WO2023087172A1 - 一种齿轮螺旋线样板的纯滚动测量方法与装置 - Google Patents

一种齿轮螺旋线样板的纯滚动测量方法与装置 Download PDF

Info

Publication number
WO2023087172A1
WO2023087172A1 PCT/CN2021/131152 CN2021131152W WO2023087172A1 WO 2023087172 A1 WO2023087172 A1 WO 2023087172A1 CN 2021131152 W CN2021131152 W CN 2021131152W WO 2023087172 A1 WO2023087172 A1 WO 2023087172A1
Authority
WO
WIPO (PCT)
Prior art keywords
guide rail
helix
gear
slider
working surface
Prior art date
Application number
PCT/CN2021/131152
Other languages
English (en)
French (fr)
Inventor
凌四营
李小燕
凌明
任泓霖
黄志民
王晓琳
王立鼎
Original Assignee
大连理工大学
广西科学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大连理工大学, 广西科学院 filed Critical 大连理工大学
Priority to US17/911,560 priority Critical patent/US20230358524A1/en
Priority to PCT/CN2021/131152 priority patent/WO2023087172A1/zh
Publication of WO2023087172A1 publication Critical patent/WO2023087172A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/20Measuring arrangements characterised by the use of mechanical techniques for measuring contours or curvatures
    • G01B5/202Measuring arrangements characterised by the use of mechanical techniques for measuring contours or curvatures of gears
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/28Measuring arrangements characterised by the use of electric or magnetic techniques for measuring contours or curvatures
    • G01B7/283Measuring arrangements characterised by the use of electric or magnetic techniques for measuring contours or curvatures of gears

