WO2023085036A1 - Determination method using genetic polymorphism - Google Patents

Determination method using genetic polymorphism Download PDF

Info

Publication number
WO2023085036A1
WO2023085036A1 PCT/JP2022/039152 JP2022039152W WO2023085036A1 WO 2023085036 A1 WO2023085036 A1 WO 2023085036A1 JP 2022039152 W JP2022039152 W JP 2022039152W WO 2023085036 A1 WO2023085036 A1 WO 2023085036A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymorphism
endovascular treatment
rnf213p
reocclusion
probe
Prior art date
Application number
PCT/JP2022/039152
Other languages
French (fr)
Japanese (ja)
Inventor
匡史 猪原
武史 吉本
大輔 川上
Original Assignee
株式会社島津製作所
国立研究開発法人国立循環器病研究センター
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所, 国立研究開発法人国立循環器病研究センター filed Critical 株式会社島津製作所
Publication of WO2023085036A1 publication Critical patent/WO2023085036A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/686Polymerase chain reaction [PCR]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material

Definitions

  • the present invention relates to a determination method using genetic polymorphism.
  • Cerebral infarction is a disease in which blood vessels that supply blood to brain cells are blocked and brain cells die. Cerebral infarction is caused by atherothrombotic cerebral infarction, which is mainly caused by arteriosclerosis of relatively large blood vessels in the brain, lacunar infarction, which is caused by blockage of small blood vessels in the brain, and atrial fibrillation. It is classified as cardiogenic cerebral embolism, which blocks the large blood vessels of the brain.
  • Patent Document 1 discloses that RNF213 p.
  • a method for predicting the risk of developing cerebral infarction in a subject based on the presence or absence of the R4810K gene polymorphism and gender information of the subject is disclosed.
  • International Publication No. 2020/121489 discloses that RNF213p. It is disclosed that when a subject has the R4810K gene polymorphism, the time of onset of cerebral infarction in the subject is judged to be earlier than usual.
  • MRI Magnetic Resonance Imaging
  • CT Computerized Tomography
  • thrombolytic therapy / tPA tissue plasminogen activator
  • a thin tube called a catheter is inserted from the base of the foot into the blood vessel to remove blood clots in the lesions of the brain. Endovascular treatment is mainly performed to directly remove the
  • An object of the present invention is to provide a method for facilitating the prediction of vascular reocclusion risk after endovascular treatment.
  • One embodiment of the present invention is Using a sample collected from a subject, the subject was tested for RNF213p. detecting whether it has the R4810K polymorphism; said subject is said RNF213p. Determining that, when having the R4810K polymorphism, after endovascular treatment for occlusion of an intracranial cerebral vessel, there is a high possibility of reocclusion of the vessel that has undergone endovascular treatment; to a method for predicting intracranial cerebral vessel reocclusion, comprising:
  • RNF213p A kit for determining, based on the presence or absence of the R4810K polymorphism, whether or not there is a high possibility of reocclusion of a blood vessel that has undergone endovascular treatment after endovascular treatment for intracranial cerebral vessel occlusion, Said RNF213p.
  • a PCR primer pair that amplifies a nucleotide sequence containing a genetic mutation corresponding to the R4810K polymorphism; Said RNF213p.
  • a first probe that binds to the wild-type base sequence of the R4810K polymorphism and a second probe that binds to the mutant base sequence, The first probe and the second probe relate to kits labeled with fluorescent dyes different from each other.
  • the present invention is RNF213p.
  • the present invention relates to a genetic marker consisting of the R4810K polymorphism for determining whether, after endovascular treatment for occlusion of intracranial cerebral vessels, there is a high likelihood of reocclusion of the vessels that have received said endovascular treatment.
  • the risk of reocclusion of blood vessels after endovascular treatment can be predicted.
  • FIG. 1 is a flow chart of a case study in an example
  • FIG. 2 is a graph showing the incidence of immediate and early reocclusion in polymorphism carriers and non-carriers in patients with major brain artery occlusion.
  • FIG. 2 is a graph showing the incidence of immediate and early reocclusion in polymorphism carriers and non-carriers in patients with intracranial atherosclerosis-associated major brain artery occlusion.
  • RNF213p who developed sudden left hemiplegia.
  • An example of a 59-year-old male with the R4810K polymorphism (case 3 in Table 3) is shown.
  • MR imaging shows several acute ischemic lesions within the cortical perfusion region of the right middle cerebral artery (MCA).
  • MCA right middle cerebral artery
  • B MR angiography shows right MCAM1 occlusion.
  • C Right internal carotid artery angiography shows right proximal MCAM1 occlusion.
  • D Right internal carotid artery angiography shows effective recanalization but remained severe stenosis with delayed peripheral perfusion after mechanical thrombectomy.
  • E Final vascular imaging after angioplasty and intracranial stent.
  • F Premature reocclusion 7 days after surgery and sudden onset of left hemiparesis.
  • a method for predicting intracranial cerebral vessel reocclusion comprises: Using a sample collected from a subject, the subject was tested for RNF213p. detecting whether it has the R4810K polymorphism; said subject is said RNF213p. and determining, after endovascular treatment for intracranial cerebral vessel occlusion, that the endovascularly treated vessel is likely to re-occlude when carrying the R4810K polymorphism.
  • the method for predicting reocclusion of intracranial cerebral blood vessels according to the present invention allows identification of patients at high risk of reocclusion after endovascular treatment. This allows patients at high risk of reocclusion to be prioritized or more frequently treated and/or monitored to prevent the development of reocclusion.
  • This method can also be said to be a method for assisting in predicting the risk of reocclusion of blood vessels. This method does not include a judgment step by a doctor and does not correspond to a method for diagnosing humans.
  • Ring finger protein 213 gene (RNF213) p.
  • the R4810K polymorphism (c.14576G>A) is the founder polymorphism of Moyamoya disease (Circle of Willis occlusion) 1) in East Asia 1-4) .
  • the R4810K polymorphism is a single nucleotide polymorphism (SNP) of 73097 G>A in the nucleic acid sequence represented by SEQ ID NO:2. This RNF213 SNP is found in 2.5% of healthy Japanese, 2.7% of healthy Koreans, and 0.9% of Chinese, but not in Caucasian (European) 3,5,6) .
  • SEQ ID NO: 2 contains the RNF213 gene (also known as mysterin gene: moyamoya steno-occlusive disease-associated AAA+ and RING finger protein) and its peripheral region genes [FLJ3520, NPTX1, CARD14 and Raptor (KIAA1303)] Chromosome 17 Partial nucleotide sequence of DNA corresponding to nucleotides 43560001 to 43795000 of Contig #NT010783.15 registered with NCBI. In the notation of "G>A", the base of the major allele (G in this case) precedes the symbol ">" and the base of the minor allele (A in this case) follows.
  • the RNF213 gene encodes a protein containing dual AAA+ATPase and E3 ligase domains and plays an important role in regulating vascular remodeling and angiogenesis 3,8) .
  • RNF213p Overexpression of R4810K was shown to suppress the angiogenic activity and proliferation of human endothelial cells, whereas overexpression of wild-type RNF213 did not 8,9) .
  • accumulation of filamin A, a substrate of RNF213 has been shown to promote vascular remodeling by migration and proliferation of vascular smooth muscle cells from the media to the intima 10,11) . Such cell changes in the vasculature lead to RNF213p. It has been suggested that the R4810K polymorphism-associated negative remodeling of blood vessels that is characteristic of major intracranial artery stenosis may occur 12-14) .
  • Step of detecting whether the subject has the RNF213p.R4810K polymorphism using a sample collected from the subject RNF213p.
  • the presence or absence of the R4810K polymorphism can be detected from genomic DNA, RNA or protein.
  • the R4810K polymorphism may be homozygous for the mutant or heterozygous for the mutant and wild type (GA type).
  • an SNP in which the 14576th base of the RNF213 gene is guanine (G) in the wild type, but adenine (A) in the mutant type should be detected.
  • SNPs may be detected using methods well known in the art, such as PCR-RFLP (restriction fragment length polymorphism) method, PCR-SSCP (single strand conformation polymorphism) method, secondary structural polymorphism analysis) method, PCR-SSO (specific sequence oligonucleotide) method, ASO (Allele Specific Oligonucleotide) hybridization method, sequencing method, next-generation sequencing method, ARMS (Amplification Refracting Mutation System) em) method , Deterted concentration gradient gel Electrical Volunteer swimming Movement (DENATURING GEL ELECTROPHORESIS, RNASEA Cutting, DOL (DYE -LABELED OLIGONUCLEOTITIDE LIGATION), TAQMANN PCR method, real -time PCR method, SNAP SHOT method, mass spectrometry method, Primer EXTENSION method, Invader method, DNA chip method or DNA microarray method, single nucleotide extension method, Southern blot hybridization method,
  • RNF213 p When detecting the presence or absence of the R4810K polymorphism using a protein, a mutation in which arginine (R) at position 4810 in the protein (SEQ ID NO: 1) encoded by the RNF213 gene is changed to lysine (K) may be detected.
  • Amino acid mutations can be detected using, for example, steric structure analysis, mass spectrometry, antigen-antibody reaction, ultracentrifugation, electrophoresis, absorbance measurement, or a combination thereof.
  • the sample may be derived from any tissue, cell, or bodily fluid from which genomic DNA or protein, etc. can be collected.
  • samples include hair, nails, skin, mucous membranes, blood, saliva, tears, urine, feces, sweat, lymph, breast milk, amniotic fluid, body cavity fluid (including ascites, pleural fluid, and cerebrospinal fluid).
  • the blood may be whole blood, plasma or serum.
  • the sample is preferably blood or saliva from the viewpoint of minimal invasiveness in obtaining. Samples may be diluted in saline, buffers, etc., and may be tissue or cell extracts or lysates. Samples may be stored frozen. Sample collection may be performed by a known method depending on the type of sample.
  • the subject may be a human, a person who has not yet developed a cerebral infarction, or a person who has developed a cerebral infarction.
  • Human race is not particularly limited, but is preferably East Asian (East Asian/Mongoloid).
  • East Asians refer to people of Japanese, Korean, Chinese, Taiwanese and Mongolian origin.
  • East Asians may be Japanese, Korean or Chinese.
  • a race is a distinct subgroup within the Homo sapiens species. The world's major races can be classified into five groups based on genetic information, for example, African (Negroid), Caucasian (Caucasian), Oceanian (Australoid), East Asian (Mongoloid) and Native American.
  • the patient has RNF213p. Having the R4810K polymorphism is determined to be prone to reocclusion after endovascular treatment.
  • vascular endothelial cells may be damaged during endovascular treatment. Based on the damage caused at this time, the mechanism of thrombus formation is promoted, and thrombus may cause reocclusion. Conceivable.
  • Occlusion of intracranial cerebral vessels before reocclusion includes cardiogenic cerebral infarction and atherosclerotic cerebral infarction.
  • Atherosclerosis is a condition in which cholesterol, fat, inflammatory cells, etc. accumulate in the lumen of cerebral blood vessels, forming plaque and narrowing the lumen of the blood vessel. A rupture can result in a stroke.
  • intracranial cerebral vessel occlusion before reocclusion is caused by atherosclerosis, reocclusion is thought to occur more easily because the vessel is more susceptible to injury during endovascular treatment. If the patient has RNF213p.
  • the present invention may be a method for predicting restenosis of intracranial cerebral vessels.
  • Endovascular treatment includes a method of retrieving the thrombus by entangling it with a stent (metal net) attached to the tip of the catheter, a method of retrieving the thrombus while aspirating it with a suction pump connected to the catheter, and a method of dilating the blood vessel with a balloon.
  • a stent metal net
  • a method of placing a stent in a blood vessel and the like.
  • an appropriate therapeutic method or a combination thereof is selected depending on the type of cerebral infarction that has developed, the size and location of the thrombus. Endovascular therapy can also be performed for stenosis of cerebral vessels.
  • the method for predicting intracranial cerebral vessel reocclusion may further include selecting an instrument for endovascular treatment based on the likelihood of vessel reocclusion.
  • an instrument for endovascular treatment based on the likelihood of vessel reocclusion.
  • the device of choice may be a drug eluting stent (DES).
  • Drugs include antiplatelet agents, antithrombin agents, anticoagulants, dextran, and the like.
  • the drug may be an orally or injected drug.
  • the step of determining that the blood vessel is likely to re-occlude may include determining that the treated vessel is likely to re-occlude earlier than usual after the endovascular treatment.
  • the earlier-than-usual period after endovascular treatment may be from the time recanalization is observed by endovascular treatment to the time during endovascular treatment (immediate reocclusion), or after recanalization is observed by endovascular treatment. May be within 2 weeks (early reocclusion).
  • the intracranial cerebral artery in which endovascular treatment is performed may be the main cerebral artery, and the main cerebral artery includes the intracranial internal carotid artery, the middle cerebral artery, the anterior cerebral artery, the vertebral artery, and the basilar artery.
  • the risk of reocclusion after endovascular treatment tends to be particularly high in the intracranial internal carotid artery and middle cerebral artery.
  • a kit according to an embodiment of the present invention comprises RNF213p.
  • the first probe and the second probe are labeled with fluorescent dyes different from each other.
  • the kit may be a kit for determining whether a blood vessel that has undergone endovascular treatment has a high probability of restenosis.
  • RNF213p By using a kit having the primer pair and the set of the first probe and the second probe, RNF213p.
  • the R4810K polymorphism can be detected. If the subject is RNF213p. Based on whether or not a person has the R4810K polymorphism, it can be predicted whether there is an increased risk of reocclusion or restenosis of the vessel after endovascular treatment.
  • the kit can provide information for predicting the risk of vessel reocclusion or restenosis after endovascular treatment.
  • the kit contains a nucleic acid in a sample taken from a subject, preferably a p.o.
  • the R4810K polymorphism (c.14576G>A) can be discriminated. Detected RNF213p.
  • the R4810K polymorphism may be homozygous for the mutant or heterozygous for the mutant and wild type.
  • a PCR primer pair uses the genomic DNA in the specimen collected from the subject as a template, and the RNF213p.
  • a nucleic acid fragment containing the SNP site of the R4810K polymorphism can be amplified.
  • the amplification site for detecting the wild type and the amplification site for detecting the mutant are identical.
  • As the length of the nucleic acid fragment to be amplified RNF213p. 80-100 bases including the SNP site of the R4810K polymorphism are preferred.
  • oligonucleotides forward primer and reverse primer that hybridize under stringent conditions to the region consisting of the base sequence shown in SEQ ID NO:7 are preferred.
  • the stringent conditions refer to conditions under which the binding between the template DNA and the primers is specific in the annealing in PCR, which is the step of binding the primers to the template DNA.
  • the T m of the primers may be designed to be, for example, 58-60°C.
  • the base length of the PCR primer is preferably 15-25 bases.
  • the kit according to the present invention preferably comprises a PCR primer pair comprising a primer having the nucleotide sequence shown in SEQ ID NO:3 and a primer having the nucleotide sequence shown in SEQ ID NO:4. 5′-TTCCAGAACGTCCAGCAAGT-3′ (forward; SEQ ID NO: 3) 5′-ACAGTCCTGGTCCTGTCAGA-3′ (Reverse; SEQ ID NO: 4)
  • sequences below represent RNF213p. It is the nucleotide sequence of the region containing the SNP of the R4810K polymorphism. Any base sequence of the following sequences can be amplified as long as it contains a SNP site. 5′-CCCAATAACATTTTTTAGGTAAAAAAATTGTTACTGGGTGGTCTTCCCTTCTCCAGGAAGCAGCAGAGCTGAGGCTGGTAAAGTTCCTGCCTGAGATTTTGGCCTTGCAAAGGGATCTAGTGTAAGCAGTTCCAGAACGTCCAGCAAGTTGAATACAGCTCCAT CAGAGGCTTCCTCAGCAAGCACAGCTCAGGTGTGGCTCTGCTCTGACAGGACCAGGGACTGTCCCGCATTTGGCGGGTTCGAAAAGGATCACTGCATAGGGGGAACAGGGTGGGGGCGGAGGGGAGGAGGCGCGCTGATGGGTGCTCTATAGCCTAAGCCCTTACCATGCGGTGAA GGGTGCTTGAACCCCCAAAA-3' (SEQ ID NO: 7)
  • the probes are used for real-time PCR using the FRET principle, the probe sequences are designed, and the reporter fluorescent dye and quencher are selected so as to be compatible with the method.
  • the first probe binds to a nucleic acid fragment in which the 14576th SNP of the RNF213 gene is a wild-type base (G).
  • the second probe binds to a mutant nucleic acid fragment in which the 14576th SNP of the RNF213 gene is replaced with G>A.
  • the first probe preferably hybridizes under stringent conditions to a nucleic acid fragment having a wild-type nucleotide sequence amplified by PCR using the wild-type RNF213 gene as a template.
  • the second probe was RNF213p. It hybridizes under stringent conditions to a nucleic acid fragment containing the SNP site of the R4810K polymorphism, but under stringent conditions to a nucleic acid fragment having a wild-type nucleotide sequence amplified by PCR using the wild-type RNF213 gene as a template. Do not hybridize with Stringent conditions refer to conditions under which specific hybrids are formed during annealing between nucleic acid fragments amplified by PCR and probes, but non-specific hybrids are not formed. It is preferred to design the probe sequences to target approximately the middle of the PCR product amplified by the primer pair.
  • the base length of the probe is preferably 10-25 bases, more preferably 15-20 bases.
  • the Tm of the probe may be designed to be, for example, 68-70°C.
  • the kit according to the present invention preferably contains a set of the first probe having the base sequence shown in SEQ ID NO:5 and the second probe having the base sequence shown in SEQ ID NO:6.
  • Second probe 5'-CTCCATCAAAGGCTTCCT-3' (SEQ ID NO: 6)
  • part of the base sequence may be modified to the extent that specific hybridization can be performed without hindrance.
  • partially modified means deletion, substitution, insertion and/or addition of part of the bases.
  • the number of bases to be modified is, for example, 1 to 3, 1 to 2, or 1.
  • Probes include, but are not limited to, hydrolysis probes, Molecular Beacons, cycling probes, and the like.
  • An example of a hydrolysis probe is an oligonucleotide modified with a fluorescent dye at the 5' end and a quencher substance at the 3' end. The hydrolysis probe specifically hybridizes to the template DNA during PCR annealing, but the presence of the quencher on the probe suppresses the generation of fluorescence even when irradiated with excitation light.
  • the fluorescent dye is released from the probe, and the fluorescence is emitted by the quencher.
  • the suppression is released and fluorescence is emitted.
  • Fluorescent dyes include FAM (6-carboxyfluorescein), ROX (6-carboxy-X-rhodamine), Cy3 and Cy5 (cyanine dyes), HEX (4,7,2′,4′,5′,7′- hexachloro-6-carboxyfluorescein), VIC, TET (tetrachlorofluorescein), NED, CAL Fluor Orange 560 (CFO), CAL Fluor Gold 540, CAL Fluor Red 590, CAL Fluor Red 610, CAL Fluor Red 635, Quasar 570, Quasar 670, Quasar 705, T (JOE), etc., but not limited to these.
  • quenchers include TAMRA (tetramethylrhodamine; registered trademark), BHQ (Black Hole Quencher; registered trademark)-1, BHQ-2, BHQ-3, Pulsar 650, Spacer C3, MGB-Eclipse (registered trademark), DABCYL, and the like. include, but are not limited to.
  • the first probe and the second probe are labeled with fluorescent dyes different from each other.
  • Combinations of different fluorescent dyes are not particularly limited as long as they have different fluorescent properties and do not interfere with each other in fluorescence measurement.
  • FAM and HEX which may be the fluorescent dye of the first probe. The same applies to the following combinations
  • FAM and CFO Examples include FAM and VIC, FAM and TET, HEX and Joe, HEX and TET, and the like.
  • a kit according to the present invention may further comprise a PCR buffer containing a surfactant and proteinase K.
  • Surfactants can dissolve cells, biological tissues, and the like.
  • anionic surfactants, cationic surfactants, amphoteric surfactants or nonionic surfactants can be selected.
  • the surfactant is preferably an anionic surfactant, more preferably sodium dodecyl sulfate. When the surfactant is sodium dodecyl sulfate, its concentration is preferably 0.1-0.5% (w/v) when mixed with the sample.
  • Proteinase K acts to inactivate DNA and RNA degrading enzymes. The proteinase K concentration is preferably 100-300 ⁇ g/mL when mixed with the sample.
  • the PCR buffer may further comprise KCl, MgCl 2 and dNTP mix (deoxyribonucleotide 5′-triphosphate; mixture consisting of dATP, dGTP, dCTP and dTTP).
  • the PCR buffer is not particularly limited, but is preferably Tris buffer. Appropriate concentrations of dNTPs, MgCl 2 , KCl and buffers can be set by those skilled in the art, for example, MgCl 2 concentration is 1.5 mM, KCl concentration is 35 mM, dNTP concentration is 200 ⁇ M each, Tris The buffer concentration is 10 mM.
  • the PCR buffer is a negatively charged biological substance (such as certain sugars and dyes) that adsorbs to DNA polymerase and a positively charged biological substance (such as certain proteins) that adsorbs to DNA. It may contain a substance that binds to a substance that inhibits PCR and neutralizes the PCR inhibitory action of said negatively charged substance and positively charged substance.
  • gene amplification reagents Ampdirect or Ampdirect Plus both registered trademarks; Shimadzu Corporation
  • the kit according to the present invention can be used in a rapid genotyping system for simple and rapid genetic testing in clinical settings.
  • rapid genotype determination systems include "GTS-7000" manufactured by Shimadzu Corporation.
  • One embodiment of the present invention is RNF213p.
  • the above kit for determining whether there is a high possibility of reocclusion or restenosis of the blood vessel that has undergone endovascular treatment. in manufacturing Said RNF213p.
  • a PCR primer pair that amplifies a nucleotide sequence containing a genetic mutation corresponding to the R4810K polymorphism; Said RNF213p. Use with a first probe that binds to the wild-type sequence and a second probe that binds to the mutant sequence of the R4810K polymorphism.
  • RNF213p A method for detecting the R4810K polymorphism is described.
  • RNF213p An example of a method for detecting the R4810K polymorphism is (1) mixing a sample taken from a subject with a PCR buffer containing detergent and proteinase K; (2) The mixture obtained in step (1) was treated with a DNA polymerase, RNF213p. (3) detecting a PCR product;
  • the sample collected from the subject may be the sample described in [Method for predicting reocclusion of intracranial cerebral blood vessels].
  • the sample preferably contains the subject's genomic DNA.
  • the amount of the sample depends on the amount of genomic DNA contained, but if the sample is saliva or peripheral blood, it may be about 0.1 ⁇ L to 10 ⁇ L, or 0.5 ⁇ L to 2 ⁇ L.
  • the mixture of sample and PCR buffer contains DNA polymerase and RNF213p.
  • PCR can be initiated by mixing with a PCR primer pair that amplifies a nucleotide sequence containing the genetic mutation corresponding to the R4810K polymorphism.
  • the DNA polymerase is not particularly limited, it may be a thermostable DNA polymerase derived from thermophilic bacteria, and Taq, Tth, KOD, Pfu and mutants thereof can be used.
  • a hot start DNA polymerase may be used to avoid non-specific amplification.
  • Hot-start DNA polymerases include BIOTAQ® hot-start DNA polymerase.
  • hot-start DNA polymerases examples include DNA polymerases to which an anti-DNA polymerase antibody is bound, DNA polymerases to which the enzyme active site is chemically modified with heat sensitivity, and the like.
  • PCR conditions temperature, time and number of cycles
  • PCR products can be detected by real-time measurement (real-time PCR).
  • R4810K polymorphism When the R4810K polymorphism is homozygous, an increase in fluorescence intensity from the second probe is observed, but no increase in fluorescence intensity from the first probe is observed. RNF213p. When the R4810K polymorphism is heterozygous between mutant and wild type, an increase in fluorescence intensity from both the first and second probes is observed. In the wild-type RNF213 gene (homozygous), only an increase in fluorescence intensity derived from the first probe is observed. If an increase in fluorescence intensity from the second probe is observed, RNF213p. It is determined that the R4810K polymorphism was detected.
  • the presence of the R4810K polymorphism can be determined.
  • a small Cq value indicates a large amount of template DNA
  • a large Cq value indicates a small amount of template DNA.
  • RNF213p Given a given Cq value for the use of the second probe, RNF213p. It is determined that the R4810K polymorphism was detected. RNF213p.
  • a constant Cq value is given for the use of both fluorescently labeled probes, although they do not necessarily show the same value.
  • the wild-type RNF213 gene (homozygous) gives a constant Cq value only for the use of the first probe. If the amplification curve of the PCR product does not cross a certain threshold line for the fluorescently labeled probe used, i.e. if no Cq value is given, it indicates that there is no base sequence to which the probe binds.
  • RNF213p A genetic marker consisting of the R4810K polymorphism for determining whether reocclusion or restenosis is likely to occur after endovascular treatment for intracranial cerebral vessel occlusion. If this gene marker is used, the subject will be able to detect RNF213p. With the R4810K polymorphism, it can be determined that, after endovascular treatment for intracranial cerebral vessel occlusion, there is a high likelihood of reocclusion or restenosis of the endovascularly treated vessel. This genetic marker can provide information for predicting the risk of vascular reocclusion after endovascular treatment.
  • One embodiment of the present invention is a RNF213 p. Use of the R4810K polymorphism.
  • One embodiment of the present invention is Using a sample collected from a subject, the subject was tested for RNF213p.
  • a method of predicting intracranial cerebral vessel reocclusion or restenosis comprising detecting whether or not the patient has the R4810K polymorphism. If the subject is RNF213p. With the R4810K polymorphism, it can be predicted that after endovascular treatment for intracranial cerebral vessel occlusion, the endovascularly treated vessel is likely to reocclude or restenosis. If the subject is RNF213p.
  • the method described in the above [Method for predicting reocclusion of intracranial cerebral blood vessels] may be used.
  • MT Mechanical thrombectomy
  • AIS acute ischemic stroke
  • MCA middle cerebral artery
  • ICAD intracranial atherosclerotic disease
  • LVO large vessel occlusions
  • EVT endovascular therapy
  • ICAD-related LVO intracranial atherosclerosis-related major cerebral artery occlusion
  • RNF213p The R4810K polymorphism may be associated with ICAD-associated LVO in Asian patients undergoing MT. RNF213p. Negative remodeling in ICAD patients with the R4810K polymorphism may have different frequencies of reocclusion after EVT, including balloon angioplasty, compared to conventional ICAD-associated LVO. Among patients with anterior circulation intracranial LVO, RNF213p. It has not been examined whether EVT outcomes differ between carriers and non-carriers of the R4810K polymorphism. Here, RNF213p. Verify the effect of the R4810K polymorphism.
  • NCVC Stroke Registry 23-25 All AIS patients admitted to the National Cerebral and Cardiovascular Center (NCVC) within 7 days of symptom onset or last known date are enrolled in the NCVC Stroke Registry 23-25 .
  • NCVC Stroke Registry In this study, patients enrolled in the registry from January 2011 to March 2021, (1) had intracranial internal carotid artery or middle cerebral artery M1 occlusion, (2) underwent EVT, and (3) this study. studies and RNF213p.
  • a retrospective study was conducted in patients who gave written informed consent for the R4810K polymorphism genotyping study. Clinical and radiological data were obtained prospectively from the database and extracted for retrospective analysis. This study was conducted in accordance with the Declaration of Helsinki and was approved by the Ethics Committee of the NCVC.
  • NCVC Stroke Registry is registered at ClinicalTrials.gov (NCT02251665).
  • RNF213 genotyping test RNF213p. Genotyping of the R4810K polymorphism was performed after EVT by a fully automated genetic analysis system (GTS-7000; Shimadzu Corporation or LightCycler 96; Roche). These systems allow direct detection of SNPs from 1 ⁇ L of whole blood by real-time PCR 26) .
  • the primer sequences used were 5′-TTCCAGAACGTCCAGCAAGT-3′ (forward; SEQ ID NO: 3) 5′-ACAGTCCTGGTCCTGTCAGA-3′ (reverse; SEQ ID NO: 4) Met.
  • the probe set is 5′-CTCCATCAGAGGCTTCCT-3′ (SEQ ID NO:5) and 5′-CTCCATCAAAGGCTTCCT-3′ (SEQ ID NO:6) Met.
  • RNF213p As a result of R4810K polymorphism analysis, p.
  • the R4810K GA polymorphism was considered a polymorphism carrier and the wild-type homozygous GG genotype was considered a polymorphism non-carrier.
  • EVT All endovascular surgeries were performed according to the American Heart Association/American Stroke Association guidelines 15) or Japanese guidelines for neuroendovascular mechanical thrombectomy 27) . All patients underwent EVT under local anesthesia and received conscious sedation as needed. In this study, a balloon guide catheter was used and guided as far as possible to the extracranial internal carotid artery. EVT procedures include stent retriever thrombectomy, contact aspiration, intracranial balloon angioplasty, intracranial stents, or combinations thereof. Modified Thrombolysis In Cerebral Infarction: mTICI was used to assess recanalization 28) . The antiplatelet agents aspirin and clopidogrel are co-administered perioperatively when diagnosed with ICAD-associated LVO as described below.
  • Intravenous thrombolysis was performed using alteplase 0.6 mg/kg (approved dose in Japan) 31) .
  • Time metrics included time from confirmation of onset to thrombolysis and time from confirmation of onset to groin puncture.
  • causes of acute LVO have been classified into three groups (ICAD-related, embolism and arterial dissection) by stroke society-certified neurologists.
  • ICAD-associated LVO is defined as ⁇ 50% residual stenosis in the target arterial lesion after EVT detected by postoperative angiography and follow-up angiography, with a clear proximal source of cerebral embolism. 18,20,32,33) .
  • Intracranial artery stenosis was measured according to standards 34) .
  • Antithrombotic therapy at discharge includes antiplatelet agents (aspirin, clopidogrel and cilostazol) and anticoagulants (direct oral anticoagulants [dabigatran, rivaroxaban, avixaban and edoxaban] and warfarin).
  • Postoperative outcomes were immediate reocclusion, final mTICI ⁇ 2b recanalization, and early reocclusion. Immediate reocclusion was defined as reocclusion during surgery, and early reocclusion was defined as reocclusion detected by MR angiography within 2 weeks after confirmation of effective recanalization after surgery 19,20) .
  • Clinical outcomes were an mRS score of 0-2 after 90 days, subarachnoid hemorrhage, cerebral parenchymal hemorrhage and symptomatic intracranial hemorrhage (ICH). ICH was assessed by non-contrast CT or gradient-echo MR imaging within 36 hours of onset.
  • Parenchymal hemorrhage was defined as hemorrhage at the site of cerebral infarction with an occupancy effect, as shown in the European Cooperative Acute Stroke Study 36) .
  • Symptomatic ICH was defined as ICH with an increase in NIHSS score of ⁇ 4 points from baseline (37) .
  • the median number of days from the end of surgery to early reocclusion (IQR) was 4 (2-9) days.
  • Repeat EVT for early reocclusion was performed in 4 polymorphism carriers and 1 polymorphism non-carrier.
  • the rates of subarachnoid hemorrhage, cerebral parenchymal hemorrhage and symptomatic ICH did not differ between polymorphism carriers and non-polymorphism carriers (Table 2).
  • RNF213p A summary of patients with the R4810K polymorphism is shown in Table 3, RNF213p.
  • a representative patient with the R4810K polymorphism is shown in FIG.
  • Polymorphism carriers had a higher frequency of early reocclusion compared with non-polymorphism carriers (71.4% vs. 4.3%, P ⁇ 0.01 adjusted OR 47.6), 95% CI 3.53-674.0) (Table 2 and Figure 3).
  • the median number of days from the end of surgery to early reocclusion (IQR) was 2 (2-6) days. No significant between-group differences were seen for clinical outcomes.
  • RNF213p The frequency of the R4810K polymorphism was 3.6%, which approximated the frequencies of 4.2% to 5.2% reported in studies of ischemic stroke patients7,41 ) .
  • RNF213p The proportion of the R4810K polymorphism was clearly increased to 23.3%, suggesting the utility of investigating this polymorphism when ICAD-associated LVO is suspected.
  • RNF213p The R4810K polymorphism can be identified using specific primer and probe sets in as little as an hour after blood collection.
  • the present invention suggests that immediate and early reocclusion is more likely in polymorphism carriers compared to non-polymorphism carriers, and rapid genotyping of genetic polymorphisms may help patients with EVT surgery and post-op. Can assist in choosing care. Furthermore, genotyping results can be used for risk assessment of EVT in patients with acute anterior circulation LVO stroke 42 .
  • Ring finger protein 213 variant and plaque characteristics, vascular remodeling, and hemodynamics in patients with intracranial atherosclerotic stroke a high-resolution magnetic resonance imaging and hemodynamic study.
  • Guidelines for the early management of patients with acute ischemic stroke 2019 update to the 2018 guidelines for the early management of acute ischemic stroke: a guideline for healthcare professionals from the American Heart. Association/American Stroke Association. Stroke. 2019;50:e344-e418. doi: 10.1161/STR.0000000000000211. 16.
  • Ischemic stroke subtype classification an Asian viewpoint. J Stroke. 2014;16:8-17. doi: 10.5853/jos.2014.16.1.8. 19. Hwang YH, Kim YW, Kang DH, Kim YS, Liebeskind DS. Impact of target arterial residual stenosis on outcome after endovascular revascularization. Stroke. 2016;47:1850-1857. doi:10.1161/STROKEAHA. 20. Baek BH, Yoon W, Lee YY, Kim SK, Kim JT, Park MS. Intravenous tirofiban infusion after angioplasty and stenting in intracranial atherosclerotic stenosis-related stroke. Stroke. 2021;52:1601-1608.
  • a method for predicting intracranial cerebral vessel reocclusion comprises: Using a sample collected from a subject, the subject was tested for RNF213p. detecting whether it has the R4810K polymorphism; said subject is said RNF213p. and determining, after endovascular treatment for intracranial cerebral vessel occlusion, that the endovascularly treated vessel is likely to re-occlude when having the R4810K polymorphism.
  • (Section 2) The method of claim 1, further comprising selecting an instrument for use in the endovascular treatment based on the likelihood of reocclusion of the intracranial cerebral vessel.
  • the risk of reocclusion can be reduced.
  • the period earlier than usual after the endovascular treatment is from when recanalization is recognized by the endovascular treatment to during the endovascular treatment.
  • a sample can be obtained with minimal invasiveness.
  • the intracranial cerebral blood vessel is the intracranial internal carotid artery or the middle cerebral artery.
  • the intracranial cerebral vascular occlusion is vascular occlusion due to atherosclerosis.
  • a kit according to one aspect comprises: RNF213p.
  • a PCR primer pair that amplifies a nucleotide sequence containing a genetic mutation corresponding to the R4810K polymorphism; Said RNF213p.
  • the PCR primer pair includes a primer having the nucleotide sequence shown by SEQ ID NO:3 and a primer having the nucleotide sequence shown by SEQ ID NO:4.
  • PCR can be performed with less non-specific amplification.
  • the first probe has the base sequence shown by SEQ ID NO:5 and the second probe has the base sequence shown by SEQ ID NO:6.
  • non-specific detection of PCR products can be reduced.
  • PCR can be easily and rapidly performed using genomic DNA as a template.
  • the invention according to one aspect provides RNF213p.
  • a genetic marker consisting of the R4810K polymorphism for determining whether or not there is a high possibility of reocclusion of a vessel that has received intracranial cerebral vessel occlusion after endovascular treatment.
  • a method for predicting intracranial cerebrovascular restenosis comprises: Using a sample collected from a subject, the subject was tested for RNF213p. detecting whether it has the R4810K polymorphism; said subject is said RNF213p. after endovascular treatment for intracranial cerebral vessel occlusion when having the R4810K polymorphism, determining that the endovascularly treated vessel is likely to restenose.
  • the patient has RNF213p. Having the R4810K polymorphism predicts a susceptibility to restenosis after endovascular treatment. It is believed that when the risk of restenosis is high, the risk of reocclusion is also high.
  • a kit according to one aspect comprises: RNF213p.
  • a PCR primer pair that amplifies a nucleotide sequence containing a genetic mutation corresponding to the R4810K polymorphism; Said RNF213p.
  • the invention according to one aspect provides RNF213p.
  • a genetic marker consisting of the R4810K polymorphism for determining whether or not there is a high possibility of restenosis in the blood vessels that have undergone endovascular treatment after endovascular treatment for intracranial cerebral vessel occlusion.

