WO2023085470A1 - 탄소나노튜브로 결속된 고내마모성 박막 코팅을 포함하는 복합 연마패드 및 이의 제조방법 - Google Patents

탄소나노튜브로 결속된 고내마모성 박막 코팅을 포함하는 복합 연마패드 및 이의 제조방법 Download PDF

Info

Publication number
WO2023085470A1
WO2023085470A1 PCT/KR2021/016560 KR2021016560W WO2023085470A1 WO 2023085470 A1 WO2023085470 A1 WO 2023085470A1 KR 2021016560 W KR2021016560 W KR 2021016560W WO 2023085470 A1 WO2023085470 A1 WO 2023085470A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon nanotubes
layer
polishing pad
substrate
coating layer
Prior art date
Application number
PCT/KR2021/016560
Other languages
English (en)
French (fr)
Inventor
민병주
홍석지
김승근
최정희
강민우
오남규
김산하
정지훈
류현준
강석경
김성재
Original Assignee
케이피엑스케미칼 주식회사
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 케이피엑스케미칼 주식회사, 한국과학기술원 filed Critical 케이피엑스케미칼 주식회사
Priority to PCT/KR2021/016560 priority Critical patent/WO2023085470A1/ko
Priority to CN202180099397.2A priority patent/CN117794686A/zh
Publication of WO2023085470A1 publication Critical patent/WO2023085470A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/20Lapping pads for working plane surfaces
    • B24B37/22Lapping pads for working plane surfaces characterised by a multi-layered structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/20Lapping pads for working plane surfaces
    • B24B37/24Lapping pads for working plane surfaces characterised by the composition or properties of the pad materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D11/00Constructional features of flexible abrasive materials; Special features in the manufacture of such materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating

Definitions

  • the present invention relates to a composite polishing pad including a highly wear-resistant thin film coating bound with carbon nanotubes and a manufacturing method thereof.
  • CMP Chemical Mechanical Polishing
  • the CMP apparatus performs polishing by pressing the polishing object 2 (eg, a wafer) onto the surface of the polishing pad 100 fixed to the rotary table 1 while the carrier 3 firmly fixes the polishing object 2 .
  • a liquid slurry abrasive agent
  • the conditioner 4 is pressed against the polishing pad 100 at a position away from the polishing object 1 to roughen the surface of the polishing pad 100 to maintain the rough surface state of the polishing pad.
  • Polyurethane-based polishing pads are generally used in the CMP apparatus.
  • conventional polyurethane-based polishing pads have a short lifespan due to rapid wear due to friction between nanoparticles of high hardness, an object to be polished, and a diamond conditioner in a polishing process.
  • it has a disadvantage that uniform polishing performance cannot be guaranteed due to irregular surface roughness.
  • the present invention has been made to solve the above problems of the prior art, and an object of the present invention is to provide a composite polishing pad for CMP with greatly improved polishing performance and lifespan and an efficient manufacturing method thereof.
  • a soft polymer substrate layer including a plurality of protrusions formed on the upper surface
  • a composite polishing pad for CMP comprising a hard polymer coating layer in which carbon nanotubes protruding outwardly are embedded and bound to an upper portion of the carbon nanotube layer.
  • the carbon nanotube layer may include carbon nanotubes vertically embedded in the soft polymer base layer and the hard polymer coating layer.
  • the carbon nanotubes vertically embedded in the soft polymer base layer and the hard polymer coating layer may account for 50% or more of the total carbon nanotubes in the carbon nanotube layer.
  • the carbon nanotubes of the carbon nanotube layer may be incorporated into the soft polymer substrate layer and the hard polymer coating layer in an irregular net form structure.
  • the irregular net form structure may be a structure formed by scattering carbon nanotubes so that some overlap with each other.
  • the soft polymer base layer may have a shore hardness of 20D to 45D
  • the hard polymer coating layer may have a shore hardness of 45D to 70D.
  • the protrusion may have a maximum width of 10 ⁇ m to 500 ⁇ m and a height of 3 ⁇ m to 150 ⁇ m.
  • the carbon nanotubes may have a diameter of 1 nm to 50 nm and a length of 1 ⁇ m to 30 ⁇ m.
  • the thickness of the hard polymer coating layer may be 1 ⁇ m to 50 ⁇ m.
  • the protrusion may have a hemispherical shape.
  • the embossing treatment in step (f) may be performed by pressing the upper surface of the hard polymer coating layer under a heating condition with a mold having a plurality of protrusions engraved thereon.
  • steps (b) and (e) may be performed in a vacuum state.
  • the embossing treatment in step (f) may be performed by pressing the upper surface of the hard polymer coating layer under a heating condition with a mold having a plurality of protrusions engraved thereon.
  • steps (b) and (e) may be performed in a vacuum state.
  • the composite polishing pad for CMP of the present invention includes a soft polymer substrate layer and a hard polymer coating layer bound by carbon nanotubes, thereby providing improved polishing performance and lifespan.
  • the method for manufacturing a composite polishing pad for CMP of the present invention provides a method for efficiently manufacturing the polishing pad.
  • FIG. 1 is a perspective view showing the structure of a representative CMP device.
  • FIG. 2 is a cross-sectional view schematically showing an embodiment of the composite polishing pad of the present invention.
  • FIG 3 is a cross-sectional view schematically showing the structure of protrusions included in a composite polishing pad as an embodiment of the present invention.
  • FIG. 4 is a cross-sectional view schematically showing another embodiment of the composite polishing pad of the present invention.
  • FIG. 5 is a cross-sectional view schematically showing the structure of protrusions included in a composite polishing pad as another embodiment of the present invention.
  • FIG. 6 is a diagram schematically illustrating a contact pattern between a fine protrusion, abrasive particles, and an object to be polished according to a difference in mechanical properties of the micro protrusion provided on the polishing pad.
  • FIG. 7 is a diagram schematically showing a method for manufacturing a composite polishing pad as an embodiment of the present invention.
  • FIG. 8 is a diagram schematically showing a method for manufacturing a composite polishing pad as another embodiment of the present invention.
  • FIG. 10 shows a SEM photograph of a cut surface of a composite polishing pad according to an embodiment of the present invention.
  • a soft polymer base layer 10 including a plurality of protrusions formed on an upper surface
  • FIG. 6 shows a contact pattern between a fine protrusion, abrasive particles, and an object to be polished (eg, a wafer) depending on differences in mechanical properties of the micro protrusions provided on the polishing pad.
  • the abrasive pad including the fine protrusions as described above, it is possible to secure a wide contact area due to the fine protrusions made of a soft material, and it is possible to deeply press-in the abrasive particles due to the highly wear-resistant coating layer on the surface. Therefore, it is also possible to extend the polishing efficiency and the life of the polishing pad.
  • the composite polishing pad of the present invention is formed by incorporating carbon nanotubes into the soft polymer substrate layer 10 and the hard polymer coating layer 30, as shown in FIGS. 2 to 5. It has a feature that includes a nanotube layer (20).
  • the composite polishing pad of the present invention has a wide contact area with the polishing object and has the characteristics of being able to press the abrasive particles deeply into the polishing object due to the above characteristic configuration.
  • the soft polymer substrate layer and the hard polymer coating layer are bound by carbon nanotubes to form a strong bond, thereby significantly extending lifespan. That is, since the carbon nanotube layer 20 increases the bonding area between the soft polymer base layer 10 and the hard polymer coating layer 30, the bonding force increases and thus the life of the polishing pad is greatly extended.
  • the carbon nanotubes located in the hard polymer coating layer perform a function of supporting the abrasive particles, thereby improving the gripping force of the abrasive particles and thus improving the polishing efficiency. provide effect.
  • the carbon nanotube layer 20 is perpendicular to the soft polymer base layer 10 and the hard polymer coating layer 30. It may include impregnated carbon nanotubes 22 .
  • the carbon nanotubes vertically embedded in the soft polymer base layer 10 and the hard polymer coating layer 30 account for 50% or more of the total carbon nanotubes in the carbon nanotube layer, It may be preferably 60% or more, more preferably 80% or more, and even more preferably 90% or more.
  • the vertically aligned carbon nanotubes can be obtained, for example, by vapor-growing the carbon nanotubes on a substrate at regular intervals, and the carbon nanotubes are impregnated and bound to the soft polymer substrate layer 10 on top.
  • Forming the carbon nanotube layer 20 by, for example, coating a soft polymer to a higher thickness than the carbon nanotubes on a substrate on which the carbon nanotubes are arranged in a vertical direction, removing the substrate, It can be made by plasma etching the surface from which the substrate is removed to remove the soft polymer substrate layer to a certain thickness.
  • the vertical arrangement does not mean a vertical arrangement in a strict sense, but means that the carbon nanotubes are artificially arranged close to the vertical direction.
  • the vertical arrangement includes, for example, arrangement of the carbon nanotubes in a spike shape on a soft polymer substrate layer.
  • the angle between the carbon nanotubes and the upper surface of the soft polymer substrate layer may be 60 degrees to 90 degrees, 70 degrees to 90 degrees, or 80 degrees to 90 degrees.
  • the carbon nanotubes of the carbon nanotube layer 20, as shown in FIGS. 4 and 5, the soft polymer substrate layer 10 and the hard polymer coating layer 30 It may be incorporated in an irregular net form structure.
  • the irregular net form structure may be a structure formed by scattering carbon nanotubes in an overlapping manner.
  • the meaning of scattering means dispersing and disposing the carbon nanotubes
  • the meaning of overlapping means that some of the carbon nanotubes are overlapped to reinforce the three-dimensional structure.
  • the soft polymer base layer 10 may have a Shore hardness of 20D to 45D
  • the hard polymer coating layer 30 may have a Shore hardness of 45D to 70D.
  • the soft polymer material having a Shore hardness of 20D to 45D forming the soft polymer base layer 10 is from the group consisting of polyurethane resin, UV curable resin, silicone resin, and the like.
  • One or more selected species may be used, but are not limited thereto, and materials known in the art may be used without limitation, as long as they do not adversely affect the present invention.
  • the hard polymer material forming the hard polymer coating layer 30 having a shore hardness of 45D to 70D is one selected from the group consisting of polyurethane resin, UV curable resin, silicone resin, and the like. Although the above may be used, it is not limited thereto, and as long as it does not adversely affect the present invention, materials known in this field may be used without limitation.
  • the protrusion may have a maximum width of 10 ⁇ m to 500 ⁇ m and a height of 3 ⁇ m to 150 ⁇ m.
  • the above ranges are not limited to this range, and may be appropriately adjusted depending on the object to be polished and the polishing conditions.
  • the carbon nanotubes may have a diameter of 1 nm to 50 nm and a length of 1 ⁇ m to 30 ⁇ m.
  • the diameter and length are not limited to these ranges, and the polishing object and polishing conditions can be appropriately adjusted according to
  • the hard polymer coating layer 30 may have a thickness of 1 ⁇ m to 30 ⁇ m, more preferably 3 ⁇ m to 20 ⁇ m.
  • the thickness of the coating layer is less than the above thickness, it is not preferable because the carbon nanotubes are easily exposed by abrasion, and when it is too thick, the gripping force of the abrasive particles by the carbon nanotubes is reduced, so it is not preferable.
  • the above range may be appropriately adjusted according to the length of the carbon nanotube, the object to be polished, and the polishing conditions.
  • the thickness of the soft polymer base layer 10 may be 1mm to 20mm, more preferably 2mm to 10mm.
  • the protrusion may have, for example, a shape similar to a hemisphere, but the shape is not particularly limited. As shown in FIGS. 2 to 5, the protrusion includes a soft polymer base layer 10, a vertically arranged carbon nanotube layer 20, and a hard polymer coating layer 30, and is formed on a composite polishing pad. protrudes in the direction
  • the soft polymer base layer 10 and the hard polymer coating layer 30 are carbon nanotubes disposed on the carbon nanotube layer 20, as shown in FIGS. 2 and 5 It may have a structure in contact with each other in the space between them.
  • the composite polishing pad may have a structure in which pores do not exist between the soft polymer base layer 10 and the carbon nanotubes impregnated and bonded to the base layer 10 .
  • the soft polymer base layer 10 and the carbon nanotubes impregnated and bound to the base layer 10 can be more firmly bound, which is preferable.
  • the composite polishing pad may have a structure in which pores do not exist between the hard polymer coating layer 30 and the carbon nanotubes impregnated and bound to the coating layer 30 .
  • the pores do not exist the hard polymer coating layer 10 and the carbon nanotubes impregnated and bound to the coating layer 10 can be more firmly bound, which is preferable.
  • the composite polishing pad may have a structure in which pores do not exist at interfaces between the base layer 10 , the carbon nanotube layer 20 , and the coating layer 30 .
  • Such a structure may be formed by forming bonds between the layers in a vacuum, as described below.
  • the expression that the pores do not exist may mean that pores do not substantially exist.
  • the present invention also provides a method for manufacturing a composite polishing pad for CMP, which may include the following steps (a) to (f), as shown in FIG. 7:
  • the substrate on which the carbon nanotubes are vertically arranged is Fe/Al 2 O by, for example, a physical vapor deposition (PVD) on a substrate such as a silicon substrate or a metal foil substrate. It can be prepared by forming a catalyst layer as shown in 3 , and forming vertically aligned carbon nanotubes by chemical vapor deposition (CVD) on the substrate on which the catalyst layer is formed.
  • PVD physical vapor deposition
  • CVD chemical vapor deposition
  • the manufacturing method of the substrate on which the carbon nanotubes are arranged in the vertical direction is not limited to the above method, and it is also possible to manufacture the substrate by a method known in the art.
  • steps (b) and (e) may be performed by a method known in the art.
  • a method such as spin coating or spray coating
  • the separation of the substrate in the step (c) may be performed by, for example, mechanical separation (release) of silicon or silicon etching.
  • the plasma etching method of step (d) is not particularly limited and may be performed using a method known in the art.
  • the embossing treatment in step (f) may be performed by pressing the upper surface of the hard polymer coating layer under a heating condition with a mold having a plurality of protrusions engraved thereon. Specifically, as shown in FIG. 7 , it can be performed using a mold on which micropatterns are formed. At this time, by supplying heat to the mold, the embossing process may be performed while the mold is heated. At this time, the temperature of the mold may be carried out at 200 ⁇ 250 °C, but is not limited thereto.
  • the mold may be made of a metal material such as nickel or copper, and the micro pattern may be manufactured using a micro electro-mechanical system (MEMS) process.
  • MEMS micro electro-mechanical system
  • the composite polishing pad manufactured by the method has protrusions as shown in the SEM picture of FIG. 9 .
  • it has an internal structure as shown in FIG. 10 .
  • the composite polishing pad of the present invention has a form in which the soft polymer substrate layer 10 and the hard polymer coating layer 30 are bonded by carbon nanotubes 22 .
  • one or more of steps (b) and (e) may be performed in a vacuum state.
  • the coating is performed in a vacuum state, formation of pores between the carbon nanotubes and the soft polymer base layer can be prevented, and thus the carbon nanotubes can be more strongly impregnated and bound.
  • the present invention also provides a method for manufacturing another composite polishing pad for CMP, which, as shown in FIG. 8, may include the following steps (a) to (e):
  • the method of scattering the carbon nanotubes in step (a) so that some of them overlap each other may be performed by a method known in the art. For example, as shown in FIG. 8 , it may be performed by injecting carbon nanotubes into a mold through a nozzle. At this time, the carbon nanotubes may be sprayed in a form dispersed in a solvent.
  • the solvent include water, ethanol, isopropyl alcohol, and the like, but are not limited thereto.
  • Steps (b), (d) and (e) may be performed in the same manner as the other methods described above.
  • the present invention also provides a method for manufacturing another composite polishing pad for CMP, which may include the following steps (a) to (f):
  • An Fe/Al 2 O 3 catalyst layer was deposited on a silicon substrate having a thickness of 525 ⁇ m by Physical Vapor Deposition (PVD), and then deposited on the substrate in a vertical direction by Chemical Vapor Deposition (CVD).
  • PVD Physical Vapor Deposition
  • CVD Chemical Vapor Deposition
  • a substrate on which arrayed multi-walled carbon nanotubes having a diameter of about 10 nm and a length of 3 ⁇ m was formed was prepared. At this time, the carbon nanotubes are ⁇ 10 11 / cm 2 of It was confirmed that it was formed with density.
  • Polyurethane resin having a shore hardness of 30D (trade name: Smooth-Cast TM 30D, manufacturer Smooth-On) is applied under a vacuum atmosphere to the top of the carbon nanotubes arranged in the vertical direction on the substrate, based on the upper end of the carbon nanotubes A soft polymer substrate layer having a thickness of 5 mm was formed.
  • an embossing treatment was performed by pressing at 200° C. using a mold in which a plurality of hemispherical protrusions having a radius of 50 ⁇ m were engraved to prepare a composite polishing pad of the present invention.
  • a carbon nanotube dispersion was prepared by dispersing the carbon nanotubes in isopropyl alcohol. Next, the dispersion was applied to a mold in which a plurality of hemispherical protrusions having a radius of 50 ⁇ m were engraved using a pneumatic nozzle. A polyurethane resin (50 ⁇ m) having a shore hardness of 30D was applied in a vacuum atmosphere on the mold coated with the carbon nanotubes to form a soft polymer substrate layer having a thickness of 5 mm based on the upper end of the carbon nanotubes.
  • the mold was separated and removed.
  • the surface from which the mold was removed was plasma-etched to remove the soft polymer substrate to a thickness of 1 ⁇ m, thereby exposing the carbon nanotubes.
  • a polyurethane resin having a Shore hardness of 45D (trade name: Smooth-Cast TM 45D, manufacturer Smooth-On) was applied by spin coating on the surface where the carbon nanotubes were exposed, so that the thickness was 5 based on the upper end of the carbon nanotubes.
  • a hard polymer coating layer having a thickness of ⁇ m was formed.
  • a carbon nanotube dispersion was prepared by dispersing the carbon nanotubes in isopropyl alcohol. Next, the dispersion was applied onto a polypropylene substrate placed on a hot plate heated to 60° C. using a pneumatic nozzle. A polyurethane resin having a shore hardness of 30D (trade name: Smooth-Cast TM 30D, manufacturer Smooth-On) is applied in a vacuum atmosphere on the mold to which the carbon nanotubes are applied, and the thickness is 5 mm based on the upper end of the carbon nanotubes. A soft polymer base layer was formed.
  • the substrate was separated and removed.
  • the surface from which the substrate was removed was plasma-etched to remove the soft polymer substrate to a thickness of 1 ⁇ m, thereby exposing the carbon nanotubes.
  • a polyurethane resin having a Shore hardness of 45D (trade name: Smooth-Cast TM 45D, manufacturer Smooth-On) was applied by spin coating on the surface where the carbon nanotubes were exposed, so that the thickness was 5 based on the upper end of the carbon nanotubes.
  • a hard polymer coating layer having a thickness of ⁇ m was formed.
  • an embossing treatment was performed by pressing at 200° C. using a mold in which a plurality of hemispherical protrusions having a radius of 50 ⁇ m were engraved to prepare a composite polishing pad of the present invention.
  • a polyurethane resin (trade name: Smooth-Cast TM 30D, manufactured by Smooth-On) having a shore hardness of 30D was applied to form a soft polymer substrate layer having a thickness of 5 mm.
  • a polyurethane resin having a Shore hardness of 45D (trade name: Smooth-Cast TM 45D, manufacturer Smooth-On) is applied on top of the soft polymer base layer to have a thickness of 5 ⁇ m.
  • a polymer coating layer was formed.
  • an embossing treatment was performed by pressing at 200° C. using a mold in which a plurality of hemispherical protrusions having a radius of 50 ⁇ m were engraved to prepare a composite polishing pad.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Polishing Bodies And Polishing Tools (AREA)