Definitions

  • the invention belongs to the technical field of precision machining and testing, and relates to a pure rolling measurement method and device for a gear helical line template.
  • the total deviation of the helix is not only one of the mandatory inspection items of the national standard for gears (GB/T 10095.1-2008), but also one of the default inspection items of the international standard for gears (ISO 1328-1:2013), and it is also one of the standard inspection procedures for gears in my country (JJG 1008- 2006) is one of the basis for standard gear accuracy classification.
  • the reference for the traceability of the gear helix deviation and the transmission of the value is the gear helix model.
  • the involute helical surface of the gear helix model is the standard for testing various gear helix instruments.
  • the calibrated and corrected instrument is used for the measurement of workpieces with helical features such as gears, worms, and hobs.
  • the first-grade precision gear helical sample is the highest benchmark for the traceability and value transmission of the helix, and it is passed down step by step according to the hierarchical relationship.
  • the current national standard for gear helix templates issued by China stipulates two grades, grade 1 and grade 2, of which grade 1 is the highest grade for gear helix templates.
  • the shape deviation value of the gear helix sample with base circle radius R b ⁇ 100mm and tooth width b>90mm is 1.2 ⁇ m
  • the shape deviation value of the gear helix sample with base circle radius 100mm ⁇ R b ⁇ 200mm and tooth width b>60mm is 1.5 ⁇ m.
  • the national standard for gears stipulates that the helical shape deviation value of the 0-level standard gear with the same parameters is 1.5 ⁇ m.
  • the helical shape tolerance of the 1-grade precision gear helical sample is tightened by about 20%, and the manufacturing difficulty is higher than that of the 0-grade precision standard gear.
  • the National Institute of Metrology (NIM) of China developed a high-precision gear measuring machine in 2014 using a high-resolution laser measurement system.
  • the tooth width of the gear template used for measurement is 160mm, the base circle diameter is 200mm, and the helix angle is 31°.
  • the tooth width parameters of this model meet the requirements of the first-grade gear helix model, the measurement result of the helix shape deviation is about 3.0 ⁇ m, which cannot meet the requirements of the second-grade gear helix model in my country for the helix shape deviation.
  • the National Gear Measurement Laboratory (NGML) of Newcastle University organized and coordinated the international comparison of gear samples by various national metrology institutions on the measurement capabilities of helix and tooth profile.
  • the relevant parameters of the model are the pitch circle diameter 200mm, the tooth width 127mm, the helix angles are 0°, left-handed 15°, 30°, 45°, right-handed 15°, 30°, 45°, the teeth of the British NGML helical line model
  • the width parameter meets the specification requirements of the first-grade gear helix model in China
  • the measurement result of the helix shape deviation is about 2 ⁇ m, which does not meet the requirements for the helix shape deviation of the second-grade gear helix model in China.
  • the German Institute of Physics and Technology organized and coordinated the international comparison of the measurement capabilities of the gear templates by various national metrology institutions.
  • 0°, left-handed 15°, 30°, 45°, right-handed 15°, 30°, 45°, the measured helix shape deviation is about 0.5 ⁇ m, and its value can meet the requirements of the first-grade gear helix model in my country.
  • this type of gear template is designed with reference to the international standard ISO1328.1:2013(E) for cylindrical gears, it is integrated with Gear involute model, gear helix model or tooth pitch model, however, the helix shape deviation of this type of large gear model is far greater than 1.5 ⁇ m, and none of them meet the national standard for gear helix models in my country (GB/T 6468-2010) Basic requirements for the helix shape deviation of the 2-stage gear helix template.
  • Conventional measurement methods for helix deviation include the generation method and the coordinate method.
  • the generation method takes the rotation axis of the measured gear as the benchmark, and realizes the rotation of the measured gear and the movement of the measuring head in the axial direction through a high-precision transmission mechanism to form a theoretical helical trajectory.
  • Common measuring instruments include single-disc involute Linear spiral tester, graded disc-type involute spiral tester, lever disc-type universal involute spiral tester and lead gauge; the coordinate method is also based on the axis of rotation of the measured gear, through the angle measuring device (minute Dial, circular grating) and length measuring device (laser, long grating) to measure the rotational coordinates and axial coordinates of the helix.
  • Common measuring instruments include gear measurement centers, three-coordinate measuring machines, and helix sample inspection instruments.
  • the above-mentioned measuring instruments are mostly used for the measurement of the helical deviation of gears.
  • the gear measurement center adapts to the trend of high-precision, multi-functional and automatic development of gear measurement, and has become the leading equipment in the field of gear measurement.
  • Foreign gear measurement centers can measure 2 Level gears, the domestic gear measurement center can only measure level 3 gears, which shows that the measurement accuracy is not high.
  • the gear measurement center is a four-axis four-coordinate measuring machine, which is equivalent to a three-coordinate measuring machine with an additional rotary axis.
  • the error source must include 21 geometric errors of the three-coordinate measuring machine (9 translational errors, 9 rotational errors and 3 verticality error), and 6 geometric errors of the rotary axis (3 translational errors, 3 rotational errors), as well as the geometric errors caused by the measuring head, angle measuring device, and upper and lower top fixings. Therefore, the gear measurement center There are at least 30 geometric errors, and there are many error sources, which will have a great impact on the measurement accuracy.
  • the patent [CN202110737588.9] discloses a gear helix template with equal normal
  • the pure rolling generation grinding device only mentions a grinding device for a gear helical pattern with equal normals, and the published patent mentions a new structure and processing device for a gear helical pattern, but none of them involve detecting gears.
  • the specific device and method of the helix model so it is urgent to develop and solve the gear helix model measurement device and method that meet the national gear standard.
  • the present invention provides a pure rolling measurement method and device for the gear helical line template, which drives the measuring head along the contact line direction of the involute helical surface. High-precision linear motion, continuously collecting the helix deviation value on the indexing cylinder of the gear helix model.
  • a pure rolling measuring device for a gear helical sample including a linear guide rail slider assembly 1, a helical sample rolling assembly 3, an inductive micro-displacement measuring head 2, a generating guide rail 7, an adapter plate 5, an indexing table 4 and a marble base 6; wherein, the developing guide rail 7 and the indexing table 4 are all fixed on the marble base 6, the spiral sample rolling assembly 3 is located on the developing guide rail 7, and the linear guide rail slider assembly 1 is installed on the On the indexing platform 4 , the inductive micro-displacement measuring head 2 is installed in the linear guide rail slider assembly 1 .
  • the linear guide slider assembly includes a fixed guide rail A1-1, a fixed guide rail B1-2, a floating guide rail 1-3, a dust cover 1-4, a motor fixing plate 1-5, a bearing fixing plate 1-6, and a slider 1 -7.
  • the fixed guide rail A1-1 and the fixed guide rail B1-2 are symmetrically arranged, the fixed guide rail working surface A1-1-1, the fixed guide rail working surface B1-2-1, the fixed guide rail installation surface A1-1-2 and the fixed guide rail installation After the surface B1-2-2 is ultra-precisely ground, it has a plane accuracy of sub-micron level.
  • the top surfaces of the fixed guide rail A1-1 and the fixed guide rail B1-2 are provided with fixed guide rail A countersunk holes 1-1-4 and fixed guide rail B counterbores 1-2-4, and the fixed guide rail A1 is connected by screws. -1.
  • the fixed guide rail B1-2 is fixed on the adapter plate 5, the fixed guide rail installation surface A1-1-2 is closely attached to the adapter plate guide rail surface A5-3, and the fixed guide rail installation surface B1-2-2 is connected to the adapter plate Plate rail surface B5-4 fits closely.
  • the slider 1-7 is located between two fixed guide rails, the slider working surface A1-7-1 is closely attached to the fixed guide rail working surface A1-1-1, and the slider working surface B1-7-2 is in contact with the fixed guide rail.
  • the guide rail working surface B1-2-2 is closely attached, and the intersection line of the two fixed guide rail working surfaces is parallel to the top surface of the slider 1-7; the slider working surface C1-7-3 and the floating guide rail working surface A1-3-1 Close fit; the working surface D1-7-4 of the slider is closely attached to the working surface B1-3-2 of the floating guide rail; after the 4 working surfaces of the slider are ultra-precision ground, the sliding
  • the guide rail plastic sticking process method can paste polytetrafluoroethylene guide rail soft belts on the 4 working surfaces of the slider 1-7, and meet the precision requirements after scraping and grinding; the slider 1-7 is designed with 3 probes on the long side
  • the installation hole 1-7-5 can be used to measure the helix deviation of left-handed, right-handed involute helical surfaces and involute cylindrical surfaces after installing the probe.
  • the axes of the three probe installation holes 1-7-5 are parallel to each other, and Parallel to the top surface of the slider, the diameter of each probe mounting hole 1-7-5 is slightly larger than the diameter of the inductive micro-displacement probe 2, and the center position of each probe mounting hole 1-7-5 corresponds to the top surface of the slider.
  • a threaded hole 1-7-6 for installing the glass bead screw 9 can fix the inductive micro-displacement probe 2 by the probe mounting hole 1-7-5 and the threaded hole structure, preventing the inductive micro-displacement probe 2 from swinging up and down.
  • the tightness of the glass bead screw 9 is adjusted through the operation hole 1-4-2 of the inner hexagonal wrench on the top surface of the dust cover and the threaded hole 1-3-3 of the locking probe on the floating guide rail 1-3; 1-7 Screw nut mounting holes 1-7-7, flange threaded holes 1-7-8, and oil injection holes 1-7-9 on the side of the short side install screw nuts, flanges and embedded oil nozzles respectively; sliders One oil hole 1-7-10 is processed on the working surface A1-7-1 and the slider working surface B1-7-2 respectively, and one oil injection hole 1-7-9 is processed on the side of the short side of the slider, and the oil hole 1- 7-10 communicates with the oil injection hole 1-7-9.
  • the vertical surface A1-1-3 of the fixed guide rail and the vertical surface B1-2-3 of the fixed guide rail are provided with threaded holes, and the dust cover 1-4 is fixed on the vertical surface A1-1-3 of the fixed guide rail by screw connection and the vertical surface of the fixed guide rails B1-2-3; both ends of the two fixed guide rails are provided with threaded holes, and the motor fixing plates 1-5 are respectively fixed on one end of the two fixed guide rails through screw connection, and the bearing fixing plates 1-5 6 is fixedly connected to the other end of the two fixed guide rails; there are threaded holes on the top surface of the dust cover 1-4, and glass bead screws 9 are installed in the threaded holes 1-4-1 of the dust cover to fix the floating guide rails 1-3 On the top surface of the slider 1-7
  • the bearing 1-11 is installed on the shaft end of the ball screw 1-9, and placed in the bearing installation hole 1-6-2, the axis of the ball screw 1-9 and the working surface of the slider A1-7-1 And the intersection line of slider working surface B1-7-2 is parallel.
  • the motor 1-12 is installed in the motor shaft mounting hole 1-5-3, and the connection between the motor 1-12 and the ball screw 1-9 is realized through the shaft coupling 1-10, and the motor 1-12 drives the rolling screw 1 After the rotation of -9, the slider 1-7 moves in a straight line.
  • the slider 1-7 moves from one end of the two fixed guide rails to the other end, use an altimeter to measure the height of the top surface of the slider 1-7. If There is a difference in the height value, and a certain area corresponding to the fixed guide rail working surface A1-1-1 and the fixed guide rail working surface B1-2-1 with a larger height value can be ground to adjust the top surface of the slider to be at the same height.
  • the inductive micro-displacement measuring head 2 includes a ball measuring head 2-1, a measuring head extension rod 2-2 and an inductive micrometer measuring rod 2-3, and the spherical measuring head 2-1 and the inductive micrometer measuring rod 2-3
  • the connection is realized through a measuring head extension rod 2-2;
  • the installation height of the inductive micro-displacement measuring head 2 is a fixed value, and the height of the measuring point is the installation height of the developed guide rail working surface 7-1;
  • the measurement direction of the head 2 is the normal direction of the tooth surface of the gear helix model 3-5, and the tolerance direction specified by the helix deviation is the direction along the tangent line of the base circle in the end plane, so the measurement direction and the tolerance direction mentioned in this patent Inconsistency, it is necessary to use measurement software to perform error compensation on the original measurement data; when the slider 1-7 moves along the two fixed guide rails, the motion track of the inductive micro-displacement probe 2 is a straight line, which is
  • the linear guide rail slider assembly 1 is fixed on the indexing table 4 through the adapter plate 5, the guide rail surface A5-3 of the adapter plate, the guide rail surface B5-4 of the adapter plate and the installation surface 5-5 of the adapter plate are subjected to ultra-precision After grinding, it has sub-micron plane precision.
  • the adapter plate 5 is provided with a countersunk hole 5-1, and the adapter plate 5 is fixed on the indexing table 4 by screws, and the indexing table 4 is provided with an indexing table threaded hole 4-1, and the adapter plate
  • the installation surface 5-5 is closely attached to the indexing table; the indexing table 4 can realize the high-precision indexing of the linear guide rail slider assembly 1 according to any base circle helix angle as a specific angle, and the indexing table 4 is used to drive the linear guide rail Slider assembly 1 rotates, adjusts the angle between the intersection line of the fixed guide rail working surface A1-1-1 and the fixed guide rail working surface B1-2-1 and the axis of the gear helix model, and realizes the gear helix with any base circle helix angle Helix deviation measurement of wire templates.
  • the helix model rolling assembly 3 includes 3-1 dense bead bushing, 3-2 cross washer, 3-3 flat washer, 3-4 lock nut, 3-5 gear helix model, 3-6 base circle plate.
  • the two shaft ends of the gear helix model 3-5 are respectively assembled with dense bead bushing 3-1, cross washer 3-2 and flat washer 3-3, and the gear helix model 3- 5 is installed between the inner holes of the two base discs 3-6.
  • the included angles between the fixed guide rail working surface A1-1-1 and the fixed guide rail working surface B1-2-1 and the fixed guide rail installation surface A1-1-2 and the fixed guide rail installation surface B1-2-2 respectively are 45°, the angle error is controlled within ⁇ 0.01°, the angle between the fixed guide rail working surface A1-1-1 and the fixed guide rail working surface B1-2-1 is 60° ⁇ 120°.
  • the included angles between the working surface A1-7-1 of the slider, the working surface B1-7-2 of the slider and the bottom surface of the slider are all 45°, and the angle error is controlled within ⁇ 0.01°.
  • a pure rolling measurement method of a gear helix template comprising the following steps:
  • the first step is to drive the gear helix model to perform pure rolling motion
  • the two base disk busbars of the two base disks are used as the reference, and after measuring the height values of the two busbars with an altimeter, adjust the posture of the linear guide rail slider assembly 1 to ensure that the two base disks 3-6 are always along the working surface 7 of the developed guide rail.
  • the extension direction of -1 performs pure rolling, and drives the gear helical model 3-5 to perform pure rolling motion.
  • the second step is to determine the installation height and measurement direction of the inductive micro-displacement probe