Abstract

The present invention provides a method for predicting reocclusion of an intracranial cerebral blood vessel, the method comprising: detecting whether or not a subject has a RNF213 p.R4810K polymorphism by using a sample collected from the subject; and determining that, when the subject has the RNF213 p.R4810K polymorphism and after an endovascular therapy is performed on occlusion of the intracranial cerebral blood vessel, there is a high probability of reocclusion occurring in the blood vessel that has undergone the endovascular therapy.

Description

遺伝子多型を利用した判定方法Determination method using genetic polymorphism
 本発明は、遺伝子多型を利用した判定方法に関する。 The present invention relates to a determination method using genetic polymorphism.
 日本における脳卒中の死亡者は年間11万人にのぼり、その7~8割を占めている脳梗塞は、半身麻痺や認知症などの主要な原因となっている。脳梗塞は、脳細胞へ血液を送る血管が閉塞し、脳細胞が死滅する疾患である。脳梗塞は、脳の比較的太い血管の動脈硬化を主因としたアテローム血栓性脳梗塞、脳の細い血管が閉塞するラクナ梗塞、心房細動などの心臓病により心臓で生じた血栓が心臓から流れ出して脳の大血管を閉塞する心原性脳塞栓などに分類される。  In Japan, 110,000 people die from stroke annually, and cerebral infarction, which accounts for 70 to 80% of them, is a major cause of hemiplegia and dementia. Cerebral infarction is a disease in which blood vessels that supply blood to brain cells are blocked and brain cells die. Cerebral infarction is caused by atherothrombotic cerebral infarction, which is mainly caused by arteriosclerosis of relatively large blood vessels in the brain, lacunar infarction, which is caused by blockage of small blood vessels in the brain, and atrial fibrillation. It is classified as cardiogenic cerebral embolism, which blocks the large blood vessels of the brain.
 特開2020-092660号公報(特許文献1)には、脳梗塞未発症の被験者由来のサンプルにおけるRNF213p.R4810K遺伝子多型の有無および被験者の性別情報に基づいて、当該被験者の脳梗塞の発症リスクを予測する方法が開示されている。国際公開第2020/121489号(特許文献2)には、脳梗塞未発症の被験者由来のサンプルにおけるRNF213p.R4810K遺伝子多型を有する場合、当該被験者の脳梗塞の発症時期は通常よりも早いと判断することが開示されている。 Japanese Patent Application Laid-Open No. 2020-092660 (Patent Document 1) discloses that RNF213 p. A method for predicting the risk of developing cerebral infarction in a subject based on the presence or absence of the R4810K gene polymorphism and gender information of the subject is disclosed. International Publication No. 2020/121489 (Patent Document 2) discloses that RNF213p. It is disclosed that when a subject has the R4810K gene polymorphism, the time of onset of cerebral infarction in the subject is judged to be earlier than usual.
特開2020-092660号公報Japanese Patent Application Laid-Open No. 2020-092660 国際公開第2020/121489号WO2020/121489
 脳梗塞を発症した患者に対して、MRI(Magnetic Resonance Imaging)検査またはCT(Computed Tomography)検査を行い、脳梗塞の種類および、脳血管の異常が生じている部位が特定される。脳梗塞に対する処置としては、血管内に詰まった血栓を薬物により溶解させる血栓溶解療法/tPA(tissue Plasminogen Activator)、カテーテルと呼ばれる細い管を足の付け根などから血管に入れて脳の病変部の血栓を直接除去する血管内治療が主に行われる。 For patients who have developed cerebral infarction, MRI (Magnetic Resonance Imaging) examination or CT (Computed Tomography) examination is performed to identify the type of cerebral infarction and the site where cerebrovascular abnormalities occur. As a treatment for cerebral infarction, thrombolytic therapy / tPA (tissue plasminogen activator) that dissolves blood clots clogged in blood vessels with drugs, a thin tube called a catheter is inserted from the base of the foot into the blood vessel to remove blood clots in the lesions of the brain. Endovascular treatment is mainly performed to directly remove the
 脳梗塞に対する血管内治療を受けた患者は、治療された血管が再閉塞することがある。このため、医師は術後数か月にわたり定期的に再閉塞の発症有無を観察する必要があり、患者の往診等の負担も大きい。本発明は、血管内治療後の血管の再閉塞リスクの予測を容易にする方法を提供することを目的とする。 Patients who have undergone endovascular treatment for cerebral infarction may experience reocclusion of the treated vessel. For this reason, doctors need to periodically monitor for the presence or absence of reocclusion for several months after the operation, which imposes a heavy burden on the patient, such as visiting the patient. An object of the present invention is to provide a method for facilitating the prediction of vascular reocclusion risk after endovascular treatment.
 本発明の一実施形態は、
 被験者から採取されたサンプルを用いて前記被験者がRNF213p.R4810K多型を有するか否かを検出することと、
 前記被験者が前記RNF213p.R4810K多型を有するとき、頭蓋内脳血管の閉塞に対する血管内治療後に、前記血管内治療を受けた血管が再閉塞する可能性が高いと判定することと、
 を含む、頭蓋内脳血管の再閉塞を予測するための方法に関する。
One embodiment of the present invention is
Using a sample collected from a subject, the subject was tested for RNF213p. detecting whether it has the R4810K polymorphism;
said subject is said RNF213p. Determining that, when having the R4810K polymorphism, after endovascular treatment for occlusion of an intracranial cerebral vessel, there is a high possibility of reocclusion of the vessel that has undergone endovascular treatment;
to a method for predicting intracranial cerebral vessel reocclusion, comprising:
 本発明の一実施形態は、
 RNF213p.R4810K多型の有無に基づき、頭蓋内脳血管の閉塞に対する血管内治療後に、前記血管内治療を受けた血管が再閉塞する可能性が高いか否かを判定するためのキットであって、
 前記RNF213p.R4810K多型に対応する遺伝子変異を含む塩基配列を増幅するPCRプライマー対と、
 前記RNF213p.R4810K多型の野生型塩基配列に結合する第1プローブおよび変異型塩基配列に結合する第2プローブと、を備え、
 前記第1プローブと前記第2プローブとは、互いに異なる蛍光色素で標識されるキットに関する。
One embodiment of the present invention is
RNF213p. A kit for determining, based on the presence or absence of the R4810K polymorphism, whether or not there is a high possibility of reocclusion of a blood vessel that has undergone endovascular treatment after endovascular treatment for intracranial cerebral vessel occlusion,
Said RNF213p. A PCR primer pair that amplifies a nucleotide sequence containing a genetic mutation corresponding to the R4810K polymorphism;
Said RNF213p. A first probe that binds to the wild-type base sequence of the R4810K polymorphism and a second probe that binds to the mutant base sequence,
The first probe and the second probe relate to kits labeled with fluorescent dyes different from each other.
 本発明の一実施形態は、
 RNF213p.R4810K多型からなる、頭蓋内脳血管の閉塞に対する血管内治療後に、前記血管内治療を受けた血管が再閉塞する可能性が高いか否かを判定するための遺伝子マーカーに関する。
One embodiment of the present invention is
RNF213p. The present invention relates to a genetic marker consisting of the R4810K polymorphism for determining whether, after endovascular treatment for occlusion of intracranial cerebral vessels, there is a high likelihood of reocclusion of the vessels that have received said endovascular treatment.
 本発明によれば、血管内治療後の血管の再閉塞リスクを予測することができる。 According to the present invention, the risk of reocclusion of blood vessels after endovascular treatment can be predicted.
実施例における症例研究のフローチャートである。1 is a flow chart of a case study in an example; 脳主幹動脈閉塞患者における、多型保有者および非保有者の即時および早期再閉塞の発生率を示すグラフである。FIG. 2 is a graph showing the incidence of immediate and early reocclusion in polymorphism carriers and non-carriers in patients with major brain artery occlusion. 頭蓋内アテローム性動脈硬化症関連脳主幹動脈閉塞患者における、多型保有者および非保有者の即時および早期再閉塞の発生率を示すグラフである。FIG. 2 is a graph showing the incidence of immediate and early reocclusion in polymorphism carriers and non-carriers in patients with intracranial atherosclerosis-associated major brain artery occlusion. 突然の左半身麻痺を発症したRNF213p.R4810K多型を有する59歳の男性(表3のcase 3)の例を示す。(A)拡散強調磁気共鳴(MR)画像により、右中大脳動脈(MCA)の皮質灌流領域内にいくつかの急性虚血性病変が示される。(B)MR血管撮像により、右MCAM1閉塞が示される。(C)右内頚動脈血管造影により、右近位MCAM1閉塞が示される。(D)右内頚動脈血管撮像により、有効再開通したが、機械的血栓除去後に末梢灌流の遅延を伴う重度の狭窄が残ったことが示される。(E)血管形成および頭蓋内ステント後の最終血管撮像図である。(F)術後7日目に早期再閉塞し、突然の左半身麻痺を発症した。RNF213p. who developed sudden left hemiplegia. An example of a 59-year-old male with the R4810K polymorphism (case 3 in Table 3) is shown. (A) Diffusion-weighted magnetic resonance (MR) imaging shows several acute ischemic lesions within the cortical perfusion region of the right middle cerebral artery (MCA). (B) MR angiography shows right MCAM1 occlusion. (C) Right internal carotid artery angiography shows right proximal MCAM1 occlusion. (D) Right internal carotid artery angiography shows effective recanalization but remained severe stenosis with delayed peripheral perfusion after mechanical thrombectomy. (E) Final vascular imaging after angioplasty and intracranial stent. (F) Premature reocclusion 7 days after surgery and sudden onset of left hemiparesis.
 [頭蓋内脳血管の再閉塞を予測するための方法]
 本発明の一実施形態に係る頭蓋内脳血管の再閉塞を予測するための方法は、
 被験者から採取されたサンプルを用いて前記被験者がRNF213p.R4810K多型を有するか否かを検出するステップと、
 前記被験者が前記RNF213p.R4810K多型を有するとき、頭蓋内脳血管の閉塞に対する血管内治療後に、前記血管内治療を受けた血管が再閉塞する可能性が高いと判定するステップと、を含む。
[Method for predicting reocclusion of intracranial cerebral vessels]
A method for predicting intracranial cerebral vessel reocclusion according to an embodiment of the present invention comprises:
Using a sample collected from a subject, the subject was tested for RNF213p. detecting whether it has the R4810K polymorphism;
said subject is said RNF213p. and determining, after endovascular treatment for intracranial cerebral vessel occlusion, that the endovascularly treated vessel is likely to re-occlude when carrying the R4810K polymorphism.
 本発明に係る頭蓋内脳血管の再閉塞を予測するための方法によれば、血管内治療後の血管の再閉塞リスクが高いか否かの予測を容易に行うことができる。本発明に係る頭蓋内脳血管の再閉塞を予測するための方法によれば、血管内治療後の再閉塞のリスクが高い患者を識別することができる。これにより、再閉塞のリスクが高い患者には、再閉塞の発症を防止するための治療および/または観察を優先的にまたは高頻度で行うことができる。本方法は、血管の再閉塞リスクの予測を補助する方法ともいえる。本方法は、医師による判断工程を含まず、人間を診断する方法には該当しない。 According to the method for predicting reocclusion of intracranial cerebral blood vessels according to the present invention, it is possible to easily predict whether the risk of reocclusion of blood vessels after endovascular treatment is high. The method for predicting reocclusion of intracranial cerebral vessels according to the present invention allows identification of patients at high risk of reocclusion after endovascular treatment. This allows patients at high risk of reocclusion to be prioritized or more frequently treated and/or monitored to prevent the development of reocclusion. This method can also be said to be a method for assisting in predicting the risk of reocclusion of blood vessels. This method does not include a judgment step by a doctor and does not correspond to a method for diagnosing humans.
 Ring finger protein 213遺伝子(RNF213)のp.R4810K多型(c.14576G>A)は、東アジアにおけるもやもや病(ウィリス動脈輪閉塞症)1)の創始者多型である1-4)。RNF213p.R4810K多型は、配列番号2で表される核酸配列における73097 G>Aの一塩基多型(single nucleotide polymorphism:SNP)である。このRNF213SNPは健康な日本人の2.5%、韓国人の2.7%、中国人の0.9%に見られるが、コーカソイド(欧州人)には見られない3,5,6)。46958名の日本人(脳梗塞17752名、対照29206名)を対象にした近年の研究の結果、この多型は非心原性脳卒中患者の5.2%、健康な対照群の2.1%に見られ、RNF213p.R4810K多型が日本人の虚血性脳卒中(脳梗塞)のリスク因子であることが示されている7)Ring finger protein 213 gene (RNF213) p. The R4810K polymorphism (c.14576G>A) is the founder polymorphism of Moyamoya disease (Circle of Willis occlusion) 1) in East Asia 1-4) . RNF213p. The R4810K polymorphism is a single nucleotide polymorphism (SNP) of 73097 G>A in the nucleic acid sequence represented by SEQ ID NO:2. This RNF213 SNP is found in 2.5% of healthy Japanese, 2.7% of healthy Koreans, and 0.9% of Chinese, but not in Caucasian (European) 3,5,6) . A recent study of 46,958 Japanese subjects (17,752 with cerebral infarction and 29,206 controls) found that this polymorphism was present in 5.2% of non-cardiogenic stroke patients and 2.1% of healthy controls. and RNF213 p. It has been shown that the R4810K polymorphism is a risk factor for ischemic stroke (cerebral infarction) in Japanese 7) .
 配列番号2は、RNF213遺伝子(別名ミステリン遺伝子:moyamoya steno-occlusive disease-associated AAA+ and RING finger protein)およびその周辺領域の遺伝子[FLJ3520、NPTX1、CARD14およびRaptor(KIAA1303)]を含むヒト第17番染色体DNAの部分ヌクレオチド配列であり、NCBIに登録されているContig#NT010783.15の第43560001~43795000番目のヌクレオチドに相当する。なお、「G>A」の表記は、「>」の記号の前にメジャーアレルの塩基(この場合G)を、後にマイナーアレルの塩基(この場合A)を記載している。 SEQ ID NO: 2 contains the RNF213 gene (also known as mysterin gene: moyamoya steno-occlusive disease-associated AAA+ and RING finger protein) and its peripheral region genes [FLJ3520, NPTX1, CARD14 and Raptor (KIAA1303)] Chromosome 17 Partial nucleotide sequence of DNA corresponding to nucleotides 43560001 to 43795000 of Contig #NT010783.15 registered with NCBI. In the notation of "G>A", the base of the major allele (G in this case) precedes the symbol ">" and the base of the minor allele (A in this case) follows.
 RNF213遺伝子は、dual AAA+ATPaseドメインとE3リガーゼドメインを含むタンパク質をコードし、血管リモデリングおよび血管新生の制御に重要な役割を果たす3,8)。近年の研究では、RNF213p.R4810Kの過剰発現によりヒト内皮細胞の血管新生活性および増殖が抑制される一方、野生型RNF213の過剰発現ではこれらが起こらないことが示された8,9)。さらに、RNF213の基質であるフィラミンAが蓄積することで、血管平滑筋細胞の中膜から内膜への遊走および増殖によって血管リモデリングが促進されることが示されている10、11)。このような血管系の細胞の変化によってRNF213p.R4810K多型関連頭蓋内主幹動脈狭窄の特徴である血管のネガティブリモデリングが生じる可能性が示唆されている12-14)The RNF213 gene encodes a protein containing dual AAA+ATPase and E3 ligase domains and plays an important role in regulating vascular remodeling and angiogenesis 3,8) . In recent studies, RNF213p. Overexpression of R4810K was shown to suppress the angiogenic activity and proliferation of human endothelial cells, whereas overexpression of wild-type RNF213 did not 8,9) . Furthermore, accumulation of filamin A, a substrate of RNF213, has been shown to promote vascular remodeling by migration and proliferation of vascular smooth muscle cells from the media to the intima 10,11) . Such cell changes in the vasculature lead to RNF213p. It has been suggested that the R4810K polymorphism-associated negative remodeling of blood vessels that is characteristic of major intracranial artery stenosis may occur 12-14) .
 (被験者から採取されたサンプルを用いて、被験者がRNF213p.R4810K多型を有するか否かを検出するステップ)
 RNF213p.R4810K多型の有無は、ゲノムDNA、RNAまたはタンパク質から検出することができる。検出されるRNF213p.R4810K多型は、変異型のホモ接合型であってよく、変異型と野生型とのヘテロ接合型(GA型)であってもよい。
(Step of detecting whether the subject has the RNF213p.R4810K polymorphism using a sample collected from the subject)
RNF213p. The presence or absence of the R4810K polymorphism can be detected from genomic DNA, RNA or protein. Detected RNF213p. The R4810K polymorphism may be homozygous for the mutant or heterozygous for the mutant and wild type (GA type).
 多型の検出に核酸を使用する場合、RNF213遺伝子の14576番目の塩基が、野生型ではグアニン(G)であるのに対し、変異型ではアデニン(A)となるSNPを検出すればよい。SNPの検出は当該技術分野において周知の方法を用いればよく、例えばPCR-RFLP(restriction fragment length polymorphism:制限酵素切断断片長多型)法、PCR-SSCP(single strand conformation polymorphism:一本鎖DNA高次構造多型解析)法、PCR-SSO(specific sequence oligonucleotide:特異的配列オリゴヌクレオチド)法、ASO(Allele Specific Oligonucleotide)ハイブリダイゼーション法、シークエンス法、次世代シーケンス法、ARMS(Amplification Refracting Mutation System)法、変性濃度勾配ゲル電気泳動(Denaturing Gradient Gel Electrophoresis)法、RNAseA切断法、DOL(Dye-labeled Oligonucleotide Ligation)法、TaqMan PCR法、リアルタイムPCR法、SNaP Shot法、質量分析法、primer extension法、インベーダー法、DNAチップ法またはDNAマイクロアレイを用いた方法、一塩基伸長法、サザンブロットハイブリダイゼーション法、ドットハイブリダイゼーション法、Pyrosequencing法、Exonuclease Cycling Assay法などが使用できる。SNPは後述するキットを使用して検出してもよい。 When using a nucleic acid to detect a polymorphism, an SNP in which the 14576th base of the RNF213 gene is guanine (G) in the wild type, but adenine (A) in the mutant type should be detected. SNPs may be detected using methods well known in the art, such as PCR-RFLP (restriction fragment length polymorphism) method, PCR-SSCP (single strand conformation polymorphism) method, secondary structural polymorphism analysis) method, PCR-SSO (specific sequence oligonucleotide) method, ASO (Allele Specific Oligonucleotide) hybridization method, sequencing method, next-generation sequencing method, ARMS (Amplification Refracting Mutation System) em) method , Deterted concentration gradient gel Electrical Volunteer Swimming Movement (DENATURING GEL ELECTROPHORESIS, RNASEA Cutting, DOL (DYE -LABELED OLIGONUCLEOTITIDE LIGATION), TAQMANN PCR method, real -time PCR method, SNAP SHOT method, mass spectrometry method, Primer EXTENSION method, Invader method, DNA chip method or DNA microarray method, single nucleotide extension method, Southern blot hybridization method, dot hybridization method, Pyrosequencing method, Exonuclease Cycling Assay method and the like can be used. SNPs may be detected using the kits described below.
 RNF213p.R4810K多型の有無をタンパク質を用いて検出する場合、RNF213遺伝子がコードするタンパク質(配列番号1)の4810番目のアルギニン(R)がリジン(K)に変わる変異を検出すればよい。アミノ酸変異は、例えば立体構造解析、質量分析、抗原抗体反応、超遠心、電気泳動、吸光度測定またはこれらの組み合わせなどを利用して検出することができる。  RNF213 p. When detecting the presence or absence of the R4810K polymorphism using a protein, a mutation in which arginine (R) at position 4810 in the protein (SEQ ID NO: 1) encoded by the RNF213 gene is changed to lysine (K) may be detected. Amino acid mutations can be detected using, for example, steric structure analysis, mass spectrometry, antigen-antibody reaction, ultracentrifugation, electrophoresis, absorbance measurement, or a combination thereof.
 サンプルは、ゲノムDNAまたはタンパク質等を採取可能な任意の組織、細胞または体液由来であってよい。サンプルは、例えば、毛髪、爪、皮膚、粘膜、血液、唾液、涙、尿、糞便、汗、リンパ液、母乳、羊水、体腔液(腹水、胸水、脳脊髄液を含む)などが挙げられる。血液は、全血であってもよく、血漿または血清であってもよい。入手の際の低侵襲性の観点から、サンプルは血液または唾液であることが好ましい。サンプルは、生理食塩水、緩衝液などで希釈されていてもよく、組織または細胞の抽出物または破砕物であってもよい。サンプルは凍結保存されてもよい。サンプルの採取は、サンプルの種類に応じて公知の方法で行えばよい。 The sample may be derived from any tissue, cell, or bodily fluid from which genomic DNA or protein, etc. can be collected. Examples of samples include hair, nails, skin, mucous membranes, blood, saliva, tears, urine, feces, sweat, lymph, breast milk, amniotic fluid, body cavity fluid (including ascites, pleural fluid, and cerebrospinal fluid). The blood may be whole blood, plasma or serum. The sample is preferably blood or saliva from the viewpoint of minimal invasiveness in obtaining. Samples may be diluted in saline, buffers, etc., and may be tissue or cell extracts or lysates. Samples may be stored frozen. Sample collection may be performed by a known method depending on the type of sample.
 被験者は、ヒトであってよく、脳梗塞未発症の人でもよく、脳梗塞を発症した人であってもよい。ヒトの人種は、特に限定されないが、好ましくは東アジア人(イーストアジアン/モンゴロイド)である。東アジア人は、日本、朝鮮、中国、台湾およびモンゴルの人々のいずれかを起源に持つ人を意味する。東アジア人は、日本人、朝鮮人または中国人であってよい。人種とは、ホモ・サピエンス種の中の、特定のサブグループとして区別可能な集団である。世界の主要な人種としては、遺伝情報等に基づいて例えばアフリカン(ネグロイド)、コーカソイド(白人)、オセアニアン(オーストラロイド)、イーストアジアン(モンゴロイド)およびネイティブアメリカンの5種に分類され得る。 The subject may be a human, a person who has not yet developed a cerebral infarction, or a person who has developed a cerebral infarction. Human race is not particularly limited, but is preferably East Asian (East Asian/Mongoloid). East Asians refer to people of Japanese, Korean, Chinese, Taiwanese and Mongolian origin. East Asians may be Japanese, Korean or Chinese. A race is a distinct subgroup within the Homo sapiens species. The world's major races can be classified into five groups based on genetic information, for example, African (Negroid), Caucasian (Caucasian), Oceanian (Australoid), East Asian (Mongoloid) and Native American.
 (被験者がRNF213p.R4810K多型を有するとき、頭蓋内脳血管の閉塞に対する血管内治療後に、血管内治療を受けた血管が再閉塞する可能性が高いと判定するステップ)
 本発明においては、患者がRNF213p.R4810K多型を有するとき、血管内治療後の再閉塞が起こりやすいと判定される。血管内治療後の再閉塞の要因としては、血管内治療時には血管内皮細胞を傷つけるおそれがあり、このときに生じた傷害がもとで、血栓形成機転が促進され、再び血栓により閉塞することが考えられる。再閉塞前の頭蓋内脳血管の閉塞(血管内治療を行う要因となった閉塞)は、心原性脳梗塞およびアテローム性動脈硬化性脳梗塞が挙げられる。アテローム性動脈硬化は、脳血管の内腔にコレステロール、脂肪、炎症細胞などが蓄積してプラークが形成されて血管の内腔が狭くなった状態を指し、ここに血栓が付着したり、プラークが破綻すると脳梗塞となり得る。再閉塞前の頭蓋内脳血管の閉塞がアテローム性動脈硬化を原因とする閉塞であるとき、血管内治療の際により血管が傷つきやすいため、再閉塞がより発生しやすいと考えられる。患者がRNF213p.R4810K多型を有し、かつ脳梗塞の原因がアテローム性動脈硬化であるとき、血管内治療後の血管の再閉塞のリスクはより高いと予測される。また、患者がRNF213p.R4810K多型を有するとき、血管内治療後の再狭窄が起こりやすいことが予測される。本発明は、頭蓋内脳血管の再狭窄を予測するための方法であってもよい。
(Determining that, after endovascular treatment for intracranial cerebral vessel occlusion, there is a high likelihood of reocclusion of the endovascularly treated vessel when the subject has the RNF213p.R4810K polymorphism)
