WO2023084673A1 - 波長可変光源装置および波長制御方法 - Google Patents

波長可変光源装置および波長制御方法 Download PDF

Info

Publication number
WO2023084673A1
WO2023084673A1 PCT/JP2021/041483 JP2021041483W WO2023084673A1 WO 2023084673 A1 WO2023084673 A1 WO 2023084673A1 JP 2021041483 W JP2021041483 W JP 2021041483W WO 2023084673 A1 WO2023084673 A1 WO 2023084673A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength
control
light source
controlling
optical waveguide
Prior art date
Application number
PCT/JP2021/041483
Other languages
English (en)
French (fr)
Inventor
健二 水谷
慈 三枝
直樹 小林
将己 大江
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to PCT/JP2021/041483 priority Critical patent/WO2023084673A1/ja
Publication of WO2023084673A1 publication Critical patent/WO2023084673A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers

Definitions

  • a semiconductor optical amplifier is hybrid-mounted on a silicon substrate on which optical waveguide devices are integrated.
  • Optical waveguide devices include waveguide wavelength filters using two ring resonators, phase adjusters, and partially reflective mirrors.
  • a laser resonator is formed on a path passing through the semiconductor optical amplifier, the waveguide wavelength filter, and the partially reflecting mirror.
  • An object of the present invention is to provide a wavelength tunable light source device and a wavelength control method that solve the above-described problem that the oscillation wavelength becomes unstable in a wavelength tunable light source.
  • the oscillation wavelength of the wavelength tunable light source can be stabilized.
  • FIG. 1 is a block diagram showing the configuration of a wavelength tunable light source device 100 according to the first embodiment of the invention.
  • the wavelength tunable light source device 100 has an optical amplification section (optical amplification means) 110 , an optical waveguide section (optical waveguide means) 120 , a mounting section (mounting means) 130 , and a control section (control means) 140 .
  • the optical waveguide section 120 includes a wavelength tunable filter 121 .
  • the mounting section 130 mounts the optical amplifying section 110 and the optical waveguide section 120 .
  • the control section 140 controls the optical waveguide section 120 and the mounting section 130 .
  • the control unit 140 controls the temperature of the mounting unit 130 so that the wavelength of the ripple caused by internal reflection matches the predetermined wavelength.
  • the control section 140 controls the temperature of the mounting section 130 so that the wavelength of the ripple caused by internal reflection matches the predetermined wavelength. . Therefore, it is possible to avoid the influence of the ripple caused by internal reflection on the predetermined oscillation wavelength. As a result, according to the wavelength tunable light source device 100 of this embodiment, the oscillation wavelength of the wavelength tunable light source can be stabilized.
  • the above-mentioned predetermined wavelength is a wavelength used in wavelength division multiplexing (WDM) communication, and can be, for example, a wavelength standardized by the International Telecommunications Union (ITU).
  • WDM wavelength division multiplexing
  • ITU International Telecommunications Union
  • the control unit 140 can further be configured to control the refractive index of the wavelength tunable filter 121 so that the transmission wavelength of the wavelength tunable filter 121 matches a predetermined wavelength.
  • the optical waveguide section 120 can be configured to include a phase control section (phase control means) 122 and a partial reflection section (partial reflection means) 123, as shown in FIG.
  • the phase control section 122 is configured to control the phase of guided light guided through the optical waveguide section 120 .
  • the partial reflection part 123 is configured to reflect part of the guided light.
  • FIG. 2 shows a configuration in which the wavelength tunable filter 121 includes a first ring resonator 121-1 and a second ring resonator 121-2.
  • a laser resonator is formed by an optical path passing through the optical amplifying section 110, the wavelength tunable filter 121, and the partial reflection section 123, and constitutes a wavelength tunable laser.
  • the dashed-dotted line in FIG. 2 indicates the optical path of the oscillation light of the wavelength tunable laser.
  • control unit 140 controls the refractive index of the phase control unit 122 so that one mode of the resonator (external resonator) formed by the optical amplification unit 110 and the partial reflection unit 123 matches a predetermined wavelength. do.
  • the ripple described above is the peak of the light intensity of the transmitted light, and is caused by reflection and internal reflection at one end (the left end in FIG. 2) of the light amplification section 110 .
  • This ripple occurs at a constant period determined by the distance between the two reflecting surfaces.
  • internal reflection is reflection in the optical waveguide section 120 excluding the partial reflection section 123 .
  • SOA semiconductor optical amplifier
  • the end surface of the semiconductor optical amplifier (SOA) on the high reflection side can be used as one end of the optical amplifier section 110 described above.
  • the first current/voltage applying section is configured to control the refractive index of the wavelength tunable filter 121 .
  • the second current/voltage applying section is configured to control the refractive index of the phase control section 122 .
  • a heater is used as the first current/voltage applying section and the second current/voltage applying section to heat the wavelength tunable filter 121 and the phase control section 122, thereby changing the refractive index of the wavelength tunable filter 121 and the phase control section 122. can be controlled.
  • the refractive index is controlled by applying voltage or injecting current to the tunable filter 121 and the phase control unit 122 using the first current/voltage applying unit and the second current/voltage applying unit. You can do it.
  • the temperature control section is configured to either heat or cool the mounting section 130 .
  • TEC thermoelectric temperature controller
  • the control unit 140 includes a storage unit (storage means) that stores a lookup table that stores the relationship between the first control value, the second control value, the third control value, and the predetermined wavelength.
  • the first control value is the control value for the first current/voltage applying section for controlling the refractive index of the wavelength tunable filter 121
  • the second control value is the refractive index of the phase control section 122
  • the third control value is a control value for the temperature control section for controlling the temperature of the mounting section 130 .
  • FIG. 3 the operation of the control unit 140 will be described in more detail using FIGS. 3 and 4.
  • FIG. 3 the operation of the control unit 140 will be described in more detail using FIGS. 3 and 4.
  • control unit 140 controls the temperature of the mounting unit 130 so that the wavelength of the ripple caused by internal reflection matches the predetermined wavelength 10, as shown in FIG. Specifically, the control unit 140 controls the temperature of the mounting unit 130 by controlling, for example, a thermoelectric temperature controller (TEC) as a temperature control unit. At this time, the entire spectrum shown in FIG. 3 shifts.
  • TEC thermoelectric temperature controller
  • the control unit 140 causes the transmission wavelengths of the first ring resonator 121-1 and the second ring resonator 121-2 constituting the wavelength tunable filter 121 to match the predetermined wavelength 10.
  • the refractive indices of the first ring resonator 121-1 and the second ring resonator 121-2 are controlled so that Specifically, the control unit 140 changes the temperatures of the first ring resonator 121-1 and the second ring resonator 121-2 by controlling the heater as the first current/voltage applying unit. to control the refractive index.
  • control unit 140 controls the refractive index of the phase control unit 122 so that one mode of the resonator formed by the optical amplification unit 110 and the partial reflection unit 123 matches the predetermined wavelength 10 .
  • control unit 140 changes the temperature of the phase control unit 122 to control the refractive index by controlling the heater as the second current/voltage application unit.
  • the refractive index of the phase control section 122 may be controlled by injecting current into the phase control section 122 .
  • the wavelength tunable light source device 100 can stably oscillate at a predetermined wavelength 10, which is the wavelength standardized by the International Telecommunications Union (ITU), for example. .
  • the control unit 140 performs such control for each of all wavelength channels standardized by the International Telecommunications Union (ITU), so that the wavelength tunable light source device 100 performs laser oscillation over a wide band with high wavelength accuracy. Is possible.
  • FIG. 5 shows an example of output characteristics of the wavelength tunable light source device 100. As shown in FIG. As is clear from the figure, according to the wavelength tunable light source device 100 of this embodiment, stable laser oscillation with a small frequency deviation can be realized in all wavelength channels.