Abstract

본 발명은 상부면에 성형된 다수개의 돌기를 포함하는 연질 폴리머 기재층; 상기 기재층 상부에 함입되어 결착된 탄소나노튜브들을 포함하는 탄소나노튜브층; 및 상기 탄소나노튜브층 상부에 외부로 돌출된 탄소나노튜브들을 함입하여 결착시킨 경질 폴리머 코팅층;을 포함하는 CMP용 복합 연마패드 및 이의 제조방법을 제공한다.

Description

탄소나노튜브로 결속된 고내마모성 박막 코팅을 포함하는 복합 연마패드 및 이의 제조방법
본 발명은 탄소나노튜브로 결속된 고내마모성 박막 코팅을 포함하는 복합 연마패드 및 이의 제조방법에 관한 것이다.
화학적기계연마(Chemical Mechanical Polishing; CMP)는 웨이퍼나 유리패널을 평탄화, 경면화하는 핵심 공정으로 연마패드와 나노입자가 함유된 슬러리의 기계적, 화학적 작용에 의해 연마를 수행한다.
도 1은 CMP 장치의 개략도이다. CMP 장치는 캐리어(3)가 연마 대상물(2, 예: 웨이퍼)을 단단히 고정한 상태에서 회전 테이블(1)에 고정된 연마패드(100) 면에 상기 연마 대상물을 가압하여 연마를 수행한다. 구체적으로, 캐리어(3)와 회전 테이블(1)이 각각 독립적으로 회전되는 동안, 액체슬러리(연마제)가 노즐(5)로부터 연마패드(100)에 가해지며, 이에 따라 화학 및 기계적 연마가 이루어진다. 또한, 연마공정 동안 컨디셔너(conditioner)(4)가 연마 대상물(1)로부터 이격된 위치에서 연마 패드(100)에 가압되면서 연마패드(100)의 표면을 거칠게 만들어 연마패드의 거친 표면 상태를 유지한다.
상기 CMP 장치에는 일반적으로 폴리우레탄 기반 연마패드가 사용되고 있다. 그러나, 종래의 폴리우레탄 기반 연마패드는 연마 공정에서 높은 경도의 나노입자, 연마 대상물, 및 다이아몬드 컨디셔너(Diamond conditioner)와의 마찰에 의해 마모가 빠르게 진행되어 수명이 짧다는 단점을 갖는다. 또한 불규칙한 표면거칠기로 인해 균일한 연마 성능을 보장하지 못한다는 단점을 갖는다.
[선행기술문헌]
[특허문헌]
한국 특허 공개 10-2021-0002429호
본 발명은, 종래기술의 상기와 같은 문제를 해소하기 위하여 안출된 것으로서, 연마 성능 및 수명이 크게 향상된 CMP용 복합 연마패드 및 이의 효율적인 제조방법을 제공하는 것을 목적으로 한다.
상기 목적을 달성하기 위하여, 본 발명은
상부면에 성형된 다수개의 돌기를 포함하는 연질 폴리머 기재층;
상기 기재층 상부에 함입되어 결착된 탄소나노튜브들을 포함하는 탄소나노튜브층; 및
상기 탄소나노튜브층 상부에 외부로 돌출된 탄소나노튜브들을 함입하여 결착시킨 경질 폴리머 코팅층;을 포함하는 CMP용 복합 연마패드.
본 발명의 일 실시형태에 있어서, 상기 탄소나노튜브층은 상기 연질 폴리머 기재층 및 상기 경질 폴리머 코팅층에 수직방향으로 함입된 탄소나노튜브들을 포함할 수 있다.
본 발명의 일 실시형태에 있어서, 상기 연질 폴리머 기재층 및 상기 경질 폴리머 코팅층에 수직방향으로 함입된 탄소나노튜브들은 탄소나노튜브층의 전체 탄소나노튜브들 중 50% 이상일 수 있다.
본 발명의 일 실시형태에 있어서, 상기 탄소나노튜브층의 탄소나노튜브들은 상기 연질 폴리머 기재층 및 상기 경질 폴리머 코팅층에 불규칙한 망상(net form) 구조로 함입될 수 있다.
본 발명의 일 실시형태에 있어서, 상기 불규칙한 망상(net form) 구조는 탄소나노튜브들을 서로 일부가 겹쳐지게 흩뿌려서 형성된 구조일 수 있다.
본 발명의 일 실시형태에 있어서, 상기 연질 폴리머 기재층은 쇼어 경도가 20D 내지 45D이며, 상기 경질 폴리머 코팅층은 쇼어 경도가 45D 내지 70D일 수 있다.
본 발명의 일 실시형태에 있어서, 상기 돌기는 최대폭이 10㎛ 내지 500㎛이고, 높이가 3㎛ 내지 150㎛일 수 있다.
본 발명의 일 실시형태에 있어서, 상기 탄소나노튜브는 직경이 1nm 내지 50nm이고, 길이가 1㎛ 내지 30㎛일 수 있다.
본 발명의 일 실시형태에 있어서, 상기 경질 폴리머 코팅층의 두께는 1㎛ 내지 50㎛일 수 있다.
본 발명의 일 실시형태에 있어서, 상기 돌기는 반구 유사 형태일 수 있다.
또한, 본 발명은,
(a) 탄소나노튜브가 수직방향으로 배열된 기판을 준비하는 단계;
(b) 상기 탄소나노튜브들 상부에 연질 폴리머를 코팅하여 상부면이 평평한 연질 폴리머 기재층을 형성하는 단계;
(c) 상기 탄소나노튜브로부터 기판을 분리하여 제거하는 단계;
(d) 상기 기판이 제거된 면을 플라즈마 식각하여 연질 폴리머 기재의 일정 두께를 제거함으로써 탄소나노튜브의 일부를 노출시키는 단계;
(e) 상기 탄소나노튜브가 노출된 면에 경질 폴리머를 상부면이 평평하게 코팅하여 경질 폴리머 코팅층을 형성하는 단계; 및
(f) 상기 경질 폴리머 코팅층 상부면 방향에서 엠보싱 처리를 수행하여, 연질 폴리머 기재층, 수직방향으로 배열된 탄소나노튜브층, 및 경질 폴리머 코팅층을 포함하는 다수개의 돌기를 성형하는 단계;를 포함하는 CMP용 복합 연마패드의 제조방법을 제공한다.
본 발명의 일 실시형태에 있어서, 상기 (f) 단계의 엠보싱 처리는 다수개의 돌기가 음각된 몰드로 상기 경질 폴리머 코팅층 상부면을 가열 조건에서 가압하여 수행될 수 있다.
본 발명의 일 실시형태에 있어서, 상기 (b) 단계 및 (e) 단계는 진공 상태에서 수행될 수 있다.
또한, 본 발명은,
(a) 다수개의 돌기가 음각된 몰드에 탄소나노튜브들을 서로 일부가 겹쳐지도록 흩뿌리는 단계;
(b) 상기 탄소나노튜브들 상부에 연질 폴리머를 코팅하여 상부면이 평평한 연질 폴리머 기재층을 형성하는 단계;
(c) 상기 몰드를 탈형하는 단계;
(d) 상기 탈형된 면을 플라즈마 식각하여 연질 폴리머 기재의 일정 두께를 제거함으로써 탄소나노튜브의 일부를 노출시키는 단계; 및
(e) 상기 탄소나노튜브가 노출된 면에 경질 폴리머를 코팅하여 경질 폴리머 코팅층을 형성하는 단계;를 포함하는 CMP용 복합 연마패드의 제조방법을 제공한다.
또한, 본 발명은,
(a) 기판 상에 탄소나노튜브들을 서로 일부가 겹쳐지도록 흩뿌리는 단계;
(b) 상기 탄소나노튜브들 상부에 연질 폴리머를 코팅하여 상부면이 평평한 연질 폴리머 기재층을 형성하는 단계;
(c) 상기 탄소나노튜브로부터 기판을 분리하여 제거하는 단계;
(d) 상기 기판이 제거된 면을 플라즈마 식각하여 연질 폴리머 기재의 일정 두께를 제거함으로써 탄소나노튜브의 일부를 노출시키는 단계;
(e) 상기 탄소나노튜브가 노출된 면에 경질 폴리머를 상부면이 평평하게 코팅하여 경질 폴리머 코팅층을 형성하는 단계; 및
(f) 상기 경질 폴리머 코팅층 상부면 방향에서 엠보싱 처리를 수행하여, 연질 폴리머 기재층, 수직방향으로 배열된 탄소나노튜브층, 및 경질 폴리머 코팅층을 포함하는 다수개의 돌기를 성형하는 단계;를 포함하는 CMP용 복합 연마패드의 제조방법을 제공한다.
본 발명의 일 실시형태에 있어서, 상기 (f) 단계의 엠보싱 처리는 다수개의 돌기가 음각된 몰드로 상기 경질 폴리머 코팅층 상부면을 가열 조건에서 가압하여 수행될 수 있다.
본 발명의 일 실시형태에 있어서, 상기 (b) 단계 및 (e) 단계는 진공 상태에서 수행될 수 있다.
본 발명의 CMP용 복합 연마패드는 탄소나노튜브로 결속된 연질 폴리머 기재층 및 경질 폴리머 코팅층을 포함함으로써, 개선된 연마 성능 및 수명을 제공한다.
또한, 본 발명의 CMP용 복합 연마패드의 제조방법은 상기 연마패드를 효율적으로 제조할 수 있는 방법을 제공한다.
도 1은 대표적인 CMP 장치의 구조를 도시한 사시도이다.
도 2는 본 발명의 복합 연마패드 일 실시형태를 모식적으로 도시한 단면도이다.
도 3은 본 발명의 일 실시형태로서 복합 연마패드에 포함되는 돌기의 구조를 모식적으로 도시한 단면도이다.
도 4는 본 발명의 복합 연마패드의 다른 실시형태를 모식적으로 도시한 단면도이다.
