WO2023085382A1 - ウイルスの精製方法 - Google Patents

ウイルスの精製方法 Download PDF

Info

Publication number
WO2023085382A1
WO2023085382A1 PCT/JP2022/041990 JP2022041990W WO2023085382A1 WO 2023085382 A1 WO2023085382 A1 WO 2023085382A1 JP 2022041990 W JP2022041990 W JP 2022041990W WO 2023085382 A1 WO2023085382 A1 WO 2023085382A1
Authority
WO
WIPO (PCT)
Prior art keywords
virus
ultrafiltration
aqueous dispersion
surfactant
inorganic salt
Prior art date
Application number
PCT/JP2022/041990
Other languages
English (en)
French (fr)
Inventor
賀也 大瀧
茉佑美 岡本
俊介 椎名
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Publication of WO2023085382A1 publication Critical patent/WO2023085382A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/16Feed pretreatment
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
    • C12N7/02Recovery or purification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • C12N15/864Parvoviral vectors, e.g. parvovirus, densovirus

Definitions

  • the present invention relates to a virus purification method, particularly a virus purification method including an ultrafiltration step.
  • a viral vector is a recombinant virus obtained by modifying a naturally occurring virus using gene recombination technology so that it can transfer a desired gene or the like to a target.
  • Viruses from which viral vectors are derived include retroviruses, lentiviruses, Sendai viruses, enveloped viruses such as herpes virus, and non-enveloped viruses such as adenoviruses and adeno-associated viruses (hereinafter referred to as AAV) (hereinafter referred to as AAV).
  • AAV non-enveloped viruses
  • AAV is capable of infecting cell types of a wide range of species, including humans, and can also infect non-dividing cells that have completed differentiation. It is expected to be a promising gene transfer vector for use in gene therapy because it is stable in the environment.
  • Non-Patent Document 1 discloses a technique for producing a recombinant adeno-associated virus for clinical trials.
  • a virus-producing cell is produced by transiently or permanently introducing a nucleic acid that supplies essential elements for virus particle formation into the cell, and then the virus-producing cell.
  • Non-Patent Document 2 discloses a virus purification protocol that does not require ultracentrifugation. The protocol uses the technique of Tangential Flow Filtration (TFF), but the yield was not satisfactory.
  • TMF Tangential Flow Filtration
  • An object of the present invention is to provide a virus purification method, particularly a virus purification method including an ultrafiltration step, which enables virus purification more easily and obtains viruses at a high yield.
  • the present inventors diligently studied various conditions during the ultrafiltration step in virus purification. As a result, we found that the yield of virus purification can be increased by adjusting the surfactant concentration, salt concentration, and temperature during the ultrafiltration process, and succeeded in determining the suitable concentration range. I have completed my invention. That is, the present invention is as follows.
  • a virus purification method comprising a step of ultrafiltrating an aqueous dispersion containing a virus, a surfactant and an inorganic salt.
  • the inorganic salt contains at least one selected from the group consisting of chloride ions, sulfide ions, phosphate ions and carbonate ions. .
  • a method for purifying a virus comprising [12] including a step of ultrafiltrating an aqueous dispersion containing a virus, a surfactant and an inorganic salt; the virus is an adeno-associated virus, the serotype of the adeno-associated virus is at least one selected from the group consisting of AAV5 and AAV6; A method for purifying a virus, wherein the ultrafiltration temperature is 28 to 50°C.
  • the surfactant is at least one selected from the group consisting of nonionic surfactants, anionic surfactants, cationic surfactants and amphoteric surfactants, [12]- The purification method according to any one of [14].
  • FIG. 1 is a chart showing the procedure for virus purification.
  • the present invention provides a virus purification method, which is characterized by including a step of ultrafiltrating an aqueous dispersion containing a virus, a surfactant and an inorganic salt.
  • Viruses to be purified in the present invention include retroviruses, lentiviruses, Sendai viruses, enveloped viruses such as herpes virus, and non-enveloped viruses such as adenovirus and AAV (hereinafter referred to as non-enveloped viruses). etc., but not limited to these.
  • the envelope is formed when a virus buds through membranes such as the nucleus, endoplasmic reticulum, Golgi apparatus, plasma membrane, and cell membrane, and usually involves host-derived proteins or viral proteins expressed on the host cell membrane. and plays an important role in infecting target cells.
  • DNA viruses such as adenovirus, parvovirus, papovavirus, human papillomavirus, rotavirus, coxsackievirus, enterovirus, sapovirus, norovirus, poliovirus, echovirus, hepatitis A virus, hepatitis E virus, rhinovirus , and RNA viruses such as Astrovirus. More preferred are viruses of the family Retroviridae, viruses of the family Adenoviridae, and viruses of the family Parvoviridae, and particularly preferred are adeno-associated viruses (AAV) of the family Parvoviridae.
  • AAV has a regular icosahedral outer shell (capsid) without an envelope and a linear single-stranded DNA within it.
  • the capsid has three capsid proteins (VP1, VP2 and VP3).
  • AAV includes wild-type virus and derivatives thereof, and includes all serotypes and clades unless otherwise specified. Although there are various reports on AAV serotypes, at least AAV1, AAV2, AAV3a, AAV3b, AAV4, AAV5, AAV6, AAV7, AAV8, AAV9, AAV10, AAVrh. 10, AAV11, AAV12 and AAV13 are known.
  • virus includes not only natural viruses, but also recombinant virus particles that have been modified to remove pathogenicity based on natural viruses, etc., and to have regions for introducing foreign genes.
  • Virus particles include not only particles containing a viral genome (nucleic acid form), but also hollow particles, which are virus-like particles that do not contain a viral genome. Such recombinant virus particles are also referred to as viral vectors.
  • natural viruses and recombinant virus particles are collectively referred to as viruses. Therefore, the method for purifying a virus of the present invention can also be a method for purifying recombinant virus particles or a method for purifying a viral vector.
  • the surfactant used in the present invention is not particularly limited as long as it enables ultrafiltration to be performed at a high yield. Any material can be used as long as it is capable of aggregating proteins derived from cells containing viruses and suppressing adsorption of viruses to membranes during ultrafiltration, and is appropriately selected depending on target cells and the like. It is usually at least one selected from the group consisting of nonionic surfactants, anionic surfactants, cationic surfactants and amphoteric surfactants, preferably one selected from the group. . Nonionic surfactants or zwitterionic surfactants are more preferred.
  • Nonionic surfactants refer to those that do not become ions in water.
  • a known nonionic surfactant can be used as the nonionic surfactant. It is classified into ester type, ether type, ester ether type, alkanolamide type, sugar type and methylglucamine type.
  • ester type examples include polyoxyethylene sorbitan monolaurate (e.g., Tween (registered trademark) 20), polyoxyethylene sorbitan monopalmitate (e.g., Tween (registered trademark) 40), polyoxyethylene sorbitan monostearate (e.g., Tween (registered trademark) 40), Examples include Tween (registered trademark) 60), polyoxyethylene sorbitan monooleate (eg, Tween (registered trademark) 80), and the like.
  • Ether types include polyoxyethylene alkyl ethers (eg, BriJ (registered trademark) L23, BriJ (registered trademark) L58) and polyoxyethylene isooctylphenyl ethers (eg, Triton-X 100 (registered trademark)).
  • ester ether type include polyoxyethylene sorbitan fatty acid ester, polyoxyethylene hexitane fatty acid ester, sorbitan fatty acid ester polyethylene glycol, and polyoxyethylene-polyoxypropylene block copolymer (eg, Pluronic (registered trademark)). be done.
  • alkanolamides include N,N-bis[3-(D-gluconamido)propyl]deoxycholamide.
  • glycoforms include alkylmaltosides and alkylglucopyranosides. Alkyl-N-methylglucamine is exemplified as the methylglucamine type.
  • Anionic surfactants are those that ionize in water to become organic anions.
  • Known anionic surfactants can be used as the anionic surfactant. It is classified into carboxylic acid type, sulfonic acid type, sulfate type and phosphate type. Deoxycholate, cholate and lauroyl sarcosinate are exemplified as those classified into the carboxylic acid type. Further, the sulfonic acid type is exemplified by dodecyl sulfate.
  • the salt is preferably sodium salt or lithium salt.
  • Cationic surfactants are those that ionize in water to become organic cations.
  • a known cationic surfactant can be used as the cationic surfactant. It is classified into an alkylamine salt type and a quaternary ammonium salt type, and examples of the alkylamine salt type include monomethylamine hydrochloride, dimethylamine hydrochloride and trimethylamine hydrochloride. Examples of the quaternary ammonium salt type include hexadecyltrimethylammonium bromide and myristyltrimethylammonium bromide.
  • Amphoteric surfactants refer to surfactants that have both anionic and cationic groups in the molecule.
  • a known amphoteric surfactant can be used as the amphoteric surfactant. Examples include alkylamino fatty acid salts, sulfobetaines, alkylbetaines, alkylamine oxides, and the like. Alkylbetaine is preferred. Alkylbetaines include 3-[(3-cholamidopropyl)dimethyl-ammonio]propanesulfonic acid (CHAPS).
  • the inorganic salt of the present invention has the desired purpose, that is, the effect of suppressing the aggregation of viruses to suppress adsorption to the ultrafiltration membrane, and the suppression of adsorption to the ultrafiltration membrane due to nonspecific binding of viruses.
  • the type is not particularly limited as long as the effect of providing the At least one selected from the group consisting of acid ions, ammonium ions, rubidium ions, potassium ions and sodium ions, preferably at least one selected from the group consisting of chloride ions, sulfide ions, phosphate ions and carbonate ions