In the present invention, the patient has RNF213p. Having the R4810K polymorphism is determined to be prone to reocclusion after endovascular treatment. As a factor of reocclusion after endovascular treatment, vascular endothelial cells may be damaged during endovascular treatment. Based on the damage caused at this time, the mechanism of thrombus formation is promoted, and thrombus may cause reocclusion. Conceivable. Occlusion of intracranial cerebral vessels before reocclusion (occlusion that led to endovascular treatment) includes cardiogenic cerebral infarction and atherosclerotic cerebral infarction. Atherosclerosis is a condition in which cholesterol, fat, inflammatory cells, etc. accumulate in the lumen of cerebral blood vessels, forming plaque and narrowing the lumen of the blood vessel. A rupture can result in a stroke. When intracranial cerebral vessel occlusion before reocclusion is caused by atherosclerosis, reocclusion is thought to occur more easily because the vessel is more susceptible to injury during endovascular treatment. If the patient has RNF213p. With the R4810K polymorphism and when the cause of the stroke is atherosclerosis, the risk of vessel reocclusion after endovascular treatment is expected to be higher. Also, if the patient has RNF213p. Having the R4810K polymorphism predicts a susceptibility to restenosis after endovascular treatment. The present invention may be a method for predicting restenosis of intracranial cerebral vessels.
 血管内治療としては、カテーテルの先端につけられたステント(金属の網)に血栓をからめて回収する方法、カテーテルに接続された吸引ポンプよって血栓を吸引しながら回収する方法、バルーンによって血管を拡張する方法、血管内にステントを留置する方法などが挙げられる。血管内治療は、発症した脳梗塞の種類、血栓の大きさおよび位置により適切な治療法またはこれらの組み合わせが選択される。血管内治療は、脳血管の狭窄に対しても行われ得る。 Endovascular treatment includes a method of retrieving the thrombus by entangling it with a stent (metal net) attached to the tip of the catheter, a method of retrieving the thrombus while aspirating it with a suction pump connected to the catheter, and a method of dilating the blood vessel with a balloon. method, a method of placing a stent in a blood vessel, and the like. For endovascular therapy, an appropriate therapeutic method or a combination thereof is selected depending on the type of cerebral infarction that has developed, the size and location of the thrombus. Endovascular therapy can also be performed for stenosis of cerebral vessels.
 頭蓋内脳血管の再閉塞を予測するための方法は、血管が再閉塞する可能性に基づいて血管内治療に使用する器具を選択することをさらに含んでもよい。上述のように、血管に負担が生じることで血管の再閉塞が起こりやすくなる可能性がある。血管への負担は、吸引によって血栓を回収する方法やステントによって血栓を回収する方法では小さく、バルーンにより血管を拡張する方法やステントを留置する方法では大きいと予想される。再閉塞が起こる可能性が高いと判定された場合には、より血管への負担が少ない治療方法および器具を選択することで、再閉塞のリスクを減少し得る。選択される器具は薬剤溶出性ステント(drug eluting stent:DES)であってもよい。 The method for predicting intracranial cerebral vessel reocclusion may further include selecting an instrument for endovascular treatment based on the likelihood of vessel reocclusion. As described above, there is a possibility that reocclusion of the blood vessel may occur easily due to the strain on the blood vessel. It is expected that the method of retrieving a thrombus by suction or the method of retrieving a thrombus by a stent will place a small burden on the blood vessel, while the method of dilating the blood vessel with a balloon or the method of placing a stent will place a large burden on the blood vessel. If it is determined that reocclusion is likely to occur, the risk of reocclusion may be reduced by selecting less vascular-intrusive treatment methods and instruments. The device of choice may be a drug eluting stent (DES).
 血管が再閉塞する可能性に基づいて、投与する薬剤の用量、用法、投与期間、投与時期などを調整してもよい。薬剤は抗血小板剤、抗トロンビン剤、抗凝固剤、デキストランなどが挙げられる。薬剤は、経口または注射投与される薬剤であってよい。 Based on the possibility of reocclusion of blood vessels, the dosage, administration method, administration period, administration timing, etc. of the administered drug may be adjusted. Drugs include antiplatelet agents, antithrombin agents, anticoagulants, dextran, and the like. The drug may be an orally or injected drug.
 血管が再閉塞する可能性が高いと判定するステップにおいて、血管内治療後の通常よりも早い期間に、治療を受けた血管が再閉塞する可能性が高いと判定することを含んでもよい。血管内治療後の通常よりも早い期間は、血管内治療により再開通が認められてから血管内治療術中までであってもよく(即時再閉塞)、血管内治療により再開通が認められてから2週間以内であってもよい(早期再閉塞)。 The step of determining that the blood vessel is likely to re-occlude may include determining that the treated vessel is likely to re-occlude earlier than usual after the endovascular treatment. The earlier-than-usual period after endovascular treatment may be from the time recanalization is observed by endovascular treatment to the time during endovascular treatment (immediate reocclusion), or after recanalization is observed by endovascular treatment. May be within 2 weeks (early reocclusion).
 血管内治療が行われる頭蓋内脳血管は、脳主幹動脈であってよく、脳主幹動脈としては頭蓋内内頚動脈、中大脳動脈、前大脳動脈、椎骨動脈、脳底動脈などが含まれる。血管内治療後の再閉塞のリスクは特に頭蓋内内頚動脈および中大脳動脈において高い傾向がある。 The intracranial cerebral artery in which endovascular treatment is performed may be the main cerebral artery, and the main cerebral artery includes the intracranial internal carotid artery, the middle cerebral artery, the anterior cerebral artery, the vertebral artery, and the basilar artery. The risk of reocclusion after endovascular treatment tends to be particularly high in the intracranial internal carotid artery and middle cerebral artery.
 [キット]
 本発明の一実施形態に係るキットは、
 RNF213p.R4810K多型の有無に基づき、頭蓋内脳血管の閉塞に対する血管内治療後に、前記血管内治療を受けた血管が再閉塞する可能性が高いか否かを判定するためのキットであって、
 前記RNF213p.R4810K多型に対応する遺伝子変異を含む塩基配列を増幅するPCRプライマー対と、
 前記RNF213p.R4810K多型の野生型塩基配列に結合する第1プローブおよび変異型塩基配列に結合する第2プローブと、を備え、
 前記第1プローブと前記第2プローブとは、互いに異なる蛍光色素で標識される。
 キットは、血管内治療を受けた血管が再狭窄する可能性が高いか否かを判定するためのキットであってもよい。
[kit]
A kit according to an embodiment of the present invention comprises
RNF213p. A kit for determining, based on the presence or absence of the R4810K polymorphism, whether or not there is a high possibility of reocclusion of a blood vessel that has undergone endovascular treatment after endovascular treatment for intracranial cerebral vessel occlusion,
Said RNF213p. A PCR primer pair that amplifies a nucleotide sequence containing a genetic mutation corresponding to the R4810K polymorphism;
Said RNF213p. A first probe that binds to the wild-type base sequence of the R4810K polymorphism and a second probe that binds to the mutant base sequence,
The first probe and the second probe are labeled with fluorescent dyes different from each other.
The kit may be a kit for determining whether a blood vessel that has undergone endovascular treatment has a high probability of restenosis.
 上記プライマー対および第1プローブと第2プローブとのセットを有するキットを使用すれば、被験者から採取されたサンプルから迅速に、かつ高い特異性でRNF213p.R4810K多型を検出することができる。被験者がRNF213p.R4810K多型を有するか否かに基づき、血管内治療後の血管の再閉塞または再狭窄のリスクが高いか否かを予測することができる。本キットは、血管内治療後の血管の再閉塞または再狭窄のリスクを予測するための情報を提供することができる。本キットは、被検者から採取されたサンプル中の核酸、好ましくはゲノムDNAのRNF213遺伝子におけるp.R4810K多型(c.14576G>A)を判別できる。検出されるRNF213p.R4810K多型は、変異型のホモ接合型または変異型と野生型とのヘテロ接合型であってよい。 By using a kit having the primer pair and the set of the first probe and the second probe, RNF213p. The R4810K polymorphism can be detected. If the subject is RNF213p. Based on whether or not a person has the R4810K polymorphism, it can be predicted whether there is an increased risk of reocclusion or restenosis of the vessel after endovascular treatment. The kit can provide information for predicting the risk of vessel reocclusion or restenosis after endovascular treatment. The kit contains a nucleic acid in a sample taken from a subject, preferably a p.o. The R4810K polymorphism (c.14576G>A) can be discriminated. Detected RNF213p. The R4810K polymorphism may be homozygous for the mutant or heterozygous for the mutant and wild type.
 PCRプライマー対は、被検者から採取された検体中のゲノムDNAを鋳型とし、ポリメラーゼ連鎖反応(polymerase chain reaction:PCR)により、分析対象であるRNF213p.R4810K多型のSNP部位を含む核酸断片を増幅することができる。野生型を検出するための増幅部位と変異型を検出するための増幅部位は同一である。増幅する核酸断片の長さとしては、RNF213p.R4810K多型のSNP部位を含む80~100塩基が好ましい。このようなPCRプライマー対としては、配列番号7に示す塩基配列からなる領域に対してストリンジェントな条件でハイブリダイズするオリゴヌクレオチド(フォワードプライマーおよびリバースプライマー)が好ましい。ここでのストリンジェントな条件とは、鋳型DNAにプライマーが結合するステップであるPCRにおけるアニーリングにおいて、鋳型DNAとプライマーとの結合が特異的である条件をいう。プライマーのTは、例えば58~60℃になるように設計されてよい。PCRプライマーの塩基長は15~25塩基であることが好ましい。特異性の観点から、本発明係るキットは、好ましくは配列番号3に示す塩基配列を有するプライマーおよび配列番号4に示す塩基配列を有するプライマーを含むPCRプライマー対を備える。
5’-TTCCAGAACGTCCAGCAAGT-3’(forward;配列番号3)
5’-ACAGTCCTGGTCCTGTCAGA-3’(Reverse;配列番号4)
A PCR primer pair uses the genomic DNA in the specimen collected from the subject as a template, and the RNF213p. A nucleic acid fragment containing the SNP site of the R4810K polymorphism can be amplified. The amplification site for detecting the wild type and the amplification site for detecting the mutant are identical. As the length of the nucleic acid fragment to be amplified, RNF213p. 80-100 bases including the SNP site of the R4810K polymorphism are preferred. As such a PCR primer pair, oligonucleotides (forward primer and reverse primer) that hybridize under stringent conditions to the region consisting of the base sequence shown in SEQ ID NO:7 are preferred. Here, the stringent conditions refer to conditions under which the binding between the template DNA and the primers is specific in the annealing in PCR, which is the step of binding the primers to the template DNA. The T m of the primers may be designed to be, for example, 58-60°C. The base length of the PCR primer is preferably 15-25 bases. From the viewpoint of specificity, the kit according to the present invention preferably comprises a PCR primer pair comprising a primer having the nucleotide sequence shown in SEQ ID NO:3 and a primer having the nucleotide sequence shown in SEQ ID NO:4.
5′-TTCCAGAACGTCCAGCAAGT-3′ (forward; SEQ ID NO: 3)
5′-ACAGTCCTGGTCCTGTCAGA-3′ (Reverse; SEQ ID NO: 4)
 下記の配列は、RNF213遺伝子においてRNF213p.R4810K多型のSNPを含む領域の塩基配列である。SNP部位を含む限りに、下記配列の任意の塩基配列を増幅することができる。
5’-CCCAATAACATTTTTTAGGTAAATAAAAATTGTTACTGGGTGGTCTTCCCTTCTCCAGGAAGCAGAGCTGAGGCTGGTAAAGTTCCTGCCTGAGATTTTGGCCTTGCAAAGGGATCTAGTGAAGCAGTTCCAGAACGTCCAGCAAGTTGAATACAGCTCCATCAGAGGCTTCCTCAGCAAGCACAGCTCAGGTGTGGCTCTGCTCTGACAGGACCAGGACTGTCCCGCATTTGGCGGTTCGAAAGGATCACTGCATAGGGGAACAGGGTGGGGCGGAGGGGAGGAGGCGCTGATGGGTGCTCTATAGCCTAAGCCCTTACCATGCGGTGAAGGGTGCTTGAACCCCAAAA-3’(配列番号7)
The sequences below represent RNF213p. It is the nucleotide sequence of the region containing the SNP of the R4810K polymorphism. Any base sequence of the following sequences can be amplified as long as it contains a SNP site.
5′-CCCAATAACATTTTTTAGGTAAAAAAATTGTTACTGGGTGGTCTTCCCTTCTCCAGGAAGCAGCAGAGCTGAGGCTGGTAAAGTTCCTGCCTGAGATTTTGGCCTTGCAAAGGGATCTAGTGTAAGCAGTTCCAGAACGTCCAGCAAGTTGAATACAGCTCCAT CAGAGGCTTCCTCAGCAAGCACAGCTCAGGTGTGGCTCTGCTCTGACAGGACCAGGGACTGTCCCGCATTTGGCGGGTTCGAAAAGGATCACTGCATAGGGGGAACAGGGTGGGGGCGGAGGGGAGGAGGCGCGCTGATGGGTGCTCTATAGCCTAAGCCCTTACCATGCGGTGAA GGGTGCTTGAACCCCCAAAA-3' (SEQ ID NO: 7)
 プローブは、FRETの原理を利用したリアルタイムPCRに用いられ、当該方法に適合するように、プローブの配列が設計され、レポーター蛍光色素およびクエンチャーが選択される。第1プローブは、RNF213遺伝子の14576番目のSNP部位が野生型塩基(G)である核酸断片に結合する。第2プローブは、RNF213遺伝子の14576番目のSNP部位がG>Aに置き換わった変異型の核酸断片に結合する。第1プローブは、好ましくは、野生型RNF213遺伝子を鋳型としてPCRにより増幅された野生型塩基配列を有する核酸断片に対してストリンジェントな条件でハイブリダイズするが、PCRにより増幅されたRNF213p.R4810K多型のSNP部位を含む核酸断片に対してストリンジェントな条件でハイブリダイズしない。一方、第2プローブは、PCRにより増幅されたRNF213p.R4810K多型のSNP部位を含む核酸断片に対してストリンジェントな条件でハイブリダイズするが、野生型RNF213遺伝子を鋳型としてPCRにより増幅された野生型塩基配列を有する核酸断片に対してストリンジェントな条件でハイブリダイズしない。ストリンジェントな条件とは、PCRにより増幅された核酸断片とプローブとの間で、アニーリング時に特異的なハイブリッドが形成され、非特異的なハイブリッドは形成されない条件をいう。プライマー対によって増幅されたPCR産物のほぼ中央を標的とするようにプローブの配列を設計することが好ましい。 The probes are used for real-time PCR using the FRET principle, the probe sequences are designed, and the reporter fluorescent dye and quencher are selected so as to be compatible with the method. The first probe binds to a nucleic acid fragment in which the 14576th SNP of the RNF213 gene is a wild-type base (G). The second probe binds to a mutant nucleic acid fragment in which the 14576th SNP of the RNF213 gene is replaced with G>A. The first probe preferably hybridizes under stringent conditions to a nucleic acid fragment having a wild-type nucleotide sequence amplified by PCR using the wild-type RNF213 gene as a template. It does not hybridize under stringent conditions to a nucleic acid fragment containing the SNP site of the R4810K polymorphism. On the other hand, the second probe was RNF213p. It hybridizes under stringent conditions to a nucleic acid fragment containing the SNP site of the R4810K polymorphism, but under stringent conditions to a nucleic acid fragment having a wild-type nucleotide sequence amplified by PCR using the wild-type RNF213 gene as a template. Do not hybridize with Stringent conditions refer to conditions under which specific hybrids are formed during annealing between nucleic acid fragments amplified by PCR and probes, but non-specific hybrids are not formed. It is preferred to design the probe sequences to target approximately the middle of the PCR product amplified by the primer pair.
 プローブの塩基長は、好ましくは10~25塩基であり、より好ましくは15~20塩基である。プローブのTが例えば68~70℃になるように設計すればよい。特異性の観点から、本発明に係るキットは、好ましくは配列番号5に示す塩基配列を有する第1プローブおよび配列番号6に示す塩基配列を有する第2プローブのセットを含む。
第1プローブ:5’-CTCCATCAGAGGCTTCCT-3’(配列番号5)
第2プローブ:5’-CTCCATCAAAGGCTTCCT-3’(配列番号6)
The base length of the probe is preferably 10-25 bases, more preferably 15-20 bases. The Tm of the probe may be designed to be, for example, 68-70°C. From the viewpoint of specificity, the kit according to the present invention preferably contains a set of the first probe having the base sequence shown in SEQ ID NO:5 and the second probe having the base sequence shown in SEQ ID NO:6.
First probe: 5'-CTCCATCAGAGGCTTCCT-3' (SEQ ID NO: 5)
Second probe: 5'-CTCCATCAAAGGCTTCCT-3' (SEQ ID NO: 6)
 以上の配列は一例であって、特異的なハイブリダイゼーションを支障なく行える限度において一部の塩基配列に改変が施されたものであってもよい。ここでの「一部の改変」とは、塩基の一部が欠失、置換、挿入および/または付加されていることを意味する。改変にかかる塩基数は例えば1~3個、1~2個、または1個である。 The above sequence is an example, and part of the base sequence may be modified to the extent that specific hybridization can be performed without hindrance. Here, "partially modified" means deletion, substitution, insertion and/or addition of part of the bases. The number of bases to be modified is, for example, 1 to 3, 1 to 2, or 1.
 プローブとしては、加水分解プローブ、Molecular Beacon、サイクリングプローブなどが挙げられるが、これらに限定されない。加水分解プローブの一例は、5’末端が蛍光色素で、3’末端がクエンチャー物質で修飾されたオリゴヌクレオチドである。加水分解プローブは、PCRのアニーリング時に鋳型DNAに特異的にハイブリダイズするが、プローブ上にクエンチャーが存在するため、励起光を照射しても蛍光の発生は抑制される。PCRの伸長反応ステップで、Taq DNAポリメラーゼが有する5’→3’エキソヌクレアーゼ活性により、鋳型DNAにハイブリダイズした加水分解プローブが分解されると、蛍光色素がプローブから遊離し、クエンチャーによる蛍光の抑制が解除されて蛍光を発する。この蛍光強度を測定することにより、増幅産物の生成量を測定することができる。蛍光色素としては、FAM(6-carboxyfluorescein)、ROX(6-carboxy-X-rhodamine)、Cy3およびCy5(Cyanine系色素)、HEX(4,7,2’,4’,5’,7’-hexachloro-6-carboxyfluorescein)、VIC、TET(tetrachlorofluorescein)、NED、CAL Fluor Orange 560(CFO)、CAL Fluor Gold 540、CAL Fluor Red 590、CAL Fluor Red 610、CAL Fluor Red 635、Quasar 570、Quasar 670、Quasar 705、T(JOE)など挙げられるが、これらに限定されない。クエンチャーとしては、TAMRA(tetramethylrhodamine;登録商標)、BHQ(Black Hole Quencher;登録商標)-1、BHQ-2、BHQ-3、Pulsar 650、Spacer C3、MGB-Eclipse(登録商標)、DABCYLなどが挙げられるが、これらに限定されない。 Probes include, but are not limited to, hydrolysis probes, Molecular Beacons, cycling probes, and the like. An example of a hydrolysis probe is an oligonucleotide modified with a fluorescent dye at the 5' end and a quencher substance at the 3' end. The hydrolysis probe specifically hybridizes to the template DNA during PCR annealing, but the presence of the quencher on the probe suppresses the generation of fluorescence even when irradiated with excitation light. In the elongation reaction step of PCR, when the hydrolysis probe hybridized to the template DNA is decomposed by the 5'→3' exonuclease activity of Taq DNA polymerase, the fluorescent dye is released from the probe, and the fluorescence is emitted by the quencher. The suppression is released and fluorescence is emitted. By measuring this fluorescence intensity, the production amount of the amplification product can be measured. Fluorescent dyes include FAM (6-carboxyfluorescein), ROX (6-carboxy-X-rhodamine), Cy3 and Cy5 (cyanine dyes), HEX (4,7,2′,4′,5′,7′- hexachloro-6-carboxyfluorescein), VIC, TET (tetrachlorofluorescein), NED, CAL Fluor Orange 560 (CFO), CAL Fluor Gold 540, CAL Fluor Red 590, CAL Fluor Red 610, CAL Fluor Red 635, Quasar 570, Quasar 670, Quasar 705, T (JOE), etc., but not limited to these. Examples of quenchers include TAMRA (tetramethylrhodamine; registered trademark), BHQ (Black Hole Quencher; registered trademark)-1, BHQ-2, BHQ-3, Pulsar 650, Spacer C3, MGB-Eclipse (registered trademark), DABCYL, and the like. include, but are not limited to.
 第1プローブおよび第2プローブは、お互いに異なる蛍光色素で標識される。お互いに異なる蛍光色素の組み合わせは、蛍光特性が異なり、蛍光測定において相互に干渉がなければ特に限定されない。第1プローブの蛍光色素と第2プローブの蛍光色素の組合せとしては、FAMとHEX(いずれが第1プローブの蛍光色素であってもよい。以下の組合せにおいても同様である)、FAMとCFO、FAMとVIC、FAMとTET、HEXとJoe、HEXとTET等を挙げることができる。 The first probe and the second probe are labeled with fluorescent dyes different from each other. Combinations of different fluorescent dyes are not particularly limited as long as they have different fluorescent properties and do not interfere with each other in fluorescence measurement. As a combination of the fluorescent dye of the first probe and the fluorescent dye of the second probe, FAM and HEX (which may be the fluorescent dye of the first probe. The same applies to the following combinations), FAM and CFO, Examples include FAM and VIC, FAM and TET, HEX and Joe, HEX and TET, and the like.
 本発明に係るキットは、界面活性剤およびプロテイナーゼKを含むPCR緩衝液をさらに備えてもよい。界面活性剤は、細胞および生体組織等を溶解できる。界面活性剤としては、陰イオン界面活性剤、陽イオン界面活性剤、両性界面活性剤または非イオン界面活性剤を選択することができる。界面活性剤は好ましくは、陰イオン界面活性剤であり、より好ましくはドデシル硫酸ナトリウムである。界面活性剤がドデシル硫酸ナトリウムであるとき、その濃度はサンプルとの混合時に0.1~0.5%(w/v)であることが好ましい。プロテイナーゼKは、DNAおよびRNA分解酵素を不活化する作用がある。プロテイナーゼKの濃度は、サンプルとの混合時に100~300μg/mLであることが好ましい。PCR緩衝液は、KCl、MgClおよびdNTPミックス(deoxyribonucleotide 5’-triphosphate;dATP、dGTP、dCTPおよびdTTPからなる混合物)をさらに含んでもよい。PCR緩衝液は、特に限定されないが、好ましくはトリス緩衝液である。dNTP、MgCl、KClおよび緩衝液について、当業者であれば適切な濃度を設定することができ、例えばMgClの濃度は1.5mM、KClの濃度は35mM、dNTPの濃度はそれぞれ200μM、トリス緩衝液の濃度は10mMである。PCR緩衝液は、DNAポリメラーゼに吸着する生体由来の負電荷物質(例えば、ある種の糖および色素等)およびDNAに吸着する生体由来の正電荷物質(例えば、ある種のタンパク質等)であってPCRを阻害する物質に結合し、前記負電荷物質および正電荷物質のPCR阻害作用を中和する物質を含んでもよい。このようなPCR緩衝液として、遺伝子増幅用試薬AmpdirectまたはAmpdirect Plus(いずれも登録商標;島津製作所)を使用することができる。 A kit according to the present invention may further comprise a PCR buffer containing a surfactant and proteinase K. Surfactants can dissolve cells, biological tissues, and the like. As surfactants, anionic surfactants, cationic surfactants, amphoteric surfactants or nonionic surfactants can be selected. The surfactant is preferably an anionic surfactant, more preferably sodium dodecyl sulfate. When the surfactant is sodium dodecyl sulfate, its concentration is preferably 0.1-0.5% (w/v) when mixed with the sample. Proteinase K acts to inactivate DNA and RNA degrading enzymes. The proteinase K concentration is preferably 100-300 μg/mL when mixed with the sample. The PCR buffer may further comprise KCl, MgCl 2 and dNTP mix (deoxyribonucleotide 5′-triphosphate; mixture consisting of dATP, dGTP, dCTP and dTTP). The PCR buffer is not particularly limited, but is preferably Tris buffer. Appropriate concentrations of dNTPs, MgCl 2 , KCl and buffers can be set by those skilled in the art, for example, MgCl 2 concentration is 1.5 mM, KCl concentration is 35 mM, dNTP concentration is 200 μM each, Tris The buffer concentration is 10 mM. The PCR buffer is a negatively charged biological substance (such as certain sugars and dyes) that adsorbs to DNA polymerase and a positively charged biological substance (such as certain proteins) that adsorbs to DNA. It may contain a substance that binds to a substance that inhibits PCR and neutralizes the PCR inhibitory action of said negatively charged substance and positively charged substance. As such a PCR buffer, gene amplification reagents Ampdirect or Ampdirect Plus (both registered trademarks; Shimadzu Corporation) can be used.
 本発明に係るキットは、臨床現場で簡便かつ迅速に遺伝子検査を行う遺伝子型迅速判定システムにおいて使用することができる。遺伝子型迅速判定システムとしては、例えば島津製作所製「GTS-7000」が挙げられる。 The kit according to the present invention can be used in a rapid genotyping system for simple and rapid genetic testing in clinical settings. Examples of rapid genotype determination systems include "GTS-7000" manufactured by Shimadzu Corporation.
 本発明の一実施形態は、
 RNF213p.R4810K多型の有無に基づき、頭蓋内脳血管の閉塞に対する血管内治療後に、前記血管内治療を受けた血管が再閉塞または再狭窄する可能性が高いか否かを判定するための上記キットの製造における、
 前記RNF213p.R4810K多型に対応する遺伝子変異を含む塩基配列を増幅するPCRプライマー対と、
 前記RNF213p.R4810K多型の野生型塩基配列に結合する第1プローブおよび変異型塩基配列に結合する第2プローブとの使用である。