도 5는 본 발명의 다른 실시형태로서 복합 연마패드에 포함되는 돌기의 구조를 모식적으로 도시한 단면도이다.
도 6은 연마패드에 구비된 미세돌기의 기계적 물성 차이에 따르는 미세돌기, 연마입자, 및 연마 대상물의 접촉양상을 모식적으로 나타낸 도면이다.
도 7은 본 발명의 일 실시형태로서 복합 연마패드의 제조방법을 모식적으로 도시한 도면이다.
도 8은 본 발명의 다른 실시형태로서 복합 연마패드의 제조방법을 모식적으로 도시한 도면이다.
도 9는 본 발명에 의해 제조된 복합 연마패드에 형성된 미세돌기의 SEM 사진을 나타낸다.
도 10은 본 발명의 일 실시형태로서 복합 연마패드의 절단면을 촬영한 SEM 사진을 나타낸다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시 예에 대하여 첨부한 도면을 참고로 하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 명세서 전체를 통하여 유사한 부분에 대해서는 동일한 도면 부호를 붙였다.
어떤 구성요소가 다른 구성요소에 "연결된다, 구비된다, 또는 설치된다"고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결 또는 설치될 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 한다.
본 발명의 CMP용 복합 연마패드는, 도 2 내지 도 5에 도시된 바와 같이,
상부면에 성형된 다수개의 돌기를 포함하는 연질 폴리머 기재층(10);
상기 기재층 상부에 함입되어 결착된 탄소나노튜브들을 포함하는 탄소나노튜브층(20); 및
상기 탄소나노튜브층 상부에 외부로 돌출된 탄소나노튜브들을 함입하여 결착시킨 경질 폴리머 코팅층(30);을 포함하는 것을 특징으로 한다.
도 6은 연마패드에 구비되는 미세돌기의 기계적 물성 차이에 의해 달라지는 미세돌기, 연마입자, 및 연마 대상물(예: 웨이퍼)의 접촉양상을 나타낸다.
도 6의 (a)에 도시된 바와 같이, 기계적으로 연한 물성을 가진 미세돌기의 경우, 변형이 쉬워 넓은 접촉 면적 갖지만, 연마입자에 충분한 하중을 가하지 못하기 때문에 연마 대상물의 표면을 압입하여 연마하지 못한다. 또한, 쉽게 마모되어 연마패드로서 지속적인 사용이 불가능한 단점을 갖는다.
반면, 기계적으로 강한 물성을 가진 미세돌기(예: 내마모성이 큰 소재로 제조된 미세돌기)의 경우, 도 6의 (b)에 도시된 바와 같이, 연마입자에 하중을 가하여 연마 대상물의 표면을 깊이 압입하여 연마할 수 있는 장점을 갖지만, 연마 대상물과 넓은 접촉면적을 형성하지지 못하는 단점을 갖는다.
그러므로, 본 발명의 연구자들은 연마 대상물과 넓은 접촉면적을 확보하면서, 연마입자에 충분한 하중을 가할 수 있는 미세돌기를 갖는 연마패드를 제공하기 위하여 노력한 바, 도 6의 (c)에 도시된 바와 같이, 기계적으로 연한 물성을 가진 미세돌기의 표면에 기계적으로 강한 물성을 가진 소재(예: 내마모성이 큰 소재)로 코팅층을 형성하는 경우, 위와 같은 효과를 얻을 수 있음을 발견하였다.
즉, 상기와 같은 미세돌기를 포함하는 연마패드를 사용할 경우, 연한재질의 미세돌기부로 인하여 넓은 접촉면적을 확보하는 것이 가능하며, 표면의 고내마모성 코팅층으로 인하여 연마입자를 깊게 압입하는 것이 가능하다. 따라서, 연마 효율과 연마패드의 수명을 연장하는 것도 가능해 진다.
그러나, 상기와 같은 구조를 갖는 미세돌기의 경우(도 6의 (c)), 종래의 미세돌기와 비교하여 우수한 효과를 제공하지만, 미세돌기 기재부 소재와 코팅층 소재가 상이하므로, 이들 간의 결합력이 약하다는 단점을 갖는다. 즉, 이러한 구조의 미세돌기를 갖는 연마패드를 실제 연마공정에서 사용할 경우, 코팅부가 기재부로부터 분리되어 오랜시간 사용하기 어렵다는 단점을 갖는다. 또한, 기계적 물성이 강한 코팅층의 경우, 연마입자의 파지력이 부족하여 연마효율을 저하시킬 수 있다.
그러므로, 본 발명의 복합 연마패드는 이러한 단점들을 해결하기 위하여, 도 2 내지 도 5에 도시된 바와 같이, 연질 폴리머 기재층(10)과 경질 폴리머 코팅층(30)에 탄소나노튜브들을 함입시켜 형성된 탄소나노튜브층(20)을 포함하는 특징을 갖는다.
본 발명의 복합 연마패드는 상기와 같은 특징적인 구성에 의하여, 연마 대상물과 넓은 접촉면적을 가지며, 연마입자를 연마 대상물에 깊게 압입할 수 있는 특징을 갖는다. 또한, 연질 폴리머 기재층 및 경질 폴리머 코팅층이 탄소나노튜브로 결속되어 강한 결합을 형성함으로써, 수명이 크게 연장되는 특징을 갖는다. 즉 상기 탄소나노튜브층(20)이 연질 폴리머 기재층(10)과 경질 폴리머 코팅층(30) 사이의 결합 면적을 증가시키므로, 결합력이 증가하며 이에 따라 연마패드의 수명이 크게 연장된다.
또한, 상기 경질 폴리머 코팅층에 연마입자들이 압입되는 경우, 경질 폴리머 코팅층 속에 위치하는 탄소나노튜브들이 연마입자들을 지지하는 기능을 수행함으로써, 연마입자의 파지력을 향상시키고, 이에 따라, 연마효율도 향상시키는 효과를 제공한다.
본 발명의 일 실시형태에 있어서, 상기 탄소나노튜브층(20)은, 도 2 및 도 3에 도시된 바와 같이, 상기 연질 폴리머 기재층(10) 및 상기 경질 폴리머 코팅층(30)에 수직방향으로 함입된 탄소나노튜브들(22)을 포함할 수 있다.
본 발명의 일 실시형태에 있어서, 상기 연질 폴리머 기재층(10) 및 상기 경질 폴리머 코팅층(30)에 수직방향으로 함입된 탄소나노튜브들은 탄소나노튜브층의 전체 탄소나노튜브들 중 50% 이상, 바람직하게는 60% 이상, 더욱 바람직하게는 80% 이상, 더 더욱 바람직하게는 90% 이상일 수 있다.
상기에 수직방향배열 탄소나노튜브들은, 예를 들어, 기판 상에 일정한 간격을 갖도록 탄소나노튜브들을 기상성장시키는 방법으로 얻을 수 있으며, 상기 탄소나노튜브들을 연질 폴리머 기재층(10) 상부에 함입 결착시켜 탄소나노튜브층(20)을 형성하는 것은, 예를 들어, 상기 탄소나뉴튜브들이 수직방향으로 배열된 기판에 연질 폴리머를 상기 탄소나노튜브들보다 높은 두께로 코팅하고, 상기 기판을 제거한 후, 상기 기판이 제거된 면을 플라즈마 식각하여 연질 폴리머 기재층을 일정한 두께로 제거하는 것에 의해 이루어질 수 있다. 이러한 방법에 대해서는 아래에서 자세히 설명한다.
본 발명의 일 실시형태에 있어서, 상기 수직방향배열이란 엄격한 의미의 수직배열을 의미하는 것은 아니며, 인위적으로 탄소나노튜브들을 수직방향에 가깝게 배열한 것을 의미한다. 상기 수직방향배열은 예를 들어, 상기 탄소나노튜브들이 스파이크 형태로 연질 폴리머 기재층 상에 배열된 것을 포함한다. 구체적으로, 상기 수직방향배열은 탄소나노튜브들이 연질 폴리머 기재층 상부면과 이루는 각도가 60도 내지 90도, 70도 내지 90도, 또는 80도 내지 90도인 것일 수 있다.
본 발명의 일 실시형태에 있어서, 상기 탄소나노튜브층(20)의 탄소나노튜브들은, 도 4 및 도 5에 도시된 바와 같이, 상기 연질 폴리머 기재층(10) 및 상기 경질 폴리머 코팅층(30)에 불규칙한 망상(net form) 구조로 함입된 것일 수 있다.
상기 불규칙한 망상(net form) 구조는 탄소나노튜브들을 일부가 겹쳐지게 흩뿌려서 형성된 구조일 수 있다. 상기에서 흩뿌린다는 의미는 탄소나노튜브를 분산시켜 배치시킨다는 의미이며, 상기 겹쳐진다는 의미는 탄소나노튜브들 중 일부가 겹쳐져서 입체구조가 강화된 형태인 것을 의미한다.
본 발명의 일 실시형태에 있어서, 상기 연질 폴리머 기재층(10)은 쇼어 경도가 20D 내지 45D이며, 상기 경질 폴리머 코팅층(30)은 쇼어 경도가 45D 내지 70D일 수 있다. 상기 연질 폴리머 기재층 및 상기 경질 폴리머 코팅층의 경도가 상기 범위를 충족하는 경우, 돌기와 연마 대상물과의 접촉면적이 넓게 형성될 수 있을 뿐만 아니라, 연마효율도 향상될 수 있다.