  • Inorganic salts containing seeds are included.
  • Inorganic salts containing chloride ions include sodium chloride, potassium chloride, magnesium chloride, and the like.
  • Inorganic salts containing sulfide ions include sodium sulfate, potassium sulfate, ammonium sulfate, magnesium sulfate, and the like.
  • Inorganic salts containing phosphate ions include ammonium phosphate, sodium phosphate, potassium phosphate and the like.
  • Examples of inorganic salts containing carbonate ions include sodium carbonate and potassium carbonate.
  • the inorganic salt is preferably at least one selected from the group consisting of sodium chloride, magnesium chloride and magnesium sulfate.
  • Aqueous Dispersion The aqueous dispersion to be subjected to the ultrafiltration step in the purification method of the present invention is characterized by containing a virus (described above), a surfactant (described above) and an inorganic salt (described above).
  • the aqueous dispersion may be prepared and obtained by any method as long as it has such characteristics. It can be an aqueous dispersion of the virus that is used.
  • the inorganic salt may be added at the same time as virus extraction, or may be added after extraction.
  • the surfactant used for virus extraction and the surfactant used for ultrafiltration may be different. In that case, after extracting the virus, replace the surfactant.
  • the cell from which the virus-containing cell is derived is not particularly limited as long as the desired virus can proliferate. It is a packaging cell that by itself does not produce virus.
  • HEK293 cells, HEK293T cells, HEK293F cells, HEK293FT cells, G3T-hi cells, Sf9 cells, commercially available virus-producing cell lines, AAV293 cells, etc. which are derived from eukaryotic cells and preferably have high transfection efficiency.
  • HEK293 cells are preferred.
  • the HEK293 cells or the like constitutively express the adenovirus E1 protein. It may be a cell modified to
  • Examples of elements necessary for recombinant adenovirus production include (A) AAV-derived Rep protein, Cap protein, and (B) adenovirus-derived elements such as E1a, E1b, E2, E4, VARNA genes, and the like. .
  • the form of these nucleic acids is not limited, and they can be introduced into cells as one or a plurality of nucleic acid constructs capable of supplying each element in the cells to be used by loading them into plasmids or viral vectors.
  • Production of virus-containing cells is obtained by a method that includes the step of transiently or permanently introducing nucleic acids that supply essential elements for virus particle formation into cells from which virus-containing cells are derived. It is performed by culturing the cells.
  • the method for transiently or permanently introducing the nucleic acid is not particularly limited, and for example, the known transient or permanent introduction method described above as the plasmid introduction method may be used.
  • the cells can be cultured under known culture conditions.
  • the culture form of cells may be suspension culture or adhesion culture. Examples include, but are not limited to, culturing at a temperature of 30-37° C., a humidity of 95% RH, and a CO 2 concentration of 5-10% (v/v). Temperatures, humidity, and CO 2 concentrations outside the above ranges may be used as long as the growth of virus-producing cells and the production of virus particles can be achieved.
  • the culture period is not particularly limited, and is, for example, 12 to 150 hours, preferably 48 to 120 hours.
  • the medium used for culturing virus-producing cells may contain components necessary for culturing the cells. Fetal bovine serum, growth factors, peptides, or amino acids are added to the basal synthetic medium.
  • the process of recovering viruses from cells containing viruses and obtaining an aqueous dispersion can be performed by a method commonly practiced in the art.
  • There are physical cell disruption methods such as mechanical agitation, ultrasonic disruption, freeze-thaw, solution extraction methods, chemical methods for appropriately adjusting the pH and salt concentration of the solution to be extracted, and methods combining these methods. mentioned.
  • virus-containing cells are contacted with a surfactant.
  • the method of contacting the virus-containing cells with the surfactant is to suspend the virus-containing cells collected by centrifugation or filtration in the surfactant, or to add the surfactant to the culture medium containing the virus-containing cells. It is carried out by addition.
  • a sufficient amount of virus can be obtained by adding components necessary for virus extraction, which will be described later. Since the purification method of the present invention requires ultrafiltration of an aqueous dispersion containing a virus in the presence of a surfactant and an inorganic salt, a solution containing a surfactant (described above) is preferably used as the extraction solution. , adding an inorganic salt (described above) to appropriately adjust the salt concentration.
  • the amount of surfactant added during extraction may vary depending on the type of surfactant used, but is usually 0.01 to 2.5%, preferably 0.05 to 2%, more preferably 0.05 to 2%, relative to the extraction solution. is added at a final concentration of 0.1-1.5%. If the amount of surfactant added is too small, a sufficient amount of virus will not be obtained, and if it is too large, the virus will be inactivated. When two or more surfactants are used in combination, the total amount is appropriately adjusted so as to be within the above range.
  • the amount of inorganic salt added may vary depending on the type of inorganic salt used, but is usually 50 to 1000 mM, preferably 80 to 800 mM, more preferably 100 to 600 mM, relative to the extraction solution. Add to final concentration. If the amount of inorganic salt added is too large or too small, a sufficient amount of virus cannot be obtained. When two or more kinds of inorganic salts are used together, the total amount is appropriately adjusted so as to be within the above range.
  • the extraction solution is obtained by adding components necessary for virus extraction other than surfactants and inorganic salts to cell culture medium and buffer solution, and the components include endonuclease and a small amount of endonuclease required for its activation. MgCl2 included. Endonucleases are used to degrade contaminating DNA/RNA, nucleic acids mostly derived from cells, including viruses.
  • the temperature is usually 25 to 40°C. , preferably 30 to 37° C., for 0.5 to 5 hours, preferably 1 to 3 hours, more preferably about 2 hours.
  • an aqueous dispersion containing viruses, surfactants and inorganic salts is ultrafiltered.
  • the aqueous dispersion to be subjected to ultrafiltration is not particularly limited as long as it contains a virus and contains a surfactant and an inorganic salt at a predetermined concentration. is preferably used.
  • a step of removing the mixed components before ultrafiltration that is, a clarification step may be performed.
  • Clarification can be carried out by a method commonly practiced in the art, for example filtration through a membrane (filter filtration).
  • the pore size of the membrane is appropriately set according to the size of contaminant components to be removed, and is usually in the range of 0.1-20 ⁇ m, preferably 0.22-10 ⁇ m.
  • a microfiltration step using a membrane with a small pore size is performed as the clarification step.
  • the pore size of the membrane used in the coarse filtration process is in the range of 1 to 20 ⁇ m
  • the pore size of the membrane used in the microfiltration process is in the range of 0.1 to 1.0 ⁇ m.
  • the surfactant in the aqueous dispersion to be subjected to ultrafiltration the same ones as described in the above section "2.
  • Surfactant can be used.
  • the concentration of the surfactant in the aqueous dispersion is appropriately set depending on the type of surfactant to be used, but usually the final concentration (% by mass) is 0.00% with respect to the total amount of the aqueous dispersion before ultrafiltration. It is set to be 01 to 2.0%, preferably 0.03 to 1.5%, more preferably 0.05 to 1.0%. If the amount of surfactant added is too large or too small, a sufficient yield cannot be obtained in ultrafiltration.
  • the concentration of the inorganic salt in the aqueous dispersion to be subjected to ultrafiltration the same concentration as described in the above section "3. Inorganic salt” can be used.
  • the concentration of the inorganic salt in the aqueous dispersion is appropriately set depending on the type of inorganic salt used, but usually the final concentration is 80 to 800 mM, preferably 100 mM, relative to the total amount of the aqueous dispersion before ultrafiltration. It is set to be ⁇ 700 mM, more preferably 100-600 mM.
  • the amount of inorganic salt added is too large or too small, a sufficient yield cannot be obtained in ultrafiltration. Also, when the virus is an adeno-associated virus, the yield in ultrafiltration can be further increased by adjusting the concentration of the inorganic salt according to the AAV serotype.
  • TFF Tangential Flow Filtration
  • TFF also includes tangential flow depth filtration (TFDF) combined with a depth filter, single-pass TFF with one filter filtration, and the like.
  • Depth filters are filters that use porous filtration media to retain particles throughout the media, rather than just on the surface of the media.
  • the ultrafiltration membranes used in the present invention have pore sizes small enough to retain viruses and large enough to efficiently remove impurities.
  • the size of the target virus is selected as appropriate, in the case of viruses belonging to the Retroviridae family, membranes with a nominal cutoff molecular weight of 100 to 1000 kDa, preferably 100 to 500 kDa are preferably used.
  • the composition of the membrane is not particularly limited as long as it is porous, but a wide range known in the art includes polyolefins such as polyethylene and polypropylene, polyvinylidene fluoride, polyamides, polytetrafluoroethylene, cellulose, polysulfones, polyacrylonitrile, and the like. of polymer materials.
  • Membranes can be flat sheets (also called flat screens) or hollow fibers.
  • a preferred ultrafiltration membrane for use in the present invention is a hollow fiber ultrafiltration membrane. Ultrafiltration may and preferably includes diafiltration (DF) using an ultrafiltration device.