  • the control unit 140 adopts all wavelength channels standardized by the ITU as predetermined wavelengths, and stores the first control value, the second control value, and the third control value for each in a lookup table. It is also possible to keep This makes it possible to realize stable laser oscillation at any wavelength among all wavelength channels.
  • the first control value, the second control value, and the third control value the best conditions selected from a plurality of temperature conditions may be stored in the lookup table.
  • FIG. 6 shows the configuration of an optical transmission module 200 equipped with the wavelength tunable light source device 100 described above.
  • the optical transmission module 200 has a tunable light source device 100 and an optical modulation device 210 .
  • the optical modulator 210 modulates the output light of the wavelength tunable light source device 100 .
  • a typical Mach-Zehnder modulator can be used as the optical modulator 210 . Since the optical transmission module 200 uses the wavelength tunable light source device 100 described above, the oscillation wavelength of the wavelength tunable light source can be stabilized.
  • the oscillation wavelength of the wavelength tunable light source can be stabilized.
  • FIG. 7 shows a flowchart for explaining the wavelength control method according to this embodiment.
  • the wavelength control method according to this embodiment is used when controlling the wavelength of a light source having optical amplifying means, optical waveguide means having a wavelength tunable filter, and mounting means for mounting the optical amplifying means and optical waveguide means.
  • the optical amplifying means may comprise a semiconductor optical amplifier
  • the optical waveguide means may comprise a silicon photonics chip.
  • the temperature of the mounting means is controlled so that the wavelength of ripples caused by internal reflection of the light source matches a predetermined wavelength (step S10). This makes it possible to avoid the influence of ripples caused by internal reflection on the predetermined oscillation wavelength. Therefore, according to the wavelength control method of this embodiment, the oscillation wavelength of the wavelength tunable light source can be stabilized.
  • the refractive index of the wavelength tunable filter is controlled so that the transmission wavelength of the wavelength tunable filter matches the predetermined wavelength (step S20).
  • the ripple mentioned above is the peak of the light intensity of the transmitted light caused by the reflection at one end of the optical amplification means and the reflection at the optical waveguide means excluding the partial reflection means.
  • the light source described above can be configured to further include first current/voltage applying means, second current/voltage applying means, and temperature control means.
  • first current/voltage applying means is configured to control the refractive index of the wavelength tunable filter.
  • second current/voltage applying means is configured to control the refractive index of the phase control means.
  • the temperature control means is configured to either heat or cool the mounting means.
  • step S10 the temperature of the mounting means can be controlled by controlling the temperature control means using the third control value.
  • step S20 the refractive index of the wavelength tunable filter can be controlled by controlling the first current/voltage applying means using the first control value.
  • step S30 the refractive index of the phase control means can be controlled by controlling the second current/voltage applying means using the second control value.
  • the conditions stored in the lookup table (LUT) are set in the wavelength tunable light source device to oscillate.
  • the variable wavelength light source is covered with a shutter or the like so as not to output light to the outside.
  • the optical output is monitored using a photodetector (PD) provided inside the wavelength tunable light source device.
  • PD photodetector
  • wavelength lock control is performed. Only the wavelength filter is controlled here. At the same time, by controlling the phase, the output is always maximized.
  • the wavelength of the ripple caused by internal reflection is controlled to match the predetermined wavelength (step S10 in FIG. 7). Then, the temperature is slightly changed, the conditions are adjusted by the same control as in the second step (steps S20 and S30 in FIG. 7), and then the light output is confirmed. Further, the temperature is changed slightly and the control is repeated. Then, the variable wavelength light source is used under the temperature condition with the highest optical output.
  • the laser may be output after completing the control in the third stage, or the laser may be output at the time of the control in the second stage, and the power is checked while changing the temperature at a low frequency in the third stage. may be
  • the oscillation wavelength of the wavelength tunable light source can be stabilized.
  • Appendix 2 The wavelength tunable light source device according to Appendix 1, wherein the control means controls the refractive index of the wavelength tunable filter so that the transmission wavelength of the wavelength tunable filter matches the predetermined wavelength.
  • the optical waveguide means includes phase control means configured to control the phase of guided light guided through the optical waveguide means, and a portion configured to reflect part of the guided light. and reflecting means, wherein the control means adjusts the refractive index of the phase control means so that one of the modes of the resonator formed by the optical amplification means and the partial reflection means matches the predetermined wavelength.
  • the wavelength tunable light source device according to Supplementary Note 2, which controls the
  • the ripple is a peak of light intensity of transmitted light caused by reflection at one end of the optical amplifying means and reflection at the optical waveguide means excluding the partial reflection means.
  • the control means is storage means storing a lookup table that stores the relationship between the first control value, the second control value, the third control value, and the predetermined wavelength.
  • the wavelength tunable light source device comprising:
  • Appendix 7 The wavelength tunable light source device according to any one of Appendices 1 to 6, wherein the optical amplification means includes a semiconductor optical amplifier, and the optical waveguide means is a silicon photonics chip.
  • Appendix 8 An optical transmission module including the wavelength tunable light source device according to any one of Appendices 1 to 7 and an optical modulator that modulates the output light of the wavelength tunable light source device.
  • the optical waveguide means includes phase control means configured to control the phase of guided light guided through the optical waveguide means, and a portion configured to reflect part of the guided light. and a reflection means, wherein controlling the wavelength of the light source is such that one of the modes of the resonator formed by the light amplification means and the partial reflection means matches the predetermined wavelength, and the phase 11.
  • the ripple is a light intensity peak of transmitted light caused by reflection at one end of the optical amplifying means and reflection at the optical waveguide means excluding the partial reflection means. Wavelength control method as described.
  • the light source includes first current/voltage applying means configured to control the refractive index of the wavelength tunable filter, and second current/voltage applying means configured to control the refractive index of the phase control means. and temperature control means configured to either heat or cool the mounting means, wherein controlling the wavelength of the light source is performed by applying the first current By controlling the refractive index of the wavelength tunable filter by controlling the voltage applying means using a first control value, and by controlling the second current/voltage applying means using a second control value 13.
  • the wavelength control method according to appendix 11 or 12 comprising controlling the refractive index of the phase control means and controlling the temperature of the mounting means by controlling the temperature control means using a third control value.
  • Controlling the wavelength of the light source includes a lookup table that stores the relationship between the first control value, the second control value, the third control value, and the predetermined wavelength. 14.
  • Appendix 15 The wavelength control method according to any one of Appendices 9 to 14, wherein the optical amplification means comprises a semiconductor optical amplifier, and the optical waveguide means is a silicon photonics chip.
  • wavelength tunable light source device 110 optical amplifier 120 optical waveguide 121 wavelength tunable filter 121-1 first ring resonator 121-2 second ring resonator 122 phase controller 123 partial reflector 130 mounting section 140 controller 200 Optical transmission module 210 Optical modulation device 10 Predetermined wavelength 11 Wavelength of ripple