본 발명의 일 실시형태에 있어서, 상기 연질 폴리머 기재층(10)을 형성하는 쇼어 경도가 20D 내지 45D인 연질 폴리머 소재로는 폴리우레탄 수지, UV 경화성 수지, 실리콘(Silicone) 수지 등으로 이루어진 군으로부터 선택되는 1종 이상이 사용될 수 있으나, 이들로 한정되는 것은 아니며, 본 발명의 악영향을 끼치지 않는 것이라면, 이 분야 공지된 소재가 제한 없이 사용될 수 있다.
또한, 상기 경질 폴리머 코팅층(30)을 형성하는 쇼어 경도(shore hardness)가 45D 내지 70D인 경질 폴리머 소재로는 폴리우레탄 수지, UV 경화성 수지, 실리콘(Silicone) 수지 등으로 이루어진 군으로부터 선택되는 1종 이상이 사용될 수 있으나, 이들로 한정되는 것은 아니며, 본 발명의 악영향을 끼치지 않는 것이라면, 이 분야 공지된 소재가 제한 없이 사용될 수 있다.
본 발명의 일 실시형태에 있어서, 상기 돌기는 최대폭이 10㎛ 내지 500㎛이고, 높이가3㎛ 내지 150㎛일 수 있다. 그러나 상기 범위들이 이 범위로 한정되는 것은 아니며, 연마 대상물 및 연마 조건에 따라 적절히 조절될 수 있다.
본 발명의 일 실시형태에 있어서, 상기 탄소나노튜브는 직경이 1nm 내지 50nm이고, 길이가 1㎛ 내지 30㎛일 수 있다 그러나 상기 직경 및 길이가 이 범위로 한정되는 것은 아니며, 연마 대상물 및 연마 조건에 따라 적절히 조절될 수 있다.
본 발명의 일 실시형태에 있어서, 상기 경질 폴리머 코팅층(30)의 두께는 1㎛ 내지 30㎛, 더욱 바람직하게는 3㎛ 내지 20㎛일 수 있다. 상기 코팅층의 두께가 상기 두께보다 얇을 경우 마모에 의해 쉽게 탄소나노튜브가 노출되므로 바람직하지 않으며, 너무 두꺼울 경우 탄소나노튜브에 의한 연마입자 파지력이 감소하므로 바람직하지 않다. 그러나 상기 범위는 탄소나노튜브의 길이, 연마 대상물 및 연마 조건에 따라 적절히 조절될 수 있다.
본 발명의 일 실시형태에 있어서, 상기 연질 폴리머 기재층(10)의 두께는 1mm 내지 20mm, 더욱 바람직하게는 2mm 내지 10mm일 수 있다.
본 발명의 일 실시형태에 있어서, 상기 돌기는 예를 들어, 반구와 유사한 형태를 가질 수 있으나, 특별히 그 형태가 한정되는 것은 아니다. 상기 돌기는 도 2 내지 도 5에 도시된 바와 같이, 연질 폴리머 기재층(10), 수직방향으로 배열된 탄소나노튜브층(20), 및 경질 폴리머 코팅층(30)을 포함하며, 복합 연마패드 상방향으로 돌출된다.
본 발명의 일 실시형태에 있어서, 상기 연질 폴리머 기재층(10)과 경질 폴리머 코팅층(30)은 도 2 및 도 5에 도시된 바와 같이, 상기 탄소나노튜브층(20)에 배치된 탄소나노튜브들 사이 공간에서 서로 접촉되는 구조를 가질 수 있다.
본 발명의 일 실시형태에 있어서, 상기 복합 연마패드는 연질 폴리머 기재층(10)과 상기 기재층(10)에 함입 결착된 탄소나노튜브들 사이에 기공이 존재하지 않을 구조를 가질 수 있다. 상기 기공이 존재하지 않는 경우, 상기 연질 폴리머 기재층(10)과 상기 기재층(10)에 함입 결착된 탄소나노튜브들이 더 견고하게 결착될 수 있어서 바람직하다.
또한, 상기 복합 연마패드는 경질 폴리머 코팅층(30)과 상기 코팅층(30)에 함입 결착된 탄소나노튜브들 사이에 기공이 존재하지 않는 구조를 가질 수 있다. 상기 기공이 존재하지 않는 경우, 상기 경질 폴리머 코팅층(10)과 상기 코팅층(10)에 함입 결착된 탄소나노튜브들이 더 견고하게 결착될 수 있어서 바람직하다.
또한, 전체적으로, 상기 복합 연마패드는 상기 기재층(10), 탄소나노튜브층(20), 및 코팅층(30)의 계면에 기공이 존재하지 않는 구조를 가질 수 있다. 이러한 구조는 아래에서 설명되는 바와 같이, 진공 중에서 상기 층들 간의 결합을 형성함으로써 형성할 수 있다. 상기 기공이 존재하지 않는다는 표현은 실질적으로 기공이 존재하지 않는 것을 의미할 수 있다.
본 발명은 또한, CMP용 복합 연마패드의 제조방법을 제공하며, 상기 제조방법은, 도 7에 도시된 바와 같이, 다음의 (a) 내지 (f) 단계를 포함할 수 있다:
(a) 탄소나노튜브가 수직방향으로 배열된 기판을 준비하는 단계;
(b) 상기 탄소나노튜브 상부에 연질 폴리머를 코팅하여 상부면이 평평한 연질 폴리머 기재층을 형성하는 단계;
(c) 상기 탄소나노튜브로부터 기판을 분리하여 제거하는 단계;
(d) 상기 기판이 제거된 면을 플라즈마 식각하여 연질 폴리머 기재의 일정 두께를 제거함으로써 탄소나노튜브의 일부를 노출시키는 단계;
(e) 상기 탄소나노튜브가 노출된 면에 경질 폴리머를 상부면이 평평하게 코팅하여 경질 폴리머 코팅층을 형성하는 단계; 및
(f) 상기 경질 폴리머 코팅층 상부면 방향에서 엠보싱 처리를 수행하여, 연질 폴리머 기재층, 수직방향으로 배열된 탄소나노튜브층, 및 경질 폴리머 코팅층을 포함하는 다수개의 돌기를 성형하는 단계
위에서 설명된 CMP용 복합 연마패드에 관한 내용은 상기 제조방법에 그대로 적용될 수 있다. 그러므로 중복되는 설명은 생략하기로 한다.
상기 (a) 단계에서 탄소나노튜브가 수직방향으로 배열된 기판은, 예를 들어, 실리콘 기판 또는 금속 호일 기판 등의 기판 상에 물리기상증착법(Physical Vapor Deposition; PVD)에 의해 Fe/Al2O3와 같은 촉매층을 형성하고, 상기 촉매층이 형성된 기판 상에 화학기상증착법(Chemical Vapor Deposition; CVD)에 의해 수직방향으로 배열된 탄소나노튜브를 형성하는 방법으로 준비될 수 있다. 그러나, 탄소나노튜브가 수직방향으로 배열된 기판의 제조방법이 상기 방법으로 한정되는 것은 아니며, 이 분야에 공지된 방법으로 제조하는 것도 가능하다.
상기 (b) 단계 및 (e) 단계의 코팅은 이 분야에 공지된 방법으로 실시될 수 있다. 예를 들어, 스핀코팅, 스프레이 코팅 등의 방법으로 코팅하는 것이 가능하며, 이 밖에 이 분야에 공지된 방법으로 코팅을 진행하는 것도 가능하다.
상기 (c) 단계의 기판 분리는, 예를 들어, 기계적인 실리콘 분리(이형), 실리콘 식각 등의 방법으로 수행할 수 있다.
상기 (d) 단계의 플라즈마 식각 방법은 특별히 제한되지 않으며, 이 분야에 공지된 방법을 이용하여 수행할 수 있다.
상기 (f) 단계의 엠보싱 처리는 다수개의 돌기가 음각된 몰드로 상기 경질 폴리머 코팅층 상부면을 가열 조건에서 가압하는 방법으로 수행될 수 있다. 구체적으로, 도 7에 도시된 바와 같이, 마이크로 패턴이 형성된 금형을 사용하여 수행할 수 있다. 이 때, 상기 금형에 열을 공급하여, 금형이 가열된 상태에서 엠보싱 처리를 수행할 수 있다. 이 때, 상기 금형의 온도는 200 ~ 250℃에서 수행될 수 있으나, 이에 한정되는 것은 아니다. 상기 금형은 니켈, 구리 등의 금속 소재로 제조된 것이 사용될 수 있으며, 상기 마이크로 패턴은 미세기전시스템(Micro Electro-Mechanical System; MEMS) 공정을 활용해 제작할 수 있다.
상기 방법에 의해 제조된 복합 연마패드는 도 9의 SEM 사진에 나타낸 바와 같은 돌기를 갖는다. 또한, 도 10에 도시된 바와 같은 내부 구조를 갖는다. 상기 도 10을 참조하면, 본 발명의 복합 연마패드는 탄소나노튜브(22)에 의해 연질 폴리머 기재층(10)과 경질 폴리머 코팅층(30)이 결착된 형태인 것을 확인할 수 있다.
본 발명의 일 실시형태에 있어서, 상기 (b) 단계 및 (e) 단계의 하나 이상은 진공 상태에서 수행될 수 있다. 진공상태에서 코팅이 이루어지는 경우, 탄소나노튜브와 연질 폴리머 기재층 사이에 기공이 형성되는 것이 방지될 수 있으며, 이에 따라 탄소나노튜브가 더 강하게 함입 결착될 수 있으므로 바람직하다.