  • DF diafiltration
  • the temperature during ultrafiltration is preferably 2 to 50°C, more preferably 2 to 40°C. It may be 2-36° C., 2-30° C., 2-26° C. If the temperature is too low, the virus yield will decrease, if the temperature is too high, the virus will be inactivated.
  • the temperature during ultrafiltration can be appropriately adjusted according to the type of target virus and its serotype.
  • the temperature for ultrafiltration of an aqueous dispersion containing adeno-associated virus (AAV) is preferably 20 to 50°C, more preferably 22 to 40°C, and 24 to 36°C. is more preferred.
  • the virus is adeno-associated virus (AAV) and the serotype thereof is AAV5 and/or AAV6, adjusting the temperature during ultrafiltration increases the yield of AAV. be able to.
  • Preferred temperatures for ultrafiltration include 28 to 50°C, 30 to 45°C, 30 to 40°C, and 32 to 36°C.
  • the solution obtained by ultrafiltration can be used as a crude purified liquid (crude liquid), and can, and preferably, be subjected to a further purification step.
  • a further purification step includes purification by column chromatography.
  • Purification techniques by column chromatography are well known to those skilled in the art (see, for example, JP-A-2014-237661).
  • One or more (a combination) of various chromatographic methods can be used for this purification.
  • Chromatographic methods include, for example, affinity chromatography, ion exchange chromatography, hydrophobic chromatography, gel filtration chromatography, reverse phase chromatography, immobilized metal ion affinity chromatography and the like, preferably affinity chromatography, ion Exchange chromatography, hydrophobic chromatography, gel filtration chromatography, and combinations thereof (also referred to as multimode chromatography, mixed mode chromatography, etc.) are included.
  • Multimode chromatography is a technique that utilizes different separation modes (ion exchange, hydrophobic binding, affinity binding, size exclusion, etc.). Equipment, packing materials, etc. for use in these chromatographic methods are also commercially available.
  • Example 1 Construction of Viral Vector An AAV2 vector expressing GFP was constructed by triple transfection of HEK293 cells. Specific procedures are shown below. HEK293 cells were cultured in a hyperflask using DMEM supplemented with 10% FBS. Cultivation was then continued in a CO 2 incubator at 37° C. and confirmed to be approximately 70% confluent. After replacing the cell culture medium with fresh DMEM (containing 10% FBS), the following plasmids (i) to (iii) were transfected.
  • Plasmid encoding AAV2 Rep protein and Cap protein (Takara Bio Inc., pRC2-mi342 Vector) (ii) Plasmid containing E2A sequence, VA sequence and E4 sequence of adenovirus (Takara Bio Inc., pHhelper Vector) (iii) A plasmid containing an expression cassette for the fluorescent protein GFP between the two ITRs of AAV2 (CELL BIOLABS, pAAV-GFP) 2.
  • the HEK293 cell culture medium was supplemented with the non-ionic detergent Tween 20 (final concentration 0.5%), Endonuclease (final concentration 50 U/mL), MgCl 2 (final concentration 2 ⁇ 3 mM) was added and incubated (37° C.) for 2 hours.
  • the AAV2 vector is extracted with Tween 20 and, at the same time, the nucleic acid is treated with Endonuclease. MgCl2 is required for the activity of Endonuclease.
  • the flask was rinsed with 200 mL of D-PBS and mixed with the contents.
  • Virus Purification Ultrafiltration was performed to concentrate the virus-containing aqueous dispersion. The temperature during ultrafiltration was 25°C.
  • Ultrafiltration/diafiltration (UF/DF) by tangential flow filtration (TFF) was performed for simultaneous buffer exchange with ultrafiltration.
  • Ultrafiltration and diafiltration were carried out using AKTA flux s (Cytiva) through a 300 kDa hollow fiber membrane whose membrane material is polysulfone, after which the sample was concentrated approximately 10 times, followed by 6.3 times the volume of the concentrate.
  • Buffer exchange was performed using D-PBS from AAV vector titers were determined by viral genome content by qPCR. Yields after ultrafiltration are shown in Table 1.
  • Example 2 Ultrafiltration was performed in the same manner as in Example 1, except that the concentration of the surfactant in the virus-containing aqueous dispersion after recovery in "2. Extraction of virus vector" in Example 1 was changed to 0.07% by mass. The results are shown in Table 1.
  • Example 3 Ultrafiltration was performed in the same manner as in Example 1 except that the concentration of the surfactant in the virus-containing aqueous dispersion after recovery in "2. Extraction of virus vector" in Example 1 was changed to 0.50% by mass. The results are shown in Table 1.
  • Example 4 Ultrafiltration was performed in the same manner as in Example 1 except that the concentration of the surfactant in the virus-containing aqueous dispersion after recovery in "2. Extraction of virus vector" in Example 1 was changed to 1.0% by mass. The results are shown in Table 1.
  • Example 5 Result of ultrafiltration in the same procedure as in Example 1, except that the concentration of inorganic salt (NaCl) in the virus-containing aqueous dispersion after recovery in "2. Extraction of virus vector" in Example 1 was changed to 210 mM. are shown in Table 1.
  • Example 6 Result of ultrafiltration in the same procedure as in Example 1 except that the concentration of inorganic salt (NaCl) in the virus-containing aqueous dispersion after collection in "2. Extraction of virus vector" in Example 1 was changed to 410 mM. are shown in Table 1.
  • Example 7 Result of ultrafiltration in the same procedure as in Example 1, except that the concentration of inorganic salt (NaCl) in the virus-containing aqueous dispersion after recovery in "2. Extraction of virus vector" in Example 1 was changed to 600 mM. are shown in Table 1.
  • Example 8 The inorganic salt added in "2. Extraction of virus vector" in Example 1 was changed from NaCl to MgSO4 , and added so that the concentration of the inorganic salt ( MgSO4 ) in the virus-containing aqueous dispersion after recovery was 110 mM. bottom.
  • MgSO4 concentration of the inorganic salt in the virus-containing aqueous dispersion after recovery was 110 mM. bottom.
  • NaCl was added after 2 hours of incubation instead of adding Tween 20, Endonuclease, and MgCl 2 at the same time. Since MgSO4 does not inhibit the activity of Endonuclease, it was added simultaneously with Tween20, Endonuclease and MgCl2 .
  • Table 1 shows the results obtained in the same manner as in Example 1 except for the above.
  • Example 9 The inorganic salt added in “2. Extraction of virus vector” in Example 8 was changed from MgSO 4 to MgCl 2 , and the inorganic salt (MgCl 2 ) in the virus-containing aqueous dispersion after recovery was adjusted to a concentration of 100 mM. was added to Table 1 shows the results of ultrafiltration performed in the same manner as in Example 8 except for the above.
  • Example 10 Ultrafiltration was performed in the same manner as in Example 1, except that Tween 80 was used as the surfactant in the virus-containing aqueous dispersion after recovery in "2. Extraction of virus vector" in Example 1. The results are shown in Table 1. show.
  • Example 11 Ultrafiltration was performed in the same manner as in Example 1, except that Pluronic (registered trademark) F-68 was used as the surfactant in the recovered virus-containing aqueous dispersion in "2. Extraction of virus vector" in Example 1. Table 1 shows the results obtained.
  • Example 12 The serotype of the viral vector in "1. Production of viral vector" in Example 1 was changed to AAV1. Specific procedures are shown below. HEK293 cells were cultured in a hyperflask using DMEM supplemented with 10% FBS. Cultivation was then continued in a CO 2 incubator at 37° C. and confirmed to be approximately 70% confluent. After replacing the cell culture medium with fresh DMEM (containing 10% FBS), the following plasmids (i) to (iii) were transfected.
  • Plasmid encoding Rep protein and Cap protein of AAV1 (Takara Bio Inc., pRC1 Vector)
  • Plasmid containing E2A sequence, VA sequence and E4 sequence of adenovirus (Takara Bio Inc., pHhelper Vector)
  • a plasmid containing an expression cassette for the fluorescent protein GFP between the two ITRs of AAV2 (CELL BIOLABS, pAAV-GFP) Table 1 shows the results obtained in the same manner as in Example 1 except for the above.
  • Example 13 The serotype of the viral vector in "1. Production of viral vector" in Example 1 was changed to AAV5. Specific procedures are shown below. HEK293 cells were cultured in a hyperflask using DMEM supplemented with 10% FBS. Cultivation was then continued in a CO 2 incubator at 37° C. and confirmed to be approximately 70% confluent. After replacing the cell culture medium with fresh DMEM (containing 10% FBS), the following plasmids (i) to (iii) were transfected.
  • Example 14 The serotype of the viral vector in "1. Production of viral vector" in Example 1 was changed to AAV6. Specific procedures are shown below. HEK293 cells were cultured in a hyperflask using DMEM supplemented with 10% FBS. Cultivation was then continued in a CO 2 incubator at 37° C. and confirmed to be approximately 70% confluent. After replacing the cell culture medium with fresh DMEM (containing 10% FBS), the following plasmids (i) to (iii) were transfected.
  • Example 15 Table 1 shows the results of ultrafiltration performed in the same manner as in Example 13 except that the temperature in the sample tank during ultrafiltration was 32 to 36°C.
  • Example 16 Table 1 shows the results of ultrafiltration performed in the same manner as in Example 14, except that the temperature in the sample tank during ultrafiltration was 32 to 36°C.
  • concentration means the concentration in the virus-containing aqueous dispersion. From the results in Table 1, it was found that adding a certain concentration or more of a surfactant and an inorganic salt to the virus vector extract (virus-containing aqueous dispersion) prevents adsorption of the virus vector to the membrane during ultrafiltration. It is considered that the yield is improved. This is probably because the inorganic salt inhibits viral vector aggregation. Moreover, the yield can be improved by adjusting the temperature during ultrafiltration.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Water Supply & Treatment (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Virology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