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Semiconductor Lasers (AREA)

Abstract

波長可変光源においては、発振波長が不安定になるため、本発明の波長可変光源装置は、光増幅手段と、波長可変フィルタを備えた光導波手段と、光増幅手段と光導波手段とを搭載する搭載手段と、光導波手段および搭載手段を制御する制御手段、とを有し、制御手段は、内部反射に起因するリップルの波長が、所定の波長と一致するように、搭載手段の温度を制御する。

Description

波長可変光源装置および波長制御方法
 本発明は、波長可変光源装置および波長制御方法に関し、特に、波長分割多重通信に用いられる波長可変光源装置および波長制御方法に関する。
 近年、情報通信サービスの高度化、多様化に伴って、光通信システムには大容量化が求められている。そのため、光通信システムでは、ファイバ一本当りの伝送容量を増大させることができる波長分割多重(Wavelength Division Multiplexing:WDM)方式が採用されている。そして波長分割多重(WDM)通信においては、使用する波長帯の中から任意の波長で発振できる波長可変光源を備えた光トランシーバが用いられている。このような波長可変光源の一例が特許文献1に記載されている。
 特許文献1に記載された関連する波長可変光源においては、光導波路デバイスが集積されたシリコン基板に半導体光増幅器がハイブリッド実装されている。光導波路デバイスには、2つのリング共振器を用いた導波路型波長フィルタ、位相調整器、および部分反射ミラーが含まれる。そして、半導体光増幅器、導波路型波長フィルタ、および部分反射ミラーを通るパスで、レーザ共振器が形成される構成としている。
特開2019-040099号公報
 上述した関連する波長可変光源のように、半導体光増幅器と光導波路デバイスを備えた波長可変光源では、2つの反射面を光が通ることで、その反射面の間隔で決まる一定の周期で透過光の光強度が高くなるリップルが生じる。このリップルは、光導波路デバイスの内部における反射や、特に半導体光増幅器と光導波路デバイスとの接続部における反射に起因して生じる。そのため、関連する波長可変光源においては、図8に示すように、所定の波長10ではなく、透過率が増加しているリップルの波長11で発振する場合が生じ、発振波長が不安定になる。
 このように、波長可変光源においては、発振波長が不安定になるという問題があった。
 本発明の目的は、波長可変光源においては、発振波長が不安定になるという上述した課題を解決する波長可変光源装置および波長制御方法を提供することにある。
 本発明の波長可変光源装置は、光増幅手段と、波長可変フィルタを備えた光導波手段と、光増幅手段と光導波手段とを搭載する搭載手段と、光導波手段および搭載手段を制御する制御手段、とを有し、制御手段は、内部反射に起因するリップルの波長が、所定の波長と一致するように、搭載手段の温度を制御する。
 本発明の波長制御方法は、光増幅手段と、波長可変フィルタを備えた光導波手段と、光増幅手段と光導波手段とを搭載する搭載手段、とを有する光源の波長を制御する際に、光源の内部反射に起因するリップルの波長が、所定の波長と一致するように、搭載手段の温度を制御する。
 本発明の波長可変光源装置および波長制御方法によれば、波長可変光源の発振波長を安定化することができる。
本発明の第1の実施形態に係る波長可変光源装置の構成を示すブロック図である。 本発明の第1の実施形態に係る波長可変光源装置の具体的な構成を示すブロック図である。 本発明の第1の実施形態に係る波長可変光源装置が備える制御部の動作を説明するための図である。 本発明の第1の実施形態に係る波長可変光源装置が備える制御部の動作を説明するための図である。 本発明の第1の実施形態に係る波長可変光源装置の出力特性の一例を示す図である。 本発明の第1の実施形態に係る波長可変光源装置を備えた光送信モジュールの構成を示すブロック図である。 本発明の第2の実施形態に係る波長制御方法を説明するためのフローチャートである。 関連する波長可変光源の動作を説明するための図である。
 以下に、図面を参照しながら、本発明の実施形態について説明する。
 〔第1の実施形態〕
 図1は、本発明の第1の実施形態に係る波長可変光源装置100の構成を示すブロック図である。波長可変光源装置100は、光増幅部(光増幅手段)110、光導波部(光導波手段)120、搭載部(搭載手段)130、および制御部(制御手段)140を有する。
 光導波部120は、波長可変フィルタ121を備える。搭載部130は、光増幅部110と光導波部120とを搭載する。そして、制御部140は、光導波部120および搭載部130を制御する。ここで制御部140は、内部反射に起因するリップルの波長が、所定の波長と一致するように、搭載部130の温度を制御する。
 このように、本実施形態による波長可変光源装置100においては、制御部140が、内部反射に起因するリップルの波長が所定の波長と一致するように、搭載部130の温度を制御する構成としている。そのため、内部反射に起因するリップルによる所定の発振波長に対する影響を回避することができる。その結果、本実施形態の波長可変光源装置100によれば、波長可変光源の発振波長を安定化することができる。
 なお、内部反射による導波光の位相変化は、以前から用いられているヒータ加熱や電流注入による導波路の屈折率変化によっては制御することが困難である。しかし、本実施形態の波長可変光源装置100によれば、上述したように、内部反射に起因するリップルによる所定の発振波長に対する影響を回避することが可能である。
 光増幅部(光増幅手段)110は、半導体光増幅器(Semiconductor Optical Amplifier:SOA)を備えた構成とすることができる。また、光導波部120は、シリコンフォトニクスチップからなる構成とすることができる。そして、波長可変光源装置100は、半導体光増幅器(SOA)と光導波部120がハイブリッド実装された構成とすることができる。搭載部130として例えばシリコン基板を用いることができる。