본 발명은 또한, 다른 CMP용 복합 연마패드의 제조방법을 제공하며, 상기 제조방법은, 도 8에 도시된 바와 같이, 다음의 (a) 내지 (e) 단계를 포함할 수 있다:
(a) 다수개의 돌기가 음각된 몰드에 탄소나노튜브들을 서로 일부가 겹쳐지도록 흩뿌리는 단계;
(b) 상기 탄소나노튜브들 상부에 연질 폴리머를 코팅하여 상부면이 평평한 연질 폴리머 기재층을 형성하는 단계;
(c) 상기 몰드를 탈형하는 단계;
(d) 상기 탈형된 면을 플라즈마 식각하여 연질 폴리머 기재의 일정 두께를 제거함으로써 탄소나노튜브의 일부를 노출시키는 단계; 및
(e) 상기 탄소나노튜브가 노출된 면에 경질 폴리머를 코팅하여 경질 폴리머 코팅층을 형성하는 단계
위에서 설명된 CMP용 복합 연마패드, 그의 제조방법에 관한 내용은 상기 제조방법에 그대로 적용될 수 있다. 그러므로 중복되는 설명은 생략하기로 한다.
상기 (a) 단계의 탄소나노튜브들을 서로 일부가 겹쳐지도록 흩뿌리는 방법은 이 분야에 공지된 방법으로 수행될 수 있다. 예를 들어, 도 8에 도시된 바와 같이, 노즐을 통하여 탄소나노튜브를 몰드에 분사하는 방식으로 수행될 수 있다. 이 때, 탄소나노튜브들은 용매에 분산된 형태로 분사될 수도 있다. 상기 용매로는 물, 에탄올, 이소프로필알코올 등을 들 수 있으나, 이들로 한정되는 것은 아니다.
상기 (b), (d) 및 (e) 단계는 상기에서 설명된 다른 방법과 동일하게 실시될 수 있다.
본 발명은 또한, 다른 CMP용 복합 연마패드의 제조방법을 제공하며, 상기 제조방법은 다음의 (a) 내지 (f) 단계를 포함할 수 있다:
(a) 기판 상에 탄소나노튜브들을 서로 일부가 겹쳐지도록 흩뿌리는 단계;
(b) 상기 탄소나노튜브들 상부에 연질 폴리머를 코팅하여 상부면이 평평한 연질 폴리머 기재층을 형성하는 단계;
(c) 상기 탄소나노튜브로부터 기판을 분리하여 제거하는 단계;
(d) 상기 기판이 제거된 면을 플라즈마 식각하여 연질 폴리머 기재의 일정 두께를 제거함으로써 탄소나노튜브의 일부를 노출시키는 단계;
(e) 상기 탄소나노튜브가 노출된 면에 경질 폴리머를 상부면이 평평하게 코팅하여 경질 폴리머 코팅층을 형성하는 단계; 및
(f) 상기 경질 폴리머 코팅층 상부면 방향에서 엠보싱 처리를 수행하여, 연질 폴리머 기재층, 수직방향으로 배열된 탄소나노튜브층, 및 경질 폴리머 코팅층을 포함하는 다수개의 돌기를 성형하는 단계
위에서 설명된 CMP용 복합 연마패드 및 다른 조방법에 관한 내용은 상기 제조방법에 그대로 적용될 수 있다. 그러므로 중복되는 설명은 생략하기로 한다.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있 으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 아니 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.
실시예 1: 복합 연마패드의 제조
525 ㎛ 두께의 실리콘 기판 상에 물리기상증착법(Physical Vapor Deposition; PVD)에 의해 Fe/Al2O3 촉매층을 증착하고, 상기 기판 상에 화학기상증착법(Chemical Vapor Deposition; CVD)에 의해 수직방향으로 배열된 직경이 약 10nm이고, 길이가 3㎛인 다중벽 탄소나노튜브들이 형성된 기판을 준비하였다. 이 때, 상기 탄소나노튜브들은 ~1011개/cm2 밀도로 형성된 것을 확인하였다.
상기 기판에 수직방향으로 배열된 탄소나노튜브들 상부에 쇼어 경도가 30D인 폴리우레탄 수지(상품명:Smooth-CastTM 30D, 제조사 Smooth-On)를 진공 분위기 하에서 도포하여 탄소나노튜브의 상단부를 기준으로 두께가 5 mm인 연질 폴리머 기재층을 형성하였다.
상기 연질 폴리머 기재층을 경화시킨 후, 실리콘을 기계적으로 분리하여 탄소나노튜브들을 폴리우레탄에 전사시켰다. 다음으로 상기 기판이 제거된 면을 플라즈마 식각하여 연질 폴리머 기재를 1㎛ 두께로 제거하여 탄소나노튜브들을 노출시켰다. 이후, 상기 탄소나노튜브들이 노출된 면에 쇼어 경도가 45D인 폴리우레탄 수지(상품명:Smooth-CastTM 45D, 제조사 Smooth-On)를 진공분위기 하에서 스핀코팅을 통해 도포하여 탄소나노튜브의 상단부를 기준으로 두께가 5㎛인 경질 폴리머 코팅층을 형성하였다.
상기 경질 폴리머 코팅층을 경화시킨 후, 반경이 50㎛인 다수개의 반구형 돌기가 음각된 금형을 사용하여 20O℃로 가압하여 엠보싱 처리를 수행하여 본 발명의 복합 연마패드를 제조하였다.
실시예 2: 복합 연마패드의 제조
이소프로필알코올에 탄소나노튜브를 분산시켜 탄소나노튜브 분산액을 준비하였다. 다음으로 반경이 50㎛인 다수개의 반구형 돌기가 음각된 금형에 상기 분산액을 공압노즐을 사용하여 도포하였다. 상기 탄소나노튜브가 도포된 금형 위에 쇼어 경도가 30D인 폴리우레탄 수지(50㎛)를 진공 분위기 하에서 도포하여 탄소나노튜브의 상단부를 기준으로 두께가 5 mm 인 연질 폴리머 기재층을 형성하였다.
상기 연질 폴리머 기재층을 경화시킨 후, 금형을 분리하여 제거하였다. 다음으로 상기 금형이 제거된 면을 플라즈마 식각하여 연질 폴리머 기재를 1㎛ 두께로 제거하여 탄소나노튜브들을 노출시켰다. 이후, 상기 탄소나노튜브들이 노출된 면에 쇼어 경도가 45D인 폴리우레탄 수지(상품명:Smooth-CastTM 45D, 제조사 Smooth-On)를 스핀코팅으로 도포하여 탄소나노튜브의 상단부를 기준으로 두께가 5㎛인 경질 폴리머 코팅층을 형성하였다.
실시예 3: 복합 연마패드의 제조
이소프로필알코올에 탄소나노튜브를 분산시켜 탄소나노튜브 분산액을 준비하였다. 다음으로 60℃로 가열된 핫프레이트 위에 놓여진 폴리프로필렌 기판 상에 상기 분산액을 공압노즐을 사용하여 도포하였다. 상기 탄소나노튜브가 도포된 금형 위에 쇼어 경도가 30D인 폴리우레탄 수지(상품명:Smooth-CastTM 30D, 제조사 Smooth-On)를 진공 분위기 하에서 도포하여 탄소나노튜브의 상단부를 기준으로 두께가 5 mm인 연질 폴리머 기재층을 형성하였다.
상기 연질 폴리머 기재층을 경화시킨 후, 상기 기판을 분리하여 제거하였다. 다음으로 상기 기판이 제거된 면을 플라즈마 식각하여 연질 폴리머 기재를 1㎛ 두께로 제거하여 탄소나노튜브들을 노출시켰다. 이후, 상기 탄소나노튜브들이 노출된 면에 쇼어 경도가 45D인 폴리우레탄 수지(상품명:Smooth-CastTM 45D, 제조사 Smooth-On)를 스핀코팅으로 도포하여 탄소나노튜브의 상단부를 기준으로 두께가 5㎛인 경질 폴리머 코팅층을 형성하였다.
상기 경질 폴리머 코팅층을 경화시킨 후, 반경이 50㎛인 다수개의 반구형 돌기가 음각된 금형을 사용하여 20O℃로 가압하여 엠보싱 처리를 수행하여 본 발명의 복합 연마패드를 제조하였다.
비교예 1: 복합 연마패드의 제조
쇼어 경도가 30D인 폴리우레탄 수지(상품명:Smooth-CastTM 30D, 제조사 Smooth-On)를 도포하여 두께가 5 mm인 연질 폴리머 기재층을 형성하였다.
상기 연질 폴리머 기재층을 경화시킨 후, 상기 연질 폴리머 기재층 상부에 쇼어 경도가 45D인 폴리우레탄 수지(상품명:Smooth-CastTM 45D, 제조사 Smooth-On)를 도포하여 두께가 두께가 5㎛인 경질 폴리머 코팅층을 형성하였다.
상기 경질 폴리머 코팅층을 경화시킨 후, 반경이 50㎛인 다수개의 반구형 돌기가 음각된 금형을 사용하여 20O℃로 가압하여 엠보싱 처리를 수행하여 복합 연마패드를 제조하였다.
[부호의 설명]
1: 회전 테이블 2: 웨이퍼
3: 캐리어(회전 헤드) 4: 컨디셔너
5: 노즐 10: 연질 폴리머 기재층
20: 탄소나노튜브층 22: 탄소나노튜브
30: 경질 폴리머 코팅층 100: 복합 연마패드