本発明は、限外ろ過工程を含むウイルスの精製方法において、より簡便に高純度でのウイルス精製が可能な方法を提供することを課題とする。ウイルス、界面活性剤及び無機塩を含む水性分散液を、限外ろ過することにより、高収率でウイルスを取得することができる。

Description

ウイルスの精製方法
 本発明は、ウイルスの精製方法、特に限外ろ過工程を含むウイルスの精製方法に関する。
 遺伝子治療等の医療分野において、ヒトを含む哺乳動物細胞に遺伝子を導入する方法として、ウイルス由来の遺伝子導入用のベクター(以下、ウイルスベクター)を用いる方法が一般的である。ウイルスベクターとは、遺伝子組み換え技術を用いて天然由来のウイルスを改変し、所望の遺伝子等を標的に移入することができるようにした組換えウイルスのことで、近年技術開発が進んでいる。
 ウイルスベクターの由来となるウイルスとしては、レトロウイルスやレンチウイルス、センダイウイルス、ならびにヘルペスウイルス等のエンベロープを持つウイルス、アデノウイルス、アデノ随伴ウイルス(以下、AAV)等のエンベロープを持たないウイルス(以下、非エンベロープウイルス)がよく知られている。
 特にAAVはヒトを含む広範な種の細胞型に感染可能で、分化を終えた非分裂細胞にも感染すること、ヒトに対する病原性がないため副作用の心配が低いこと、ウイルス粒子が物理化学的に安定であること等から、遺伝子治療法に用いる遺伝子導入用のベクターとして有望視されている。
 組換えウイルスを遺伝子治療等に利用するには、精製されたウイルスを取得する、好ましくは大量に取得する必要がある。例えば非特許文献1では、臨床試験の為の組み換えアデノ随伴ウイルスの製造技術が開示されている。精製されたウイルスを取得する方法として、細胞にウイルスの粒子形成に必須な要素を供給する核酸を一過性又は恒常的に導入しウイルスを産生する細胞を作製し、その後、ウイルスを産生する細胞を、回収、破砕し、ウイルスを含む細胞破砕液(水性分散液)を得、得られた水性分散液を適宜フィルターろ過、超遠心、クロマトグラフィー、又は限外ろ過等の工程に供することによってウイルスを精製する方法がある。例えば、限外ろ過膜(UF膜)を用いることで、培養液中の水、イオン成分、低分子化合物、宿主細胞由来タンパク質等とウイルスとを分離できることが知られている。
 超遠心を用いたウイルスの精製・分離は、従来実施されている方法ではあるが、スケールアップには適さない。非特許文献2には超遠心分離を必要としないウイルス精製プロトコルが開示されている。当該プロトコルではTangential Flow Filtration(TFF)の技術が用いられているが、収率において満足できるものではなかった。
 細胞破砕液等にはタンパク質等の夾雑物が含まれており、そこからウイルスを分離すること、特に高純度でウイルスを精製することは煩雑な工程を要しコスト的にも問題があった。
Clement, Nathalie et al, Mol Ther Methods Clin Dev. 2016 Mar 16;3:16002. Tomono, Taro et al., Mol Ther Methods Clin Dev. 2018 Nov 1;11:180-190.
 本発明は、ウイルスの精製方法、特に限外ろ過工程を含むウイルスの精製方法において、より簡便にウイルス精製を可能にし、高収率でウイルスを取得し得る方法を提供することを課題とする。
 本発明者らは、上記課題に鑑み、ウイルス精製における限外ろ過工程時の種々の条件を鋭意検討した。結果、界面活性剤の濃度や塩濃度や限外ろ過工程時の温度を調整することによってウイルス精製の収率を上げることができることを見出し、その好適な濃度範囲を決定することに成功し、本発明を完成するに至った。
 即ち、本発明は以下の通りである。
[1]ウイルス、界面活性剤及び無機塩を含む水性分散液を、限外ろ過する工程を含むウイルスの精製方法。
[2]前記ウイルスが、パルボウイルス科またはレトロウイルス科に属するウイルス由来である、[1]に記載の精製方法。
[3]前記無機塩が、塩化物イオン、硫化物イオン、リン酸イオンおよび炭酸イオンからなる群から選ばれる少なくとも1種を含む無機塩である、[1]または[2]に記載の精製方法。
[4]前記無機塩が、塩化ナトリウム、塩化マグネシウムおよび硫酸マグネシウムからなる群から選ばれる少なくとも1種である、[1]~[3]のいずれかに記載の精製方法。
[5]前記界面活性剤が、非イオン性界面活性剤、アニオン性界面活性剤、カチオン性界面活性剤および両イオン性界面活性剤からなる群から選ばれる少なくとも1種である、[1]~[4]のいずれかに記載の精製方法。
[6]前記界面活性剤の含有量が、前記水性分散液全量に対して、0.01~2.0質量%である、[1]~[5]のいずれかに記載の精製方法。
[7]前記無機塩の含有量が、前記水性分散液全量に対して、80~800mMである、[1]~[6]のいずれかに記載の精製方法。
[8]ウイルスを含む細胞からウイルスを抽出し、前記水性分散液を得る工程を限外ろ過工程の前に実施する、[1]~[7]のいずれかに記載の精製方法。
[9]カラムクロマトグラフィーで精製する工程を限外ろ過の工程の後に実施する、[1]~[8]のいずれかに記載の精製方法。
[10]前記カラムクロマトグラフィーが、アフィニティークロマトグラフィー、イオン交換クロマトグラフィー、疎水クロマトグラフィー、ゲル濾過クロマトグラフィー、及びそれらの任意の組み合わせからなる群から選ばれる少なくとも1種である、[9]に記載の精製方法。
[11](a)ウイルスを含む細胞からウイルスを抽出し、ウイルス、界面活性剤及び無機塩を含む水性分散液を得る工程、
 (b)前記水性分散液に対し、限外ろ過を行いウイルスを含む粗液を得る工程、及び
 (c)前記粗液を、カラムクロマトグラフィーにより精製する工程、
を含むウイルスの精製方法。
[12]ウイルス、界面活性剤および無機塩を含む水性分散液を、限外ろ過する工程を含み、
 前記ウイルスが、アデノ随伴ウイルスであり、
 前記アデノ随伴ウイルスの血清型が、AAV5およびAAV6からなる群から選ばれる少なくとも1種であり、
 前記限外ろ過の温度が、28~50℃であることを特徴とするウイルスの精製方法。
[13]前記無機塩が、塩化物イオン、硫化物イオン、リン酸イオンおよび炭酸イオンからなる群から選ばれる少なくとも1種を含む無機塩である、[12]に記載の精製方法。
[14]前記無機塩が、塩化ナトリウム、塩化マグネシウムおよび硫酸マグネシウムからなる群から選ばれる少なくとも1種である、[12]又は[13]に記載の精製方法。
[15]前記界面活性剤が、非イオン性界面活性剤、アニオン性界面活性剤、カチオン性界面活性剤および両イオン性界面活性剤からなる群から選ばれる少なくとも1種である、[12]~[14]のいずれかに記載の精製方法。
[16]前記界面活性剤の含有量が、前記水性分散液全量に対して、0.01~2.0質量%である、[12]~[15]のいずれかに記載の精製方法。
[17]前記無機塩の含有量が、前記水性分散液全量に対して、80~800mMである、[12]~[16]のいずれかに記載の精製方法。
[18]ウイルスを含む細胞からウイルスを抽出し、前記水性分散液を得る工程を限外ろ過工程の前に実施する、[12]~[17]のいずれかに記載の精製方法。
[19]カラムクロマトグラフィーで精製する工程を限外ろ過の工程の後に実施する、上記[12]~[18]のいずれかに記載の精製方法。
[20]前記カラムクロマトグラフィーが、アフィニティークロマトグラフィー、イオン交換クロマトグラフィー、疎水クロマトグラフィー、ゲル濾過クロマトグラフィー、及びそれらの任意の組み合わせからなる群から選ばれる少なくとも1種である、[19]に記載の精製方法。
 本発明の方法によれば、より簡便に低コストで且つ高収率でのウイルス精製が可能になる。
図1は、ウイルス精製の手順を示したチャート図である。
 以下、本発明を説明する。本明細書において使用される用語は、特に言及しない限り、当該分野で通常用いられる意味を有する。
 本発明はウイルスの精製方法を提供し、該方法は、ウイルス、界面活性剤及び無機塩を含む水性分散液を、限外ろ過する工程を含むことを特徴とする。
1.ウイルス
 本発明において精製の対象となるウイルスとしては、レトロウイルスやレンチウイルス、センダイウイルス、ならびにヘルペスウイルス等のエンベロープを持つウイルス、アデノウイルス、AAV等のエンベロープを持たないウイルス(以下、非エンベロープウイルス)等が挙げられるがこれらに限定されない。エンベロープは、ウイルスが核、小胞体、ゴルジ装置、原形質膜、細胞膜等の膜を貫通して出芽する際に形成され、通常宿主由来のタンパク質又は宿主の細胞膜上に発現したウイルスのタンパク質を伴っており、標的細胞への感染に重要な役割を担っている。
 具体的には、アデノウイルス、パルボウイルス、パポバウイルス、ヒトパピローマウイルス等のDNAウイルス、ロタウイルス、コクサッキーウイルス、エンテロウイルス、サポウイルス、ノロウイルス、ポリオウイルス、エコーウイルス、A型肝炎ウイルス、E型肝炎ウイルス、ライノウイルス、アストロウイルス等のRNAウイルスが挙げられる。より好ましくは、レトロウイルス科のウイルス、アデノウイルス科のウイルス、及びパルボウイルス科のウイルスであり、特にパルボウイルス科のアデノ随伴ウイルス(AAV)が好ましい。AAVはエンベロープを持たない正20面体の外殻(キャプシド)とその内部に1本の線状一本鎖DNAを有する。キャプシドは3つのキャプシドタンパク質(VP1、VP2、及びVP3)を有する。本明細書において、AAVは野生型ウイルス及びその派生物を含み、特に記載する場合を除き全ての血清型及びクレードを含む。AAVの血清型については種々の報告があるが、ヒトに感染するAAVの血清型としては、少なくともAAV1,AAV2,AAV3a,AAV3b,AAV4,AAV5,AAV6,AAV7,AAV8,AAV9,AAV10,AAVrh.10,AAV11,AAV12及びAAV13の15種類が知られている。
