图;B示出了管理员模式下流道板内局部流向图;C示出了示出了管理员模式的分解图。当旋转组件2处于图6位置时(此位置为管理员模式),61和63两对过液孔分别通过微流道槽72和71而连通。通过流道口42或43可进行注液或排液操作。图6的A所示的箭头方向是在43为注液孔,42为排液孔时的流体方向。当42为注液孔,43为排液孔时,流体运动方向则与箭头方向相反;而此时,流道口41和44则被旋转组件本体23遮挡,避免了用户误操作。
以下通过图6中的A-C,对管理员模式开启和关闭的情况下的流路流向进行说明。如图所示,通过注液孔43注入预存液,经箭头1、2;经过液孔对63;下沉进入箭头3;然后流经箭头4、5、6;经箭头7上流;依次经箭头8、9、10、11、12;而后经过液孔对61;经箭头13、14;注满后从出液孔42孔流出。在关闭管理员模式后,过液孔对63、61关闭,由过液孔对63、61构成密闭腔室用以封存预存液。管理员模式可用于特定操作人员对过液孔对63、61形成的密闭腔室进行加注溶液或更换溶液。
在本公开中,管理员或具有管理权限的用户可通过撕下标贴21并拆下限位销钉22,使旋转组件2可以360°旋转,当旋转至图6位置 时,装上限位销钉22,使限位销钉的尾部卡进限位孔51内。此时,旋转组件被限定在图6所示位置。完成注液或排液操作后,可拆下限位销钉22,使旋转组件再次回到图5中的A或B表示的位置,装上限位销钉22,使限位销钉的尾部卡进弧形槽50内。
本公开通过限位销钉22在弧形槽内的两个位置可实现第一流道(流道口41和44连通的流道)的连通和隔断(而此时第二流道是隔断的);限位销钉在限位孔51内时,可实现第二流道(流道口42和43连通的流道)的连通(此时第一流道是隔断的)。而无论在哪种状态下,旋转组件本体都可以将其他无用的流道口给遮挡住,以避免用户误操作带来的问题。
本公开给出了一种具备控制双流道通断的三位阀门,基于这种阀门,可实现用户模式和管理员模式,这种设计可有效避免在控制双流道时需要使用多个阀门控制的繁琐。
以上描述的各技术特征可以任意地组合。尽管未对这些技术特征的所有可能组合进行描述,但这些技术特征的任何组合都应当被认为由本说明书涵盖,只要这样的组合不存在矛盾。
尽管结合实施例对本公开进行了描述,但本领域技术人员应理解,上文的描述和附图仅是示例性而非限制性的,本公开不限于所公开的实施例。在不偏离本公开的精神的情况下,各种改型和变体是可能的。

Claims (15)