 ここで、上述の所定の波長は、波長分割多重(WDM)通信において用いられる波長であって、例えば、国際電気通信連合(International Telecommunication Union:ITU)において規格化された波長とすることができる。
 制御部140はさらに、波長可変フィルタ121の透過波長が、所定の波長と一致するように、波長可変フィルタ121の屈折率を制御する構成とすることができる。
 光導波部120は、図2に示すように、位相制御部(位相制御手段)122および部分反射部(部分反射手段)123を備えた構成とすることができる。位相制御部122は、光導波部120を導波する導波光の位相を制御するように構成されている。また、部分反射部123は、導波光の一部を反射するように構成されている。図2では、波長可変フィルタ121が第1のリング共振器121-1と第2のリング共振器121-2を備えた構成を示す。
 光増幅部110、波長可変フィルタ121、および部分反射部123を通る光路でレーザ共振器が形成され、波長可変レーザを構成している。図2中の一点鎖線は、波長可変レーザの発振光の光路を示す。
 このとき制御部140は、光増幅部110と部分反射部123が構成する共振器(外部共振器)のモードの一が、所定の波長と一致するように、位相制御部122の屈折率を制御する。
 なお、上述したリップルは、透過光の光強度のピークであり、光増幅部110の一端(図2では左端)における反射と内部反射とに起因して生じる。このリップルは、二つの反射面の間隔で定まる一定の周期で生じる。ここで内部反射とは、部分反射部123を除いた光導波部120における反射である。光増幅部110として半導体光増幅器(SOA)を用いる場合、半導体光増幅器(SOA)の高反射側の端面を、上述した光増幅部110の一端とすることができる。
 波長可変光源装置100は、第1の電流・電圧印加部(第1の電流・電圧印加手段)、第2の電流・電圧印加部(第2の電流・電圧印加手段)、および温度制御部(温度制御手段)をさらに有する構成とすることができる(いずれも図示せず)。
 ここで、第1の電流・電圧印加部は、波長可変フィルタ121の屈折率を制御するように構成されている。第2の電流・電圧印加部は、位相制御部122の屈折率を制御するように構成されている。第1の電流・電圧印加部および第2の電流・電圧印加部として例えばヒータを用いて、波長可変フィルタ121および位相制御部122を加熱することにより波長可変フィルタ121および位相制御部122の屈折率を制御することができる。これに限らず、第1の電流・電圧印加部および第2の電流・電圧印加部を用いて、波長可変フィルタ121および位相制御部122に電圧印加または電流注入を行うことにより屈折率を制御することとしてもよい。
 温度制御部は、搭載部130の加熱および冷却のいずれかを行うように構成されている。温度制御部として、典型的には熱電温度コントローラ(Thermo Electric Controller:TEC)を用いることができる。
 制御部140は、第1の制御値、第2の制御値、および第3の制御値と、所定の波長との関係を保存したルックアップテーブルを格納した記憶部(記憶手段)を備えた構成とすることができる。ここで、第1の制御値は、波長可変フィルタ121の屈折率を制御するための第1の電流・電圧印加部に対する制御値であり、第2の制御値は、位相制御部122の屈折率を制御するための第2の電流・電圧印加部に対する制御値である。そして、第3の制御値は、搭載部130の温度制御を行うための温度制御部に対する制御値である。
 このとき制御部140は、第1の電流・電圧印加部を第1の制御値を用いて制御することにより波長可変フィルタ121の屈折率を制御する。また、第2の電流・電圧印加部を第2の制御値を用いて制御することにより位相制御部122の屈折率を制御する。そして、温度制御部を第3の制御値を用いて制御することにより搭載部130の温度を制御する。
 次に、制御部140の動作について、図3および4を用いてさらに詳細に説明する。
 図3および4に、上段から、波長可変フィルタ121を構成する第1のリング共振器121-1および第2のリング共振器121-2の透過スペクトル、光増幅部110と部分反射部123が構成する共振器のモード、および内部反射による透過光強度の周期的なピーク(リップル)を示す。破線は、波長可変光源装置100の発振波長であって、目的とする所定の波長10である。
 制御部140はまず、図3に示すように、内部反射に起因するリップルの波長が、所定の波長10と一致するように、搭載部130の温度を制御する。具体的には、制御部140は、例えば温度制御部としての熱電温度コントローラ(TEC)を制御することにより搭載部130の温度を制御する。このとき、図3に示したスペクトルの全体がシフトする。
 そこで、制御部140は図4に示すように、波長可変フィルタ121を構成する第1のリング共振器121-1および第2のリング共振器121-2の透過波長が、所定の波長10と一致するように、第1のリング共振器121-1および第2のリング共振器121-2の屈折率を制御する。具体的には、制御部140は第1の電流・電圧印加部としてのヒータを制御することにより、第1のリング共振器121-1および第2のリング共振器121-2の温度をそれぞれ変えて屈折率を制御する。
 さらに、制御部140は、光増幅部110と部分反射部123が構成する共振器のモードの一が、所定の波長10と一致するように、位相制御部122の屈折率を制御する。具体的には、制御部140は第2の電流・電圧印加部としてのヒータを制御することにより、位相制御部122の温度を変えて屈折率を制御する。これに限らず、位相制御部122に電流を注入することにより位相制御部122の屈折率を制御することとしてもよい。