 本発明において、「ウイルス」には、天然のウイルスに加え、天然のウイルス等を基に病原性を取り除き、外来遺伝子を導入するための領域を備えるように改変された組換えウイルス粒子が包含される。「ウイルス粒子」はウイルスゲノム(核酸形状)を含む粒子だけでなく、ウイルスゲノムを含んでいないウイルス様の粒子である中空粒子も包含する。かかる組換えウイルス粒子をウイルスベクターとも称する。本発明では、天然のウイルス、組換えウイルス粒子(ウイルスベクター)をウイルスと総称する。
 従って、本発明のウイルスの精製方法は、組換えウイルス粒子の精製方法又はウイルスベクターの精製方法でもあり得る。
2.界面活性剤
 本発明において用いる界面活性剤は、高収率で限外ろ過を実施することを可能せしめるものであれば特に限定されず、ウイルスを含む細胞(後述)からウイルスを抽出することに加え、ウイルスを含む細胞由来のタンパク質を凝集すること、限外ろ過時に膜へのウイルスの吸着を抑制することが可能なものであればよく、対象となる細胞等によって適宜選択される。通常、非イオン性界面活性剤、アニオン性界面活性剤、カチオン性界面活性剤および両イオン性界面活性剤からなる群から選ばれる少なくとも1種であり、好ましくは該群から選ばれる1種である。より好ましくは、非イオン性界面活性剤又は両イオン性界面活性剤である。
 非イオン性界面活性剤は、水中でイオンにならないものを指す。非イオン性界面活性剤としては、公知の非イオン性界面活性剤を使用することができる。エステル型、エーテル型、エステルエーテル型、アルカノールアミド型、糖型及びメチルグルカミン型に分類される。前記エステル型としては、ポリオキシエチレンソルビタンモノラウレート(例、Tween(登録商標)20)、ポリオキシエチレンソルビタンモノパルミテート(例、Tween(登録商標)40)、ポリオキシエチレンソルビタンモノステアレート(例、Tween(登録商標)60)、ポリオキシエチレンソルビタンモノオレート(例、Tween(登録商標)80)等が例示される。また、エーテル型としては、ポリオキシエチレンアルキルエーテル(例、BriJ(登録商標)L23、BriJ(登録商標)L58)、ポリオキシエチレンイソオクチルフェニルエーテル(例、Triton-X 100(登録商標))が例示される。エステルエーテル型としては、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンヘキシタン脂肪酸エステル、ソルビタン脂肪酸エステルポリエチレングリコール、又はポリオキシエチレン-ポリオキシプロピレンブロック共重合体(例、Pluronic(登録商標))が例示される。さらにアルカノールアミドとしては、N,N-ビス[3-(D-グルコンアミド)プロピル]デオキシコールアミドが例示される。糖型としては、アルキルマルトシド、アルキルグルコピラノシドが例示される。メチルグルカミン型としては、アルキル-N-メチルグルカミンが例示される。
 アニオン性界面活性剤は水中で電離して有機陰イオンとなるものを指す。アニオン性界面活性剤としては、公知のアニオン性界面活性剤を使用することができる。カルボン酸型、スルホン酸型、硫酸エステル型及びリン酸エステル型に分類される。当該カルボン酸型に分類されるものとしては、デオキシコール酸塩、コール酸塩又はラウロイルサルコシン塩が例示される。また、スルホン酸型としてはドデシル硫酸塩が例示される。前記塩は、ナトリウム塩、リチウム塩が好適である。
 カチオン性界面活性剤は水中で電離して有機陽イオンとなるものを指す。カチオン性界面活性剤としては、公知のカチオン性界面活性剤を使用することができる。アルキルアミン塩型及び第四級アンモニウム塩型に分類され、当該アルキルアミン塩型としては、モノメチルアミン塩酸塩、ジメチルアミン塩酸塩又はトリメチルアミン塩酸塩が例示される。また、第四級アンモニウム塩型としては、ヘキサデシルトリメチルアンモニウムブロミド又はミリスチルトリメチルアンモニウムブロミド等が例示される。
 両イオン性界面活性剤は、分子内にアニオン基とカチオン基の両方を併せ持つ界面活性剤を指す。両イオン性界面活性剤としては、公知の両イオン性界面活性剤を使用することができる。アルキルアミノ脂肪酸塩、スルホベタイン、アルキルベタイン、アルキルアミンオキシド等が例示される。好ましくはアルキルベタインが挙げられる。アルキルベタインとしては、3-[(3-コールアミドプロピル)ジメチル-アンモニオ]プロパンスルホン酸(CHAPS)が例示される。
3.無機塩
 本発明の無機塩としては、所望の目的、即ち、ウイルスの凝集を抑制し限外ろ過膜への吸着を抑制する効果やウイルスの非特異的結合による限外ろ過膜への吸着を抑制する効果が得られる限り、その種類は特に限定されないが、通常、リン酸イオン、硫化物イオン、酢酸イオン、塩化物イオン、臭化物イオン、硝酸イオン、炭酸イオン、塩素酸イオン、ヨウ化物イオン、チオシアン酸イオン、アンモニウムイオン、ルビジウムイオン、カリウムイオン、ナトリウムイオンからなる群より選択される少なくとも1種、好ましくは塩化物イオン、硫化物イオン、リン酸イオンおよび炭酸イオンからなる群より選択される少なくとも1種を含む無機塩が挙げられる。塩化物イオンを含む無機塩としては、塩化ナトリウム、塩化カリウム、塩化マグネシウム等が挙げられる。硫化物イオンを含む無機塩としては、硫酸ナトリウム、硫酸カリウム、硫酸アンモニウム、硫酸マグネシウム等が挙げられる。リン酸イオンを含む無機塩としては、リン酸アンモニウム、リン酸ナトリウム、リン酸カリウム等が挙げられる。炭酸イオンを含む無機塩としては、炭酸ナトリウム、炭酸カリウム等が挙げられる。無機塩は、好ましくは、塩化ナトリウム、塩化マグネシウムおよび硫酸マグネシウムからなる群から選ばれる少なくとも1種である。
4.水性分散液
 本発明の精製方法において限外ろ過する工程に付す水性分散液は、ウイルス(上述)、界面活性剤(上述)及び無機塩(上述)を含むことを特徴とする。該水性分散液はかかる特徴を有する限り、どのような方法で調製、取得されたものであってもよいが、例えばウイルスを含む細胞から界面活性剤を含む抽出液でウイルスを抽出することによって得られるウイルスの水性分散液であり得る。無機塩はウイルスの抽出時に同時に添加されていても、抽出後に添加されてもよい。また、本発明の精製方法において、ウイルスを抽出する際に用いられる界面活性剤と限外ろ過する際に用いられる界面活性剤が異なってもよい。その際はウイルスを抽出した後に、界面活性剤を交換する。
 本発明において、ウイルスを含む細胞の由来となる細胞としては、所望のウイルスが増殖可能であれば特に制限はなく、好ましくはウイルスの産生に必要な遺伝子の一部が導入された細胞であり、それのみではウイルスの産生が起こらないパッケージング細胞である。真核細胞由来であり、好適にはトランスフェクション効率が高いHEK293細胞やHEK293T細胞、HEK293F細胞、HEK293FT細胞、G3T-hi細胞、Sf9細胞、市販のウイルス産生用細胞株、AAV293細胞等が挙げられる。好ましくはHEK293細胞である。また、例えば、前記HEK293細胞等はアデノウイルスE1タンパク質を恒常的に発現するが、このような、組換えアデノウイルスに必要なタンパク質の1つ又はいくつかを一過的もしくは恒常的に発現するように改変した細胞であってもよい。
 一例として、組換えアデノウイルス産生に必要な要素として、(A)AAV由来Repタンパク質、Capタンパク質、(B)アデノウイルス由来要素、例えばE1a、E1b、E2、E4、VARNA遺伝子、等が例示される。これらの核酸の形態には限定はなく、使用される細胞においてそれぞれの要素を供給可能な1又は複数の核酸構築物として、プラスミドやウイルスベクターに搭載して、細胞に導入することができる。
 ウイルスを含む細胞の製造は、ウイルスを含む細胞の由来となる細胞にウイルスの粒子形成に必須な要素を供給する核酸を一過性又は恒常的に導入する工程を含む方法により得られたウイルス産生細胞を培養することで実施される。核酸を一過性又は恒常的に導入する方法としては、特に限定はなく、例えば、プラスミドの導入方法として上記した公知の一過性導入方法又は恒常的導入方法を用いてもよい。
 また、当該細胞の培養は、公知の培養条件で行うことができる。細胞の培養形態は、浮遊培養でも接着培養でもよい。例えば温度30~37℃、湿度95%RH、CO濃度5~10%(v/v)での培養が例示されるが、これらに限定されるものではない。ウイルス産生細胞の増殖やウイルス粒子の産生が達成できるのであれば前記の範囲以外の温度、湿度、CO濃度で実施してもよい。また、培養期間は特に限定はなく、例えば12~150時間、好適には48~120時間である。ウイルス産生細胞の培養に使用される培地としては、細胞の培養に必要な成分を含んでいればよく、例えば、DMEM、IMDM、DMEM:F-12等の基本合成培地、また必要に応じてこれらの基本合成培地にウシ胎児血清、成長因子類、ペプチド類を添加したり、アミノ酸類を増量したりしたものが挙げられる。
