WO2023084914A1 - アンテナ、及び電子機器 - Google Patents

アンテナ、及び電子機器 Download PDF

Info

Publication number
WO2023084914A1
WO2023084914A1 PCT/JP2022/034706 JP2022034706W WO2023084914A1 WO 2023084914 A1 WO2023084914 A1 WO 2023084914A1 JP 2022034706 W JP2022034706 W JP 2022034706W WO 2023084914 A1 WO2023084914 A1 WO 2023084914A1
Authority
WO
WIPO (PCT)
Prior art keywords
loop
antenna
shaped conductor
current source
electronic device
Prior art date
Application number
PCT/JP2022/034706
Other languages
English (en)
French (fr)
Inventor
幸雄 金子
昂 川村
信之 森
Original Assignee
ソニーグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーグループ株式会社 filed Critical ソニーグループ株式会社
Priority to JP2023559454A priority Critical patent/JPWO2023084914A1/ja
Priority to CN202280073309.6A priority patent/CN118202519A/zh
Publication of WO2023084914A1 publication Critical patent/WO2023084914A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q23/00Antennas with active circuits or circuit elements integrated within them or attached to them
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop

Definitions

  • This technology relates to an antenna and an electronic device equipped with the antenna.
  • Patent Document 1 discloses an antenna capable of receiving circularly polarized waves and performing impedance matching between ICs (integrated circuits) of a semiconductor device, and a semiconductor device including the antenna.
  • the purpose of this technology is to provide an antenna and an electronic device that can achieve miniaturization and high performance.
  • an antenna includes a loop-shaped conductor and a structure.
  • the loop-shaped conductor is configured in a loop shape so as to surround a first direction, and has a gap configured with reference to a predetermined second direction perpendicular to the first direction.
  • the structure is electrically connected to the loop-shaped conductor and arranged orthogonal to the second direction.
  • This antenna uses a loop-shaped conductor that has a loop-shaped configuration surrounding a first direction and a gap that is configured with respect to the second direction. Further, the structure is arranged so as to be perpendicular to the second direction with respect to the loop-shaped conductor. This makes it possible to achieve miniaturization and high performance.
  • the first direction may be set as the direction of the magnetic current source generated by the loop-shaped conductor.
  • the gap may be configured such that the second direction is the direction of the current source generated by the looped conductor.
  • the loop-shaped conductor may have a first edge and a second edge facing each other along the second direction and forming the gap.
  • the length of the loop-shaped conductor may be 1/2 or less of the maximum wavelength of electromagnetic waves included in the frequency band used for wireless communication using the antenna.
  • the frequency band used for the communication may be a frequency band from 2.40 GHz to 2.48 GHz.
  • the second direction When installed with respect to an object made of a conductor or a lossy dielectric, the second direction may be along a direction perpendicular to the object.
  • the antenna may further comprise an FPC (Flexible Printed Circuit) on which the loop-shaped conductor is formed.
  • FPC Flexible Printed Circuit
  • the antenna may be configured to be arranged inside the housing.
  • the loop-shaped conductor may be configured by LDS (Laser Direct Structuring) in the housing.
  • the structure may have a flat plate shape including a main surface, and may be arranged so that the main surface is orthogonal to the second direction.
  • the structure may be a circuit board or SiP (System in Package).
  • the antenna may further include a communication circuit section, a first wiring section, and a second wiring section.
  • the communication circuit section controls wireless communication by the antenna.
  • the first wiring portion electrically connects the structure and the loop-shaped conductor.
  • the second wiring section electrically connects the communication circuit section and the loop-shaped conductor.
  • the communication circuit section may be configured in the structure.
  • the antenna has, on a plane including the first direction and the second direction, a first radiation pattern due to a magnetic current source along the first direction and a second radiation pattern as electromagnetic wave radiation patterns. and a second radiation pattern with a current source along the direction of .
  • An electronic device includes the antenna.
  • the electronic device may be configured as a completely wireless earphone.
  • the electronic device is configured to be worn on a human ear, and is configured such that when worn on the ear, the second direction is along a direction perpendicular to the external ear canal.
  • the electronic device may be configured to be worn on a human ear.
  • the gap may be formed in a portion of the loop-shaped conductor that is close to the auricle when the electronic device is worn on the ear.
  • the electronic device may further include a component arranged in a space on the inner peripheral side of the loop-shaped conductor.
  • the component may be made of a magnetic material.
  • FIG. 1 is a schematic diagram for explaining an overview of a TWS according to an embodiment of the present technology
  • FIG. 3 is a schematic diagram for explaining electromagnetic wave radiation by a dipole antenna and a loop antenna
  • FIG. 10 is a diagram for explaining the details of consideration when a human body or metal is close to a dipole antenna and a loop antenna
  • FIG. 4 is a schematic diagram for explaining electromagnetic wave radiation by a normal mode helical antenna
  • FIG. 10 is a diagram for explaining the details of consideration when a copper foil is close to NMHA
  • 4 is a graph for explaining the maximum gain when copper foil is close to NMHA
  • It is a schematic diagram which shows the structural example of the antenna which concerns on this embodiment.
  • FIG. 3 is a schematic diagram for explaining electromagnetic wave radiation by a dipole antenna and a loop antenna
  • FIG. 10 is a diagram for explaining the details of consideration when a human body or metal is close to a dipole antenna and a loop antenna
  • FIG. 4 is a schematic diagram for explaining electromagnetic wave
  • FIG. 3 is a schematic diagram showing a specific configuration example of a structure
  • FIG. 4 is a side view of the antenna when viewed from the left side along the Z-axis direction
  • 4 is a graph showing an electromagnetic wave radiation pattern (radiation directivity) of the antenna according to the present embodiment.
  • FIG. 5 is a diagram for explaining simulation results when a copper foil is close to the antenna according to the present embodiment; 5 is a graph for explaining the maximum gain when the copper foil is close to the antenna according to this embodiment; It is a figure for demonstrating assembly with other components.
  • FIG. 4 is a schematic diagram showing the orientation of the antenna 8 within the TWS;
  • FIG. 4 is a schematic diagram showing the orientation of the antenna 8 inside the TWS (when attached to the ear).
  • FIG. 5 is a schematic diagram showing a variation example of the loop-shaped conductor, the first wiring portion, and the second wiring portion;
  • FIG. 5 is a schematic diagram showing a variation example of the loop-shaped conductor, the first wiring portion, and the second wiring portion;
  • FIG. 5 is a schematic diagram showing a variation example of the loop-shaped conductor, the first wiring portion, and the second wiring portion;
  • FIG. 5 is a schematic diagram showing a variation example of the loop-shaped conductor, the first wiring portion, and the second wiring portion;
  • FIG. 5 is a schematic diagram showing a variation example of the loop-shaped conductor, the first wiring portion, and the second wiring portion;
  • FIG. 4 is a schematic diagram showing a configuration example of an antenna when FPC is used;
  • FIG. 4 is a schematic diagram showing an example in which a loop-shaped conductor is made of LDS;
  • FIG. 11 is a schematic diagram for explaining another application example of the present technology;
  • FIG. 1 is a schematic diagram for explaining an overview of a TWS according to an embodiment of the present technology.
  • FIG. 1 is a schematic block diagram of part of the functional configuration of the TWS.
  • TWS is also called “left and right independent earphone” or “full wireless stereo”.
  • the TWS 1 has a housing portion 2 and an earpiece 3 (see FIG. 14), and is configured to be worn on a human ear 4. As shown in FIG. By inserting the earpiece 3 into the ear canal of the ear 4, the TWS 1 can be attached to the ear 4.
  • FIG. 1 shows a left ear TWS 1 to be worn on the left ear.
  • a TWS 1 for the right ear is also attached to the right ear, and it is possible to listen to stereo mode sound with both the left and right ears.
  • the TWS 1 may be worn only on one ear.
  • the TWS 1 is communicably connected to an external device by wireless communication.
  • the TWS 1 can receive and reproduce audio data from an external device via wireless communication.
  • wireless communication for example, wireless LAN communication such as WiFi and short-range wireless communication such as Bluetooth (registered trademark) can be used.
  • external devices include arbitrary devices such as smartphones, tablet terminals, and PCs (Personal Computers).
  • a server device or the like on the network may be communicably connected to the TWS 1 as an external device.
  • the TWS 1 has a wireless communication section 5, a speaker 6, and a controller 7 as functional components. Each block is configured inside the casing 2 .
  • the wireless communication unit 5 is a module for performing wireless communication with other devices.
  • a wireless LAN module such as WiFi or a communication module such as Bluetooth (registered trademark) is used.
  • an antenna 8 according to the present technology is configured inside the wireless communication unit 5 . Antenna 8 will be described later in detail.
  • the speaker 6 can output sound, and the specific configuration is not limited, and any configuration may be adopted.
  • the controller 7 controls the operation of each component of the TWS1.
  • the controller 7 has hardware circuits necessary for a computer, such as a CPU and memory (RAM, ROM). Various processes are executed by the CPU loading the control program stored in the memory into the RAM and executing it.
  • a device such as a PLD (Programmable Logic Device) such as an FPGA (Field Programmable Gate Array) or an ASIC (Application Specific Integrated Circuit) may be used.
  • the CPU of the controller 7 executes the program according to this embodiment, thereby executing the information processing method according to this embodiment.
  • a wireless communication control method, an audio reproduction method, and the like are executed.
  • the wireless communication unit 5 When performing wireless communication with an external device, the wireless communication unit 5 is driven by the controller 7 .
  • an electrical signal corresponding to the data is supplied to the antenna 8 of the wireless communication unit 5, and electromagnetic waves (radio waves) are radiated as wireless signals.
  • the antenna 8 When data is received from an external device, the antenna 8 receives electromagnetic waves radiated as radio signals from the external device and outputs electrical signals. Data is acquired based on the output electrical signal.
  • the wireless communication unit 5 can receive audio data from an external device.
  • the controller 7 can reproduce received audio data by driving the speaker 6 . Note that the specific communication method, algorithm, and the like for realizing wireless communication are not limited, and any communication method or algorithm may be used.
  • dipole antenna 10 As shown schematically in FIG. 2A.
  • dipole antenna 10 is configured to extend along the vertical direction in the figure.
  • AC power is supplied from an AC power source 11 to the dipole antenna 10 .
  • the AC power source 11 may be a power source having an internal impedance, and the specific configuration, connection form with the dipole antenna 10, and the like may be arbitrarily designed.
  • the illustration of the AC power source 11 schematically expresses that the AC power is supplied from the position where the AC power source 11 is illustrated as a feeding point.
  • a high-frequency AC current flows through the dipole antenna 10 and electromagnetic waves are radiated. That is, a current source E is formed along the extending direction of the dipole antenna 10, and electromagnetic waves are radiated from the current source.
  • the extending direction of the dipole antenna 10 (vertical direction in the drawing) is the direction of the current source E.
  • the dipole antenna 10 receives changes in the electric field in the direction in which the dipole antenna 10 extends, that is, in the direction of the current source E with high sensitivity. Therefore, it is possible to receive with high sensitivity an electromagnetic wave whose polarization direction (electric field direction) is the direction in which the dipole antenna 10 extends.
  • the loop antenna 12 is configured such that the vertical direction in the drawing is the central axis direction.
  • AC power is supplied from the AC power source 11 to the loop antenna 12 .
  • a magnetic field is generated along the central axis direction of the loop antenna 12, and the direction of the magnetic field changes at high frequencies.
  • Electromagnetic waves are radiated due to the change in the magnetic field. That is, a magnetic current source M is formed along the central axis direction of the loop antenna 12, and the magnetic current source M radiates electromagnetic waves.
  • the direction of the magnetic current source M is the direction of the central axis of the loop antenna 12 (vertical direction in the figure).
  • the loop antenna 12 receives changes in the magnetic field in the central axis direction of the loop antenna 12, ie, in the direction of the magnetic current source M, with high sensitivity. Therefore, it is possible to receive with high sensitivity an electromagnetic wave having a polarization direction (electric field direction) in a direction perpendicular to the central axis direction of the loop antenna 12 (horizontal direction in the figure).
  • FIG. 3A and 3B are diagrams for explaining the contents of the study on the case where a human body or metal is close to the dipole antenna 10 and the loop antenna 12.
  • FIG. 3A the human body and metal are collectively referred to as human body/metal 13 .
  • the dipole antenna 10 is installed perpendicular to the human body/metal 13 .
  • the current source E is configured along the extension direction of the dipole antenna 10 and a mirror image of the current source is generated inside the human body/metal 13 .
  • This mirror image component E' occurs in the same direction and orientation as the current source E. Therefore, since the current source E and the mirror image component E' reinforce each other, it is possible to perform wireless communication (transmitting and receiving) with strong electromagnetic waves (radio signals).
  • the dipole antenna 10 is installed parallel to the human body/metal 13.
  • the current source E is configured along the extending direction of the dipole antenna 10 and a mirror image of the current source E is generated inside the human body/metal 13 .
  • This mirror image component E' occurs in the same direction as the current source E and in the opposite direction. Therefore, since the current source E and the mirror image component E' weaken each other, the electromagnetic wave (radio signal) is weakened, and radio communication (transmission and reception) is adversely affected.
  • the loop antenna 12 is installed so that the central axis direction is perpendicular to the human body/metal 13 .
  • a magnetic current source M is formed along the central axis of the loop antenna 12 and a mirror image of the magnetic current source M is generated inside the human body/metal 13 .
  • This mirror image component M' occurs in the same direction as the magnetic current source M and in the opposite direction. Therefore, since the magnetic current source M and the mirror image component M' weaken each other, the electromagnetic wave (radio signal) is weakened, and radio communication (transmission and reception) is adversely affected.
  • the loop antenna 12 is installed so that the central axis direction is parallel to the human body/metal 13.
  • a magnetic current source M is formed along the central axis of the loop antenna 12 and a mirror image of the magnetic current source M is generated inside the human body/metal 13 .
  • This mirror image component M' occurs in the same direction and orientation as the source M of magnetic current. Therefore, since the magnetic current source M and the mirror image component M' reinforce each other, it is possible to perform wireless communication (transmitting and receiving) using strong electromagnetic waves (radio signals).
  • metals are included in conductors
  • human bodies are included in lossy dielectrics.
  • any conductor other than metal and for any lossy dielectric other than the human body, what is described in FIG. 3 holds.
  • the NMHA 14 has a coiled structure with multiple turns around the central axis.
  • the NMHA 14 can be regarded as a configuration in which a plurality of loop antennas 15 arranged along the central axis direction and a dipole antenna 16 extending in the central axis direction are combined.
  • the NMHA 14 can be regarded as an antenna capable of radiating electromagnetic waves by means of a magnetic current source M composed of a plurality of loop antennas 15 and a current source E composed of a dipole antenna 16 .
  • the direction of the magnetic current source M and the direction of the current source E are both in the direction of the central axis (vertical direction in the drawing).
  • FIG. 5 and FIG. 6 are diagrams for explaining the contents of the study on the case where the copper foil is close to the NMHA 14.
  • FIG. 5 the NMHA 14 is installed so that the central axis direction is parallel to the copper foil 18 . Also, the maximum gain was calculated by simulation while changing the distance d between the copper foil 18 and the NMHA 14 .
  • FIG. 6 plots the maximum gain of current radiation (radiated by current source E) and magnetic current radiation (radiated by magnetic current source M) of NMHA 14 as distance d is reduced from 10 mm. .
  • a current source E and a magnetic current source M configured by the NMHA 14 are each configured in a direction parallel to the copper foil 18 . That is, the relationship between the current source E and the copper foil 18 is the same as that shown in FIG. 3B. Also, the relationship between the magnetic current source M and the copper foil 18 is the same as in the case shown in FIG. 3D. Therefore, as shown in FIG. 6, the closer the NMHA 14 is to the copper foil, the lower the maximum gain for current emission. On the other hand, the maximum gain of the magnetic current emission remains unchanged (improved depending on the distance d). Note that FIG. 6 also plots the maximum gain when the dipole antenna is arranged parallel to the copper foil 18 and brought close to the copper foil 18 .
  • the maximum gain is plotted when the dipole antenna 10 is brought close to the copper foil 18 in the state shown in FIG. 3B. As shown in FIG. 6, the closer the dipole antenna is to the copper foil, the lower the maximum gain. This corresponds to a reduction in the maximum gain of current emission when the NMHA 14 is placed in close proximity to the copper foil.