 制御部140が上述した制御を行うことにより、波長可変光源装置100は、例えば国際電気通信連合(ITU)において規格化された波長である所定の波長10で安定して発振することが可能になる。制御部140がこのような制御を国際電気通信連合(ITU)において規格化された全ての波長チャネルのそれぞれに対して行うことにより、波長可変光源装置100は広帯域にわたって高い波長精度でレーザ発振を行うことが可能である。図5に、波長可変光源装置100の出力特性の一例を示す。同図から明らかなように、本実施形態の波長可変光源装置100によれば、全波長チャネルにおいて周波数偏差が小さい安定したレーザ発振を実現することができる。
 制御部140は、所定の波長としてITUにおいて規格化された全ての波長チャネルを採用し、それぞれに対する第1の制御値、第2の制御値、および第3の制御値をルックアップテーブルに保存しておくこととしてもよい。これにより、全波長チャネルのうちの任意の波長で安定したレーザ発振を実現することが可能である。なお、第1の制御値、第2の制御値、および第3の制御値として、複数の温度条件の中から選んだ最も良い条件をルックアップテーブルに格納することとしてもよい。
 図6に、上述した波長可変光源装置100を備えた光送信モジュール200の構成を示す。光送信モジュール200は、波長可変光源装置100と光変調装置210を有する。光変調装置210は、波長可変光源装置100の出力光を変調する。光変調装置210として、典型的にはマッハツェンダー型変調器を用いることができる。光送信モジュール200では、上述した波長可変光源装置100を用いているので、波長可変光源の発振波長を安定化することができる。
 以上説明したように、本実施形態の波長可変光源装置100によれば、波長可変光源の発振波長を安定化することができる。
 〔第2の実施形態〕
 次に、本発明の第2の実施形態について説明する。図7に、本実施形態による波長制御方法を説明するためのフローチャートを示す。
 本実施形態による波長制御方法は、光増幅手段と、波長可変フィルタを備えた光導波手段と、光増幅手段と光導波手段とを搭載する搭載手段、とを有する光源の波長を制御する際に用いられる。ここで光増幅手段は半導体光増幅器を備え、光導波手段はシリコンフォトニクスチップからなるものとすることができる。
 本実施形態による波長制御方法においては、まず、光源の内部反射に起因するリップルの波長が、所定の波長と一致するように、搭載手段の温度を制御する(ステップS10)。これにより、内部反射に起因するリップルによる所定の発振波長に対する影響を回避することができる。そのため、本実施形態の波長制御方法によれば、波長可変光源の発振波長を安定化することができる。
 続いて、波長可変フィルタの透過波長が、所定の波長と一致するように、波長可変フィルタの屈折率を制御する(ステップS20)。
 ここで、上述の光源が備える光導波手段は、位相制御手段と部分反射手段とをさらに備えた構成とすることができる。位相制御手段は、光導波手段を導波する導波光の位相を制御するように構成されている。また、部分反射手段は、導波光の一部を反射するように構成されている。このとき、本実施形態による波長制御方法においては、光増幅手段と部分反射手段が構成する共振器のモードの一が、所定の波長と一致するように、位相制御手段の屈折率を制御する(ステップS30)。
 なお、上述したリップルは、光増幅手段の一端における反射と、部分反射手段を除いた光導波手段における反射とに起因して生じる、透過光の光強度のピークである。
 上述した光源は、第1の電流・電圧印加手段、第2の電流・電圧印加手段、および温度制御手段をさらに有する構成とすることができる。ここで第1の電流・電圧印加手段は、波長可変フィルタの屈折率を制御するように構成されている。第2の電流・電圧印加手段は、位相制御手段の屈折率を制御するように構成されている。そして、温度制御手段は、搭載手段の加熱および冷却のいずれかを行うように構成されている。
 この場合、本実施形態による波長制御方法では、ステップS10において、温度制御手段を第3の制御値を用いて制御することにより搭載手段の温度を制御することとすることができる。また、ステップS20において、第1の電流・電圧印加手段を第1の制御値を用いて制御することにより波長可変フィルタの屈折率を制御することとすることができる。そして、ステップS30において、第2の電流・電圧印加手段を第2の制御値を用いて制御することにより位相制御手段の屈折率を制御することとすることができる。
 このとき、本実施形態による波長制御方法において、上述した第1の制御値、第2の制御値、および第3の制御値と、所定の波長との関係を保存したルックアップテーブルを参照することとしてもよい。
 次に、本実施形態による波長制御方法を用いた制御フローの具体例について説明する。
 まず、第1段階において、ルックアップテーブル(LUT)に格納されている条件を、波長可変光源装置に設定して発振させる。このとき、波長可変光源をシャッターなどで覆い、外部には光を出力しないようにする。ただし、波長可変光源装置の内部に備えたフォトディテクタ(photodetector:PD)を用いて光出力をモニタする。
 第2段階において、波長ロック制御を行う。ここでは、波長フィルタの制御のみを行う。同時に、位相も制御することにより、常に出力が最大になるようにする。
 次に第3段階において、搭載手段の温度を制御することにより、内部反射に起因するリップルの波長が所定の波長と一致するように制御する(図7のステップS10)。そして、温度を少し変化させ、第2段階と同様の制御により条件を合わせ(図7のステップS20、S30)、そのうえで光出力を確認する。さらに、温度を少し変化させ制御を繰り返す。そして、最も光出力が高い温度条件を用いて波長可変光源を使用する。