 ウイルスを含む細胞からウイルスを回収し、水性分散液を得る工程は、当分野で通常実施される方法で行うことができる。機械的攪拌、超音波破砕、凍結融解等の物理的な細胞破砕方法や、溶液抽出方法や、抽出する溶液のpHや塩濃度を適宜調節する化学的な方法、及びこれらを組み合わせた方法等が挙げられる。例えば、溶液抽出方法としては、ウイルスを含む細胞を界面活性剤と接触させる。ウイルスを含む細胞を界面活性剤と接触させる方法は、遠心分離やろ過によって回収されたウイルスを含む細胞の界面活性剤への懸濁、又はウイルスを含む細胞を含む培養液への界面活性剤の添加により実施される。後述するウイルス抽出に必要な成分を添加されることで十分な量のウイルスを得ることができる。本発明の精製方法ではウイルスを含有する水性分散液を界面活性剤及び無機塩の存在下で限外ろ過する必要があるので、好ましくは、抽出溶液として界面活性剤(上述)を含む溶液を用い、無機塩(上述)を添加して塩濃度を適宜調節する方法により実施する。
 抽出時の界面活性剤の添加量は、使用する界面活性剤の種類によって変動し得るが、通常、抽出溶液に対し0.01~2.5%、好ましくは0.05~2%、より好ましくは0.1~1.5%の終濃度で添加する。界面活性剤の添加量が少なすぎると十分な量のウイルスが得られず、多すぎるとウイルスが失活する。2種以上の界面活性剤を併用する場合には、その合計量が上記範囲内になるように適宜調整する。
 抽出時に無機塩を含む場合、無機塩の添加量は、使用する無機塩の種類によって変動し得るが、通常、抽出溶液に対し50~1000mM、好ましくは80~800mM、より好ましくは100~600mMの終濃度で添加する。無機塩の添加量が多すぎるあるいは少なすぎると十分な量のウイルスが得られない。2種以上の無機塩を併用する場合には、その合計量が上記範囲内になるように適宜調整する。
 ここで、抽出溶液は界面活性剤及び無機塩以外のウイルス抽出に必要な成分が細胞培養液や緩衝液に添加されたものであり、該成分にはエンドヌクレアーゼ及びその活性化に必要な少量のMgClが含まれる。エンドヌクレアーゼは混入しているDNA/RNA、すなわち大部分はウイルスを含む細胞由来の核酸を分解するのに用いられる。
 抽出溶液として界面活性剤(上述)を含む溶液を用い、無機塩(上述)を添加して塩濃度を適宜調節する方法により、ウイルスを含む細胞からウイルスを抽出する場合、通常、25~40℃、好ましくは30~37℃で、0.5~5時間、好ましくは1~3時間、より好ましくは2時間程度インキュベートする。
5.限外ろ過
 本発明では、ウイルス、界面活性剤及び無機塩を含む水性分散液を、限外ろ過する。限外ろ過に付す水性分散液は、ウイルスを含有し、界面活性剤及び無機塩を所定の濃度で含むものであれば特に限定されないが、上記「4.水性分散液」の項で述べたものを用いることが好ましい。
 水性分散液にウイルス以外の、所望されない成分が混在している場合には、限外ろ過に付す前に混在する成分を除去する工程、即ち清澄化工程を実施してもよい。清澄化は当分野で通常実施される方法により行うことができるが、例えば膜によるろ過(フィルターろ過)が挙げられる。膜の孔径は、除去すべき夾雑成分の大きさに応じて適宜設定されるが、通常、0.1~20μm、好ましくは0.22~10μmの範囲である。清澄化工程としては、例えば、膜の孔径が大きいものを用いる粗ろ過工程を実施した後、膜の孔径が小さいものを用いる精密ろ過工程を実施する。ここで、粗ろ過工程で用いられる膜の孔径は、1~20μmの範囲であり、精密ろ過工程で用いられる膜の孔径は、0.1~1.0μmの範囲である。
 限外ろ過に付す水性分散液中の界面活性剤は、上記「2.界面活性剤」の項で述べたものと同様のものを用いることができる。界面活性剤を用いてウイルスを含む細胞からウイルスを抽出した場合には、その際に用いた界面活性剤と同じ種類のものを用いることが好ましい。水性分散液中の界面活性剤の濃度は使用する界面活性剤の種類によって適宜設定されるが、通常、限外ろ過に付す前の水性分散液全量に対して終濃度(質量%)が0.01~2.0%、好ましくは0.03~1.5%、より好ましくは0.05~1.0%となるように設定される。界面活性剤の添加量が多すぎるあるいは少なすぎると限外ろ過において十分な収率を得ることができない。
 限外ろ過に付す水性分散液中の無機塩の濃度は、上記「3.無機塩」の項で述べたものと同様のものを用いることができる。ウイルスを含む細胞からウイルスを回収(抽出)する際に無機塩を添加して塩濃度を調整した場合には、その際に用いた無機塩と同様のものを用いることが好ましい。水性分散液中の無機塩の濃度は、使用する無機塩の種類によって適宜設定されるが、通常、限外ろ過に付す前の水性分散液全量に対して終濃度が80~800mM、好ましくは100~700mM、より好ましくは100~600mMとなるように設定される。無機塩の添加量が多すぎるあるいは少なすぎると限外ろ過において十分な収率を得ることができない。
 また、ウイルスがアデノ随伴ウイルスである場合、AAVの血清型に応じて無機塩の濃度を調節すると限外ろ過における収率をさらに上げることができる。
 限外ろ過は、当分野で通常実施される方法(例えば、Ultrafiltration Handbook, Munir Cheryan (Technomic Publishing, 1986; ISBN No. 87762-456-9)を参照)に準じて行う。好ましいろ過工程は、タンジェンシャルフローろ過(Tangential Flow Filtration、「TFF」)である。タンジェンシャルフローろ過はクロスフローろ過とも称され、ろ過方向である膜面に対して平行する流れ(クロスフローあるいはタンジェンシャルフロー)を、ポンプあるいは気泡などによって発生させ、限外ろ過膜表面に形成される堆積層を除去しながらろ過する方法である。TFFは、細胞の回収、清澄化、ウイルスを含む生産物の精製及び濃縮のためにバイオプロセッシング工業で広く用いられている。TFFには、デプスフィルターと組み合わせたタンジェンシャルフローデプスフィルトレーション(TFDF)や1回のフィルターろ過によるシングルパスTFF等も含まれる。デプスフィルターは、媒体表面にのみではなく、媒体全体に粒子を保持するための多孔性濾過媒体を使用するフィルターである。本発明において用いる限外ろ過膜は、ウイルスを保持するのに十分小さく、不純物を効率的に取り除くのに十分大きい孔径を有する。対象となるウイルスの大きさによって適宜選択されるが、レトロウイルス科に属するウイルスの場合、公称分画分子量が100~1000kDa、好ましくは100~500kDaの膜が好適に用いられる。多孔性であれば膜の組成は、特に限定されないが、ポリオレフィン、例えば、ポリエチレンおよびポリプロピレン、ポリフッ化ビニリデン、ポリアミド、ポリテトラフルオロエチレン、セルロース、ポリスルホン、ポリアクリロニトリル等を含め、当分野で既知の広範囲のポリマー材料から製造することができる。膜は、フラットシート(フラットスクリーンとも称される)又は中空糸であり得る。本発明で使用する好ましい限外ろ過膜は中空糸型限外ろ過膜である。限外ろ過は、限外ろ過装置を用いるダイアフィルトレーション(DF)を含んでよく、また、含むことが好ましい。
 本発明の精製方法において、限外ろ過する際の温度は、2~50℃であることが好ましく、2~40℃であることがより好ましい。2~36℃、2~30℃、2~26℃であってもよい、温度が低すぎると、ウイルスの収率が低下し、温度が高すぎると、ウイルスが失活する。
 限外ろ過する際の温度は対象とするウイルスの種類やそのセロタイプに応じて適宜調節することができる。例えば、アデノ随伴ウイルス(AAV)を含む水性分散液を限外ろ過する際の温度は、20~50℃であることが好ましく、22~40℃であることがより好ましく、24~36℃であることがさらに好ましい。
 例えば、ウイルスがアデノ随伴ウイルス(AAV)であってその血清型がAAV5及び/又はAAV6を含む水性分散液を用いる場合、限外ろ過する際の温度を調節することで、AAVの収率を高めることができる。限外ろ過する際の温度として、好ましくは、28~50℃、30~45℃、30~40℃、32~36℃が例示される。
 限外ろ過(場合によっては限外ろ過/ダイアフィルトレーション)によって得られた溶液を粗精製液(粗液)とし、さらなる精製工程に付すことができ、また、付すことが好ましい。
 さらなる精製工程としては、カラムクロマトグラフィーによる精製が挙げられる。カラムクロマトグラフィーによる精製技術は当業者に周知である(例えば、特開2014-237661号公報参照)。様々なクロマトグラフィー法の1つ又は複数(組み合わせ)をこの精製のために用いることができる。クロマトグラフィー法としては、例えば、アフィニティークロマトグラフィー、イオン交換クロマトグラフィー、疎水クロマトグラフィー、ゲル濾過クロマトグラフィー、逆相クロマトグラフィー、固定化金属イオンアフィニティークロマトグラフィー等が挙げられ、好ましくはアフィニティークロマトグラフィー、イオン交換クロマトグラフィー、疎水クロマトグラフィー、ゲル濾過クロマトグラフィー、及びそれらの組み合わせ(マルチモードクロマトグラフィー、ミックスモードクロマトグラフィー等とも称される)が挙げられる。マルチモードクロマトグラフィー(ミックスモードクロマトグラフィー)は、異なる複数の分離モード(イオン交換、疎水結合、アフィニティ結合、サイズ排除など)を利用する手法である。これらのクロマトグラフィー法に使用する装置、充填剤等も商業的に入手可能である。
 以下に実施例を用いて本発明を詳述するが、本発明は何ら限定されるものではない。使用する試薬及び材料は特に限定されない限り商業的に入手可能であるか、既知文献等によって調製可能である。また、同様の効果、作用を有するものであれば代替可能であることを当業者は理解している。
実施例1
1.ウイルスベクターの作製
 GFPを発現するAAV2ベクターを、HEK293細胞のトリプルトランスフェクションにより作製した。具体的な手順を下記に示す。