One embodiment of the present invention is
RNF213p. Based on the presence or absence of the R4810K polymorphism, after endovascular treatment for intracranial cerebral vessel occlusion, the above kit for determining whether there is a high possibility of reocclusion or restenosis of the blood vessel that has undergone endovascular treatment. in manufacturing,
Said RNF213p. A PCR primer pair that amplifies a nucleotide sequence containing a genetic mutation corresponding to the R4810K polymorphism;
Said RNF213p. Use with a first probe that binds to the wild-type sequence and a second probe that binds to the mutant sequence of the R4810K polymorphism.
 本キットを使用してRNF213p.R4810K多型を検出する方法を説明する。RNF213p.R4810K多型を検出する方法の一例は、
(1)被験者から採取されたサンプルを、界面活性剤およびプロテイナーゼKを含むPCR緩衝液と混合する工程;
(2)工程(1)で得られた混合液を、DNAポリメラーゼ、RNF213p.R4810K多型に対応する遺伝子変異を含む塩基配列を増幅するPCRプライマー対ならびに第1プローブおよび第2プローブと混合して、PCRを行う工程;および
(3)PCR産物を検出する工程;を含む。
Using this kit, RNF213p. A method for detecting the R4810K polymorphism is described. RNF213p. An example of a method for detecting the R4810K polymorphism is
(1) mixing a sample taken from a subject with a PCR buffer containing detergent and proteinase K;
(2) The mixture obtained in step (1) was treated with a DNA polymerase, RNF213p. (3) detecting a PCR product;
 被験者から採取されたサンプルは、[頭蓋内脳血管の再閉塞を予測するための方法]に記載されたサンプルであってよい。サンプルは好ましくは被験者のゲノムDNAを含む。サンプルの量としては、含有されるゲノムDNA量に依存するが、サンプルが唾液または末梢血であれば、0.1μL~10μL程度であってよく、0.5μL~2μLであってよい。 The sample collected from the subject may be the sample described in [Method for predicting reocclusion of intracranial cerebral blood vessels]. The sample preferably contains the subject's genomic DNA. The amount of the sample depends on the amount of genomic DNA contained, but if the sample is saliva or peripheral blood, it may be about 0.1 μL to 10 μL, or 0.5 μL to 2 μL.
 (1)被験者から採取されたサンプルを界面活性剤およびプロテイナーゼKを含むPCR緩衝液と混合することにより、サンプルが溶解して核酸が遊離される。 (1) By mixing a sample collected from a subject with a PCR buffer containing a surfactant and proteinase K, the sample is dissolved and nucleic acids are released.
 (2)サンプルとPCR緩衝液との混合液は、DNAポリメラーゼおよびRNF213p.R4810K多型に対応する遺伝子変異を含む塩基配列を増幅するPCRプライマー対と混合することによりPCRを開始することができる。DNAポリメラーゼは、特に限定されないが、好熱性細菌由来の耐熱性DNAポリメラーゼであってよく、Taq、Tth、KOD、Pfuおよびこれらの変異体を使用することができる。非特異的増幅を避けるため、ホットスタートDNAポリメラーゼを使用してもよい。ホットスタートDNAポリメラーゼとしては、BIOTAQ(登録商標)ホットスタートDNAポリメラーゼが挙げられる。ホットスタートDNAポリメラーゼには、抗DNAポリメラーゼ抗体が結合したDNAポリメラーゼ、酵素活性部位を熱感受性化学修飾したDNAポリメラーゼなどが挙げられる。PCR条件(温度、時間およびサイクル数)は、当業者であれば容易に設定することができる。本キットを使用した方法では、PCR産物の検出はリアルタイム測定(リアルタイムPCR)によって行うことができる。 (2) The mixture of sample and PCR buffer contains DNA polymerase and RNF213p. PCR can be initiated by mixing with a PCR primer pair that amplifies a nucleotide sequence containing the genetic mutation corresponding to the R4810K polymorphism. Although the DNA polymerase is not particularly limited, it may be a thermostable DNA polymerase derived from thermophilic bacteria, and Taq, Tth, KOD, Pfu and mutants thereof can be used. A hot start DNA polymerase may be used to avoid non-specific amplification. Hot-start DNA polymerases include BIOTAQ® hot-start DNA polymerase. Examples of hot-start DNA polymerases include DNA polymerases to which an anti-DNA polymerase antibody is bound, DNA polymerases to which the enzyme active site is chemically modified with heat sensitivity, and the like. PCR conditions (temperature, time and number of cycles) can be easily set by those skilled in the art. In the method using this kit, PCR products can be detected by real-time measurement (real-time PCR).
 (3)PCR産物のリアルタイム測定において、使用する蛍光色素に対応した蛍光フィルターを用いてPCR産物の増幅曲線をモニターする。PCRサイクル数に応じて蛍光強度が増加する場合には、サンプル中における対象のDNAの存在が陽性であると判定され、一方、PCRにおいて蛍光強度が増加しない場合には、対照のDNAの存在が陰性であると判定される。PCR産物を検出する方法において、第1プローブに由来する蛍光強度および第2プローブに由来する蛍光強度の増加を比較することにより、RNF213p.R4810K多型を検出することができる。RNF213p.R4810K多型がホモ接合型である場合、第2プローブに由来する蛍光強度の増加が観察されるが、第1プローブに由来する蛍光強度の増加は観察されない。RNF213p.R4810K多型が変異型と野生型とのヘテロ接合型である場合、第1プローブおよび第2プローブの両方に由来する蛍光強度の増加が観察される。野生型RNF213遺伝子(ホモ接合型)では、第1プローブに由来する蛍光強度の増加のみが観察される。第2プローブに由来する蛍光強度の増加が観察される場合に、RNF213p.R4810K多型が検出されたと判定される。 (3) In real-time measurement of PCR products, monitor the amplification curve of PCR products using a fluorescence filter corresponding to the fluorescent dye used. If the fluorescence intensity increases with the number of PCR cycles, the presence of the DNA of interest in the sample is determined to be positive, while if the fluorescence intensity does not increase in the PCR, the presence of the control DNA is determined. determined to be negative. In a method for detecting a PCR product, by comparing the increase in fluorescence intensity derived from the first probe and the fluorescence intensity derived from the second probe, RNF213p. The R4810K polymorphism can be detected. RNF213p. When the R4810K polymorphism is homozygous, an increase in fluorescence intensity from the second probe is observed, but no increase in fluorescence intensity from the first probe is observed. RNF213p. When the R4810K polymorphism is heterozygous between mutant and wild type, an increase in fluorescence intensity from both the first and second probes is observed. In the wild-type RNF213 gene (homozygous), only an increase in fluorescence intensity derived from the first probe is observed. If an increase in fluorescence intensity from the second probe is observed, RNF213p. It is determined that the R4810K polymorphism was detected.
 他の検出方法として、PCR産物の増幅曲線が、ある一定の閾値線(Threshold Line)と交差するPCRサイクル数(Cq値)を基に、RNF213p.R4810K多型の存在を判定することができる。通常、Cq値が小さい場合、鋳型DNA量が多く、Cq値が大きい場合、鋳型DNA量が少ないことが示される。第2プローブの使用に対して所定のCq値が与えられる場合、RNF213p.R4810K多型が検出されたと判定される。RNF213p.R4810K多型が変異型と野生型とのヘテロ接合型である場合、両方の蛍光標識プローブの使用に対して一定のCq値が与えられるが、両者が同一の値を示すとは限らない。野生型RNF213遺伝子(ホモ接合型)では、第1プローブの使用に対してのみ、一定のCq値を与える。用いた蛍光標識プローブおいて、PCR産物の増幅曲線がある一定の閾値線と交差しない場合、すなわちCq値が与えられない場合は、プローブが結合する塩基配列が存在しないことが示される。 As another detection method, based on the number of PCR cycles (Cq value) at which the amplification curve of the PCR product crosses a certain threshold line, The presence of the R4810K polymorphism can be determined. Generally, a small Cq value indicates a large amount of template DNA, and a large Cq value indicates a small amount of template DNA. Given a given Cq value for the use of the second probe, RNF213p. It is determined that the R4810K polymorphism was detected. RNF213p. When the R4810K polymorphism is heterozygous for mutant and wild type, a constant Cq value is given for the use of both fluorescently labeled probes, although they do not necessarily show the same value. The wild-type RNF213 gene (homozygous) gives a constant Cq value only for the use of the first probe. If the amplification curve of the PCR product does not cross a certain threshold line for the fluorescently labeled probe used, i.e. if no Cq value is given, it indicates that there is no base sequence to which the probe binds.
 [マーカー]
 本発明の一実施形態は、
 RNF213p.R4810K多型からなる、頭蓋内脳血管の閉塞に対する血管内治療後に、前記血管内治療を受けた血管が再閉塞または再狭窄する可能性が高いか否かを判定するための遺伝子マーカーである。
 本遺伝子マーカーを利用すれば、被験者がRNF213p.R4810K多型を有するとき、頭蓋内脳血管の閉塞に対する血管内治療後に、血管内治療を受けた血管が再閉塞または再狭窄する可能性が高いと判定することができる。本遺伝子マーカーは、血管内治療後の血管の再閉塞のリスクを予測するための情報を提供することができる。
[marker]
One embodiment of the present invention is
RNF213p. A genetic marker consisting of the R4810K polymorphism for determining whether reocclusion or restenosis is likely to occur after endovascular treatment for intracranial cerebral vessel occlusion.
If this gene marker is used, the subject will be able to detect RNF213p. With the R4810K polymorphism, it can be determined that, after endovascular treatment for intracranial cerebral vessel occlusion, there is a high likelihood of reocclusion or restenosis of the endovascularly treated vessel. This genetic marker can provide information for predicting the risk of vascular reocclusion after endovascular treatment.
 本発明の一実施形態は、頭蓋内脳血管の閉塞に対する血管内治療後に、前記血管内治療を受けた血管が再閉塞または再狭窄する可能性が高いか否かを判定するためのRNF213p.R4810K多型の使用である。  One embodiment of the present invention is a RNF213 p. Use of the R4810K polymorphism.
 [予測する方法]
 本発明の一実施形態は、
 被験者から採取されたサンプルを用いて前記被験者がRNF213p.R4810K多型を有するか否かを検出することを含む、頭蓋内脳血管の再閉塞または再狭窄を予測する方法である。
 被験者がRNF213p.R4810K多型を有するとき、頭蓋内脳血管の閉塞に対する血管内治療後に、血管内治療を受けた血管が再閉塞または再狭窄する可能性が高いと予測することができる。被験者がRNF213p.R4810K多型を有するか否かを検出する方法は、上述の[頭蓋内脳血管の再閉塞を予測するための方法]に記載の方法を使用してよい。
[Prediction method]
One embodiment of the present invention is
Using a sample collected from a subject, the subject was tested for RNF213p. A method of predicting intracranial cerebral vessel reocclusion or restenosis comprising detecting whether or not the patient has the R4810K polymorphism.
If the subject is RNF213p. With the R4810K polymorphism, it can be predicted that after endovascular treatment for intracranial cerebral vessel occlusion, the endovascularly treated vessel is likely to reocclude or restenosis. If the subject is RNF213p. As a method for detecting whether or not a subject has the R4810K polymorphism, the method described in the above [Method for predicting reocclusion of intracranial cerebral blood vessels] may be used.
 以下、実施例を挙げて本発明をより詳細に説明するが、本発明はこれらに限定されるものではない。 The present invention will be described in more detail below with reference to Examples, but the present invention is not limited to these.
 機械的血栓除去(MT)は、内頚動脈(internal carotid artery:ICA)および中大脳動脈(middle cerebral artery:MCA)のM1(M1 segment)の閉塞による急性虚血性脳卒中(acute ischemic stroke:AIS)のための標準的な治療である15)。東アジア人においては、MTが行われた脳主幹動脈閉塞(large vessel occlusion:LVO)の約15-25%は頭蓋内アテローム性動脈硬化症(intracranial atherosclerotic disease:ICAD)が原因であったと報告されている16,17)。最近の研究では、頭蓋内アテローム性動脈硬化症関連脳主幹動脈閉塞(ICAD-related LVO)における血管内治療(endovascular therapy:EVT)後に、再閉塞が起こりやすいことが示唆されている18-20)。これは、狭窄部には破綻しやすい不安定プラークが存在し、血栓除去により血管内皮の損傷と血小板の凝集が促進されるためと考えられる21,22)。RNF213p.R4810K多型は、MTが行われたアジア人患者のICAD関連LVOと関連し得る。RNF213p.R4810K多型を有するICAD患者におけるネガティブリモデリングは、従来のICAD関連LVOと比較してバルーン血管形成術を含むEVT後の再閉塞の頻度が異なり得る。前方循環系頭蓋内LVO患者のうちRNF213p.R4810K多型の保有者と非保有者との間で、EVTの転帰が異なるかは検証されていない。ここでは、前方循環系頭蓋内LVO患者のEVTの臨床転帰におけるRNF213p.R4810K多型の影響を検証する。 Mechanical thrombectomy (MT) is used to treat acute ischemic stroke (AIS) due to occlusion of the M1 segment of the internal carotid artery (ICA) and middle cerebral artery (MCA). 15) . In East Asians, intracranial atherosclerotic disease (ICAD) has been reported to be the cause of approximately 15-25% of large vessel occlusions (LVO) in which MT was performed. 16,17) . Recent studies suggest that reocclusion may occur after endovascular therapy (EVT) in intracranial atherosclerosis-related major cerebral artery occlusion (ICAD-related LVO) [18-20]. . This is thought to be because unstable plaques, which are prone to rupture, are present at the stenotic site, and thrombus removal promotes vascular endothelium damage and platelet aggregation 21, 22) . RNF213p. The R4810K polymorphism may be associated with ICAD-associated LVO in Asian patients undergoing MT. RNF213p. Negative remodeling in ICAD patients with the R4810K polymorphism may have different frequencies of reocclusion after EVT, including balloon angioplasty, compared to conventional ICAD-associated LVO. Among patients with anterior circulation intracranial LVO, RNF213p. It has not been examined whether EVT outcomes differ between carriers and non-carriers of the R4810K polymorphism. Here, RNF213p. Verify the effect of the R4810K polymorphism.
 [方法]
 本研究の知見をサポートする特定化されたデータは、妥当な要求に基づいて、関連する倫理委員会の許可が得られた後に発明者から利用可能である。
[Method]
The identified data supporting the findings of this study are available from the inventors upon reasonable request and after obtaining approval from the relevant ethics committee.
 (試験集団)
 症状発現または最終確認日から7日以内に国立循環器病研究センター(National Cerebral and Cardiovascular Center:NCVC)に入院した全AIS患者はNCVC脳卒中レジストリに登録されている23-25)。本研究では、2011年1月から2021年3月までにレジストリに登録され、(1)頭蓋内内頚動脈または中大脳動脈M1の閉塞がみられ、(2)EVTを施行し、(3)本研究およびRNF213p.R4810K多型のジェノタイピング試験への書面による同意が得られた患者を対象に後ろ向き研究を行った。臨床データおよび放射線データはデータベースより前向きに得られ、後ろ向き分析のために取り出された。本研究は、ヘルシンキ宣言に従って実施され、NCVCの倫理委員会によって承認された。NCVC脳卒中レジストリは、ClinicalTrials.gov (NCT02251665)に登録されている。
(test population)
All AIS patients admitted to the National Cerebral and Cardiovascular Center (NCVC) within 7 days of symptom onset or last known date are enrolled in the NCVC Stroke Registry 23-25 . In this study, patients enrolled in the registry from January 2011 to March 2021, (1) had intracranial internal carotid artery or middle cerebral artery M1 occlusion, (2) underwent EVT, and (3) this study. studies and RNF213p. A retrospective study was conducted in patients who gave written informed consent for the R4810K polymorphism genotyping study. Clinical and radiological data were obtained prospectively from the database and extracted for retrospective analysis. This study was conducted in accordance with the Declaration of Helsinki and was approved by the Ethics Committee of the NCVC. The NCVC Stroke Registry is registered at ClinicalTrials.gov (NCT02251665).
 (RNF213ジェノタイピング試験)
 RNF213p.R4810K多型のジェノタイピングは、完全自動化遺伝子解析システム(GTS-7000;株式会社島津製作所またはLightCycler 96;ロシュ社)によってEVT後に実施された。これらのシステムによれば、リアルタイムPCRによって1μLの全血からSNPを直接検出できる26)。使用されたプライマー配列は、
5’-TTCCAGAACGTCCAGCAAGT-3’(forward;配列番号3)
5’-ACAGTCCTGGTCCTGTCAGA-3’(reverse;配列番号4)
であった。プローブセットは、
5’-CTCCATCAGAGGCTTCCT-3’(配列番号5)および
5’-CTCCATCAAAGGCTTCCT-3’(配列番号6)
であった。
 患者のうち22名は、リアルタイムPCRによるジェノタイピングの結果をDNAシーケンスによって確かめた。RNF213p.R4810K多型解析の結果、p.R4810KのGA多型を多型保有者とし、野生型ホモ接合体GG遺伝子型を多型非保有者とした。
(RNF213 genotyping test)
RNF213p. Genotyping of the R4810K polymorphism was performed after EVT by a fully automated genetic analysis system (GTS-7000; Shimadzu Corporation or LightCycler 96; Roche). These systems allow direct detection of SNPs from 1 μL of whole blood by real-time PCR 26) . The primer sequences used were
5′-TTCCAGAACGTCCAGCAAGT-3′ (forward; SEQ ID NO: 3)
5′-ACAGTCCTGGTCCTGTCAGA-3′ (reverse; SEQ ID NO: 4)
Met. The probe set is
5′-CTCCATCAGAGGCTTCCT-3′ (SEQ ID NO:5) and 5′-CTCCATCAAAGGCTTCCT-3′ (SEQ ID NO:6)
Met.
In 22 of the patients, the results of genotyping by real-time PCR were confirmed by DNA sequencing. RNF213p. As a result of R4810K polymorphism analysis, p. The R4810K GA polymorphism was considered a polymorphism carrier and the wild-type homozygous GG genotype was considered a polymorphism non-carrier.
 (EVT)
 全ての血管内手術は、米国心臓協会/米国脳卒中協会のガイドライン15)または脳神経血管内機械的血栓除去術のための日本ガイドライン27)に従って行われた。全ての患者は局所麻酔下でEVTを行い、必要に応じて意識下鎮静剤を投与した。本研究では、バルーンガイドカテーテルが使用され、可能な限り頭蓋外内頚動脈まで誘導した。EVT施術には、ステントリトリーバー血栓回収、接触吸引、頭蓋内バルーン血管形成術、頭蓋内ステントまたはこれらの組み合わせが含まれる。再開通の評価には、modified Thrombolysis In Cerebral Infarction:mTICIを使用した28)。下記のようにICAD関連LVOと診断されたとき、抗血小板剤であるアスピリンおよびクロピドグレルが周術期に共投与される。
(EVT)
All endovascular surgeries were performed according to the American Heart Association/American Stroke Association guidelines 15) or Japanese guidelines for neuroendovascular mechanical thrombectomy 27) . All patients underwent EVT under local anesthesia and received conscious sedation as needed. In this study, a balloon guide catheter was used and guided as far as possible to the extracranial internal carotid artery. EVT procedures include stent retriever thrombectomy, contact aspiration, intracranial balloon angioplasty, intracranial stents, or combinations thereof. Modified Thrombolysis In Cerebral Infarction: mTICI was used to assess recanalization 28) . The antiplatelet agents aspirin and clopidogrel are co-administered perioperatively when diagnosed with ICAD-associated LVO as described below.
 (臨床データの収集)
 以下の臨床データを収集した;年齢、性別、prestroke modified Rankin Scale(mRS)score、入院時の収縮期血圧、baseline National Institutes of Health Stroke Scale(NIHSS)score、現在の喫煙、心房細動、血管リスク因子(高血圧、糖尿病および脂質代謝異常)および過去の病歴(指標の脳卒中前の脳卒中または一過性脳虚血発作)。MCA領域の虚血変化の程度を拡散強調核磁気共鳴(diffusion-weighted magnetic resonance:MR)画像または非造影コンピュータ断層撮影(non-contrast computed tomography:CT)に基づいて、Alberta Stroke Program Early Computed Tomography Score(ASPECTS)で評価した29,30)。閉塞箇所は入院時のデジタル差分血管撮像法(digital subtraction angiography)によって特定された。経静脈的血栓溶解(Intravenous thrombolysis)はアルテプラーゼ0.6mg/kg(日本における承認用量)を用いて行われた31)。時間の測定基準は、発症の確認から血栓溶解療法までの時間と発症の確認から鼠径部穿刺までの時間を含んでいた。急性LVOの原因は、脳卒中学会認定神経医により3つのグループ(ICAD関連、脳塞栓:Embolismおよび動脈解離:arterial dissection)に分類された。ICAD関連LVOの定義は、術後の血管撮像およびフォローアップ血管撮像で検出されたEVT後の標的動脈病変部で50%以上の残存狭窄が確認され、明確な脳塞栓の近位発生源が確認されない、急性頭蓋内動脈閉塞とした18,20,32,33)。頭蓋内動脈狭窄は、規格に従って測定した34)。脳塞栓によるLVOの定義は、明確な脳塞栓の近位発生源が確認され、例えば心房細動または原因不明の脳塞栓性脳卒中を伴う急性頭蓋内動脈閉塞とした35)。退院時の抗血栓療法は、抗血小板剤(アスピリン、クロピドグレルおよびシロスタゾール)および抗凝固剤(直接経口抗凝固剤[ダビガトラン、リバロキサバン、アビキサバンおよびエドキサバン]およびワルファリン)を含む。
(Collection of clinical data)
The following clinical data were collected; age, sex, prestroke modified Rankin Scale (mRS) score, admission systolic blood pressure, baseline National Institutes of Health Stroke Scale (NIHSS) score, current smoking, atrial fibrillation, vascular risk. Factors (hypertension, diabetes and dyslipidemia) and past medical history (stroke or transient ischemic attack before index stroke). The degree of ischemic changes in the MCA region was measured based on diffusion-weighted magnetic resonance (MR) imaging or non-contrast computed tomography (CT), according to the Alberta Stroke Program Early Computed. Tomography Score (ASPECTS) 29,30) . The occlusion was identified by digital subtraction angiography on admission. Intravenous thrombolysis was performed using alteplase 0.6 mg/kg (approved dose in Japan) 31) . Time metrics included time from confirmation of onset to thrombolysis and time from confirmation of onset to groin puncture. Causes of acute LVO have been classified into three groups (ICAD-related, embolism and arterial dissection) by stroke society-certified neurologists. ICAD-associated LVO is defined as ≥50% residual stenosis in the target arterial lesion after EVT detected by postoperative angiography and follow-up angiography, with a clear proximal source of cerebral embolism. 18,20,32,33) . Intracranial artery stenosis was measured according to standards 34) . The definition of LVO due to cerebral embolism was defined as acute intracranial artery occlusion with an identifiable proximal source of cerebral embolism, eg, atrial fibrillation or cerebral embolic stroke of unknown origin (35) . Antithrombotic therapy at discharge includes antiplatelet agents (aspirin, clopidogrel and cilostazol) and anticoagulants (direct oral anticoagulants [dabigatran, rivaroxaban, avixaban and edoxaban] and warfarin).
 (転帰)
 術後の転帰は、即時再閉塞、最終mTICI≧2b再開通、および早期再閉塞であった。即時再閉塞は術中の再閉塞と定義し、早期再閉塞は術後に有効再開通の確認後2週間以内にMR血管撮像法で検出される再閉塞と定義した19,20)。臨床転帰は90日後のmRSスコアが0-2、くも膜下出血、脳実質出血および症候性の頭蓋内出血(intracranial hemorrhage:ICH)であった。ICHは、発現から36時間以内に非造影CTまたはグラジェントエコーMRイメージングによって評価した。脳実質出血は、欧州共同急性脳卒中研究(European Cooperative Acute Stroke Study)に示されるように、脳梗塞部位の出血であって、占拠性効果を有するものと定義した36)。症候性のICHは、NIHSSスコアがベースラインから4ポイント以上増加したICHと定義した37)
(outcome)
Postoperative outcomes were immediate reocclusion, final mTICI≧2b recanalization, and early reocclusion. Immediate reocclusion was defined as reocclusion during surgery, and early reocclusion was defined as reocclusion detected by MR angiography within 2 weeks after confirmation of effective recanalization after surgery 19,20) . Clinical outcomes were an mRS score of 0-2 after 90 days, subarachnoid hemorrhage, cerebral parenchymal hemorrhage and symptomatic intracranial hemorrhage (ICH). ICH was assessed by non-contrast CT or gradient-echo MR imaging within 36 hours of onset. Parenchymal hemorrhage was defined as hemorrhage at the site of cerebral infarction with an occupancy effect, as shown in the European Cooperative Acute Stroke Study 36) . Symptomatic ICH was defined as ICH with an increase in NIHSS score of ≥4 points from baseline (37) .
 (統計解析)