 なお、第3段階の制御を終えてからレーザを出力させてもよいし、第2段階の制御の時点でレーザを出力させ、第3段階において低周波数で温度を変化させながらパワーをチェックすることとしてもよい。
 以上説明したように、本実施形態の波長制御方法によれば、波長可変光源の発振波長を安定化することができる。
 上記の実施形態の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。
 (付記1)光増幅手段と、波長可変フィルタを備えた光導波手段と、前記光増幅手段と前記光導波手段とを搭載する搭載手段と、前記光導波手段および前記搭載手段を制御する制御手段、とを有し、前記制御手段は、内部反射に起因するリップルの波長が、所定の波長と一致するように、前記搭載手段の温度を制御する波長可変光源装置。
 (付記2)前記制御手段は、前記波長可変フィルタの透過波長が、前記所定の波長と一致するように、前記波長可変フィルタの屈折率を制御する付記1に記載した波長可変光源装置。
 (付記3)前記光導波手段は、前記光導波手段を導波する導波光の位相を制御するように構成された位相制御手段と、前記導波光の一部を反射するように構成された部分反射手段、とをさらに備え、前記制御手段は、前記光増幅手段と前記部分反射手段が構成する共振器のモードの一が、前記所定の波長と一致するように、前記位相制御手段の屈折率を制御する付記2に記載した波長可変光源装置。
 (付記4)前記リップルは、前記光増幅手段の一端における反射と、前記部分反射手段を除いた前記光導波手段における反射とに起因して生じる、透過光の光強度のピークである付記3に記載した波長可変光源装置。
 (付記5)前記波長可変フィルタの屈折率を制御するように構成された第1の電流・電圧印加手段と、前記位相制御手段の屈折率を制御するように構成された第2の電流・電圧印加手段と、前記搭載手段の加熱および冷却のいずれかを行うように構成された温度制御手段、とをさらに有し、前記制御手段は、前記第1の電流・電圧印加手段を第1の制御値を用いて制御することにより前記波長可変フィルタの屈折率を制御し、前記第2の電流・電圧印加手段を第2の制御値を用いて制御することにより前記位相制御手段の屈折率を制御し、前記温度制御手段を第3の制御値を用いて制御することにより前記搭載手段の温度を制御する付記3または4に記載した波長可変光源装置。
 (付記6)前記制御手段は、前記第1の制御値、前記第2の制御値、および前記第3の制御値と、前記所定の波長との関係を保存したルックアップテーブルを格納した記憶手段を備える付記5に記載した波長可変光源装置。
 (付記7)前記光増幅手段は、半導体光増幅器を備え、前記光導波手段は、シリコンフォトニクスチップからなる付記1から6のいずれか一項に記載した波長可変光源装置。
 (付記8)付記1から7のいずれか一項に記載した波長可変光源装置と、前記波長可変光源装置の出力光を変調する光変調装置、とを有する光送信モジュール。
 (付記9)光増幅手段と、波長可変フィルタを備えた光導波手段と、前記光増幅手段と前記光導波手段とを搭載する搭載手段、とを有する光源の波長を制御する際に、前記光源の内部反射に起因するリップルの波長が、所定の波長と一致するように、前記搭載手段の温度を制御する波長制御方法。
 (付記10)前記光源の波長を制御することは、前記波長可変フィルタの透過波長が、前記所定の波長と一致するように、前記波長可変フィルタの屈折率を制御することを含む付記9に記載した波長制御方法。
 (付記11)前記光導波手段は、前記光導波手段を導波する導波光の位相を制御するように構成された位相制御手段と、前記導波光の一部を反射するように構成された部分反射手段、とをさらに備え、前記光源の波長を制御することは、前記光増幅手段と前記部分反射手段が構成する共振器のモードの一が、前記所定の波長と一致するように、前記位相制御手段の屈折率を制御することを含む付記10に記載した波長制御方法。
 (付記12)前記リップルは、前記光増幅手段の一端における反射と、前記部分反射手段を除いた前記光導波手段における反射とに起因して生じる、透過光の光強度のピークである付記11に記載した波長制御方法。
 (付記13)前記光源は、前記波長可変フィルタの屈折率を制御するように構成された第1の電流・電圧印加手段と、前記位相制御手段の屈折率を制御するように構成された第2の電流・電圧印加手段と、前記搭載手段の加熱および冷却のいずれかを行うように構成された温度制御手段、とをさらに有し、前記光源の波長を制御することは、前記第1の電流・電圧印加手段を第1の制御値を用いて制御することにより前記波長可変フィルタの屈折率を制御し、前記第2の電流・電圧印加手段を第2の制御値を用いて制御することにより前記位相制御手段の屈折率を制御し、前記温度制御手段を第3の制御値を用いて制御することにより前記搭載手段の温度を制御することを含む付記11または12に記載した波長制御方法。
 (付記14)前記光源の波長を制御することは、前記第1の制御値、前記第2の制御値、および前記第3の制御値と、前記所定の波長との関係を保存したルックアップテーブルを参照することを含む付記13に記載した波長制御方法。
 (付記15)前記光増幅手段は、半導体光増幅器を備え、前記光導波手段は、シリコンフォトニクスチップからなる付記9から14のいずれか一項に記載した波長制御方法。
 以上、実施形態を参照して本願発明を説明したが、本願発明は上記実施形態に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 100  波長可変光源装置
 110  光増幅部
 120  光導波部
 121  波長可変フィルタ
 121-1  第1のリング共振器
 121-2  第2のリング共振器
 122  位相制御部
 123  部分反射部
 130  搭載部
 140  制御部
 200  光送信モジュール
 210  光変調装置
 10  所定の波長
 11  リップルの波長