  • the installation height of the inductive micro-displacement measuring head 2 is a fixed value, and the height value of the measuring point is the installation height of the working surface 7-1 of the generated guide rail, so that the measurement is always within the tangent plane of the base cylinder of the gear helical line model 3-5 Carry out; the inductance micro-displacement probe 2 needs to be adjusted to the position of the index circle along the tangent direction of the base circle of the gear helix sample, and the measurement direction of the inductance micro-displacement probe 2 is always the normal direction of the tooth surface of the gear helix sample, then the inductance
  • the movement track of the micro-displacement measuring head 2 is a straight line, which is parallel to the intersection line of the working surface A1-1-1 of the fixed guide rail and the working surface B1-2-1 of the fixed guide rail.
  • the angle is the helix angle of the base circle, and the movement track of the measuring point is the contact line of the tooth surface of the gear helix model.
  • the third step is to realize the motion matching between the gear helix model and the inductive micro-displacement measuring head;
  • the pure rolling velocity v ha of the gear helical template 3-5 (w ⁇ r b ⁇ )/180(mm/s), where r b is the radius of the base cylinder of the gear helix model.
  • the fourth step is to reasonably set the data collection density, filter and error compensate the measurement data
  • the data should contain at least 300 points or 5 points per millimeter (take the larger value of the two). After the collection is completed, data filtering is required. , to remove gross error data.
  • the detection direction of the inductive micro-displacement probe should be in the normal direction of the tooth surface, while the tolerance direction stipulated in the national standard for gear deviation is in the end plane along the base circle The direction of the tangent line, so the tolerance direction of the gear helical line template is inconsistent with the measurement direction of the inductive micro-displacement probe proposed in this patent. It is necessary to use the measurement software to measure the inductive micro-displacement probe 2 according to the mathematical relationship between the measurement direction and the tolerance direction. The acquired data are error compensated.
  • the present invention uses the indexing table to accurately control the linear guide rail slider assembly to rotate according to different base circle helix angle values, and then makes the measurement direction of the inductance micro-displacement probe always be the normal direction of the tooth surface of the gear helix model, and its movement direction
  • the angle between it and the axis of the gear helix template is the helix angle of the base circle, and its trajectory is a straight line.
  • the trajectory of the measuring point is the contact line of the tooth surface of the gear helix template; the height of the measuring point is the developed guide rail
  • the installation height of the working surface ensures that the position of the measuring point is always on the indexing cylindrical surface of the gear helix model; when the gear helix model is purely rolling, the slider performs high-precision linear motion on the working surface of the two fixed guide rails, and the pure rolling motion is the same as
  • the high-precision linear motion has a certain proportional relationship, so that the inductive micro-displacement probe can complete the measurement of the helix deviation of the gear helix sample with different base circle helix angles, and the accuracy of the pure rolling motion of the driven gear helix sample and the inductance micro-displacement measurement
  • the accuracy of the high-precision linear motion of the head does not directly affect the measurement accuracy, there are few sources of measurement error, and the measurement accuracy is high.
  • the invention complies with the generation principle of the involute helical surface, and can realize the
  • Fig. 1 is a schematic diagram of the overall structure of the pure rolling measuring device of the present invention.
  • Fig. 2 is a flow chart of the pure rolling measurement method of the present invention.
  • Fig. 3 is a schematic diagram of a linear guide rail slider assembly.
  • Figure 4 is a schematic diagram of a helical template rolling assembly.
  • Fig. 5 is a schematic diagram of an inductive micro-displacement measuring head.
  • Fig. 6 is a schematic diagram of the fixed guide rail.
  • Fig. 7 is a schematic diagram of the floating guide rail.
  • Figure 8 is a schematic diagram of the dust cover.
  • Figure 9 is a schematic diagram of the slider.
  • Figure 10 is a schematic diagram of a bearing fixing plate.
  • Figure 11 is a schematic diagram of the motor fixing plate.
  • Figure 12 is a schematic diagram of the adapter board.
  • Figure 13 is a schematic diagram of a dense bead bushing.
  • 1 linear guide rail slider assembly 1-1 fixed guide rail A; 1-1-1 fixed guide rail working surface A; 1-1-2 fixed guide rail installation surface A; 1-1-3 fixed guide rail vertical surface A ;1-1-4 countersunk hole for fixed guide rail A; 1-1-5 threaded hole for dust cover connection; 1-1-6 threaded hole for motor fixed plate connection; 1-2 fixed guide rail B; 1-2-1 fixed Guide rail working surface B; 1-2-2 fixed guide rail installation surface B; 1-2-3 fixed guide rail vertical surface B; 1-2-4 fixed guide rail B countersunk hole; 1-2-5 bearing fixed plate connection thread Hole; 1-3 floating guide rail; 1-3-1 floating guide rail working surface A; 1-3-2 floating guide rail working surface B; 1-3-3 locking probe threaded hole; 1-4 dust cover; 1 -4-1 Dust cover threaded hole; 1-4-2 Allen wrench operation hole; 1-4-3 Fixed guide rail connection hole; 1-4-4 Dust cover slot; 1-5 Motor fixing plate; 1 -5-1 Motor fixing plate countersunk hole; 1-5-2 Motor countersunk hole; 1-5-3 Motor shaft mounting hole; 1-6 Bearing fixing plate
  • the invention provides a pure rolling generation measurement device for an external gear helix template, including: a linear guide rail slider assembly 1, an inductive micro-displacement probe 2, a helix template rolling assembly 3, an indexing table 4, an adapter Plate 5, marble base 6, developing guide rail 7, connecting screw 8, glass bead screw 9, wherein the tooth width b of the gear helix model 3-5 is 100 mm, the base circle radius R b is 50 mm, and the helix angle ⁇ b is 28°, the span L of the developed guide rail is 140mm, and the height h of the working surface 7-1 of the developed guide rail is 140mm.
  • Linear guide rail slider assembly 1 consists of fixed guide rail A1-1, fixed guide rail B1-2, floating guide rail 1-3, dust cover 1-4, motor fixing plate 1-5, bearing fixing plate 1-6, slider 1- 7. Lead screw flange nut 1-8, ball screw 1-9, coupling 1-10, bearing 1-11 and motor 1-12.
  • the base of the fixed guide rail is made of GCr15 material with high hardness.
  • the fixed guide rail A and the fixed guide rail B are ultra-precision ground, and the fixed guide rail
  • the flatness error of the working surface A1-1-1 and the fixed guide rail working surface B1-2-1 is controlled within 3 ⁇ m, the fixed guide rail installation surface A1-1-2, the fixed guide rail installation surface B1-2-2, and the fixed guide rail are vertical
  • the flatness error of the surface A1-1-3 and the vertical surface B1-2-3 of the fixed guide rail is controlled within 5 ⁇ m;
  • the angle between surface A1-1-2 and fixed guide rail installation surface B1-2-2 is 45°, and the angle error is controlled within ⁇ 0.01°.
  • the fixed guide rail working surface A1-1-1 and the fixed guide rail working surface B1-2- The included angle of 1 is 90°; the fixed guide rail A and the fixed guide rail B are symmetrically arranged, the slider is located between the two fixed guide rails, and the working surface A1-7-1 of the slider closely fits the working surface A1-1-1 of the fixed guide rail , the slider working surface B1-7-2 is closely attached to the fixed guide rail working surface B1-2-1, and the intersection line between the fixed guide rail working surface A1-1-1 and the fixed guide rail working surface B1-2-1 and the top of the slider
  • the planes are parallel; the fixed guide rail A and the fixed guide rail B are fixed on the adapter plate 5 by installing connecting screws 8 in the countersunk hole 1-1-4 of the fixed guide rail A and the counterbore hole 1-2-4 of the fixed guide rail B respectively.
  • the mounting surface A1-1-2 of the fixed guide rail is closely attached to the guide rail surface A5-3 of the adapter plate, the installation surface B1-2-2 of the fixed guide rail is closely attached to the guide rail surface B5-4 of the adapter plate, and the adapter plate 5 is set There are adapter plate threaded holes 5-2; by installing connecting screws 8 in the connecting holes 1-4-3 of the fixed guide rail and connecting threaded holes 1-1-5 of the dust cover, the dust cover 1-4 is fixedly connected to the fixed The vertical surface A1-1-3 of the guide rail and the vertical surface B1-2-3 of the fixed guide rail; through the installation and connection in the counterbore hole 1-5-1 of the motor fixing plate and the connecting threaded hole 1-1-6 of the motor fixing plate
  • the screw 8 connects the motor fixing plate 1-5 to one end of the fixing guide rail A and the fixing guide rail B; through installing in the counterbore hole 1-6-1 of the bearing fixing plate and the connecting threaded hole 1-2-5 of the bearing fixing plate
  • the connecting screw 8 connects the motor fixing plate 1-6 to the other
  • the working surface of the slider is A1-7-1 , slider working surface B1-7-2, slider working surface C1-7-3 and slider working surface D1-7-4 are ultra-precisely ground, and pasted with polytetrafluoroethylene guide rail soft belt, which is scraped and grinded
  • the flatness error is controlled within 3 ⁇ m; the angles between the slider working surface A1-7-1, the slider working surface B1-7-2 and the bottom surface of the slider are all 45°, and the angle error is controlled at ⁇ 0.01°;
  • Lead screw nut mounting hole 1-7-7 can fix the lead screw flange nut 1-8 in the slider 1-7, and the flange can be fixed in the flange threaded hole 1-7-8 by installing the connecting screw 8 On the slider 1-7;
  • the bearing 1-11 is installed on the shaft end of the ball screw 1-9, and placed
  • the inductive micro-displacement probe 2 After installing the inductive micro-displacement probe 2, it can be used to measure left-handed, right-handed involute helical surfaces and involutes
  • the helical deviation of the cylindrical surface, the axes of the three probe mounting holes 1-7-5 are parallel to each other and the top surface of the slider, and the diameter of each probe mounting hole 1-7-5 is slightly larger than that of the inductance micrometer
  • the diameter of the measuring rod 2-3, each measuring head mounting hole 1-7-5 corresponding to the center position of the top surface of the slider has a fixed measuring head threaded hole 1-7-6, which is used to install the glass bead screw 9, then
  • the inductive micro-displacement probe 2 can be fixed by the probe mounting hole 1-7-5 and the fixed probe threaded hole 1-7-6 to prevent the inductive micro-displacement probe 2 from swinging up and down; through the lock on the floating guide rail 1-3 Tighten the threaded hole 1-3-2 of the measuring head and the inner hexagonal wrench operating hole 1-4-2 on
  • the inductive micro-displacement probe 2 is composed of a ball probe 2-1, a probe extension rod 2-2 and an inductive micrometer measuring rod 2-3; It interferes with the generating guide rail 7, so the probe selects the ball probe 2-1.
  • the ball probe The connection between the head 2-1 and the measuring rod 2-3 of the inductance micrometer needs to be realized through a measuring head extension rod 2-2;
  • the height h of 1 is a fixed value of 140mm;
  • the measurement direction of the inductive micro-displacement probe 2 is the normal direction of the tooth surface of the gear helix model 3-5, and the tolerance direction specified by the helix deviation of the helix model is on the end plane
  • the inner direction is along the tangent of the base circle, so the measurement direction mentioned in this embodiment is inconsistent with the tolerance direction, and measurement software is required for error compensation; sliders 1-7 are along the fixed guide rail working surface A1-1-1, and the fixed guide rail working surface B
  • the linear guide rail slider assembly 1 is fixed on the indexing table 4 through the adapter plate 5.
  • the guide rail surface A5-3 of the adapter plate, the guide rail surface B5-4 of the adapter plate and the installation surface 5-5 of the adapter plate are ultra-precision ground , the flatness error is controlled within 5 ⁇ m;
  • the indexing table 4 is installed on the marble base 6, and the indexing table 4 is provided with an indexing table threaded hole 4-1, which is connected with the countersunk hole of the adapter plate on the adapter plate 5 5-1 is connected through the connecting screw 8 to realize the connection between the indexing table 4 and the adapter plate 5, and the mounting surface 5-5 of the adapter plate is closely attached to the indexing table.
  • Using the indexing table 4 can realize the high-precision indexing of the linear guide rail slider assembly 1 according to any base circle helix angle as a specific angle.
  • the rolling direction of the gear helix model 3-5 is parallel to the extension direction of the generating guide rail, the radius R of the base disc 3-6 is 50mm, and the gear helix model
  • the tooth width b of 3-5 is 100 mm
  • the base circle radius R b is 50 mm
  • the base circle helix angle ⁇ b is 28°
  • the height h of the generated guide rail working surface 7-1 is 140 mm.
  • the first step is to drive the gear helix model to perform pure rolling motion
  • a helical sample rolling assembly 3 is formed; when the two base discs 3-6 roll to the middle position of the effective measurement stroke, they will be parallel to the developing guide rail working surface 7-1 and pass through two The two base disc busbars on the plane of the geometric center of the base disc 3-6 are used as the reference.
  • the second step is to determine the installation height and measurement direction of the inductive micro-displacement probe
  • the installation height of the inductive micro-displacement measuring head 2 is a certain value, wherein the height of the measuring point is the height h of the working surface 7-1 of the developed guide rail, and its value is 140mm, which can ensure that the measurement is always on the basis of the gear helical model 3-5
  • the inductive micro-displacement probe 2 needs to be adjusted to the position of the index circle along the tangent direction of the base circle of the gear helix sample, and the measurement direction of the inductive micro-displacement probe 2 is always the normal line of the tooth surface of the gear helix sample direction, which differs from the tolerance direction of the gear helix by a base circle helix angle ⁇ b , and subsequent error compensation is required.
  • the motion trajectory of the inductive micro-displacement probe 2 is a straight line, which is parallel to the intersection line of the fixed guide rail working surface A1-1-1 and the fixed guide rail working surface B1-2-1, then the straight line is parallel to the axis of the gear helical line model
  • the included angle is the base circle helix angle ⁇ b , whose value is 28°, and the movement track of the measuring point is the contact line of the tooth surface of the gear helix model.
  • the third step is to realize the motion matching between the gear helix model and the inductive micro-displacement measuring head;
  • the fourth step is to reasonably set the data density, filter and error compensate the measured data
  • the helix measurement data should contain at least 300 points or 5 points per millimeter (take the larger value of the two); during the measurement process, the inductance
  • the data collected by the micro-displacement probe 2 may deviate greatly from the real value due to occasional failures of the measurement system, sudden changes in the surrounding environment, and abnormal data interpretation processes. Therefore, data filtering is required after the data collection is completed.
  • the gross error data will be eliminated; the helix deviation verification method stipulated in the standard gear verification regulations, in which the detection direction of the inductive micro-displacement probe 2 is in the normal direction of the tooth surface, while the helix deviation stipulated in the gear national standard
  • the tolerance direction is the direction along the tangent line of the base circle in the end plane, so the measurement direction of the inductive micro-displacement probe 2 in this embodiment is inconsistent with the tolerance direction, and the measurement software needs to be used according to the mathematical relationship between the measurement direction and the tolerance direction Error compensation is performed on the data obtained by the inductive micro-displacement measuring head 2, and the compensation coefficient is 1/cos ⁇ b .