  • the NMHA 14 is installed so that the central axis direction is perpendicular to the copper foil 18 .
  • the relationship between the current source E and the copper foil 18 is the same as that shown in FIG. 3A.
  • the relationship between the magnetic current source M and the copper foil 18 is the same as in the case shown in FIG. 3C.
  • the graph is omitted, the closer the NMHA 14 is to the copper foil, the lower the maximum gain of magnetic current radiation.
  • the maximum gain of current emission is maintained without being lowered. That is, in the NMHA 14, the direction of the current source E and the direction of the magnetic current source M are the same. ) will become weaker, adversely affecting wireless communication.
  • FIG. 7 is a schematic diagram showing a configuration example of the antenna 8 according to this embodiment.
  • the antenna 8 has a loop-shaped conductor 20 , a structure 21 , a first wiring section 22 and a second wiring section 23 .
  • the loop-shaped conductor 20 is configured in a loop shape so as to surround a predetermined direction.
  • the loop-shaped conductor 20 is configured to have a loop shape with a predetermined direction as the central axis direction.
  • the central axis direction of the loop-shaped conductor 20 is defined as the X-axis direction. As shown in FIG.
  • first short side 24a and second short side 24b two short sides
  • first long side 25a and second long side 25b two long sides
  • the conductors are arranged such that the short side direction of the conductors and the central axis direction (X-axis direction) are parallel to each other. Then, the conductor is bent around the X-axis direction to form a loop. Thus, the loop-shaped conductor 20 is constructed.
  • the vertical direction in the drawings is defined as the Y-axis direction orthogonal to the X-axis direction.
  • a direction orthogonal to each of the X-axis direction and the Y-axis direction is defined as the Z-axis direction.
  • the X-axis direction is the depth direction (the positive side of the arrow is the front side, the negative side is the back side)
  • the Y-axis direction is the vertical direction (the positive side of the arrow is the upper side, and the negative side is the lower side)
  • the Z-axis direction is the Description will be given assuming the left-right direction (the positive side of the arrow is the left side, and the negative side is the right side).
  • the direction in which the antenna 8 is used is not limited.
  • the loop-shaped conductor 20 When viewing the loop-shaped conductor 20 along the X-axis direction, the loop-shaped conductor 20 is bent into a substantially square shape. If a plane (virtual plane) formed on the inner peripheral side of the loop-shaped conductor 20 and orthogonal to the X-axis direction is defined as a loop plane, the shape of the loop plane is substantially square.
  • the loop-shaped conductor 20 When viewing the loop-shaped conductor 20 along the X-axis direction, the loop-shaped conductor 20 is composed of an upper side portion 26 , a lower side portion 27 , a left side portion 28 , and a right side portion 29 . As shown in FIG.
  • the left side portion 28 of the loop-shaped conductor 20 includes a first short side 24a, a second short side 24b, an upper portion 30a from the first short side 24a to the upper side portion 26, and a second side portion 30a. 2 from the short side 24b to the lower side portion 27. As shown in FIG.
  • the loop-shaped conductor 20 is configured to have a gap G, as shown in FIG.
  • the first short side 24a and the second short side 24b of the loop-shaped conductor 20 are arranged at positions facing each other with a predetermined interval (gap G). That is, the gap G is formed by the first short side 24a and the second short side 24b facing each other.
  • the gap G is configured with reference to a predetermined direction orthogonal to the central axis direction (X-axis direction). In this embodiment, the gap G is configured with the Y-axis direction as a reference. The configuration of the gap G will be detailed later.
  • any conductive material such as a metal material such as copper or aluminum may be used.
  • the X-axis direction corresponds to one embodiment of the first direction.
  • the Y-axis direction corresponds to one embodiment of a predetermined second direction orthogonal to the first direction.
  • the first short side 24a and the second short side 24b correspond to one embodiment of the first edge and the second edge that face each other along the second direction and form a gap.
  • the length of the loop-shaped conductor 20 (loop length: the length from the first short side 24a to the second short side 24b) is, for example, an electromagnetic wave included in the frequency band used for wireless communication using the antenna 8. is designed to be 1/2 or less of the maximum wavelength of For example, when Bluetooth (registered trademark) communication is performed, the loop length is 1/2 or less of the maximum wavelength of electromagnetic waves included in the Bluetooth (registered trademark) band (frequency band from 2.40 GHz to 2.48 GHz). designed to Of course, the present technology can also be applied when wireless communication other than Bluetooth (registered trademark) communication is performed.
  • the loop length of the loop-shaped conductor 20 may be designed to be equal to or less than the wavelength of the electromagnetic wave. Also, the loop length of the loop-shaped conductor 20 may be designed to be equal to or less than the wavelength at the center frequency of the frequency band used for wireless communication using the antenna 8 .
  • the length below the wavelength of electromagnetic waves used for wireless communications and the length below the wavelength at the center frequency of the frequency band used for wireless communications are the maximum length of electromagnetic waves included in the frequency band used for wireless communications. In some cases, the length is less than half the wavelength.
  • the structure 21 is electrically connected to the loop-shaped conductor 20 . That is, the structure 21 includes a conductive portion (not shown) made of a conductive material, and the conductive portion and the loop-shaped conductor 20 are electrically connected.
  • a circuit board or SiP System in Package
  • Various circuits such as a ground, a communication circuit and a matching circuit, wirings and elements constituting the circuits, and the like are mounted as the conductive portion.
  • a flat plate member made of a conductive material may be used as the structure 21 and electrically connected to the loop-shaped conductor 20 .
  • Any configuration that is electrically connected to the loop-shaped conductor 20 may be employed as the structure 21 .
  • the structure 21 may be configured by an FPC (Flexible Printed Circuit) or the like.
  • the structure 21 has a flat plate shape having an upper surface 31a, a lower surface 31b, and a side surface 31c.
  • the upper surface 31 a and the lower surface 31 b serve as main surfaces of the structure 21 .
  • the structures 21 are arranged orthogonal to the Y-axis direction. That is, the structure 21 is arranged so that the upper surface 31a and the lower surface 31b are orthogonal to the Y-axis direction.
  • the structure 21 is arranged at a position on the upper side within the loop plane.
  • the structure 21 is arranged at a position on the upper side in the space on the inner peripheral side of the loop-shaped conductor 20 . Therefore, the upper surface 31a of the structure 21 and the upper side portion 26 of the loop-shaped conductor 20 are close to each other, and a sufficient space is provided between the lower surface 31b of the structure 21 and the lower side portion 27 of the loop-shaped conductor 20. ing. Further, the upper surface 31a and the lower surface 31b of the structure 21 and the upper side portion 26 and the lower side portion 27 of the loop-shaped conductor 20 are arranged so as to be parallel to each other.
  • the first wiring portion 22 electrically connects the structure 21 and the loop-shaped conductor 20 .
  • One end of the first wiring portion 22 is connected to the conductive portion formed in the structure 21 .
  • the other end of the first wiring portion 22 is connected to the loop-shaped conductor 20 .
  • the first wiring portion 22 is connected to a position above the left side portion 28 of the loop-shaped conductor 20 .
  • the connection position of the first wiring portion 22 to the loop-shaped conductor 20 is not limited and may be set arbitrarily.
  • any conductive material such as a metal material such as copper or aluminum may be used.
  • the second wiring portion 23 is connected to the loop-shaped conductor 20 .
  • the second wiring portion 23 is connected to the right side of the upper side portion 26 of the loop-shaped conductor 20 .
  • high-frequency AC power is supplied to the loop-shaped conductor 20 via the second wiring portion 23 .
  • the connection position of the second wiring portion 22 to the loop-shaped conductor 20 is not limited and may be set arbitrarily.
  • FIG. 8 is a schematic diagram showing a specific configuration example of the structure 21. As shown in FIG. In the example shown in FIG. 8, a circuit board is used as the structure 21 . A communication circuit 33 , a matching circuit 34 , and a ground (not shown) are formed on the upper surface 31 a of the structure 21 .
  • the communication circuit 33 and the matching circuit 34 are connected to the second wiring section 23 and function as elements included in the wireless communication section 5 shown in FIG.
  • the communication circuit 33 and matching circuit 34 also function as the AC power source 11 shown in FIG.
  • AC power is supplied to the loop-shaped conductor 20 via the communication circuit 33 and the matching circuit 34, and radio signals (electromagnetic waves) are radiated.
  • radio signals electromagagnetic waves
  • an electrical signal corresponding to the radio signal (electromagnetic wave) received by the loop-shaped conductor 20 is output to the communication circuit 33 via the matching circuit 34 .
  • Data is acquired by the communication circuit 33 based on the electric signal.
  • the ground is connected to the first wiring portion 22 and electrically connected to the loop-shaped conductor 20 .
  • the specific configurations of the communication circuit 33, matching circuit 34, and ground are not limited and may be designed arbitrarily.
  • the communication circuit 33 functions as a communication circuit unit that controls wireless communication by the antenna 8 via the matching circuit 34 .
  • the communication circuit section is configured in structure 21 .
  • the second wiring portion 23 electrically connects the communication circuit portion and the loop-shaped conductor 20 .
  • FIG. 9 is a side view of the antenna 8 as seen from the left along the Z-axis direction.
  • the X-axis direction is the direction of the magnetic current source M generated by the loop-shaped conductor 20 .
  • the X-axis direction is defined to be the direction of the magnetic current source M generated by the loop-shaped conductor 20, and the loop-shaped conductor 20 is configured with the X-axis direction as a reference.
  • the antenna 8 is configured such that the Y-axis direction is the direction of the current source E generated by the loop-shaped conductor 20 when the antenna 8 is driven. That is, the antenna 8 is configured such that the direction of the magnetic current source M and the direction of the current source E intersect each other.
  • a configuration in which the direction of the magnetic current source M and the direction of the current source E intersect each other (hereinafter referred to as an EM cross configuration) can be realized by appropriately designing the configuration of the gap G of the loop-shaped conductor 20. is.
  • a predetermined direction perpendicular to the direction of the magnetic current source M is defined as the direction of the current source E.
  • a gap G is configured with the defined direction as a reference.
  • the gap G is configured such that the specified direction is the direction of the current source E generated by the loop-shaped conductor 20 .
  • the gap G is configured such that the Y-axis direction is in the direction of the current source E generated by the looped conductor 20, providing an EM cross configuration.
  • the Y-axis direction is in the direction of the current source E (i.e. EM crossed configuration).
  • a gap G is formed below the left side portion 28 of the loop-shaped conductor 20 .
  • the gap G is configured such that the first short side 24a and the second short side 24b extending along the X-axis direction face each other along the Y-axis direction. This makes it possible to realize an EM cross configuration.
  • the configuration in which the Y-axis direction is the direction of the current source E is not limited to the case where the direction of the gap G is parallel to the Y-axis direction.
  • the EM crossing configuration can also be achieved when the directions of the gap G intersect the Y-axis direction within a predetermined range.
  • the shape of the loop when viewed along the central axis direction, the loop length of the loop-shaped conductor 20, the extending direction of the two short sides that make up the gap G, the width of the loop-shaped conductor 20 (larger in the X-axis direction). ) etc., the position of the gap G, the direction of the gap, etc. may be appropriately designed so that the EM crossing configuration can be realized.
  • FIG. 10 is a graph showing a radiation pattern (radiation directivity) of electromagnetic waves.
  • FIG. 10 shows respective radiation patterns of current radiation (solid line) and magnetic current radiation (broken line) on a plane (XY plane) including the X-axis direction and the Y-axis direction.
  • the center of the graph corresponds to the center of the inner loop surface of the loop-shaped conductor 20 .
  • the direction from "-180" to "0” corresponds to the X-axis direction, and the direction from "90" to "-90” corresponds to the Y-axis direction.
  • the radiation pattern of current radiation on the XY plane is a figure-of-eight radiation pattern along the X-axis direction.
  • the radiation pattern of the current radiation becomes a doughnut-shaped radiation pattern with the Y-axis direction as the central axis direction.
  • the magnetic current radiation pattern on the XY plane is a figure-of-eight radiation pattern along the Y-axis direction.
  • the radiation pattern of the magnetic current radiation becomes a donut-shaped radiation pattern with the X-axis direction as the central axis direction.
  • the antenna 8 according to the present embodiment is configured such that the radiation pattern by the current source E and the radiation pattern by the magnetic current source M intersect each other.
  • the radiation pattern by the current source E and the radiation pattern by the magnetic current source M are radiation patterns with different polarized waves.
  • the radiation pattern of current radiation (solid line) and the radiation pattern of magnetic current radiation (dashed line) shown in FIG. 10 correspond to one embodiment of the radiation pattern of electromagnetic waves on a plane containing the first direction and the second direction.
  • the radiation pattern of magnetic current radiation (dashed line) is one embodiment of the first radiation pattern due to the magnetic current source along the first direction.
  • the current emission radiation pattern (solid line) is one embodiment of the second radiation pattern due to the current source along the second direction.
  • FIG. 11 and 12 are diagrams for explaining simulation results for the case where the copper foil is close to the antenna 8 according to this embodiment.
  • the antenna 8 is installed so that the direction of the magnetic current source M (X-axis direction) is parallel to the copper foil 18 and the direction of the current source E (Y-axis direction) is perpendicular to it. do.
  • the maximum gain was calculated by simulation while changing the distance d between the copper foil 18 and the antenna 8 .
  • FIG. 12 plots the maximum gain of current radiation (radiation by current source E) and the maximum gain of magnetic current radiation (radiation by magnetic current source M) of antenna 8 when the distance d is reduced from 10 mm.
  • a current source E constituted by a looped conductor 20 is arranged in a direction perpendicular to the copper foil 18 . That is, the relationship between the current source E and the copper foil 18 is the same as in the case shown in FIG. 3A. Therefore, as shown in FIG. 12, even if the antenna 8 is brought closer to the copper foil, the maximum gain of current radiation is maintained without being lowered (the closer it is, the better it is).
  • a magnetic current source M configured by a loop-shaped conductor 20 is configured in a direction parallel to the copper foil 18 . That is, the relationship between the magnetic current source M and the copper foil 18 is the same as in the case shown in FIG. 3D. Therefore, as shown in FIG.
  • the maximum gain of magnetic current radiation is maintained without being lowered (the closer it is, the better it is). That is, in the antenna 8 according to the present embodiment, since the direction of the current source E and the direction of the magnetic current source M intersect, even if the antenna 8 is close to the human body or metal, the current source E (current emission) and the magnetic current A high maximum gain is achieved without weakening any of the sources M (magnetic current radiation). Therefore, extremely high communication performance is exhibited.
  • the antenna 8 is installed on an object composed of any conductor or any dielectric.
  • the antenna 8 is configured such that the direction of the current source E (the Y-axis direction) is along the direction perpendicular to the object.
  • This configuration also serves as a configuration in which the direction of the magnetic current source M (the X-axis direction) is parallel to the object.
  • FIG. 3A for current emission
  • FIG. 3D for magnetic current emission.
  • both the current radiation and the magnetic current radiation are in a state in which the electromagnetic waves strengthen each other, and wireless communication can be performed with high communication performance.
  • the configuration in which the direction A is aligned with the direction B is not limited to the case where the direction A is arranged parallel to the direction B.
  • FIG. A case where the direction A is arranged diagonally with respect to the direction B within a predetermined range is also included.
  • the direction of the current source E (the Y-axis direction) may be arranged along the direction perpendicular to the object within the range in which high communication performance is exhibited.
  • the direction of the current source E (the Y-axis direction) is arranged along the direction perpendicular to the object within the crossing angle range of 0 to 10 degrees.
  • the predetermined range varies depending on the surrounding environment and other metal parts.
  • the structures 21 are arranged orthogonal to the Y-axis direction. That is, the upper surface 31a and the lower surface 31b, which are main surfaces, are arranged so as to be perpendicular to the Y-axis direction. Therefore, the main surface of the structure 21 is perpendicular to the current source E configured by the loop-shaped conductor 20. As shown in FIG. Also, the main surface of the structure 21 is parallel to the magnetic current source M configured by the loop-shaped conductor 20 . Therefore, the relationship between the structure 21 and the current source E is as shown in FIG. 3A, and the relationship between the structure 21 and the magnetic current source M is as shown in FIG. 3D.
