WO2023084989A1 - 光検出装置及び電子機器 - Google Patents

光検出装置及び電子機器 Download PDF

Info

Publication number
WO2023084989A1
WO2023084989A1 PCT/JP2022/038228 JP2022038228W WO2023084989A1 WO 2023084989 A1 WO2023084989 A1 WO 2023084989A1 JP 2022038228 W JP2022038228 W JP 2022038228W WO 2023084989 A1 WO2023084989 A1 WO 2023084989A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
semiconductor layer
photoelectric conversion
conductor
conductive pad
Prior art date
Application number
PCT/JP2022/038228
Other languages
English (en)
French (fr)
Inventor
慶次 西田
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Priority to CN202280069516.4A priority Critical patent/CN118202466A/zh
Priority to KR1020247013345A priority patent/KR20240095209A/ko
Publication of WO2023084989A1 publication Critical patent/WO2023084989A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1463Pixel isolation structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14603Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • H01L27/14612Pixel-elements with integrated switching, control, storage or amplification elements involving a transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14636Interconnect structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors

Definitions

  • the present technology (technology according to the present disclosure) relates to a photodetector and an electronic device, and is particularly applied to a photodetector having a photoelectric conversion region partitioned by an embedded separation region and an electronic device including the same. It is about effective technology.
  • a photodetection device such as a solid-state imaging device or a distance measuring device includes a semiconductor layer having a plurality of photoelectric conversion regions partitioned by separation regions.
  • Patent Document 1 discloses a buried isolation region in which a conductor (doped polysilicon film) is embedded in a recessed portion of a semiconductor layer via an insulating film as an isolation region for partitioning a photoelectric conversion region.
  • a technique is also disclosed in which a negative bias is applied to the conductor of the isolation region to strengthen the pinning of the side wall of the isolation region.
  • the power supply wiring of the multilayer wiring layer (wiring layer laminate) laminated on the semiconductor layer and the conductor in the isolation region are electrically connected by a power supply contact electrode.
  • a potential may be applied to the conductor in the isolation region from the power supply wiring through the power supply contact electrode.
  • the power supply contact electrode is formed by forming a connection hole in the interlayer insulating film of the multilayer wiring layer and selectively filling the connection hole with a conductive film. Therefore, misalignment of the mask when forming the connection hole in the interlayer insulating film causes misalignment between the conductor in the isolation region and the power supply contact electrode.
  • the photoelectric conversion region and the separation region tend to be miniaturized along with the miniaturization of the photodetector.
  • the conventional method of directly connecting the power supply contact electrode to the conductor in the isolation region it becomes difficult to connect the power supply contact electrode to the conductor in the isolation region as the width of the conductor becomes narrower as the isolation region becomes finer. degree increases. This degree of connection difficulty affects the manufacturing yield of the photodetector, and is a factor that causes a decrease in the manufacturing yield.
  • the purpose of this technology is to provide technology that can improve manufacturing yield.
  • a photodetector according to another aspect of the present technology, a semiconductor layer having a first surface and a second surface located opposite to each other in the thickness direction; a separation region provided in the semiconductor layer and extending in a thickness direction of the semiconductor layer; a photoelectric conversion region partitioned by the separation region; a conductor provided in the isolation region and extending in the thickness direction of the semiconductor layer; an electrode pad formed wider than the width of the conductor and connected to the conductor on the first surface side of the semiconductor layer so as to overlap with the conductor in a plan view; a contact portion connected to and overlapped with the relay conductive pad in plan view; It has
  • An electronic device includes the photodetector and an optical system that forms an image of image light from a subject on the photodetector.
  • FIG. 1 is a block diagram schematically showing one configuration example of a solid-state imaging device according to a first embodiment of the present technology
  • FIG. 1 is an equivalent circuit diagram showing one configuration example of a pixel of a solid-state imaging device according to a first embodiment of the present technology
  • FIG. 2 is a plan view schematically showing a plane pattern of isolation regions and an arrangement pattern of pixel transistors in a pixel array section of the solid-state imaging device according to the first embodiment of the present technology
  • FIG. FIG. 5 is a plan view enlarging a part of FIG. 4;
  • FIG. 4 is a diagram showing a cross-sectional pattern of isolation regions in a cross section perpendicular to the thickness direction of a semiconductor layer
  • FIG. 5 is a vertical cross-sectional view schematically showing a vertical cross-sectional structure along the line a4-a4 of FIG. 4
  • 1 is a plan layout diagram of a main part schematically showing one configuration example of a pixel array section and a peripheral section of a solid-state imaging device according to a first embodiment of the present technology
  • FIG. FIG. 9 is a vertical cross-sectional view schematically showing a vertical cross-sectional structure taken along line a8-a8 of FIG. 8
  • FIG. 5 is a plan layout diagram of a main part schematically showing a first modification of the first embodiment
  • FIG. 11 is a vertical cross-sectional view schematically showing a vertical cross-sectional structure taken along line a10-a10 of FIG. 10;
  • FIG. 11 is a plan layout diagram of a main part schematically showing a second modification of the first embodiment;
  • FIG. 13 is a vertical cross-sectional view schematically showing a vertical cross-sectional structure taken along line a12-a12 of FIG. 12;
  • FIG. 7 is a plan view schematically showing a plane pattern of isolation regions and an arrangement pattern of pixel transistors in a pixel array section of a solid-state imaging device according to a second embodiment of the present technology;
  • FIG. 15 is a vertical cross-sectional view schematically showing a vertical cross-sectional structure taken along line a14-a14 of FIG. 14;
  • FIG. 11 is a vertical cross-sectional view of a main part schematically showing a configuration example of a solid-state imaging device according to a third embodiment of the present technology
  • FIG. 20 is a plan view of a main part schematically showing a configuration example of a pixel array section in a solid-state imaging device according to a fourth embodiment of the present technology
  • 18 is an enlarged plan view showing a first pixel block included in the pixel array section of FIG. 17
  • FIG. 18 is an enlarged plan view showing a second pixel block included in the pixel array section of FIG. 17
  • FIG. FIG. 18 is a longitudinal section schematically showing the cross-sectional structure along the line a17-a17 in FIG. 17
  • FIG. It is a longitudinal section showing a modification of a 4th embodiment typically. It is a figure showing a schematic structure of electronic equipment concerning a 5th embodiment of this art.
  • the definition of "transparent" in this specification means that the transmittance of the member is close to 100% with respect to the assumed wavelength range received by the photodetector. For example, even if the material itself absorbs an assumed wavelength range, it is transparent if it is processed extremely thin and has a transmittance close to 100%. For example, in the case of a photodetector used in the near-infrared region, even a member having a large absorption in the visible region can be said to be transparent if the transmittance is close to 100% in the near-infrared region. Alternatively, even if there is some absorption component or reflection component, if the influence is within an allowable range in light of the sensitivity specification of the photodetector, it can be regarded as transparent.
  • the conductivity type of the semiconductor the case where the first conductivity type is p-type and the second conductivity type is n-type will be exemplified.
  • the first conductivity type may be n-type
  • the second conductivity type may be p-type.
  • the first direction and the second direction which are orthogonal to each other in the same plane, are the X direction and the Y direction, respectively.
  • a third direction orthogonal to each of the second directions is the Z direction.
  • the thickness direction of the semiconductor layer 20, which will be described later, will be described as the Z direction.
  • CMOS complementary metal oxide semiconductor
  • a solid-state imaging device 1A mainly includes a semiconductor chip 2 having a rectangular two-dimensional planar shape when viewed from above. That is, the solid-state imaging device 1A is mounted on the semiconductor chip 2, and the semiconductor chip 2 can be regarded as the solid-state imaging device 1A.
  • this solid-state imaging device 1A (201) takes in image light (incident light 206) from an object through an optical lens 202, and measures the light amount of the incident light 206 formed on the imaging surface. Each pixel is converted into an electric signal and output as a pixel signal.
  • a semiconductor chip 2 on which a solid-state imaging device 1A is mounted has a square-shaped pixel array section 2A provided in the center in a two-dimensional plane including X and Y directions orthogonal to each other, A peripheral portion 2B is provided outside the pixel array portion 2A so as to surround the pixel array portion 2A.
  • the pixel array section 2A is a light receiving surface that receives light condensed by an optical lens (optical system) 202 shown in FIG. 21, for example.
  • a plurality of pixels 3 are arranged in a matrix on a two-dimensional plane including the X direction and the Y direction.
  • the pixels 3 are repeatedly arranged in the X direction and the Y direction that are orthogonal to each other within the two-dimensional plane.
  • a plurality of bonding pads 14 are arranged in the peripheral portion 2B.
  • Each of the plurality of bonding pads 14 is arranged, for example, along each of four sides in the two-dimensional plane of the semiconductor chip 2 .
  • Each of the plurality of bonding pads 14 is an input/output terminal used when electrically connecting the semiconductor chip 2 to an external device.
  • the semiconductor chip 2 has a logic circuit 13 shown in FIG.
  • the logic circuit 13 includes a vertical drive circuit 4, a column signal processing circuit 5, a horizontal drive circuit 6, an output circuit 7, a control circuit 8, and the like, as shown in FIG.
  • the logic circuit 13 is composed of a CMOS (Complementary MOS) circuit having, for example, an n-channel conductivity type MOSFET (Metal Oxide Semiconductor Field Effect Transistor) and a p-channel conductivity type MOSFET as field effect transistors.
  • CMOS Complementary MOS
  • the vertical driving circuit 4 is composed of, for example, a shift register.
  • the vertical drive circuit 4 sequentially selects desired pixel drive lines 10, supplies pulses for driving the pixels 3 to the selected pixel drive lines 10, and drives the pixels 3 in row units. That is, the vertical driving circuit 4 sequentially selectively scans the pixels 3 of the pixel array section 2A in the vertical direction row by row, and outputs signals from the pixels 3 based on the signal charges generated by the photoelectric conversion elements of the pixels 3 according to the amount of received light. is supplied to the column signal processing circuit 5 through the vertical signal line 11 .
  • the column signal processing circuit 5 is arranged, for example, for each column of the pixels 3, and performs signal processing such as noise removal on the signals output from the pixels 3 of one row for each pixel column.
  • the column signal processing circuit 5 performs signal processing such as CDS (Correlated Double Sampling) and AD (Analog Digital) conversion for removing pixel-specific fixed pattern noise.
  • the horizontal driving circuit 6 is composed of, for example, a shift register.
  • the horizontal driving circuit 6 sequentially outputs a horizontal scanning pulse to the column signal processing circuit 5 to select each of the column signal processing circuits 5 in order, and the pixels subjected to the signal processing from each of the column signal processing circuits 5 are selected.
  • a signal is output to the horizontal signal line 12 .
  • the output circuit 7 performs signal processing on pixel signals sequentially supplied from each of the column signal processing circuits 5 through the horizontal signal line 12 and outputs the processed signal.
  • signal processing for example, buffering, black level adjustment, column variation correction, and various digital signal processing can be used.
  • the control circuit 8 generates a clock signal and a control signal that serve as references for the operation of the vertical drive circuit 4, the column signal processing circuit 5, the horizontal drive circuit 6, etc. based on the vertical synchronization signal, the horizontal synchronization signal, and the master clock signal. Generate. The control circuit 8 then outputs the generated clock signal and control signal to the vertical drive circuit 4, the column signal processing circuit 5, the horizontal drive circuit 6, and the like.
  • each pixel 3 of the plurality of pixels 3 includes a photoelectric conversion unit 24, a transfer transistor TRV as a pixel transistor, and a charge holding region (floating diffusion) FD, and further, A readout circuit 15 electrically connected to the charge holding region FD is provided.
  • one readout circuit 15 is assigned to one pixel 3 as an example, but the circuit configuration is not limited to this. It is good also as a circuit configuration which carries out.
  • the photoelectric conversion unit 24 shown in FIG. 3 is composed of, for example, a pn junction photodiode (PD), and generates signal charges according to the amount of received light.
  • the photoelectric conversion unit 24 has a cathode side electrically connected to the source region of the transfer transistor TRL, and an anode side electrically connected to a reference potential line (for example, ground).
  • the transfer transistor TRV shown in FIG. 3 transfers the signal charge photoelectrically converted by the photoelectric conversion unit 24 to the charge holding region FD.
  • a source region of the transfer transistor RTV is electrically connected to the cathode side of the photoelectric conversion unit 24, and a drain region of the transfer transistor TRV is electrically connected to the charge holding region FD.
  • a gate electrode of the transfer transistor TRV is electrically connected to a transfer transistor drive line among the pixel drive lines 10 (see FIG. 2).
  • the charge holding region FD shown in FIG. 3 temporarily holds (accumulates) signal charges transferred from the photoelectric conversion unit 24 via the transfer transistor TRV.
  • the photoelectric conversion section 24, the transfer transistor TRV, and the charge holding region FD are mounted in a photoelectric conversion region 21 (see FIG. 7) of the semiconductor layer 20, which will be described later.
  • the readout circuit 15 shown in FIG. 3 reads out the signal charge held in the charge holding region FD and outputs a pixel signal based on this signal charge.
  • the readout circuit 15 includes, but is not limited to, pixel transistors such as an amplification transistor AMP, a selection transistor SEL, and a reset transistor RST.
  • pixel transistors such as an amplification transistor AMP, a selection transistor SEL, and a reset transistor RST.
  • Each of these transistors (AMP, SEL, RST) and the above-described transfer transistor TRV, as a field effect transistor, includes a gate insulating film made of, for example, a silicon oxide (SiO 2 ) film, a gate electrode, a source region and a drain. and a pair of main electrode regions functioning as regions.
  • these transistors may be MISFETs (Metal Insulator Semiconductor FET) whose gate insulating film is a silicon nitride (Si 3 N 4 ) film or a laminated film of silicon nitride film and silicon oxide film.
  • MISFETs Metal Insulator Semiconductor FET
  • the amplification transistor AMP has a source region electrically connected to the drain region of the selection transistor SEL, and a drain region electrically connected to the power supply line Vdd and the drain region of the reset transistor RST.
  • a gate electrode of the amplification transistor AMP is electrically connected to the charge holding region FD and the source region of the reset transistor RST.
  • the selection transistor SEL has a source electrically connected to the vertical signal line 11 (VSL) and a drain region electrically connected to the source region of the amplification transistor AMP.
  • a gate electrode of the select transistor SEL is electrically connected to a select transistor drive line among the pixel drive lines 10 (see FIG. 2).
  • the reset transistor RST has a source region electrically connected to the charge holding region FD and the gate electrode of the amplification transistor AMP, and a drain region electrically connected to the power supply line Vdd and the drain region of the amplification transistor AMP.
  • a gate electrode of the reset transistor RST is electrically connected to a reset transistor drive line among the pixel drive lines 10 (see FIG. 2).
  • the transfer transistor TRV transfers signal charges generated by the photoelectric conversion unit 24 to the charge holding region FD when the transfer transistor TRV is turned on.
  • the reset transistor RST resets the potential (signal charge) of the charge holding region FD to the potential of the power supply line Vdd when the reset transistor RST is turned on.
  • the selection transistor SEL controls the output timing of the pixel signal from the readout circuit 15 .
  • the amplification transistor AMP generates, as a pixel signal, a voltage signal corresponding to the level of the signal charge held in the charge holding region FD.
  • the amplification transistor AMP constitutes a source follower type amplifier and outputs a pixel signal having a voltage corresponding to the level of the signal charge generated by the photoelectric conversion section 24 .
  • the selection transistor SEL is turned on, the amplification transistor AMP amplifies the potential of the charge holding region FD and outputs a voltage corresponding to the potential to the column signal processing circuit 5 via the vertical signal line 11 (VSL). do.
  • signal charges generated by the photoelectric conversion units 24 of the pixels 3 are held (accumulated) in the charge holding regions FD via the transfer transistors TRV of the pixels 3. Then, the signal charge held in the charge holding region FD is read by the readout circuit 15 and applied to the gate electrode of the amplification transistor AMP of the readout circuit 15 .
  • a horizontal line selection control signal is applied from the vertical shift register to the gate electrode of the selection transistor SEL of the readout circuit 15 .
  • the selection control signal By setting the selection control signal to high (H) level, the selection transistor SEL is turned on, and a current corresponding to the potential of the charge holding region FD amplified by the amplification transistor AMP flows through the vertical signal line 11 .
  • the reset control signal applied to the gate electrode of the reset transistor RST of the readout circuit 15 to high (H) level, the reset transistor RST is turned on and the signal charge accumulated in the charge holding region FD is reset. .
  • the selection transistor SEL may be omitted as necessary.
  • the source region of the amplification transistor AMP is electrically connected to the vertical signal line 11 (VSL).
  • FIG. 4 and 5 are plan views of the semiconductor layer 20 shown in FIG. 7 as viewed from the first surface S1 side. 7 and 9 are upside down with respect to FIG. 1 in order to make the drawings easier to see.
  • FIG. 7 omits illustration of layers above the interlayer insulating film 46 covering the second wiring layer 45 of the multilayer wiring layer (wiring layer stack) 40 .
  • FIG. 9 omits illustration of layers above the third wiring layer 47 of the multilayer wiring layer 40 .
  • the semiconductor chip 2 includes a semiconductor layer 20 having a first surface S1 and a second surface S2 located opposite to each other in the thickness direction (Z direction), and a second surface of the semiconductor layer 20. 1, and a support substrate (not shown) provided on the opposite side of the multilayer wiring layer 40 from the semiconductor layer 20 side.
  • the semiconductor chip 2 includes an insulating film 51, a light shielding film 54, a color filter 55, and a microlens (not shown) which are sequentially provided on the second surface S2 side of the semiconductor layer 20 from the second surface S2 side. It has
  • the semiconductor layer 20 includes isolation regions 25 extending in the thickness direction (Z direction) of the semiconductor layer 20 and a plurality of photoelectric conversion regions 21 partitioned by the isolation regions 25. is provided.
  • Each photoelectric conversion region 21 of the plurality of photoelectric conversion regions 21 is provided for each pixel 3 and is adjacent to each other with the separation region 25 interposed therebetween in plan view. That is, in the solid-state imaging device 1A of the first embodiment, a plurality of photoelectric conversion elements are provided in the semiconductor layer 20 so as to be adjacent to each other with the isolation regions 25 extending in the thickness direction (Z direction) of the semiconductor layer 20 interposed therebetween.
  • a region 21 is provided.
  • each pixel 3 among the plurality of pixels 3 arranged in the pixel array section 2A includes a photoelectric conversion region 21, an element forming region 32a, and a power feeding region 32z.
  • a Si substrate, a SiGe substrate, an InGaAs substrate, or the like can be used as the semiconductor layer 20 .
  • a p-type semiconductor substrate made of single crystal silicon, for example, is used as the semiconductor layer 20 .
  • the first surface S1 of the semiconductor layer 20 is sometimes called an element forming surface or main surface, and the second surface S2 side is sometimes called a light incident surface or a rear surface.
  • the solid-state imaging device 1A of the first embodiment converts light incident from the second surface (light incident surface, back surface) S2 side of the semiconductor layer 20 into a photoelectric conversion unit provided in the photoelectric conversion region 21 of the semiconductor layer 20. 24 for photoelectric conversion.
  • a plan view refers to a case of viewing from a direction along the thickness direction (Z direction) of the semiconductor layer 20 .
  • a cross-sectional view refers to a case where a cross section along the thickness direction (Z direction) of the semiconductor layer 20 is viewed from a direction (X direction or Y direction) orthogonal to the thickness direction (Z direction) of the semiconductor layer 20.
  • the photoelectric conversion region 21 can also be called a photoelectric conversion cell.
  • the isolation region 25 can be called a first isolation region, and the element isolation region 31 can be called a second isolation region.
  • a p-type well region 22 made of, for example, a p-type semiconductor region and an n-type semiconductor region 23 are formed. are provided in this order from the first surface S1 side of the semiconductor layer 20 toward the second surface S2 side.
  • the p-type semiconductor region 22 is provided in the surface layer portion of the semiconductor layer 20 on the first surface S1 side so as to overlap with the n-type semiconductor region 23 in plan view.
  • the n-type semiconductor region 23 has an upper surface portion on the side of the first surface S1 of the semiconductor layer 20 separated from the first surface S1 of the semiconductor layer 20, and a side surface portion on the side of the isolation region 25 in contact with the side wall of the isolation region 25. Further, the lower surface portion of the semiconductor layer 20 on the second surface S2 side reaches the second surface S2 of the semiconductor layer 20 . That is, in the photoelectric conversion region 21, the upper surface portion of the n-type semiconductor region 23 is separated from the first surface S1 of the semiconductor layer 20, the side surface portion of the n-type semiconductor region 23 is in contact with the sidewall of the isolation region 25, Furthermore, the bottom portion of the n-type semiconductor region 23 reaches the second surface S2 of the semiconductor layer 20 .
  • a p-type well region 22 is provided on the first surface S1 side of the semiconductor layer 20 so as to overlap with the n-type semiconductor region 23 . Therefore, when the photoelectric conversion region 21 of the first embodiment has the same planar size, the p-type well region 22 is provided between the side surface of the n-type semiconductor region 23 and the side wall of the isolation region 25 . The volume of the photoelectric conversion portion 24 is larger than that of the photoelectric conversion region.
  • the photoelectric conversion section 24 described above is mainly composed of the n-type semiconductor region 23, and is composed of the p-type well region 22 and the n-type semiconductor region 23 as a pn junction photodiode (PD). ing.
  • the element isolation region 31 is, but not limited to, an insulating film (field insulating film) in a trench 33 recessed from the first surface S1 side of the semiconductor layer 20 to the second surface S2 side.
  • 34 is composed of a selectively buried STI (Shallow Trench Isolation) structure.
  • a silicon oxide film can be used as the insulating film 33.
  • the element formation regions 32a are sectioned by the element isolation regions 31 on the first surface S1 side of the semiconductor layer 20 and provided for each photoelectric conversion region 21.
  • FIG. The element forming region 32a overlaps the photoelectric conversion portion 24 of the photoelectric conversion region 21 in plan view.
  • a p-type well region 22 is provided in the element formation region 32a.
  • the element formation region 32a includes a first portion 32a1 and a second portion 32a2 each extending in the X direction and separated from each other in the Y direction, and extending in the Y direction and The third portion 32a-3 is connected to one end of each of the first portion 32a- 1 and the second portion 32a- 2 .
  • An amplification transistor AMP and a selection transistor SEL are arranged in series connection in the first portion 32a1 .
  • a reset transistor RST and a transfer transistor TRV are arranged in series connection in the second portion 32a2 .
  • the orientation of the planar pattern of the element formation regions 32a is the same in the plurality of photoelectric conversion regions 21. As shown in FIG.
  • each photoelectric conversion region 21 of the plurality of photoelectric conversion regions 21, for example, the above-described amplification transistor AMP, selection transistor SEL, reset transistor RST, and transfer transistor TSV are provided as pixel transistors.
  • These pixel transistors (AMP, SEL, RST, TSV) are provided in a p-type well region 22 provided on the first surface S1 side of the semiconductor layer 20 so as to overlap with the photoelectric conversion portion 24 in plan view.