Abstract

一种齿轮螺旋线样板(3-5)的纯滚动测量装置与方法,利用分度台(4)准确控制直线导轨滑块组件(1)按不同基圆螺旋角数值进行转动;测点的高度值为展成导轨工作面(7-1)的安装高度;齿轮螺旋线样板(3-5)纯滚动时,滑块(1-7)在两根固定导轨工作面(1-1-1、1-2-1)上作直线运动,电感微位移测头(2)完成对不同基圆螺旋角的齿轮螺旋线样板(3-5)螺旋线偏差的测量,驱动齿轮螺旋线样板(3-5)作纯滚动运动的精度及电感微位移测头(2)高精度直线运动的精度,不直接影响齿轮螺旋线样板(3-5)测量精度,测量误差源少,测量精度高。测量装置符合渐开线螺旋面的生成原理,经过误差补偿后可实现1级精度齿轮螺旋线样板(3-5)螺旋线偏差的测量。

Description

一种齿轮螺旋线样板的纯滚动测量方法与装置 技术领域
本发明属于精密加工与测试技术领域,涉及一种齿轮螺旋线样板的纯滚动测量方法与装置。
背景技术
螺旋线总偏差既是齿轮国家标准(GB/T 10095.1-2008)必检项目之一,也是齿轮国际标准(ISO 1328-1:2013)默认检查项目之一,还是我国标准齿轮检定规程(JJG 1008-2006)规定的标准齿轮精度划分依据之一。齿轮螺旋线偏差的溯源与量值传递的基准是齿轮螺旋线样板,齿轮螺旋线样板的渐开螺旋面是检定各种齿轮螺旋线仪器的标准,用于传递齿轮螺旋线参数量值、修整仪器示值、确定仪器示值误差等,它以其工作面上的螺旋线与仪器形成的螺旋线进行比较来确定仪器示值误差。经过校准和修正后的仪器用于齿轮、蜗杆、滚刀等具有螺旋线特征的工件测量。1级精度齿轮螺旋线样板是螺旋线的溯源与量值传递的最高基准,按照层级关系逐级往下传递。
中国发布的现行齿轮螺旋线样板国家标准(GB/T 6468-2010)规定了两个等级,1级和2级,其中1级是齿轮螺旋线样板的最高等级。基圆半径R b≤100mm,齿宽b>90mm的齿轮螺旋线样板的形状偏差值为1.2μm,基圆半径100mm<R b≤200mm,齿宽b>60mm的齿轮螺旋线样板的形状偏差值为1.5μm。齿轮国家标准(GB/T 10095.1-2008)中规定相同参数0级标准齿轮螺旋线形状偏差值为1.5μm。与同参数的0级标准齿轮相比,1级精度齿轮螺旋线样板的螺旋线形状公差收紧了约20%,制造难度高于0级精度标准齿轮。中国计量科学研究院(NIM)于2014年采用具有高分辨率的激光测量系统研制出高精度齿轮测量机,测量所用齿轮样板的齿宽为160mm,基圆直径为200mm,螺旋角为31°,该样板齿宽参数虽符合1级齿轮螺旋线样板的要求,但其螺旋线形状偏差测量结果约为3.0μm,达不到我国2级齿轮螺旋线样板对螺旋线形状偏差的要求。英国纽卡斯尔大学齿轮测量国家实验室(NGML)于2004年以降低测量不确定度为总体目标,组织和协调了各个国家计量机构对螺旋线和齿廓测量能力进行齿轮样板国际比对,所用螺旋线样板的相关参数为分度圆直径200mm,齿宽127mm,螺旋角分别为0°,左旋15°、30°、45°,右旋15°、30°、45°,英国NGML螺旋线样板的齿宽参数虽符合我国1级齿轮螺旋线样板的规格要求,但其螺旋线形状偏差测量结果约为2μm,达不到我国2级齿轮螺旋线样板对螺旋线形状偏差的要求。德国物理技术研究院(PTB)于2014年组织和协调了各个国家计量机构对齿轮样板测量能力进行国际比对,所用螺旋线样板的相关参数为分度圆直径204mm,齿宽75mm,螺旋角分别为0°,左旋15°、30°、45°,右旋15°、30°、45°,测量所得螺旋线形状偏差约为0.5μm,其值可满足我国1级齿轮螺旋线样板对螺旋线形 状偏差的要求,但德国PTB螺旋线样板齿宽参数不符合我国1级齿轮螺旋线样板规定的齿宽要求。
在大齿轮样板方面,德国PTB于2009年研制了一种齿顶圆直径1000mm,齿宽400mm的扇形大齿轮样板,该样板包含了左旋20°、右旋10°和直齿三种不同类型的轮齿,可用于渐开线和螺旋线的溯源,其螺旋线形状偏差约为5μm;2011年PTB又设计制造了一种齿顶圆直径约为2000mm,齿宽420mm的大齿圈标准样板,其螺旋线形状偏差约为3μm,这是公开报道的具有最大基圆直径的齿轮样板。中国NIM也开发出了一种直径1000mm的大齿轮多参量标准样板【CN202010124770.2】,制造精度仅在4~2级之间。上述的齿轮标准样板,空间尺寸较大,重量在0.5t到2t之间,搬运不方便,另外,由于该类齿轮样板是参考圆柱齿轮国际标准ISO1328.1:2013(E)设计的,集成有齿轮渐开线样板、齿轮螺旋线样板或齿距样板,然而该类大齿轮样板的螺旋线形状偏差远大于1.5μm,均不满足我国齿轮螺旋线样板国家标准(GB/T 6468-2010)中对2级齿轮螺旋线样板螺旋线形状偏差的基本要求。
螺旋线偏差的常规测量方法有展成法和坐标法。展成法以被测齿轮回转轴线为基准,通过高精度传动机构实现被测齿轮的回转和测头沿轴向的移动,以形成理论的螺旋线轨迹,常见的量仪有单盘式渐开线螺旋检查仪、分级圆盘式渐开线螺旋检查仪、杠杆圆盘式万能渐开线螺旋检查仪和导程仪;坐标法同样以被测齿轮回转轴线为基准,通过测角装置(分度盘、圆光栅)和测长装置(激光、长光栅)测量螺旋线的回转坐标和轴向坐标,常见的量仪有齿轮测量中心、三坐标测量机和螺旋线样板检查仪等。以上所述量仪多用于齿轮的螺旋线偏差测量,其中齿轮测量中心适应了齿轮测量向高精度、多功能、自动化发展的趋势,已成为齿轮测量领域的主导设备,国外齿轮测量中心可测2级齿轮,国产齿轮测量中心只能测量3级齿轮,可见其测量精度不高。齿轮测量中心是四轴四坐标测量机,相当于增加回转轴的三坐标测量机,其误差源必包含三坐标测量机的21项几何误差(9项平动误差、9项转动误差和3项垂直度误差),还有回转轴的6项几何误差(3项平动误差、3项转动误差),以及测头、测角装置、上下顶尖固定所带来的几何误差,因此,齿轮测量中心几何误差至少达30项,误差源较多,对测量精度会产生较大影响。
为了满足高精度齿轮螺旋线偏差的测量要求,各国研制了专用测量仪器,实现了高精度齿轮螺旋线偏差的测量并给出了所用量仪的测量不确定度。德国PTB于2005年给出所用量仪的测量不确定度U 95为1.1μm,被测螺旋线样板分度圆螺旋角β范围为0°~45°,分度圆直径d范围为25mm~400mm。中国NIM研制的齿轮螺旋线测量装置于2015年启用,主要技术指标螺旋线倾斜偏差测量不确定度为0.9μm~1.2μm。日本大阪精密机械株式会社为验证日本国家计量院(NMIJ)于2016年开发的高精度齿轮测量机的测量能力,使用齿轮测量中心的 DAT-1型齿轮基准机对螺旋线样板进行校正,可校正范围分度圆直径d为20mm~250mm,齿宽b为5mm~100mm,其测量不确定度U 95为0.6μm~1.2μm。综上,以上专用量仪均无法满足我国1级精度齿轮螺旋线样板螺旋线偏差测量的要求。
目前,我国厂家制造2级精度指标齿轮螺旋线样板尚存在困难,因而并无企业可掌握1级齿轮螺旋线样板的加工技术,齿轮螺旋线样板的测试技术尚属国内空白。1级齿轮螺旋线样板的加工与检测难度很高,精度指标也极为严格。专利【ZL201811078252.0】公开了一种基准级齿轮螺旋线样板,仅提到了一种齿轮螺旋线样板的设计结构及样式,专利【CN202110737588.9】公开了一种等公法线齿轮螺旋线样板的纯滚动展成研磨加工装置,仅提到了一种等公法线齿轮螺旋线样板的研磨加工装置,公开的专利提到了一种齿轮螺旋线样板的新结构及加工装置,但都均没有涉及检测齿轮螺旋线样板的具体装置与方法,因此开发和解决符合国家齿轮标准的齿轮螺旋线样板测量装置及方法成为当务之急。
发明内容
为精确测量高精度齿轮螺旋线样板的螺旋线偏差,根据渐开螺旋面的生成原理,即当平面绕基圆柱面做纯滚动时,此平面上的一条以恒定角度与基圆柱面的轴线倾斜交错的直线在固定空间内展成的轨迹曲面即为渐开螺旋面,本发明提供了一种齿轮螺旋线样板的纯滚动测量方法与装置,驱动测头沿渐开螺旋面的接触线方向作高精度直线运动,连续采集齿轮螺旋线样板分度圆柱上的螺旋线偏差值。
为了达到上述目的,本发明采用的具体技术方案为:
一种齿轮螺旋线样板的纯滚动测量装置,包括直线导轨滑块组件1、螺旋线样板滚动组件3、电感微位移测头2、展成导轨7、转接板5、分度台4及大理石基座6;其中,展成导轨7及分度台4均固定在大理石基座6上,螺旋线样板滚动组件3位于展成导轨7上,直线导轨滑块组件1通过转接板5安装于分度台4上,电感微位移测头2安装于直线导轨滑块组件1内。
所述直线导轨滑块组件包括固定导轨A1-1、固定导轨B1-2、浮动导轨1-3、防尘盖1-4、电机固定板1-5、轴承固定板1-6、滑块1-7、丝杠法兰螺母1-8、滚珠丝杠1-9、联轴器1-10、轴承1-11和电机1-12。所述的固定导轨A1-1、固定导轨B1-2对称布置,固定导轨工作面A1-1-1、固定导轨工作面B1-2-1、固定导轨安装面A1-1-2及固定导轨安装面B1-2-2经过超精密研磨后,具有亚微米量级的平面精度。所述的固定导轨A1-1、固定导轨B1-2的顶面设有固定导轨A沉头孔1-1-4、固定导轨B沉头孔1-2-4,通过螺钉连接将固定导轨A1-1、固定导轨B1-2固定在转接板5上,固定导轨安装面A1-1-2与转接板导轨面A5-3紧密贴合,固定导轨安装面B1-2-2与转接板导轨面B5-4紧密贴合。所述的滑块1-7位于两根固定导轨之间, 滑块工作面A1-7-1与固定导轨工作面A1-1-1紧密贴合,滑块工作面B1-7-2与固定导轨工作面B1-2-2紧密贴合,两根固定导轨工作面的交线与滑块1-7顶面平行;滑块工作面C1-7-3与浮动导轨工作面A1-3-1紧密贴合;滑块工作面D1-7-4与浮动导轨工作面B1-3-2紧密贴合;滑块的4个工作面经过超精密研磨后,参考专利【CN202110052155.X】所述滑动导轨贴塑工艺方法,可在滑块1-7的4个工作面贴聚四氟乙烯的导轨软带,经过刮研处理达到精度要求;滑块1-7长边侧面设计有3个测头安装孔1-7-5,安装测头后可用于测量左旋、右旋渐开螺旋面及渐开圆柱面的螺旋线偏差,3个测头安装孔1-7-5的轴线互相平行,且与滑块顶面平行,每个测头安装孔1-7-5直径略大于电感微位移测头2的直径,每个测头安装孔1-7-5对应滑块顶面的居中位置有一个安装玻珠螺钉9的螺纹孔1-7-6,则由测头安装孔1-7-5及螺纹孔结构可固定电感微位移测头2,防止电感微位移测头2上下偏摆,玻珠螺钉9的松紧则通过防尘盖顶面的内六角扳手操作孔1-4-2及浮动导轨1-3上的锁紧测头螺纹孔1-3-3进行调节;通过在滑块1-7短边侧面的丝杠螺母安装孔1-7-7、法兰螺纹孔1-7-8、注油孔1-7-9分别安装丝杠螺母、法兰及嵌入式油嘴;滑块工作面A1-7-1与滑块工作面B1-7-2上各加工1个油孔1-7-10,在滑块短边侧面加工一个注油孔1-7-9,油孔1-7-10与注油孔1-7-9相通,在注油孔1-7-9安装嵌入式油嘴并通入油脂后,油脂可均布于滑块工作面A1-7-1、滑块工作面B1-7-2与导轨软带之间,实现润滑作用。