  • the structure 21 does not weaken the current source E and the magnetic current source M, thereby exhibiting high communication performance.
  • the positional relationship between the loop-shaped conductor 20 and the structure 21 is also a major feature.
  • the configuration in which the direction of the current source E (the Y-axis direction) is perpendicular to the object can also be said to be a configuration in which the structure 21 (principal surface) is parallel to the object.
  • FIG. 13 is a diagram for explaining assembly with other parts.
  • the antenna 8 according to the present embodiment can effectively utilize the inner peripheral space (loop surface) of the loop-shaped conductor 20 as a space.
  • various parts 36 can be arranged in the space on the inner peripheral side of the loop-shaped conductor 20.
  • the space below the structure 21 is effectively used in the space on the inner peripheral side of the loop-shaped conductor 20 .
  • the cylindrical part 36 is arranged below the structure 21 in the space on the inner peripheral side of the loop-shaped conductor 20 .
  • the rectangular parallelepiped component 36 is arranged below the structure 21 in the space on the inner peripheral side of the loop-shaped conductor 20 . In this way, it is possible to arrange parts having various shapes in the space on the inner peripheral side of the loop-shaped conductor 20 .
  • the component 36 for example, it is possible to arrange any component such as a battery, an acoustic component, a metal component, or the like. Arbitrary parts such as parts constituting the TWS 1, parts included in the antenna 8, and parts constituting a functional part different from the antenna 8 in the TWS 1 can be arranged. In this way, by effectively utilizing the space on the inner peripheral side of the loop-shaped conductor 20, it is possible to reduce the size of the TWS1.
  • the parts 36 are arranged so as to achieve the states shown in FIGS. 3A and 3D. This makes it possible to improve communication performance.
  • a component made of a magnetic material is arranged as the component 36. This makes it possible to improve communication performance.
  • a component 36 made of a magnetic material may be arranged as a component intended to improve communication performance.
  • FIG. 14 and 15 are schematic diagrams showing the orientation of the antenna 8 within the TWS 1.
  • FIG. FIG. 15 shows a state in which the TWS 1 is attached to the ear 4 .
  • the earpiece 3 of TWS 1 is inserted into the ear canal 38 of the ear 2 .
  • symbol of the external ear hole 38 is illustrated typically in the part near the ear 4 of TWS1.
  • the antenna 8 is configured in the TWS 1 as an object made of a lossy dielectric material close to the antenna 8 at a portion where the external ear canal 38 is formed (also referred to as the external ear canal 38 and its peripheral portion). That is, the TWS 1 is configured so that high communication performance can be exhibited even when the portion where the outer ear canal 38 is formed is close.
  • the antenna 8 is configured such that the direction of the current source E (Y-axis direction) is along the direction perpendicular to the outer ear canal 38 when the TWS 1 is attached to the ear 4 .
  • the antenna 8 is configured such that the direction of the magnetic current source M (the X-axis direction) is parallel to the external ear canal 38 .
  • the direction along the direction perpendicular to the outer ear canal 38 includes not only the direction perpendicular to the outer ear canal 38 but also the direction intersecting within a predetermined range. Moreover, the direction along the direction parallel to the external ear canal 38 includes not only the direction parallel to the external ear canal, but also the crossing direction within a predetermined range.
  • the relationship between the current source E formed by the loop-shaped conductor 20 of the antenna 8 and the portion where the outer ear canal 38 is formed is the same as in the case shown in FIG. 3A. Become. Also, the relationship between the magnetic current source M formed by the loop-shaped conductor 20 and the portion where the outer ear canal 38 is formed is the same as in the case shown in FIG. 3D. Therefore, even when the antenna 8 configured in the TWS 1 is close to the portion where the external ear canal 38 is formed, high communication performance can be exhibited. Therefore, since the antenna 8 can be configured at a position close to the outer ear canal 38, the size of the TWS 1 can be reduced.
  • a gap G is formed in the portion of the loop-shaped conductor 20 that is close to the pinna 39 . That is, in addition to the fact that the EM crossing configuration is a configuration that can be realized, a gap G is configured in a portion close to the auricle 39 . This has made it possible to improve communication performance.
  • This technical matter is a technical matter newly found as a configuration capable of improving communication performance as a result of simulation.
  • FIG. 16 Variation of loop-shaped conductor, first wiring part, and second wiring part
  • Variation examples of the loop-shaped conductor 20, the first wiring portion 22, and the second wiring portion 23 will be described with reference to FIGS. 16 to 20.
  • FIG. Various configurations can be adopted as long as the EM intersection configuration described above can be realized.
  • Antenna 8 in which the EM crossing configuration is realized can also be called an EM crossing antenna.
  • the loop-shaped conductor 20 is configured such that the loop shape is circular when viewed from the direction of the magnetic current source M (X-axis direction).
  • the gap G is formed at the leftmost portion of the loop-shaped conductor 20 so that the direction of the gap G is parallel to the Y-axis direction.
  • the first wiring portion 22 and the second wiring portion 23 are also arranged in parallel with the loop-shaped conductor 20 so as to follow the shape of the loop.
  • the loop-shaped conductor 20 may be configured such that the loop shape is polygonal when viewed from the direction of the magnetic current source M (X-axis direction).
  • FIG. 16A the loop-shaped conductor 20 is configured such that the loop shape is circular when viewed from the direction of the magnetic current source M (X-axis direction).
  • the gap G is formed at the leftmost portion of the loop-shaped conductor 20 so that the direction of the gap G is parallel to the Y-axis direction.
  • the first wiring portion 22 and the second wiring portion 23 are also arranged in parallel with the loop-
  • the loop-shaped conductor 20 is configured so that the shape of the loop is octagonal.
  • the gap G is formed at the leftmost vertex so that the direction of the gap G is parallel to the Y-axis direction.
  • the first wiring portion 22 and the second wiring portion 23 are also arranged in parallel with the loop-shaped conductor 20 so as to follow the shape of the loop.
  • the shape of the loop is not limited and may be arbitrarily designed. Of course, a polygonal shape other than an octagon may be adopted.
  • the position of the gap G is different compared to the configuration shown in FIG.
  • a gap G is formed below the left side portion 28 .
  • the width of the gap G (the distance between the first short side 24a and the second short side 24b) is designed to be larger than the configuration shown in FIG. In this way, the position of the gap G and the width of the gap G can also be arbitrarily designed. For example, by adjusting the width of the gap G, it is possible to adjust the resonance frequency.
  • the length of the lower side portion 27 is set longer than the upper side portion 26 .
  • a left end portion of the lower side portion 27 is located on the left side of the left side portion 28 . That is, the left end portion of the lower side portion 27 protrudes leftward.
  • the lower side portion 30b of the left side portion 28 is positioned to the left of the upper side portion 30a of the left side portion 28.
  • the second short side 24b forming the gap G is positioned to the left of the first short side 24a.
  • the direction of the gap G (the facing direction of the first short side 24a and the second short side 24b) is a direction that intersects the Y-axis direction.
  • the length of the lower side portion 30b of the left side portion 28 is designed to be large, and the second short side 24b is arranged above the first short side 24a. Therefore, when the left side portion 28 of the loop-shaped conductor 20 is viewed from the left side, the upper side portion 30a and the lower side portion 30b are configured to overlap, and the first short side 24a is not visible. .
  • the direction of the gap G (the facing direction of the first short side 24a and the second short side 24b) is a direction that intersects the Y-axis direction.
  • a mechanism capable of adjusting the width of the gap G may be configured within the antenna 8 . Then, the width of the gap G may be adjusted automatically or according to an instruction from a user or the like. As a result, it is possible to adjust the resonance frequency, and to eliminate individual differences in the use of the complete wireless earphones.
  • a mechanism capable of adjusting the width of the gap G any configuration may be adopted.
  • a gap width adjusting mechanism can be realized by a configuration using an actuator such as a piezoelectric element or a motor.
  • the widths of the upper side portions 30a of the upper side portion 26 and the left side portion 28 of the loop-shaped conductor 20 are designed to be relatively small (narrow).
  • the widths of the right side portion 29, the lower side portion 27, and the lower side portion 30b of the left side portion 28 of the loop-shaped conductor 20 are designed to be relatively large (wide).
  • the widths of the upper side portions 30a of the upper side portion 26 and the left side portion 28 of the loop-shaped conductor 20 are designed to be relatively large (wide).
  • the widths of the right side portion 29, the lower side portion 27, and the lower side portion 30b of the left side portion 28 of the loop-shaped conductor 20 are designed to be relatively small (narrow).
  • the width of the loop-shaped conductor 20 may be partially adjusted as appropriate.
  • the width of the loop-shaped conductor 20 By designing the width of the loop-shaped conductor 20 to be large in the TWS 1, it is possible to improve the communication performance.
  • the width of the loop-shaped conductor 20 by appropriately designing the width of the loop-shaped conductor 20, it becomes possible to flexibly design the mounting of the antenna 8 inside the TWS 1.
  • FIG. That is, it is possible to construct a high-performance antenna 8 within the TWS 1 having a small volume. This is very advantageous for downsizing the TWS1.
  • a line-shaped conductor such as a wire may be used as the loop-shaped conductor 20 as long as the EM crossing configuration can be realized.
  • any configuration may be adopted as the loop-shaped conductor.
  • the width of the first wiring portion 22 and the width of the second wiring portion 23 are designed to be large (wide).
  • the length of the first wiring portion 22 and the length of the second wiring portion 23 are appropriately adjusted.
  • the first wiring portion 22 extends along the loop-shaped conductor 20 to the vicinity of the first short side 24a.
  • the second wiring portion 23 extends to a portion below the right side portion 29 along the loop-shaped conductor 20 . As a result, the second wiring portion 23 is lengthened.
  • the second wiring portion 23 extends along the loop-shaped conductor 20 to the vicinity of the second short side 24b. Thereby, it is possible to further design the second wiring portion 23 .
  • the position of the end of the first wiring portion 22 opposite to the side connected to the loop-shaped conductor 20 is adjusted. That is, the connection position between the first wiring portion 22 and the structure 21 is adjusted. This makes it possible to design the first wiring portion 22 to be long.
  • the position of the end of the second wiring portion 23 on the side opposite to the side connected to the loop-shaped conductor 20 is also adjusted. This makes it possible to design the second wiring portion 23 to be long.
  • the width and length of the first wiring portion 22 and the second wiring portion 23 may be adjusted as appropriate.
  • the wiring patterns of the first wiring portion 22 and the second wiring portion 23 can be adjusted as appropriate.
  • the impedance can be adjusted by adjusting the width, length, wiring pattern, etc. of the first wiring portion 22 and the second wiring portion 23 .
  • impedance matching can be achieved by adjusting the wiring pattern or the like.
  • the optimum wiring pattern changes depending on the surrounding environment, the arrangement of other metal parts, and the like. Therefore, the width, length, wiring pattern, etc. of the first wiring portion 22 and the second wiring portion 23 may be appropriately adjusted based on the surrounding environment and the like.
  • FIG. 21A and 21B are schematic diagrams showing configuration examples of the antenna 8 when an FPC (Flexible Printed Circuit) is used.
  • FPC Flexible Printed Circuit
  • FIG. 21 even if an FPC (Flexible Printed Circuit) 41 on which a loop-shaped conductor 20 is formed is deformed into a loop shape so as to surround the direction of the magnetic current source M (X-axis direction), good.
  • the first wiring portion 22 and the second wiring portion 23 are also formed on the FPC 41 .
  • the antenna 8 can be easily manufactured.
  • FIG. 22 is a schematic diagram showing an example in which the loop-shaped conductor 20 is configured by LDS (Laser Direct Structuring).
  • LDS Laser Direct Structuring
  • a loop-shaped conductor 20 may be configured by LDS in the housing 2 in which the antenna 8 is arranged.
  • the first wiring section 22 and the second wiring section 23 are also configured by LDS in the housing section 2 .
  • the use of LDS is advantageous in miniaturizing the device.
  • the loop-shaped conductor 20 having a loop-shaped configuration surrounding the X-axis direction and having a gap G configured with the Y-axis direction as a reference is used. Further, the structure 21 is arranged so as to be orthogonal to the Y-axis direction with respect to the loop-shaped conductor 20 . This makes it possible to achieve miniaturization and high performance.
  • a loop-shaped conductor pattern having a gap G in part thereof is adopted and used as the loop-shaped conductor 20 .
  • an EM crossing configuration is realized, so that it is possible to sufficiently prevent attenuation of gain when a metal or a human body comes close to radiation from both the current source E and the magnetic current source M.
  • Gain enhancement may be obtained in some configurations.
  • this technology is applied to electronic devices such as the TWS1, it is possible to reduce the distance from the human body and the clearance from metal parts, which is extremely advantageous for miniaturizing electronic devices. . Moreover, it becomes possible to demonstrate high communication performance.
  • FIG. 23 is a schematic diagram for explaining another application example of the present technology.
  • Application of the present technology is not limited to true wireless earphones, but can be applied to any wireless communication device in any other field.
  • the antenna 8 is configured such that the direction of the current source E is perpendicular to the arm and the direction of the magnetic current source M is parallel to the arm. This makes it possible to reduce the size of the device and improve the performance of wireless communication.
  • the loop-shaped conductor 20 a loop shape is adopted in which the size in the direction perpendicular to the arm is relatively small, and the loop shape is elongated along the direction parallel to the arm. good too.
  • This technology is not limited to wristband-type wearable devices, but can be applied to any form of wearable device such as a headband type worn on the head (head-mounted type), a belt type worn on the waist, or an anklet type worn on the ankle. It is possible to apply
  • this technology can be applied to IoT sensors 44 attached to livestock such as cattle.
  • livestock such as cattle.
  • the antenna according to the present technology it is possible to reduce the size of the device and improve the performance of wireless communication.
  • the present technology it is also possible to apply the present technology to IoT sensors mounted on animals other than livestock, home appliances, machines, robots, and the like.
  • the type of electronic equipment to which the present technology can be applied is not limited. For example, mobile phones, smartphones, personal computers, game machines, digital cameras, audio equipment, TVs, projectors, car navigation systems, GPS terminals, and other electronic devices, and various IoT devices connected to the Internet, etc. It is possible to apply this technology to
  • expressions using "more than” such as “greater than A” and “less than A” encompass both the concept including the case of being equivalent to A and the concept not including the case of being equivalent to A. is an expression contained in For example, “greater than A” is not limited to not including equal to A, but also includes “greater than or equal to A.” Also, “less than A” is not limited to “less than A”, but also includes “less than A”. When implementing the present technology, specific settings and the like may be appropriately adopted from concepts included in “greater than A” and “less than A” so that the effects described above are exhibited.
  • the present technology can also adopt the following configuration.
  • a loop-shaped conductor configured in a loop shape so as to surround a first direction and having a gap configured with reference to a predetermined second direction orthogonal to the first direction; A structure electrically connected to the loop-shaped conductor and arranged orthogonal to the second direction.
  • the first direction is set as the direction of a magnetic current source generated by the loop-shaped conductor;
  • the gap is configured such that the second direction is the direction of the current source generated by the looped conductor.
  • An antenna An antenna.
  • the loop-shaped conductor has a first edge and a second edge that face each other along the second direction and form the gap.
  • the antenna according to (4), A frequency band used for the communication is a frequency band from 2.40 GHz to 2.48 GHz. Antenna.
  • FPC Flexible Printed Circuit
  • the said loop-shaped conductor is comprised by LDS(Laser Direct Structuring) in the said housing
  • the antenna according to any one of (1) to (8), The antenna, wherein the structure has a flat plate shape including a main surface, and is arranged such that the main surface is orthogonal to the second direction.
  • the antenna according to (9), The structure is a circuit board or a SiP (System in Package) antenna.
  • the antenna according to (11), The communication circuit section is configured in the structure. An antenna.
  • a loop-shaped conductor configured in a loop shape so as to surround a first direction and having a gap configured with reference to a predetermined second direction orthogonal to the first direction;
  • An electronic device comprising: an antenna having a structure electrically connected to the loop-shaped conductor and arranged orthogonal to the second direction.