  1. 一种微流控装置,其特征在于,包括旋转机构、旋转组件、微流控组件,所述旋转组件与所述微流控组件通过所述旋转机构转动连接,
    所述旋转组件包括第一限位机构、旋转组件本体和密封层,所述限位机构与所述旋转组件本体可拆卸固定连接;所述密封层与所述旋转组件本体贴合;所述密封层下表面设置有用于流体通过的微流道槽,
    所述微流控组件包括盖板和流道板,所述盖板连接于所述流道板上;所述盖板上设有流道口、第二限位机构和过液孔;所述流道板上设有多个流道段;每个流道口与一个流道段的一端连通,作为注液孔或出液孔;每个过液孔与一个流道段的一端连通,两个或多个过液孔组成的过液孔组可与所述密封层上的微流道槽配合,使得相应流道段连通;
    所述第一限位机构和所述第二限位机构配合对所述旋转组件和所述微流控组件的相对位置进行限定;
    通过所述旋转组件相对于所述微流控组件转动到第一位置,一组或多组过液孔通过微流道槽连通,将相应的流道段连通,形成贯通的第一流道,所述第一流道的两端具有流道口,分别作为注液孔和出液孔;所述旋转组件相对于所述微流控组件转动到第二位置,一组或多组过液孔通过微流道槽连通,将相应的流道段连通,形成贯通的第二流道,所述第二流道的两端具有流道口,分别作为注液孔和出液孔。
  2. 根据权利要求1所述的微流控装置,其特征在于,所述旋转组件相对于所述微流控组件转动到第三位置,无流道段连通,因而无贯通的流道形成。
  3. 根据权利要求1或2所述的微流控装置,其特征在于,所述贯通的流道包括三个流道段,中间流道段的两端连接有过液孔,两侧流道段的两端分别连接有流道口和过液孔,中间流道段连接的过液孔分别与两侧流道段连接的过液孔组成过液孔组。
  4. 根据权利要求1或2所述的微流控装置,其特征在于,不同流道段和/或同一流道段的不同部分位于流道板的不同深度。
  5. 根据权利要求1或2所述的微流控装置,其特征在于,所述第 一限位机构为限位销钉,所述第二限位机构为限位槽或限位孔,所述限位销钉可以在所述限位槽中移动,限制所述旋转组件与所述微流控组件的相对位置;或者固定于所述限位孔中,锁定所述旋转组件与所述微流控组件的相对位置。
  6. 根据权利要求1或2所述的微流控装置,其特征在于,所述微流控组件包括位于所述流道板下的密封垫和感测装置,优选所述密封垫和所述感测装置与所述流道板是可拆卸的。
  7. 根据权利要求1或2所述的微流控装置,其特征在于,所述旋转机构为固定轴。
  8. 根据权利要求5所述的微流控装置,其特征在于,所述盖板上设有两组流道口和四对过液孔,并设有限位槽和限位孔;所述限位销钉在所述限位槽中移动控制第一组流道口通过所述流道板上的流道、第一对过液孔和第二对过液孔连通;所述限位销钉对应于所述限位孔使得第二组流道口通过所述流道板上的流道、第三对过液孔和第四对过液孔连通。
  9. 根据权利要求8所述的微流控装置,其特征在于,所述限位销钉在所述限位槽的一端时,所述第一对过液孔和所述第二对过液孔连通;所述限位销钉在所述限位槽的另一端时,所述第一对过液孔和所述第二对过液孔不连通。
  10. 根据权利要求1或2所述的微流控装置,其特征在于,所述密封层与所述旋转组件本体贴合通过热熔、超声波焊接、激光焊接或胶粘。
  11. 根据权利要求1或2所述的微流控装置,其特征在于,所述盖板是透明盖板。
  12. 根据权利要求1或2所述的微流控装置,其特征在于,所述盖板结合于所述流道板上是通过键合、超声波焊接、激光焊接或胶粘。
  13. 根据权利要求1-12的微流控装置的使用方法,其特征在于,所述方法包括:
    1)取消所述第一限位机构与所述第二限位机构的固定;
    2)进行如下的一项或多项:
    i)所述旋转组件绕所述旋转机构旋转机构相对于所述微流控组件转动到第一位置,一组或多组过液孔通过第一微流道槽连通,将相应 的流道段连通,形成贯通的第一流道,所述第一流道的两端具有流道口,分别作为注液孔和出液孔;
    ii)所述旋转组件绕所述旋转机构相对于所述微流控组件转动到第二位置,一组或多组过液孔通过第二微流道槽连通,将相应的流道段连通,形成贯通的第二流道,所述第二流道的两端具有流道口,分别作为注液孔和出液孔;
    3)所述第一限位机构与所述第二限位机构配合对所述旋转组件和所述微流控组件的相对位置进行限定。
  14. 根据权利要求13的方法,其特征在于,在2)中还包括:iii)所述旋转组件绕所述旋转机构相对于所述微流控组件转动到第三位置,无流道段连通,因而无贯通的流道形成。
  15. 根据权利要求13或14的方法,其特征在于,所述盖板上设有两组流道口和四对过液孔,并设有限位槽和限位孔;
    在i)中,所述限位销钉在所述限位槽中移动控制所述第一组流道口与所述流道板上的第一流道组成通路,所述第一流道上的第一对过液孔和第二对过液孔通过所述密封层下表面的对应微流道槽的连通或关闭,从而控制所述第一流道连通或关闭;
    在ii)中,所述限位销钉对应于所述限位孔使得所述第二组流道口与所述流道板上的第二流道组成通路,所述第二流道上的第三对过液孔和第四对过液孔通过所述密封层下表面的对应微流道槽的连通,从而控制所述第二流道的连通。
PCT/CN2021/131916 2021-11-19 2021-11-19 微流控装置及其使用方法 WO2023087280A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/131916 WO2023087280A1 (zh) 2021-11-19 2021-11-19 微流控装置及其使用方法
CN202180101484.7A CN117795232A (zh) 2021-11-19 2021-11-19 微流控装置及其使用方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/131916 WO2023087280A1 (zh) 2021-11-19 2021-11-19 微流控装置及其使用方法

Publications (1)

Publication Number Publication Date
WO2023087280A1 true WO2023087280A1 (zh) 2023-05-25