 データは、連続型変数については中央値(四分位範囲[IQR])として、カテゴリー変数については頻度およびパーセンテージとしてまとめた。多型保有者と多型非保有者との間の統計的差異はMann-Whitney U検定またはFisherの両側正確検定によって評価した。術後の転帰は、年齢調整された多変量ロジスティック回帰モデルを作成して、RNF213p.R4810K多型との関連が解析され、多型非保有者は対照として使用された38)。95%信頼区間(confidence intervals:CIs)のオッズ比(Odds ratios:ORs)が算出された。RNF213p.R4810K多型は、ICADによる頭蓋内内頚動脈または中大脳動脈M1の狭窄/閉塞と関連があるため8,38-40)、臨床データおよび転帰をさらにICAD関連LVOの場合に限定し、多型保有者と多型非保有者との間で比較した(二次分析、図1)。0.05未満のP値を統計的に有意とみなした。すべての解析は、Stata/IC統計パッケージ、バージョン15.1(Stata Corp LP)を使用して行った。
(Statistical analysis)
Data were summarized as medians (interquartile range [IQR]) for continuous variables and as frequencies and percentages for categorical variables. Statistical differences between polymorphism carriers and polymorphism non-carriers were assessed by the Mann-Whitney U test or Fisher's two-tailed exact test. Postoperative outcomes were evaluated using age-adjusted multivariate logistic regression models to evaluate RNF213p. Association with the R4810K polymorphism was analyzed and non-polymorphism carriers were used as controls 38) . Odds ratios (ORs) with 95% confidence intervals (CIs) were calculated. RNF213p. Because the R4810K polymorphism is associated with stenosis/occlusion of the intracranial internal carotid artery or middle cerebral artery M1 by ICAD8,38-40) , clinical data and outcomes were further limited to cases of ICAD-associated LVO and polymorphism-bearing A comparison was made between polymorphism non-carriers and polymorphism non-carriers (secondary analysis, Fig. 1). P-values less than 0.05 were considered statistically significant. All analyzes were performed using the Stata/IC statistical package, version 15.1 (Stata Corp LP).
 [結果]
 (患者の特徴)
 急性頭蓋内ICA/MCAM1閉塞に対してEVTを受けた341人の患者のうち、64名の患者は、RNF213p.R4810Kジェノタイピングデータの欠如のために除外された(図1)。RNF213p.R4810Kジェノタイピングデータを有さない患者と比較した場合、ジェノタイピングを受けた患者はより若く(76歳対80歳、P=0.02)、脂質異常症の頻度が高かった(45.7%対31.2%、P=0.04)。分析された277名の患者(128名が女性[46.2%];年齢の中央値 76歳[IQR、69~82歳];中央値NIHSSスコア 11[IQR 8-17])のうち、RNF213p.R4810K多型は10人の患者(3.6%)に見出された。多型保有者は、多型非保有者と比較して、より若く(67歳対76歳、P<0.01)、現在の喫煙者である可能性が高く(80.0%対43.4%、P=0.05)、心房細動を有する可能性が低く(30.0%対63.4%、P=0.05)、より高いベースライン収縮期血圧を有していた(172mmHg対151mmHg、P=0.02)(表1)。多型保有者は、多型非保有者と比較して、ICAD関連LVOである頻度が高く、脳塞栓LVOである頻度が低かった(両方ともP<0.01)。抗血小板剤は、退院時において多型非保有者よりも多型保有者へより頻繁に投与された(アスピリンおよびクロピドグレルの両方に対してP<0.01)。
[result]
(Patient characteristics)
Of 341 patients who underwent EVT for acute intracranial ICA/MCAM1 obstruction, 64 patients had RNF213p. Excluded due to lack of R4810K genotyping data (Fig. 1). RNF213p. Genotyped patients were younger (76 vs. 80 years, P=0.02) and had a higher frequency of dyslipidemia (45.7%) when compared with patients without R4810K genotyping data. vs. 31.2%, P=0.04). Of the 277 patients analyzed (128 female [46.2%]; median age 76 years [IQR, 69-82 years]; median NIHSS score 11 [IQR 8-17]), RNF213p . The R4810K polymorphism was found in 10 patients (3.6%). Polymorphism carriers were younger (67 vs. 76 years, P<0.01) and more likely to be current smokers (80.0% vs. 43.0%) compared to non-polymorphism carriers. 4%, P=0.05), were less likely to have atrial fibrillation (30.0% vs. 63.4%, P=0.05), and had higher baseline systolic blood pressure ( 172 mmHg vs. 151 mmHg, P=0.02) (Table 1). Polymorphism carriers were more likely to have ICAD-associated LVO and less likely to have cerebral embolism LVO compared to non-polymorphism carriers (both P<0.01). Antiplatelet agents were administered more frequently to polymorphism carriers than to non-polymorphism carriers at hospital discharge (P<0.01 for both aspirin and clopidogrel).
 (RNF213p.R4810K多型保有者と非保有者)
 多型保有者と多型非保有者との間のEVTの詳細および転帰を表2に示す。多型保有者は多型非保有者と比較して、血管形成術がより高頻度に実施され(40.0%対12.0%、P<0.01)、血管形成術の中央値は2倍であり(4対2、P=0.27)、頭蓋内ステント手術がより高頻度に実施された(20.0%対2.2%、P=0.03)。多型保有者は多型非保有者と比較して、鼠径部穿刺から手術終了までの時間が長かった(177分対72分、P=0.08)。多型保有者は、即時再閉塞率が高かった(40.0%対5.6%、P<0.01;年齢調整されたOR 9.83、95%CI 2.47-39.22)(表2および図2)が、最終mTICI≧2b再開通の割合は、保有者では100.0%であり、非保有者では81.8%であった(P=0.22;年齢調整されたOR 3.91、95%CI 0.64-23.99)。多型保有者は多型非保有者と比較して、早期再閉塞の頻度が高かった(60.0%対0.4%、P<0.01;年齢調整されたOR 346.4、95%CI 33.21-3612)(表2および図2)。手術終了から早期再閉塞までの日数の中央値(IQR)は、4(2-9)日であった。早期再閉塞に対する繰り返しのEVTは、4名の多型保有者および1名の多型非保有者に行われた。90日後のmRSスコア0~2の頻度は、多型保有者60.0%および多型非保有者51.7%において見られた(P=0.75)。くも膜下出血、脳実質出血および症候性ICHの割合は、多型保有者と多型非保有者との間で変わらなかった(表2)。RNF213p.R4810K多型を有する患者の概要を表3に示し、RNF213p.R4810K多型を有する代表的な患者を図4に示す。
(RNF213p.R4810K polymorphism carriers and non-carriers)
Details and outcomes of EVT between polymorphism carriers and polymorphism non-carriers are shown in Table 2. Polymorphism carriers performed angioplasty more frequently than non-polymorphism carriers (40.0% vs. 12.0%, P<0.01), with a median angioplasty of doubled (4 vs. 2, P=0.27) and intracranial stent surgery was performed more frequently (20.0% vs. 2.2%, P=0.03). Polymorphism carriers had a longer time from groin puncture to end of surgery compared to non-polymorphism carriers (177 vs. 72 minutes, P=0.08). Polymorphism carriers had higher immediate reocclusion rates (40.0% vs. 5.6%, P<0.01; age-adjusted OR 9.83, 95% CI 2.47-39.22). (Table 2 and FIG. 2), the rate of final mTICI≧2b recanalization was 100.0% in carriers and 81.8% in non-carriers (P=0.22; age-adjusted OR 3.91, 95% CI 0.64-23.99). Polymorphism carriers had a higher frequency of early reocclusion compared with non-polymorphism carriers (60.0% vs. 0.4%, P<0.01; age-adjusted OR 346.4, 95 %CI 33.21-3612) (Table 2 and Figure 2). The median number of days from the end of surgery to early reocclusion (IQR) was 4 (2-9) days. Repeat EVT for early reocclusion was performed in 4 polymorphism carriers and 1 polymorphism non-carrier. The frequency of mRS scores 0-2 after 90 days was seen in 60.0% of polymorphism carriers and 51.7% of non-polymorphism carriers (P=0.75). The rates of subarachnoid hemorrhage, cerebral parenchymal hemorrhage and symptomatic ICH did not differ between polymorphism carriers and non-polymorphism carriers (Table 2). RNF213p. A summary of patients with the R4810K polymorphism is shown in Table 3, RNF213p. A representative patient with the R4810K polymorphism is shown in FIG.
 (ICAD関連LVO患者の群内解析)
 ICAD関連LVO(n=30)と診断された患者に限定し、同様の解析を行った(二次分析、図1)。多型保有者(n=7)は、多型非保有者(n=23)と比較してより若かった(60歳対73歳、P=0.04)。血管形成の割合、血管形成術手術の総数および頭蓋内ステントにおいて、多型保有者と多型非保有者との間で有意な差は見られなかった。鼠径部穿刺から手術終了までの時間は、多型保有者においてより長かった(190分対142分、P=0.09)。即時再閉塞率は、多型保有者(57.1%)と多型非保有者(34.8%)との間で有意差はなかった(P=0.39;年齢調整されたOR 2.38、95%CI 0.39-14.47)(表2および図3)。最終mTICI≧2b再開通の割合は、多型保有者(100.0%)と多型非保有者(91.3%)との間で同等であった(P=1.00)。多型保有者は多型非保有者と比較して、早期再閉塞の頻度が高かった(71.4%対4.3%、P<0.01調整されたOR 47.6)、95% CI 3.53-674.0)(表2および図3)。手術終了から早期再閉塞までの日数の中央値(IQR)は、2(2-6)日であった。臨床転帰に関して有意な群間差異は見られなかった。
(Intra-group analysis of ICAD-related LVO patients)
A similar analysis was performed limiting to patients diagnosed with ICAD-associated LVO (n=30) (secondary analysis, Figure 1). Polymorphism carriers (n=7) were younger compared to non-polymorphism carriers (n=23) (60 vs. 73 years, P=0.04). No significant differences were found between polymorphism carriers and non-polymorphism carriers in rates of angioplasty, total number of angioplasty procedures and intracranial stents. The time from groin puncture to end of surgery was longer in polymorphism carriers (190 min vs. 142 min, P=0.09). The immediate reocclusion rate was not significantly different between polymorphism carriers (57.1%) and polymorphism non-carriers (34.8%) (P=0.39; age-adjusted OR 2 .38, 95% CI 0.39-14.47) (Table 2 and Figure 3). The rate of final mTICI≧2b recanalization was similar between polymorphism carriers (100.0%) and polymorphism non-carriers (91.3%) (P=1.00). Polymorphism carriers had a higher frequency of early reocclusion compared with non-polymorphism carriers (71.4% vs. 4.3%, P<0.01 adjusted OR 47.6), 95% CI 3.53-674.0) (Table 2 and Figure 3). The median number of days from the end of surgery to early reocclusion (IQR) was 2 (2-6) days. No significant between-group differences were seen for clinical outcomes.
 [考察]
 EVTを受けた前方循環LVOを有する患者(n=277)のコホートを分析することによって、RNF213p.R4810K多型保有者は多型非保有者と比較して、EVT中の即時再閉塞率が高く(40.0%対5.6%)、EVT後2週間以内の早期再閉塞率も高いこと(60.0%対0.4%)が示された。RNF213p.R4810K多型保有者において、ICADは急性LVOの70.0%の原因となった一方、多型非保有者では8.6%であった。早期再閉塞は、多型非保有者より多型保有者で高頻度に見られ、対象をICAD関連LVO患者に限定しても多型保有者でより頻繁に見られた。多型保有者と多型非保有者との間の即時および早期再閉塞の発生率の差異は、特にRNF213p.R4810K多型に起因するICADの血管病態に由来し得る12-14)
[Discussion]
By analyzing a cohort of patients with anterior circulation LVO who underwent EVT (n=277), RNF213p. Carriers of the R4810K polymorphism had a higher rate of immediate reocclusion during EVT (40.0% vs. 5.6%) and a higher rate of early reocclusion within 2 weeks after EVT compared to non-polymorphism carriers. (60.0% vs. 0.4%) was shown. RNF213p. In R4810K polymorphism carriers, ICAD caused 70.0% of acute LVO, compared to 8.6% in non-polymorphism carriers. Early reocclusion was seen more frequently in polymorphism carriers than in non-polymorphism carriers, and was more frequent in polymorphism carriers even when the study was limited to ICAD-associated LVO patients. Differences in the incidence of immediate and early reocclusion between polymorphism carriers and polymorphism non-carriers are particularly evident in RNF213p. It may result from the vascular pathology of ICAD due to the R4810K polymorphism 12-14) .
 特定の遺伝子多型と関連したEVTの転帰はこれまで報告されておらず、RNF213遺伝子多型は東アジア集団に特有である。本発明者らの研究において、RNF213p.R4810K多型の頻度は3.6%であり、これは、虚血性脳卒中患者に関する研究において報告された4.2%~5.2%の頻度に近似した7,41)。これに対して、サンプル集団がICAD関連LVO患者に限定された場合、RNF213p.R4810K多型の割合は、23.3%まで明らかに増加しており、ICAD関連LVOが疑われる場合にこの多型を調べる有用性が示唆された。RNF213p.R4810K多型は、血液採取後1時間程度の短時間で特異的プライマーおよびプローブセットを使用して同定することができる。本発明は、多型非保有者と比較して多型保有者において、即時および早期再閉塞がより起こりやすいことを示唆し、遺伝子多型の迅速なジェノタイピングは、EVT手術および術後の患者ケアの選択を補助し得る。さらに、ジェノタイピング結果は、急性前方循環LVO脳卒中患者におけるEVTのリスク評価に利用し得る42)EVT outcomes associated with specific polymorphisms have not been previously reported, and the RNF213 polymorphism is unique to East Asian populations. In our study, RNF213p. The frequency of the R4810K polymorphism was 3.6%, which approximated the frequencies of 4.2% to 5.2% reported in studies of ischemic stroke patients7,41 ) . In contrast, when the sample population was restricted to ICAD-related LVO patients, RNF213p. The proportion of the R4810K polymorphism was clearly increased to 23.3%, suggesting the utility of investigating this polymorphism when ICAD-associated LVO is suspected. RNF213p. The R4810K polymorphism can be identified using specific primer and probe sets in as little as an hour after blood collection. The present invention suggests that immediate and early reocclusion is more likely in polymorphism carriers compared to non-polymorphism carriers, and rapid genotyping of genetic polymorphisms may help patients with EVT surgery and post-op. Can assist in choosing care. Furthermore, genotyping results can be used for risk assessment of EVT in patients with acute anterior circulation LVO stroke 42 .
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 [参照文献]
 1. Scott RM, Smith ER. Moyamoya disease and moyamoya syndrome. N Engl J Med. 2009;360:1226-1237. doi: 10.1056/NEJMra0804622.
 2. Kamada F, Aoki Y, Narisawa A, et al. A genome-wide association study identifies RNF213 as the first moyamoya disease gene. J Hum Genet. 2011;56:34-40. doi: 10.1038/jhg.2010.132.
 3. Liu W, Morito D, Takashima S, et al. Identification of RNF213 as a susceptibility gene for moyamoya disease and its possible role in vascular development. PLoS One. 2011;6:e22542. doi: 10.1371/journal.pone.0022542.
 4. Bang OY, Ryoo S, Kim SJ, et al. Adult moyamoya disease: a burden of intracranial stenosis in East Asians? PLoS One. 2015;30;10:e0130663. doi: 10.1371/journal.pone.0130663.
 5. Liu W, Hitomi T, Kobayashi H, Harada KH, Koizumi A. Distribution of moyamoya disease susceptibility polymorphism p.R4810K in RNF213 in East and Southeast Asian populations. Neurol Med Chir (Tokyo). 2012;52:299-303. doi: 10.2176/nmc.52.299.
 6. Cecchi AC, Guo D, Ren Z, et al. RNF213 rare variants in an ethnically diverse population with moyamoya disease. Stroke. 2014;45:3200-3207. doi: 10.1161/STROKEAHA.114.006244.
 7. Okazaki S, Morimoto T, Kamatani Y, et al. Moyamoya disease susceptibility variant RNF213 p.R4810K increases the risk of ischemic stroke attributable to large artery atherosclerosis. Circulation. 2019;139:295-298. doi: 10.1161/CIRCULATIONAHA.118.038439.
 8. Koizumi A, Kobayashi H, Hitomi T, Harada KH, Habu T, Youssefian S. A new horizon of moyamoya disease and associated health risks explored through RNF213. Environ Health Prev Med. 2016;21:55-70. doi: 10.1007/s12199-015-0498-7.
 9. Hitomi T, Habu T, Kobayashi H, et al. Downregulation of Securin by the variant RNF213 R4810K (rs112735431, G>A) reduces angiogenic activity of induced pluripotent stem cell-derived vascular endothelial cells from moyamoya patients. Biochem Biophys Res Commun. 2013;438:13-19. doi: 10.1016/j.bbrc.2013.07.004.
 10. Zhu G, Chen H, Zhang W. Phenotype switch of vascular smooth muscle cells after siRNA silencing of filamin. Cell Biochem Biophys. 2011;61:47-52. doi: 10.1007/s12013-011-9159-7.
 11. Stahlhut M, van Deurs B. Identification of filamin as a novel ligand for caveolin-1: evidence for the organization of caveolin-1-associated membrane domains by the actin cytoskeleton. Mol Biol Cell. 2000;11:325-337. doi: 10.1091/mbc.11.1.325.
 12. Hongo H, Miyawaki S, Imai H, et al. Smaller outer diameter of atherosclerotic middle cerebral artery associated with RNF213 c.14576G>A variant (rs112735431). Surg Neurol Int. 2017;8:104. doi: 10.4103/sni.sni_59_17.
 13. Chung JW, Kim DH, Oh MJ, et al. Cav-1 (caveolin-1) and arterial remodeling in adult moyamoya disease. Stroke. 2018;49:2597-2604. doi: 10.1161/STROKEAHA.118.021888.
 14. Choi EH, Lee H, Chung JW, et al. Ring finger protein 213 variant and plaque characteristics, vascular remodeling, and hemodynamics in patients with intracranial atherosclerotic stroke: a high-resolution magnetic resonance imaging and hemodynamic study. J Am Heart Assoc. 2019;8:e011996. doi: 10.1161/JAHA.119.011996.
 15. Powers WJ, Rabinstein AA, Ackerson T, et al. Guidelines for the early management of patients with acute ischemic stroke: 2019 update to the 2018 guidelines for the early management of acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2019;50:e344-e418. doi: 10.1161/STR.0000000000000211.
 16. Yoshimura S, Sakai N, Uchida K, et al. Endovascular therapy in ischemic stroke with acute large-vessel occlusion: recovery by endovascular salvage for cerebral ultra-acute embolism Japan registry 2. J Am Heart Assoc. 2018;7:e008796. doi: 10.1161/JAHA.118.008796.
 17. Tong X, Wang Y, Fiehler J, et al. Thrombectomy versus combined thrombolysis and thrombectomy in patients with acute stroke: a matched-control study. Stroke. 2021;52:1589-1600. doi: 10.1161/STROKEAHA.120.031599.
 18. Kim BJ, Kim JS. Ischemic stroke subtype classification: an Asian viewpoint. J Stroke. 2014;16:8-17. doi: 10.5853/jos.2014.16.1.8.
 19. Hwang YH, Kim YW, Kang DH, Kim YS, Liebeskind DS. Impact of target arterial residual stenosis on outcome after endovascular revascularization. Stroke. 2016;47:1850-1857. doi:10.1161/STROKEAHA.
 20. Baek BH, Yoon W, Lee YY, Kim SK, Kim JT, Park MS. Intravenous tirofiban infusion after angioplasty and stenting in intracranial atherosclerotic stenosis-related stroke. Stroke. 2021;52:1601-1608. doi: 10.1161/STROKEAHA.120.033551.
 21. Kang DH, Yoon W. Current opinion on endovascular therapy for emergent large vessel occlusion due to underlying intracranial atherosclerotic stenosis. Korean J Radiol. 2019;20:739-748. doi: 10.3348/kjr.2018.0809.
 22. Kim GE, Yoon W, Kim SK, et al. Incidence and clinical significance of acute reocclusion after emergent angioplasty or stenting for underlying intracranial stenosis in patients with acute stroke. AJNR Am J Neuroradiol. 2016;37:1690-1695. doi: 10.3174/ajnr.A4770.
 23. Sato S, Uehara T, Ohara T, Suzuki R, Toyoda K, Minematsu K. Factors associated with unfavorable outcome in minor ischemic stroke. Neurology. 2014;83:174-181. doi: 10.1212/WNL.0000000000000572.
 24. Fujita K, Tanaka K, Yamagami H, et al. Detrimental effect of chronic hypertension on leptomeningeal collateral flow in acute ischemic stroke. Stroke. 2019;50:1751-1757. doi: 10.1161/STROKEAHA.119.025142.
 25. Yoshimoto T, Inoue M, Tanaka K, et al. Identifying large ischemic core volume ranges in acute stroke that can benefit from mechanical thrombectomy. J Neurointerv Surg. 2020;neurintsurg-2020-016934. doi: 10.1136/neurintsurg-2020-016934.
 26. Saito S, Shinmyozu K, Kawakami D, et al. Conversion from cilostazol to OPC-13015 linked to mitigation of cognitive impairment. Alzheimers Dement (N Y). 2021;27:e12182. doi: 10.1002/trc2.12182.
 27. Yamagami H, Hayakawa M, Inoue M, et al. Guidelines for Mechanical Thrombectomy in Japan, the fourth edition, March 2020: a guideline from the Japan Stroke Society, the Japan Neurological Society, and the Japanese Society for Neuroendovascular Therapy. Neurol Med Chir (Tokyo). 2021;61:163-192. doi: 10.2176/nmc.nmc.st.2020-0357.
 28. Zaidat OO, Yoo AJ, Khatri P, et al. Recommendations on angiographic revascularization grading standards for acute ischemic stroke: a consensus statement. Stroke. 2013;44:2650-2663. doi: 10.1161/STROKEAHA.113.001972.
 29. Pexman JH, Barber PA, Hill MD, et al. Use of the Alberta stroke program early CT score (ASPECTS) for assessing CT scans in patients with acute stroke. AJNR Am J Neuroradiol. 2001;22:1534-1542.
 30. Hirai T, Sasaki M, Maeda M, et al. Diffusion-weighted imaging in ischemic stroke: effect of display method on observers’ diagnostic performance. Acad Radiol. 2009;16:305-312. doi: 10.1016/j.acra.2008.09.012.
 31. Toyoda K, Koga M, Iguchi Y, et al. Guidelines for Intravenous Thrombolysis (Recombinant Tissue-Type Plasminogen Activator), the third edition, March 2019: A guideline from the Japan Stroke Society. Neurol Med Chir (Tokyo). 2019;59:449-491. doi: 10.2176/nmc.st.2019-0177.
 32. Kang DH, Yoon W, Kim SK, et al. Endovascular treatment for emergent large vessel occlusion due to severe intracranial atherosclerotic stenosis. J Neurosurg. 2019;130:1949-1956. doi: 10.3171/2018.1.JNS172350.
 33. Kang DH, Yoon W, Baek BH, et al. Front-line thrombectomy for acute large-vessel occlusion with underlying severe intracranial stenosis: stent retriever versus contact aspiration. J Neurosurg. 2020;132:1202-1208. doi: 10.3171/2019.1.JNS182905.
 34. Schumacher HC, Meyers PM, Higashida RT, et al. Reporting standards for angioplasty and stent-assisted angioplasty for intracranial atherosclerosis. Stroke. 2009;40:e348-e365. doi: 10.1161/STROKEAHA.108.527580.
 35. Hart RG, Diener HC, Coutts SB, et al. Embolic strokes of undetermined source: the case for a new clinical construct. Lancet Neurol. 2014;13:429-438. doi: 10.1016/S1474-4422(13)70310-7.
 36. Hacke W, Kaste M, Fieschi C, et al. Intravenous thrombolysis with recombinant tissue plasminogen activator for acute hemispheric stroke. The European Cooperative Acute Stroke Study (ECASS). JAMA. 1995;274:1017-1102.
 37. Hacke W, Kaste M, Fieschi C, et al. Randomised double-blind placebo-controlled trial of thrombolytic therapy with intravenous alteplase in acute ischaemic stroke (ECASS II). Second European-Australasian Acute Stroke Study Investigators. Lancet. 1998;352:1245-1251. doi: 10.1016/s0140-6736(98)08020-9.
 38. Kamimura T, Okazaki S, Morimoto T, et al. Prevalence of RNF213 p.R4810K variant in early-onset stroke with intracranial arterial stenosis. Stroke. 2019;50:1561-1563. doi: 10.1161/STROKEAHA.118.024712.
 39. Miyawaki S, Imai H, Takayanagi S, Mukasa A, Nakatomi H, Saito N. Identification of a genetic variant common to moyamoya disease and intracranial major artery stenosis/occlusion. Stroke. 2012;43:3371-3374. doi: 10.1161/STROKEAHA.112.663864.