Claims (17)

  1. 상부면에 성형된 다수개의 돌기를 포함하는 연질 폴리머 기재층;
    상기 기재층 상부에 함입되어 결착된 탄소나노튜브들을 포함하는 탄소나노튜브층; 및
    상기 탄소나노튜브층 상부에 외부로 돌출된 탄소나노튜브들을 함입하여 결착시킨 경질 폴리머 코팅층;을 포함하는 CMP용 복합 연마패드.
  2. 제1항에 있어서,
    상기 탄소나노튜브층은 상기 연질 폴리머 기재층 및 상기 경질 폴리머 코팅층에 수직방향으로 함입된 탄소나노튜브들을 포함하는 것을 것을 특징으로 하는 CMP용 복합 연마패드.
  3. 제2항에 있어서,
    상기 연질 폴리머 기재층 및 상기 경질 폴리머 코팅층에 수직방향으로 함입된 탄소나노튜브들은 탄소나노튜브층의 전체 탄소나노튜브들 중 50% 이상인 것을 특징으로 하는 CMP용 복합 연마패드.
  4. 제1항에 있어서,
    상기 탄소나노튜브층의 탄소나노튜브들이 상기 연질 폴리머 기재층 및 상기 경질 폴리머 코팅층에 불규칙한 망상(net form) 구조로 함입된 것을 것을 특징으로 하는 CMP용 복합 연마패드.
  5. 제4항에 있어서,
    상기 불규칙한 망상(net form) 구조는 탄소나노튜브들을 서로 일부가 겹쳐지게 흩뿌려서 형성된 구조인 것을 특징으로 하는 CMP용 복합 연마패드.
  6. 제1항에 있어서,
    상기 연질 폴리머 기재층은 쇼어 경도가 20D 내지 45D이며, 상기 경질 폴리머 코팅층은 쇼어 경도가 45D 내지 70D인 것을 특징으로 하는 CMP용 복합 연마패드.
  7. 제1항에 있어서,
    상기 돌기는 최대폭이 10㎛ 내지 500㎛이고, 높이가 3㎛ 내지 150㎛인 것을 특징으로 하는 CMP용 복합 연마패드.
  8. 제1항에 있어서,
    상기 탄소나노튜브는 직경이 1nm 내지 50nm이고, 길이가 1㎛ 내지 30㎛인 것을 특징으로 하는 CMP용 복합 연마패드.
  9. 제1항에 있어서,
    상기 경질 폴리머 코팅층의 두께는 1㎛ 내지 30㎛인 것을 특징으로 하는 CMP용 복합 연마패드.
  10. 제1항에 있어서,
    상기 돌기는 반구 유사 형태인 것을 특징으로 하는 CMP용 복합 연마패드.
  11. (a) 탄소나노튜브가 수직방향으로 배열된 기판을 준비하는 단계;
    (b) 상기 탄소나노튜브들 상부에 연질 폴리머를 코팅하여 상부면이 평평한 연질 폴리머 기재층을 형성하는 단계;
    (c) 상기 탄소나노튜브로부터 기판을 분리하여 제거하는 단계;
    (d) 상기 기판이 제거된 면을 플라즈마 식각하여 연질 폴리머 기재의 일정 두께를 제거함으로써 탄소나노튜브의 일부를 노출시키는 단계;
    (e) 상기 탄소나노튜브가 노출된 면에 경질 폴리머를 상부면이 평평하게 코팅하여 경질 폴리머 코팅층을 형성하는 단계; 및
    (f) 상기 경질 폴리머 코팅층 상부면 방향에서 엠보싱 처리를 수행하여, 연질 폴리머 기재층, 수직방향으로 배열된 탄소나노튜브층, 및 경질 폴리머 코팅층을 포함하는 다수개의 돌기를 성형하는 단계;를 포함하는 CMP용 복합 연마패드의 제조방법.
  12. 제11항에 있어서,
    상기 (f) 단계의 엠보싱 처리는 다수개의 돌기가 음각된 몰드로 상기 경질 폴리머 코팅층 상부면을 가열 조건에서 가압하여 수행되는 것을 특징으로 하는 CMP용 복합 연마패드의 제조방법.
  13. 제11항에 있어서,
    상기 (b) 단계 및 (e) 단계는 진공 상태에서 수행되는 것을 특징으로 하는 CMP용 복합 연마패드의 제조방법.
  14. (a) 다수개의 돌기가 음각된 몰드에 탄소나노튜브들을 서로 일부가 겹쳐지도록 흩뿌리는 단계;
    (b) 상기 탄소나노튜브들 상부에 연질 폴리머를 코팅하여 상부면이 평평한 연질 폴리머 기재층을 형성하는 단계;
    (c) 상기 몰드를 탈형하는 단계;
    (d) 상기 탈형된 면을 플라즈마 식각하여 연질 폴리머 기재의 일정 두께를 제거함으로써 탄소나노튜브의 일부를 노출시키는 단계; 및
    (e) 상기 탄소나노튜브가 노출된 면에 경질 폴리머를 코팅하여 경질 폴리머 코팅층을 형성하는 단계;를 포함하는 CMP용 복합 연마패드의 제조방법.
  15. (a) 기판 상에 탄소나노튜브들을 서로 일부가 겹쳐지도록 흩뿌리는 단계;
    (b) 상기 탄소나노튜브들 상부에 연질 폴리머를 코팅하여 상부면이 평평한 연질 폴리머 기재층을 형성하는 단계;
    (c) 상기 탄소나노튜브로부터 기판을 분리하여 제거하는 단계;
    (d) 상기 기판이 제거된 면을 플라즈마 식각하여 연질 폴리머 기재의 일정 두께를 제거함으로써 탄소나노튜브의 일부를 노출시키는 단계;
    (e) 상기 탄소나노튜브가 노출된 면에 경질 폴리머를 상부면이 평평하게 코팅하여 경질 폴리머 코팅층을 형성하는 단계; 및
    (f) 상기 경질 폴리머 코팅층 상부면 방향에서 엠보싱 처리를 수행하여, 연질 폴리머 기재층, 수직방향으로 배열된 탄소나노튜브층, 및 경질 폴리머 코팅층을 포함하는 다수개의 돌기를 성형하는 단계;를 포함하는 CMP용 복합 연마패드의 제조방법.
  16. 제15항에 있어서,
    상기 (f) 단계의 엠보싱 처리는 다수개의 돌기가 음각된 몰드로 상기 경질 폴리머 코팅층 상부면을 가열 조건에서 가압하여 수행되는 것을 특징으로 하는 CMP용 복합 연마패드의 제조방법.
  17. 제14항 또는 제15항에 있어서,
    상기 (b) 단계 및 (e) 단계는 진공 상태에서 수행되는 것을 특징으로 하는 CMP용 복합 연마패드의 제조방법.
PCT/KR2021/016560 2021-11-12 2021-11-12 탄소나노튜브로 결속된 고내마모성 박막 코팅을 포함하는 복합 연마패드 및 이의 제조방법 WO2023085470A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/KR2021/016560 WO2023085470A1 (ko) 2021-11-12 2021-11-12 탄소나노튜브로 결속된 고내마모성 박막 코팅을 포함하는 복합 연마패드 및 이의 제조방법
CN202180099397.2A CN117794686A (zh) 2021-11-12 2021-11-12 包括与碳纳米管结合的高耐磨薄膜涂层的复合抛光垫和生产该复合抛光垫的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2021/016560 WO2023085470A1 (ko) 2021-11-12 2021-11-12 탄소나노튜브로 결속된 고내마모성 박막 코팅을 포함하는 복합 연마패드 및 이의 제조방법