固定导轨竖直面A1-1-3、固定导轨竖直面B1-2-3上均设有螺纹孔,通过螺钉连接将防尘盖1-4固定在固定导轨竖直面A1-1-3和固定导轨竖直面B1-2-3;两根固定导轨的两头均设有螺纹孔,通过螺钉连接分别将电机固定板1-5固定在两根固定导轨的一头,将轴承固定板1-6固连在两根固定导轨的另一头;防尘盖1-4顶面设有螺纹孔,在防尘盖螺纹孔1-4-1内安装玻珠螺钉9,将浮动导轨1-3固定于滑块1-7顶面,通过玻珠螺钉9连接调节浮动导轨1-3的姿态,控制浮动导轨1-3对滑块1-7施加的压紧力。所述的轴承1-11安装于滚珠丝杠1-9的轴端,并置于轴承安装孔1-6-2内,滚珠丝杠1-9的轴线与滑块工作面A1-7-1及滑块工作面B1-7-2的交线平行。所述电机1-12安装在电机轴安装孔1-5-3内,通过联轴器1-10实现电机1-12与滚珠丝杠1-9的连接,电机1-12驱动滚动丝杠1-9转动后,滑块1-7作直线运动,在滑块1-7从两根固定导轨的一头运动到另一头的过程中,采用高度计测量滑块1-7顶面的高度值,若高度值存在差值,可研磨较大高度值对应固定导轨工作面A1-1-1及固定导轨工作面B1-2-1的某一区域,以此调整滑块顶面位于同一高度。
所述电感微位移测头2包括球测头2-1、测头延长杆2-2和电感测微仪测杆2-3,球测头2-1与电感测微仪测杆2-3之间通过一根测头延长杆2-2实现连接;电感微位移测头2的安装高度为定值,测点的高度值为展成导轨工作面7-1的安装高度;电感微位移测头2的测量方向为齿轮螺旋线样板3-5齿面的法线方向,而螺旋线偏差规定的公差方向是在端平面内沿基 圆切线的方向,因此本专利所提测量方向与公差方向不一致,需采用测量软件对原始测量数据进行误差补偿;滑块1-7沿两个固定导轨移动时,电感微位移测头2的运动轨迹为一条直线,该直线与固定导轨工作面A1-1-1和固定导轨工作面B1-2-1的交线平行,与齿轮螺旋线样板轴线的夹角为基圆螺旋角,测点的运动轨迹为齿轮螺旋线样板3-5齿面的接触线。
所述直线导轨滑块组件1通过转接板5固定在分度台4上,转接板导轨面A5-3、转接板导轨面B5-4及转接板安装面5-5经过超精密研磨后,具有亚微米量级的平面精度。所述转接板5上设有沉头孔5-1,通过螺钉将转接板5固定在分度台4上,分度台4上设有分度台螺纹孔4-1,转接板安装面5-5与分度台面紧密贴合;采用分度台4可实现直线导轨滑块组件1按任意基圆螺旋角为特定角度的高精度分度,分度台4用于驱动直线导轨滑块组件1旋转,调整固定导轨工作面A1-1-1与固定导轨工作面B1-2-1的交线与齿轮螺旋线样板轴线之间的夹角,实现任意基圆螺旋角的齿轮螺旋线样板的螺旋线偏差测量。
所述的螺旋线样板滚动组件3包括3-1密珠轴套、3-2十字垫圈、3-3平垫圈、3-4锁紧螺母、3-5齿轮螺旋线样板、3-6基圆盘。所述齿轮螺旋线样板3-5的两轴端分别装配密珠轴套3-1、十字垫圈3-2及平垫圈3-3,并通过锁紧螺母3-4将齿轮螺旋线样板3-5安装于两个基圆盘3-6内孔之间。
进一步的,所述的固定导轨工作面A1-1-1、固定导轨工作面B1-2-1分别与固定导轨安装面A1-1-2、固定导轨安装面B1-2-2的夹角为45°,角度误差控制在±0.01°以内,固定导轨工作面A1-1-1与固定导轨工作面B1-2-1的夹角为60°~120°。
进一步的,所述的滑块工作面A1-7-1、滑块工作面B1-7-2与滑块底面的夹角均为45°,角度误差控制在±0.01°。
一种齿轮螺旋线样板的纯滚动测量方法,包括以下步骤:
第一步,驱动齿轮螺旋线样板作纯滚动运动;
在齿轮螺旋线样板3-5的两轴端分别装配密珠轴套3-1、十字垫圈3-2及平垫圈3-3,并通过锁紧螺母3-4将齿轮螺旋线样板3-5安装于两个基圆盘3-6内孔之间。当两个基圆盘3-6沿展成导轨7滚动到有效测量行程的中间位置时,以平行于展成导轨工作面7-1并通过两个基圆盘3-6几何中心的平面上的两条基圆盘母线为基准,采用高度计测量这两条母线的高度值后,调整直线导轨滑块组件1的姿态,确保两个基圆盘3-6始终沿着展成导轨工作面7-1的延伸方向进行纯滚动,带动齿轮螺旋线样板3-5作纯滚动运动。
第二步,确定电感微位移测头的安装高度及测量方向;
驱动分度台4旋转,旋转的角度为待测齿轮螺旋线样板3-5的基圆螺旋角,则直线导轨滑块组件1和电感微位移测头2跟随分度台4转动相应角度。电感微位移测头2的安装高度 为一个定值,其中测点的高度值为展成导轨工作面7-1的安装高度,使得测量始终在齿轮螺旋线样板3-5的基圆柱切平面内进行;电感微位移测头2需沿齿轮螺旋线样板基圆切线方向调整至分度圆位置,且电感微位移测头2的测量方向始终为齿轮螺旋线样板齿面的法线方向,则电感微位移测头2的运动轨迹为一条直线,该直线与固定导轨工作面A1-1-1和固定导轨工作面B1-2-1的交线平行,则该直线与齿轮螺旋线样板轴线的夹角为基圆螺旋角,测点的运动轨迹为齿轮螺旋线样板齿面的接触线。
第三步,实现齿轮螺旋线样板与电感微位移测头的运动匹配;
给定齿轮螺旋线样板3-5纯滚动的角速度为w(rad/s),则齿轮螺旋线样板纯滚动的速度v ha=(w·r b·π)/180(mm/s),其中r b为齿轮螺旋线样板基圆柱的半径。当电感微位移测头2沿着与齿轮螺旋线样板基圆柱轴线成一基圆螺旋角β b的方向作直线运动时,根据三角函数关系,可知电感微位移测头的移动速度为v p=(w·r b·π)/(180·sinβ b)(mm/s)。因此,当齿轮螺旋线样板3-5与电感微位移测头2运动速度分别满足以上两个关系式时,实现成比例的运动匹配关系,可确保电感微位移测头2的测点始终位于齿轮螺旋线样板分度圆柱面上,并沿着齿轮螺旋线样板齿面的接触线进行实时动态测量。
第四步,合理设置数据采集密度,对测量数据进行滤波及误差补偿;
合理设置计值长度内的测量数据密度,数据应该至少包含300个点或每毫米内5个点(取两者中的较大值),采集完成后需进行数据滤波,根据粗大误差的判断规则,将粗大误差数据剔除。由标准齿轮检定规程中螺旋线偏差的检定方法,电感微位移测头的探测方向应在齿面的法线方向,而齿轮国家标准中螺旋线偏差规定的公差方向是在端平面内沿基圆切线的方向,因此齿轮螺旋线样板的公差方向与本专利所提电感微位移测头的测量方向不一致,需采用测量软件根据测量方向与公差方向之间的数学关系式对电感微位移测头2所获得数据进行误差补偿。
本发明的有益效果在于:
本发明利用分度台准确控制直线导轨滑块组件可按不同基圆螺旋角数值进行转动,继而使电感微位移测头的测量方向始终为齿轮螺旋线样板齿面的法线方向,其运动方向与齿轮螺旋线样板轴线之间的夹角为基圆螺旋角,其运动轨迹为一条直线,测点的运动轨迹则为齿轮螺旋线样板齿面的接触线;测点的高度值为展成导轨工作面的安装高度,确保测点位置始终位于齿轮螺旋线样板分度圆柱面上;齿轮螺旋线样板纯滚动时,滑块在两根固定导轨工作面上作高精度直线运动,纯滚动运动与高精度直线运动成一定比例关系,使电感微位移测头完成对不同基圆螺旋角的齿轮螺旋线样板螺旋线偏差的测量,并且驱动齿轮螺旋线样板作纯滚动运动的精度以及电感微位移测头高精度直线运动的精度,并不直接影响测量精度,测量误 差源少,测量精度高。本发明符合渐开线螺旋面的生成原理,经过误差补偿后可实现1级精度齿轮螺旋线样板螺旋线偏差的测量。
附图说明
图1为本发明纯滚动测量装置的整体结构示意图。
图2为本发明纯滚动测量方法流程图。
图3为直线导轨滑块组件的示意图。
图4为螺旋线样板滚动组件的示意图。
图5为电感微位移测头的示意图。
图6为固定导轨的示意图。
图7为浮动导轨的示意图。
图8为防尘盖的示意图。
图9为滑块的示意图。
图10为轴承固定板的示意图。
图11为电机固定板的示意图。
图12为转接板的示意图。
图13密珠轴套的示意图。
图中:1直线导轨滑块组件;1-1固定导轨A;1-1-1固定导轨工作面A;1-1-2固定导轨安装面A;1-1-3固定导轨竖直面A;1-1-4固定导轨A沉头孔;1-1-5防尘盖连接螺纹孔;1-1-6电机固定板连接螺纹孔;1-2固定导轨B;1-2-1固定导轨工作面B;1-2-2固定导轨安装面B;1-2-3固定导轨竖直面B;1-2-4固定导轨B沉头孔;1-2-5轴承固定板连接螺纹孔;1-3浮动导轨;1-3-1浮动导轨工作面A;1-3-2浮动导轨工作面B;1-3-3锁紧测头螺纹孔;1-4防尘盖;1-4-1防尘盖螺纹孔;1-4-2内六角扳手操作孔;1-4-3固定导轨连接孔;1-4-4防尘盖槽孔;1-5电机固定板;1-5-1电机固定板沉头孔;1-5-2电机沉头孔;1-5-3电机轴安装孔;1-6轴承固定板;1-6-1轴承固定板沉头孔;1-6-2轴承安装孔;1-6-3注油操作孔;1-7滑块;1-7-1滑块工作面A;1-7-2滑块工作面B;1-7-3滑块工作面C;1-7-4滑块工作面D;1-7-5测头安装孔;1-7-6固定测头螺纹孔;1-7-7丝杠螺母安装孔;1-7-8法兰螺纹孔;1-7-9注油孔;1-7-10润滑油孔;1-8丝杠法兰螺母;1-9滚珠丝杠;1-10联轴器;1-11轴承;1-12电机;2电感微位移测头;2-1球测头;2-2测头延长杆;2-3电感测微仪测杆;3螺旋线样板滚动组件;3-1密珠轴套;3-2十字垫圈;3-3平垫圈;3-4锁紧螺母;3-5齿轮螺旋线样板;3-6基圆盘;4分度台;4-1分度台螺纹孔;5转接板;5-1转接板沉头孔;5-2转接板螺纹孔;5-3转接板导轨面A;5-4转接板导轨面B;5-5转接板安装面;6大理石基座;7展成导轨;7-1展成导轨 工作面;8连接螺钉;9玻珠螺钉。
具体实施方式
以下结合具体实施例对本发明作进一步说明。
本发明提供的一种外置式齿轮螺旋线样板的纯滚动展成测量装置,包括:直线导轨滑块组件1、电感微位移测头2、螺旋线样板滚动组件3、分度台4、转接板5、大理石基座6、展成导轨7、连接螺钉8、玻珠螺钉9,其中齿轮螺旋线样板3-5的齿宽b为100mm,基圆半径R b为50mm,螺旋角β b为28°,展成导轨跨距L为140mm,展成导轨工作面7-1的高度h为140mm。