 40. Kim HJ, Choi EH, Chung JW, et al. Role of the RNF213 variant in vascular outcomes in patients with intracranial atherosclerosis. J Am Heart Assoc. 2021;10:e017660. doi: 10.1161/JAHA.120.017660.
 41. Park YS, Park HW, Park HS, et al. Association of genetic variants of RNF213 with ischemic stroke risk in Koreans. Genes Genomics. 2021;43:389-397. doi: 10.1007/s13258-020-01022-7.
 42. Xiong Y, Wang H, Zhang M, et al. Risk stratification for endovascular treatment in acute anterior circulation occlusive stroke. J Stroke Cerebrovasc Dis. 2019;28:104442. doi: 10.1016/j.jstrokecerebrovasdis.2019.104442.
[Reference]
1. Scott RM, Smith ER. Moyamoya disease and moyamoya syndrome. N Engl J Med. 2009;360:1226-1237. doi: 10.1056/NEJMra0804622.
2. Kamada F, Aoki Y, Narisawa A, et al. A genome-wide association study identifies RNF213 as the first moyamoya disease gene. J Hum Genet. 2011;56:34-40. doi: 10.1038/jhg.2010.132.
3. Liu W, Morito D, Takashima S, et al. Identification of RNF213 as a susceptibility gene for moyamoya disease and its possible role in vascular development. PLoS One. 2011;6:e22542. doi: 10.1371/journal.pone.0022542 .
4. Bang OY, Ryoo S, Kim SJ, et al. Adult moyamoya disease: a burden of intracranial stenosis in East Asians? PLoS One. 2015;30;10:e0130663. doi: 10.1371/journal.pone.0130663.
5. Liu W, Hitomi T, Kobayashi H, Harada KH, Koizumi A. Distribution of moyamoya disease susceptibility polymorphism p.R4810K in RNF213 in East and Southeast Asian populations. Neurol Med Chir (Tokyo). 2012;52:299-303. doi: 10.2176/nmc.52.299.
6. Cecchi AC, Guo D, Ren Z, et al. RNF213 rare variants in an ethnically diverse population with moyamoya disease. Stroke. 2014;45:3200-3207. doi: 10.1161/STROKEAHA.114.006244.
7. Okazaki S, Morimoto T, Kamatani Y, et al. Moyamoya disease susceptibility variant RNF213 p.R4810K increases the risk of ischemic stroke attributable to large artery atherosclerosis. Circulation. 2019;139:295-298. doi: 10.1161/CIRCULATIONAHA. 118.038439.
8. Koizumi A, Kobayashi H, Hitomi T, Harada KH, Habu T, Youssefian S. A new horizon of moyamoya disease and associated health risks explored through RNF213. Environ Health Prev Med. 2016;21:55-70. doi: 10.1007 /s12199-015-0498-7.
9. Hitomi T, Habu T, Kobayashi H, et al. Downregulation of Securin by the variant RNF213 R4810K (rs112735431, G>A) reduces angiogenic activity of induced pluripotent stem cell-derived vascular endothelial cells from moyamoya patients. Biochem Biophys Res Commun 2013;438:13-19. doi: 10.1016/j.bbrc.2013.07.004.
10. Zhu G, Chen H, Zhang W. Phenotype switch of vascular smooth muscle cells after siRNA silencing of filamin. Cell Biochem Biophys. 2011;61:47-52. doi: 10.1007/s12013-011-9159-7.
11. Stahlhut M, van Deurs B. Identification of filamin as a novel ligand for caveolin-1: evidence for the organization of caveolin-1-associated membrane domains by the actin cytoskeleton. Mol Biol Cell. 2000;11:325-337. doi: 10.1091/mbc.11.1.325.
12. Hongo H, Miyawaki S, Imai H, et al. Smaller outer diameter of atherosclerotic middle cerebral artery associated with RNF213 c.14576G>A variant (rs112735431). Surg Neurol Int. 2017;8:104. doi: 10.4103/sni .sni_59_17.
13. Chung JW, Kim DH, Oh MJ, et al. Cav-1 (caveolin-1) and arterial remodeling in adult moyamoya disease. Stroke. 2018;49:2597-2604. doi: 10.1161/STROKEAHA.118.021888.
14. Choi EH, Lee H, Chung JW, et al. Ring finger protein 213 variant and plaque characteristics, vascular remodeling, and hemodynamics in patients with intracranial atherosclerotic stroke: a high-resolution magnetic resonance imaging and hemodynamic study. J Am Heart Assoc 2019;8:e011996. doi: 10.1161/JAHA.119.011996.
15. Powers WJ, Rabinstein AA, Ackerson T, et al. Guidelines for the early management of patients with acute ischemic stroke: 2019 update to the 2018 guidelines for the early management of acute ischemic stroke: a guideline for healthcare professionals from the American Heart. Association/American Stroke Association. Stroke. 2019;50:e344-e418. doi: 10.1161/STR.0000000000000211.
16. Yoshimura S, Sakai N, Uchida K, et al. Endovascular therapy in ischemic stroke with acute large-vessel occlusion: recovery by endovascular salvage for cerebral ultra-acute embolism Japan registry 2. J Am Heart Assoc. 2018;7:e008796 doi: 10.1161/JAHA.118.008796.
17. Tong X, Wang Y, Fiehler J, et al. Thrombectomy versus combined thrombolysis and thrombectomy in patients with acute stroke: a matched-control study. Stroke. 2021;52:1589-1600. doi: 10.1161/STROKEAHA.120.031599.
18. Kim BJ, Kim JS. Ischemic stroke subtype classification: an Asian viewpoint. J Stroke. 2014;16:8-17. doi: 10.5853/jos.2014.16.1.8.
19. Hwang YH, Kim YW, Kang DH, Kim YS, Liebeskind DS. Impact of target arterial residual stenosis on outcome after endovascular revascularization. Stroke. 2016;47:1850-1857. doi:10.1161/STROKEAHA.
20. Baek BH, Yoon W, Lee YY, Kim SK, Kim JT, Park MS. Intravenous tirofiban infusion after angioplasty and stenting in intracranial atherosclerotic stenosis-related stroke. Stroke. 2021;52:1601-1608. doi: 10.1161/STROKEAHA .120.033551.
21. Kang DH, Yoon W. Current opinion on endovascular therapy for emergent large vessel occlusion due to underlying intracranial atherosclerotic stenosis. Korean J Radiol. 2019;20:739-748. doi: 10.3348/kjr.2018.0809.
22. Kim GE, Yoon W, Kim SK, et al. Incidence and clinical significance of acute reocclusion after emergent angioplasty or stenting for underlying intracranial stenosis in patients with acute stroke. AJNR Am J Neuroradiol. 2016;37:1690-1695. doi : 10.3174/ajnr.A4770.
23. Sato S, Uehara T, Ohara T, Suzuki R, Toyoda K, Minematsu K. Factors associated with unfavorable outcome in minor ischemic stroke. Neurology. 2014;83:174-181.
24. Fujita K, Tanaka K, Yamagami H, et al. Detrimental effect of chronic hypertension on leptomeningeal collateral flow in acute ischemic stroke. Stroke. 2019;50:1751-1757.
25. Yoshimoto T, Inoue M, Tanaka K, et al. Identifying large ischemic core volume ranges in acute stroke that can benefit from mechanical thrombectomy. J Neurointerv Surg. 2020;neurintsurg-2020-016934. 016934.
26. Saito S, Shinmyozu K, Kawakami D, et al. Conversion from cilostazol to OPC-13015 linked to mitigation of cognitive impairment. Alzheimers Dement (NY). 2021;27:e12182. doi: 10.1002/trc2.12182.
27. Yamagami H, Hayakawa M, Inoue M, et al. Guidelines for Mechanical Thrombectomy in Japan, the fourth edition, March 2020: a guideline from the Japan Stroke Society, the Japan Neurological Society, and the Japanese Society for Neuroendovascular Therapy. Med Chir (Tokyo). 2021;61:163-192. doi: 10.2176/nmc.nmc.st.2020-0357.
28. Zaidat OO, Yoo AJ, Khatri P, et al. Recommendations on angiographic revascularization grading standards for acute ischemic stroke: a consensus statement. Stroke. 2013;44:2650-2663. doi: 10.1161/STROKEAHA.113.001972.
29. Pexman JH, Barber PA, Hill MD, et al. Use of the Alberta stroke program early CT score (ASPECTS) for assessing CT scans in patients with acute stroke. AJNR Am J Neuroradiol. 2001;22:1534-1542.
30. Hirai T, Sasaki M, Maeda M, et al. Diffusion-weighted imaging in ischemic stroke: effect of display method on observers' diagnostic performance. Acad Radiol. 2009;16:305-312. doi: 10.1016/j.acra 2008.09.012.
31. Toyoda K, Koga M, Iguchi Y, et al. Guidelines for Intravenous Thrombolysis (Recombinant Tissue-Type Plasminogen Activator), the third edition, March 2019: A guideline from the Japan Stroke Society. Neurol Med Chir (Tokyo). 2019 ;59:449-491. doi: 10.2176/nmc.st.2019-0177.
32. Kang DH, Yoon W, Kim SK, et al. Endovascular treatment for emergent large vessel occlusion due to severe intracranial atherosclerotic stenosis. J Neurosurg. 2019;130:1949-1956. doi: 10.3171/2018.1.JNS172350.
33. Kang DH, Yoon W, Baek BH, et al. Front-line thrombectomy for acute large-vessel occlusion with underlying severe intracranial stenosis: stent retriever versus contact aspiration. J Neurosurg. 2020;132:1202-1208. doi: 10.3171 /2019.1.JNS182905.
34. Schumacher HC, Meyers PM, Higashida RT, et al. Reporting standards for angioplasty and stent-assisted angioplasty for intracranial atherosclerosis. Stroke. 2009;40:e348-e365.
35. Hart RG, Diener HC, Coutts SB, et al. Embolic strokes of undetermined source: the case for a new clinical construct. Lancet Neurol. 2014;13:429-438. -7.
36. Hacke W, Kaste M, Fieschi C, et al. Intravenous thrombolysis with recombinant tissue plasminogen activator for acute hemispheric stroke. The European Cooperative Acute Stroke Study (ECASS). JAMA. 1995;274:1017-1102.
37. Hacke W, Kaste M, Fieschi C, et al. Randomized double-blind placebo-controlled trial of thrombolytic therapy with intravenous alteplase in acute ischaemic stroke (ECASS II). Second European-Australasian Acute Stroke Study Investigators. Lancet. 1998; 352:1245-1251. doi: 10.1016/s0140-6736(98)08020-9.
38. Kamimura T, Okazaki S, Morimoto T, et al. Prevalence of RNF213 p.R4810K variant in early-onset stroke with intracranial arterial stenosis. Stroke. 2019;50:1561-1563.
39. Miyawaki S, Imai H, Takayanagi S, Mukasa A, Nakatomi H, Saito N. Identification of a genetic variant common to moyamoya disease and intracranial major artery stenosis/occlusion. Stroke. 2012;43:3371-3374. doi: 10.1161 /STROKEAHA.112.663864.
40. Kim HJ, Choi EH, Chung JW, et al. Role of the RNF213 variant in vascular outcomes in patients with intracranial atherosclerosis. J Am Heart Assoc. 2021;10:e017660. doi: 10.1161/JAHA.120.017660.
41. Park YS, Park HW, Park HS, et al. Association of genetic variants of RNF213 with ischemic stroke risk in Koreans. Genes Genomics. 2021;43:389-397.
42. Xiong Y, Wang H, Zhang M, et al. Risk stratification for endovascular treatment in acute anterior circulation occlusive stroke. J Stroke Cerebrovasc Dis. 2019;28:104442. doi: 10.1016/j.jstrokecerebrovasdis.2019.104442.
 [態様]
 上述した複数の例示的な実施形態および実施例は、以下の態様の具体例であることが当業者により理解される。本明細書で使用される用語は、特に具体的な定めのない限り、医学、解剖学、薬学、分子生物学、有機化学等の分野における当業者に一般に理解される通りの意味を有する。本明細書において定義された用語は、一般的に理解されるのと同じ意味を有していない場合、本明細書の記載内容が優先する。
[Aspect]
It will be appreciated by those skilled in the art that the multiple exemplary embodiments and examples described above are specific examples of the following aspects. The terms used herein have meanings as commonly understood by those of ordinary skill in the fields of medicine, anatomy, pharmacology, molecular biology, organic chemistry, and the like, unless otherwise specified. In the event that terms defined herein do not have the same meaning as commonly understood, the statements made herein will control.
 (第1項)
 一態様に係る頭蓋内脳血管の再閉塞を予測するための方法は、
 被験者から採取されたサンプルを用いて前記被験者がRNF213p.R4810K多型を有するか否かを検出することと、
 前記被験者が前記RNF213p.R4810K多型を有するとき、頭蓋内脳血管の閉塞に対する血管内治療後に、前記血管内治療を受けた血管が再閉塞する可能性が高いと判定することと、を含む。
(Section 1)
According to one aspect, a method for predicting intracranial cerebral vessel reocclusion comprises:
Using a sample collected from a subject, the subject was tested for RNF213p. detecting whether it has the R4810K polymorphism;
said subject is said RNF213p. and determining, after endovascular treatment for intracranial cerebral vessel occlusion, that the endovascularly treated vessel is likely to re-occlude when having the R4810K polymorphism.
 第1項に記載の方法によれば、血管内治療後の血管の再閉塞リスクを予測することが容易になる。 According to the method described in paragraph 1, it becomes easier to predict the risk of reocclusion of blood vessels after endovascular treatment.
 (第2項)
 第1項に記載の方法において、前記頭蓋内脳血管が再閉塞する可能性に基づいて前記血管内治療に使用する器具を選択することをさらに含む。
(Section 2)
The method of claim 1, further comprising selecting an instrument for use in the endovascular treatment based on the likelihood of reocclusion of the intracranial cerebral vessel.
 第2項に記載の方法によれば、再閉塞のリスクを減少することができる。 According to the method described in paragraph 2, the risk of reocclusion can be reduced.
 (第3項)
 第1項または第2項に記載の方法において、前記判定することは、前記血管内治療後の通常よりも早い期間に、治療を受けた血管が再閉塞する可能性が高いと判定することを含む。
(Section 3)
3. The method of claim 1 or 2, wherein the determining comprises determining that the treated blood vessel is likely to re-occlude earlier than usual after the endovascular treatment. include.
 (第4項)
 第3項に記載の方法において、前記血管内治療後の通常よりも早い期間は、前記血管内治療により再開通が認められてから前記血管内治療術中までである。
(Section 4)
In the method according to item 3, the period earlier than usual after the endovascular treatment is from when recanalization is recognized by the endovascular treatment to during the endovascular treatment.
 (第5項)
 第3項に記載の方法において、前記血管内治療後の通常よりも早い期間は、前記血管内治療により再開通が認められてから2週間以内である。
(Section 5)
In the method according to item 3, the earlier-than-usual period after the endovascular treatment is within two weeks after recanalization is observed by the endovascular treatment.
 第3項~第5項に記載の方法によれば、即時または早期再閉塞のリスクが高い患者が判定される。 According to the methods described in paragraphs 3 to 5, patients with a high risk of immediate or early reocclusion are determined.
 (第6項)
 第1項~第5項のいずれかに記載の方法において、前記RNF213p.R4810K多型は、変異型と野生型のヘテロ接合型である。
(Section 6)
6. The method according to any one of items 1 to 5, wherein said RNF213p. The R4810K polymorphism is heterozygous for mutant and wild type.
 (第7項)
 第1項~第6項のいずれかに記載の方法において、前記サンプルは、血液または唾液である。
(Section 7)
7. The method of any one of paragraphs 1-6, wherein the sample is blood or saliva.
 第7項に記載の方法によれば、低侵襲でサンプルを得ることができる。 According to the method described in paragraph 7, a sample can be obtained with minimal invasiveness.
 (第8項)
 第1項~第7項のいずれかに記載の方法において、前記頭蓋内脳血管は、頭蓋内内頚動脈または中大脳動脈である。
(Section 8)
In the method according to any one of items 1 to 7, the intracranial cerebral blood vessel is the intracranial internal carotid artery or the middle cerebral artery.
 (第9項)
 第1項~第8項のいずれかに記載の方法において、前記頭蓋内脳血管の閉塞は、アテローム性動脈硬化による血管の閉塞である。
(Section 9)
In the method according to any one of items 1 to 8, the intracranial cerebral vascular occlusion is vascular occlusion due to atherosclerosis.
 頭蓋内脳血管の閉塞がアテローム性動脈硬化であるとき、RNF213p.R4810K多型を有する患者の血管の再閉塞のリスクはより高いと判断することができる。 When intracranial cerebral vessel occlusion is atherosclerosis, RNF213 p. Patients with the R4810K polymorphism can be judged to be at higher risk of vessel reocclusion.
 (第10項)
 一態様に係るキットは、
 RNF213p.R4810K多型の有無に基づき、頭蓋内脳血管の閉塞に対する血管内治療後に、前記血管内治療を受けた血管が再閉塞する可能性が高いか否かを判定するためのキットであって、
 前記RNF213p.R4810K多型に対応する遺伝子変異を含む塩基配列を増幅するPCRプライマー対と、
 前記RNF213p.R4810K多型の野生型塩基配列に結合する第1プローブおよび変異型塩基配列に結合する第2プローブと、を備え、
 前記第1プローブと前記第2プローブとは、互いに異なる蛍光色素で標識されるキットである。
(Section 10)
A kit according to one aspect comprises:
RNF213p. A kit for determining, based on the presence or absence of the R4810K polymorphism, whether or not there is a high possibility of reocclusion of a blood vessel that has undergone endovascular treatment after endovascular treatment for intracranial cerebral vessel occlusion,
Said RNF213p. A PCR primer pair that amplifies a nucleotide sequence containing a genetic mutation corresponding to the R4810K polymorphism;
Said RNF213p. A first probe that binds to the wild-type base sequence of the R4810K polymorphism and a second probe that binds to the mutant base sequence,
The first probe and the second probe are kits labeled with fluorescent dyes different from each other.
 第10項に記載のキットによれば、被験者の血管内治療後の血管の再閉塞のリスクが高いか否かを予測することができる。 According to the kit described in paragraph 10, it is possible to predict whether a subject has a high risk of reocclusion of blood vessels after endovascular treatment.
 (第11項)
 第10項に記載のキットにおいて、前記PCRプライマー対は、配列番号3で示される塩基配列を有するプライマーおよび配列番号4で示される塩基配列を有するプライマーを含む。
(Section 11)
In the kit according to item 10, the PCR primer pair includes a primer having the nucleotide sequence shown by SEQ ID NO:3 and a primer having the nucleotide sequence shown by SEQ ID NO:4.
 第11項に記載のキットによれば、非特異的な増幅が少なくPCRを行うことができる。 According to the kit described in item 11, PCR can be performed with less non-specific amplification.
 (第12項)
 第10項または第11項に記載のキットにおいて、前記第1プローブは配列番号5で示される塩基配列を有し、前記第2プローブは配列番号6で示される塩基配列を有する。
(Section 12)
In the kit according to item 10 or 11, the first probe has the base sequence shown by SEQ ID NO:5 and the second probe has the base sequence shown by SEQ ID NO:6.
 第12項に記載のキットによれば、PCR産物の非特異的な検出を少なくすることができる。 According to the kit described in paragraph 12, non-specific detection of PCR products can be reduced.
 (第13項)
 第10項~第12項に記載のキットにおいて、界面活性剤およびプロテイナーゼKを含むPCR緩衝液をさらに備える。
(Section 13)
The kit of paragraphs 10-12, further comprising a PCR buffer containing detergent and proteinase K.
 第13項に記載のキットによれば、ゲノムDNAを鋳型とするPCRを簡便にかつ迅速に行うことができる。 According to the kit described in paragraph 13, PCR can be easily and rapidly performed using genomic DNA as a template.
 (第14項)
 一態様に係る発明は、RNF213p.R4810K多型からなる、頭蓋内脳血管の閉塞に対する血管内治療後に、前記血管内治療を受けた血管が再閉塞する可能性が高いか否かを判定するための遺伝子マーカーである。
(Section 14)
The invention according to one aspect provides RNF213p. A genetic marker consisting of the R4810K polymorphism for determining whether or not there is a high possibility of reocclusion of a vessel that has received intracranial cerebral vessel occlusion after endovascular treatment.
 第14項に記載の発明によれば、血管内治療後の血管の再閉塞のリスクを予測するための情報を提供することができる。 According to the invention described in paragraph 14, information for predicting the risk of reocclusion of blood vessels after endovascular treatment can be provided.
 (第15項)
 一態様に係る頭蓋内脳血管の再狭窄を予測するための方法は、
 被験者から採取されたサンプルを用いて前記被験者がRNF213p.R4810K多型を有するか否かを検出することと、
 前記被験者が前記RNF213p.R4810K多型を有するとき、頭蓋内脳血管の閉塞に対する血管内治療後に、前記血管内治療を受けた血管が再狭窄する可能性が高いと判定することと、を含む。
(Section 15)
According to one aspect, a method for predicting intracranial cerebrovascular restenosis comprises:
Using a sample collected from a subject, the subject was tested for RNF213p. detecting whether it has the R4810K polymorphism;
said subject is said RNF213p. after endovascular treatment for intracranial cerebral vessel occlusion when having the R4810K polymorphism, determining that the endovascularly treated vessel is likely to restenose.
 患者がRNF213p.R4810K多型を有するとき、血管内治療後の再狭窄が起こりやすいことが予測される。再狭窄のリスクが高いとき、再閉塞のリスクも高くなると考えられる。 If the patient has RNF213p. Having the R4810K polymorphism predicts a susceptibility to restenosis after endovascular treatment. It is believed that when the risk of restenosis is high, the risk of reocclusion is also high.
 (第16項)
 一態様に係るキットは、
 RNF213p.R4810K多型の有無に基づき、頭蓋内脳血管の閉塞に対する血管内治療後に、前記血管内治療を受けた血管が再狭窄する可能性が高いか否かを判定するためのキットであって、
 前記RNF213p.R4810K多型に対応する遺伝子変異を含む塩基配列を増幅するPCRプライマー対と、
 前記RNF213p.R4810K多型の野生型塩基配列に結合する第1プローブおよび変異型塩基配列に結合する第2プローブと、を備え、
 前記第1プローブと前記第2プローブとは、互いに異なる蛍光色素で標識されるキットである。
(Section 16)
A kit according to one aspect comprises:
RNF213p. A kit for determining, based on the presence or absence of the R4810K polymorphism, whether there is a high possibility of restenosis in a blood vessel that has undergone endovascular treatment after endovascular treatment for intracranial cerebral vessel occlusion,
Said RNF213p. A PCR primer pair that amplifies a nucleotide sequence containing a genetic mutation corresponding to the R4810K polymorphism;
Said RNF213p. A first probe that binds to the wild-type base sequence of the R4810K polymorphism and a second probe that binds to the mutant base sequence,
The first probe and the second probe are kits labeled with fluorescent dyes different from each other.
 (第17項)
 一態様に係る発明は、RNF213p.R4810K多型からなる、頭蓋内脳血管の閉塞に対する血管内治療後に、前記血管内治療を受けた血管が再狭窄する可能性が高いか否かを判定するための遺伝子マーカーである。
(Section 17)
The invention according to one aspect provides RNF213p. A genetic marker consisting of the R4810K polymorphism for determining whether or not there is a high possibility of restenosis in the blood vessels that have undergone endovascular treatment after endovascular treatment for intracranial cerebral vessel occlusion.