  • a plurality of pixels 3 each including a photoelectric conversion region 21, a photoelectric conversion section 24, and a pixel transistor are arranged in a matrix (two-dimensional matrix).
  • signal charges are generated according to the amount of incident light, and the generated signal charges are accumulated.
  • the reset transistor RST is formed in the p-type well region 22 in the second portion 32a2 of the element formation region 32a.
  • the reset transistor RST includes a gate insulating film 35 provided on the element forming region 32a on the first surface S1 side of the semiconductor layer 20, and a gate electrode 36r provided on the element forming region 32a with the gate insulating film 35 interposed therebetween. and sidewall spacers provided on sidewalls of the gate electrode 36r so as to surround the gate electrode 36r.
  • the reset transistor RST has a channel formation region in which a channel (conducting path) is formed in the p-type well region 22 directly below the gate electrode 36r, and a channel formation region sandwiching the channel formation region in the channel length direction (gate length direction). It further includes a pair of main electrode regions 37g and 37h provided in the p-type well region 22 apart from each other and functioning as source and drain regions.
  • the reset transistor RST controls a channel formed in the channel forming region by a gate voltage applied to the gate electrode 36r. That is, the reset transistor RST is of a lateral type.
  • the transfer transistor TRV is formed in the p-type well region 22 in the second portion 32a2 of the element formation region 32a.
  • the transfer transistor TRV is of vertical type.
  • the transfer transistor TRV includes a gate electrode 36v provided in a gate groove on the first surface S1 side of the semiconductor layer 20, and a gate insulating film interposed between the gate electrode 36v and the semiconductor layer 20. 35, and a channel forming region composed of the p-type well region 22 arranged on the side wall of the gate electrode 36v with the gate insulating film 35 interposed therebetween.
  • the transfer transistor TRV includes a pair of main electrode regions functioning as a source region and a drain region.
  • one main electrode region is composed of the n-type semiconductor region 23 (photoelectric conversion portion 24), and the other main electrode region is a main electrode region 37g functioning as a source region of the reset transistor RST.
  • the transfer transistor TRV and the reset transistor RST share the main electrode region 37g functioning as the drain region of the transfer transistor TRV and the main electrode region 37g functioning as the source region of the reset transistor RST.
  • This main electrode region 37g functions as the charge retention region FD shown in FIG.
  • the transfer transistor TRV controls a channel formed in the channel forming region by a gate voltage applied to the gate electrode 36v.
  • the gate electrode 36v includes a first portion (vertical gate electrode portion) provided in the gate groove portion of the semiconductor layer 20 with the gate insulating film 35 interposed therebetween, and a second portion formed integrally with the first portion and protruding from the gate groove portion. 2 parts.
  • the second portion is wider than the first portion.
  • the main electrode region 37g includes, but is not limited to, an extension region made of an n-type semiconductor region and formed in self-alignment with the gate electrode 36r, and an n-type semiconductor region that is connected to the gate electrode 36v.
  • the gate electrodes 36r and 36v are composed of extension regions formed in a self-aligned manner and n-type semiconductor regions having a higher impurity concentration than these extension regions, and are self-aligned with sidewall spacers on the sidewalls of the gate electrodes 36r and 36v. and a formed contact region.
  • the main electrode region 37h includes, but is not limited to, an extension region made of an n-type semiconductor region and formed in self-alignment with the gate electrode 36r, and an n-type semiconductor region having a higher impurity concentration than the extension region. and a contact region formed self-aligned to the sidewall spacers on the sidewalls of the gate electrode 36r.
  • Each of the gate insulating film 35 and the sidewall spacers is composed of, for example, a silicon oxide (SiO 2 ) film.
  • Each of the gate electrodes 36r and 36v is composed of, for example, a silicon film (doped polysilicon film) into which an impurity that reduces the resistance value is introduced.
  • the transfer transistor TRV may be configured as a lateral type (horizontal type).
  • the amplification transistor AMP and the selection transistor SEL are provided in the first portion 32a1 of the element formation region 32a.
  • the amplification transistor AMP and the selection transistor SEL are formed in a p-type well region 22, as will be described with reference to FIG.
  • each of the amplification transistor AMP and the selection transistor SEL has substantially the same configuration as the reset transistor RST described above.
  • the amplification transistor AMP and the selection transistor SEL share one main electrode region (source region) of the amplification transistor AMP and the other main electrode region (drain region) of the selection transistor SEL.
  • FIG. 7 shows the gate electrode 36r of the reset transistor RST and the gate electrode 36v of the transfer transistor TRV.
  • a p-type power feeding contact region 37z is provided in the power feeding region 32z shown in FIG. Although not shown in detail, the p-type power supply contact region 37z contacts the p-type well region 22 of the photoelectric conversion region 21 with reference to FIG. , and electrically connected to the p-type well region 22 .
  • the p-type power supply contact region 37z is electrically connected to the power supply wiring formed in the first wiring layer 43 via the power supply contact electrode 42z embedded in the interlayer insulating film 41. ing.
  • the p-type power supply contact region 37z is composed of a p-type semiconductor region having a higher impurity concentration than the p-type well region 22, and is connected to the power supply contact electrode 42z connected to the p-type contact region 37z. Reduces ohmic contact resistance.
  • a first reference potential is applied as a power supply potential to the p-type well region 22 shown in FIG. 7, and the potential is fixed at this first reference potential.
  • Power supply of the first reference potential to the p-type well region 22 is performed from a well power supply wiring provided in a multi-layered wiring layer, which will be described later, through a power supply contact electrode 42z and a power supply contact area 37z.
  • 0 V is applied as the first reference potential to the p-type well region 22, although not limited to this.
  • the application of the first reference potential to the p-type well region 22 is maintained during photoelectric conversion in the photoelectric conversion unit 24 and during driving of the pixel transistors (AMP, SEL, RST, TRV).
  • the multilayer wiring layer 40 is arranged on the first surface S1 side opposite to the light incident surface (second surface S2) side of the semiconductor layer 20 .
  • the multilayer wiring layer 40 has a laminated structure including, but not limited to, interlayer insulating films 41, 44 and 46 and wiring layers 43, 45 and 47, for example.
  • the interlayer insulating film 41 is formed on the first surface S1 side of the semiconductor layer 20 in the pixel array section 2A so as to cover the gate electrodes of the pixel transistors (AMP, SEL, RST, STV). is provided.
  • FIG. 7 illustrates a state in which the gate electrodes 36r and 36v of the reset transistor RST and the transfer transistor TRV are covered with an interlayer insulating film 41 as pixel transistors.
  • a first wiring layer 43 is provided on the interlayer insulating film 41 , and the first wiring layer 43 is covered with an upper interlayer insulating film 44 .
  • a second wiring layer 45 is provided on the interlayer insulating film 44 , and the second wiring layer 45 is covered with an upper interlayer insulating film 46 .
  • a third wiring layer 47 is provided on the interlayer insulating film 46 . Although not shown, the third wiring layer 47 is covered with an upper protective film, for example.
  • each of the interlayer insulating films 41, 44 and 46 is provided over the pixel array portion 2A and the peripheral portion 2B of the semiconductor chip 2. As shown in FIG.
  • FIG. 7 illustrates the power supply wiring 47b formed in the wiring layer 47 of the third layer.
  • the wiring 43g is electrically connected to one main electrode region 37g (FD) of the reset transistor RST via a contact electrode (conductive plug) 42g embedded in the interlayer insulating film 41.
  • the wiring 43r is electrically connected to the gate electrode 36r of the reset transistor RST through the contact electrode 42r embedded in the interlayer insulating film 41.
  • the wiring 43v is electrically connected to the gate electrode 36v of the transfer transistor TRV via a contact electrode (conductive plug) 42v embedded in the interlayer insulating film 41.
  • FIG. The power supply wiring 47b shown in FIG. 9 will be described later in detail.
  • Each of the first to third wiring layers 43, 45, 47 is made of a metal film such as copper (Cu) or an alloy mainly composed of Cu, for example.
  • the interlayer insulating films 41 , 44, and 46 and the protective film are, for example, one single layer film of a silicon oxide film, a silicon nitride ( Si3N4 ) film, or a silicon carbonitride (SiCN) film, or It is composed of a laminated film in which two or more layers are laminated.
  • Each of the contact electrodes 42g, 42r and 42v is composed of a high melting point metal film such as a tungsten (W) film or a titanium (Ti) film.
  • the pixel transistors included in the readout circuit 15 are driven through the wiring of each wiring layer 43, 45, 47. Since the multilayer wiring layer 40 is arranged on the side opposite to the light incident surface side (second surface S2 side) of the semiconductor layer 20, the wiring layout can be freely set.
  • the support substrate is provided on the opposite side of the multilayer wiring layer 40 from the semiconductor layer 20 side.
  • the support substrate is a substrate for securing the strength of the semiconductor layer 20 in manufacturing the solid-state imaging device 1A.
  • Silicon (Si) for example, can be used as the material of the support substrate.
  • the separation region 25 includes a first portion 25x extending in the X direction and a second portion 25y extending in the Y direction in plan view.
  • the first portion 25x and the second portion 25y are orthogonal to each other.
  • the first portions 25x are repeatedly arranged in the Y direction at predetermined intervals. Also, the second portions 25y are repeatedly arranged in the X direction at predetermined intervals.
  • the separation region 25 has a grid-like planar pattern in plan view.
  • Each photoelectric conversion region 21 of the plurality of photoelectric conversion regions 21 is partitioned by two adjacent second portions 25y of the separation regions 25 on both ends in the X direction, and separated by the separation regions 25 on both ends in the Y direction. It is partitioned by two matching first portions 25x.
  • the separation region 25 having a grid-like plane pattern has an intersection point where a first portion 25x extending in the X direction and a second portion 25y extending in the Y direction intersect.
  • each of the first portion 25x and the second portion 25y of the separation region 25 extends in the thickness direction (Z direction) of the semiconductor layer 20, and extends between the photoelectric conversion regions 21 adjacent to each other in plan view. are electrically and optically separated from each other.
  • Each of the first portion 25x and the second portion 25y has one end connected to the element isolation region 31 and the other end reaching the second surface S2 of the semiconductor layer 20 in the thickness direction of the semiconductor layer 20 .
  • Each of the first portion 25x and the second portion 25y of the isolation region 25 includes an isolation insulating film 27 provided along the inner wall of the dug portion 26 extending in the thickness direction (Z direction) of the semiconductor layer 20, and the semiconductor and a conductor 28 provided in a dug portion 26 of the layer 20 with an isolation insulating film 27 interposed therebetween.
  • the conductor 28 is insulated from the semiconductor layer 20 by the isolation insulating film 27 . That is, the isolation region 25 includes a conductor 28 embedded in the semiconductor layer 20 via the isolation insulating film 27 and isolated from the semiconductor layer 20 .
  • the isolation insulating film 27 and the conductor 28 extend in the thickness direction of the semiconductor layer 20 , each having one end connected to the element isolation region 31 and the other end reaching the second surface S ⁇ b>2 of the semiconductor layer 20 .
  • a silicon oxide film for example, can be used as the isolation insulating film 27 .
  • the conductor 28 for example, a semiconductor film into which an impurity that reduces resistance is introduced can be used.
  • the conductor 28 of the first embodiment is composed of, but not limited to, a p-type doped polysilicon film into which boron (B) is introduced as an impurity, for example.
  • a metal film such as tungsten (W), aluminum (Al), copper (Cu), or an alloy film can be used.
  • the dug portion 26 includes grooves and through holes formed by selectively removing a portion of the semiconductor layer 20 .
  • the insulating film 51 is provided on the second surface S2 side of the semiconductor layer 20 .
  • the insulating film 51 is formed on the entire second surface S2 side of the semiconductor layer 20 in the pixel array section 2A so that the second surface S2 (light incident surface) side of the semiconductor layer 20 is a flat surface without unevenness.
  • covering the As the insulating film 51 for example, a translucent silicon oxide film is used.
  • the light shielding film 54 is provided on the side of the insulating film 51 opposite to the semiconductor layer 20 side.
  • the light-shielding film 54 has a planar pattern opening on the light receiving surface side of each of the plurality of photoelectric conversion regions 21 so that light incident on a predetermined photoelectric conversion region 21 does not leak into the adjacent photoelectric conversion region 21 . It has a grid plane pattern.
  • the light shielding film 54 has the same grid plane pattern as the grid plane pattern of the isolation region 25, and is arranged at a position overlapping the isolation region 25 in plan view.
  • a tungsten (W) film having a light shielding property is used as the light shielding film 54.
  • the color filter 55 is provided for each photoelectric conversion region 21 (pixel 3) on the opposite side (light incident surface side) of the insulating film 51 from the semiconductor layer 20 side.
  • the color filter 55 color-separates the incident light incident from the light incident surface side of the semiconductor chip 2 .
  • the color filters 55 include a red (R) first color filter, a green (G) second color filter, and a blue (B) third color filter. In this first embodiment, three color filters 55 of R, G, and B are provided.
  • a microlens is provided for each photoelectric conversion region 21 (pixel 3) on the opposite side (light incident surface side) of the color filter 55 from the semiconductor layer 20 side, if explained with reference to FIG. is provided.
  • the microlenses 56 condense the irradiation light and allow the condensed light to enter the photoelectric conversion region 21 efficiently.
  • a power supply contact electrode 46b as a contact portion is provided on the conductor 28 of the isolation region 25 with a relay conductive pad 80 interposed therebetween. An electrically and mechanically connected configuration will be described.
  • the width W 1 (see FIG. 8) is wider than the width W 2 (see FIG. 9) of the conductors 28 of the isolation region 25. and connected to the conductor 28 of the isolation region 25 in plan view on the first surface S1 side of the semiconductor layer 20, and the relay conductive pad 80 in plan view overlaps with and a power feeding contact electrode 46b as a connected power feeding contact portion.
  • the conductor 28 of the isolation region 25 is electrically connected to the power supply wiring 47b via the relay conductive pad 80 and the power supply contact electrode 46b.
  • the power supply wiring 47b is formed in the third wiring layer 47 of the multilayer wiring layer 40. As shown in FIG. As shown in FIG. 8, the power supply wiring 47b is arranged in the peripheral portion 2B outside the pixel array portion 2A in a plan view so as to surround the pixel array portion 2A.
  • the power supply wiring 47b is configured by, for example, an annular planar pattern.
  • the power supply wiring 47b is electrically connected to a power generation circuit (not shown) that supplies a constant power supply potential, and the power supply potential is supplied from the power supply generation circuit. The supply of the power supply potential to the power supply wiring 45b is maintained during photoelectric conversion in the photoelectric conversion unit 24 and during driving of the readout circuit 15 .
  • the isolation region 25 has a first portion 25x extending in the X direction that extends from the pixel array portion 2A to the peripheral portion 2B, and is provided across the pixel array portion 2A and the peripheral portion 2B. . Also, the separation region 25 is provided across the pixel array section 2A and the peripheral section 2B, with a second portion 25y extending in the Y direction drawn out from the pixel array section 2A to the peripheral section 2B. Then, as shown in FIGS. 8 and 9, each of the first portion 25x and the second portion 25y drawn out to the peripheral portion 2B overlaps the power supply wiring 47b in plan view. That is, the isolation region 25 extends inside and outside the pixel array section 2A.
  • the relay conductive pad 80 includes, but is not limited to, a first relay conductive pad 80x that overlaps the first portion 25x of the isolation region 25 in plan view, It has a second relay conductive pad 80y that overlaps the second portion 25y of the isolation region 25 in plan view. That is, the relay conductive pad 80 of the first embodiment includes a first relay conductive pad 80x connected to the first portion 25x of the isolation region 25 and a second relay conductive pad 80x connected to the second portion 25y of the isolation region 25. It is divided into a pad 80y.
  • the first relay conductive pads 80x are arranged in the peripheral portion 2B outside the pixel array portion 2A and extend along the Y direction.
  • the first relay conductive pad 80x overlaps with each of the plurality of first portions 25x of the isolation region 25 and is electrically and mechanically connected.
  • FIG. 8 shows two first relay conductive pads 80x arranged at a predetermined interval in the X direction as an example, the number of first relay conductive pads 80x is limited to two. not a thing
  • the second relay conductive pad 80y is arranged in the peripheral portion 2B outside the pixel array portion 2A and extends along the X direction. Although not shown in detail, the second relay conductive pad 80y overlaps with each of the plurality of first portions 25x of the isolation region 25 and is electrically and mechanically connected.
  • two second relay conductive pads 80y arranged at a predetermined interval in the Y direction are illustrated as an example, but the number of second relay conductive pads 80y is limited to two. not a thing
  • the first relay conductive pad 80x is electrically connected to the power supply wiring 47b via the power supply contact electrode 46b as a contact portion.
  • the second relay conductive pad 80y is also electrically connected to the power supply wiring 47b through the power supply contact electrode 46b, like the first relay conductive pad 80x. That is, the power supply wiring 47b overlaps the conductors 28 (the conductors 28 of the first portion 25x and the conductors 28 of the second portion 25y) of the isolation region 25 in plan view in the peripheral portion 2B outside the pixel array portion 2A.
  • the conductors 28 of the separation region 25 are connected. electrically connected.
  • a power supply potential is applied to the conductor 28 of the isolation region 25 from the power supply wiring 47b through the relay conductive pads 80 (80x, 80y) and the power supply contact electrode 46b, and the potential is fixed at this power supply potential.
  • the relay conductive pad 80 is interposed between the conductor 28 of the isolation region 25 and the power supply contact electrode 46b, and relays electrical connection between the conductor 28 and the power supply contact electrode 46b.
  • the power supply contact electrodes 46b are provided, for example, for each first portion 25x and each second portion 25y of the separation region 25, although not limited thereto.
  • the power supply contact electrode 46b extends across the interlayer insulating films 46, 44 and 41 of the multilayer wiring layer 40 and is embedded across these interlayer insulating films 46, 44 and 41. .
  • One end of the power supply contact electrode 46b is electrically and mechanically connected to the relay conductive pad 80 (80x, 80y), and the other end opposite to the one end is electrically and mechanically connected to the power supply wiring 47b. It is That is, the power supply contact electrode 46b is provided in a layer above the power supply contact electrode 46b and is electrically connected to the power supply wiring 47b to which a potential is applied.
  • the power supply contact electrode 46b is composed of, for example, a refractory metal film such as a tungsten (W) film or a titanium (Ti) film.
  • a second reference potential which is a negative potential lower than the first reference potential applied to the p-type well region 22, is applied as a power supply potential to the conductor 28 of the isolation region 25 shown in FIG.
  • ⁇ 1.2 V is applied as the second reference potential.
  • the second reference potential is supplied to the conductor 28 of the isolation region 25 from the power supply wiring 47b through the power supply contact electrode 46b and the relay conductive pad 80 (80x, 80y). . That is, different power supply potentials are applied to the p-type well region 22 (see FIG. 7) of the photoelectric conversion region 21 and the conductor 28 of the separation region 25 that partitions the photoelectric conversion region 21 . As shown in FIG.
  • the semiconductor layer 20 in the peripheral portion 2B of the semiconductor chip 2 is provided with a p-type peripheral well region 22n made of a p-type semiconductor region.
  • the p-type peripheral well region 22n is formed in the same process as the p-type well region 22 provided in the semiconductor layer 20 of the pixel array section 2A of the semiconductor chip 2.
  • the isolation insulating film 27 of the isolation region 25 shown in FIG. 7 includes, for example, an SCF (Si-cover Film) film that generates negative fixed charges.
  • SCF Silicon-cover Film
  • Hafnium oxide (HfO 2 ) can be used as the SCF film.
  • holes (h + ) are induced in the sidewalls of the isolation region 25 to ensure pinning at the sidewalls of the isolation region 25 . Therefore, generation of dark current can be controlled.
  • the photoelectric conversion region 21 and the separation region 25 tend to be miniaturized with the miniaturization of the solid-state imaging device.
  • the power supply contact electrode 46b is formed by forming connection holes extending over the interlayer insulating films 46, 44, and 41 and selectively filling the connection holes with a conductive film. Misalignment of the mask when forming the contact hole causes misalignment between the conductor 28 in the isolation region 25 and the power supply contact electrode 46b.
  • the width W1 is wider than the width W2 of the conductor 28 of the isolation region 25, and the conductor 28 overlaps the conductor 28 of the isolation region 25 in plan view. It has a relay conductive pad 80 connected to the .
  • a power feeding contact electrode 46b is connected to the relay conductive pad 80.
  • the power supply contact electrode 46b can be easily connected to the relay conductive pad 80, and the power supply contact electrode 46b can be easily connected to the conductor 28 of the isolation region 25. Connection difficulty can be made lower than in the case of directly connecting the contact electrode 46b. Therefore, according to the solid-state imaging device 1A according to the first embodiment, it is possible to improve the manufacturing yield.
  • holes (h + ) are induced in the side walls of the isolation region 25 adjacent to the photoelectric conversion region 21 , and the isolation region 25 Since pinning can be ensured on the side walls, generation of dark current can be controlled.
  • the n-type semiconductor region 23 is formed so as to be in contact with the side walls of the isolation region 25 and reach the second surface S2 of the semiconductor layer 20 .
  • the photoelectric conversion region has the same planar size.
  • the effective volume of the conversion section 24 can be increased.
  • the potential of the conductor 28 of the isolation region 25 can be fixed to the power supply potential, in the two photoelectric conversion regions 21 adjacent to each other with the isolation region 25 interposed therebetween, the pixel transistor of one photoelectric conversion region 21 and the photoelectric conversion region of the other photoelectric conversion region 21 are connected. Propagation of noise caused by capacitive coupling of parasitic capacitance with the pixel transistor in the conversion region 21 can be suppressed. Therefore, according to the solid-state imaging device 1A according to the first embodiment, high image quality can be achieved. Moreover, it is possible to further improve the reliability.
  • the conductor 8 of the isolation region 25 a silicon film into which impurities are introduced to reduce the resistance value can be used. It is preferred to use membranes.
  • the isolation region 25 does not necessarily have to penetrate the semiconductor layer 20 , nor does the conductor 28 necessarily have to penetrate the semiconductor layer 20 .
  • the relay conductive pad 80 is arranged on the insulating film (field insulating film) 34 on the first surface S1 side of the semiconductor layer 20, and the relay conductive pad 80 is provided from the semiconductor layer 20. Pads 80 are insulated.
  • the present technology is not limited to the configuration in which the relay conductive pads 80 are arranged on the insulating film 34 .
  • a relay conductive pad 80 may be brought into contact with the first surface S1 of the semiconductor layer 20 .
  • the semiconductor layer 20 in the peripheral portion 2B and the relay conductive pad 80 are electrically connected. Therefore, as shown in FIGS. 10 and 11, a peripheral isolation region 25q surrounding the periphery of the relay conductive pad 80 in plan view is provided, and a first region 20a outside the peripheral isolation region 25q and a first region 20a inside the peripheral isolation region 25q are provided. The first region 20a and the second region 20b are electrically isolated from each other. By partitioning the semiconductor layer 20 of the peripheral portion 2B into the first region 20a and the second region 20b by the peripheral isolation region 25q in this manner, the first region 20a outside the peripheral isolation region 25q and the peripheral isolation region 25q are divided into the first region 20a and the second region 20b.
  • a different power supply potential can be applied to the second region 25b inside the .
  • a first reference potential eg, 0 V
  • a second reference potential eg, ⁇ 1.2 V