直线导轨滑块组件1由固定导轨A1-1、固定导轨B1-2、浮动导轨1-3、防尘盖1-4、电机固定板1-5、轴承固定板1-6、滑块1-7、丝杠法兰螺母1-8、滚珠丝杠1-9、联轴器1-10、轴承1-11和电机1-12组成。固定导轨基体选用硬度较高的GCr15材料,经淬火和回火后硬度高而均匀,耐磨性、抗疲劳性强度高,综合性能好;固定导轨A和固定导轨B经超精密研磨,固定导轨工作面A1-1-1、固定导轨工作面B1-2-1的平面度误差控制在3μm以内,固定导轨安装面A1-1-2、固定导轨安装面B1-2-2、固定导轨竖直面A1-1-3及固定导轨竖直面B1-2-3的平面度误差控制在5μm以内;固定导轨工作面A1-1-1、固定导轨工作面B1-2-1分别与固定导轨安装面A1-1-2、固定导轨安装面B1-2-2的夹角为45°,角度误差控制在±0.01°以内,固定导轨工作面A1-1-1与固定导轨工作面B1-2-1的夹角为90°;固定导轨A与固定导轨B对称布置,滑块位于两根固定导轨之间,滑块工作面A1-7-1与固定导轨工作面A1-1-1紧密贴合,滑块工作面B1-7-2与固定导轨工作面B1-2-1紧密贴合,固定导轨工作面A1-1-1与固定导轨工作面B1-2-1的交线与滑块顶面平行;分别通过在固定导轨A沉头孔1-1-4、固定导轨B沉头孔1-2-4内安装连接螺钉8将固定导轨A、固定导轨B固定在转接板5上,固定导轨安装面A1-1-2与转接板导轨面A5-3紧密贴合,固定导轨安装面B1-2-2与转接板导轨面B5-4紧密贴合,转接板5上设有转接板螺纹孔5-2;通过在固定导轨连接孔1-4-3内和防尘盖连接螺纹孔1-1-5内安装连接螺钉8将防尘盖1-4固连在固定导轨竖直面A1-1-3和固定导轨竖直面B1-2-3;通过在电机固定板沉头孔1-5-1内和电机固定板连接螺纹孔1-1-6内安装连接螺钉8将电机固定板1-5固连在固定导轨A和固定导轨B的一头;通过在轴承固定板沉头孔1-6-1内和轴承固定板连接螺纹孔1-2-5内安装连接螺钉8将电机固定板1-6固连在在固定导轨A和固定导轨B的另一头;通过在防尘盖螺纹孔1-4-1内安装玻珠螺钉9,可将浮动导轨1-3固定于滑块1-7顶面,其中,滑块工作面C1-7-3与浮动导轨工作面A1-3-1紧密贴合,滑块工作面D1-7-4与浮动导轨工作面B1-3-2紧密贴合,通过玻珠螺钉连接调节浮动导轨1-3的姿态,控制浮动导轨1-3对滑块1-7施加的压紧力;滑块工作面A1-7-1、滑块工作面B1-7-2、 滑块工作面C1-7-3及滑块工作面D1-7-4经过超精密研磨后,贴聚四氟乙烯的导轨软带,经过刮研处理后,平面度误差控制在3μm以内;滑块工作面A1-7-1、滑块工作面B1-7-2与滑块底面的夹角均为45°,角度误差控制在±0.01°;通过丝杠螺母安装孔1-7-7可将丝杠法兰螺母1-8固定在滑块1-7内,通过在法兰螺纹孔1-7-8内安装连接螺钉8将法兰固定在滑块1-7上;轴承1-11安装于滚珠丝杠1-9的轴端,并置于轴承安装孔1-6-2内,滚珠丝杠1-9的轴线与滑块工作面A1-7-1及滑块工作面B1-7-2的交线平行;在滑块工作面A1-7-1及滑块工作面B1-7-2各加工一个油孔1-7-10,在滑块短边侧面加工一个注油孔1-7-9,油孔安装孔1-7-9与油孔1-7-10相联通,在注油孔1-7-9安装嵌入式油嘴后,经注油操作孔1-6-3打入油脂后,由油孔1-7-10出油,油脂可均布于滑块工作面A1-7-1、滑块工作面B1-7-2与导轨软带之间,实现润滑;滑块长边侧面设计有3个测头安装孔1-7-5,安装电感微位移测头2后可用于测量左旋、右旋渐开螺旋面及渐开圆柱面的螺旋线偏差,3个测头安装孔1-7-5的轴线互相平行,且与滑块顶面平行,每个测头安装孔1-7-5的直径略大于电感测微仪测杆2-3的直径,每个测头安装孔1-7-5对应滑块顶面的居中位置则有一个固定测头螺纹孔1-7-6,用于安装玻珠螺钉9,则由测头安装孔1-7-5及固定测头螺纹孔1-7-6可固定电感微位移测头2,防止电感微位移测头2上下偏摆;通过浮动导轨1-3上的锁紧测头螺纹孔1-3-2以及防尘盖1-4顶面的内六角扳手操作孔1-4-2,可使用内六角扳手调节固定测头螺纹孔1-7-6所安装的玻珠螺钉9。将电机1-12安装在电机轴安装孔1-5-3内,通过在电机沉头孔1-5-2内安装连接螺钉8,将电机1-12固定在电机固定板1-5上,进一步通过联轴器1-10实现电机1-12与滚珠丝杠1-9的连接,电机1-12驱动滚动丝杠1-9转动后,滑块1-7作直线运动,在滑块1-7从两根固定导轨的一头运动到另一头的过程中,采用高度计测量滑块1-7顶面的高度值,若高度值存在差值,可研磨较大高度值对应固定导轨工作面A1-1-1及固定导轨工作面B1-2-1的某一区域,以此调整滑块顶面位于同一高度。
电感微位移测头2由球测头2-1、测头延长杆2-2和电感测微仪测杆2-3组成;展成导轨跨距L为140mm,为避免电感微位移测头2与展成导轨7干涉,因此测头选择球测头2-1,考虑到测头安装孔1-7-5位置距离齿轮螺旋线样板3-5上的起测点较远,因此,球测头2-1与电感测微仪测杆2-3之间需通过一根测头延长杆2-2实现连接;电感微位移测头2上测点的高度值为展成导轨工作面7-1的高度h,为定值140mm;电感微位移测头2的测量方向为齿轮螺旋线样板3-5齿面的法线方向,而螺旋线样板的螺旋线偏差规定的公差方向是在端平面内沿基圆切线的方向,因此本实施例所提测量方向与公差方向不一致,需采用测量软件进行误差补偿;滑块1-7沿固定导轨工作面A1-1-1、固定导轨工作面B1-2-1移动时,电感微位移测头2的运动轨迹为一条直线,该直线与固定导轨工作面A1-1-1和固定导轨工作面B1-2-1 的交线平行,与齿轮螺旋线样板3-5轴线的夹角为基圆螺旋角β b,其值为28°,测点的运动轨迹则为齿轮螺旋线样板3-5齿面的接触线。
直线导轨滑块组件1通过转接板5固定在分度台4上,转接板导轨面A5-3、转接板导轨面B5-4及转接板安装面5-5经超精密研磨后,平面度误差控制在5μm以内;分度台4安装于大理石基座6上,分度台4上设有分度台螺纹孔4-1,与转接板5上的转接板沉头孔5-1通过连接螺钉8进行连接,实现分度台4与转接板5的连接,转接板安装面5-5与分度台面紧密贴合。采用分度台4可实现直线导轨滑块组件1按任意基圆螺旋角为特定角度的高精度分度。
以一种齿轮螺旋线样板的纯滚动测量为例,阐述该发明的具体实施方式;
驱动螺旋线样板滚动组件3在展成导轨7上纯滚动,则齿轮螺旋线样板3-5的滚动方向与展成导轨延伸方向平行,基圆盘3-6半径R为50mm,齿轮螺旋线样板3-5的齿宽b为100mm,基圆半径R b为50mm,基圆螺旋角β b为28°,展成导轨工作面7-1的高度h为140mm。
第一步,驱动齿轮螺旋线样板作纯滚动运动;
在齿轮螺旋线样板两轴端分别装配密珠轴套3-1、十字垫圈3-2及平垫圈3-3,并通过锁紧螺母3-4将齿轮螺旋线样板3-5安装于两个基圆盘内孔之间,构成螺旋线样板滚动组件3;当两个基圆盘3-6滚动到有效测量行程的中间位置时,以平行于展成导轨工作面7-1并通过两个基圆盘3-6几何中心的平面上的两条基圆盘母线为基准,采用高度计测量这两条母线的高度值后,调整直线导轨滑块组件1的姿态,确保两个基圆盘3-6始终沿着展成导轨工作面7-1的延伸方向进行纯滚动,不发生偏航,带动齿轮螺旋线样板3-5实现纯滚动。
第二步,确定电感微位移测头的安装高度及测量方向;
驱动分度台4旋转齿轮螺旋线样板3-5的基圆螺旋角±β b后将分度台固定,则直线导轨滑块组件1和电感微位移测头2跟随分度台4转动相应的基圆螺旋角±β b。电感微位移测头2的安装高度为一定值,其中测点的高度为展成导轨工作面7-1的高度h,其值为140mm,可确保测量始终在齿轮螺旋线样板3-5的基圆柱切平面内进行,电感微位移测头2需沿齿轮螺旋线样板基圆切线方向调整至分度圆位置,且电感微位移测头2的测量方向始终为齿轮螺旋线样板齿面的法线方向,该方向与齿轮螺旋线的公差方向相差一个基圆螺旋角β b,后续需要进行误差补偿。电感微位移测头2的运动轨迹为一条直线,该直线与固定导轨工作面A1-1-1和固定导轨工作面B1-2-1的交线平行,则该直线与齿轮螺旋线样板轴线的夹角为基圆螺旋角β b,其值为28°,测点的运动轨迹为齿轮螺旋线样板齿面的接触线。
第三步,实现齿轮螺旋线样板与电感微位移测头的运动匹配;
给定齿轮螺旋线样板3-5纯滚动的角速度为w(rad/s),则齿轮螺旋线样板3-5纯滚动的速度为v ha=(w·r b·π)/180(mm/s),当电感微位移测头2沿着与齿轮螺旋线样板基圆柱母线成一基圆 螺旋角β b的方向作直线运动时,根据三角函数关系,可知电感微位移测头2的移动速度为v p=(w·r b·π)/(180·sinβ b)(mm/s),因此,当齿轮螺旋线样板3-5与电感微位移测头2的运动速度分别满足以上两个关系式,成一定比例的匹配运动时,可确保电感微位移测头2的测点始终位于齿轮螺旋线样板分度圆柱面上,并沿着齿轮螺旋线样板齿面的接触线进行实时动态连续测量。
第四步,合理设置数据密度,对测量数据进行滤波及误差补偿;
在齿轮螺旋线样板3-5螺旋线偏差的测量过程中,合理设置每组数据的采样间隔非常重要,采样间隔过小易导致采集数据过多,可能采集到无效的误差信号,采样间隔过大易导致错失必要的采样点,产生测量误差,结合工程实际,螺旋线测量数据应该至少包含300个点或每毫米内5个点(取两者中的较大值);在测量过程中,电感微位移测头2所采集的数据可能因为测量系统偶发的故障、周围环境突变、数据判读过程异常等因素导致一些测量数据较大地偏离真实值,因此数据采集完成后需进行数据滤波,根据粗大误差的判断规则,将粗大误差数据剔除;标准齿轮检定规程所规定螺旋线偏差检定方法,其中电感微位移测头2的探测方向是在齿面的法线方向,而齿轮国家标准中螺旋线偏差规定的公差方向是在端平面内沿基圆切线的方向,因此本实施例中电感微位移测头2的测量方向与公差方向不一致,需采用测量软件根据测量方向与公差方向之间的数学关系式对电感微位移测头2所获得数据进行误差补偿,补偿系数为1/cosβ b
以上所述实施例仅表达本发明的实施方式,但并不能因此而理解为对本发明专利的范围的限制,应当指出,对于本领域的技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些均属于本发明的保护范围。