Claims (15)

  1. 光増幅手段と、
     波長可変フィルタを備えた光導波手段と、
     前記光増幅手段と前記光導波手段とを搭載する搭載手段と、
     前記光導波手段および前記搭載手段を制御する制御手段、とを有し、
     前記制御手段は、内部反射に起因するリップルの波長が、所定の波長と一致するように、前記搭載手段の温度を制御する
     波長可変光源装置。
  2. 前記制御手段は、前記波長可変フィルタの透過波長が、前記所定の波長と一致するように、前記波長可変フィルタの屈折率を制御する
     請求項1に記載した波長可変光源装置。
  3. 前記光導波手段は、
      前記光導波手段を導波する導波光の位相を制御するように構成された位相制御手段と、
      前記導波光の一部を反射するように構成された部分反射手段、とをさらに備え、
     前記制御手段は、前記光増幅手段と前記部分反射手段が構成する共振器のモードの一が、前記所定の波長と一致するように、前記位相制御手段の屈折率を制御する
     請求項2に記載した波長可変光源装置。
  4. 前記リップルは、前記光増幅手段の一端における反射と、前記部分反射手段を除いた前記光導波手段における反射とに起因して生じる、透過光の光強度のピークである
     請求項3に記載した波長可変光源装置。
  5. 前記波長可変フィルタの屈折率を制御するように構成された第1の電流・電圧印加手段と、
     前記位相制御手段の屈折率を制御するように構成された第2の電流・電圧印加手段と、
     前記搭載手段の加熱および冷却のいずれかを行うように構成された温度制御手段、とをさらに有し、
     前記制御手段は、
      前記第1の電流・電圧印加手段を第1の制御値を用いて制御することにより前記波長可変フィルタの屈折率を制御し、
      前記第2の電流・電圧印加手段を第2の制御値を用いて制御することにより前記位相制御手段の屈折率を制御し、
      前記温度制御手段を第3の制御値を用いて制御することにより前記搭載手段の温度を制御する
     請求項3または4に記載した波長可変光源装置。
  6. 前記制御手段は、前記第1の制御値、前記第2の制御値、および前記第3の制御値と、前記所定の波長との関係を保存したルックアップテーブルを格納した記憶手段を備える
     請求項5に記載した波長可変光源装置。
  7. 前記光増幅手段は、半導体光増幅器を備え、
     前記光導波手段は、シリコンフォトニクスチップからなる
     請求項1から6のいずれか一項に記載した波長可変光源装置。
  8. 請求項1から7のいずれか一項に記載した波長可変光源装置と、
     前記波長可変光源装置の出力光を変調する光変調装置、とを有する
     光送信モジュール。
  9. 光増幅手段と、波長可変フィルタを備えた光導波手段と、前記光増幅手段と前記光導波手段とを搭載する搭載手段、とを有する光源の波長を制御する際に、
     前記光源の内部反射に起因するリップルの波長が、所定の波長と一致するように、前記搭載手段の温度を制御する
     波長制御方法。
  10. 前記光源の波長を制御することは、前記波長可変フィルタの透過波長が、前記所定の波長と一致するように、前記波長可変フィルタの屈折率を制御することを含む
     請求項9に記載した波長制御方法。
  11. 前記光導波手段は、
      前記光導波手段を導波する導波光の位相を制御するように構成された位相制御手段と、
      前記導波光の一部を反射するように構成された部分反射手段、とをさらに備え、
     前記光源の波長を制御することは、前記光増幅手段と前記部分反射手段が構成する共振器のモードの一が、前記所定の波長と一致するように、前記位相制御手段の屈折率を制御することを含む
     請求項10に記載した波長制御方法。
  12. 前記リップルは、前記光増幅手段の一端における反射と、前記部分反射手段を除いた前記光導波手段における反射とに起因して生じる、透過光の光強度のピークである
     請求項11に記載した波長制御方法。
  13. 前記光源は、
      前記波長可変フィルタの屈折率を制御するように構成された第1の電流・電圧印加手段と、
      前記位相制御手段の屈折率を制御するように構成された第2の電流・電圧印加手段と、
      前記搭載手段の加熱および冷却のいずれかを行うように構成された温度制御手段、とをさらに有し、
     前記光源の波長を制御することは、
      前記第1の電流・電圧印加手段を第1の制御値を用いて制御することにより前記波長可変フィルタの屈折率を制御し、
      前記第2の電流・電圧印加手段を第2の制御値を用いて制御することにより前記位相制御手段の屈折率を制御し、
      前記温度制御手段を第3の制御値を用いて制御することにより前記搭載手段の温度を制御することを含む
     請求項11または12に記載した波長制御方法。
  14. 前記光源の波長を制御することは、前記第1の制御値、前記第2の制御値、および前記第3の制御値と、前記所定の波長との関係を保存したルックアップテーブルを参照することを含む
     請求項13に記載した波長制御方法。
  15. 前記光増幅手段は、半導体光増幅器を備え、
     前記光導波手段は、シリコンフォトニクスチップからなる
     請求項9から14のいずれか一項に記載した波長制御方法。
PCT/JP2021/041483 2021-11-11 2021-11-11 波長可変光源装置および波長制御方法 WO2023084673A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/041483 WO2023084673A1 (ja) 2021-11-11 2021-11-11 波長可変光源装置および波長制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/041483 WO2023084673A1 (ja) 2021-11-11 2021-11-11 波長可変光源装置および波長制御方法