  • the semiconductor layer 20 includes a first region 20a and a second region 20b that are partitioned by a peripheral isolation region 25q and electrically isolated from each other in the peripheral portion 2B.
  • the relay conductive pad 80 is connected to the conductor 28 of the isolation region 25 in the second region 20b of the semiconductor layer 20.
  • a p-type peripheral well region 22n is provided in each of the first region 20a and the second region 20b of the semiconductor layer 20 .
  • the peripheral isolation region 25 q is formed, for example, in the same process as the isolation region 25 and has the same vertical cross-sectional structure as the isolation region 25 . Also in the first modification of the first embodiment, the same effects as those of the above-described first embodiment can be obtained.
  • the separation region 25 extends over a plurality of portions (the first portion 25x and the second portion 25y), and the plurality of portions (the first portion 25x and the second portion 25y) are extended.
  • the relay conductive pads 80 (80x, 80y) that overlap each other and are electrically and mechanically connected have been described.
  • the present technology is not limited to relay conductive pads 80 (80x, 80y) extending over multiple portions of isolation region 25.
  • the relay conductive pads 80 (80x, 80y) may be provided for each portion (first portion 25x, second portion 25y) of the isolation region 25.
  • FIG. 12 and 13 the same effects as those of the above-described first embodiment can be obtained.
  • the relay conductive pad 80 is connected to the first relay conductive pad 80x connected to the conductor 28 of the first portion 25x of the isolation region 25 and the conductor 28 of the second portion 25y of the isolation region 25.
  • a solid-state imaging device 1B according to the second embodiment of the present technology basically has the same configuration as that of the solid-state imaging device 1A according to the above-described first embodiment, except for the following configurations.
  • the relay conductive pads 80 are connected to the conductors 28 of the isolation region 25 in the peripheral portion 2B outside the pixel array portion 2A. It is configured to be electrically and mechanically connected.
  • the relay conductor pads 80 are electrically and mechanically connected to the conductors 28 of the isolation region 25. It is connected to the.
  • One end of the power supply contact electrode 46b is electrically and mechanically connected to the relay conductive pad 80, and the power supply wiring 47c integrated with the power supply wiring 47b is electrically connected to the other end of the power supply contact electrode 46b. physically and mechanically connected.
  • a power supply wiring 47c is electrically connected to the conductor 28 of the isolation region 25 via the relay conductive pad 80 and the power supply contact electrode 46b.
  • the relay conductive pad 80 is connected to the conductor 28 of the isolation region 25 located between the two photoelectric conversion regions 21, 21 adjacent to each other.
  • the solid-state imaging device 1B according to the second embodiment also provides the same effects as the solid-state imaging device 1A according to the first embodiment.
  • a solid-state imaging device 1C according to the third embodiment of the present technology has a two-step structure in which two semiconductor layers 20 and 85 are laminated. Similar to FIG. 9 of the first embodiment, FIG. 16 shows the vertical cross-sectional structure of the outer peripheral portion 2B of the pixel array portion 2A.
  • the solid-state imaging device 1C according to the third embodiment includes a semiconductor layer 20 as a first semiconductor layer, and a semiconductor layer 20 provided on the first surface S1 side of the semiconductor layer 20 via an insulating layer It has a semiconductor layer 85 as a second semiconductor layer and a multilayer wiring layer 90 provided on the opposite side of the semiconductor layer 85 from the semiconductor layer 20 side.
  • the semiconductor layer 20 has the same configuration as the semiconductor layer 20 of the first embodiment described above, and will be described with reference to FIGS. and a photoelectric conversion region 21 .
  • a relay conductive pad 80 is provided on the first surface S1 side of the semiconductor layer 20 with an insulating film 34 interposed therebetween.
  • the relay conductive pad 80 is formed so that the width W1 is wider than the width W2 of the conductor 28 of the isolation region 25 and overlaps the conductor 28 of the isolation region 25 in plan view, as in the first embodiment described above. are electrically and mechanically connected.
  • the transfer transistor TRV is formed in the semiconductor layer 20, and the pixel transistors (AMP, SEL, RST) included in the readout circuit are formed in the semiconductor layer 85. It is
  • the insulating layer 82 includes an insulating film 83 covering the relay conductive pad 80 and an insulating film 84 provided on the opposite side of the insulating film 83 from the relay conductive pad 80 side.
  • the insulating film 83 corresponds to the interlayer insulating film 41 shown in FIGS. 9 and 7, and covers the transfer transistor TRV of the photoelectric conversion region 21 in the pixel array section 2A.
  • the semiconductor layer 85 is provided on the side of the insulating layer 83 opposite to the semiconductor layer 20 side.
  • the semiconductor layer 85 for example, a p-type semiconductor substrate made of single crystal silicon is used, like the semiconductor layer 20.
  • the semiconductor layer 85 includes, but is not limited to, a through hole through which a power supply contact electrode 96b as a contact portion described later passes.
  • the multilayer wiring layer 90 is provided with an interlayer insulating film 91 covering the side of the semiconductor layer 85 opposite to the insulating layer 82 side, and on the side of the interlayer insulating film 91 opposite to the semiconductor layer 85 side. and an interlayer insulating film 96 provided on the opposite side of the interlayer insulating film 94 from the interlayer insulating film 91 side, and an interlayer insulating film 96 provided on the opposite side of the interlayer insulating film 94 side from the interlayer insulating film 94 side. and a protective film (not shown).
  • the interlayer insulating films 91, 94 and 96 correspond to the interlayer insulating films 41, 44 and 46 shown in FIGS.
  • the multilayer wiring layer 90 includes a first wiring layer provided between the interlayer insulating film 91 and the interlayer insulating film 94, and an interlayer insulating film 94 and an interlayer insulating film 96. and a third wiring layer provided between the interlayer insulating film 96 and the interlayer insulating film 94 .
  • These wiring layers correspond to the wiring layers 43, 45 and 47 shown in FIGS.
  • the power supply wiring 97b is formed in the third wiring layer of the multilayer wiring layer 90, and is applied with a power supply potential.
  • the power supply wiring 97b is applied with the same second reference potential as in the above-described first embodiment as the power supply potential.
  • the power supply contact electrode 96b is electrically and mechanically connected to the relay conductive pad 80 on one end side, and electrically and mechanically connected to the power supply wiring 97b on the side opposite to the one end side.
  • the power supply contact electrode 96b passes through the through hole of the semiconductor layer 85 and extends over the power supply wiring 97b and the relay conductive pad 80 .
  • the power supply contact electrode 96b is connected so as to overlap the relay conductive pad 80 in plan view.
  • a power supply potential is applied to the conductor 28 of the isolation region 25 from the power supply wiring 97b via the power supply contact electrode 96b and the relay conductive pad 80, and the potential is fixed at this power supply potential.
  • the power supply contact electrode 96b of the third embodiment includes the power supply wiring 97b provided in the multilayer wiring layer 90 above the semiconductor layer 85 and the relay conductive pad 80 provided below the semiconductor layer 85. It extends across.
  • a power supply contact electrode 46b is thicker (larger in vertical cross-sectional area) than a normal power supply contact electrode extending in the multilayer wiring layer 90, for example, the power supply contact electrode 46b shown in FIG. . Therefore, when the power supply contact electrode 96b is directly connected to the conductor 28 of the isolation region 25, the difficulty of connection becomes higher. Therefore, it is particularly useful to apply the present technology to the solid-state imaging device 1C having such power supply contact electrodes 96b.
  • a solid-state imaging device 1D As shown in FIG. 17, a solid-state imaging device 1D according to the fourth embodiment of the present technology includes a pixel array section 2B including first pixel blocks 16a and second pixel blocks 16b.
  • the first pixel blocks 16a are repeatedly arranged in the X direction and the Y direction that are orthogonal to each other within a two-dimensional plane.
  • the second pixel blocks 16b are interspersed in a first pixel block group in which a plurality of first pixel blocks 16a are arranged, and form a block row together with the first pixel blocks 16a.
  • FIG. 17 shows, as an example, an arrangement pattern in which eight first pixel blocks 16a are arranged around one second block 16b.
  • the second pixel blocks 16b may be arranged periodically or randomly.
  • Each of the first pixel block 16a and the second block 16b includes, for example, four pixels 3 arranged in a 2 ⁇ 2 arrangement, two in each of the X direction and the Y direction, as a plurality of pixels 3 adjacent to each other. including.
  • the solid-state imaging device 1D according to the fourth embodiment has a semiconductor layer 20 having a first surface S1 and a second surface S2 located opposite to each other in the thickness direction (Z direction). and a multilayer wiring layer 110 provided on the first surface S1 side of the semiconductor layer 20 .
  • the solid-state imaging device 1D according to the fourth embodiment has this semiconductor layer 20 on the second surface S2 side of the semiconductor layer 20 in the same manner as in the above-described first embodiment. It has an insulating film 51, a light shielding film 54, a color filter 55, and a microlens (on-chip lens) which are sequentially provided from the second surface S2 side.
  • the semiconductor layer 20 includes isolation regions 25 extending in the thickness direction (Z direction) of the semiconductor layer 20, photoelectric conversion regions 21D1 and 21D2 partitioned by the isolation regions 25, and semiconductor regions 21D1 and 21D2 . and an element isolation region (field isolation region) 31 provided on the first surface S1 side of the layer 20 .
  • the separation region 25 is configured in a grid-like planar pattern, similar to the separation region 25 of the first embodiment described above, and includes a first portion 25x extending in the X direction in a plan view and a second portion 25x extending in the Y direction. and a portion 25y.
  • the isolation region 25 includes an isolation insulating film 27 provided along the inner wall of a dug portion 26 extending in the thickness direction (Z direction) of the semiconductor layer 20, and a semiconductor and a conductor 28 provided in a dug portion 26 of the layer 20 with an isolation insulating film 27 interposed therebetween.
  • each of the four pixels 3 included in the first pixel block 16a includes a photoelectric conversion region 21D1 provided in the semiconductor layer 20 and separated by the separation region 25. .
  • the four photoelectric conversion regions 21D1 included in the first pixel block 16a are adjacent to each other with the separation regions 25 interposed therebetween in plan view.
  • the first pixel block 16a is formed at the intersection of the first portion 25x and the second portion 25y of the isolation region 25, at the center of the first pixel block 16a, in other words, at the corners of the four photoelectric conversion regions 21D1 .
  • intersection point 25z1 positioned in the central part of the enclosure and the first intersection part 25z1 at each corner positioned on a diagonal line with respect to the corners on the first intersection part 25z1 side of each of the four photoelectric conversion regions 21D1. 2 intersections 25z2 .
  • the photoelectric conversion region 21D1 overlaps the n-type semiconductor region 23 provided in the semiconductor layer 20 and the n-type semiconductor region 23 on the first surface S1 side of the semiconductor layer 20. and a p-type well region 22 provided.
  • the photoelectric conversion region 21D- 1 includes an n-type contact region 102a provided adjacent to the first intersection portion 25z- 1 of the isolation region 25 in a plan view in the surface layer portion of the p-type well region 22, and a p-type well region 21D1.
  • a p-type contact region 102b provided adjacent to the second intersection portion 25z2 of the isolation region 25 in plan view in the surface layer portion of the well region 22, and a p-type contact region 102b provided on the first surface S1 side of the semiconductor layer 20. and a transfer transistor 104a.
  • the photoelectric conversion region 21 D 1 includes a photoelectric conversion unit 24 .
  • the n-type contact region 102a is composed of an n-type semiconductor region having an impurity concentration higher than that of the n-type semiconductor region 23, and serves as a charge holding region FD that holds (accumulates) signal charges photoelectrically converted by the photoelectric conversion unit 24.
  • function as The p-type contact region 102b is composed of a p-type semiconductor region having an impurity concentration higher than that of the p-type well region 22, and functions as a contact region for supplying power to the p-type well region 22.
  • the photoelectric conversion section 24 is mainly composed of the n-type semiconductor region 23, and is composed of the p-type well region 22 and the n-type semiconductor region 23 as a pn junction photodiode (PD). ing.
  • the transfer transistor 104a includes a gate insulating film 105 provided on the first surface S1 of the semiconductor layer 20, a gate electrode 106 provided on the first surface S1 side of the semiconductor layer 20 via the gate insulating film 105, and sidewall spacers provided on sidewalls of the gate electrode 106 so as to surround the gate electrode 106 .
  • the transfer transistor 104a includes a channel formation region where a channel (conducting path) is formed in the p-type well region 22 directly below the gate electrode 106, and a photoelectric conversion portion 24 (n-type semiconductor region 23) functioning as a source region. ) and a charge storage region FD (n-type contact region 102a) functioning as a drain region.
  • the transfer transistor 104a of each of the four photoelectric conversion regions 21D- 1 included in the first pixel block 16a has the gate electrode 106 biased toward the first intersection 25z- 1 of the separation region 25.
  • FIG. The gate electrodes 106 of the four transfer transistors 104a are arranged so as to surround the first intersection 25z1 .
  • each of the four pixels 3 included in the second pixel block 16b includes a photoelectric conversion region 21D2 provided in the semiconductor layer 20 and separated by the separation region 25. .
  • the four photoelectric conversion regions 21D2 included in the second pixel block 16b are adjacent to each other with the separation regions 25 interposed therebetween in plan view. Then, the second pixel block 16b is formed at the center of the second pixel block 16b, in other words, at the corners of the four photoelectric conversion regions 21D2 , as an intersection where the first portion 25x and the second portion 25y of the isolation region 25 intersect.
  • the third intersection point 25z3 located in the central part of the enclosure and the corners of the four photoelectric conversion regions 21D2 located diagonally to the corners on the side of the third intersection part 25z3 . 2 intersections 25z2 .
  • the second intersection 25z2 is shared by the first pixel block 16a and the second pixel block 16b. Also, the second intersection portion 25z2 is shared by a plurality of adjacent first pixel blocks 16a.
  • the photoelectric conversion region 21D2 overlaps the n-type semiconductor region 23 provided in the semiconductor layer 20 and the n-type semiconductor region 23 on the first surface S1 side of the semiconductor layer 20. and a p-type well region 22 provided. Further, the photoelectric conversion region 21D2 includes a p-type contact region 102b provided adjacent to the second intersection portion 25z2 of the separation region 25 in a plan view in the surface layer portion of the p-type well region 22, and a semiconductor layer. 20, and a transfer transistor 104b provided on the first surface S1 side of the transistor 104b. Also, the photoelectric conversion region 21 D 1 includes a photoelectric conversion unit 24 . Unlike the photoelectric conversion region 21D- 1 , the photoelectric conversion region 21D -2 does not have the n-type contact region 102a functioning as the charge holding region FD.
  • the photoelectric conversion section 24 is mainly composed of the n-type semiconductor region 23, and is composed of the p-type well region 22 and the n-type semiconductor region 23 as a pn junction photodiode (PD). ing.
  • the transfer transistor 104b basically has the same configuration as the transfer transistor 104a described above, but does not include the charge storage region FD (n-type contact region 102a) functioning as a drain region. That is, the transfer transistor 104b does not transfer the signal charge photoelectrically converted by the photoelectric conversion portion 24 to the charge holding region FD.
  • the transfer transistor 104b of each of the four photoelectric conversion regions 21D- 2 included in the second pixel block 16b has the gate electrode 106 biased toward the third intersection 25z- 3 of the isolation region 25.
  • FIG. The gate electrodes 106 of the four transfer transistors 104b are arranged so as to surround the third intersection 25z3 .
  • a first conductive pad 108a is arranged at the first intersection portion 25z1 of the isolation region 25. As shown in FIGS. The first conductive pad 108a overlaps the first intersection portion 25z 1 of the isolation region 25 and the four n-type contact regions 102a provided around the first intersection portion 25z 1 in plan view. and is electrically and mechanically connected to each of the four n-type contact regions 102a.
  • the first conductive pad 108a is arranged in a window surrounded by sidewall spacers on the sidewalls of the gate electrode 106 of each of the four transfer transistors 104a, and is electrically connected to the gate electrode 106 of each of the four transfer transistors 104a. Insulated and separated.
  • a second conductive pad 108b is arranged at the second intersection 25z2 of the isolation region 25. As shown in FIGS. The second conductive pad 108b overlaps the second intersection portion 25z 2 of the isolation region 25 and the four p-type contact regions 102b provided around the second intersection portion 25z 2 in plan view. and is electrically and mechanically connected to each of the four p-type contact regions 102b.
  • a relay conductive pad 108c is arranged at the third intersection point 25z3 of the isolation region 25. As shown in FIGS.
  • the relay conductive pad 108c is provided so as to overlap the third intersection point 25z3 of the isolation region 25 in plan view, and is electrically and mechanically connected to the conductor 8 of the third intersection point 25z3.
  • the relay conductive pad 108c is arranged in a window surrounded by sidewall spacers on the sidewalls of the gate electrode 106 of each of the four transfer transistors 104b, and is electrically insulated from the gate electrode 106 of each of the four transfer transistors 104b. separated.
  • Each of the relay conductive pad 108c and the first and second conductive pads 108a and 108b are formed, for example, in the same process.
  • Each of the relay conductive pad 108c and the first and second conductive pads 108a and 108b is made of, for example, a silicon film into which impurities for reducing the resistance value are introduced.
  • the first conductive pad 108a is electrically connected to the wiring 113a formed in the wiring layer of the multilayer wiring layer 110 via the contact electrode 112a provided in the interlayer insulating film 111 of the multilayer wiring layer 110. It is connected to the.
  • the contact electrode 112a extends in the thickness direction (Z-direction) of the multilayer wiring layer 110, is electrically and mechanically connected to the first conductive pad 108a at one end, and is connected to the wiring of the multilayer wiring layer 110 at the side opposite to the one end.
  • 113a are electrically and mechanically connected.
  • the wiring 113a is electrically connected to the input side of the readout circuit 15, as described with reference to FIG. 3 of the first embodiment.
  • the second conductive pad 108b is electrically connected to the wiring 113b formed in the wiring layer of the multilayer wiring layer 110 via the contact electrode 112b provided in the interlayer insulating film 111 of the multilayer wiring layer 110. It is connected.
  • the contact electrode 112b extends in the thickness direction (Z direction) of the multilayer wiring layer 110, is electrically and mechanically connected to the second conductive pad 108b at one end, and is electrically and mechanically connected to the wiring 113b at the opposite end. mechanically connected.
  • a first reference potential of 0 V, for example, is applied to the wiring 113b as a power supply potential. That is, the first reference potential is applied to the p-type well region 22 of each of the photoelectric conversion regions 21D- 1 and 21D- 2 , and the potential is fixed at this first reference potential.
  • the relay conductive pad 108c is formed in the wiring layer of the multilayer wiring layer 110 via the power supply contact electrode 112c as a contact portion provided in the interlayer insulating film 111 of the multilayer wiring layer 110. It is electrically connected to the power supply wiring 113c.
  • the power supply contact electrode 112c extends in the thickness direction (Z direction) of the multilayer wiring layer 110, is electrically and mechanically connected to the relay conductive pad 108c at one end, and is electrically connected to the wiring 113c at the opposite end. and mechanically connected.
  • a second reference potential which is a negative potential lower than the first reference potential applied to the p-type well region 22, is applied to the wiring 113c as a power supply potential. For example, ⁇ 1.2 V is applied as the second reference potential. That is, the conductor 8 of the isolation region 25 is applied with a negative second reference potential lower than the first reference potential applied to the p-type well region 22, and is fixed at this second reference potential.
  • the relay conductive pads 108c may be arranged periodically or randomly. Also, the placement of the relay conductive pads 108c is not limited to the intersections of the separation regions 25, and the relay conductive pads 108c may be disposed between the intersections.
  • the conductor 28 of the isolation region 25 has an end on one end side that is substantially flush with the bottom surface of the element isolation region 31, except for the portion that connects to the relay conductive pad 108c. You may make it lower than a part. In other words, the conductor 28 of the isolation region 25 may selectively protrude the portion connected to the relay pad 108c more than the other portion.
  • FIG. 21 is a diagram showing a schematic configuration of an electronic device (for example, camera) according to the fifth embodiment of the present technology.
  • the electronic device 200 includes a solid-state imaging device 201, an optical lens 202, a shutter device 203, a driving circuit 204, and a signal processing circuit 205.
  • This electronic device 200 shows an embodiment in which the solid-state imaging device (1A to 1D) according to the first to fourth embodiments of the present technology is used as the solid-state imaging device 201 in an electronic device (for example, a camera). .
  • the optical lens 202 forms an image of image light (incident light 206 ) from the subject on the imaging surface of the solid-state imaging device 201 .
  • image light incident light 206
  • a shutter device 203 controls a light irradiation period and a light shielding period for the solid-state imaging device 201 .
  • a drive circuit 204 supplies drive signals for controlling the transfer operation of the solid-state imaging device 201 and the shutter operation of the shutter device 203 .
  • a drive signal (timing signal) supplied from the drive circuit 204 is used to perform signal transfer of the solid-state imaging device 201 .
  • a signal processing circuit 205 performs various signal processing on signals (pixel signals) output from the solid-state imaging device 201 .
  • the video signal that has undergone signal processing is stored in a storage medium such as a memory, or output to a monitor.
  • the electronic device 200 to which the solid-state imaging device of the above-described embodiment can be applied is not limited to cameras, and can be applied to other electronic devices.
  • the present invention may be applied to imaging devices such as camera modules for mobile devices such as mobile phones and tablet terminals.
  • the present technology can also be applied to light detection devices in general, including range sensors that measure distance, which is called a ToF (Time of Flight) sensor.
  • range sensors that measure distance
  • a distance measuring sensor emits irradiation light toward an object, detects the reflected light that is reflected by the surface of the object, and detects the time from when the irradiation light is emitted to when the reflected light is received.
  • the structure of the element isolation region of this distance measuring sensor the structure of the element isolation region described above can be adopted.
  • the present technology may be configured as follows. (1) a semiconductor layer having a first surface and a second surface located on opposite sides of each other in a thickness direction; a separation region provided in the semiconductor layer and extending in a thickness direction of the semiconductor layer; a photoelectric conversion region partitioned by the isolation region; a conductor provided in the isolation region and extending in the thickness direction of the semiconductor layer; a relay conductive pad formed to be wider than the conductor and connected to the conductor on the first surface side of the semiconductor layer so as to overlap with the conductor in a plan view; a contact portion connected to and overlapped with the relay conductive pad in plan view;
  • a photodetector comprising a (2) further comprising a pixel array unit in which a plurality of pixels including the photoelectric conversion region are arranged in a two-dimensional plane, the separation region extends inside and outside the pixel array section in a plan view, The photodetector according to (1), wherein the contact section is connected to the relay conductive pad outside the pixel array section.
  • the semiconductor layer includes a first region and a second region separated by a peripheral isolation region and electrically isolated from each other in a peripheral portion outside the pixel array portion;
  • Device. (8) The photodetector according to any one of (1) to (7) above, an optical lens that forms an image of image light from a subject on an imaging surface of the photodetector, and a signal output from the photodetector. and a signal processing circuit that performs signal processing on the electronic device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Manufacturing & Machinery (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Light Receiving Elements (AREA)