Landscapes

  • Details Of Aerials (AREA)

Abstract

本技術の一形態に係るアンテナは、ループ状導体と、構造体とを具備する。前記ループ状導体は、第1の方向を囲むようにループ状に構成され、前記第1の方向と直交する所定の第2の方向を基準として構成されるギャップを有する。前記構造体は、前記ループ状導体に電気的に接続され、前記第2の方向に直交するように配置される。これにより、人体との距離低減や、金属部品とのクリアランスの低減を図ることが可能となり、電子機器の小型化に非常に有利となる。また高い通信性能を発揮することが可能となる。

Description

アンテナ、及び電子機器
 本技術は、アンテナ、及びアンテナを備える電子機器に関する。
 特許文献1には、円偏波を受信可能であり、半導体装置のIC(集積回路)間とのインピーダンス整合を行うことが可能なアンテナ及び当該アンテナを備えた半導体装置について開示されている。
特許第4944745号公報
 アンテナに関して小型化及び高性能化を実現可能な技術が求められている。
 以上のような事情に鑑み、本技術の目的は、小型化及び高性能化を実現可能なアンテナ及び電子機器を提供することにある。
 上記目的を達成するため、本技術の一形態に係るアンテナは、ループ状導体と、構造体とを具備する。
 前記ループ状導体は、第1の方向を囲むようにループ状に構成され、前記第1の方向と直交する所定の第2の方向を基準として構成されるギャップを有する。
 前記構造体は、前記ループ状導体に電気的に接続され、前記第2の方向に直交するように配置される。
 このアンテナでは、第1の方向を囲むループ状の構成を有し、第2の方向を基準として構成されるギャップを有するループ状導体が用いられる。またループ状導体に対して、第2の方向に直交するように構造体が配置される。これにより、小型化及び高性能化を実現することが可能となる。
 前記第1の方向は、前記ループ状導体により発生される磁流源の方向として設定されてもよい。この場合、前記ギャップは、前記第2の方向が前記ループ状導体により発生される電流源の方向となるように構成されてもよい。
 前記ループ状導体は、前記第2の方向に沿って互いに対向し前記ギャップを構成する第1の縁部及び前記第2の縁部を有してもよい。
 前記ループ状導体の長さは、前記アンテナを用いた無線通信に使用される周波数帯域に含まれる電磁波の最大波長の1/2以下であってもよい。
 前記通信に使用される周波数帯域は、2.40GHzから2.48GHzまでの周波数帯域であってもよい。
 導体又は損失性の誘電体により構成される対象物に対して設置された場合に、前記第2の方向が前記対象物に対して垂直となる方向に沿うように構成されてもよい。
 前記アンテナは、さらに、前記ループ状導体が形成されたFPC(Flexible Printed Circuit)を具備してもよい。
 前記アンテナは、筐体内に配置されるように構成されてもよい。この場合、前記ループ状導体は、前記筐体内にLDS(Laser Direct Structuring)により構成されてもよい。
 前記構造体は、主面を含む平板形状を有し、前記主面が前記第2の方向に直交するように配置されてもよい。
 前記構造体は、回路基板、又はSiP(System in Package)であってもよい。
 前記アンテナは、さらに、通信回路部と、第1の配線部と、第2の配線部とを具備してもよい。
 前記通信回路部は、前記アンテナによる無線通信を制御する。
 前記第1の配線部は、前記構造体と、前記ループ状導体とを電気的に接続する。
 前記第2の配線部は、前記通信回路部と、前記ループ状導体とを電気的に接続する。
 前記通信回路部は、前記構造体に構成されてもよい。
 前記アンテナは、前記前記第1の方向及び前記第2の方向を含む平面上において、電磁波の放射パターンとして、前記第1の方向に沿った磁流源による第1の放射パターンと、前記第2の方向に沿った電流源による第2の放射パターンとを構成してもよい。
 本技術の一形態に係る電子機器は、前記アンテナを具備する。
 前記電子機器は、完全ワイヤレスイヤホンとして構成されてもよい。
 前記電子機器は、人間の耳に装着されるように構成され、前記耳に装着された場合に前記第2の方向が外耳孔に対して垂直となる方向に沿うように構成される。
 前記電子機器は、人間の耳に装着されるように構成されてもよい。この場合、前記ギャップは、前記電子機器が前記耳に装着された場合に前記ループ状導体の耳介に近接する部分に構成されてもよい。
 前記電子機器であって、さらに、前記ループ状導体の内周側の空間に配置された部品を具備してもよい。
 前記部品は、磁性体からなってもよい。
本技術の一実施形態に係るTWSの概要について説明するための模式図である。 ダイポールアンテナ及びループアンテナによる電磁波放射について説明するための模式図である。 ダイポールアンテナ及びループアンテナに対して、人体や金属が近接した場合についての検討内容を説明するための図である。 ノーマルモードヘリカルアンテナによる電磁波放射について説明するための模式図である。 NMHAに対して銅箔が近接した場合についての検討内容を説明するための図である。 NMHAに対して銅箔が近接した場合の最大利得について説明するためのグラフである。 本実施形態に係るアンテナの構成例を示す模式図である。 構造体の具体的な構成例を示す模式図である。 アンテナをZ軸方向に沿って左側から見た場合の側面図である。 本実施形態に係るアンテナの電磁波の放射パターン(放射指向性)を示すグラフである。 本実施形態に係るアンテナに対して銅箔が近接した場合についてのシミュレーション結果を説明するための図である。 本実施形態に係るアンテナに対して銅箔が近接した場合の最大利得について説明するためのグラフである。 他の部品との組立について説明するための図である。 TWS内におけるアンテナ8の向きを示す模式図である。 TWS内におけるアンテナ8の向きを示す模式図である(耳への装着時)。 ループ状導体、第1の配線部、及び第2の配線部のバリエーション例を示す模式図である。 ループ状導体、第1の配線部、及び第2の配線部のバリエーション例を示す模式図である。 ループ状導体、第1の配線部、及び第2の配線部のバリエーション例を示す模式図である。 ループ状導体、第1の配線部、及び第2の配線部のバリエーション例を示す模式図である。 ループ状導体、第1の配線部、及び第2の配線部のバリエーション例を示す模式図である。 FPCが用いられた場合の、アンテナの構成例を示す模式図である。 ループ状導体が、LDSにより構成される場合の一例を示す模式図である。 本技術の他の適用例について説明するための模式図である。
 以下、本技術に係る実施形態を、図面を参照しながら説明する。
 [完全ワイヤレスイヤホン(TWS:True Wireless Stereo)]
 図1は、本技術の一実施形態に係るTWSの概要について説明するための模式図である。
 図1には、TWSが有する機能的な構成の一部が、ブロック図で模式的に図示されている。TWSは、「左右独立型イヤホン」「フルワイヤレスイヤホン(Full Wireless Stereo)」とも呼ばれる。
 図1に示すように、TWS1は、筐体部2と、イヤーピース3(図14参照)とを有し、人間の耳4に装着されるように構成される。
 イヤーピース3を、耳4の外耳孔に挿入することで、TWS1を耳4に装着することが可能である。図1には、左耳に装着される左耳用のTWS1が図示されている。右耳にも右耳用のTWS1が装着され、左右の両耳にてステレオモードの音声を視聴することが可能である。もちろん、片耳のみにTWS1が装着されてもよい。
 TWS1は、外部機器と無線通信により通信可能に接続される。TWS1は、無線通信を介して、外部機器から音声データを受信し再生することが可能である。
 無線通信としては、例えばWiFi等の無線LAN通信や、Bluetooth(登録商標)等の近距離無線通信を利用することが可能である。
 外部機器としては、スマートフォン、タブレット端末、PC(Personal Computer)等、任意のデバイスが挙げられる。また、ネットワーク上のサーバ装置等が、外部機器としてTWS1と通信可能に接続されてもよい。
 図1に示すように、TWS1は、機能的な構成として、無線通信部5、スピーカ6、及びコントローラ7を有する。各ブロックは、筐体部2の内部に構成される。
 無線通信部5は、他のデバイスとの間で、無線通信を実行するためのモジュールである。例えば、WiFi等の無線LANモジュールや、Bluetooth(登録商標)等の通信モジュールが用いられる。
 図1に示すように、無線通信部5内には、本技術に係るアンテナ8が構成される。アンテナ8については、後に詳しく説明する。
 スピーカ6は、音声を出力可能であり、具体的な構成は限定されず任意の構成が採用されてよい。
 コントローラ7は、TWS1が有する各構成要素の動作を制御する。コントローラ7は、例えばCPUやメモリ(RAM、ROM)等のコンピュータに必要なハードウェア回路を有する。CPUがメモリに記憶されている制御プログラムをRAMにロードして実行することにより、種々の処理が実行される。
 コントローラ7として、例えばFPGA(Field Programmable Gate Array)等のPLD(Programmable Logic Device)、その他ASIC(Application Specific Integrated Circuit)等のデバイスが用いられてもよい。
 本実施形態では、コントローラ7のCPUが本実施形態に係るプログラムを実行することで、本実施形態に係る情報処理方法が実行される。例えば、情報処理方法として、無線通信制御方法や音声再生方法等が実行される。
 外部機器との間で無線通信を実行する場合には、コントローラ7により無線通信部5が駆動される。
 外部機器に対してデータ(情報)を送信する場合には、無線通信部5のアンテナ8にデータに応じた電気信号が供給され、電磁波(電波)が無線信号として放射される。
 外部機器からデータを受信する場合には、アンテナ8により、外部機器から無線信号として放射された電磁波が受信され、電気信号が出力される。出力された電気信号に基づいて、データが取得される。
 上記したように、本実施形態では、無線通信部5により、外部機器から音声データを受信することが可能である。コントローラ7は、スピーカ6を駆動することで、受信した音声データを再生することが可能である。
 なお、無線通信を実現するための具体的な通信方式やアルゴリズム等は限定されず、任意の通信方式やアルゴリズムが用いられてよい。
 [アンテナ8に関する検討内容]
 本実施形態に係るアンテナ8について理解を容易にするために、まず図2~図6を参照しながら、本発明者の検討内容について簡単に説明する。
 図2Aに模式的に示すようなダイポールアンテナ10について検討する。図2Aでは、図中の上下方向に沿って延在するようにダイポールアンテナ10が構成されている。
 ダイポールアンテナ10に対して、交流電力源11により交流電力が供給される。なお交流電力源11は、内部インピーダンスを持つ電力源としてもよく、具体的な構成やダイポールアンテナ10との接続形態等は任意に設計されてよい。
 図2やその他の図において、交流電力源11の図示は、交流電力源11が図示されている位置を給電点として交流電力が供給されていることを模式的に表現している。
 ダイポールアンテナ10に交流電力が供給されると、ダイポールアンテナ10に高周波の交流電流が流れ、電磁波が放射される。すなわち、ダイポールアンテナ10の延在方向に沿って電流源Eが構成され、当該電流源により電磁波が放射される。
 図2Aに示す例では、ダイポールアンテナ10の延在方向(図中の上下方向)が、電流源Eの方向となる。
 また、ダイポールアンテナ10は、ダイポールアンテナ10の延在方向、すなわち電流源Eの方向の電界の変化を高い感度で受信する。従って、ダイポールアンテナ10の延在方向を偏波方向(電界の方向)とする電磁波を高い感度で受信することが可能である。
 図2Bに模式的に示すようなループアンテナ12について検討する。図2Bにでは、図中の上下方向が中心軸方向となるように、ループアンテナ12が構成されている。
 ループアンテナ12に対して、交流電力源11により、交流電力が供給される。これにより、ループアンテナ12の中心軸方向に沿って磁界が発生し、磁界の向きが高周波で変化する。当該磁界の変化により、電磁波が放射される。すなわち、ループアンテナ12の中心軸方向に沿って磁流源Mが構成され、当該磁流源Mにより電磁波が放射される。
 図2Bに示す例では、ループアンテナ12の中心軸方向(図中の上下方向)が、磁流源Mの方向となる。
 またループアンテナ12は、ループアンテナ12の中心軸方向、すなわち磁流源Mの方向の磁界の変化を高い感度で受信する。従って、ループアンテナ12の中心軸方向に直交する方向(図中の左右方向)を偏波方向(電界の方向)とする電磁波を高い感度で受信することが可能である。
 図3は、ダイポールアンテナ10及びループアンテナ12に対して、人体や金属が近接した場合についての検討内容を説明するための図である。以下、人体や金属をまとめ人体/金属13と記載する。
 図3Aに示すように、人体/金属13に対して、垂直にダイポールアンテナ10を設置する。この場合、ダイポールアンテナ10に給電された場合、ダイポールアンテナ10の延在方向に沿って電流源Eが構成され、人体/金属13の内部で電流源の鏡像が発生する。この鏡像成分E'は、電流源Eと同じ方向及び同じ向きで発生する。従って、電流源Eと鏡像成分E'とが互いに強め合うので、強い電磁波(無線信号)により無線通信(送信及び受信)を実行することが可能となる。
 図3Bに示すように、人体/金属13に対して、平行にダイポールアンテナ10を設置する。この場合、ダイポールアンテナ10に給電された場合、ダイポールアンテナ10の延在方向に沿って電流源Eが構成され、人体/金属13の内部で電流源Eの鏡像が発生する。この鏡像成分E'は、電流源Eと同じ方向及び反対の向きで発生する。従って、電流源Eと鏡像成分E'とが互いに弱め合うので、電磁波(無線信号)は弱くなってしまい、無線通信(送信及び受信)に悪い影響が出てしまう。
 図3Cに示すように、人体/金属13に対して、中心軸方向が垂直となるようにループアンテナ12を設置する。この場合、ループアンテナ12に給電された場合、ループアンテナ12の中心軸に沿って磁流源Mが構成され、人体/金属13の内部で磁流源Mの鏡像が発生する。この鏡像成分M'は、磁流源Mと同じ方向及び反対の向きで発生する。従って、磁流源Mと鏡像成分M'とが互いに弱め合うので、電磁波(無線信号)は弱くなってしまい、無線通信(送信及び受信)に悪い影響が出てしまう。
 図3Dに示すように、人体/金属13に対して、中心軸方向が平行になるようにループアンテナ12を設置する。この場合、ループアンテナ12に給電された場合、ループアンテナ12の中心軸に沿って磁流源Mが構成され、人体/金属13の内部で磁流源Mの鏡像が発生する。この鏡像成分M'は、磁流源Mと同じ方向及び同じ向きで発生する。従って、磁流源Mと鏡像成分M'とが互いに強め合うので、強い電磁波(無線信号)により無線通信(送信及び受信)を実行することが可能となる。
 なお本開示において、金属は導体に含まれ、人体は損失性の誘電体に含まれる。金属以外の任意の導体、及び人体以外の任意の損失性の誘電体に対して、図3で説明した事項が成り立つ。
 図4に模式的に示すようなノーマルモードヘリカルアンテナ(NMHA:Normal Mode Helical Antenna)について検討する。
 図4に示すように、NMHA14は、中心軸に対して複数回巻かれたコイル状の構造を有する。電磁波の放射特性を検討するうえで、NMHA14は、中心軸方向に沿って並ぶ複数のループアンテナ15と、中心軸方向に延在するダイポールアンテナ16とを組み合わせた構成と見做すことが可能である。
 すなわち、NMHA14は、複数のループアンテナ15により構成される磁流源M、及びダイポールアンテナ16により構成される電流源Eにより、電磁波を放射可能なアンテナと見做すことが可能である。
 なお、磁流源Mの方向、及び電流源Eの方向は、ともに中心軸方向(図中上下方向)となる。
 図5及び図6は、NMHA14に対して、銅箔が近接した場合についての検討内容を説明するための図である。
 図5に示すように、銅箔18に対して、中心軸方向が平行になるようにNMHA14を設置する。また、銅箔18と、NMHA14との距離dを変化させながら、最大利得をシミュレーションにより計算した。
 図6には、距離dを10mmから小さくした場合の、NMHA14の電流放射(電流源Eによる放射)の最大利得と、磁流放射(磁流源Mによる放射)の最大利得がプロットされている。
 NMHA14により構成される電流源E及び磁流源Mは、銅箔18と平行となる方向にそれぞれ構成される。すなわち、電流源Eと銅箔18との関係は図3Bに示す場合と同様の状態となる。また磁流源Mと銅箔18との関係は図3Dに示す場合と同様の状態となる。
 従って、図6に示すように、NMHA14を銅箔に近接させるほど、電流放射の最大利得は低下する。一方で、磁流放射の最大利得は低くなることなく維持される(距離dによっては向上している)。
 なお図6には、ダイポールアンテナを銅箔18と平行となるように配置し、銅箔18に近接させた場合の最大利得もプロットされている。すなわち、図3Bに示す状態で、ダイポールアンテナ10を銅箔18に近接させた場合の最大利得がプロットされている。
 図6に示すように、ダイポールアンテナを銅箔に近接させるほど、最大利得は低下する。このことは、NMHA14を銅箔に近接させた場合の電流放射の最大利得の低下と対応する。
 銅箔18に対して、中心軸方向が垂直になるようにNMHA14を設置する。この場合、電流源Eと銅箔18との関係は図3Aに示す場合と同様の状態となる。また磁流源Mと銅箔18との関係は図3Cに示す場合と同様の状態となる。
 グラフは省略しているが、NMHA14を銅箔に近接させるほど、磁流放射の最大利得は低くなる。一方で、電流放射の最大利得は低くなることなく維持される。
 すなわち、NMHA14では、電流源Eの方向と、磁流源Mの方向とが同じ方向となるので、人体や金属との近接により、電流源E(電流放射)又は磁流源M(磁流放射)のいずれか一方が弱くなってしまい、無線通信に悪い影響を作用してしまう。
 [本技術に係るアンテナ]
 図7は、本実施形態に係るアンテナ8の構成例を示す模式図である。
 アンテナ8は、ループ状導体20と、構造体21と、第1の配線部22と、第2の配線部23とを有する。
 ループ状導体20は、所定の方向を囲むようにループ状に構成される。典型的には、所定の方向を中心軸方向として、ループ状となるように、ループ状導体20が構成される。以下、ループ状導体20の中心軸方向をX軸方向とする。
 図7に示すように、本実施形態では、2つの短辺(第1の短辺24a及び第2の短辺24b)、及び2つの長辺(第1の長辺25a及び第2の長辺25b)を有する、細長い平板形状の導体が用いられる。導体の短辺方向と中心軸方向(X軸方向)とが平行となるように導体が配置される。そして、X軸方向を中心に導体が折り曲げられ、ループ状に構成される。これによりループ状導体20が構成される。
 以下、図中の上下方向を、X軸方向に直交するY軸方向とする。また、X軸方向及びY軸方向の各々に直交する方向をZ軸方向とする。
 また、X軸方向を奥行方向(矢印の正側を手前側、負側を奥側)、Y軸方向を上下方向(矢印の正側を上方側、負側を下方側)、Z軸方向を左右方向(矢印の正側を左側、負側を右側)として説明を行う。
 もちろん、アンテナ8が用いられる向きが限定される訳ではない。
 X軸方向に沿ってループ状導体20を見た場合に、ループ状導体20は略正方形の形状となるように折り曲げられる。ループ状導体20の内周側に構成されX軸方向に直交する面(仮想面)をループ面とすると、ループ面の形状は略正方形となる。
 X軸方向に沿ってループ状導体20を見た場合に、ループ状導体20は、上辺部26、下辺部27、左辺部28、及び右辺部29により構成される。
 図7に示すように、ループ状導体20の左辺部28は、第1の短辺24a、第2の短辺24b、第1の短辺24aから上辺部26までの上方側部分30a、及び第2の短辺24bから下辺部27までの下方側部分30bから構成される。
 図7に示すように、ループ状導体20は、ギャップGを有するように構成される。
 本実施形態では、ループ状導体20の第1の短辺24a及び第2の短辺24bが、互いに対向する位置に所定の間隔(ギャップG)をあけて配置される。すなわち、互いに対向する第1の短辺24a及び第2の短辺24bにより、ギャップGが構成される。
 ギャップGは、中心軸方向(X軸方向)と直交する所定の方向を基準として構成される。本実施形態では、Y軸方向を基準としてギャップGが構成される。ギャップGの構成については、後に詳しく説明する。
 ループ状導体20の材料としては、銅やアルミニウム等の金属材料等、任意の導電材料が用いられてよい。
 本実施形態において、X軸方向は、第1の方向の一実施形態に相当する。
 Y軸方向は、第1の方向と直交する所定の第2の方向の一実施形態に相当する。
 第1短辺24a及び第2の短辺24bは、第2の方向に沿って互いに対向しギャップを構成する第1の縁部及び前記第2の縁部の一実施形態に相当する。
 ループ状導体20の長さ(ループ長:第1の短辺24aから第2の短辺24bまでの長さ)は、例えば、アンテナ8を用いた無線通信に使用される周波数帯域に含まれる電磁波の最大波長の1/2以下に設計される。
 例えば、Bluetooth(登録商標)通信が実行される場合には、ループ長はBluetooth(登録商標)帯域(2.40GHzから2.48GHzまでの周波数帯域)に含まれる電磁波の最大波長の1/2以下に設計される。もちろん、Bluetooth(登録商標)通信以外の無線通信が実行される場合も、本技術は適用可能である。
 その他、アンテナ8を用いた無線通信に使用される電磁波の波長が特定されている場合に、当該電磁波の波長以下の長さで、ループ状導体20のループ長が設計されてもよい。また、アンテナ8を用いた無線通信に使用される周波数帯域の中心周波数における波長以下の長さで、ループ状導体20のループ長が設計されてもよい。
 なお、無線通信に使用される電磁波の波長以下の長さ、及び無線通信に使用される周波数帯域の中心周波数における波長以下の長さが、無線通信に使用される周波数帯域に含まれる電磁波の最大波長の1/2以下の長さとなる場合もあり得る。
 構造体21は、ループ状導体20に電気的に接続される。
 すなわち構造体21には、導電材料からなる導電部(図示は省略)が構成され、導電部とループ状導体20とが電気的に接続される。
 例えば、構造体21として、例えば回路基板、又はSiP(System in Package)が配置される。そして、導電部として、例えばグランド、通信回路や整合回路等の種々の回路、回路を構成する配線や素子等が実装される。あるいは、導電材料からなる平板部材が構造体21として用いられ、ループ状導体20と電気的に接続されてもよい。
 構造体21として、ループ状導体20と電気的に接続される任意の構成が採用されてよい。例えば、FPC(Flexible Printed Circuit:フレキシブルプリント回路)等により、構造体21が構成されてもよい。
 図7に示すように本実施形態では、構造体21は、上面31a、下面31b、及び側面31cを有する、平板形状からなる。上面31a及び下面31bは、構造体21の主面となる。
 構造体21は、Y軸方向に直交するように配置される。すなわち、構造体21は、上面31a及び下面31bがY軸方向に直交するように配置される。
 アンテナ8を、中心軸方向(X軸方向)に沿って手前側から見た場合に、構造体21は、ループ面内の上方側の位置に配置される。すなわち、構造体21は、ループ状導体20の
内周側の空間内の、上方側の位置に配置される。
 従って、構造体21の上面31aと、ループ状導体20上辺部26とが近接しており、構造体21の下面31bと、ループ状導体20の下辺部27との間は十分にスペースがあけられている。また、構造体21の上面31a及び下面31b、ループ状導体20の上辺部26及び下辺部27は、互いに平行となるように配置される。
 第1の配線部22は、構造体21と、ループ状導体20とを電気的に接続する。
 第1の配線部22の一方の端部は、構造体21に構成された導電部に接続される。第1の配線部22の他方の端部は、ループ状導体20に接続される。本実施形態では、ループ状導体20の左辺部28の上方側の位置に、第1の配線部22が接続されている。
 ループ状導体20に対する第1の配線部22の接続位置は限定されず、任意に設定されてよい。
 第1の配線部22の材料としては、銅やアルミニウム等の金属材料等、任意の導電材料が用いられてよい。
 第2の配線部23は、ループ状導体20に接続される。本実施形態では、ループ状導体20の上辺部26の右側の位置に、第2の配線部23が接続されている。
 本実施形態では、第2の配線部23を介して、ループ状導体20に高周波の交流電力が供給される。
 ループ状導体20に対する第2の配線部22の接続位置は限定されず、任意に設定されてよい。
 図8は、構造体21の具体的な構成例を示す模式図である。
 図8に示す例では、構造体21として、回路基板が用いられる。そして構造体21の上面31aに、通信回路33、整合回路34、及びグランド(図示は省略)が構成される。
 通信回路33及び整合回路34は、第2の配線部23に接続され、図1に示す無線通信部5に含まれる要素として機能する。また、通信回路33及び整合回路34は、図7に示す交流電力源11としても機能する。
 データの送信時には、通信回路33及び整合回路34を介して、交流電力がループ状導体20に供給され、無線信号(電磁波)が放射される。
 データの受信時には、ループ状導体20により受信された無線信号(電磁波)に対応する電気信号が、整合回路34を介して通信回路33に出力される。そして、通信回路33により、電気信号に基づいてデータが取得される。
 グランドは、第1の配線部22に接続され、ループ状導体20と電気的に接続される。
 通信回路33、整合回路34、及びグランドの具体的な構成は限定されず、任意に設計されてよい。
 本実施形態において、整合回路34を介して通信回路33は、アンテナ8による無線通信を制御する通信回路部として機能する。
 図8に示す例では、通信回路部が構造体21に構成される。また第2の配線部23により、通信回路部と、ループ状導体20とが電気的に接続される。
 [ギャップの構成]
 図9は、アンテナ8をZ軸方向に沿って左側から見た場合の側面図である。
 アンテナ8の駆動時には、X軸方向は、ループ状導体20により発生される磁流源Mの方向となる。逆に言えば、X軸方向はループ状導体20により発生される磁流源Mの方向となるように規定され、X軸方向を基準にループ状導体20が構成される。
 図9に示すように、本実施形態に係るアンテナ8は、アンテナ8の駆動時に、Y軸方向が、ループ状導体20により発生される電流源Eの方向となるように構成されている。すなわち、磁流源Mの方向と電流源Eの方向とが互いに交差するように、アンテナ8が構成されている。
 磁流源Mの方向と電流源Eの方向とが互いに交差する構成(以下、EM交差構成と記載する)は、ループ状導体20のギャップGの構成を適宜設計することで実現することが可能である。
 例えば、磁流源Mの方向に直交する所定の方向が電流源Eの方向として規定される。規定された方向を基準としてギャップGが構成される。すなわち、規定された方向がループ状導体20により発生される電流源Eの方向となるようにギャップGが構成される。これにより、EM交差構成を実現することが可能となる。
 本実施形態では、Y軸方向がループ状導体20により発生される電流源Eの方向となるようにギャップGが構成され、EM交差構成が実現される。
 例えば、ループ状導体20におけるギャップGの位置や、ギャップGの方向(ギャップGを構成する第1の短辺24a及び第2の短辺24bの対向方向)等を調整することで、Y軸方向が電流源Eの方向となる構成(すなわちEM交差構成)を実現することが可能である。
 図7及び図9に示すように、本実施形態では、ループ状導体20の左辺部28の下方部分に、ギャップGが構成される。具体的には、X軸方向に沿って延在する第1の短辺24a及び第2の短辺24bが、Y軸方向に沿って対向するように、ギャップGが構成される。
 これにより、EM交差構成を実現することが可能である。これは、ギャップG内に、ギャップGの方向であるY軸方向に沿って電界が発生することが大きく影響していると考えられる。
 なお、Y軸方向が電流源Eの方向となる構成として、ギャップGの方向がY軸方向と平行となる場合に限定される訳ではない。ギャップGの方向が、Y軸方向から所定の範囲内で交差している場合にも、EM交差構成を実現することが可能である。
 例えば、中心軸方向に沿って見た場合のループの形状、ループ状導体20のループ長、ギャップGを構成する2つの短辺の延在方向、ループ状導体20の幅(X軸方向における大きさ)等に基づいて、EM交差構成を実現可能なように、ギャップGの位置やギャップの方向等が適宜設計されればよい。
 図10は、電磁波の放射パターン(放射指向性)を示すグラフである。
 図10には、X軸方向及びY軸方向を含む平面(XY平面)上における電流放射(実線)及び磁流放射(破線)の各々の放射パターンが図示されている。
 なおグラフの中心は、ループ状導体20の内周側のループ面の中心に対応している。「-180」から「0」に向かう方向がX軸方向に相当し、「90」から「-90」に向かう方向がY軸方向に相当する。
 図10に示すように、XY平面上における電流放射の放射パターンは、X軸方向に沿った8の字型の放射パターンとなる。なお、XYZ空間で見た場合には、電流放射の放射パターンは、Y軸方向を中心軸方向とするドーナツ状の放射パターンとなる。
 XY平面上における磁流放射のパターンは、Y軸方向に沿った8の字型の放射パターンとなる。なお、XYZ空間で見た場合には、磁流放射の放射パターンは、X軸方向を中心軸方向とするドーナツ状の放射パターンとなる。
 このように、本実施形態に係るアンテナ8では、電流源Eによる放射パターンと、磁流源Mによる放射パターンとが、互いに交差するように構成される。電流源Eによる放射パターン、及び磁流源Mによる放射パターンは、互いに偏波の異なる放射パターンとなる。
 図10に示す電流放射の放射パターン(実線)及び磁流放射の放射パターン(破線)は、第1の方向及び第2の方向を含む平面上における電磁波の放射パターンの一実施形態に相当する。
 磁流放射の放射パターン(破線)は、第1の方向に沿った磁流源による第1の放射パターンの一実施形態となる。
 電流放射の放射パターン(実線)は、第2の方向に沿った電流源による第2の放射パターンの一実施形態となる。
 図11及び図12は、本実施形態に係るアンテナ8に対して、銅箔が近接した場合についてのシミュレーション結果を説明するための図である。
 図11に示すように、銅箔18に対して、磁流源Mの方向(X軸方向)が平行となり、電流源Eの方向(Y軸方向)が垂直となるように、アンテナ8を設置する。また、銅箔18と、アンテナ8との距離dを変化させながら、最大利得をシミュレーションにより計算した。
 図12には、距離dを10mmから小さくした場合の、アンテナ8の電流放射(電流源Eによる放射)の最大利得と、磁流放射(磁流源Mによる放射)の最大利得がプロットされている。
 ループ状導体20により構成される電流源Eは、銅箔18に対して垂直となる方向に構成される。すなわち、電流源Eと銅箔18との関係は図3Aに示す場合と同様の状態となる。従って、図12に示すように、アンテナ8を銅箔に近接させても、電流放射の最大利得は低くなることなく維持される(近接させるほど若干向上している)。
 ループ状導体20により構成される磁流源Mは、銅箔18と平行となる方向に構成される。すなわち、磁流源Mと銅箔18との関係は図3Dに示す場合と同様の状態となる。従って、図12に示すように、アンテナ8を銅箔18に近接させても、磁流放射の最大利得は低くなることなく維持される(近接させるほど若干向上している)。
 すなわち、本実施形態に係るアンテナ8では、電流源Eの方向と磁流源Mの方向とが交差しているので、人体や金属と近接した場合でも、電流源E(電流放射)及び磁流源M(磁流放射)のいずれもが弱くなることなく、高い最大利得が発揮される。従って、非常に高い通信性能が発揮される。
 例えば、任意の導体又は任意の誘電体により構成される対象物に対して、アンテナ8を設置する。この場合、電流源Eの方向(Y軸方向)が対象物に対して垂直となる方向に沿うように、アンテナ8を構成する。この構成は、磁流源Mの方向(X軸方向)が対象物に対して平行となる方向に沿う構成ともなる。
 これにより、電流放射に関しては図3Aに示す状態となり、磁流放射に関しては図3Dに示す状態となる。すなわち電流放射及び磁流放射の両方に関して電磁波が強め合う状態となり、高い通信性能にて無線通信を実行することが可能となる。
 なお、方向Aを方向Bに沿うような構成は、方向Aを方向Bと平行に配置する場合のみに限定されない。方向Bに対して、所定の範囲内にて方向Aを斜めに配置する場合も含まれる。本実施形態では、高い通信性能が発揮される範囲で、電流源Eの方向(Y軸方向)が対象物に対して垂直となる方向に沿うように配置されればよい。
 例えば、0度~10度の交差角度の範囲内にて、電流源Eの方向(Y軸方向)を対象物に対して垂直となる方向に沿って配置する。これにより、高い通信性能が発揮可能である。もちろん所定の範囲は、周辺の環境や、他の金属部品によって変わってくる。
 [ループ状導体20と構造体21との位置関係]
 図7等に示すように、構造体21は、Y軸方向に直交するように配置される。すなわち、主面となる上面31a及び下面31bがY軸方向に直交するように配置される。
 従って、構造体21の主面は、ループ状導体20により構成される電流源Eと直交する。また、構造体21の主面は、ループ状導体20により構成される磁流源Mと平行となる。従って、構造体21と電流源Eとの関係は図3Aの状態となり、構造体21と磁流源Mとの関係は図3Dの状態となる。
 従って、構造体21により、電流源Eや磁流源Mが弱められることはなく、高い通信性能が発揮される。このように本実施形態に係るアンテナ8では、ループ状導体20と構造体21との位置関係も、大きな特徴となっている。
 なお、電流源Eの方向(Y軸方向)が対象物に対して垂直となる方向に沿うような構成は、構造体21(主面)が、対象物に対して平行となる構成とも言える。
 [TWSへの適用]
 図7等に示すアンテナ8をTWS1に搭載する場合について、説明する。
 図13は、他の部品との組立について説明するための図である。
 本実施形態に係るアンテナ8は、ループ状導体20の内周側の空間(ループ面)を、スペースとして有効に活用することが可能である。
 例えば、図13A及びBに示すように、ループ状導体20の内周側の空間に種々の部品36を配置することが可能である。
 図13A及びBに示す例では、ループ状導体20の内周側の空間内において、構造体21の下方側の空間が有効に活用されている。
 図13Aに示す例では、円柱形状の部品36が、ループ状導体20の内周側の空間内の構造体21の下方側に配置されている。
 図13Aに示す例では、直方体形状の部品36が、ループ状導体20の内周側の空間内の構造体21の下方側に配置されている。
 このように、種々の形状を有する部品を、ループ状導体20の内周側の空間内に配置することが可能である。
 部品36としては、例えば、バッテリ、音響部品、金属部品等、任意の部品を配置することが可能である。
 TWS1を構成する部品、アンテナ8に含まれる部品、TWS1内のアンテナ8とは別の機能部を構成する部品等、任意の部品を配置することが可能である。
 このように、ループ状導体20の内周側の空間を有効に活用することで、TWS1の小型化を実現することが可能となる。
 また、部品36を配置する位置等を適宜設定することで、通信性能を向上させることも可能となる。例えば、ループ状導体20により発生される電流源E及び磁流源Mとの関係を考慮し、図3A及び図3Dの状態となるように部品36を配置する。これにより、通信性能の向上を図ることが可能となる。
 また、部品36として、磁性体からなる部品を配置する。これにより、通信性能の向上を図ることが可能となる。例えば、通信性能を向上させることを目的とした部品として、磁性体からなる部品36が配置されてもよい。
 図14及び15は、TWS1内におけるアンテナ8の向きを示す模式図である。
 図15では、TWS1が耳4に装着されている状態が図示されている。TWS1のイヤーピース3が、耳2の外耳孔38に挿入される。
 なお、図15では、TWS1の耳4に近い部分に、外耳孔38の符号を模式的に図示している。
 アンテナ8は、外耳孔38が形成されている部分(外耳孔38及びその周辺部分とも言える)が、アンテナ8に近接する損失性の誘電体からなる対象物として、TWS1内に構成される。すなわち、外耳孔38が形成されている部分が近接した場合でも、高い通信性能が発揮されるように、TWS1内に構成される。
 具体的には、アンテナ8は、TWS1が耳4に装着された場合に、電流源Eの方向(Y軸方向)が、外耳孔38に対して垂直となる方向に沿うように構成される。換言すれば、アンテナ8は、磁流源Mの方向(X軸方向)が、外耳孔38に対して平行となる方向に沿うように構成される。
 外耳孔38に対して垂直となる方向に沿う方向は、外耳孔38に対し垂直となる方向のみならず、所定の範囲内にて交差する方向も含まれる。また外耳孔38に対して平行となる方向に沿う方向は、外耳孔に対して平行となる方向のみならず、所定の範囲内にて交差する方向も含まれる。
 TWS1が耳4に装着された場合に、アンテナ8のループ状導体20が構成する電流源Eと、外耳孔38が形成されている部分との関係は、図3Aに示す場合と同様の状態となる。また、ループ状導体20が構成する磁流源Mと、外耳孔38が形成されている部分との関係は、図3Dに示す場合と同様の状態となる。
 従って、TWS1内に構成されるアンテナ8が、外耳孔38が形成されている部分に対して近接した場合でも、高い通信性能を発揮することが可能となる。従ってアンテナ8を外耳孔38に対して近接した位置に構成することが可能となるので、TWS1の小型化を実現することが可能となる。
 なお、「外耳孔38に対して垂直となる方向」」を、「外耳孔38の開口方向」、「耳4が存在する側の頬に対して垂直となる方向」、「外耳孔38に対するTWS1の装着方向」として、上記のように電流源Eの方向及び磁流源Mの方向を設定しても、同様の効果が発揮される。
 また、さらなる検討の結果、耳4の耳介39と、ギャップGとの位置関係について、有効な技術事項を考案することが可能であった。
 具体的には、TWS1が耳4に装着された場合に、ループ状導体20の耳介39に近接する部分に、ギャップGを構成する。すなわちEM交差構成が実現可能な構成であるという点に加えて、さらに、耳介39に近接する部分にギャップGを構成する。これにより、通信性能を向上させることが可能となった。
 この技術事項は、ミュレーションの結果通信性能を向上可能な構成として、新たに見出された技術事項である。
 この技術事項については、電荷が溜まる部分(ギャップG)よりも、電流が実際に流れる部分(つまりギャップGが形成されていない部分)を、人体から遠い位置に配置することによる効果ではないかと考えられる。
 [ループ状導体、第1の配線部、及び第2の配線部のバリエーション]
 図16~図20を参照して、ループ状導体20、第1の配線部22、及び第2の配線部23のバリエーション例について説明する。上記したEM交差構成を実現可能な範囲で、種々の構成を採用することが可能である。
 なお、EM交差構成が実現されたアンテナ8を、EM交差アンテナと呼ぶことも可能である。
 図16Aに示す例では、磁流源Mの方向(X軸方向)から見て、ループの形状が円形状となるように、ループ状導体20が構成されている。ギャップGは、ループ状導体20の最も左端となる部分に、ギャップGの方向がY軸方向と平行となるように構成される。
 第1の配線部22及び第2の配線部23も、ループの形状に沿うように、ループ状導体20に並列して構成される。
 図16Bに示す例では、磁流源Mの方向(X軸方向)から見て、ループの形状が多角形状となるように、ループ状導体20が構成されてもよい。図16Bに示す例では、ループの形状が8角形となるようにループ状導体20が構成される。ギャップGは、最も左側に位置する頂点部分に、ギャップGの方向がY軸方向と平行となるように構成される。
 第1の配線部22及び第2の配線部23も、ループの形状に沿うように、ループ状導体20に並列して構成される。
 このように、ループの形状は限定されず、任意に設計されてよい。もちろん8角形以外の多角形状が採用されてもよい。
 TWS1内において、ループの囲む面積(ループ面の面積)が大きくなるように設計することで、通信性能を向上させることが可能となる。
 図17Aに示す例では、図7に示す構成と比べて、ギャップGの位置が異なっている。図17Aに示す例では、左辺部28のさらに下方側にギャップGが形成されている。
 図17Bに示す例では、図7に示す構成と比べて、ギャップGの幅(第1の短辺24a及び第2の短辺24bの間の距離)がより大きく設計されている。
 このように、ギャップGの位置や、ギャップGの幅も任意に設計可能である。例えば、ギャップGの幅を調整することで、共振周波数を調整することが可能となる。
 図18Aに示す例では、下辺部27の長さが、上辺部26よりも長く設定されている。そして、下辺部27の左端部が、左辺部28よりも左側に位置している。すなわち、下辺部27の左端部が、左側に突出している。
 従って、左辺部28の下方側部分30bが、左辺部28の上方側部分30aよりも左側に位置する。また、ギャップGを構成する第2の短辺24bが、第1の短辺24aよりも左側に位置する。
 この結果、ギャップGの方向は、(第1の短辺24a及び第2の短辺24bの対向方向)は、Y軸方向に対して交差する方向となる。
 図18Bに示す例では、左辺部28の下方側部分30bの長さが大きく設計されており、第2の短辺24bが、第1の短辺24aよりも上方側に配置される。従って、左側から、ループ状導体20の左辺部28を見た場合に、上方側部分30aと下方側部分30bとが重なるように構成され、第1の短辺24aが見えない構成となっている。
 この結果、ギャップGの方向は、(第1の短辺24a及び第2の短辺24bの対向方向)は、Y軸方向に対して交差する方向となる。
 図18A及びBに示すように、ギャップGの方向がY軸方向に対して斜めとなる場合でも、EM交差構成を実現することが可能である。例えば、ギャップGの方向をXYZの各方向のベクトル成分に分解した場合に、主にY軸方向のベクトル成分が多く含まれている場合には、容易にEM交差構成を実現することが可能となる。
 図18A及びBに示すように、下辺部27の長さや、左辺部28の下方側部分30bの長さ等を調整することでも、ギャップGの幅を調整可能となり、共振周波数を調整することが可能となる。
 例えば、アンテナ8内に、ギャップGの幅を調整可能な機構が構成されてもよい。そして、自動的にあるいはユーザ等の指示によって、ギャップGの幅が調整されてもよい。これにより、共振周波数の調整が可能となり、完全ワイヤレスイヤホンを使用する人の個人差を解消することが可能となる。
 なお、ギャップGの幅を調整可能な機構としては、任意の構成が採用されてよい。圧電素子やモータ等のアクチュエータが用いられる構成等により、ギャップ幅調整機構を実現することが可能である。
 図19Aに示す例では、ループ状導体20の上辺部26及び左辺部28の上方側部分30aの幅が、相対的に小さく(狭く)設計される。一方で、ループ状導体20の右辺部29、下辺部27、及び左辺部28の下方側部分30bの幅が、相対的に大きく(広く)設計される。
 図19Bに示す例では、ループ状導体20の上辺部26及び左辺部28の上方側部分30aの幅が、相対的に大きく(広く)設計される。一方で、ループ状導体20の右辺部29、下辺部27、及び左辺部28の下方側部分30bの幅が、相対的に小さく(狭く)設計される。
 図19A及びBに示すように、ループ状導体20の幅が部分的に適宜調整されてもよい。
 TWS1内において、ループ状導体20の幅を大きく設計することで、通信性能を向上させることが可能となる。
 一方で、図19A及びBに例示するように、ループ状導体20の幅を適宜設計することで、TWS1内へのアンテナ8の搭載に関して、柔軟な設計が可能となる。すなわち、容積が小さいTWS1内に高性能なアンテナ8を構成することが可能となる。このことは、TWS1の小型化に非常に有利となる。
 なお、EM交差構成を実現可能であるならば、ループ状導体20として、ワイヤ等の線状の導体が用いられてもよい。その他、ループ状導体として任意の構成が採用されてよい。
 図19Cに示す例では、第1の配線部22の幅、及び第2の配線部23の幅が、大きく(広く)設計されている。
 図20A~Cに示す例では、第1の配線部22の長さ、及び第2の配線部23の長さが、適宜調整されている。
 図20Aに示す例では、ループ状導体20に沿って、第1の短辺24aの近傍まで、第1の配線部22が延在している。これにより、第1の配線部22を長く設計することが実現されている(なおこの構成は、図18及び図19でも採用されている)。
 第2配線部23については、ループ状導体20に沿って、右辺部29の下方の部分まで延在している。これにより、第2の配線部23が長くなっている。
 図20Bに示す例では、第2の配線部23が、ループ状導体20に沿って、第2の短辺24bの近傍まで延在している。これにより、第2の配線部23をさらに設計することが可能である。
 図20Cに示す例では、第1の配線部22のループ状導体20と接続される側とは反対側の端部の位置が調整されている。すなわち、第1の配線部22と構造体21との接続位置が調整されている。これにより、第1の配線部22を長く設計することが可能となる。
 第2の配線部23についても、ループ状導体20と接続される側とは反対側の端部の位置が調整されている。これにより、第2の配線部23を長く設計することが可能となる。
 図19C、図20A~Cに示すように、第1の配線部22及び第2の配線部23に関して、幅や長さが適宜調整されてもよい。また第1の配線部22及び第2の配線部23の配線パターン等も適宜調整可能である。
 第1の配線部22及び第2の配線部23の幅、長さ、配線パターン等を調整することで、インピーダンスを調整することが可能となる。すなわち、配線パターン等を調整することで、インピーダンス整合を行うことが可能となる。
 なお、周辺の環境や、他の金属部品の配置等によって、最適な配線パターンは変わってくる。従って、周辺の環境等に基づいて、第1の配線部22及び第2の配線部23の幅、長さ、配線パターン等が適宜調整されればよい。
 図21A及びBは、FPC(Flexible Printed Circuit:フレキシブルプリント回路)が用いられた場合の、アンテナ8の構成例を示す模式図である。
 図21に示すように、ループ状導体20が形成されたFPC(Flexible Printed Circuit:フレキシブルプリント回路)41が、磁流源Mの方向(X軸方向)を囲むようにループ状に変形されてもよい。
 図21に示す例では、第1の配線部22及び第2の配線部23も、FPC41に形成されている。FPC41を用いることで、アンテナ8を容易に製造することが可能となる。
 図22は、ループ状導体20が、LDS(Laser Direct Structuring:レーザ直接構造化)により構成される場合の一例を示す模式図である。
 図22に示すように、アンテナ8が配置される筐体部2内に、LDSにより、ループ状導体20が構成されてもよい。
 図22に示す例では、第1の配線部22及び第2の配線部23も、筐体部2内にLDSにより構成されている。LDSを用いることで、装置の小型化に有利となる。
 以上、本実施形態に係るTWS1及びアンテナ8では、X軸方向を囲むループ状の構成を有し、Y軸方向を基準として構成されるギャップGを有するループ状導体20が用いられる。またループ状導体20に対して、Y軸方向に直交するように構造体21が配置される。これにより、小型化及び高性能化を実現することが可能となる。
 完全ワイヤレスイヤホンの普及に伴い、その小型化・高性能化のニーズが高まっている。一方で、Bluetooth(登録商標)通信等のアンテナを搭載することにより、アンテナが通信性能を十分に発揮するためには耳からの突出量が大きくなってしまい、小型化が難しい状況であった。
 完全ワイヤレスイヤホンに搭載するアンテナとして、図4に例示するようなNMHA14が挙げられるが、図5及び図6を参照して説明したように、人体や金属との近接により、電流源E(電流放射)もしくは磁流源M(磁流放射)が大きく減衰してしまうため、十分な通信性能を発揮することが難しかった。
 図7等に示すように、本技術に係るアンテナ8では、一部にギャップGをもつループ状の導体パターンが採用され、ループ状導体20として用いられる。
 これにより、EM交差構成が実現されるので、電流源E及び磁流源Mの両方からの放射に対して、金属や人体が近接した際に利得の減衰を十分に防止することが可能となり、構成によっては利得向上を得ることも可能である。
 これにより、TWS1をはじめとする電子機器に本技術を適用した場合、人体との距離低減や、金属部品とのクリアランスの低減を図ることが可能となり、電子機器の小型化に非常に有利となる。また高い通信性能を発揮することが可能となる。
 <その他の実施形態>
 本技術は、以上説明した実施形態に限定されず、他の種々の実施形態を実現することができる。
 図23は、本技術の他の適用例について説明するための模式図である。
 本技術の適用は、完全ワイヤレスイヤホンに限定されず、他の任意の分野における任意の無線通信デバイスに適用可能である。
 例えば、図23Aに示すように、手首に装着して使用するリストバンド型のウェアラブルデバイス43に、本技術に係るアンテナ8を適用することが可能である。この場合、図23Aに示すウェアラブルデバイス43は、本技術に係る電子機器の一実施形態として機能する。
 ウェアラブルデバイス43内において、電流源Eの方向が腕に対して垂直となり、磁流源Mの方向が腕に対して平行となるように、アンテナ8が構成される。これにより、装置の小型化、及び無線通信の高性能化を実現することが可能となる。
 例えば、ループ状導体20に対して、腕に対して垂直となる方向の大きさを相対的に小さくし、腕に対して平行となる方向に沿って横長となるようなループ形状が採用されてもよい。これにより、さらに装置の小型化を図ることが可能となる。
 リストバンド型のウェアラブルデバイスに限定されず、頭に装着するヘッドバンド型(ヘッドマウント型)、腰に装着するベルト型、足首に装着するアンクレット型等、任意の形態のウェアラブルデバイスに、本技術を適用することが可能である。
 図23Bに示すように、牛等の家畜に装着するIoTセンサ44に対して、本技術を適用することが可能である。本技術に係るアンテナを用いることで、装置の小型化、及び無線通信の高性能化を実現することが可能となる。
 もちろん、家畜以外の動物、家電、機械、ロボット等に搭載するIoTセンサに、本技術を適用することも可能である。