Publications (1)

Publication Number Publication Date
WO2023084673A1 true WO2023084673A1 (ja) 2023-05-19

Family

ID=86335318

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/041483 WO2023084673A1 (ja) 2021-11-11 2021-11-11 波長可変光源装置および波長制御方法

Country Status (1)

Country Link
WO (1) WO2023084673A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04156120A (ja) * 1990-10-19 1992-05-28 Canon Inc 光通信システム及びそこに用いられる送、受信装置
WO2006077641A1 (ja) * 2005-01-20 2006-07-27 Fujitsu Limited 光導波路デバイス及び半導体デバイス
JP2008270583A (ja) * 2007-04-23 2008-11-06 Nec Corp 波長可変光源装置とその制御方法,制御用プログラム
JP2017003670A (ja) * 2015-06-05 2017-01-05 日本電信電話株式会社 ハイブリッド集積型光送信器
JP2019040099A (ja) * 2017-08-25 2019-03-14 富士通株式会社 導波路型波長フィルタ、これを用いた波長可変光源、光トランシーバ、及び導波路型波長フィルタの製造方法
JP2021129004A (ja) * 2020-02-13 2021-09-02 古河電気工業株式会社 レーザ装置およびその制御方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04156120A (ja) * 1990-10-19 1992-05-28 Canon Inc 光通信システム及びそこに用いられる送、受信装置
WO2006077641A1 (ja) * 2005-01-20 2006-07-27 Fujitsu Limited 光導波路デバイス及び半導体デバイス
JP2008270583A (ja) * 2007-04-23 2008-11-06 Nec Corp 波長可変光源装置とその制御方法,制御用プログラム
JP2017003670A (ja) * 2015-06-05 2017-01-05 日本電信電話株式会社 ハイブリッド集積型光送信器
JP2019040099A (ja) * 2017-08-25 2019-03-14 富士通株式会社 導波路型波長フィルタ、これを用いた波長可変光源、光トランシーバ、及び導波路型波長フィルタの製造方法
JP2021129004A (ja) * 2020-02-13 2021-09-02 古河電気工業株式会社 レーザ装置およびその制御方法

Similar Documents

Publication Publication Date Title
CA2720036C (en) Method and apparatus for reducing the amplitude modulation of optical signals in external cavity lasers
KR100681543B1 (ko) 그리드 생성기의 계속적 튜닝을 갖는 외부 공동 레이저
US8885675B2 (en) Wavelength variable laser device, and method and program for controlling the same
JP4992073B2 (ja) 外部空洞同調可能レーザの位相制御
JP5193732B2 (ja) 波長可変レーザモジュール、波長可変レーザ装置、及び、波長可変レーザの制御方法
US7656911B2 (en) External resonator type wavelength-variable laser
KR101276338B1 (ko) 파장 가변 광원
JP4332067B2 (ja) 波長可変レーザ装置
JP2008270583A (ja) 波長可変光源装置とその制御方法,制御用プログラム
JP2007505496A (ja) チューナブルレーザのための透過ピークにロックするための探索及び追従制御
JP4596181B2 (ja) 外部共振器型波長可変半導体レーザ
US20130322472A1 (en) Wavelength selective and tunable laser device
US6724799B2 (en) Wavelength tunable laser light source
JP2016212265A (ja) レーザ光源
US7061946B2 (en) Intra-cavity etalon with asymmetric power transfer function
US20090086774A1 (en) Control device, laser device, wavelength converting method, and program
WO2023084673A1 (ja) 波長可変光源装置および波長制御方法
JP5333238B2 (ja) 波長可変レーザ装置及びその波長切替方法
Gao et al. High-performance hybrid-integrated silicon photonic tunable laser
JP6586028B2 (ja) 半導体レーザ光源
JP2020167359A (ja) 波長可変光源及びその波長制御方法
JP2011176070A (ja) 波長可変レーザ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21964028

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023559289

Country of ref document: JP

Kind code of ref document: A