Abstract

製造歩留まりの向上を図る技術を提供する。光検出装置は、厚さ方向において互いに互いに反対側に位置する第1の面及び第2の面を有する半導体層と、上記半導体層に設けられ、かつ上記半導体層の厚さ方向に延伸する分離領域と、上記分離領域で区画された光電変換領域と、上記分離領域に設けられ、かつ半導体層の厚さ方向に延伸する導体と、上記導体の幅よりも幅広で形成され、かつ上記半導体層の上記第1の面側において平面視で上記導体と重畳して接続された中継導電パッドと、平面視で上記中継導電パッドと重畳して接続されたコンタクト部と、を備えている。

Description

光検出装置及び電子機器
 本技術(本開示に係る技術)は、光検出装置及び電子機器に関し、特に、埋込型分離領域で区画された光電変換領域を有する光検出装置、及びそれを備えた電子機器に適用して有効な技術に関するものである。
 固体撮像装置や測距装置などの光検出装置は、分離領域で区画された複数の光電変換領域を有する半導体層を備えている。特許文献1には、光電変換領域を区画する分離領域として、半導体層の掘り込み部内に絶縁膜を介して導体(ドープドポリシリコン膜)を埋め込んだ埋込型分離領域が開示されている。そして、分離領域の導体に負バイアスを印加して分離領域の側壁のピニングを強化した技術も開示されている。
特開2018-148116号公報
 ところで、分離領域の導体に電位を印加する方法として、半導体層に積層された多層配線層(配線層積層体)の給電用配線と分離領域の導体とを給電用コンタクト電極で電気的に接続し、給電用配線から給電用コンタクト電極を介して分離領域の導体に電位を印加する方法がある。この場合、給電用コンタクト電極は、多層配線層の層間絶縁膜に接続孔を形成し、この接続孔に導電膜を選択的に埋め込むことによって形成される。このため、層間絶縁膜に接続孔を形成するときのマスクの合わせずれにより、分離領域の導体と給電用コンタクト電極とで位置ずれが生じる。
 近年、光電変換領域及び分離領域は、光検出装置の小型化に伴って微細化の傾向にある。分離領域の導体に給電用コンタクト電極を直に接続する従来の方法では、分離領域の微細化に伴って導体の幅が狭くなると、分離領域の導体に給電用コンタクト電極を接続するときの接続難易度が高くなる。この接続難易度は、光検出装置の製造歩留まりに影響し、製造歩留まりの低下を招く要因となる。
 本技術の目的は、製造歩留まりの向上を図ることが可能な技術を提供することにある。
 (1)本技術の他の態様に係る光検出装置は、
 厚さ方向において互いに反対側に位置する第1の面及び第2の面を有する半導体層と、
 上記半導体層に設けられ、かつ上記半導体層の厚さ方向に延伸する分離領域と、
 上記分離領域で区画された光電変換領域と、
 上記分離領域に設けられ、かつ上記半導体層の厚さ方向に延伸する導体と、
 上記導体の幅よりも幅広で形成され、かつ上記半導体層の上記第1の面側において平面視で上記導体と重畳して接続された電極パッドと、
 平面視で上記中継導電パッドと重畳して接続されたコンタクト部と、
 を備えている。
 (2)本技術の他の態様に係る電子機器は、上記光検出装置と、上記光検出装置に被写体からの像光を結像される光学系と、を備えている。
本技術の第1実施形態に係る固体撮像装置の一構成例を模式的に示す平面レイアウト図である。 本技術の第1実施形態に係る固体撮像装置の一構成例を模式的に示すブロック図である。 本技術の第1実施形態に係る固体撮像装置の画素の一構成例を示す等価回路図である。 本技術の第1実施形態に係る固体撮像装置の画素アレイ部における分離領域の平面パターン及び画素トランジスタの配置パターンを模式的に示す平面図である。 図4の一部を拡大した平面図である。 半導体層の厚さ方向と直交する横断面における分離領域の横断面パターンを示す図である。 図4のa4-a4切断線に沿った縦断面構造を模式的に示す縦断面図である。 本技術の第1実施形態に係る固体撮像装置の画素アレイ部及び周辺部の一構成例を模式的に示す要部平面レイアウト図である。 図8のa8-a8切断線に沿った縦断面構造を模式的に示す縦断面図である。 第1実施形態の第1変形例を模式的に示す要部平面レイアウト図である。 図10のa10-a10切断線に沿った縦断面構造を模式的に示す縦断面図である。 第1実施形態の第2変形例を模式的に示す要部平面レイアウト図である。 図12のa12-a12切断線に沿った縦断面構造を模式的に示す縦断面図である。 本技術の第2実施形態に係る固体撮像装置の画素アレイ部における分離領域の平面パターン及び画素トランジスタの配置パターンを模式的に示す平面図である。 図14のa14-a14切断線に沿った縦断面構造を模式的に示す縦断面図である。 本技術の第3実施形態に係る固体撮像装置の一構成例を模式的に示す要部縦断面図である。 本技術の第4実施形態に係る固体撮像装置において、画素アレイ部の一構成例を模式的に示す要部平面図である。 図17の画素アレイ部に含まれる第1画素ブロックを拡大して示す平面図である。 図17の画素アレイ部に含まれる第2画素ブロックを拡大して示す平面図である。 図17のa17-a17切断線に沿った断面構造を模式的に示す縦断面である。 第4実施形態の変形例を模式的に示す縦断面図である。 本技術の第5実施形態に係る電子機器の概略構成を示す図である。
 以下、図面を参照して本技術の実施形態を詳細に説明する。
 以下の説明で参照する図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。ただし、図面は模式的なものであり、厚みと平面寸法との関係、各層の厚みの比率等は現実のものとは異なることに留意すべきである。したがって、具体的な厚みや寸法は以下の説明を参酌して判断すべきものである。
 また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。また、本明細書中に記載された効果はあくまで例示であって限定されるものでは無く、また他の効果があってもよい。
 また、本明細書中における透明の定義は、光検出装置が受光する想定の波長域に対して、その部材の透過率が100%に近い状態を表すものとする。例えば、想定の波長域に対し材料自体に吸収があっても極薄に加工されて透過率が100%に近い部材であれば透明である。例えば、近赤外領域に用いられる光検出装置の場合に、可視域において吸収が大きい部材であっても、近赤外領域において透過率が100%に近ければ透明といえる。或いは、多少の吸収成分や反射成分があったとしても、その影響が光検出装置の感度仕様と照らし合わせて許容できる範囲であれば、透明とみなせるものとする。
 また、以下の実施形態は、本技術の技術的思想を具体化するための装置や方法を例示するものであり、構成を下記のものに特定するものではない。即ち、本技術の技術的思想は、特許請求の範囲に記載された技術的範囲内において、種々の変更を加えることができる。
 また、以下の説明における上下等の方向の定義は、単に説明の便宜上の定義であって、本技術の技術的思想を限定するものではない。例えば、対象を90°回転して観察すれば上下は左右に変換して読まれ、180°回転して観察すれば上下は反転して読まれることは勿論である。
 また、以下の実施形態では、半導体の導電型として、第1導電型がp型、第2導電型がn型の場合を例示的に説明するが、導電型を逆の関係に選択して、第1導電型をn型、第2導電型をp型としても構わない。
 また、以下の実施形態では、空間内で互に直交する三方向において、同一平面内で互に直交する第1の方向及び第2の方向をそれぞれX方向、Y方向とし、第1の方向及び第2の方向のそれぞれと直交する第3の方向をZ方向とする。そして、以下の実施形態では、後述する半導体層20の厚さ方向をZ方向として説明する。
 〔第1実施形態〕
 この第1実施形態では、光検出装置として、裏面照射型のCMOS(Complementary Metal Oxide Semiconductor)イメージセンサである固体撮像装置に本技術を適用した一例について説明する。
 ≪固体撮像装置の全体構成≫
 まず、固体撮像装置1Aの全体構成について説明する。
 図1に示すように、本技術の第1実施形態に係る固体撮像装置1Aは、平面視したときの二次元平面形状が方形状の半導体チップ2を主体に構成されている。即ち、固体撮像装置1Aは半導体チップ2に搭載されており、半導体チップ2を固体撮像装置1Aとみなすことができる。この固体撮像装置1A(201)は、図21に示すように、光学レンズ202を介して被写体からの像光(入射光206)を取り込み、撮像面上に結像された入射光206の光量を画素単位で電気信号に変換して画素信号として出力する。
 図1に示すように、固体撮像装置1Aが搭載された半導体チップ2は、互いに直交するX方向及びY方向を含む二次元平面において、中央部に設けられた方形状の画素アレイ部2Aと、この画素アレイ部2Aの外側に画素アレイ部2Aを囲むようにして設けられた周辺部2Bとを備えている。
 画素アレイ部2Aは、例えば図21に示す光学レンズ(光学系)202により集光される光を受光する受光面である。そして、画素アレイ部2Aには、X方向及びY方向を含む二次元平面において複数の画素3が行列状に配置されている。換言すれば、画素3は、二次元平面内で互いに直交するX方向及びY方向のそれぞれの方向に繰り返し配置されている。
 図1に示すように、周辺部2Bには、複数のボンディングパッド14が配置されている。複数のボンディングパッド14の各々は、例えば、半導体チップ2の二次元平面における4つの辺の各々の辺に沿って配列されている。複数のボンディングパッド14の各々は、半導体チップ2を外部装置と電気的に接続する際に用いられる入出力端子である。
 <ロジック回路>
 半導体チップ2は、図2に示すロジック回路13を備えている。ロジック回路13は、図2に示すように、垂直駆動回路4、カラム信号処理回路5、水平駆動回路6、出力回路7及び制御回路8などを含む。ロジック回路13は、電界効果トランジスタとして、例えば、nチャネル導電型のMOSFET(Metal Oxide Semiconductor Field Effect Transistor)及びpチャネル導電型のMOSFETを有するCMOS(Complementary MOS)回路で構成されている。
 垂直駆動回路4は、例えばシフトレジスタによって構成されている。垂直駆動回路4は、所望の画素駆動線10を順次選択し、選択した画素駆動線10に画素3を駆動するためのパルスを供給し、各画素3を行単位で駆動する。即ち、垂直駆動回路4は、画素アレイ部2Aの各画素3を行単位で順次垂直方向に選択走査し、各画素3の光電変換素子が受光量に応じて生成した信号電荷に基づく画素3からの画素信号を、垂直信号線11を通してカラム信号処理回路5に供給する。
 カラム信号処理回路5は、例えば画素3の列毎に配置されており、1行分の画素3から出力される信号に対して画素列毎にノイズ除去等の信号処理を行う。例えばカラム信号処理回路5は、画素固有の固定パターンノイズを除去するためのCDS(Correlated Double Sampling:相関2重サンプリング)及びAD(Analog Digital)変換等の信号処理を行う。
 水平駆動回路6は、例えばシフトレジスタによって構成されている。水平駆動回路6は、水平走査パルスをカラム信号処理回路5に順次出力することによって、カラム信号処理回路5の各々を順番に選択し、カラム信号処理回路5の各々から信号処理が行われた画素信号を水平信号線12に出力させる。
 出力回路7は、カラム信号処理回路5の各々から水平信号線12を通して順次に供給される画素信号に対し、信号処理を行って出力する。信号処理としては、例えば、バッファリング、黒レベル調整、列ばらつき補正、各種デジタル信号処理等を用いることができる。
 制御回路8は、垂直同期信号、水平同期信号、及びマスタクロック信号に基づいて、垂直駆動回路4、カラム信号処理回路5、及び水平駆動回路6等の動作の基準となるクロック信号や制御信号を生成する。そして、制御回路8は、生成したクロック信号や制御信号を、垂直駆動回路4、カラム信号処理回路5、及び水平駆動回路6等に出力する。
 <画素の回路構成>
 図3に示すように、複数の画素3の各々の画素3は、光電変換部24と、画素トランジスタとしての転送トランジスタTRVと、電荷保持領域(フローティングディフュージョン:Floating Diffusion)FDとを備え、更に、電荷保持領域FDと電気的に接続された読出し回路15を備えている。この第1実施形態では、一例として1つの画素3に1つの読出し回路15を割り与えた回路構成としているが、これに限定されるものではなく、1つの読出し回路15を複数の画素3で共有する回路構成としてもよい。
 図3に示す光電変換部24は、例えばpn接合型のフォトダイオード(PD)で構成され、受光量に応じた信号電荷を生成する。光電変換部24は、カソード側が転送トランジスタTRLのソース領域と電気的に接続され、アノード側が基準電位線(例えばグランド)と電気的に接続されている。
 図3に示す転送トランジスタTRVは、光電変換部24で光電変換された信号電荷を電荷保持領域FDに転送する。転送トランジスタRTVのソース領域は光電変換部24のカソード側と電気的に接続され、転送トランジスタTRVのドレイン領域は電荷保持領域FDと電気的に接続されている。そして、転送トランジスタTRVのゲート電極は、画素駆動線10(図2参照)のうちの転送トランジスタ駆動線と電気的に接続されている。
 図3に示す電荷保持領域FDは、光電変換部24から転送トランジスタTRVを介して転送された信号電荷を一時的に保持(蓄積)する。
 光電変換部24、転送トランジスタTRV及び電荷保持領域FDは、後述する半導体層20の光電変換領域21(図7参照)に搭載されている。
 図3に示す読出し回路15は、電荷保持領域FDに保持された信号電荷を読み出し、この信号電荷に基づく画素信号を出力する。読出し回路15は、これに限定されないが、画素トランジスタとして、例えば、増幅トランジスタAMPと、選択トランジスタSELと、リセットトランジスタRSTと、を備えている。これらのトランジスタ(AMP,SEL,RST)、及び上述の転送トランジスタTRVの各々は、電界効果トランジスタとして、例えば、酸化シリコン(SiO)膜からなるゲート絶縁膜と、ゲート電極と、ソース領域及びドレイン領域として機能する一対の主電極領域と、を有するMOSFETで構成されている。また、これらのトランジスタとしては、ゲート絶縁膜が窒化シリコン(Si)膜、或いは窒化シリコン膜及び酸化シリコン膜などの積層膜からなるMISFET(Metal Insulator Semiconductor FET)でも構わない。
 図3に示すように、増幅トランジスタAMPは、ソース領域が選択トランジスタSELのドレイン領域と電気的に接続され、ドレイン領域が電源線Vdd及びリセットトランジスタRSTのドレイン領域と電気的に接続されている。そして、増幅トランジスタAMPのゲート電極は、電荷保持領域FD及びリセットトランジスタRSTのソース領域と電気的に接続されている。
 選択トランジスタSELは、ソースが垂直信号線11(VSL)と電気的に接続され、ドレイン領域が増幅トランジスタAMPのソース領域と電気的に接続されている。そして、選択トランジスタSELのゲート電極は、画素駆動線10(図2参照)のうちの選択トランジスタ駆動線と電気的に接続されている。
 リセットトランジスタRSTは、ソース領域が電荷保持領域FD及び増幅トランジスタAMPのゲート電極と電気的に接続され、ドレイン領域が電源線Vdd及び増幅トランジスタAMPのドレイン領域と電気的に接続されている。そして、リセットトランジスタRSTのゲート電極は、画素駆動線10(図2参照)のうちのリセットトランジスタ駆動線と電気的に接続されている。
 転送トランジスタTRVは、転送トランジスタTRVがオン状態となると、光電変換部24で生成された信号電荷を電荷保持領域FDに転送する。
 リセットトランジスタRSTは、リセットトランジスタRSTがオン状態となると、電荷保持領域FDの電位(信号電荷)を電源線Vddの電位にリセットする。選択トランジスタSELは、読出し回路15からの画素信号の出力タイミングを制御する。
 増幅トランジスタAMPは、画素信号として、電荷保持領域FDに保持された信号電荷のレベルに応じた電圧の信号を生成する。増幅トランジスタAMPは、ソースフォロア型のアンプを構成しており、光電変換部24で生成された信号電荷のレベルに応じた電圧の画素信号を出力するものである。増幅トランジスタAMPは、選択トランジスタSELがオン状態となると、電荷保持領域FDの電位を増幅して、その電位に応じた電圧を、垂直信号線11(VSL)を介してカラム信号処理回路5に出力する。
 この第1実施形態に係る固体撮像装置1Aの動作時には、画素3の光電変換部24で生成された信号電荷が画素3の転送トランジスタTRVを介して電荷保持領域FDに保持(蓄積)される。そして、電荷保持領域FDに保持された信号電荷が読出し回路15により読み出されて、読出し回路15の増幅トランジスタAMPのゲート電極に印加される。読出し回路15の選択トランジスタSELのゲート電極には水平ラインの選択用制御信号が垂直シフトレジスタから与えられる。そして、選択用制御信号をハイ(H)レベルにすることにより、選択トランジスタSELが導通し、増幅トランジスタAMPで増幅された、電荷保持領域FDの電位に対応する電流が垂直信号線11に流れる。また、読出し回路15のリセットトランジスタRSTのゲート電極に印加するリセット用制御信号をハイ(H)レベルにすることにより、リセットトランジスタRSTが導通し、電荷保持領域FDに蓄積された信号電荷をリセットする。
 なお、選択トランジスタSELは、必要に応じて省略してもよい。選択トランジスタSELを省略する場合は、増幅トランジスタAMPのソース領域が垂直信号線11(VSL)と電気的に接続される。
 ≪固体撮像装置の具体的な構成≫
 次に、半導体チップ2(固体撮像装置1A)の具体的な構成について、図4から図9を用いて説明する。なお、図4及び図5は、図7に示す半導体層20の第1の面S1側から視た平面図である。また、図7及び図9は、図面を見易くするため、図1に対して上下が反転している。また、図7は、多層配線層(配線層積層体)40の第2層目の配線層45を覆う層間絶縁膜46よりも上層の図示を省略している。また、図9は、多層配線層40の第3層目の配線層47よりも上層の図示を省略している。
 <半導体チップ>
 図7に示すように、半導体チップ2は、厚さ方向(Z方向)において互いに反対側に位置する第1の面S1及び第2の面S2を有する半導体層20と、この半導体層20の第1の面S1側に設けられた多層配線層40と、この多層配線層40の半導体層20側とは反対側に設けられた支持基板(図示せず)と、を備えている。
 また、半導体チップ2は、半導体層20の第2の面S2側に、この第2の面S2側から順次設けられた絶縁膜51、遮光膜54、カラーフィルタ55及びマイクロレンズ(図示せず)を備えている。
 <半導体層>
 図4から図7に示すように、半導体層20には、半導体層20の厚さ方向(Z方向)に延伸する分離領域25と、この分離領域25で区画された複数の光電変換領域21とが設けられている。複数の光電変換領域21の各々の光電変換領域21は、画素3毎に設けられ、平面視で分離領域25を介して互いに隣り合っている。即ち、この第1実施形態の固体撮像装置1Aは、半導体層20に、半導体層20の厚さ方向(Z方向)に延伸する分離領域25を介して互いに隣り合って設けられた複数の光電変換領域21を備えている。
 また、半導体層20の第1の面S1側には、素子分離領域(フィールド分離領域)31と、この素子分離領域31で区画された島状の素子形成領域(活性領域)32aと、が設けられている。また、半導体層20の第1の面S1側には、素子分離領域31で区画された給電領域32zが設けられている。素子形成領域32a及び給電領域32zは、画素3毎に設けられている。即ち、画素アレイ部2Aに配置された複数の画素3の各々の画素3は、光電変換領域21、素子形成領域32a及び給電領域32zを備えている。