Claims (5)

  1. 一种齿轮螺旋线样板的纯滚动测量装置,其特征在于,所述的纯滚动测量装置包括直线导轨滑块组件(1)、螺旋线样板滚动组件(3)、电感微位移测头(2)、展成导轨(7)、转接板(5)、分度台(4)及大理石基座(6);其中,展成导轨(7)及分度台(4)均固定在大理石基座(6)上,螺旋线样板滚动组件(3)位于展成导轨(7)上,直线导轨滑块组件(1)通过转接板(5)安装于分度台(4)上,电感微位移测头(2)安装于直线导轨滑块组件(1)内;
    所述直线导轨滑块组件包括固定导轨A(1-1)、固定导轨B(1-2)、浮动导轨(1-3)、防尘盖(1-4)、电机固定板(1-5)、轴承固定板(1-6)、滑块(1-7)、、滚珠丝杠(1-9)、联轴器(1-10)、轴承(1-11)和电机(1-12);所述的固定导轨A(1-1)、固定导轨B(1-2)对称布置,固定导轨工作面A(1-1-1)、固定导轨工作面B(1-2-1)、固定导轨安装面A(1-1-2)及固定导轨安装面B(1-(2-2))经过超精密研磨后,具有亚微米量级的平面精度;所述的固定导轨A(1-1)、固定导轨B(1-2)固定在转接板(5)上,固定导轨安装面A(1-1-2)、B(1-(2-2))分别与转接板导轨面A(5-3)、B(5-4)紧密贴合;所述的滑块(1-7)位于两根固定导轨之间,滑块工作面A(1-7-1)、B(1-7-2)分别与固定导轨工作面A(1-1-1)、B(1-(2-2))紧密贴合,两根固定导轨工作面的交线与滑块(1-7)顶面平行;滑块工作面C1-7-3、D1-7-4分别与浮动导轨工作面A(1-(3-1))、B(1-(3-2))紧密贴合;滑块(1-7)长边侧面设计有三个测头安装孔(1-7-5),安装测头后用于测量左旋、右旋渐开螺旋面及渐开圆柱面的螺旋线偏差,每个测头安装孔(1-7-5)对应滑块顶面位置安装玻珠螺钉(9),由测头安装孔(1-7-5)及螺纹孔结构固定电感微位移测头(2),防止电感微位移测头(2)上下偏摆;在滑块(1-7)短边侧面安装丝杠螺母、法兰及嵌入式油嘴,并在该侧面加工一个注油孔(1-7-9);滑块工作面A(1-7-1)与滑块工作面B(1-7-2)上各加工一个油孔(1-7-10),油孔(1-7-10)与注油孔(1-7-9)相通,油脂可均布于滑块工作面A(1-7-1)、滑块工作面B(1-7-2)与导轨软带之间,实现润滑作用;电机固定板(1-5)固定在两根固定导轨的一头,轴承固定板(1-6)固连在两根固定导轨的另一头;防尘盖(1-4)固定在固定导轨竖直面A(1-1-3)和固定导轨竖直面B(1-(2-3)),在防尘盖螺纹孔(1-4-1)内安装玻珠螺钉(9),将浮动导轨(1-3)固定于滑块(1-7)顶面,通过玻珠螺钉(9)连接调节浮动导轨(1-3)的姿态,控制浮动导轨(1-3)对滑块(1-7)施加的压紧力;所述的轴承(1-11)安装于滚珠丝杠(1-9)的轴端,滚珠丝杠(1-9)的轴线与滑块工作面A(1-7-1)及滑块工作面B(1-7-2)的交线平行;所述电机(1-12)驱动滚动丝杠(1-9)转动后,滑块(1-7)作直线运动,在滑块(1-7)从两根固定导轨的一头运动到另一头的过程中,采用高度计测量滑块(1-7)顶面的高度值,若高度值存在差值,可研磨较大高度值对应固定导轨工作面A(1-1-1)及固定导轨工作面B(1-2-1)的某一区域,以此调整滑块顶面位于同一高度;
    所述电感微位移测头(2)包括球测头(2-1)、电感测微仪测杆(2-3)和用于连接二者的测头延长杆(2-2);电感微位移测头(2)的安装高度为定值,测点的高度值为展成导轨工作面7-1的安 装高度;电感微位移测头(2)的测量方向为齿轮螺旋线样板(3-5)齿面的法线方向;滑块(1-7)沿两个固定导轨移动时,电感微位移测头(2)的运动轨迹为一条直线,该直线与固定导轨工作面A(1-1-1)和固定导轨工作面B(1-2-1)的交线平行,与齿轮螺旋线样板轴线的夹角为基圆螺旋角,测点的运动轨迹为齿轮螺旋线样板(3-5)齿面的接触线;
    所述直线导轨滑块组件(1)通过转接板(5)固定在分度台(4)上,转接板导轨面A(5-3)、转接板导轨面B(5-4)及转接板安装面(5-5)经过超精密研磨后,具有亚微米量级的平面精度;所述转接板(5)固定在分度台(4)上,转接板安装面(5-5)与分度台面紧密贴合,采用分度台(4)可实现直线导轨滑块组件(1)按任意基圆螺旋角为特定角度的高精度分度,分度台(4)用于驱动直线导轨滑块组件(1)旋转,调整固定导轨工作面A(1-1-1)与固定导轨工作面B(1-2-1)的交线与齿轮螺旋线样板轴线之间的夹角,实现任意基圆螺旋角的齿轮螺旋线样板的螺旋线偏差测量;
    所述的螺旋线样板滚动组件(3)包括基圆盘((3-6))、齿轮螺旋线样板(3-5)及装配在齿轮螺旋线样板(3-5)的两轴端的密珠轴套(3-1)、十字垫圈(3-2)、平垫圈(3-3),通过锁紧螺母(3-4)将齿轮螺旋线样板(3-5)安装于两个基圆盘(3-6)内孔之间。
  2. 根据权利要求1所述的一种齿轮螺旋线样板的纯滚动测量装置,其特征在于,所述的滑块的四个工作面经过超精密研磨后,可在滑块(1-7)的四个工作面贴聚四氟乙烯的导轨软带,经过刮研处理达到精度要求。
  3. 根据权利要求1所述的一种齿轮螺旋线样板的纯滚动测量装置,其特征在于,所述的三个测头安装孔(1-7-5)的轴线互相平行,且与滑块顶面平行,每个测头安装孔(1-7-5)直径大于电感微位移测头(2)的直径。
  4. 根据权利要求1所述的一种齿轮螺旋线样板的纯滚动测量装置,其特征在于,所述的固定导轨工作面A(1-1-1)与固定导轨工作面B(1-2-1)的夹角为60°~120°。
  5. 一种采用权利要求1-4任一所述的纯滚动测量装置实现的齿轮螺旋线样板纯滚动测量方法,其特征在于,包括以下步骤:
    第一步,驱动齿轮螺旋线样板作纯滚动运动;
    在齿轮螺旋线样板(3-5)的两轴端分别装配密珠轴套(3-1)、十字垫圈(3-2)及平垫圈(3-3),并通过锁紧螺母(3-4)将齿轮螺旋线样板(3-5)安装于两个基圆盘(3-6)内孔之间;当两个基圆盘(3-6)沿展成导轨(7)滚动到有效测量行程的中间位置时,以平行于展成导轨工作面(7-1)并通过两个基圆盘(3-6)几何中心的平面上的两条基圆盘母线为基准,采用高度计测量这两条母线的高度值后,调整直线导轨滑块组件(1)的姿态,确保两个基圆盘(3-6)始终沿着展成导轨工作面(7-1)的延伸方向进行纯滚动,带动齿轮螺旋线样板(3-5)作纯滚动运动;
    第二步,确定电感微位移测头的安装高度及测量方向;
    驱动分度台(4)旋转,旋转的角度为待测齿轮螺旋线样板(3-5)的基圆螺旋角,则直线导轨滑块组件(1)和电感微位移测头(2)跟随分度台(4)转动相应角度;电感微位移测头(2)的安装高度为一个定值,其中测点的高度值为展成导轨工作面(7-1)的安装高度,使得测量始终在齿轮螺旋线样板(3-5)的基圆柱切平面内进行;电感微位移测头(2)需沿齿轮螺旋线样板基圆切线方向调整至分度圆位置,且电感微位移测头(2)的测量方向始终为齿轮螺旋线样板齿面的法线方向,则电感微位移测头(2)的运动轨迹为一条直线,该直线与固定导轨工作面A(1-1-1)和固定导轨工作面B(1-2-1)的交线平行,则该直线与齿轮螺旋线样板轴线的夹角为基圆螺旋角,测点的运动轨迹为齿轮螺旋线样板齿面的接触线;
    第三步,实现齿轮螺旋线样板与电感微位移测头的运动匹配;
    给定齿轮螺旋线样板(3-5)纯滚动的角速度为w(rad/s),则齿轮螺旋线样板纯滚动的速度v ha=(w·r b·π)/180(mm/s),其中r b为齿轮螺旋线样板基圆柱的半径;当电感微位移测头(2)沿着与齿轮螺旋线样板基圆柱轴线成一基圆螺旋角β b的方向作直线运动时,根据三角函数关系,可知电感微位移测头的移动速度为v p=(w·r b·π)/(180·sinβ b)(mm/s);因此,当齿轮螺旋线样板(3-5)与电感微位移测头(2)运动速度分别满足以上两个关系式时,实现成比例的运动匹配关系,可确保电感微位移测头(2)的测点始终位于齿轮螺旋线样板分度圆柱面上,并沿着齿轮螺旋线样板齿面的接触线进行实时动态测量;
    第四步,合理设置数据采集密度,对测量数据进行滤波及误差补偿;
    合理设置计值长度内的测量数据密度,数据应该至少包含三百个点或每毫米内五个点,采集完成后进行数据滤波,根据粗大误差的判断规则,剔除粗大误差数据,最后对电感微位移测头(2)所获得数据进行误差补偿。
PCT/CN2021/131152 2021-11-17 2021-11-17 一种齿轮螺旋线样板的纯滚动测量方法与装置 WO2023087172A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/911,560 US20230358524A1 (en) 2021-11-17 2021-11-17 A pure-rolling generating measurement method and device for gear helix artifact
PCT/CN2021/131152 WO2023087172A1 (zh) 2021-11-17 2021-11-17 一种齿轮螺旋线样板的纯滚动测量方法与装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/131152 WO2023087172A1 (zh) 2021-11-17 2021-11-17 一种齿轮螺旋线样板的纯滚动测量方法与装置