 HEK293細胞を10%のFBSを添加したDMEMを用いてハイパーフラスコにて培養した。その後、37℃のCOインキュベーターにて培養を続け、およそ70%のコンフルエントになっていることを確認した。
 細胞培養液をフレッシュなDMEM(10%FBS含有)に培地交換した後、下記(i)~(iii)のプラスミドをトランスフェクションした。
(i)AAV2のRepタンパク質及びCapタンパク質をコードするプラスミド(タカラバイオ社、pRC2-mi342 Vector)
(ii)アデノウイルスのE2A配列、VA配列、E4配列を含むプラスミド(タカラバイオ社、pHelper Vector)
(iii)AAV2の2つのITRの間に蛍光タンパク質GFPの発現カセットを含むプラスミド(CELL BIOLABS社、pAAV-GFP)
2.ウイルスベクター抽出
 トランスフェクションの3~5日後に、HEK293細胞培養液に、非イオン性界面活性剤のTween20(終濃度0.5%)、Endonuclease(終濃度50U/mL)、MgCl(終濃度2~3mM)を添加し、2時間インキュベーション(37℃)した。Tween20によりAAV2ベクターを抽出すると同時に、Endonucleaseにより核酸処理をおこなう。MgClはEndonucleaseの活性に必要である。回収後、フラスコを200mLのD-PBSにて洗い、含有物と混合した。
 次いで終濃度が390mMとなるようにNaClを添加し、1時間インキュベーション(37℃)した後、AAVベクター含有物を回収した。混合物を0.45μmフィルターでろ過し、AAVベクターを含有するろ液を、清澄化したベクター溶液(ウイルス含有水性分散液)として回収した。回収後のウイルス含有水性分散液中の無機塩(NaCl)の濃度は390mM、界面活性剤の濃度は0.35質量%であった。
3.ウイルス精製
 ウイルス含有水性分散液を濃縮するために限外ろ過を行った。限外ろ過の際の温度は25℃とした。限外ろ過と同時にバッファー交換を行うために、タンジェンシャルフローフィルトレーション(TFF)による限外ろ過/ダイアフィルトレーション(UF/DF)を行った。限外ろ過およびダイアフィルトレーションは、AKTA flux s(Cytiva)を用いて、膜素材がポリスルホンである300kDaの中空糸膜により、サンプルを約10倍濃縮した後に、濃縮液の6.3倍量のD-PBSを用いてバッファー交換を行った。AAVベクターの力価はqPCRにてウイルスゲノム量により測定した。限外ろ過後の収率を表1に示す。
実施例2
 実施例1の「2.ウイルスベクター抽出」における回収後のウイルス含有水性分散液中の界面活性剤の濃度を0.07質量%にする以外は実施例1と同様の手順で限外ろ過を行った結果を表1に示す。
実施例3
 実施例1の「2.ウイルスベクター抽出」における回収後のウイルス含有水性分散液中の界面活性剤の濃度を0.50質量%にする以外は実施例1と同様の手順で限外ろ過を行った結果を表1に示す。
実施例4
 実施例1の「2.ウイルスベクター抽出」における回収後のウイルス含有水性分散液中の界面活性剤の濃度を1.0質量%にする以外は実施例1と同様の手順で限外ろ過を行った結果を表1に示す。
実施例5
 実施例1の「2.ウイルスベクター抽出」における回収後のウイルス含有水性分散液中の無機塩(NaCl)の濃度を210mMにする以外は実施例1と同様の手順で限外ろ過を行った結果を表1に示す。
実施例6
 実施例1の「2.ウイルスベクター抽出」における回収後のウイルス含有水性分散液中の無機塩(NaCl)の濃度を410mMにする以外は実施例1と同様の手順で限外ろ過を行った結果を表1に示す。
実施例7
 実施例1の「2.ウイルスベクター抽出」における回収後のウイルス含有水性分散液中の無機塩(NaCl)の濃度を600mMにする以外は実施例1と同様の手順で限外ろ過を行った結果を表1に示す。
実施例8
 実施例1の「2.ウイルスベクター抽出」において添加する無機塩をNaClからMgSOに変更し、回収後のウイルス含有水性分散液中の無機塩(MgSO)の濃度が110mMになるように添加した。また、EndonucleaseがNaCl存在下では活性が下がることから、実施例1においてはNaClの添加を、Tween20、Endonuclease、MgClと同時に添加するのではなく、2時間のインキュベーション後に添加したが、実施例8では、MgSOはEndonucleaseの活性を阻害しないため、Tween20、Endonuclease、MgClと同時に添加した。その他は実施例1と同様の方法で行った結果を表1に示す。
実施例9
 実施例8の「2.ウイルスベクター抽出」において添加する無機塩をMgSOからMgClに変更し、回収後のウイルス含有水性分散液中の無機塩を(MgCl)の濃度が100mMになるように添加した。それ以外は実施例8と同様の手順で限外ろ過を行った結果を表1に示す。
実施例10
 実施例1の「2.ウイルスベクター抽出」における回収後のウイルス含有水性分散液中の界面活性剤をTween80にする以外は実施例1と同様の手順で限外ろ過を行った結果を表1に示す。
実施例11
 実施例1の「2.ウイルスベクター抽出」における回収後のウイルス含有水性分散液中の界面活性剤をPluronic(登録商標)F-68にする以外は実施例1と同様の手順で限外ろ過を行った結果を表1に示す。
実施例12
 実施例1の「1.ウイルスベクターの作製」におけるウイルスベクターの血清型をAAV1に変更した。具体的な手順を下記に示す。
 HEK293細胞を10%のFBSを添加したDMEMを用いてハイパーフラスコにて培養した。その後、37℃のCOインキュベーターにて培養を続け、およそ70%のコンフルエントになっていることを確認した。
 細胞培養液をフレッシュなDMEM(10%FBS含有)に培地交換した後、下記(i)~(iii)のプラスミドをトランスフェクションした。
(i)AAV1のRepタンパク質及びCapタンパク質をコードするプラスミド(タカラバイオ社、pRC1 Vector)
(ii)アデノウイルスのE2A配列、VA配列、E4配列を含むプラスミド(タカラバイオ社、pHelper Vector)
(iii)AAV2の2つのITRの間に蛍光タンパク質GFPの発現カセットを含むプラスミド(CELL BIOLABS社、pAAV-GFP)
 その他は実施例1と同様の方法で行った結果を表1に示す。
実施例13
 実施例1の「1.ウイルスベクターの作製」におけるウイルスベクターの血清型をAAV5に変更した。具体的な手順を下記に示す。
 HEK293細胞を10%のFBSを添加したDMEMを用いてハイパーフラスコにて培養した。その後、37℃のCOインキュベーターにて培養を続け、およそ70%のコンフルエントになっていることを確認した。
 細胞培養液をフレッシュなDMEM(10%FBS含有)に培地交換した後、下記(i)~(iii)のプラスミドをトランスフェクションした。
(i)AAV5のRepタンパク質及びCapタンパク質をコードするプラスミド(タカラバイオ社、pRC5 Vector)
(ii)アデノウイルスのE2A配列、VA配列、E4配列を含むプラスミド(タカラバイオ社、pHelper Vector)
(iii)AAV2の2つのITRの間に蛍光タンパク質GFPの発現カセットを含むプラスミド(CELL BIOLABS社、pAAV-GFP)
 その他は実施例1と同様の方法で行った結果を表1に示す。
実施例14
 実施例1の「1.ウイルスベクターの作製」におけるウイルスベクターの血清型をAAV6に変更した。具体的な手順を下記に示す。
 HEK293細胞を10%のFBSを添加したDMEMを用いてハイパーフラスコにて培養した。その後、37℃のCOインキュベーターにて培養を続け、およそ70%のコンフルエントになっていることを確認した。
 細胞培養液をフレッシュなDMEM(10%FBS含有)に培地交換した後、下記(i)~(iii)のプラスミドをトランスフェクションした。
(i)AAV6のRepタンパク質及びCapタンパク質をコードするプラスミド(タカラバイオ社、pRC6 Vector)
(ii)アデノウイルスのE2A配列、VA配列、E4配列を含むプラスミド(タカラバイオ社、pHelper Vector)
(iii)AAV2の2つのITRの間に蛍光タンパク質GFPの発現カセットを含むプラスミド(CELL BIOLABS社、pAAV-GFP)
 その他は実施例1と同様の方法で行った結果を表1に示す。
実施例15
 実施例13における限外ろ過の際のサンプルタンク内の温度を32~36℃にする以外は実施例13と同様の手順で限外ろ過を行った結果を表1に示す。
実施例16
 実施例14における限外ろ過の際のサンプルタンク内の温度を32~36℃にする以外は実施例14と同様の手順で限外ろ過を行った結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1中、濃度は、ウイルス含有水性分散液中の濃度を意味する。
 表1の結果から、ウイルスベクターの抽出液(ウイルス含有水性分散液)に一定濃度以上の界面活性剤ならびに無機塩を添加することで、限外ろ過時のウイルスベクターの膜への吸着を防ぐことができ、収率が向上すると考えられる。これは、無機塩により、ウイルスベクターの凝集が抑制されることが原因と考えられる。
 また、限外ろ過の際の温度を調整することで、収率を向上させることができる。
 本発明の方法によれば、より簡便に低コストで且つ高収率でのウイルス精製が可能になる。
本出願は、日本で出願された特願2021-184941(出願日:2021年11月12日)を基礎としておりその内容は本明細書に全て包含されるものである。

Claims (9)

  1.  ウイルス、界面活性剤及び無機塩を含む水性分散液を、限外ろ過する工程を含むウイルスの精製方法。
  2.  前記無機塩が、塩化物イオン、硫化物イオン、リン酸イオンおよび炭酸イオンからなる群から選ばれる少なくとも1種を含む無機塩である、請求項1に記載の精製方法。
  3.  前記無機塩が、塩化ナトリウム、塩化マグネシウムおよび硫酸マグネシウムからなる群から選ばれる少なくとも1種である、請求項1に記載の精製方法。
  4.  前記界面活性剤が、非イオン性界面活性剤、アニオン性界面活性剤、カチオン性界面活性剤および両イオン性界面活性剤からなる群から選ばれる少なくとも1種である、請求項1に記載の精製方法。
  5.  前記界面活性剤の含有量が、前記水性分散液全量に対して、0.01~2.0質量%である、請求項1に記載の精製方法。
  6.  前記無機塩の含有量が、前記水性分散液全量に対して、80~800mMである、請求項1に記載の精製方法。
  7.  ウイルスを含む細胞からウイルスを抽出し、前記水性分散液を得る工程を限外ろ過工程の前に実施する、請求項1に記載の精製方法。
  8.  カラムクロマトグラフィーで精製する工程を限外ろ過の工程の後に実施する、請求項1に記載の精製方法。
  9.  (a)ウイルスを含む細胞からウイルスを抽出し、ウイルス、界面活性剤及び無機塩を含む水性分散液を得る工程、
     (b)前記水性分散液に対し、限外ろ過を行いウイルスを含む粗液を得る工程、及び
     (c)前記粗液を、カラムクロマトグラフィーにより精製する工程、
    を含むウイルスの精製方法。
PCT/JP2022/041990 2021-11-12 2022-11-10 ウイルスの精製方法 WO2023085382A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021184941 2021-11-12
JP2021-184941 2021-11-12

Publications (1)

Publication Number Publication Date
WO2023085382A1 true WO2023085382A1 (ja) 2023-05-19

Family

ID=86335885

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/041990 WO2023085382A1 (ja) 2021-11-12 2022-11-10 ウイルスの精製方法

Country Status (1)

Country Link
WO (1) WO2023085382A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010207244A (ja) * 1995-08-30 2010-09-24 Genzyme Corp アデノウィルスおよびaavの精製
JP2014237661A (ja) 2008-06-18 2014-12-18 オックスフォード バイオメディカ(ユーケー)リミテッド ウイルス精製法
JP2019524101A (ja) * 2016-07-21 2019-09-05 スパーク セラピューティクス インコーポレイテッドSpark Therapeutics, Inc. 高収率の組換えアデノ随伴ウイルス(rAAV)ベクターを生成するための、規模拡大可能な高回収率の方法、及びそれにより生成される組換えアデノ随伴ウイルス(rAAV)ベクター
JP2021184941A (ja) 2019-02-07 2021-12-09 京楽産業.株式会社 遊技機

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010207244A (ja) * 1995-08-30 2010-09-24 Genzyme Corp アデノウィルスおよびaavの精製
JP2014237661A (ja) 2008-06-18 2014-12-18 オックスフォード バイオメディカ(ユーケー)リミテッド ウイルス精製法
JP2019524101A (ja) * 2016-07-21 2019-09-05 スパーク セラピューティクス インコーポレイテッドSpark Therapeutics, Inc. 高収率の組換えアデノ随伴ウイルス(rAAV)ベクターを生成するための、規模拡大可能な高回収率の方法、及びそれにより生成される組換えアデノ随伴ウイルス(rAAV)ベクター
JP2021184941A (ja) 2019-02-07 2021-12-09 京楽産業.株式会社 遊技機

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Ultrafiltration Handbook", 1986, TECHNOMIC PUBLISHING
CLEMENT, NATHALIE ET AL., MOL THER METHODS CLIN DEV., vol. 3, 16 March 2016 (2016-03-16), pages 16002
DAVID L. GRZENIA; JONATHAN O. CARLSON; PETER CZERMAK; BINBING HAN; RACHEL K. SPECHT; S. RANIL WICKRAMASINGHE: "Purification of Densonucleosis Virus by Tangential Flow Ultrafiltration", BIOTECHNOLOGY PROGRESS, AMERICAN CHEMICAL SOCIETY, HOBOKEN, USA, vol. 22, no. 5, 5 September 2008 (2008-09-05), Hoboken, USA, pages 1346 - 1353, XP072296017, ISSN: 8756-7938, DOI: 10.1021/bp060077c *
TOMONO, TARO ET AL., MOL THER METHODS CLIN DEV., vol. 11, 1 November 2018 (2018-11-01), pages 180 - 190

Similar Documents

Publication Publication Date Title
Robert et al. Manufacturing of recombinant adeno‐associated viruses using mammalian expression platforms
US10023846B2 (en) Production method for non-enveloped virus particles
JP6165752B2 (ja) アデノ随伴ウイルスの産生のための細胞株
JP2018518164A (ja) 多段階陰イオン交換クロマトグラフィーによる組換えアデノ随伴ウイルス粒子の精製
ES2928689T3 (es) Sistema de plásmidos
US20230183656A1 (en) Methods and compositions for purifying adeno associated virus particles or adenoviruses
WO2023074877A1 (ja) 細胞添加用組成物
JP6616329B2 (ja) 非エンベロープウイルス粒子の製造方法
WO2023085382A1 (ja) ウイルスの精製方法
JP6908331B2 (ja) ポリジアリルジアルキルアンモニウム塩を使用したアデノ随伴ウイルスを単離する方法
WO2022045055A1 (ja) pHの違いによる非エンベロープウイルスベクター粒子の調製方法
JP2024016295A (ja) 二価の陽イオンを利用した非エンベロープウイルスの製造方法
KR20240093931A (ko) 세포 첨가용 조성물
WO2024013239A1 (en) Method for producing recombinant aav particles
KR20240082394A (ko) 재조합 aav 제조를 위한 조성물 및 방법
JP2023546116A (ja) Va rna転写のための核酸構築物
CN118159659A (zh) 细胞添加用组合物
EP4077686A1 (en) Automated production of viral vectors
CN118240776A (zh) 一种提高aav病毒产量的方法
TW202417619A (zh) 生產重組 aav 顆粒之方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22892880

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022892880

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022892880

Country of ref document: EP

Effective date: 20240612