 半導体層20としては、Si基板、SiGe基板、InGaAs基板などを用いることができる。この第1実施形態では、半導体層20として例えば単結晶シリコンからなるp型の半導体基板を用いている。
 ここで、半導体層20の第1の面S1を素子形成面又は主面、第2の面S2側を光入射面又は裏面と呼ぶこともある。この第1実施形態の固体撮像装置1Aは、半導体層20の第2の面(光入射面,裏面)S2側から入射した光を、半導体層20の光電変換領域21に設けられた光電変換部24で光電変換する。
 また、平面視とは、半導体層20の厚さ方向(Z方向)に沿う方向から見た場合を指す。また、断面視とは、半導体層20の厚さ方向(Z方向)に沿う断面を半導体層20の厚さ方向(Z方向)と直交する方向(X方向又はY方向)から見た場合を指す。また、光電変換領域21は、光電変換セルと呼ぶこともできる。
 また、分離領域25を第1分離領域と呼び、素子分離領域31を第2分離領域と呼ぶこともできる。
 <光電変換領域>
 図7に示すように、複数の光電変換領域(光電変換セル)21の各々の光電変換領域21には、例えばp型の半導体領域からなるp型のウエル領域22と、n型の半導体領域23とが、この順で半導体層20の第1の面S1側から第2の面S2側に向かって設けられている。p型の半導体領域22は、半導体層20の第1の面S1側の表層部に、平面視でn型の半導体領域23と重畳して設けられている。n型の半導体領域23は、半導体層20の第1の面S1側の上面部が半導体層20の第1の面S1から離間し、分離領域25側の側面部が分離領域25の側壁と接触し、更に、半導体層20の第2の面S2側の下面部が半導体層20の第2の面S2に到達する構成となっている。即ち、光電変換領域21は、n型の半導体領域23の上面部が半導体層20の第1の面S1から離間し、n型の半導体領域23の側面部が分離領域25の側壁に接触し、更に、n型の半導体領域23の底面部が半導体層20の第2の面S2に到達する構成となっている。そして、半導体層20の第1の面S1側にn型の半導体領域23と重畳してp型のウエル領域22が設けられている。したがって、この第1実施形態の光電変換領域21は、同一の平面サイズとしたとき、n型の半導体領域23の側面部と分離領域25の側壁との間にp型のウエル領域22が設けられた光電変換領域と比較して、光電変換部24の体積が大きくなっている。
 ここで、上述の光電変換部24は、主にn型の半導体領域23で構成され、p型のウエル領域22とn型の半導体領域23とによるpn接合型のフォトダイオード(PD)として構成されている。
 <素子分離領域>
 図7に示すように、素子分離領域31は、これに限定されないが、半導体層20の第1の面S1側から第2の面S2側に窪む溝部33内に絶縁膜(フィールド絶縁膜)34が選択的に埋め込まれたSTI(Shallow Trench Isolation)構造で構成されている。絶縁膜33としては、例えば酸化シリコン膜を用いることができる。
 <素子形成領域>
 図5及び図7に示すように、素子形成領域32aは、半導体層20の第1の面S1側において素子分離領域31で区間され、光電変換領域21毎に設けられている。そして、素子形成領域32aは、平面視で電変換領域21の光電変換部24と重畳している。そして、素子形成領域32aには、p型のウエル領域22が設けられている。
 図5に示すように、素子形成領域32aは、各々がX方向に延伸し、かつ各々がY方向に互いに離間する第1部分32a及び第2部分32aと、Y方向に延伸し、かつ第1部分32a及び第2の部分32aの各々の一端側に連結された第3部分32aと、を有するC字形状の平面パターンで構成されている。第1部分32aには、増幅トランジスタAMP及び選択トランジスタSELが直列接続で配置されている。第2部分32aには、リセットトランジスタRST及び転送トランジスタTRVが直列接続で配置されている。この第1実施形態では、図4に示すように、素子形成領域32aの平面パターンの向きが、複数の光電変換領域21において同一になっている。
 即ち、複数の光電変換領域21の各々の光電変換領域21には、画素トランジスタとして、例えば上述の増幅トランジスタAMP、選択トランジスタSEL、リセットトランジスタRST、及び転送トランジスタTSVが設けられている。そして、これらの画素トランジスタ(AMP,SEL,RST,TSV)は、半導体層20の第1の面S1側に平面視で光電変換部24と重畳して設けられたp型のウエル領域22に設けられている。また、画素アレイ部2Aには、光電変換領域21、光電変換部24、画素トランジスタを含む画素3が行列状(二次元マトリクス状)に複数配置されている。光電変換領域21では、入射光の光量に応じた信号電荷が生成され、生成された信号電荷が蓄積される。
 <リセットトランジスタ及び転送トランジスタ>
 図7に示すように、リセットトランジスタRSTは、素子形成領域32aの第2部分32aにおいて、p型のウエル領域22に構成されている。リセットトランジスタRSTは、半導体層20の第1の面S1側の素子形成領域32a上に設けられたゲート絶縁膜35と、素子形成領域32a上にゲート絶縁膜35を介して設けられたゲート電極36rと、ゲート電極36rの側壁にゲート電極36rを囲むようにして設けられたサイドウォールスペーサと、を含む。また、リセットトランジスタRSTは、ゲート電極36rの直下のp型のウエル領域22にチャネル(導通路)が形成されるチャネル形成領域と、このチャネル形成領域を挟んでチャネル長方向(ゲート長方向)に互いに離間してp型のウエル領域22内に設けられ、かつソース領域及びドレイン領域として機能する一対の主電極領域37g及び37hと、を更に含む。リセットトランジスタRSTは、チャネル形成領域に形成されるチャネルをゲート電極36rに印加されるゲート電圧により制御する。即ち、リセットトランジスタRSTは、ラテラル型(横型)で構成されている。
 図7に示すように、転送トランジスタTRVは、素子形成領域32aの第2部分32aにおいて、p型のウエル領域22に構成されている。そして、転送トランジスタTRVは、バーチカル型(縦型)で構成されている。具体的には、転送トランジスタTRVは、半導体層20の第1の面S1側のゲート溝部に設けられたゲート電極36vと、このゲート電極36vと半導体層20との間に介在されたゲート絶縁膜35と、ゲート電極36vの側壁にゲート絶縁膜35を介在して並ぶp型のウエル領域22からなるチャネル形成領域と、を含む。また、転送トランジスタTRVは、ソース領域及びドレイン領域として機能する一対の主電極領域を含む。この一対の主電極領域のうち、一方の主電極領域はn型の半導体領域23(光電変換部24)で構成され、他方の主電極領域はリセットトランジスタRSTのソース領域として機能する主電極領域37gで構成されている。即ち、転送トランジスタTRV及びリセットトランジスタRSTは、転送トランジスタTRVのドレイン領域として機能する主電極領域37gと、リセットトランジスタRSTのソース領域として機能する主電極領域37gと、を共有している。そして、この主電極領域37gは、図3に示す電荷保持領域FDとして機能する。転送トランジスタTRVは、チャネル形成領域に形成されるチャネルをゲート電極36vに印加されるゲート電圧により制御する。
 ゲート電極36vは、半導体層20のゲート溝部にゲート絶縁膜35を介して設けられた第1部分(バーチカルゲート電極部)と、この第1部分と一体に成形され、かつゲート溝部から突出する第2部分とを含む。第2部分は第1部分よりも幅広になっている。
 主電極領域37gは、これに限定されないが、n型の半導体領域からなり、かつゲート電極36rに対して自己整合で形成されたエクステンション領域と、n型の半導体領域からなり、かつゲート電極36vに対して自己整合で形成されたエクステンション領域と、これらのエクステン領域よりも不純物濃度が高いn型の半導体領域からなり、かつゲート電極36r及び36vの各々の側壁のサイドウォールスペーサに対して自己整合で形成されたコンタクト領域と、を含む。
 主電極領域37hは、これに限定されないが、n型の半導体領域からなり、かつゲート電極36rに対して自己整合で形成されたエクステンション領域と、このエクステン領域よりも不純物濃度が高いn型の半導体領域からなり、かつゲート電極36rの側壁のサイドウォールスペーサに対して自己整合で形成されたコンタクト領域と、を含む。
 ゲート絶縁膜35及びサイドウォールスペーサの各々は、例えば酸化シリコン(SiO)膜で構成されている。ゲート電極36r及び36vの各々は、例えば、抵抗値を低減する不純物が導入されたシリコン膜(ドープドポリシリコン膜)で構成されている。
 なお、転送トランジスタTRVは、ラテラル型(横型)で構成してもよい。
 <増幅トランジスタ及び選択トランジスタ>
 図5に示すように、増幅トランジスタAMP及び選択トランジスタSELは、素子形成領域32aの第1部分32aに設けられている。そして、増幅トランジスタAMP及び選択トランジスタSELは、詳細に図示していないが、図7を参照して説明すれば、p型のウエル領域22に構成されている。そして、増幅トランジスタAMP及び選択トランジスタSELの各々は、詳細に図示していないが、上述のリセットトランジスタRSTとほぼ同様の構成になっている。そして、増幅トランジスタAMP及び選択トランジスタSELは、増幅トランジスタAMPの一方の主電極領域(ソース領域)と、選択トランジスタSELの他方の主電極領域(ドレイン領域)と、を共有している。
 なお、図7では、リセットトランジスタRSTのゲート電極36r及び転送トランジスタTRVのゲート電極36vをそれぞれ図示している。
 <給電領域>
 図5に示す給電領域32zには、p型の給電用コンタクト領域37zが設けられている。このp型の給電用コンタクト領域37zは、詳細に図示していないが、図7を参照して説明すれば、光電変換領域21のp型のウエル領域22にこのp型のウエル領域22と接して設けられ、p型のウエル領域22と電気的に接続されている。また、p型の給電用コンタクト領域37zは、層間絶縁膜41に埋め込まれた給電用コンタクト電極42zを介して、第1層目の配線層43に形成された給電用配線と電気的に接続されている。このp型の給電用コンタクト領域37zは、p型のウエル領域22よりも不純物濃度が高いp型の半導体領域で構成され、このp型のコンタクト領域37zに接続される給電用コンタクト電極42zとのオーミックコンタクト抵抗を低減している。
 図7に示すp型のウエル領域22には、電源電位として第1基準電位が印加され、この第1基準電位に電位固定される。p型のウエル領域22への第1基準電位の給電は、後述の多層配線層に設けられたウエル給電用配線から給電用コンタクト電極42z及び給電用コンタクト領域37zを介して行われる。この第1実施形態では、これに限定されないが、p型のウエル領域22に第1基準電位として例えば0Vが印加される。p型のウエル領域22への第1基準電位の印加は、光電変換部24での光電変換中や、画素トランジスタ(AMP,SEL,RST,TRV)の駆動中において保持される。
 <多層配線層>
 図7及び図9に示すように、多層配線層40は、半導体層20の光入射面(第2の面S2)側とは反対側の第1の面S1側に配置されている。そして、多層配線層40は、これに限定されないが、例えば、層間絶縁膜41,44,46と、配線層43,45,47と、を含む積層構造になっている。
 図7に示すように、層間絶縁膜41は、画素アレイ部2Aにおいて、半導体層20の第1の面S1側に、画素トランジスタ(AMP,SEL,RST,STV)のゲート電極を覆うようにして設けられている。図7では、画素トランジスタとして、リセットトランジスタRST及び転送トランジスタTRVの各々のゲート電極36r,36vが層間絶縁膜41で覆われた状態を図示している。
 層間絶縁膜41上には第1層目の配線層43が設けられ、この第1層目の配線層43は上層の層間絶縁膜44で覆われている。また、層間絶縁膜44上には第2層目の配線層45が設けられ、この第2層目の配線層45は上層の層間絶縁膜46で覆われている。また、層間絶縁膜46上には第3層目の配線層47が設けられている。この第3層目の配線層47は、図示していないが、例えば上層の保護膜で覆われている。
 図7及び図9に示すように、層間絶縁膜41,44及び46の各々は、半導体チップ2の画素アレイ部2A及び周辺部2Bに亘って設けられている。
 第1~第3層目の配線層43,45,47の夫々には、様々な配線が形成されている。図7では、第1層目の配線層43に形成された配線43g,43r,43v、第2層目の配線層45に形成された配線45aを、それぞれ図示している。また、図9では、第3層目の配線層47に形成された給電用配線47bを図示している。
 図7に示すように、配線43gは、層間絶縁膜41に埋め込まれたコンタクト電極(導電プラグ)42gを介してリセットトランジスタRSTの一方の主電極領域37g(FD)と電気的に接続されている。配線43rは、層間絶縁膜41に埋め込まれたコンタクト電極42rを介してリセットトランジスタRSTのゲート電極36rと電気的に接続されている。配線43vは、層間絶縁膜41に埋め込まれたコンタクト電極(導電プラグ)42vを介して転送トランジスタTRVのゲート電極36vと電気的に接続されている。図9に示す給電用配線47bについては、後で詳細に説明する。
 第1~第3層目の各配線層43,45,47の各々は、例えば、銅(Cu)又はCuを主体とする合金などの金属膜で構成されている。層間絶縁膜41,44,46及び保護膜は、例えば、酸化シリコン膜、窒化シリコン(Si)膜又は炭窒化シリコン(SiCN)膜のうちの1つの単層膜、又は、これらのうち2つ以上を積層した積層膜で構成されている。コンタクト電極42g,42r及び42vの各々は、例えば、タングステン(W)膜やチタン(Ti)膜などの高融点金属膜で構成されている。
 読出し回路15に含まれる画素トランジスタは、各配線層43,45,47の配線を介して駆動される。そして、多層配線層40は、半導体層20の光入射面側(第2の面S2側)とは反対側に配置されているので、配線のレイアウトを自由に設定することができる。
 <支持基板>
 詳細に図示していないが、支持基板は、多層配線層40の半導体層20側とは反対側に設けられている。支持基板は、固体撮像装置1Aの製造において、半導体層20の強度を確保するための基板である。支持基板の材料としては、例えば、シリコン(Si)を用いることができる。
 <分離領域>
 図4及び図5に示すように、分離領域25は、平面視でX方向に延伸する第1部分25xと、Y方向に延伸する第2部分25yと、を含む。そして、第1部分25xと第2部分25yとは、互いに直交している。
 第1部分25xは、所定の間隔を空けてY方向に繰り返し配置されている。また、第2部分25yは、所定の間隔を空けてX方向に繰り返し配置されている。即ち、分離領域25は、平面視の平面パターンが格子状の平面パターンになっている。そして、複数の光電変換領域21の各々の光電変換領域21は、X方向の両端側が分離領域25の互いに隣り合う二つの第2部分25yで区画され、Y方向の両端側が分離領域25の互いに隣り合う二つの第1部分25xで区画されている。平面パターンが格子状の分離領域25は、X方向に延伸する第1部分25xと、Y方向に延伸する第2部分25yとが交わる交点部を有する。
 図7に示すように、分離領域25の第1部分25x及び第2部分25yの各々は、半導体層20の厚さ方向(Z方向)に延伸し、平面視で互いに隣り合う光電変換領域21の間を電気的及び光学的に分離している。第1部分25x及び第2部分25yの各々は、半導体層20の厚さ方向において、一端側が素子分離領域31と連結され、他端側が半導体層20の第2の面S2に到達している。
 分離領域25の第1部分25x及び第2部分25yの各々は、半導体層20の厚さ方向(Z方向)に延伸する掘り込み部26の内壁に沿って設けられた分離絶縁膜27と、半導体層20の掘り込み部26に分離絶縁膜27を介して設けられた導体28と、を含む。導体28は、分離絶縁膜27によって半導体層20と絶縁分離されている。即ち、分離領域25は、半導体層20に分離絶縁膜27を介して埋め込まれ、かつ半導体層20と絶縁分離された導体28を含む。分離絶縁膜27及び導体28は、半導体層20の厚さ方向に延伸し、各々の一端側が素子分離領域31と連結され、各々の他端側が半導体層20の第2の面S2に到達している。
 分離絶縁膜27としては、例えば酸化シリコン膜を用いることができる。導体28としては、例えば抵抗値を低減する不純物が導入された半導体膜を用いることができる。この第1実施形態の導体28は、これに限定されないが、例えば不純物としてボロン(B)が導入されたp型のドープドポリシリコン膜で構成されている。
 なお、導体28としては、タングステン(W)、アルミニウム(Al)、銅(Cu)などの金属膜、若しくは合金膜を用いることもできる。
 ここで、掘り込み部26とは、半導体層20の一部を選択的に除去して形成された溝部及び貫通孔を含む。
 <絶縁膜及び遮光膜>
 図7に示すように、絶縁膜51は、半導体層20の第2の面S2側に設けられている。そして、絶縁膜51は、半導体層20の第2の面S2(光入射面)側が凹凸のない平坦面となるように、画素アレイ部2Aにおいて、半導体層20の第2の面S2側の全体を覆っている。絶縁膜51としては、例えば、透光性を有する酸化シリコン膜を用いている。
 遮光膜54は、絶縁膜51の半導体層20側とは反対側に設けられている。遮光膜54は、所定の光電変換領域21に入射する光が隣の光電変換領域21へ漏れ込まないように、平面視の平面パターンが複数の光電変換領域21のそれぞれの受光面側を開口する格子状平面パターンになっている。遮光膜54は、分離領域25の格子状平面パターンと同一の格子状平面パターンで構成され、平面視で分離領域25と重畳する位置に配置されている。この遮光膜54としては、例えば、遮光性を有するタングステン(W)膜を用いている。
 <カラーフィルタ及びマイクロレンズ>
 図7に示すように、カラーフィルタ55は、絶縁膜51の半導体層20側とは反対側(光入射面側)において、光電変換領域21(画素3)毎に設けられている。カラーフィルタ55は、半導体チップ2の光入射面側から入射した入射光を色分離する。カラーフィルタ55としては、赤色(R)の第1カラーフィルタ、緑色(G)の第2カラーフィルタ、青色(B)の第3カラーフィルタがある。この第1実施形態では、R、G、Bの三色のカラーフィルタ55を備えている。
 図示していないが、マイクロレンズは、図7を参照して説明すれば、カラーフィルタ55の半導体層20側とは反対側(光入射面側)において、光電変換領域21(画素3)毎に設けられている。マイクロレンズ56は、照射光を集光し、集光した光を光電変換領域21に効率良く入射させる。
 <分離領域の給電>
 次に、図8及び図9に示すように、画素アレイ部2Aの外側の周辺部2Bにおいて、分離領域25の導体28に中継導電パッド80を介在してコンタクト部としての給電用コンタクト電極46bが電気的及び機械的に接続された構成について説明する。
 図8及び図9に示すように、この第1実施形態に係る固体撮像装置1Aは、幅W(図8参照)が分離領域25の導体28の幅W(図9参照)よりも幅広で形成され、かつ半導体層20の第1の面S1側において平面視で分離領域25の導体28と重畳して接続された中継導電パッド80と、平面視でこの中継導電パッド80と重畳して接続された給電用コンタクト部としての給電用コンタクト電極46bと、を備えている。そして、周辺部2Bにおいて、分離領域25の導体28に、中継導電パッド80及び給電用コンタクト電極46bを介して、電源電位の給電用配線47bが電気的に接続されている。
 <給電用配線>