 その他、本技術を適用可能な電子機器の種類は限定されない。例えば、携帯電話、スマートフォン、パソコン、ゲーム機、デジタルカメラ、オーディオ機器、TV、プロジェクタ、カーナビ、GPS端末等の電子機器や、インターネット等に接続された種々のIoT機器等、任意の電子機器に対して本技術を適用することが可能である。
 各図面を参照して説明したTWS、アンテナ、ループ状導体、第1の配線部、第2の配線部、構造体等の各構成、各処理フロー等はあくまで一実施形態であり、本技術の趣旨を逸脱しない範囲で、任意に変形可能である。すなわち本技術を実施するための他の任意の構成やアルゴリズム等が採用されてよい。
 本開示において、説明の理解を容易とするために、「略」「ほぼ」「おおよそ」等の文言が適宜使用される場合がある。一方で、これら「略」「ほぼ」「おおよそ」等の文言を使用する場合と使用しない場合とで、明確な差異が規定されるわけではない。
 すなわち、本開示において、「中心」「中央」「均一」「等しい」「同じ」「直交」「平行」「対称」「延在」「軸方向」「円柱形状」「円筒形状」「リング形状」「円環形状」等の、形状、サイズ、位置関係、状態等を規定する概念は、「実質的に中心」「実質的に中央」「実質的に均一」「実質的に等しい」「実質的に同じ」「実質的に直交」「実質的に平行」「実質的に対称」「実質的に延在」「実質的に軸方向」「実質的に円柱形状」「実質的に円筒形状」「実質的にリング形状」「実質的に円環形状」等を含む概念とする。
 例えば「完全に中心」「完全に中央」「完全に均一」「完全に等しい」「完全に同じ」「完全に直交」「完全に平行」「完全に対称」「完全に延在」「完全に軸方向」「完全に円柱形状」「完全に円筒形状」「完全にリング形状」「完全に円環形状」等を基準とした所定の範囲(例えば±10%の範囲)に含まれる状態も含まれる。
 従って、「略」「ほぼ」「おおよそ」等の文言が付加されていない場合でも、いわゆる「略」「ほぼ」「おおよそ」等を付加して表現される概念が含まれ得る。反対に、「略」「ほぼ」「おおよそ」等を付加して表現された状態について、完全な状態が必ず排除されるというわけではない。
 本開示において、「Aより大きい」「Aより小さい」といった「より」を使った表現は、Aと同等である場合を含む概念と、Aと同等である場合を含まない概念の両方を包括的に含む表現である。例えば「Aより大きい」は、Aと同等は含まない場合に限定されず、「A以上」も含む。また「Aより小さい」は、「A未満」に限定されず、「A以下」も含む。
 本技術を実施する際には、上記で説明した効果が発揮されるように、「Aより大きい」及び「Aより小さい」に含まれる概念から、具体的な設定等を適宜採用すればよい。
 以上説明した本技術に係る特徴部分のうち、少なくとも2つの特徴部分を組み合わせることも可能である。すなわち各実施形態で説明した種々の特徴部分は、各実施形態の区別なく、任意に組み合わされてもよい。また上記で記載した種々の効果は、あくまで例示であって限定されるものではなく、また他の効果が発揮されてもよい。
 なお、本技術は以下のような構成も採ることができる。
(1)
 第1の方向を囲むようにループ状に構成され、前記第1の方向と直交する所定の第2の方向を基準として構成されるギャップを有するループ状導体と、
 前記ループ状導体に電気的に接続され、前記第2の方向に直交するように配置される構造体と
 を具備するアンテナ。
(2)(1)に記載のアンテナであって、
 前記第1の方向は、前記ループ状導体により発生される磁流源の方向として設定され、
 前記ギャップは、前記第2の方向が前記ループ状導体により発生される電流源の方向となるように構成される
 アンテナ。
(3)(1)又は(2)に記載のアンテナであって、
 前記ループ状導体は、前記第2の方向に沿って互いに対向し前記ギャップを構成する第1の縁部及び前記第2の縁部を有する
 アンテナ。
(4)(1)から(3)のうちいずれか1つに記載のアンテナであって、
 前記ループ状導体の長さは、前記アンテナを用いた無線通信に使用される周波数帯域に含まれる電磁波の最大波長の1/2以下である
 アンテナ。
(5)(4)に記載のアンテナであって、
 前記通信に使用される周波数帯域は、2.40GHzから2.48GHzまでの周波数帯域である
 アンテナ。
(6)(1)から(5)のうちいずれか1つに記載のアンテナであって、
 導体又は損失性の誘電体により構成される対象物に対して設置された場合に、前記第2の方向が前記対象物に対して垂直となる方向に沿うように構成される
 アンテナ。
(7)(1)から(6)のうちいずれか1つに記載のアンテナであって、さらに、
 前記ループ状導体が形成されたFPC(Flexible Printed Circuit)を具備する
 アンテナ。
(8)(1)から(6)のうちいずれか1つに記載のアンテナであって、
 筐体内に配置されるように構成され、
 前記ループ状導体は、前記筐体内にLDS(Laser Direct Structuring)により構成される
 アンテナ。
(9)(1)から(8)のうちいずれか1つに記載のアンテナであって、
 前記構造体は、主面を含む平板形状を有し、前記主面が前記第2の方向に直交するように配置される
 アンテナ。
(10)(9)に記載のアンテナであって、
 前記構造体は、回路基板、又はSiP(System in Package)である
 アンテナ。
(11)(1)から(10)のうちいずれか1つに記載のアンテナであって、さらに、
 前記アンテナによる無線通信を制御する通信回路部と、
 前記構造体と、前記ループ状導体とを電気的に接続する第1の配線部と、
 前記通信回路部と、前記ループ状導体とを電気的に接続する第2の配線部と
 を具備するアンテナ。
(12)(11)に記載のアンテナであって、
 前記通信回路部は、前記構造体に構成される
 アンテナ。
(13)(1)から(12)のうちいずれか1つに記載のアンテナであって、
 前記前記第1の方向及び前記第2の方向を含む平面上において、電磁波の放射パターンとして、前記第1の方向に沿った磁流源による第1の放射パターンと、前記第2の方向に沿った電流源による第2の放射パターンとを構成する
 アンテナ。
(14)
  第1の方向を囲むようにループ状に構成され、前記第1の方向と直交する所定の第2の方向を基準として構成されるギャップを有するループ状導体と、
  前記ループ状導体に電気的に接続され、前記第2の方向に直交するように配置される構造体と
 を有するアンテナ
 を具備する電子機器。
(15)(14)に記載の電子機器であって、
 完全ワイヤレスイヤホンとして構成される
 電子機器。
(16)(15)に記載の電子機器であって、
 人間の耳に装着されるように構成され、前記耳に装着された場合に前記第2の方向が外耳孔に対して垂直となる方向に沿うように構成される
 電子機器。
(17)(16)に記載の電子機器であって、
 人間の耳に装着されるように構成され、
 前記ギャップは、前記電子機器が前記耳に装着された場合に前記ループ状導体の耳介に近接する部分に構成される
 電子機器。
(18)(14)から(17)のうちいずれか1つに記載の電子機器であって、さらに、
 前記ループ状導体の内周側の空間に配置された部品を具備する
 電子機器。
(19)(18)に記載の電子機器であって、
 前記部品は、磁性体からなる
 電子機器。
 E…電流源
 M…磁流源
 1…TWS
 2…筐体部
 38…外耳孔
 20…ループ状導体
 21…構造体
 22…第1の配線部
 23…第2の配線部
 24a…第1の短辺
 24b…第2の短辺
 33…通信回路
 34…整合回路
 36…部品
 38…外耳孔
 39…耳介
 41…FPC
 43…ウェアラブルデバイス
 44…IoTセンサ