Claims (14)

  1.  被験者から採取されたサンプルを用いて前記被験者がRNF213p.R4810K多型を有するか否かを検出することと、
     前記被験者が前記RNF213p.R4810K多型を有するとき、頭蓋内脳血管の閉塞に対する血管内治療後に、前記血管内治療を受けた血管が再閉塞する可能性が高いと判定することと、
     を含む、頭蓋内脳血管の再閉塞を予測するための方法。
    Using a sample collected from a subject, the subject was tested for RNF213p. detecting whether it has the R4810K polymorphism;
    said subject is said RNF213p. Determining that, when having the R4810K polymorphism, after endovascular treatment for occlusion of an intracranial cerebral vessel, there is a high possibility of reocclusion of the vessel that has undergone endovascular treatment;
    A method for predicting intracranial cerebral vessel reocclusion, comprising:
  2.  前記頭蓋内脳血管が再閉塞する可能性に基づいて前記血管内治療に使用する器具を選択することをさらに含む、請求項1に記載の方法。 The method of claim 1, further comprising selecting an instrument for use in said endovascular treatment based on the likelihood of reocclusion of said intracranial cerebral vessels.
  3.  前記判定することは、前記血管内治療後の通常よりも早い期間に、治療を受けた血管が再閉塞する可能性が高いと判定することを含む、請求項1または2に記載の方法。 3. The method of claim 1 or 2, wherein said determining comprises determining that the treated vessel is likely to re-occlude earlier than normal after said endovascular treatment.
  4.  前記血管内治療後の通常よりも早い期間は、前記血管内治療により再開通が認められてから前記血管内治療術中までである、請求項3に記載の方法。 The method according to claim 3, wherein the period earlier than usual after the endovascular treatment is from when recanalization is recognized by the endovascular treatment to during the endovascular treatment.
  5.  前記血管内治療後の通常よりも早い期間は、前記血管内治療により再開通が認められてから2週間以内である、請求項3に記載の方法。 The method according to claim 3, wherein the earlier-than-usual period after the endovascular treatment is within two weeks after recanalization is observed by the endovascular treatment.
  6.  前記RNF213p.R4810K多型は、変異型と野生型のヘテロ接合型である、請求項1に記載の方法。 The RNF213 p. 2. The method of claim 1, wherein the R4810K polymorphism is heterozygous for mutant and wild type.
  7.  前記サンプルは、血液または唾液である、請求項1に記載の方法。 The method according to claim 1, wherein the sample is blood or saliva.
  8.  前記頭蓋内脳血管は、頭蓋内内頚動脈または中大脳動脈である、請求項1に記載の方法。 The method according to claim 1, wherein the intracranial cerebral blood vessel is the intracranial internal carotid artery or the middle cerebral artery.
  9.  前記頭蓋内脳血管の閉塞は、アテローム性動脈硬化による血管の閉塞である、請求項1に記載の方法。 The method according to claim 1, wherein the intracranial cerebral vascular occlusion is vascular occlusion due to atherosclerosis.
  10.  RNF213p.R4810K多型の有無に基づき、頭蓋内脳血管の閉塞に対する血管内治療後に、前記血管内治療を受けた血管が再閉塞する可能性が高いか否かを判定するためのキットであって、
     前記RNF213p.R4810K多型に対応する遺伝子変異を含む塩基配列を増幅するPCRプライマー対と、
     前記RNF213p.R4810K多型の野生型塩基配列に結合する第1プローブおよび変異型塩基配列に結合する第2プローブと、を備え、
     前記第1プローブと前記第2プローブとは、互いに異なる蛍光色素で標識されるキット。
    RNF213p. A kit for determining, based on the presence or absence of the R4810K polymorphism, whether or not there is a high possibility of reocclusion of a blood vessel that has undergone endovascular treatment after endovascular treatment for intracranial cerebral vessel occlusion,
    Said RNF213p. A PCR primer pair that amplifies a nucleotide sequence containing a genetic mutation corresponding to the R4810K polymorphism;
    Said RNF213p. A first probe that binds to the wild-type base sequence of the R4810K polymorphism and a second probe that binds to the mutant base sequence,
    A kit in which the first probe and the second probe are labeled with fluorescent dyes different from each other.
  11.  前記PCRプライマー対は、配列番号3で示される塩基配列を有するプライマーおよび配列番号4で示される塩基配列を有するプライマーを含む、請求項10に記載のキット。 The kit according to claim 10, wherein the PCR primer pair includes a primer having the nucleotide sequence shown by SEQ ID NO:3 and a primer having the nucleotide sequence shown by SEQ ID NO:4.
  12.  前記第1プローブは配列番号5で示される塩基配列を有し、前記第2プローブは配列番号6で示される塩基配列を有する、請求項10または11に記載のキット。 The kit according to claim 10 or 11, wherein the first probe has the base sequence shown by SEQ ID NO:5 and the second probe has the base sequence shown by SEQ ID NO:6.
  13.  界面活性剤およびプロテイナーゼKを含むPCR緩衝液をさらに備える、請求項10に記載のキット。 The kit according to claim 10, further comprising a PCR buffer containing a surfactant and proteinase K.
  14.  RNF213p.R4810K多型からなる、頭蓋内脳血管の閉塞に対する血管内治療後に、前記血管内治療を受けた血管が再閉塞する可能性が高いか否かを判定するための遺伝子マーカー。  RNF213 p. A genetic marker after endovascular treatment for intracranial cerebral vessel occlusion, which consists of the R4810K polymorphism, to determine whether the endovascularly treated vessels are likely to re-occlude.
PCT/JP2022/039152 2021-11-15 2022-10-20 Determination method using genetic polymorphism WO2023085036A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021185538 2021-11-15
JP2021-185538 2021-11-15