Publications (1)

Publication Number Publication Date
WO2023087172A1 true WO2023087172A1 (zh) 2023-05-25

Family

ID=86396147

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/131152 WO2023087172A1 (zh) 2021-11-17 2021-11-17 一种齿轮螺旋线样板的纯滚动测量方法与装置

Country Status (2)

Country Link
US (1) US20230358524A1 (zh)
WO (1) WO2023087172A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019215191A (ja) * 2018-06-11 2019-12-19 芳樹 川▲崎▼ 歯車測定装置
CN111060061A (zh) * 2020-01-13 2020-04-24 北京工业大学 一种渐开线齿轮样板齿廓测量与修正方法
CN113305733A (zh) * 2021-06-30 2021-08-27 大连理工大学 一种等公法线齿轮螺旋线样板的纯滚动展成研磨加工装置
CN113465535A (zh) * 2021-06-30 2021-10-01 大连理工大学 一种齿轮渐开线样板齿廓偏差的激光测量装置
CN113478024A (zh) * 2021-06-30 2021-10-08 大连理工大学 一种高精度渐开线纯滚动展成装置、装配及应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019215191A (ja) * 2018-06-11 2019-12-19 芳樹 川▲崎▼ 歯車測定装置
CN111060061A (zh) * 2020-01-13 2020-04-24 北京工业大学 一种渐开线齿轮样板齿廓测量与修正方法
CN113305733A (zh) * 2021-06-30 2021-08-27 大连理工大学 一种等公法线齿轮螺旋线样板的纯滚动展成研磨加工装置
CN113465535A (zh) * 2021-06-30 2021-10-01 大连理工大学 一种齿轮渐开线样板齿廓偏差的激光测量装置
CN113478024A (zh) * 2021-06-30 2021-10-08 大连理工大学 一种高精度渐开线纯滚动展成装置、装配及应用

Also Published As

Publication number Publication date
US20230358524A1 (en) 2023-11-09

Similar Documents

Publication Publication Date Title
CN203203556U (zh) 一种轴类零件检测装置
CN108050946B (zh) 一种基于线结构光的齿轮齿厚测量方法
CN110455244A (zh) 一种利用粗糙度轮廓仪进行圆柱齿轮齿距偏差测量的方法
CN101294868A (zh) 单齿式齿轮整体误差测量装置及方法
CN104482849A (zh) 一种主轴动态回转精度测试系统及测试方法
WO2022135612A1 (zh) 一种渐开螺旋圆柱齿轮的法向啮合齿形测量方法
CN106556366A (zh) 一种解决微小齿轮测量的柱形测头及测量方法
CN105928479A (zh) 一种旋压过程中的筒型件外径在线检测装置
CN110514119B (zh) 一种基于双圆光栅的齿轮整体误差测量装置和方法
CN101476980B (zh) 非圆齿轮误差单面啮合滚动点扫描测量方法和装置
WO2023087172A1 (zh) 一种齿轮螺旋线样板的纯滚动测量方法与装置
CN105783845A (zh) 一种数控磨齿机在机测量系统的齿廓测量方法
CN114111547B (zh) 一种齿轮螺旋线样板的纯滚动测量方法与装置
JPH02649B2 (zh)
CN113587860B (zh) 一种回转窑轴中心线在线动态检测方法
CN216283325U (zh) 一种以螺纹中径为基准检测光杆跳动的检测夹具
JP3774740B2 (ja) 歯形測定機の検定法
De Chiffre et al. A digital system for surface roughness analysis of plane and cylindrical parts
Wang et al. Design of a rapid inspection machine for automotive gears based on gear integrated error
CN105203015A (zh) 动车组车轮轮毂直径检测装置及其使用方法
CN201378098Y (zh) 非圆齿轮误差单面啮合滚动点扫描测量装置
CN200948519Y (zh) 弧齿锥齿轮铣刀盘测量调整仪
Zhaolong et al. A new kind of gear measurement technique
CN106556371A (zh) 表面波纹度、粗糙度在线测量仪
Xutao et al. Research on non-contact measurement method of ball screw nut based on spectral confocal principle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21964336

Country of ref document: EP

Kind code of ref document: A1