 図9に示すように、給電用配線47bは、多層配線層40の第3層目の配線層47に形成されている。そして、図8に示すように、給電用配線47bは、平面視で画素アレイ部2Aの外側の周辺部2Bに、画素アレイ部2Aを囲むようにして配置されている。給電用配線47bは、例えば環状の平面パターンで構成されている。給電用配線47bは、図示していないが、一定の電源電位を供給する電源生成回路と電気的に接続され、この電源生成回路から電源電位が供給される。給電用配線45bへの電源電位の供給は、光電変換部24での光電変換中や、読出し回路15の駆動中において保持される。
 <分離領域>
 図8に示すように、分離領域25は、X方向に延伸する第1部分25xが画素アレイ部2Aから周辺部2Bに引き出され、画素アレイ部2Aと周辺部2Bとに亘って設けられている。また、分離領域25は、Y方向に延伸する第2部分25yが画素アレイ部2Aから周辺部2Bに引き出され、画素アレイ部2Aと周辺部2Bとに亘って設けられている。そして、図8及び図9に示すように、周辺部2Bに引き出された第1部分25x及び第2部分25yの各々は、平面視で給電用配線47bと重畳している。即ち、分離領域25は、画素アレイ部2Aの内外に亘って延伸している。
 <中継導電パッド及び給電用コンタクト電極>
 図8に示すように、この第1実施形態では、中継導電パッド80として、これに限定されないが、例えば、平面視で分離領域25の第1部分25xと重畳する第1中継導電パッド80xと、平面視で分離領域25の第2部分25yと重畳する第2中継導電パッド80yとを備えている。即ち、この第1実施形態の中継導電パッド80は、分離領域25の第1部分25xと接続される第1中継導電パッド80xと、分離領域25の第2部分25yに接続される第2中継導電パッド80yとに分割されている。
 図8及び図9に示すように、第1中継導電パッド80xは、画素アレイ部2Aの外側の周辺部2Bに配置され、Y方向に沿って延伸している。そして、第1中継導電パッド80xは、分離領域25の複数の第1部分25xの各々と重畳して電気的及び機械的に接続されている。図8では、一例として、X方向に所定の間隔を空けて配列された2つの第1中継導電パッド80xを図示しているが、第1中継導電パッド80xの数は、2つに限定されるものではない。
 図8に示すように、第2中継導電パッド80yは、画素アレイ部2Aの外側の周辺部2Bに配置され、X方向に沿って延伸している。そして、詳細に図示していないが、第2中継導電パッド80yは、分離領域25の複数の第1部分25xの各々と重畳して電気的及び機械的に接続されている。図8では、一例として、Y方向に所定の間隔を空けて配列された2つの第2中継導電パッド80yを図示しているが、第2中継導電パッド80yの数は、2つに限定されるものではない。
 図9に示すように、第1中継導電パッド80xは、コンタクト部としての給電用コンタクト電極46bを介して、給電用配線47bと電気的に接続されている。また、詳細に図示していないが、第2中継導電パッド80yも、第1中継導電パッド80xと同様に、給電用コンタクト電極46bを介して給電用配線47bと電気的に接続されている。即ち、給電用配線47bは、画素アレイ部2Aの外側の周辺部2Bにおいて、平面視で分離領域25の導体28(第1部分25xの導体28,第2部分25yの導体28)と重畳して接続された中継導電パッド80(80x,80y)と、平面視で中継導電パッド80(80x,8y)と重畳して接続された給電用コンタクト電極46bとを介して、分離領域25の導体28と電気的に接続されている。そして、分離領域25の導体28は、給電用配線47bから中継導電パッド80(80x,80y)及び給電用コンタクト電極46bを介して電源電位が印加され、この電源電位に電位固定される。
 中継導電パッド80は、分離領域25の導体28と給電用コンタクト電極46bとの間に介在され、導体28と給電用コンタクト電極46bとの電気的な接続を中継する。給電用コンタクト電極46bは、これに限定されないが、例えば、分離領域25の第1部分25x毎、及び第2部分25y毎に設けられている。
 図9に示すように、給電用コンタクト電極46bは、多層配線層40の層間絶縁膜46、44及び41に亘って延伸し、これらの層間絶縁膜46,44及び41に亘って埋め込まれている。給電用コンタクト電極46bは、一端側が中継導電パッド80(80x,80y)に電気的及び機械的に接続され、一端側とは反対側の他端側が給電用配線47bに電気的及び機械的に接続されている。即ち、給電用コンタクト電極46bは、この給電用コンタクト電極46bよりも上層に設けられ、かつ電位が印加される給電用配線47bと電気的に接続されている。給電用コンタクト電極46bは、例えば、タングステン(W)膜やチタン(Ti)膜などの高融点金属膜で構成されている。
 図9に示す分離領域25の導体28には、電源電位として、p型のウエル領域22に印加される第1基準電位よりも低い負電位の第2基準電位が印加される。第2基準電位としては、例えば-1.2Vが印加される。この分離領域25の導体28への第2基準電位の給電は、図9に示すように、給電用配線47bから、給電用コンタクト電極46b及び中継導電パッド80(80x,80y)を介して行われる。即ち、光電変換領域21のp型のウエル領域22(図7参照)と、光電変換領域21を区画する分離領域25の導体28とでは、それぞれ異なる電源電位が印加される。
 なお、図9に示すように、半導体チップ2の周辺部2Bの半導体層20には、p型の半導体領域からなるp型の周辺ウエル領域22nが設けられている。このp型の周辺ウエル領域22nは、半導体チップ2の画素アレイ部2Aの半導体層20に設けられたp型のウエル領域22と同一工程で形成される。
 この第1実施形態において、図7に示す分離領域25の分離絶縁膜27は、例えば負の固定電荷を発生させるSCF(Si-cover Film)膜を含んでいる。SCF膜としては、酸化ハフニウム(HfO)を用いることができる。この場合、分離領域25の導体28に負電位の第2基準電位を印加することにより、分離領域25の側壁に正孔(h)が誘起され、この分離領域25の側壁でのピニングを確保することができるため、暗電流の発生を制御することができる。
 ≪第1実施形態の主な効果≫
 次に、この第1実施形態の主な効果について、従来技術と比較しながら説明する。従来技術は、この実施形態の図面の符号を引用して説明する。
 光電変換領域21及び分離領域25は、固体撮像装置の小型化に伴って微細化の傾向にある。一方、給電用コンタクト電極46bは、層間絶縁膜46、44及び41に亘って延伸する接続孔を形成し、この接続孔に導電膜を選択的に埋め込むことによって形成されるため、層間絶縁膜に接続孔を形成するときのマスクの合わせずれにより、分離領域25の導体28と給電用コンタクト電極46bとで位置ずれが生じる。
 このため、従来技術として、分離領域25の導体28に給電用コンタクト電極46bを直に接続する方法では、分離領域25の微細化に伴って導体28の幅が狭くなると、分離領域25の導体28に給電用コンタクト電極46を接続するときの接続難易度が高くなる。この接続難易度は、製造歩留まりの低下を招く要因となる。
 これに対し、この第1実施形態では、上述したように、幅Wが分離領域25の導体28の幅Wよりも幅広で形成され、かつ平面視で分離領域25の導体28と重畳して接続された中継導電パッド80を備えている。そして、この中継導電パッド80に給電用コンタクト電極46bが接続されている。このため、分離領域25の微細化に伴って導体28の幅が狭くなっても、中継導電パッド80に給電用コンタクト電極46bを容易に接続することができ、分離領域25の導体28に給電用コンタクト電極46bを直に接続する場合よりも接続難易度を低くすることができる。したがって、この第1実施形態に係る固体撮像装置1Aによれば、製造歩留まりの向上を図ることができる。
 また、分離領域25の導体28に負電位の第2基準電位を印加することにより、光電変換領域21と隣り合う分離領域25の側壁に正孔(h)が誘起され、この分離領域25の側壁でのピニングを確保することができるため、暗電流の発生を制御することができる。
 また、分離領域25の側壁でのピニングを確保することができることから、分離領域25の側壁側に接触し、かつ半導体層20の第2の面S2に到達するようにn型の半導体領域23を設けることができ、同一の平面サイズとしたとき、n型の半導体領域23の側面部と分離領域25の側壁との間にp型のウエル領域22が設けられた光電変換領域と比較して光電変換部24の実効的な体積を大きくすることができる。この結果、この第1実施形態の固体撮像装置1Aによれば、光電変換領域21の微細化に伴う飽和信号量Qsの低下を抑制することができる。
 また、分離領域25の導体28を電源電位に電位固定することができるので、分離領域25を介して互いに隣り合う2つの光電変換領域21において、一方の光電変換領域21の画素トランジスタと他方の光電変換領域21の画素トランジスタとの間での寄生容量の容量結合に起因するノイズの伝搬を抑制することができる。したがって、この第1実施形態に係る固体撮像装置1Aによれば、高画質化を図ることができる。また、より一層の信頼性の向上を図ることができる。
 なお、分離領域25の導体8としては、抵抗値を低減する不純物が導入されたシリコン膜を用いることができるが、シリコン膜は光吸収があるため、光学視点では、アルミニウム(Al)などの金属膜を用いることが好ましい。
 また、分離領域25は、必ずしも半導体層20を貫通している必要はなく、また、導体28においても必ずしも半導体層20を貫通している必要はない。
 ≪第1実施形態の変形例≫
 <第1変形例>
 上述の第1実施形態では、図9に示すように、半導体層20の第1の面S1側の絶縁膜(フィールド絶縁膜)34上に中継導電パッド80が配置され、半導体層20から中継導電パッド80が絶縁分離されている。しかしながら、本技術は、絶縁膜34上に中継導電パッド80を配置する構成に限定されるものではない。
 例えば、図11に示すように、半導体層20の第1の面S1に中継導電パッド80を接触させてもよい。
 この場合、周辺部2Bの半導体層20と、中継導電パッド80とが導通する。したがって、図10及び図11に示すように、平面視で中継導電パッド80の周囲を囲む周辺分離領域25qを設けて、周辺分離領域25qの外側の第1領域20aと、周辺分離領域25qの内側の第2部分20bとに区画し、第1領域20aと第2領域20bとを電気的に絶縁分離する。このように、周辺部2Bの半導体層20を周辺分離領域25qで第1領域20aと第2領域20bとに区画することにより、周辺分離領域25qの外側の第1領域20aと、周辺分離領域25qの内側の第2領域25bとで異なる電源電位を印加するこができる。例えば、第1領域20aに第1基準電位(例えば0V)を印加し、第2領域20bに第1基準電位よりも低い負電位の第2基準電位(例えば-1.2V)を印加することができる。
 この場合、半導体層20は、周辺部2Bにおいて、周辺分離領域25qで区画され、かつ互いに電気的に分離された第1領域20a及び第2領域20bを含む。そして、中継導電パッド80は、半導体層20の第2領域20bにおいて、分離領域25の導体28と接続されている。半導体層20の第1領域20a及び第2領域20bの各々には、p型の周辺ウエル領域22nが設けられている。周辺分離領域25qは、例えば分離領域25と同一工程で形成され、縦断面構造が分離領域25の縦断面構造と同一になっている。
 この第1実施形態の第1変形例においても、上述の第1実施形態と同様の効果が得られる。
 <第2変形例>
 また、上述の第1実施形態では、分離領域25の複数の部分(第1部分25x,第2部分25y)に亘って延伸し、この複数の部分(第1部分25x,第2部分25y)の各々と重畳して電気的及び機械的に接続された中継導電パッド80(80x,80y)について説明した。しかしながら、本技術は、分離領域25の複数の部分に亘って延伸する中継導電パッド80(80x,80y)に限定されるものではない。
 例えば、図12及び図13に示すように、中継導電パッド80(80x,80y)は、分離領域25の部分(第1部分25x,第2部分25y)毎に設けてもよい。
 この第1実施形態の第2変形例においても、上述の第1実施形態と同様の効果が得られる。
 <第3変形例>
 また、上述の第1実施形態では、中継導電パッド80を分離領域25の第1部分25xの導体28に接続される第1中継導電パッド80xと、分離領域25の第2部分25yの導体28に接続される第2中継導電パッド80yとに分割した場合について説明したが、1つの中継導電パッド80を分離領域25の第1部分25x及び第2の部分25yの各々の導体28に接続するようにしてもよい。この場合、中継導電パッド80を画素アレイ部2Aの周囲を囲む環状の平面パターンで構成することが好ましい。
 〔第2実施形態〕
 本技術の第2実施形態に係る固体撮像装置1Bは、基本的に上述の第1実施形態に係る固体撮像装置1Aと同様の構成になっており、以下の構成が異なっている。
 即ち、上述の第1実施形態に係る固体撮像装置1Aは、図8及び図9に示すように、画素アレイ部2Aの外側の周辺部2Bにおいて、分離領域25の導体28に中継導電パッド80が電気的及び機械的に接続された構成になっている。
 これに対し、図14及び図15に示すように、この第2実施形態に係る固体撮像装置1Bは、画素アレイ部2Aにおいて、分離領域25の導体28に中継導体パッド80が電気的及び機械的に接続されている。そして、この中継導電パッド80に給電用コンタクト電極46bの一端側が電気的及び機械的に接続され、この給電用コンタクト電極46bの他端側に、給電用配線47bと一体の給電用配線47cが電気的及び機械的に接続されている。そして、分離領域25の導体28に給電用配線47cが中継導電パッド80及び給電用コンタクト電極46bを介して電気的に接続されている。中継導電パッド80は、互いに隣り合う2つの光電変換領域21,21の間に位置する分離領域25の導体28と接続されている。
 この第2実施形態では、図14及び図15に示すように、分離領域25のX方向に延伸する第1部分25xと、Y方向に延伸する第2部分25yとが交わる2つの交点部25z,25zの間の分離領域25に中継導電パッド80を設けているが、中継導電パッド80は交点部25zに設けることが好ましい。
 この第2実施形態に係る固体撮像装置1Bにおいても、上述の第1実施形態に係る固体撮像装置1Aと同様の効果が得られる。
 〔第3実施形態〕
 図16に示すように、本技術の第3実施形態に係る固体撮像装置1Cは、2つの半導体層20,85を積層した2段階構造になっている。図16では、上述の第1実施形態の図9と同様に、画素アレイ部2Aの外側の周辺部2Bにおける縦断面構造を示している。
 具体的には、この第3実施形態に係る固体撮像装置1Cは、第1半導体層としての半導体層20と、この半導体層20の第1の面S1側に絶縁層82を介して設けられた第2半導体層としての半導体層85と、この半導体層85の半導体層20側とは反対側に設けられた多層配線層90と、を備えている。
 半導体層20は、上述の第1実施形態の半導体層20と同様の構成になっており、図9及び図7を参照して説明すれば、分離領域25と、この分離領域25で区画された光電変換領域21とを含む。そして、図9及び図16に示すように、半導体層20の第1の面S1側には、絶縁膜34を介して中継導電パッド80が設けられている。中継導電パッド80は、上述の第1実施形態と同様に、幅Wが分離領域25の導体28の幅Wよりも幅広で形成され、かつ平面視で分離領域25の導体28と重畳して電気的及び機械的に接続されている。
 この第3実施形態では、図16に詳細に図示していないが、転送トランジスタTRVは半導体層20に構成され、読出し回路に含まれる画素トランジスタ(AMP,SEL,RST)は、半導体層85に構成されている。
 図16に示すように、絶縁層82は、中継導電パッド80を覆う絶縁膜83と、この絶縁膜83の中継導電パッド80側とは反対側に設けられた絶縁膜84と、を含む。絶縁膜83は、図9及び図7に示す層間絶縁膜41に対応し、画素アレイ部2Aにおいて、光電変換領域21の転送トランジスタTRVを覆っている。
 図16に示すように、半導体層85は、絶縁層83の半導体層20側とは反対側に設けられている。半導体層85としては、例えば半導体層20と同様に、単結晶シリコンからなるp型の半導体基板を用いている。半導体層85は、これに限定されないが、後述するコンタクト部としての給電用コンタクト電極96bが通る貫通孔を含む。
 図16に示すように、多層配線層90は、半導体層85の絶縁層82側とは反対側を覆う層間絶縁膜91と、この層間絶縁膜91の半導体層85側とは反対側に設けられた層間絶縁膜94と、この層間絶縁膜94の層間絶縁膜91側とは反対側に設けられた層間絶縁膜96と、この層間絶縁膜96の層間絶縁膜94側とは反対側に設けられた保護膜(図示せず)と、を含む。この層間絶縁膜91、94、及び96は、図9及び図7に示す層間絶縁膜41、44及び46に対応する。
 また、多層配線層90は、詳細に図示していないが、層間絶縁膜91と層間絶縁膜94との間に設けられた第1層目の配線層と、層間絶縁膜94と層間絶縁膜96との間に設けられた第2層目の配線層と、層間絶縁膜96と層間絶縁膜94との間に設けられた第3層目の配線層と、を含む。これらの配線層は、図9及び図7に示す配線層43、45、47に対応する。
 ここで、図16に示すように、この第3実施形態に係る固体撮像装置1Cは、上述の第1実施形態の図9に示す給電用コンタクト電極46b及び給電用配線47bに替えて、給電用コンタクト電極96b及び給電用配線97bを備えている。
 給電用配線97bは、多層配線層90の第3層目の配線層に形成され、電源電位が印加される。例えば、給電用配線97bには、電源電位として、上述の第1実施形態と同様の第2基準電位が印加される。
 給電用コンタクト電極96bは、一端側が中継導電パッド80と電気的及び機械的に接続され、一端側とは反対側が給電用配線97bと電気的及び機械的に接続されている。そして、給電用コンタクト電極96bは、半導体層85の貫通孔を通り、給電用配線97b及び中継導電パッド80に亘って延伸している。給電用コンタクト電極96bは、平面視で中継導電パッド80と重畳して接続されている。
 分離領域25の導体28は、給電用配線97bから給電用コンタクト電極96b及び中継導電パッド80を介して電源電位が印加され、この電源電位に電位固定される。
 この第3実施形態に係る固体撮像装置1Cにおいても、上述の第1実施形態に係る固体撮像装置1Aと同様の効果が得られる。
 また、この第3実施形態の給電用コンタクト電極96bは、半導体層85よりも上層の多層配線層90に設けられた給電用配線97bと、半導体層85よりも下層に設けられた中継導電パッド80とに亘って延伸している。このような給電用コンタクト電極46bは、多層配線層90内で延伸する通常の給電用コンタクト電極、例えば図9に示す給電用コンタクト電極46bと比較して太くなる(縦断面の面積が広くなる)。このため、給電用コンタクト電極96bを分離領域25の導体28に直に接続する場合は、より接続難易度が高くなる。したがって、このような給電用コンタクト電極96bを有する固体撮像装置1Cに本技術を適用することは、特に有用である。
 〔第4実施形態〕
 図17に示すように、本技術の第4実施形態に係る固体撮像装置1Dは、第1画素ブロック16a及び第2画素ブロック16bを含む画素アレイ部2Bを備えている。
 図17に示すように、第1画素ブロック16aは、二次元平面内で互いに直交するX方向及びY方向に繰り返し配置されている。第2画素ブロック16bは、複数の第1画素ブロック16aが並ぶ第1画素ブロック群の中に点在し、第1画素ブロック16aと共にブロック列を構成している。図17では、一例として、1つの第2ブロック16bの周りに8つの第1画素ブロック16aが配置された配置パターンを示している。第2画素ブロック16bは、周期的に配置してもよく、ランダムに配置してもよい。
 第1画素ブロック16a及び第2ブロック16bの各々は、互いに隣り合う複数の画素3として、例えばX方向及びY方向のそれぞれの方向に2つずつの2×2配列で配置された4つの画素3を含む。