Publications (1)

Publication Number Publication Date
WO2023085036A1 true WO2023085036A1 (en) 2023-05-19

Family

ID=86335646

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/039152 WO2023085036A1 (en) 2021-11-15 2022-10-20 Determination method using genetic polymorphism

Country Status (1)

Country Link
WO (1) WO2023085036A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021085505A1 (en) * 2019-10-29 2021-05-06 国立研究開発法人 国立循環器病研究センター System for assisting with treatment of stroke
JP2021090390A (en) * 2019-12-11 2021-06-17 国立研究開発法人国立循環器病研究センター Brain infarction risk evaluation method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021085505A1 (en) * 2019-10-29 2021-05-06 国立研究開発法人 国立循環器病研究センター System for assisting with treatment of stroke
JP2021090390A (en) * 2019-12-11 2021-06-17 国立研究開発法人国立循環器病研究センター Brain infarction risk evaluation method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YOSHIMOTO. TAKESHI EL AL.: "OD3-2 A case of gene RNF213p.R4810K polymorphism-positive large vessel occlusion in acute stroke that repeated re-obstruction after endovascular thrombectomy", NEUROLOGICAL THERAPEUTICS, vol. 37, no. 6, 2020, pages 229, XP009546241 *

Similar Documents

Publication Publication Date Title
EP2535424B1 (en) SNPs associated with thromboemoblic disease
KR102158717B1 (en) SNP marker for diagnosis of intracranial aneurysm comprising SNP of CD163L1 gene
US10428383B2 (en) Biomarkers for premature birth and use thereof
JP2024026825A (en) Cerebral infarction risk assessment method
Akagawa et al. Influence of endothelial nitric oxide synthase T-786C single nucleotide polymorphism on aneurysm size
WO2023085036A1 (en) Determination method using genetic polymorphism
RU2469096C2 (en) Method for detection of genetic predisposition to developing myocarial infarction in individuals with no clinical implications of ischemic heart disease
KR102158713B1 (en) SNP marker for diagnosis of intracranial aneurysm comprising SNP of GBA gene
KR102158721B1 (en) SNP marker for diagnosis of intracranial aneurysm comprising SNP of RNF144A gene
KR102158715B1 (en) SNP marker for diagnosis of intracranial aneurysm comprising SNP of OLFML2A gene
KR102063486B1 (en) Association of RNF213 single nucleotide polymorphism with the risk of Moyamoya disease in a Korean population
WO2020219465A1 (en) Dna sequences related to diagnosis and treatment of systemic inflammatory response syndrome
KR101447098B1 (en) Plasminogen activator inhibitor-1 gene polymorphisms as predictive markers of idiopathic recurrent spontaneous abortion
KR102158723B1 (en) SNP marker for diagnosis of intracranial aneurysm comprising SNP of SPCS3 gene
KR102158719B1 (en) SNP marker for diagnosis of intracranial aneurysm comprising SNP of LOC102724084 gene
KR102158716B1 (en) SNP marker for diagnosis of intracranial aneurysm comprising SNP of ARHGAP32 gene
KR102158725B1 (en) SNP marker for diagnosis of intracranial aneurysm comprising SNP of MINK1 gene
KR102158722B1 (en) SNP marker for diagnosis of intracranial aneurysm comprising SNP of FLJ45964 gene
KR102158714B1 (en) SNP marker for diagnosis of intracranial aneurysm comprising SNP of TCF24 gene
KR102158720B1 (en) SNP marker for diagnosis of intracranial aneurysm comprising SNP of LRRC3 gene
KR102158724B1 (en) SNP marker for diagnosis of intracranial aneurysm comprising SNP of LINGO2 gene
KR102158718B1 (en) SNP marker for diagnosis of intracranial aneurysm comprising SNP of CUL4A gene
JP5594655B2 (en) Method for determining causal mutation of retinitis pigmentosa and oligonucleotide used therefor
EP4230736A1 (en) Method for detecting genetic polymorphism
RU2323440C2 (en) Method for detecting predisposition to cardiovascular diseases

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22892536

Country of ref document: EP

Kind code of ref document: A1