Claims (19)

  1.  第1の方向を囲むようにループ状に構成され、前記第1の方向と直交する所定の第2の方向を基準として構成されるギャップを有するループ状導体と、
     前記ループ状導体に電気的に接続され、前記第2の方向に直交するように配置される構造体と
     を具備するアンテナ。
  2.  請求項1に記載のアンテナであって、
     前記第1の方向は、前記ループ状導体により発生される磁流源の方向として設定され、
     前記ギャップは、前記第2の方向が前記ループ状導体により発生される電流源の方向となるように構成される
     アンテナ。
  3.  請求項1に記載のアンテナであって、
     前記ループ状導体は、前記第2の方向に沿って互いに対向し前記ギャップを構成する第1の縁部及び前記第2の縁部を有する
     アンテナ。
  4.  請求項1に記載のアンテナであって、
     前記ループ状導体の長さは、前記アンテナを用いた無線通信に使用される周波数帯域に含まれる電磁波の最大波長の1/2以下である
     アンテナ。
  5.  請求項4に記載のアンテナであって、
     前記通信に使用される周波数帯域は、2.40GHzから2.48GHzまでの周波数帯域である
     アンテナ。
  6.  請求項1に記載のアンテナであって、
     導体又は損失性の誘電体により構成される対象物に対して設置された場合に、前記第2の方向が前記対象物に対して垂直となる方向に沿うように構成される
     アンテナ。
  7.  請求項1に記載のアンテナであって、さらに、
     前記ループ状導体が形成されたFPC(Flexible Printed Circuit)を具備する
     アンテナ。
  8.  請求項1に記載のアンテナであって、
     筐体内に配置されるように構成され、
     前記ループ状導体は、前記筐体内にLDS(Laser Direct Structuring)により構成される
     アンテナ。
  9.  請求項1に記載のアンテナであって、
     前記構造体は、主面を含む平板形状を有し、前記主面が前記第2の方向に直交するように配置される
     アンテナ。
  10.  請求項9に記載のアンテナであって、
     前記構造体は、回路基板、又はSiP(System in Package)である
     アンテナ。
  11.  請求項1に記載のアンテナであって、さらに、
     前記アンテナによる無線通信を制御する通信回路部と、
     前記構造体と、前記ループ状導体とを電気的に接続する第1の配線部と、
     前記通信回路部と、前記ループ状導体とを電気的に接続する第2の配線部と
     を具備するアンテナ。
  12.  請求項11に記載のアンテナであって、
     前記通信回路部は、前記構造体に構成される
     アンテナ。
  13.  請求項1に記載のアンテナであって、
     前記前記第1の方向及び前記第2の方向を含む平面上において、電磁波の放射パターンとして、前記第1の方向に沿った磁流源による第1の放射パターンと、前記第2の方向に沿った電流源による第2の放射パターンとを構成する
     アンテナ。
  14.   第1の方向を囲むようにループ状に構成され、前記第1の方向と直交する所定の第2の方向を基準として構成されるギャップを有するループ状導体と、
      前記ループ状導体に電気的に接続され、前記第2の方向に直交するように配置される構造体と
     を有するアンテナ
     を具備する電子機器。
  15.  請求項14に記載の電子機器であって、
     完全ワイヤレスイヤホンとして構成される
     電子機器。
  16.  請求項15に記載の電子機器であって、
     人間の耳に装着されるように構成され、前記耳に装着された場合に前記第2の方向が外耳孔に対して垂直となる方向に沿うように構成される
     電子機器。
  17.  請求項16に記載の電子機器であって、
     人間の耳に装着されるように構成され、
     前記ギャップは、前記電子機器が前記耳に装着された場合に前記ループ状導体の耳介に近接する部分に構成される
     電子機器。
  18.  請求項14に記載の電子機器であって、さらに、
     前記ループ状導体の内周側の空間に配置された部品を具備する
     電子機器。
  19.  請求項18に記載の電子機器であって、
     前記部品は、磁性体からなる
     電子機器。
PCT/JP2022/034706 2021-11-10 2022-09-16 アンテナ、及び電子機器 WO2023084914A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023559454A JPWO2023084914A1 (ja) 2021-11-10 2022-09-16
CN202280073309.6A CN118202519A (zh) 2021-11-10 2022-09-16 天线和电子设备

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021183074 2021-11-10
JP2021-183074 2021-11-10

Publications (1)

Publication Number Publication Date
WO2023084914A1 true WO2023084914A1 (ja) 2023-05-19

Family

ID=86335399

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/034706 WO2023084914A1 (ja) 2021-11-10 2022-09-16 アンテナ、及び電子機器

Country Status (3)

Country Link
JP (1) JPWO2023084914A1 (ja)
CN (1) CN118202519A (ja)
WO (1) WO2023084914A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5113196A (en) * 1989-01-13 1992-05-12 Motorola, Inc. Loop antenna with transmission line feed
JP2000332626A (ja) * 1999-05-18 2000-11-30 Oi Electric Co Ltd 携帯無線装置
JP2008288915A (ja) * 2007-05-18 2008-11-27 Panasonic Electric Works Co Ltd アンテナ装置
WO2015159324A1 (ja) * 2014-04-17 2015-10-22 三菱電機株式会社 アンテナ装置及びアンテナ製造方法
JP2017123653A (ja) * 2016-01-02 2017-07-13 音來多有限公司 無線通信装置
WO2021095694A1 (ja) * 2019-11-11 2021-05-20 ソニーグループ株式会社 音響出力装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5113196A (en) * 1989-01-13 1992-05-12 Motorola, Inc. Loop antenna with transmission line feed
JP2000332626A (ja) * 1999-05-18 2000-11-30 Oi Electric Co Ltd 携帯無線装置
JP2008288915A (ja) * 2007-05-18 2008-11-27 Panasonic Electric Works Co Ltd アンテナ装置
WO2015159324A1 (ja) * 2014-04-17 2015-10-22 三菱電機株式会社 アンテナ装置及びアンテナ製造方法
JP2017123653A (ja) * 2016-01-02 2017-07-13 音來多有限公司 無線通信装置
WO2021095694A1 (ja) * 2019-11-11 2021-05-20 ソニーグループ株式会社 音響出力装置

Also Published As

Publication number Publication date
CN118202519A (zh) 2024-06-14
JPWO2023084914A1 (ja) 2023-05-19

Similar Documents

Publication Publication Date Title
US10297911B2 (en) Antenna for use in a wearable device
JP5549788B2 (ja) アンテナ装置
JP6396327B2 (ja) 携帯用端末機のアンテナ装置
KR20200007377A (ko) 안테나 구조체 및 안테나를 포함하는 전자 장치
KR20200012106A (ko) 5g 안테나 모듈을 포함하는 전자 장치
JP2004159288A (ja) アンテナ装置、プリント配線板、プリント基板、通信アダプタおよび携帯型電子機器
WO2012147817A1 (ja) 電子機器
CN105722000B (zh) 听力装置
JP2012231266A (ja) アンテナ装置
CN108432269B (zh) 具有在印刷电路板上的天线的助听器
JP2006086875A (ja) 無線装置
US8310406B2 (en) Antenna device
CN213586258U (zh) 电路结构、电声组件以及音频设备
KR20200079834A (ko) 복수의 전기적 경로를 이용하여 급전을 받는 도전성 패치를 포함하는 안테나 구조체 및 상기 안테나 구조체를 포함하는 전자 장치
KR20200024408A (ko) 안테나 어레이를 포함하는 전자 장치
KR20210017042A (ko) 복수 개의 안테나 모듈들을 포함하는 전자 장치
KR20210060175A (ko) 안테나 및 그것을 포함하는 전자 장치
KR102702832B1 (ko) 안테나 모듈을 포함하는 전자 장치
KR20200101013A (ko) 안테나 및 상기 안테나를 포함하는 전자 장치
WO2023084914A1 (ja) アンテナ、及び電子機器
JP6381048B2 (ja) アンテナ装置及び無線通信装置
JP7369919B2 (ja) アンテナ装置
JP2007329735A (ja) 無線通信モジュールおよびその製造方法
KR20220040938A (ko) 전자 장치
JP6687252B2 (ja) アンテナ装置、無線通信機器およびアンテナ形成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22892415

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280073309.6

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2023559454

Country of ref document: JP

Kind code of ref document: A