 図19に示すように、この第4実施形態に係る固体撮像装置1Dは、厚さ方向(Z方向)において互いに反対側に位置する第1の面S1及び第2の面S2を有する半導体層20と、この半導体層20の第1の面S1側に設けられた多層配線層110と、を備えている。また、この第4実施形態に係る固体撮像装置1Dは、図19には詳細に図示していないが、上述の第1実施形態と同様に、半導体層20の第2の面S2側に、この第2の面S2側から順次設けられた絶縁膜51、遮光膜54、カラーフィルタ55及びマイクロレンズ(オンチップレンズ)を備えている。
 <半導体層>
 図19に示すように、半導体層20は、半導体層20の厚さ方向(Z方向)に延伸する分離領域25と、この分離領域25で区画された光電変換領域21D及び21Dと、半導体層20の第1の面S1側に設けられた素子分離領域(フィールド分離領域)31と、を備えている。分離領域25は、上述の第1実施形態の分離領域25と同様に格子状の平面パターンで構成されており、平面視でX方向に延伸する第1部分25xと、Y方向に延伸する第2部分25yと、を含む。そして、分離領域25は、一端側が素子分離領域31と連結され、一端側とは反対側が半導体層20の第2の面S2に到達している。そして、分離領域25は、上述の第1実施形態と同様に、半導体層20の厚さ方向(Z方向)に延伸する掘り込み部26の内壁に沿って設けられた分離絶縁膜27と、半導体層20の掘り込み部26に分離絶縁膜27を介して設けられた導体28と、を含む。
 <第1画素ブロック>
 図18A及び図19に示すように、第1画素ブロック16aに含まれる4つの画素3の各々は、半導体層20に設けられ、かつ分離領域25で区間された光電変換領域21Dを備えている。
 第1画素ブロック16aは、この第1画素ブロック16aに含まれる4つの光電変換領域21Dが平面視で分離領域25を介して互いに隣り合っている。そして、第1画素ブロック16aは、分離領域25の第1部分25x及び第2部分25yが交わる交点部として、第1画素ブロック16aの中央、換言すれば4つの光電変換領域21Dの角部で囲まれた中央部に位置する第1交点部25zと、4つの光電変換領域21Dの各々の第1交点部25z側の角部に対して対角線上に位置する各々の角部における第2交点部25zと、を含む。
 図19に示すように、光電変換領域21Dは、半導体層20に設けられたn型の半導体領域23と、半導体層20の第1の面S1側にn型の半導体領域23と重畳して設けられたp型のウエル領域22と、を備えている。
 また、光電変換領域21Dは、p型のウエル領域22の表層部に、平面視で分離領域25の第1交点部25zと隣り合って設けられたn型のコンタクト領域102aと、p型のウエル領域22の表層部に、平面視で分離領域25の第2交点部25zと隣り合って設けられたp型のコンタクト領域102bと、半導体層20の第1の面S1側に設けられた転送トランジスタ104aと、を備えている。また、光電変換領域21Dは、光電変換部24を備えている。
 n型のコンタクト領域102aは、n型の半導体領域23よりも不純物濃度が高いn型の半導体領域で構成され、光電変換部24で光電変換された信号電荷を保持(蓄積)する電荷保持領域FDとして機能する。p型のコンタクト領域102bは、p型のウエル領域22よりも不純物濃度が高いp型の半導体領域で構成され、p型のウエル領域22に電源電位を供給する給電用コンタクト領域として機能する。
 光電変換部24は、上述したように、主にn型の半導体領域23で構成され、p型のウエル領域22とn型の半導体領域23とによるpn接合型のフォトダイオード(PD)として構成されている。
 転送トランジスタ104aは、半導体層20の第1の面S1に設けられたゲート絶縁膜105と、半導体層20の第1の面S1側にゲート絶縁膜105を介して設けられたゲート電極106と、ゲート電極106の側壁にゲート電極106を囲むようにして設けられたサイドウォールスペーサと、を含む。また、転送トランジスタ104aは、ゲート電極106の直下のp型のウエル領域22にチャネル(導通路)が形成されるチャネル形成領域と、ソース領域として機能する光電変換部24(n型の半導体領域23)と、ドレイン領域として機能する電荷蓄積領域FD(n型のコンタクト領域102a)と、を含む。
 この第1画素ブロック16aに含まれる4つの光電変換領域21Dの各々の転送トランジスタ104aは、ゲート電極106が分離領域25の第1交点部25z側に偏って配置されている。そして、この4つの転送トランジスタ104aの各々のゲート電極106は、第1交点部25zを囲むようにして配置されている。
 <第2画素ブロック>
 図18B及び図19に示すように、第2画素ブロック16bに含まれる4つの画素3の各々は、半導体層20に設けられ、かつ分離領域25で区間された光電変換領域21Dを備えている。
 第2画素ブロック16bは、この第2画素ブロック16bに含まれる4つの光電変換領域21Dが平面視で分離領域25を介して互いに隣り合っている。そして、第2画素ブロック16bは、分離領域25の第1部分25x及び第2部分25yが交わる交点部として、第2画素ブロック16bの中央、換言すれば4つの光電変換領域21Dの角部で囲まれた中央部に位置する第3交点部25zと、4つの光電変換領域21Dの各々の第3交点部25z側の角部に対して対角線上に位置する各々の角部における第2交点部25zと、を含む。第2交点部25zは、第1画素ブロック16a及び第2画素ブロック16bで共有されている。また、第2交点部25zは、互いに隣り合う複数の第1画素ブロック16aで共有されている。
 図19に示すように、光電変換領域21Dは、半導体層20に設けられたn型の半導体領域23と、半導体層20の第1の面S1側にn型の半導体領域23と重畳して設けられたp型のウエル領域22と、を備えている。
 また、光電変換領域21Dは、p型のウエル領域22の表層部に、平面視で分離領域25の第2交点部25zと隣り合って設けられたp型のコンタクト領域102bと、半導体層20の第1の面S1側に設けられた転送トランジスタ104bと、を備えている。また、光電変換領域21Dは、光電変換部24を備えている。この光電変換領域21Dは、光電変換領域21Dとは異なり、電荷保持領域FDとして機能するn型のコンタクト領域102aを備えていない。
 光電変換部24は、上述したように、主にn型の半導体領域23で構成され、p型のウエル領域22とn型の半導体領域23とによるpn接合型のフォトダイオード(PD)として構成されている。
 転送トランジスタ104bは、基本的に上述の転送トランジスタ104aと同様の構成になっているが、ドレイン領域として機能する電荷蓄積領域FD(n型のコンタクト領域102a)を含まない。即ち、この転送トランジスタ104bは、光電変換部24で光電変換された信号電荷を電荷保持領域FDに転送しない。
 この第2画素ブロック16bに含まれる4つの光電変換領域21Dの各々の転送トランジスタ104bは、ゲート電極106が分離領域25の第3交点部25z側に偏って配置されている。そして、この4つの転送トランジスタ104bの各々のゲート電極106は、第3交点部25zを囲むようにして配置されている。
 <導電パッド及び中継導電パッド>
 図18A及び図19に示すように、分離領域25の第1交点部25zには、第1導電パッド108aが配置されている。この第1導電パッド108aは、平面視で分離領域25の第1交点部25z、及び、この第1交点部25zの周囲に設けられた4つのn型のコンタクト領域102aと、それぞれ重畳して設けられ、この4つのn型のコンタクト領域102aの各々と電気的及び機械的に接続されている。この第1導電パッド108aは、4つの転送トランジスタ104aの各々のゲート電極106の側壁のサイドウォールスペーサで囲まれた窓部内に配置され、4つの転送トランジスタ104aの各々のゲート電極106と電気的に絶縁分離されている。
 また、図18A及び図19に示すように、分離領域25の第2交点部25zには、第2導電パッド108bが配置されている。この第2導電パッド108bは、平面視で分離領域25の第2交点部25z、及び、この第2交点部25zの周囲に設けられた4つのp型のコンタクト領域102bと、それぞれ重畳して設けられ、この4つのp型のコンタクト領域102bの各々と電気的及び機械的に接続されている。
 また、図18B及び図19に示すように、分離領域25の第3交点部25zには、中継導電パッド108cが配置されている。この中継導電パッド108cは、平面視で分離領域25の第3交点部25zと重畳して設けられ、この第3交点部25zの導体8と電気的及び機械的に接続されている。この中継導電パッド108cは、4つの転送トランジスタ104bの各々のゲート電極106の側壁のサイドウォールスペーサで囲まれた窓部内に配置され、4つの転送トランジスタ104bの各々のゲート電極106と電気的に絶縁分離されている。
 中継導電パッド108c、第1及び第2導電パッド108a,108bの各々は、例えば、同一工程で形成されている。そして、中継導電パッド108c、第1及び第2導電パッド108a,108bの各々は、例えば、抵抗値を低減する不純物が導入されたシリコン膜で構成されている。
 <コンタクト電極及び給電用コンタクト電極>
 図19に示すように、第1導電パッド108aは、多層配線層110の層間絶縁膜111に設けられたコンタクト電極112aを介して、多層配線層110の配線層に形成された配線113aと電気的に接続されている。コンタクト電極112aは、多層配線層110の厚さ方向(Z方向)に延伸し、一端側が第1導電パッド108aと電気的及び機械的に接続され、一端側とは反対側が多層配線層110の配線113aと電気的及び機械的に接続されている。配線113aは、上述の第1実施形態の図3を参照して説明すれば、読出し回路15の入力側と電気的接続されている。
 図19に示すように、第2導電パッド108bは、多層配線層110の層間絶縁膜111に設けられたコンタクト電極112bを介して、多層配線層110の配線層に形成された配線113bと電気的接続されている。コンタクト電極112bは、多層配線層110の厚さ方向(Z方向)に延伸し、一端側が第2導電パッド108bと電気的及び機械的に接続され、一端側とは反対側が配線113bと電気的及び機械的に接続されている。配線113bには、電源電位として、例えば0Vの第1基準電位が印加される。即ち、光電変換領域21D及び21Dの各々のp型のウエル領域22は、第1基準電位が印加され、この第1基準電位に電位固定される。
 図19に示すように、中継導電パッド108cは、多層配線層110の層間絶縁膜111に設けられたコンタクト部としての給電用コンタクト電極112cを介して、多層配線層110の配線層に形成された給電用配線113cと電気的接続されている。給電用コンタクト電極112cは、多層配線層110の厚さ方向(Z方向)に延伸し、一端側が中継導電パッド108cと電気的及び機械的に接続され、一端側とは反対側が配線113cと電気的及び機械的に接続されている。配線113cには、電源電位として、p型のウエル領域22に印加される第1基準電位よりも低い負電位の第2基準電位が印加される。第2基準電位としては、例えば-1.2Vが印加される。即ち、分離領域25の導体8は、p型のウエル領域22に印加される第1基準電位よりも低い負電位の第2基準電位が印加され、この第2基準電位に電位固定される。
 ≪第4実施形態の主な効果≫
 この第4実施形態に係る固体撮像装置1Dにおいても、上述の第1実施形態に係る固体撮像装置1Aと同様の効果が得られる。
 なお、負電位の第2基準電位が印加される光電変換領域21Dは点欠陥となるため、信号処理で補正することが好ましい。
 また、中継導電パッド108cは、周期的に配置してもよく、ランダムで配置してもよい。
 また、中継導電パッド108cの配置は、分離領域25の交点部に限定されるものではなく、中継導電パッド108cは交点部と交点部との間に配置してもよい。
 ≪第4実施形態の変形例≫
 なお、図20に示すように、分離領域25の導体28は、中継導電パッド108cと接続する部分を除き、一端側の終端が素子分離領域31の底面部と概ね同一又は素子分離領域31の底面部よりも低くなるようにしてもよい。換言すれば、分離領域25の導体28は、中継パッド108cと接続する部分を他の部分よりも選択的に突出させてもよい。
 〔第5実施形態〕
 ≪電子機器への応用例≫
 本技術(本開示に係る技術)は、例えば、デジタルスチルカメラ、デジタルビデオカメラ等の撮像装置、撮像機能を備えた携帯電話機、又は、撮像機能を備えた他の機器といった各種の電子機器に適用することができる。
 図21は、本技術の第5実施形態に係る電子機器(例えば、カメラ)の概略構成を示す図である。
 図21に示すように、電子機器200は、固体撮像装置201と、光学レンズ202と、シャッタ装置203と、駆動回路204と、信号処理回路205とを備えている。この電子機器200は、固体撮像装置201として、本技術の第1実形態から第4実施形態に係る固体撮像装置(1A~1D)を電子機器(例えばカメラ)に用いた場合の実施形態を示す。
 光学レンズ202は、被写体からの像光(入射光206)を固体撮像装置201の撮像面上に結像させる。これにより、固体撮像装置201内に一定期間にわたって信号電荷が蓄積される。シャッタ装置203は、固体撮像装置201への光照射期間及び遮光期間を制御する。駆動回路204は、固体撮像装置201の転送動作及びシャッタ装置203のシャッタ動作を制御する駆動信号を供給する。駆動回路204から供給される駆動信号(タイミング信号)により、固体撮像装置201の信号転送を行なう。信号処理回路205は、固体撮像装置201から出力される信号(画素信号)に各種信号処理を行う。信号処理が行われた映像信号は、メモリ等の記憶媒体に記憶され、或いはモニタに出力される。
 このような構成により、第5実施形態の電子機器200では、固体撮像装置201において暗電流の発生が制御されているため、画質の向上を図ることができる。
 なお、上述の実施形態の固体撮像装置を適用できる電子機器200としては、カメラに限られるものではなく、他の電子機器にも適用することができる。例えば、携帯電話機やタブレット端末等のモバイル機器向けカメラモジュール等の撮像装置に適用してもよい。
 また、本技術は、上述したイメージセンサとしての固体撮像装置の他、ToF(Time of Flight)センサと呼称され、距離を測定する測定する測距センサなども含む光検出装置全般に適用することができる。測距センサは、物体に向かって照射光を発光し、その照射光が物体の表面で反射されて返ってくる反射光を検出し、照射光が発光されてから反射光が受光されるまでの飛行時間に基づいて物体までの距離を算出するセンサである。この測距センサの素子分離領域の構造として、上述した素子分離領域の構造を採用することができる。
 なお、本技術は、以下のような構成としてもよい。
(1)
 厚さ方向において互いに互いに反対側に位置する第1の面及び第2の面を有する半導体層と、
 前記半導体層に設けられ、かつ前記半導体層の厚さ方向に延伸する分離領域と、
 前記分離領域で区画された光電変換領域と、
 前記分離領域に設けられ、かつ半導体層の厚さ方向に延伸する導体と、
 前記導体の幅よりも幅広で形成され、かつ前記半導体層の前記第1の面側において平面視で前記導体と重畳して接続された中継導電パッドと、
 平面視で前記中継導電パッドと重畳して接続されたコンタクト部と、
 を備えている光検出装置。
(2)
 前記光電変換領域を含む画素が二次元平面状に複数配置された画素アレイ部を更に備え、
 前記分離領域は、平面視で前記画素アレイ部の内外に亘って延伸し、
 前記コンタクト部は、前記画素アレイ部の外側で前記中継導電パッドと接続されている、上記(1)に記載の光検出装置。
(3)
 前記半導体層は、前記画素アレイ部の外側の周辺部において、周辺分離領域で区画され、かつ互いに電気的に分離された第1領域及び第2領域を含み、
 前記中継導電パッドは、前記分離領域の前記導体及び前記半導体層の前記第2領域の両方に接続されている、上記(1)又は(2)に記載の光検出装置。
(4)
 前記光電変換領域を含む画素が二次元平面状に複数配置された画素アレイ部を更に備え、
 前記分離領域は、平面視で前記画素アレイ部の内外に亘って延伸し、
 前記コンタクト部は、前記画素アレイ部の内側で前記中継導電パッドと接続されている、上記(1)又は(2)に記載の光検出装置。
(5)
 前記中継導電パッドは、前記互いに隣り合う複数の前記光電変換領域の間に位置する前記導体と接続されている、上記(4)に記載の光検出装置。
(6)
 前記コンタクト部は、前記コンタクト部よりも上層に設けられ、かつ電位が印加される配線と電気的に接続されている、上記(1)から(5)の何れかに記載の光検出装置。
(7)
 前記半導体層を第1半導体層とし、
 前記第1半導体層の前記第1の面側に設けられた第2半導体層と、
 前記第2半導体層の前記第1半導体層側とは反対側に設けられ、かつ前記配線を含む多層配線層と、を更に備え、
 前記コンタクト部は、一端側が前記中継導電パッドに接続され、前記一端側とは反対側の他端側が前記配線に接続されている、上記(1)から(5)の何れかに記載の光検出装置。
(8)
 上記(1)から(7)の何れかに記載の光検出装置と、被写体からの像光を前記光検出装置の撮像面上に結像させる光学レンズと、前記光検出装置から出力される信号に信号処理を行う信号処理回路と、を備えている電子機器。
 本技術の範囲は、図示され記載された例示的な実施形態に限定されるものではなく、本技術が目的とするものと均等な効果をもたらす全ての実施形態をも含む。さらに、本技術の範囲は、請求項により画される発明の特徴の組み合わせに限定されるものではなく、全ての開示されたそれぞれの特徴のうち特定の特徴のあらゆる所望する組み合わせによって画されうる。
 1A,1B,1C,1D 固体撮像装置
 2 半導体チップ
 2A 画素アレイ部
 2B 周辺部
 3 画素
 4 垂直駆動回路
 5 カラム信号処理回路
 6 水平駆動回路
 7 出力回路
 8 制御回路
 10 画素駆動線
 11 垂直信号性
 13 ロジック回路
 14 ボンディングパッド
 15 読出し回路
 16a 第1画素ブロック
 16b 第2画素ブロック
 20 半導体層
 21,21D,21D 光電変換領域
 22 p型のウエル領域
 23 n型の半導体領域
 24 光電変換部
 25 分離領域
 25x 第1部分
 25y 第2部分
 26 掘り込み部
 27 分離絶縁膜
 28 導体 
 31 分離領域(素子間分離領域)
 32a 素子形成領域
 32z 給電領域
 33 溝部
 34 絶縁膜(埋込絶縁膜)
 35 ゲート絶縁膜
 36r,36v ゲート電極
 37g,37h 主電極領域
 37z 給電用コンタクト領域
 40 多層配線層
 41 層間絶縁膜
 42g,42r,42v コンタクト電極
 42z 給電用コンタクト電極
 43 第1層目の配線層
 43g,43r,43v 配線
 44 層間絶縁膜
 45 第2層目の配線層
 45a 配線
 46 層間絶縁膜
 47 第3層目の配線層
 47b 給電用配線
 51 絶縁膜
 54 遮光膜
 55 カラーフィルタ
 80 中継導電パッド
 80x 第1中継導電パッド
 80y 第2中継導電パッド
 82 絶縁層
 83 絶縁膜
 84 絶縁膜
 85 半導体層(第2半導体層)
 90 多層配線層
 91,94,96 層間絶縁膜
 96b 給電用コンタクト電極(コンタクト部)
 97b 給電用配線
 102a n型の第1コンタクト領域(FD)
 102b p型の第2コンタクト領域
 104a,104b 転送トランジスタ
 105 ゲート絶縁膜
 106 ゲート電極
 108a 第1導電パッド
 108b 第2導電パッド
 108c 中継導電パッド
 110 多層配線層
 111 層間絶縁膜
 112a,112b コンタクト電極
 112c 給電用コンタクト電極
 113a,113b 配線
 113c 給電用配線