Publications (1)

Publication Number Publication Date
WO2023085470A1 true WO2023085470A1 (ko) 2023-05-19

Family

ID=86336141

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/016560 WO2023085470A1 (ko) 2021-11-12 2021-11-12 탄소나노튜브로 결속된 고내마모성 박막 코팅을 포함하는 복합 연마패드 및 이의 제조방법

Country Status (2)

Country Link
CN (1) CN117794686A (ko)
WO (1) WO2023085470A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009190155A (ja) * 2008-02-18 2009-08-27 Daiken Chemical Co Ltd 研磨具
KR20150044238A (ko) * 2013-10-16 2015-04-24 새솔다이아몬드공업 주식회사 연마패드 컨디셔너의 제조방법
KR20180066126A (ko) * 2015-10-07 2018-06-18 쓰리엠 이노베이티브 프로퍼티즈 컴파니 폴리싱 패드 및 시스템과 이의 제조 및 사용 방법
JP2019178223A (ja) * 2018-03-30 2019-10-17 山形県 カーボンナノチューブ複合樹脂成形体及びその製造方法
KR20210002429A (ko) 2018-12-26 2021-01-08 에스케이씨 주식회사 연마패드용 조성물, 연마패드 및 이의 제조방법
KR20210130629A (ko) * 2020-04-21 2021-11-01 스마트 패드 엘엘씨 돌출 구조를 가지는 화학 기계적 연마 패드

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009190155A (ja) * 2008-02-18 2009-08-27 Daiken Chemical Co Ltd 研磨具
KR20150044238A (ko) * 2013-10-16 2015-04-24 새솔다이아몬드공업 주식회사 연마패드 컨디셔너의 제조방법
KR20180066126A (ko) * 2015-10-07 2018-06-18 쓰리엠 이노베이티브 프로퍼티즈 컴파니 폴리싱 패드 및 시스템과 이의 제조 및 사용 방법
JP2019178223A (ja) * 2018-03-30 2019-10-17 山形県 カーボンナノチューブ複合樹脂成形体及びその製造方法
KR20210002429A (ko) 2018-12-26 2021-01-08 에스케이씨 주식회사 연마패드용 조성물, 연마패드 및 이의 제조방법
KR20210130629A (ko) * 2020-04-21 2021-11-01 스마트 패드 엘엘씨 돌출 구조를 가지는 화학 기계적 연마 패드

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
RYU HYUN JUN, KIM DONG GEUN, KANG SUKKYUNG, JEONG JI-HUN, KIM SANHA: "Mechanical Abrasion by Bi-layered Pad Micro-Asperity in Chemical Mechanical Polishing", CIRP ANNALS., ELSEVIER BV, NL, CH, FR, vol. 70, no. 1, 1 January 2021 (2021-01-01), NL, CH, FR , pages 273 - 276, XP093065327, ISSN: 0007-8506, DOI: 10.1016/j.cirp.2021.04.012 *

Also Published As

Publication number Publication date
CN117794686A (zh) 2024-03-29

Similar Documents

Publication Publication Date Title
US6117246A (en) Conductive polymer pad for supporting a workpiece upon a workpiece support surface of an electrostatic chuck
WO2011065621A1 (ko) 진공접착을 위한 미세섬모 구조물, 이의 사용방법 및 제조방법
US5841624A (en) Cover layer for a substrate support chuck and method of fabricating same
WO2010038963A2 (ko) 계층화 구조물 제조 장치
US8828298B2 (en) Large area dissolvable template lithography
EP0856882A2 (en) Stand-off pad for supporting a wafer on a substrate support chuck and method of fabricating same
WO2018004050A1 (ko) 반도체 웨이퍼의 하프커팅 후 이면 연삭 가공용 자외선 경화형 점착시트
CN109390281B (zh) 半导体装置结构和其处理方法与系统
WO2023085470A1 (ko) 탄소나노튜브로 결속된 고내마모성 박막 코팅을 포함하는 복합 연마패드 및 이의 제조방법
EP0368957A1 (en) Method of providing optically flat surfaces on processed silicon wafers
WO2016093504A1 (ko) 화학연마장치용 캐리어 헤드의 리테이너링 및 이를 포함하는 캐리어 헤드
WO2012157936A2 (ko) Cmp 패드 컨디셔너 및 상기 cmp 패드 컨디셔너 제조방법
US6337288B1 (en) Process for the production of electronic parts
JP3763710B2 (ja) 防塵用カバーフィルム付きウエハ支持台及びその製造方法
WO2019190121A1 (ko) 마스크의 제조 방법, 마스크 지지 버퍼기판과 그의 제조 방법
WO2017188612A1 (ko) 전기장 흡착 방식을 이용한 이물질 제거 시스템 및 제거 방법
JPH10229115A (ja) ウェハ用真空チャック
WO2023085471A1 (ko) 탄소나노튜브들을 포함하는 복합 연마패드 및 이의 제조방법
JP2005531930A (ja) 部分的に膜であるキャリアヘッド
WO2015147509A1 (ko) 열경화성 반도체 웨이퍼용 임시접착필름, 이를 포함하는 적층체 및 적층체 분리방법
WO2020141925A1 (ko) 방열 시트 제조방법
WO2019203510A1 (ko) 프레임 일체형 마스크의 제조 장치
US7358465B2 (en) Method for restoring ceramic heater
WO2021221460A1 (ko) 접착제 전사 필름 및 이를 이용한 파워모듈용 기판 제조방법
JP2000164684A (ja) 静電チャックのワ―クピ―ス支持面上でワ―クピ―スを支持するための導電性ポリマ―パッド

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21964180

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18289189

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2023571616

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202180099397.2

Country of ref document: CN