Family

ID=86396024

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/131916 WO2023087280A1 (zh) 2021-11-19 2021-11-19 微流控装置及其使用方法

Country Status (2)

Country Link
CN (1) CN117795232A (zh)
WO (1) WO2023087280A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030116206A1 (en) * 2001-12-26 2003-06-26 Herbert Hartshorne Microfluidic valve and method of manufacturing same
CN206965754U (zh) * 2017-06-09 2018-02-06 北京百康芯生物科技有限公司 一种具有旋转阀结构的微流控芯片
CN109847820A (zh) * 2019-04-18 2019-06-07 天津诺迈科技有限公司 微流控芯片预封装装置及使用方法
CN110857743A (zh) * 2018-08-22 2020-03-03 厦门大学 用于微流控芯片的液流导向阀及微流控芯片
CN111760601A (zh) * 2020-07-03 2020-10-13 中国科学院合肥物质科学研究院 一种集成液路切换阀的微流控芯片及核酸检测方法
US20200406263A1 (en) * 2017-12-21 2020-12-31 Nanobiose Microfluidic chip, microfluidic lab-on-chip, fabrication method of one such chip and analysis method
CN213327664U (zh) * 2020-09-29 2021-06-01 深圳市真迈生物科技有限公司 旋转阀、液路系统及核酸序列测定系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030116206A1 (en) * 2001-12-26 2003-06-26 Herbert Hartshorne Microfluidic valve and method of manufacturing same
CN206965754U (zh) * 2017-06-09 2018-02-06 北京百康芯生物科技有限公司 一种具有旋转阀结构的微流控芯片
US20200406263A1 (en) * 2017-12-21 2020-12-31 Nanobiose Microfluidic chip, microfluidic lab-on-chip, fabrication method of one such chip and analysis method
CN110857743A (zh) * 2018-08-22 2020-03-03 厦门大学 用于微流控芯片的液流导向阀及微流控芯片
CN109847820A (zh) * 2019-04-18 2019-06-07 天津诺迈科技有限公司 微流控芯片预封装装置及使用方法
CN111760601A (zh) * 2020-07-03 2020-10-13 中国科学院合肥物质科学研究院 一种集成液路切换阀的微流控芯片及核酸检测方法
CN213327664U (zh) * 2020-09-29 2021-06-01 深圳市真迈生物科技有限公司 旋转阀、液路系统及核酸序列测定系统

Also Published As

Publication number Publication date
CN117795232A (zh) 2024-03-29

Similar Documents

Publication Publication Date Title
CN109307102B (zh) 一种用于微流控芯片的微阀装置及其制备方法和应用
WO2019196850A1 (zh) 一种能控制流体流动的多功能微阀、微流控芯片和方法
US7318912B2 (en) Microfluidic systems and methods for combining discrete fluid volumes
US6916113B2 (en) Devices and methods for fluid mixing
CN102644766B (zh) 分水、混水一体式多功能陶瓷阀芯
EP2006588A2 (en) Microfluidic valve, method of manufacturing the same, and microfluidic device comprising the microfluidic valve
Churski et al. Droplet on demand system utilizing a computer controlled microvalve integrated into a stiff polymeric microfluidic device
WO2005084211A3 (en) Hybrid micro/macro plate valve
WO2002055198A2 (en) Microfluidic flow control devices
WO2023087280A1 (zh) 微流控装置及其使用方法
KR20170118282A (ko) 마이크로플루이딕스칩의 유체제어를 위한 멀티 플렉서 및 마이크로플루이딕스칩 조립체
JP2009518599A (ja) 細線接合および/またはシーリングシステムと方法
JP2001304440A (ja) マイクロバルブ装置及びその製作方法
JP2014526375A (ja) 回転モジュール
Swayne et al. Rapid prototyping of pneumatically actuated hydrocarbon gel valves for centrifugal microfluidic devices
JP2005003190A (ja) 分流弁および混合弁
WO2021004418A1 (zh) 车辆主被动装置间的行动挡位控制装置
CN107606252B (zh) 用于微流控芯片的无源单向阀
US8540416B2 (en) Fluidic flow merging apparatus
CN115245847A (zh) 一种基于特斯拉阀的微混合芯片
WO2021147400A1 (zh) 一种微型孔板
CN218250303U (zh) 一种微流控芯片的微流道结构
CN210344518U (zh) 相变微阀装置
CN109622084B (zh) 可重构的微流控芯片结构
CN114046366A (zh) 集成阀及具有该集成阀的净水设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21964434

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180101484.7

Country of ref document: CN