Claims (8)

  1.  厚さ方向においてに互いに反対側に位置する第1の面及び第2の面を有する半導体層と、
     前記半導体層に設けられ、かつ前記半導体層の厚さ方向に延伸する分離領域と、
     前記分離領域で区画された光電変換領域と、
     前記分離領域に設けられ、かつ半導体層の厚さ方向に延伸する導体と、
     前記導体の幅よりも幅広で形成され、かつ前記半導体層の前記第1の面側において平面視で前記導体と重畳して接続された中継導電パッドと、
     平面視で前記中継導電パッドと重畳して接続されたコンタクト部と、
     を備えている光検出装置。
  2.  前記光電変換領域を含む画素が二次元平面状に複数配置された画素アレイ部を更に備え、
     前記分離領域は、平面視で前記画素アレイ部の内外に亘って延伸し、
     前記コンタクト部は、前記画素アレイ部の外側で前記中継導電パッドと接続されている、請求項1に記載の光検出装置。
  3.  前記半導体層は、前記画素アレイ部の外側の周辺部において、周辺分離領域で区画され、かつ互いに電気的に分離された第1領域及び第2領域を含み、
     前記中継導電パッドは、前記分離領域の前記導体及び前記半導体層の前記第2領域の両方に接続されている、請求項2に記載の光検出装置。
  4.  前記光電変換領域を含む画素が二次元平面状に複数配置された画素アレイ部を更に備え、
     前記分離領域は、平面視で前記画素アレイ部の内外に亘って延伸し、
     前記コンタクト部は、前記画素アレイ部の内側で前記中継導電パッドと接続されている、請求項1に記載の光検出装置。
  5.  前記中継導電パッドは、前記互いに隣り合う複数の前記光電変換領域の間に位置する前記導体と接続されている、請求項1に記載の光検出装置。
  6.  前記コンタクト部は、前記コンタクト部よりも上層に設けられ、かつ電位が印加される配線と電気的に接続されている、請求項1に記載の光検出装置。
  7.  前記半導体層を第1半導体層とし、
     前記第1半導体層の前記第1の面側に設けられた第2半導体層と、
     前記第2半導体層の前記第1半導体層側とは反対側に設けられ、かつ前記配線を含む多層配線層と、を更に備え、
     前記コンタクト部は、一端側が前記中継導電パッドに接続され、前記一端側とは反対側の他端側が前記配線に接続されている、請求項1に記載の光検出装置。
  8.  光検出装置と、被写体からの像光を前記光検出装置の撮像面上に結像される光学レンズと、前記光検出装置から出力される信号に信号処理を行う信号処理回路と、を備え、
     前記光検出装置は、
     厚さ方向において互いに反対側に位置する第1の面及び第2の面を有する半導体層と、
     前記半導体層に、前記半導体層の厚さ方向に延伸する分離領域を介して互いに隣り合って設けられた複数の光電変換領域と、
     前記半導体層の前記第1の面側に、前記光電変換領域毎に設けられたトランジスタと、
     前記分離領域に設けられ、かつ前記半導体層の厚さ方向に延伸する導体と、
     前記半導体層の前記第2の面側に設けられ、前記半導体層の前記第2の面側で前記導体と電気的に接続され、かつ電位が印加される透明電極と、
     を備えている、電子機器。
PCT/JP2022/038228 2021-11-11 2022-10-13 光検出装置及び電子機器 WO2023084989A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280069516.4A CN118202466A (zh) 2021-11-11 2022-10-13 光检测装置和电子设备
KR1020247013345A KR20240095209A (ko) 2021-11-11 2022-10-13 광 검출 장치 및 전자 기기

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021184300 2021-11-11
JP2021-184300 2021-11-11

Publications (1)

Publication Number Publication Date
WO2023084989A1 true WO2023084989A1 (ja) 2023-05-19

Family

ID=86335686

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/038228 WO2023084989A1 (ja) 2021-11-11 2022-10-13 光検出装置及び電子機器

Country Status (4)

Country Link
KR (1) KR20240095209A (ja)
CN (1) CN118202466A (ja)
TW (1) TW202329478A (ja)
WO (1) WO2023084989A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170170229A1 (en) * 2015-12-09 2017-06-15 Samsung Electronics Co., Ltd. Image sensor and method of manufacturing the same
JP2018088488A (ja) * 2016-11-29 2018-06-07 ソニーセミコンダクタソリューションズ株式会社 センサチップおよび電子機器
WO2019093150A1 (ja) * 2017-11-09 2019-05-16 ソニーセミコンダクタソリューションズ株式会社 撮像素子、電子機器
WO2019203085A1 (ja) * 2018-04-20 2019-10-24 ソニー株式会社 撮像素子、積層型撮像素子及び固体撮像装置
JP2021005654A (ja) * 2019-06-26 2021-01-14 ソニーセミコンダクタソリューションズ株式会社 撮像装置及び電子機器
WO2021100826A1 (ja) * 2019-11-19 2021-05-27 ソニーセミコンダクタソリューションズ株式会社 受光素子、測距モジュール

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6855287B2 (ja) 2017-03-08 2021-04-07 ソニーセミコンダクタソリューションズ株式会社 固体撮像装置、および電子機器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170170229A1 (en) * 2015-12-09 2017-06-15 Samsung Electronics Co., Ltd. Image sensor and method of manufacturing the same
JP2018088488A (ja) * 2016-11-29 2018-06-07 ソニーセミコンダクタソリューションズ株式会社 センサチップおよび電子機器
WO2019093150A1 (ja) * 2017-11-09 2019-05-16 ソニーセミコンダクタソリューションズ株式会社 撮像素子、電子機器
WO2019203085A1 (ja) * 2018-04-20 2019-10-24 ソニー株式会社 撮像素子、積層型撮像素子及び固体撮像装置
JP2021005654A (ja) * 2019-06-26 2021-01-14 ソニーセミコンダクタソリューションズ株式会社 撮像装置及び電子機器
WO2021100826A1 (ja) * 2019-11-19 2021-05-27 ソニーセミコンダクタソリューションズ株式会社 受光素子、測距モジュール

Also Published As

Publication number Publication date
CN118202466A (zh) 2024-06-14
KR20240095209A (ko) 2024-06-25
TW202329478A (zh) 2023-07-16

Similar Documents

Publication Publication Date Title
US11476286B2 (en) Solid-state image pickup device
KR101422995B1 (ko) 고체 촬상 장치 및 카메라
US10825849B2 (en) Solid-state image pickup device
US9214488B2 (en) Solid state imaging device
US8829578B2 (en) Solid-state imaging device
TWI497702B (zh) Solid state camera device
US20200119082A1 (en) Image sensor including active regions
KR20100100624A (ko) 고체 촬상 소자, 그 제조 방법 및 그것을 사용한 전자 기기
US20120002070A1 (en) Solid-state image sensor and camera
WO2022091592A1 (ja) 固体撮像装置及びその製造方法、並びに電子機器
WO2023084989A1 (ja) 光検出装置及び電子機器
WO2022030110A1 (ja) 半導体装置及び電子機器
US20230197753A1 (en) Solid-state image element and electronic device
JP2013162077A (ja) 固体撮像装置
WO2023106156A1 (ja) 光検出装置及び電子機器
WO2024202548A1 (ja) 光検出装置及び電子機器
WO2023188891A1 (ja) 光検出装置及び電子機器
WO2023153091A1 (ja) 半導体装置及び電子機器
WO2023286330A1 (ja) 光検出装置及び電子機器
WO2023248648A1 (ja) 半導体装置及び電子機器
WO2022185714A1 (ja) 光検出装置及び電子機器
WO2023112729A1 (ja) 半導体装置及び電子機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22892489

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280069516.4

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE