WO2023084658A1 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
WO2023084658A1
WO2023084658A1 PCT/JP2021/041422 JP2021041422W WO2023084658A1 WO 2023084658 A1 WO2023084658 A1 WO 2023084658A1 JP 2021041422 W JP2021041422 W JP 2021041422W WO 2023084658 A1 WO2023084658 A1 WO 2023084658A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
reheater
cooler
air conditioner
switching mechanism
Prior art date
Application number
PCT/JP2021/041422
Other languages
French (fr)
Japanese (ja)
Inventor
千歳 田中
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2021/041422 priority Critical patent/WO2023084658A1/en
Priority to CN202180103854.0A priority patent/CN118176395A/en
Publication of WO2023084658A1 publication Critical patent/WO2023084658A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/26Disposition of valves, e.g. of on-off valves or flow control valves of fluid flow reversing valves

Definitions

  • the present disclosure relates to air conditioners.
  • An outdoor unit provided with an outdoor heat exchanger functioning as a condenser, an indoor unit provided with a first indoor heat exchanger functioning as a cooler and a second indoor heat exchanger functioning as a reheater, and an outdoor unit
  • An air conditioner is known that has a heat exchanger, a first indoor heat exchanger, and a compressor that circulates a refrigerant through the second indoor heat exchanger.
  • the air cooled and dehumidified by the first indoor heat exchanger is heated by the second indoor heat exchanger, so that the temperature and humidity of the air blown out from the indoor unit into the air-conditioned space are are individually adjusted.
  • Such an air conditioner is described, for example, in Japanese Patent Laying-Open No. 2002-89998 (Patent Document 1).
  • the present disclosure has been made in view of the above problems, and an object thereof is to provide an air conditioner in which the direction of the refrigerant flowing through the reheater and the cooler can be the same in both cooling-dominant operation and heating-dominant operation. to provide.
  • the air conditioner of the present disclosure includes a refrigerant circuit and a blower.
  • the refrigerant circuit has a compressor, a refrigerant channel switching mechanism, an outdoor heat exchanger, a first expansion valve, a reheater, a second expansion valve, and a cooler, and is configured to circulate the refrigerant.
  • the blower is configured to blow air to the reheater and the cooler.
  • the refrigerant channel switching mechanism is configured to be switchable between a first switching state and a second switching state.
  • the refrigerant flow switching mechanism divides the refrigerant circuit into the compressor, the refrigerant flow switching mechanism, the outdoor heat exchanger, the first expansion valve, the refrigerant flow switching mechanism, the reheater, and the second expansion valve. , the cooler, and the refrigerant flow switching mechanism are switched so that the refrigerant flows in this order.
  • the refrigerant flow switching mechanism connects the refrigerant circuit to the compressor, the refrigerant flow switching mechanism, the reheater, the second expansion valve, the cooler, the refrigerant flow switching mechanism, the first expansion valve, the outdoor It is configured to switch so that the refrigerant flows in the order of the heat exchanger and the refrigerant flow switching mechanism.
  • the reheater and cooler are configured such that in both the first switching state and the second switching state, air blown by the blower passes through the cooler and then through the reheater.
  • the refrigerant flow switching mechanism is configured to switch the refrigerant circuit so that the refrigerant flows in order of the reheater and the cooler in both the first switching state and the second switching state. It is Therefore, the direction of the refrigerant flowing through the reheater and the cooler can be the same in both the cooling-dominant operation and the heating-dominant operation.
  • FIG. 3 is a refrigerant circuit diagram of cooling-main operation of the air conditioner according to Embodiment 1;
  • FIG. 2 is a refrigerant circuit diagram of a heating-dominant operation of the air conditioner according to Embodiment 1;
  • 4 is a schematic diagram of a first switching state of the rotary hexagonal valve of the air conditioner according to Embodiment 1.
  • FIG. 4 is a schematic diagram of a second switching state of the rotary hexagonal valve of the air conditioner according to Embodiment 1.
  • FIG. 4 is a schematic diagram of a first switching state of the slide-type hexagonal valve of the air conditioner according to Embodiment 1.
  • FIG. 4 is a schematic diagram of a second switching state of the slide-type hexagonal valve of the air conditioner according to Embodiment 1.
  • FIG. 10 is a refrigerant circuit diagram of cooling-dominant operation of the air conditioner according to Embodiment 2;
  • FIG. 7 is a refrigerant circuit diagram of a heating-dominant operation of the air conditioner according to Embodiment 2;
  • FIG. 11 is a refrigerant circuit diagram of cooling-dominant operation of the air conditioner according to Embodiment 3;
  • FIG. 11 is a refrigerant circuit diagram of a heating-dominant operation of an air conditioner according to Embodiment 3;
  • FIG. 11 is a perspective view of a reheater of an air conditioner according to Embodiment 3;
  • FIG. 11 is a perspective view of a cooler of an air conditioner according to Embodiment 3;
  • FIG. 11 is a perspective view of a reheater of an air conditioner according to Embodiment 4;
  • FIG. 11 is a perspective view of a cooler of an air conditioner according to Embodiment 4;
  • FIG. 11 is a cross-sectional view of a fin of a reheater of an air conditioner according to Embodiment 4;
  • Embodiment 1 A configuration of an air conditioner 100 according to Embodiment 1 will be described with reference to FIG.
  • FIG. 1 is a refrigerant circuit diagram of an air conditioner 100 according to Embodiment 1.
  • the air conditioner 100 includes a refrigerant circuit RC, a sensor 15, an air passage 31, a blower 32, and a controller CD.
  • the refrigerant circuit RC includes a high-pressure pipe 1, a low-pressure pipe 2, a discharge pipe 3, a suction pipe 4, a gas pipe 5, a liquid pipe 6, a compressor 11, a refrigerant flow switching mechanism RF, an outdoor heat exchanger 13, and a first expansion valve. 14 , a reheater 21 , a cooler 22 and a second expansion valve 23 .
  • a compressor 11 In the refrigerant circuit RC, a compressor 11, a refrigerant flow switching mechanism RF, an outdoor heat exchanger 13, a first expansion A valve 14, a reheater 21, a cooler 22 and a second expansion valve 23 are connected.
  • the high-pressure pipe 1 is connected to the refrigerant flow switching mechanism RF and the reheater 21 .
  • the low-pressure pipe 2 is connected to the refrigerant flow switching mechanism RF and the cooler 22 .
  • the discharge pipe 3 is connected to the discharge side of the compressor 11 and the refrigerant flow switching mechanism RF.
  • the suction pipe 4 is connected to the suction side of the compressor 11 and the refrigerant flow switching mechanism RF.
  • the gas pipe 5 is connected to the refrigerant flow switching mechanism RF and the outdoor heat exchanger 13 .
  • the liquid pipe 6 connects the outdoor heat exchanger 13 and the refrigerant flow switching mechanism RF via the first expansion valve 14 .
  • the refrigerant circuit RC is configured to circulate the refrigerant.
  • the refrigerant is a mixed refrigerant.
  • a mixed refrigerant is a mixture of two or more refrigerants. Note that the refrigerant may be a single refrigerant.
  • the air conditioner 100 includes an outdoor unit 10 and an indoor unit 20.
  • An outdoor unit 10 and an indoor unit 20 are connected by a high pressure pipe 1 and a low pressure pipe 2 .
  • the outdoor unit 10 has a compressor 11, a refrigerant flow switching mechanism RF, an outdoor heat exchanger 13, a first expansion valve 14, a sensor 15, and a control device CD.
  • the compressor 11 , the refrigerant flow switching mechanism RF, the outdoor heat exchanger 13 , the first expansion valve 14 , the sensor 15 and the controller CD are housed in the outdoor unit 10 .
  • the indoor unit 20 has a reheater 21 , a cooler 22 , a second expansion valve 23 , an air passage 31 and a blower 32 .
  • the reheater 21 , the cooler 22 , the second expansion valve 23 and the blower 32 are housed in the indoor unit 20 .
  • An air passage 31 is provided in the indoor unit 20 .
  • the compressor 11 is configured to compress refrigerant.
  • the compressor 11 is configured to compress and discharge the sucked refrigerant.
  • Compressor 11 is configured, for example, to have a variable capacity.
  • Compressor 11 is configured, for example, to change its capacity by adjusting the rotational speed of compressor 11 based on an instruction from control device CD.
  • the refrigerant channel switching mechanism RF is configured to be switchable between a first switching state and a second switching state.
  • the coolant flow path switching mechanism RF is configured, for example, to be switched between a first switching state and a second switching state based on an instruction from the control device CD.
  • the refrigerant flow switching mechanism RF connects the refrigerant circuit RC to the compressor 11, the refrigerant flow switching mechanism RF, the outdoor heat exchanger 13, the first expansion valve 14, the refrigerant flow switching mechanism RF, and the refrigerant circuit RC.
  • the refrigerant is switched to flow in the order of the heater 21, the second expansion valve 23, the cooler 22, and the refrigerant flow switching mechanism RF.
  • the refrigerant flow switching mechanism RF is in the first switching state in the cooling-dominant operation.
  • the refrigerant flow switching mechanism RF connects the refrigerant circuit RC to the compressor 11, the refrigerant flow switching mechanism RF, the reheater 21, the second expansion valve 23, the cooler 22, and the refrigerant flow switching mechanism.
  • RF, the first expansion valve 14, the outdoor heat exchanger 13, and the refrigerant flow switching mechanism RF are configured to switch so that the refrigerant flows in this order.
  • the refrigerant flow switching mechanism RF is in the second switching state in the heating main operation.
  • the refrigerant flow switching mechanism RF is the hexagonal valve 12 .
  • Each of the six connection ports (first connection port P1 to sixth connection port P6) of the hexagonal valve 12 is connected to the high pressure pipe 1, the low pressure pipe 2, the discharge pipe 3, the suction pipe 4, the gas pipe 5, and the liquid pipe 6, respectively. It is connected.
  • the first connection port P1 is connected to the discharge pipe 3 .
  • the second connection port P2 is connected to the gas pipe 5 .
  • the third connection port P3 is connected to the suction pipe 4 .
  • the fourth connection port P4 is connected to the low pressure pipe 2 .
  • the fifth connection port P5 is connected to the liquid pipe 6 .
  • the sixth connection port P6 is connected to the high pressure pipe 1 .
  • a refrigerant circuit RC is configured to reach the compressor 11 again via the reheater 21 , the second expansion valve 23 , the cooler 22 , the low-pressure pipe 2 , the hexagonal valve 12 , and the suction pipe 4 .
  • the first connection port P1 is connected to the second connection port P2
  • the third connection port P3 is connected to the fourth connection port
  • the fifth connection port is connected to the sixth connection port. The port is connected.
  • the first connection port P1 is connected to the sixth connection port P6, the second connection port P2 is connected to the third connection port P3, and the fourth connection port P4 is connected to The fifth connection port P5 is connected.
  • the outdoor heat exchanger 13 is configured to exchange heat between the refrigerant flowing inside the outdoor heat exchanger 13 and the air flowing outside the outdoor heat exchanger 13 .
  • the outdoor heat exchanger 13 is configured to function as a condenser that condenses the refrigerant in the cooling main operation and the cooling operation.
  • the outdoor heat exchanger 13 is configured to function as an evaporator that evaporates the refrigerant in the heating main operation and the heating operation.
  • the outdoor heat exchanger 13 is, for example, a fin-and-tube heat exchanger having a plurality of fins and heat transfer tubes passing through the plurality of fins.
  • the first expansion valve 14 is configured to reduce the pressure by expanding the refrigerant condensed in the condenser.
  • the first expansion valve 14 is in a fully open state and does not function as a decompression device in the cooling-dominant operation and the heating-dominant operation.
  • the first expansion valve 14 is configured to reduce the pressure of the refrigerant condensed by the outdoor heat exchanger 13 during cooling operation.
  • the first expansion valve 14 is configured to reduce the pressure of the refrigerant condensed by the reheater 21 and the cooler 22 during heating operation.
  • the first expansion valve 14 is, for example, an electromagnetic expansion valve.
  • the first expansion valve 14 is configured such that the degree of opening of the first expansion valve 14 is adjusted based on instructions from the control device CD, for example, so that the amount of pressure reduction changes.
  • the sensor 15 is installed between the first expansion valve 14 and the refrigerant flow switching mechanism RF in the refrigerant circuit RC.
  • the sensor 15 is installed on a pipe connecting the first expansion valve 14 and the refrigerant flow switching mechanism RF.
  • Sensor 15 is configured to be able to measure the pressure or temperature of the refrigerant in this pipe.
  • the sensor 15 is configured to be able to measure the pressure or temperature of the refrigerant in the refrigerant circuit RC.
  • the sensor 15 may be a refrigerant pressure sensor that can measure the pressure of the refrigerant, or a refrigerant temperature sensor that can measure the temperature of the refrigerant.
  • the control device CD is configured to perform calculations, instructions, etc. to control each device of the air conditioner 100 .
  • the control device CD is electrically connected to the compressor 11, the refrigerant flow switching mechanism RF, the first expansion valve 14, the sensor 15, the second expansion valve 23, the blower 32, etc., and controls these operations. is configured to
  • the reheater 21 is configured to exchange heat between the refrigerant flowing inside the reheater 21 and the air flowing outside the reheater 21 .
  • the reheater 21 is configured to function as a condenser that condenses the refrigerant in the cooling-dominant operation, the heating-dominant operation, and the heating operation.
  • the reheater 21 is configured to function as an evaporator that evaporates the refrigerant during cooling operation.
  • the reheater 21 is, for example, a fin-and-tube heat exchanger having a plurality of fins and heat transfer tubes passing through the plurality of fins.
  • the cooler 22 is configured to exchange heat between the refrigerant flowing inside the cooler 22 and the air flowing outside the cooler 22 .
  • the cooler 22 is configured to function as an evaporator that evaporates the refrigerant in cooling-dominant operation, heating-dominant operation, and cooling operation.
  • the cooler 22 is configured to function as a condenser that condenses the refrigerant during heating operation.
  • Cooler 22 is, for example, a fin-and-tube heat exchanger having a plurality of fins and heat transfer tubes passing through the plurality of fins.
  • the second expansion valve 23 is configured to reduce the pressure by expanding the refrigerant condensed by the condenser.
  • the second expansion valve 23 is configured to reduce the pressure of the refrigerant condensed by the reheater 21 in the cooling main operation and the heating main operation.
  • the second expansion valve 23 is fully open during cooling operation and heating operation, and does not function as a decompression device.
  • the second expansion valve 23 is, for example, an electromagnetic expansion valve.
  • the second expansion valve 23 is configured such that the degree of opening of the second expansion valve 23 is adjusted based on instructions from the control device CD, for example, so that the amount of pressure reduction changes.
  • the air passage 31 is provided in the housing of the indoor unit 20.
  • a reheater 21 and a cooler 22 are arranged in the air passage 31 .
  • Air blower 32 is configured to blow air to reheater 21 and cooler 22 .
  • the reheater 21 and the cooler 22 are arranged side by side in the direction of air flow blown by the blower 32 .
  • the reheater 21 is arranged on the leeward side of the cooler 22 in the flow of air blown by the blower 32 .
  • the cooler 22 is arranged upstream of the reheater 21 in the air passage 31 .
  • the reheater 21 and the cooler 22 share the air passage 31 and the blower 32.
  • the reheater 21 and the cooler 22 are configured such that the air blown by the blower 32 passes through the cooler 22 and then the reheater 21 in both the first switching state and the second switching state. ing.
  • the reheater 21 and the cooling device are operated so that the air passes through the reheater 21 after passing through the cooler 22.
  • the vessel 22 is constructed.
  • the reheater 21 and the cooler 22 may be configured so that the refrigerant flows countercurrent to the air flow. Both the reheater 21 and the cooler 22 have a heat transfer tube flow path configuration in which air and refrigerant flow countercurrently. Each of the reheater 21 and the cooler 22 has a windward heat transfer tube and a leeward heat transfer tube. The heat transfer tube on the windward side is connected to the heat transfer tube on the leeward side. In the cooling-dominant operation and the heating-dominant operation, the refrigerant is configured to flow from the heat transfer tube on the leeward side to the heat transfer tube on the windward side. In both the cooling-dominant operation and the heating-dominant operation, the refrigerant flowing inside the heat transfer tubes of the reheater 21 and the cooler 22 and the air flowing outside the heat transfer tubes flow in opposite directions.
  • the cooling-dominant operation of the air conditioner 100 according to Embodiment 1 will be described with reference to FIG.
  • the cooling amount of the air in the cooler 22 is larger than the heating amount of the air in the reheater 21, and the outdoor heat exchanger 13 functions as a condenser, so that the surplus heat radiation amount of the heat pump is reduced. This is an operation in which heat is released to the outside air.
  • the air after passing through the reheater 21 has a lower temperature and a lower moisture content than the air before passing through the cooler 22 .
  • the hexagonal valve 12 is switched to the first switching state as indicated by the solid line in FIG.
  • the vapor refrigerant compressed to high temperature and high pressure by the compressor 11 flows out to the discharge pipe 3 , passes through the hexagonal valve 12 , and flows into the outdoor heat exchanger 13 via the gas pipe 5 .
  • the outdoor heat exchanger 13 functions as a condenser.
  • the high-temperature and high-pressure vapor refrigerant radiates heat to outdoor air introduced into the outdoor heat exchanger 13 by an outdoor blower (not shown). As a result, the high-temperature and high-pressure vapor refrigerant is condensed into a high-temperature and high-pressure gas-liquid two-phase refrigerant.
  • the high-temperature, high-pressure gas-liquid two-phase refrigerant flows out to the liquid pipe 6, passes through the first expansion valve 14, the hexagonal valve 12, and flows into the reheater 21 via the high-pressure pipe 1.
  • the reheater 21 functions as a condenser.
  • the high-temperature and high-pressure gas-liquid two-phase refrigerant radiates heat to the air introduced into the reheater 21 by the blower 32 .
  • the high-temperature and high-pressure gas-liquid two-phase refrigerant is condensed into a high-pressure liquid refrigerant.
  • This high-pressure liquid refrigerant flows into the second expansion valve 23 .
  • This high-pressure liquid refrigerant is expanded by the second expansion valve 23 and decompressed to become a low-temperature, low-pressure gas-liquid two-phase refrigerant.
  • This low-temperature, low-pressure gas-liquid two-phase refrigerant flows into the cooler 22 .
  • Cooler 22 functions as an evaporator.
  • the low-temperature, low-pressure gas-liquid two-phase refrigerant evaporates to become a low-pressure vapor refrigerant.
  • the low-pressure vapor refrigerant flows into the hexagonal valve 12 via the low-pressure pipe 2 and is sucked into the compressor 11 via the suction pipe 4 .
  • the refrigerant circulates through the refrigerant circuit RC in the same process thereafter.
  • the reheater 21 and the cooler 22 share the air passage 31 and the blower 32.
  • the air guided through the air passage 31 by the blower 32 is first cooled and dehumidified by passing through the cooler 22 . This lowers the temperature of the air and reduces the moisture content of the air.
  • the air that has finished passing through the cooler 22 is heated by being led to the air passage 31 and passing through the reheater 21 . This increases the temperature of the air.
  • since humidification is generally not performed in the reheater 21 , the moisture content of the air does not change before and after passing through the reheater 21 .
  • the air that has finished passing through the reheater 21 is guided to the air passage 31 and blown out to the air conditioning target space.
  • the air After the air is cooled and dehumidified in the cooler 22, it is heated in the reheater 21 as necessary, so the amount of dehumidification of the air and the temperature of the air can be individually adjusted. Therefore, air having a temperature and humidity set by the user can be supplied to the space to be air-conditioned.
  • the heating main operation of the air conditioner 100 according to Embodiment 1 will be described with reference to FIG.
  • the amount of air heating in the reheater 21 is greater than the amount of air cooling in the cooler 22, and the outdoor heat exchanger 13 functions as an evaporator, so that the surplus cold heat amount of the heat pump is reduced. This is an operation in which heat is exhausted to the outside air.
  • the air after passing through the reheater 21 has a higher temperature and a lower moisture content than the air before passing through the cooler 22 .
  • the hexagonal valve 12 is switched to the second switching state as indicated by the solid line in FIG.
  • the vapor refrigerant compressed to high temperature and high pressure by the compressor 11 flows out to the discharge pipe 3 , passes through the hexagonal valve 12 , and flows into the reheater 21 via the high pressure pipe 1 .
  • the reheater 21 functions as a condenser.
  • the high-temperature and high-pressure vapor refrigerant radiates heat to the air introduced into the reheater 21 by the blower 32 .
  • the high-temperature and high-pressure vapor refrigerant is condensed into a high-pressure liquid refrigerant.
  • This high-pressure liquid refrigerant flows into the second expansion valve 23 .
  • This high-pressure liquid refrigerant is expanded by the second expansion valve 23 and decompressed to become a low-temperature, low-pressure gas-liquid two-phase refrigerant.
  • This low-temperature, low-pressure gas-liquid two-phase refrigerant flows into the cooler 22 .
  • Cooler 22 functions as an evaporator. By absorbing heat from the air introduced into the cooler 22 by the blower 32, part of the low-temperature, low-pressure gas-liquid two-phase refrigerant evaporates. After that, the low-temperature and low-pressure gas-liquid two-phase refrigerant flows through the low-pressure pipe 2 into the hexagonal valve 12, flows out into the liquid pipe 6, and flows through the first expansion valve 14 into the outdoor heat exchanger 13. .
  • the outdoor heat exchanger 13 functions as an evaporator. By absorbing heat from outdoor air introduced into the outdoor heat exchanger 13 by an outdoor blower (not shown), the low-temperature, low-pressure gas-liquid two-phase refrigerant evaporates to become a low-pressure vapor refrigerant. This low-pressure vapor refrigerant flows into the hexagonal valve 12 via the gas pipe 5 and is sucked into the compressor 11 via the suction pipe 4 . In the heating-dominant operation, the refrigerant thereafter circulates in the refrigerant circuit RC in the same process.
  • the air guided through the air passage 31 by the blower 32 is cooled and dehumidified by the cooler 22, then heated by the reheater 21 and blown out to the air conditioning target space, as in the cooling main operation. Therefore, the amount of dehumidification of the air and the temperature of the air can be individually adjusted. Therefore, air having a temperature and humidity set by the user can be supplied to the space to be air-conditioned.
  • the refrigerant circuit RC includes the compressor 11, the refrigerant flow switching mechanism RF, the outdoor heat exchanger 13, the first expansion valve 14, the refrigerant flow switching mechanism RF, the reheater 21, the second expansion valve 23,
  • the coolant circulates in the order of the cooler 22 and the coolant flow switching mechanism RF.
  • Heating operation will be described with reference to FIG. 2 again.
  • the first expansion valve 14 expands the refrigerant. That is, in heating operation, the first expansion valve 14 functions as an expansion valve.
  • the second expansion valve 23 is fully open and does not function as an expansion valve.
  • the refrigerant circuit RC is composed of the compressor 11, the refrigerant flow switching mechanism RF, the reheater 21, the second expansion valve 23, the cooler 22, the refrigerant flow switching mechanism RF, the first expansion valve 14, the outdoor heat
  • the refrigerant circulates in the order of the exchanger 13 and the refrigerant flow switching mechanism RF.
  • the refrigerant flow switching mechanism RF causes the refrigerant to flow through the refrigerant circuit RC in the order of the reheater 21 and the cooler 22 in both the first switching state and the second switching state. It is configured so that it can be switched as follows.
  • the refrigerant flow switching mechanism RF is in the first switching state during the cooling main operation, and is in the second switching state during the heating main operation. Therefore, the direction of the refrigerant flowing through the reheater 21 and the cooler 22 can be the same in both the cooling-dominant operation and the heating-dominant operation.
  • the reheater 21 and the cooler 22 are arranged so that the air blown by the blower 32 passes through the cooler 22 and then the reheater 21 in both the first switching state and the second switching state. It is configured. Therefore, in both the cooling-dominant operation and the heating-dominant operation, the air can be cooled and dehumidified and then reheated. Therefore, sufficient dehumidification can be performed in both the cooling main operation and the heating main operation.
  • heating-dominant operation can be used for drying and dehumidifying the space to be air-conditioned. Therefore, the air conditioner 100 according to Embodiment 1 can also be used for drying foods and materials.
  • the refrigerant channel switching mechanism RF is the hexagonal valve 12 . Therefore, in both the cooling-dominant operation and the heating-dominant operation, the flow directions of the refrigerant flowing through the reheater 21 and the cooler 22 can be the same. Therefore, in both the cooling main operation and the heating main operation, the air cooled and dehumidified by the cooler 22 can be heated by the reheater 21 . Therefore, air having a temperature and humidity set by the user can be supplied to the space to be air-conditioned.
  • the configuration of the air conditioner 100 called a separate type in which the compressor 11 is installed in the outdoor unit 10 is used.
  • the remote type generally has a refrigerant circuit configuration in which one end of the reheater 21 is connected to the discharge pipe 3 without passing through the refrigerant flow switching mechanism RF, and the other end of the reheater 21 is connected to the liquid pipe 6. be.
  • the outdoor unit 10 and the indoor unit 20 are connected to three lines of the discharge pipe 3, the liquid pipe 6, and the low pressure pipe 2.
  • outdoor unit 10 and indoor unit 20 are connected by high-pressure pipe 1 and low-pressure pipe 2 . Therefore, since the outdoor unit 10 and the indoor unit 20 can be connected by the two high-pressure pipes 1 and the low-pressure pipes 2, the labor for construction can be reduced.
  • the sensor 15 is configured to be able to measure the pressure or temperature of the refrigerant in the refrigerant circuit RC. Therefore, in the cooling-dominant operation, the first expansion valve 14 can adjust the heating amount of the air based on the result of the sensor 15 measuring the pressure or temperature of the refrigerant in the reheater 21 . Further, the first expansion valve 14 can adjust the cooling amount of the air based on the result of the sensor 15 measuring the pressure or temperature of the refrigerant in the cooler 22 in the heating-dominant operation.
  • the refrigerant pressure value in the reheater 21 in the cooling main operation or the refrigerant pressure in the cooler 22 in the heating main operation corresponding to the temperature and humidity of the blown air of the air conditioner 100 set by the user When the value is known in advance, the opening command for the first expansion valve 14 is adjusted so that the measured value of the sensor 15 approaches the refrigerant pressure value.
  • the refrigerant is a mixed refrigerant.
  • a mixed refrigerant which is a mixture of two or more kinds of refrigerants, is generally non-azeotropic, so the temperature during the gas-liquid phase change is not constant. Therefore, a temperature gradient is generated in the heat exchanger according to the phase change of the mixed refrigerant. Therefore, optimum design of the heat exchanger is required.
  • the reheater 21 and the cooler 22 can be specially designed, so even if a mixed refrigerant is used, the high performance air conditioner 100 can be realized.
  • the reheater 21 and the cooler 22 are configured so that the refrigerant flows countercurrent to the air flow. Therefore, the temperature gradient of the mixed refrigerant in the heat exchanger can be utilized to reduce the heat exchange temperature difference between the air and the refrigerant. Therefore, high performance operation of the air conditioner 100 can be realized.
  • the temperature of the non-azeotropic refrigerant rises as the refrigerant evaporates, by making the air and the refrigerant counterflow in the cooler 22 that functions as an evaporator, the temperature rise in the refrigerant flow direction and the air flow The temperature drops in the directions can interact to reduce the heat exchange temperature difference between the air and the refrigerant across the cooler 22 .
  • the reheater 21 that functions as a condenser has a structure in which the air and the refrigerant flow in opposite directions, thereby decreasing the temperature in the flow direction of the refrigerant and The temperature rise in the air flow direction can interact to reduce the heat exchange temperature difference between the air and the refrigerant across the reheater 21 .
  • the position of the blower 32 is not limited to the upstream of the air passage 31 of the cooler 22 as shown in FIGS.
  • the position of the blower 32 may be between the cooler 22 and the reheater 21 in the air passage 31 or may be downstream of the air passage 31 of the reheater 21 .
  • FIG. 3 is a schematic diagram of the first switching state of the rotary hexagonal valve 12.
  • FIG. 4 is a schematic diagram of the second switching state of the rotary hexagonal valve 12.
  • the rotary six-way valve 12 has a valve seat 12a and a valve body 12b rotatable with respect to the valve seat 12a. The flow path is switched between the first switching state and the second switching state by rotating the valve body 12b with respect to the valve seat 12a.
  • FIG. 5 is a schematic diagram of the first switching state of the slide-type hexagonal valve 12.
  • FIG. 6 is a schematic diagram of the second switching state of the slide-type hexagonal valve 12.
  • the slide-type hexagonal valve 12 has a valve seat 12a and a valve body 12b configured to be slidable with respect to the valve seat 12a. The flow path is switched between the first switching state and the second switching state by sliding the valve body 12b against the valve seat 12a.
  • Embodiment 2 has the same configuration, operation, and effects as those of the air conditioner 100 according to Embodiment 1 unless otherwise specified.
  • FIG. 7 is a refrigerant circuit diagram of the air conditioner 100 according to Embodiment 2. As shown in FIG. A configuration of the air conditioner 100 according to Embodiment 2 will be described with reference to FIG.
  • the refrigerant flow switching mechanism RF has the four-way valve 41 and the check valve bridge circuit NC.
  • the four-way valve 41 is connected to the compressor 11, the outdoor heat exchanger 13 and the check valve bridge circuit NC.
  • the check valve bridge circuit NC has a first check valve 42 , a second check valve 43 , a third check valve 44 and a fourth check valve 45 .
  • Each of the four connection ports (first connection port P1 to fourth connection port P4) of the four-way valve 41 is connected to the high-pressure pipe 1 or the low-pressure pipe 2, the discharge pipe 3, the suction pipe 4, and the gas pipe 5, respectively.
  • the first connection port P1 is connected to the discharge pipe 3 .
  • the second connection port P2 is connected to the gas pipe 5 .
  • the third connection port P3 is connected to the inlet of the first check valve 42 and the outlet of the fourth check valve 45 .
  • the fourth connection port P4 is connected to the suction pipe 4 .
  • the outflow port of the first check valve 42 and the outflow port of the third check valve 44 are connected to the high pressure pipe 1 .
  • the inlet of the fourth check valve 45 and the inlet of the second check valve 43 are connected to the low-pressure pipe 2 .
  • the outflow port of the second check valve 43 and the inflow port of the third check valve 44 are connected to the liquid pipe 6 .
  • the operation of the air conditioner 100 according to Embodiment 2 is basically the same as that of the first embodiment.
  • refrigerant is used in compressor 11, discharge pipe 3, four-way valve 41, gas pipe 5, outdoor heat exchanger 13, liquid pipe 6, first expansion valve 14, third check valve 44, high pressure pipe 1, reheater 21, second expansion valve 23, cooler 22, low pressure pipe 2, fourth check valve 45, four-way valve 41, suction It flows through the refrigerant circuit RC to the compressor 11 again via the pipe 4 .
  • refrigerant is supplied to compressor 11, discharge pipe 3, four-way valve 41, first check valve 42, high-pressure pipe 1, re Heater 21, second expansion valve 23, cooler 22, low-pressure pipe 2, second check valve 43, first expansion valve 14, liquid pipe 6, outdoor heat exchanger 13, gas pipe 5, four-way valve 41, suction It flows through the refrigerant circuit RC to the compressor 11 again via the pipe 4 .
  • the refrigerant flows through the refrigerant circuit RC as in the cooling main operation.
  • the refrigerant flows through the refrigerant circuit RC as in the heating main operation.
  • the refrigerant flow switching mechanism RF has the four-way valve 41 and the check valve bridge circuit NC. Therefore, the direction of the refrigerant flowing through the reheater 21 and the cooler 22 can be the same in both the cooling-dominant operation and the heating-dominant operation. Therefore, in both the cooling main operation and the heating main operation, the air cooled and dehumidified by the cooler 22 can be heated by the reheater 21 . Therefore, air having a temperature and humidity set by the user can be supplied to the space to be air-conditioned.
  • the refrigerant flow switching mechanism RF can be composed of the four-way valve 41 and the check valve bridge circuit NC, the refrigerant flow switching mechanism RF can be composed of inexpensive parts.
  • Embodiment 3 The air conditioner 100 according to Embodiment 3 has the same configuration, operation, and effects as those of the air conditioner 100 according to Embodiment 1 unless otherwise specified.
  • FIG. 9 The configuration of the air conditioner 100 according to Embodiment 3 will be described with reference to FIGS. 9 and 10.
  • FIG. 9 is a diagrammatic representation of the air conditioner 100 according to Embodiment 3.
  • the reheater 21 has a plurality of first heat transfer paths T1 arranged in parallel.
  • the cooler 22 has a plurality of second heat transfer paths T2 arranged in parallel.
  • the parallel number of the plurality of second heat transfer paths T2 of the cooler 22 is greater than the number of the plurality of first heat transfer paths T1 of the reheater 21.
  • the number of parallels is the number of branches. In other words, the number of parallels is the number of passes.
  • the refrigerant in the reheater 21 is in a high temperature and high pressure state and has a high density. Therefore, by reducing the parallel number of the first heat transfer passages T1, the heat transfer coefficient in the heat transfer passages can be increased by increasing the flow velocity of the refrigerant. Therefore, reducing the number of parallel first heat transfer paths T1 contributes to improving the performance of the air conditioner 100 .
  • the refrigerant in the cooler 22 is in a low temperature, low pressure state and has a low density. Therefore, by increasing the parallel number of the second heat transfer passages T2, it is possible to reduce the pressure loss in the heat transfer passages by reducing the flow velocity of the refrigerant. Therefore, increasing the parallel number of the second heat transfer paths T2 contributes to improving the performance of the air conditioner 100.
  • FIG. 1 A block diagram illustrating an exemplary computing environment in accordance temperature, low pressure state and has a low density. Therefore, by increasing the parallel number of the second heat transfer passages T2, it is possible to reduce the pressure loss in the heat transfer passages by reducing the flow velocity of the refrigerant. Therefore, increasing the parallel number of the second heat transfer paths T2 contributes to improving the performance of the air conditioner 100.
  • the parallel number of the plurality of second heat transfer passages T2 of the cooler 22 is greater than the number of parallelization of the plurality of first heat transfer passages T1 of the reheater 21. Therefore, the high-performance air conditioner 100 can be realized.
  • Embodiment 4 has the same configuration, operation, and effects as those of the air conditioner 100 according to Embodiment 1 unless otherwise specified.
  • the reheater 21 has first fins F1.
  • the reheater 21 may have a plurality of first fins F1.
  • the cooler 22 has second fins.
  • the cooler 22 may have a plurality of second fins F2.
  • the contact angle with water on the surface of the second fins F2 of the cooler 22 is smaller than the contact angle with water on the surface of the first fins F1 of the reheater 21 .
  • the surfaces of the second fins F2 of the cooler 22, on which dew condensation occurs when the air is cooled, are subjected to a hydrophilic treatment in order to suppress dewdrops in the air passage and improve the drainage performance of the fin surfaces.
  • the second fin F2 of the cooler 22 has a body portion Fa and a hydrophilic treatment portion Fb covering the surface of the body portion Fa.
  • dew condensation water does not occur on the fin surfaces of the reheater 21, costly hydrophilic treatment is unnecessary.
  • the contact angle with water on the surface of the second fin F2 of the cooler 22 is the contact angle with water on the surface of the first fin F1 of the reheater 21. smaller than the corner. Therefore, it is possible to realize the air conditioner 100 that satisfies both dehumidification performance and cost.
  • the heat exchanger on the upstream side of the air passage is the cooler 22 and the heat exchanger on the downstream side of the air passage is the reheater 21, a dedicated design is possible.
  • the contact angle of water on the surface of the second fins F2 of the cooler 22 can be made smaller than that on the surface of the first fins F1 of the reheater 21 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

An air conditioner (100) comprises a refrigerant circuit (RC) and a blower (32). A refrigerant flow path switching mechanism (RF) is configured so as to switch the refrigerant circuit (RC) so that refrigerant flows in the order of a reheater (21), a second expansion valve (23), and a cooler (22) in a first switching state. The refrigerant flow path switching mechanism (RF) is configured so as to switch the refrigerant circuit (RC) so that the refrigerant flows in the order of the reheater (21), the second expansion valve (23), and the cooler (22) in a second switching state. The reheater (21) and the cooler (22) are configured so that in both the first switching state and the second switching state, air blown by the blower (32) passes through the cooler (22) and then through the reheater (21).

Description

空気調和機air conditioner
 本開示は、空気調和機に関するものである。 The present disclosure relates to air conditioners.
 凝縮器として機能する室外熱交換器を備えた室外機と、冷却器として機能する第1の室内熱交換器および再熱器として機能する第2の室内熱交換器を備えた室内機と、室外熱交換器、第1の室内熱交換器および第2の室内熱交換器に冷媒を循環させる圧縮機とを有する空気調和機が知られている。この空気調和機では、第1の室内熱交換器により冷却および除湿された空気が第2の室内熱交換器により加熱されることによって、室内機から空調対象空間に吹き出される空気の温度および湿度が個別に調節される。このような空気調和機は、たとえば特開2002-89998号公報(特許文献1)に記載されている。 An outdoor unit provided with an outdoor heat exchanger functioning as a condenser, an indoor unit provided with a first indoor heat exchanger functioning as a cooler and a second indoor heat exchanger functioning as a reheater, and an outdoor unit An air conditioner is known that has a heat exchanger, a first indoor heat exchanger, and a compressor that circulates a refrigerant through the second indoor heat exchanger. In this air conditioner, the air cooled and dehumidified by the first indoor heat exchanger is heated by the second indoor heat exchanger, so that the temperature and humidity of the air blown out from the indoor unit into the air-conditioned space are are individually adjusted. Such an air conditioner is described, for example, in Japanese Patent Laying-Open No. 2002-89998 (Patent Document 1).
特開2002-89998号公報JP-A-2002-89998
 しかし、上記公報に記載された空気調和機では、冷媒流路切替機構として1つの四方弁のみが用いられている。このため、四方弁の2つの切替状態に各々対応して冷却主体運転および加熱主体運転が行われる場合には、冷却主体運転と加熱主体運転とで室内機を流れる冷媒の方向が逆転する。したがって、冷却主体運転と加熱主体運転とで冷却器として機能する室内熱交換器と再熱器として機能する室内熱交換器とが入れ替わる。この結果、冷却主体運転および加熱主体運転のいずれか一方の運転において、再熱器で加熱された空気が冷却器で冷却されるため、充分な除湿を行うことができない。 However, in the air conditioner described in the above publication, only one four-way valve is used as the refrigerant channel switching mechanism. Therefore, when the cooling-main operation and the heating-main operation are performed corresponding to the two switching states of the four-way valve, the direction of the refrigerant flowing through the indoor unit is reversed between the cooling-main operation and the heating-main operation. Therefore, the indoor heat exchanger functioning as a cooler and the indoor heat exchanger functioning as a reheater are switched between the cooling main operation and the heating main operation. As a result, in either the cooling main operation or the heating main operation, the air heated by the reheater is cooled by the cooler, so sufficient dehumidification cannot be performed.
 本開示は上記課題に鑑みてなされてものであり、その目的は、冷却主体運転および加熱主体運転の両方において再熱器および冷却器を流れる冷媒の方向を同一とすることができる空気調和機を提供することである。 The present disclosure has been made in view of the above problems, and an object thereof is to provide an air conditioner in which the direction of the refrigerant flowing through the reheater and the cooler can be the same in both cooling-dominant operation and heating-dominant operation. to provide.
 本開示の空気調和機は、冷媒回路と、送風機とを備えている。冷媒回路は、圧縮機、冷媒流路切替機構、室外熱交換器、第1膨張弁、再熱器、第2膨張弁および冷却器とを有し、冷媒を循環させるように構成されている。送風機は、再熱器および冷却器に空気を送風可能に構成されている。冷媒流路切替機構は、第1切替状態と第2切替状態とに切替可能に構成されている。冷媒流路切替機構は、第1切替状態では、冷媒回路を、圧縮機、冷媒流路切替機構、室外熱交換器、第1膨張弁、冷媒流路切替機構、再熱器、第2膨張弁、冷却器、冷媒流路切替機構の順に冷媒が流れるように切り替えられるように構成されている。冷媒流路切替機構は、第2切替状態では、冷媒回路を、圧縮機、冷媒流路切替機構、再熱器、第2膨張弁、冷却器、冷媒流路切替機構、第1膨張弁、室外熱交換器、冷媒流路切替機構の順に冷媒が流れるように切り替えられるように構成されている。再熱器および冷却器は、第1切替状態および第2切替状態のいずれでも、送風機によって送風された空気が冷却器を通過してから再熱器を通過するように構成されている。 The air conditioner of the present disclosure includes a refrigerant circuit and a blower. The refrigerant circuit has a compressor, a refrigerant channel switching mechanism, an outdoor heat exchanger, a first expansion valve, a reheater, a second expansion valve, and a cooler, and is configured to circulate the refrigerant. The blower is configured to blow air to the reheater and the cooler. The refrigerant channel switching mechanism is configured to be switchable between a first switching state and a second switching state. In the first switching state, the refrigerant flow switching mechanism divides the refrigerant circuit into the compressor, the refrigerant flow switching mechanism, the outdoor heat exchanger, the first expansion valve, the refrigerant flow switching mechanism, the reheater, and the second expansion valve. , the cooler, and the refrigerant flow switching mechanism are switched so that the refrigerant flows in this order. In the second switching state, the refrigerant flow switching mechanism connects the refrigerant circuit to the compressor, the refrigerant flow switching mechanism, the reheater, the second expansion valve, the cooler, the refrigerant flow switching mechanism, the first expansion valve, the outdoor It is configured to switch so that the refrigerant flows in the order of the heat exchanger and the refrigerant flow switching mechanism. The reheater and cooler are configured such that in both the first switching state and the second switching state, air blown by the blower passes through the cooler and then through the reheater.
 本開示の空気調和機によれば、冷媒流路切替機構は、第1切替状態および第2切替状態のいずれでも冷媒回路を再熱器および冷却器の順に冷媒が流れるように切り替えられるように構成されている。このため、冷却主体運転および加熱主体運転の両方において再熱器および冷却器を流れる冷媒の方向を同一とすることができる。 According to the air conditioner of the present disclosure, the refrigerant flow switching mechanism is configured to switch the refrigerant circuit so that the refrigerant flows in order of the reheater and the cooler in both the first switching state and the second switching state. It is Therefore, the direction of the refrigerant flowing through the reheater and the cooler can be the same in both the cooling-dominant operation and the heating-dominant operation.
実施の形態1に係る空気調和機の冷却主体運転の冷媒回路図である。FIG. 3 is a refrigerant circuit diagram of cooling-main operation of the air conditioner according to Embodiment 1; 実施の形態1に係る空気調和機の加熱主体運転の冷媒回路図である。FIG. 2 is a refrigerant circuit diagram of a heating-dominant operation of the air conditioner according to Embodiment 1; 実施の形態1に係る空気調和機のロータリー式の六方弁の第1切替状態の模式図である。4 is a schematic diagram of a first switching state of the rotary hexagonal valve of the air conditioner according to Embodiment 1. FIG. 実施の形態1に係る空気調和機のロータリー式の六方弁の第2切替状態の模式図である。4 is a schematic diagram of a second switching state of the rotary hexagonal valve of the air conditioner according to Embodiment 1. FIG. 実施の形態1に係る空気調和機のスライド式の六方弁の第1切替状態の模式図である。4 is a schematic diagram of a first switching state of the slide-type hexagonal valve of the air conditioner according to Embodiment 1. FIG. 実施の形態1に係る空気調和機のスライド式の六方弁の第2切替状態の模式図である。4 is a schematic diagram of a second switching state of the slide-type hexagonal valve of the air conditioner according to Embodiment 1. FIG. 実施の形態2に係る空気調和機の冷却主体運転の冷媒回路図である。FIG. 10 is a refrigerant circuit diagram of cooling-dominant operation of the air conditioner according to Embodiment 2; 実施の形態2に係る空気調和機の加熱主体運転の冷媒回路図である。FIG. 7 is a refrigerant circuit diagram of a heating-dominant operation of the air conditioner according to Embodiment 2; 実施の形態3に係る空気調和機の冷却主体運転の冷媒回路図である。FIG. 11 is a refrigerant circuit diagram of cooling-dominant operation of the air conditioner according to Embodiment 3; 実施の形態3に係る空気調和機の加熱主体運転の冷媒回路図である。FIG. 11 is a refrigerant circuit diagram of a heating-dominant operation of an air conditioner according to Embodiment 3; 実施の形態3に係る空気調和機の再熱器の斜視図である。FIG. 11 is a perspective view of a reheater of an air conditioner according to Embodiment 3; 実施の形態3に係る空気調和機の冷却器の斜視図である。FIG. 11 is a perspective view of a cooler of an air conditioner according to Embodiment 3; 実施の形態4に係る空気調和機の再熱器の斜視図である。FIG. 11 is a perspective view of a reheater of an air conditioner according to Embodiment 4; 実施の形態4に係る空気調和機の冷却器の斜視図である。FIG. 11 is a perspective view of a cooler of an air conditioner according to Embodiment 4; 実施の形態4に係る空気調和機の再熱器のフィンの断面図である。FIG. 11 is a cross-sectional view of a fin of a reheater of an air conditioner according to Embodiment 4;
 以下、実施の形態について図を参照して説明する。なお、以下において、同一または相当する部分には同一の符号を付してその説明は繰り返さない。 An embodiment will be described below with reference to the drawings. In the following description, the same reference numerals are given to the same or corresponding parts, and the description thereof will not be repeated.
 実施の形態1.
 図1を参照して、実施の形態1に係る空気調和機100の構成について説明する。
Embodiment 1.
A configuration of an air conditioner 100 according to Embodiment 1 will be described with reference to FIG.
 <装置構成>
 図1は実施の形態1に係る空気調和機100の冷媒回路図である。図1に示されるように、空気調和機100は、冷媒回路RC、センサ15、風路31、送風機32、制御装置CDを備えている。冷媒回路RCは、高圧配管1、低圧配管2、吐出配管3、吸入配管4、ガス配管5、液配管6、圧縮機11、冷媒流路切替機構RF、室外熱交換器13、第1膨張弁14、再熱器21、冷却器22、第2膨張弁23を有している。
<Device configuration>
FIG. 1 is a refrigerant circuit diagram of an air conditioner 100 according to Embodiment 1. FIG. As shown in FIG. 1, the air conditioner 100 includes a refrigerant circuit RC, a sensor 15, an air passage 31, a blower 32, and a controller CD. The refrigerant circuit RC includes a high-pressure pipe 1, a low-pressure pipe 2, a discharge pipe 3, a suction pipe 4, a gas pipe 5, a liquid pipe 6, a compressor 11, a refrigerant flow switching mechanism RF, an outdoor heat exchanger 13, and a first expansion valve. 14 , a reheater 21 , a cooler 22 and a second expansion valve 23 .
 冷媒回路RCでは、高圧配管1、低圧配管2、吐出配管3、吸入配管4、ガス配管5、液配管6によって、圧縮機11、冷媒流路切替機構RF、室外熱交換器13、第1膨張弁14、再熱器21、冷却器22、第2膨張弁23が接続されている。 In the refrigerant circuit RC, a compressor 11, a refrigerant flow switching mechanism RF, an outdoor heat exchanger 13, a first expansion A valve 14, a reheater 21, a cooler 22 and a second expansion valve 23 are connected.
 高圧配管1は、冷媒流路切替機構RFと再熱器21とに接続されている。低圧配管2は、冷媒流路切替機構RFと冷却器22とに接続されている。吐出配管3は、圧縮機11の吐出側と冷媒流路切替機構RFとに接続されている。吸入配管4は、圧縮機11の吸入側と冷媒流路切替機構RFとに接続されている。ガス配管5は、冷媒流路切替機構RFと室外熱交換器13とに接続されている。液配管6は、室外熱交換器13と冷媒流路切替機構RFとを第1膨張弁14を介して接続されている。 The high-pressure pipe 1 is connected to the refrigerant flow switching mechanism RF and the reheater 21 . The low-pressure pipe 2 is connected to the refrigerant flow switching mechanism RF and the cooler 22 . The discharge pipe 3 is connected to the discharge side of the compressor 11 and the refrigerant flow switching mechanism RF. The suction pipe 4 is connected to the suction side of the compressor 11 and the refrigerant flow switching mechanism RF. The gas pipe 5 is connected to the refrigerant flow switching mechanism RF and the outdoor heat exchanger 13 . The liquid pipe 6 connects the outdoor heat exchanger 13 and the refrigerant flow switching mechanism RF via the first expansion valve 14 .
 冷媒回路RCは、冷媒を循環させるように構成されている。冷媒は、混合冷媒である。混合冷媒は、二種類以上の冷媒の混合物である。なお、冷媒は、単一冷媒であってもよい。 The refrigerant circuit RC is configured to circulate the refrigerant. The refrigerant is a mixed refrigerant. A mixed refrigerant is a mixture of two or more refrigerants. Note that the refrigerant may be a single refrigerant.
 空気調和機100は、室外機10、室内機20を備えている。室外機10と室内機20とが高圧配管1および低圧配管2によって接続されている。室外機10は、圧縮機11、冷媒流路切替機構RF、室外熱交換器13、第1膨張弁14、センサ15、制御装置CDを有している。圧縮機11、冷媒流路切替機構RF、室外熱交換器13、第1膨張弁14、センサ15、制御装置CDは、室外機10に収容されている。室内機20は、再熱器21、冷却器22、第2膨張弁23、風路31、送風機32を有している。再熱器21、冷却器22、第2膨張弁23、送風機32は、室内機20に収容されている。室内機20に風路31が設けられている。 The air conditioner 100 includes an outdoor unit 10 and an indoor unit 20. An outdoor unit 10 and an indoor unit 20 are connected by a high pressure pipe 1 and a low pressure pipe 2 . The outdoor unit 10 has a compressor 11, a refrigerant flow switching mechanism RF, an outdoor heat exchanger 13, a first expansion valve 14, a sensor 15, and a control device CD. The compressor 11 , the refrigerant flow switching mechanism RF, the outdoor heat exchanger 13 , the first expansion valve 14 , the sensor 15 and the controller CD are housed in the outdoor unit 10 . The indoor unit 20 has a reheater 21 , a cooler 22 , a second expansion valve 23 , an air passage 31 and a blower 32 . The reheater 21 , the cooler 22 , the second expansion valve 23 and the blower 32 are housed in the indoor unit 20 . An air passage 31 is provided in the indoor unit 20 .
 圧縮機11は、冷媒を圧縮するように構成されている。圧縮機11は、吸入した冷媒を圧縮して吐出するように構成されている。圧縮機11は、たとえば、容量可変に構成されている。圧縮機11は、たとえば、制御装置CDからの指示に基づいて圧縮機11の回転数が調整されることにより容量が変化するように構成されている。 The compressor 11 is configured to compress refrigerant. The compressor 11 is configured to compress and discharge the sucked refrigerant. Compressor 11 is configured, for example, to have a variable capacity. Compressor 11 is configured, for example, to change its capacity by adjusting the rotational speed of compressor 11 based on an instruction from control device CD.
 冷媒流路切替機構RFは、第1切替状態と第2切替状態とに切替可能に構成されている。冷媒流路切替機構RFは、たとえば、制御装置CDからの指示に基づいて第1切替状態と第2切替状態とに切り替えられるように構成されている。冷媒流路切替機構RFは、第1切替状態では、冷媒回路RCを、圧縮機11、冷媒流路切替機構RF、室外熱交換器13、第1膨張弁14、冷媒流路切替機構RF、再熱器21、第2膨張弁23、冷却器22、冷媒流路切替機構RFの順に前記冷媒が流れるように切り替えられるように構成されている。冷媒流路切替機構RFは、冷却主体運転では第1切替状態となる。 The refrigerant channel switching mechanism RF is configured to be switchable between a first switching state and a second switching state. The coolant flow path switching mechanism RF is configured, for example, to be switched between a first switching state and a second switching state based on an instruction from the control device CD. In the first switching state, the refrigerant flow switching mechanism RF connects the refrigerant circuit RC to the compressor 11, the refrigerant flow switching mechanism RF, the outdoor heat exchanger 13, the first expansion valve 14, the refrigerant flow switching mechanism RF, and the refrigerant circuit RC. The refrigerant is switched to flow in the order of the heater 21, the second expansion valve 23, the cooler 22, and the refrigerant flow switching mechanism RF. The refrigerant flow switching mechanism RF is in the first switching state in the cooling-dominant operation.
 冷媒流路切替機構RFは、第2切替状態では、冷媒回路RCを、圧縮機11、冷媒流路切替機構RF、再熱器21、第2膨張弁23、冷却器22、冷媒流路切替機構RF、第1膨張弁14、室外熱交換器13、冷媒流路切替機構RFの順に冷媒が流れるように切り替えられるように構成されている。冷媒流路切替機構RFは、加熱主体運転では第2切替状態となる。 In the second switching state, the refrigerant flow switching mechanism RF connects the refrigerant circuit RC to the compressor 11, the refrigerant flow switching mechanism RF, the reheater 21, the second expansion valve 23, the cooler 22, and the refrigerant flow switching mechanism. RF, the first expansion valve 14, the outdoor heat exchanger 13, and the refrigerant flow switching mechanism RF are configured to switch so that the refrigerant flows in this order. The refrigerant flow switching mechanism RF is in the second switching state in the heating main operation.
 実施の形態1では、冷媒流路切替機構RFは、六方弁12である。六方弁12の六つの接続口(第1接続口P1~第6接続口P6)の各々は、高圧配管1、低圧配管2、吐出配管3、吸入配管4、ガス配管5、液配管6にそれぞれ接続されている。第1接続口P1は吐出配管3に接続されている。第2接続口P2はガス配管5に接続されている。第3接続口P3は吸入配管4に接続されている。第4接続口P4は低圧配管2に接続されている。第5接続口P5は液配管6に接続されている。第6接続口P6は高圧配管1に接続されている。 In Embodiment 1, the refrigerant flow switching mechanism RF is the hexagonal valve 12 . Each of the six connection ports (first connection port P1 to sixth connection port P6) of the hexagonal valve 12 is connected to the high pressure pipe 1, the low pressure pipe 2, the discharge pipe 3, the suction pipe 4, the gas pipe 5, and the liquid pipe 6, respectively. It is connected. The first connection port P1 is connected to the discharge pipe 3 . The second connection port P2 is connected to the gas pipe 5 . The third connection port P3 is connected to the suction pipe 4 . The fourth connection port P4 is connected to the low pressure pipe 2 . The fifth connection port P5 is connected to the liquid pipe 6 . The sixth connection port P6 is connected to the high pressure pipe 1 .
 六方弁12の第1切替状態では、圧縮機11、吐出配管3、六方弁12、ガス配管5、室外熱交換器13、液配管6、第1膨張弁14、六方弁12、高圧配管1、再熱器21、第2膨張弁23、冷却器22、低圧配管2、六方弁12、吸入配管4を経由して再度圧縮機11へと至る冷媒回路RCが構成されている。六方弁12の第1切替状態では、第1接続口P1に第2接続口P2が接続されており、第3接続口P3に第4接続口が接続されており、第5接続口に第6接続口が接続されている。 In the first switching state of the hexagonal valve 12, the compressor 11, the discharge pipe 3, the hexagonal valve 12, the gas pipe 5, the outdoor heat exchanger 13, the liquid pipe 6, the first expansion valve 14, the hexagonal valve 12, the high pressure pipe 1, A refrigerant circuit RC is configured to reach the compressor 11 again via the reheater 21 , the second expansion valve 23 , the cooler 22 , the low-pressure pipe 2 , the hexagonal valve 12 , and the suction pipe 4 . In the first switching state of the hexagonal valve 12, the first connection port P1 is connected to the second connection port P2, the third connection port P3 is connected to the fourth connection port, and the fifth connection port is connected to the sixth connection port. The port is connected.
 六方弁12の第2切替状態では、圧縮機11、吐出配管3、六方弁12、高圧配管1、再熱器21、第2膨張弁23、冷却器22、低圧配管2、六方弁12、第1膨張弁14、液配管6、室外熱交換器13、ガス配管5、六方弁12、吸入配管4を経由して再度圧縮機11へと至る冷媒回路RCが構成されている。六方弁12の第2切替状態では、第1接続口P1に第6接続口P6が接続されており、第2接続口P2に第3接続口P3が接続されており、第4接続口P4に第5接続口P5は接続されている。 In the second switching state of the hexagonal valve 12, the compressor 11, the discharge pipe 3, the hexagonal valve 12, the high pressure pipe 1, the reheater 21, the second expansion valve 23, the cooler 22, the low pressure pipe 2, the hexagonal valve 12, the 1 expansion valve 14 , liquid pipe 6 , outdoor heat exchanger 13 , gas pipe 5 , hexagonal valve 12 , suction pipe 4 , and again to compressor 11 , refrigerant circuit RC is configured. In the second switching state of the hexagonal valve 12, the first connection port P1 is connected to the sixth connection port P6, the second connection port P2 is connected to the third connection port P3, and the fourth connection port P4 is connected to The fifth connection port P5 is connected.
 室外熱交換器13は、室外熱交換器13の内部を流れる冷媒と室外熱交換器13の外部を流れる空気との間で熱交換を行うように構成されている。室外熱交換器13は、冷却主体運転および冷房運転では冷媒を凝縮させる凝縮器として機能するように構成されている。室外熱交換器13は、加熱主体運転および暖房運転では冷媒を蒸発させる蒸発器として機能するように構成されている。室外熱交換器13は、たとえば、複数のフィンと、複数のフィンを貫通する伝熱管とを有するフィンアンドチューブ式熱交換器である。 The outdoor heat exchanger 13 is configured to exchange heat between the refrigerant flowing inside the outdoor heat exchanger 13 and the air flowing outside the outdoor heat exchanger 13 . The outdoor heat exchanger 13 is configured to function as a condenser that condenses the refrigerant in the cooling main operation and the cooling operation. The outdoor heat exchanger 13 is configured to function as an evaporator that evaporates the refrigerant in the heating main operation and the heating operation. The outdoor heat exchanger 13 is, for example, a fin-and-tube heat exchanger having a plurality of fins and heat transfer tubes passing through the plurality of fins.
 第1膨張弁14は、凝縮器で凝縮された冷媒を膨張させることにより減圧させるように構成されている。第1膨張弁14は、冷却主体運転および加熱主体運転では、全開状態であり、減圧装置として機能しない。第1膨張弁14は、冷房運転では室外熱交換器13により凝縮された冷媒を減圧させるように構成されている。第1膨張弁14は、暖房運転では再熱器21および冷却器22により凝縮された冷媒を減圧させるように構成されている。 The first expansion valve 14 is configured to reduce the pressure by expanding the refrigerant condensed in the condenser. The first expansion valve 14 is in a fully open state and does not function as a decompression device in the cooling-dominant operation and the heating-dominant operation. The first expansion valve 14 is configured to reduce the pressure of the refrigerant condensed by the outdoor heat exchanger 13 during cooling operation. The first expansion valve 14 is configured to reduce the pressure of the refrigerant condensed by the reheater 21 and the cooler 22 during heating operation.
 第1膨張弁14は、たとえば、電磁膨張弁である。第1膨張弁14は、たとえば、制御装置CDからの指示に基づいて第1膨張弁14の開度が調整されることにより減圧量が変化するように構成されている。 The first expansion valve 14 is, for example, an electromagnetic expansion valve. The first expansion valve 14 is configured such that the degree of opening of the first expansion valve 14 is adjusted based on instructions from the control device CD, for example, so that the amount of pressure reduction changes.
 センサ15は、冷媒回路RCにおいて第1膨張弁14と冷媒流路切替機構RFとの間に設置されている。センサ15は、第1膨張弁14と冷媒流路切替機構RFとを接続する配管上に設置されている。センサ15は、この配管における冷媒の圧力または温度を測定可能に構成されている。センサ15は、冷媒回路RCの冷媒の圧力または温度を測定可能に構成されている。センサ15は、冷媒の圧力を測定可能に構成された冷媒圧力センサであってもよく、冷媒の温度を測定可能に構成された冷媒温度センサであってもよい。 The sensor 15 is installed between the first expansion valve 14 and the refrigerant flow switching mechanism RF in the refrigerant circuit RC. The sensor 15 is installed on a pipe connecting the first expansion valve 14 and the refrigerant flow switching mechanism RF. Sensor 15 is configured to be able to measure the pressure or temperature of the refrigerant in this pipe. The sensor 15 is configured to be able to measure the pressure or temperature of the refrigerant in the refrigerant circuit RC. The sensor 15 may be a refrigerant pressure sensor that can measure the pressure of the refrigerant, or a refrigerant temperature sensor that can measure the temperature of the refrigerant.
 制御装置CDは、演算、指示等を行って空気調和機100の各機器等を制御するように構成されている。制御装置CDは、圧縮機11、冷媒流路切替機構RF、第1膨張弁14、センサ15、第2膨張弁23、送風機32などに電気的に接続されており、これらの動作を制御するように構成されている。 The control device CD is configured to perform calculations, instructions, etc. to control each device of the air conditioner 100 . The control device CD is electrically connected to the compressor 11, the refrigerant flow switching mechanism RF, the first expansion valve 14, the sensor 15, the second expansion valve 23, the blower 32, etc., and controls these operations. is configured to
 再熱器21は、再熱器21の内部を流れる冷媒と再熱器21の外部を流れる空気との間で熱交換を行うように構成されている。再熱器21は、冷却主体運転、加熱主体運転および暖房運転では冷媒を凝縮させる凝縮器として機能するように構成されている。再熱器21は、冷房運転では冷媒を蒸発させる蒸発器として機能するように構成されている。再熱器21は、たとえば、複数のフィンと、複数のフィンを貫通する伝熱管とを有するフィンアンドチューブ式熱交換器である。 The reheater 21 is configured to exchange heat between the refrigerant flowing inside the reheater 21 and the air flowing outside the reheater 21 . The reheater 21 is configured to function as a condenser that condenses the refrigerant in the cooling-dominant operation, the heating-dominant operation, and the heating operation. The reheater 21 is configured to function as an evaporator that evaporates the refrigerant during cooling operation. The reheater 21 is, for example, a fin-and-tube heat exchanger having a plurality of fins and heat transfer tubes passing through the plurality of fins.
 冷却器22は、冷却器22の内部を流れる冷媒と冷却器22の外部を流れる空気との間で熱交換を行うように構成されている。冷却器22は、冷却主体運転、加熱主体運転および冷房運転では冷媒を蒸発させる蒸発器として機能するように構成されている。冷却器22は、暖房運転では冷媒を凝縮させる凝縮器として機能するように構成されている。冷却器22は、たとえば、複数のフィンと、複数のフィンを貫通する伝熱管とを有するフィンアンドチューブ式熱交換器である。 The cooler 22 is configured to exchange heat between the refrigerant flowing inside the cooler 22 and the air flowing outside the cooler 22 . The cooler 22 is configured to function as an evaporator that evaporates the refrigerant in cooling-dominant operation, heating-dominant operation, and cooling operation. The cooler 22 is configured to function as a condenser that condenses the refrigerant during heating operation. Cooler 22 is, for example, a fin-and-tube heat exchanger having a plurality of fins and heat transfer tubes passing through the plurality of fins.
 第2膨張弁23は、凝縮器で凝縮された冷媒を膨張させることにより減圧させるように構成されている。第2膨張弁23は、冷却主体運転および加熱主体運転では再熱器21により凝縮された冷媒を減圧させるように構成されている。第2膨張弁23は、冷房運転および暖房運転では、全開状態であり、減圧装置として機能しない。第2膨張弁23は、たとえば、電磁膨張弁である。第2膨張弁23は、たとえば、制御装置CDからの指示に基づいて第2膨張弁23の開度が調整されることにより減圧量が変化するように構成されている。 The second expansion valve 23 is configured to reduce the pressure by expanding the refrigerant condensed by the condenser. The second expansion valve 23 is configured to reduce the pressure of the refrigerant condensed by the reheater 21 in the cooling main operation and the heating main operation. The second expansion valve 23 is fully open during cooling operation and heating operation, and does not function as a decompression device. The second expansion valve 23 is, for example, an electromagnetic expansion valve. The second expansion valve 23 is configured such that the degree of opening of the second expansion valve 23 is adjusted based on instructions from the control device CD, for example, so that the amount of pressure reduction changes.
 風路31は室内機20の筐体に設けられている。風路31内に再熱器21および冷却器22が配置されている。送風機32は、再熱器21および冷却器22に空気を送風可能に構成されている。再熱器21および冷却器22は、送風機32が送風する空気の流れの方向に並んで配置されている。再熱器21は、送風機32が送風する空気の流れにおいて冷却器22よりも風下側に配置されている。風路31において、冷却器22は、再熱器21の上流に配置されている。 The air passage 31 is provided in the housing of the indoor unit 20. A reheater 21 and a cooler 22 are arranged in the air passage 31 . Air blower 32 is configured to blow air to reheater 21 and cooler 22 . The reheater 21 and the cooler 22 are arranged side by side in the direction of air flow blown by the blower 32 . The reheater 21 is arranged on the leeward side of the cooler 22 in the flow of air blown by the blower 32 . The cooler 22 is arranged upstream of the reheater 21 in the air passage 31 .
 再熱器21および冷却器22は、風路31と送風機32を共有している。再熱器21および冷却器22は、第1切替状態および第2切替状態のいずれでも、送風機32によって送風された空気が冷却器22を通過してから再熱器21を通過するように構成されている。送風機32の運転中には、六方弁12の第1切替状態と第2切替状態に依らず、空気が冷却器22を通過した後に再熱器21を通過するように、再熱器21および冷却器22は構成されている。 The reheater 21 and the cooler 22 share the air passage 31 and the blower 32. The reheater 21 and the cooler 22 are configured such that the air blown by the blower 32 passes through the cooler 22 and then the reheater 21 in both the first switching state and the second switching state. ing. During operation of the blower 32, regardless of the first switching state and the second switching state of the hexagonal valve 12, the reheater 21 and the cooling device are operated so that the air passes through the reheater 21 after passing through the cooler 22. The vessel 22 is constructed.
 再熱器21および冷却器22は、空気の流れに対して冷媒の流れが対向流となるように構成されていてもよい。再熱器21および冷却器22の両方は、空気と冷媒とが対向流となる伝熱管流路構成を有している。再熱器21および冷却器22の各々は、風上側の伝熱管と、風下側の伝熱管とを有している。風上側の伝熱管は、風下側の伝熱管に接続されている。冷却主体運転および加熱主体運転では、風下側の伝熱管から風上側の伝熱管に冷媒が流れるように構成されている。冷却主体運転および加熱主体運転の両方で、再熱器21および冷却器22の伝熱管の内部を流れる冷媒と伝熱管の外部を流れる空気とは対向流となる。 The reheater 21 and the cooler 22 may be configured so that the refrigerant flows countercurrent to the air flow. Both the reheater 21 and the cooler 22 have a heat transfer tube flow path configuration in which air and refrigerant flow countercurrently. Each of the reheater 21 and the cooler 22 has a windward heat transfer tube and a leeward heat transfer tube. The heat transfer tube on the windward side is connected to the heat transfer tube on the leeward side. In the cooling-dominant operation and the heating-dominant operation, the refrigerant is configured to flow from the heat transfer tube on the leeward side to the heat transfer tube on the windward side. In both the cooling-dominant operation and the heating-dominant operation, the refrigerant flowing inside the heat transfer tubes of the reheater 21 and the cooler 22 and the air flowing outside the heat transfer tubes flow in opposite directions.
 次に、実施の形態1に係る空気調和機100の動作について説明する。
 <冷却主体運転>
 まず、図1を参照して、実施の形態1に係る空気調和機100の冷却主体運転について説明する。冷却主体運転とは、冷却器22における空気の冷却量が再熱器21における空気の加熱量よりも大きく、かつ室外熱交換器13が凝縮器として機能することで、ヒートポンプとしての余剰放熱量が外気に放熱される運転である。冷却主体運転では、再熱器21を通過した後の空気は、冷却器22を通過する前の空気よりも、温度が低くなり、水分含有量が少なくなる。
Next, operation of the air conditioner 100 according to Embodiment 1 will be described.
<Cooling main operation>
First, the cooling-dominant operation of the air conditioner 100 according to Embodiment 1 will be described with reference to FIG. In the cooling-dominant operation, the cooling amount of the air in the cooler 22 is larger than the heating amount of the air in the reheater 21, and the outdoor heat exchanger 13 functions as a condenser, so that the surplus heat radiation amount of the heat pump is reduced. This is an operation in which heat is released to the outside air. In the cooling-dominant operation, the air after passing through the reheater 21 has a lower temperature and a lower moisture content than the air before passing through the cooler 22 .
 冷却主体運転では、六方弁12は図1の実線で示されるように第1切替状態に切替えられる。圧縮機11にて高温高圧に圧縮された蒸気冷媒は、吐出配管3に流出し、六方弁12を通過し、ガス配管5を経由して、室外熱交換器13に流入する。室外熱交換器13は凝縮器として機能する。室外送風機(図示せず)により室外熱交換器13に導入された室外空気に対して、高温高圧の蒸気冷媒は放熱する。これにより、高温高圧の蒸気冷媒は、凝縮され、高温高圧の気液二相冷媒となる。 In the cooling-dominant operation, the hexagonal valve 12 is switched to the first switching state as indicated by the solid line in FIG. The vapor refrigerant compressed to high temperature and high pressure by the compressor 11 flows out to the discharge pipe 3 , passes through the hexagonal valve 12 , and flows into the outdoor heat exchanger 13 via the gas pipe 5 . The outdoor heat exchanger 13 functions as a condenser. The high-temperature and high-pressure vapor refrigerant radiates heat to outdoor air introduced into the outdoor heat exchanger 13 by an outdoor blower (not shown). As a result, the high-temperature and high-pressure vapor refrigerant is condensed into a high-temperature and high-pressure gas-liquid two-phase refrigerant.
 高温高圧の気液二相冷媒は、液配管6に流出し、第1膨張弁14を介して、六方弁12を通過し、高圧配管1を経由して再熱器21に流入する。再熱器21は凝縮器として機能する。送風機32により再熱器21に導入された空気に対して、高温高圧の気液二相冷媒は放熱する。これにより、高温高圧の気液二相冷媒は凝縮され、高圧の液冷媒となる。この高圧の液冷媒は第2膨張弁23に流入する。 The high-temperature, high-pressure gas-liquid two-phase refrigerant flows out to the liquid pipe 6, passes through the first expansion valve 14, the hexagonal valve 12, and flows into the reheater 21 via the high-pressure pipe 1. The reheater 21 functions as a condenser. The high-temperature and high-pressure gas-liquid two-phase refrigerant radiates heat to the air introduced into the reheater 21 by the blower 32 . As a result, the high-temperature and high-pressure gas-liquid two-phase refrigerant is condensed into a high-pressure liquid refrigerant. This high-pressure liquid refrigerant flows into the second expansion valve 23 .
 この高圧の液冷媒は第2膨張弁23にて膨張し、減圧され、低温低圧の気液二相冷媒となる。この低温低圧の気液二相冷媒は、冷却器22に流入する。冷却器22は蒸発器として機能する。送風機32により冷却器22に導入された空気から吸熱することにより、低温低圧の気液二相冷媒は蒸発して、低圧の蒸気冷媒となる。その後、低圧の蒸気冷媒は、低圧配管2を経由して六方弁12に流入し、吸入配管4を経由して、圧縮機11に吸入される。冷却主体運転では、冷媒は以降同様の過程で冷媒回路RCを循環する。 This high-pressure liquid refrigerant is expanded by the second expansion valve 23 and decompressed to become a low-temperature, low-pressure gas-liquid two-phase refrigerant. This low-temperature, low-pressure gas-liquid two-phase refrigerant flows into the cooler 22 . Cooler 22 functions as an evaporator. By absorbing heat from the air introduced into the cooler 22 by the blower 32, the low-temperature, low-pressure gas-liquid two-phase refrigerant evaporates to become a low-pressure vapor refrigerant. After that, the low-pressure vapor refrigerant flows into the hexagonal valve 12 via the low-pressure pipe 2 and is sucked into the compressor 11 via the suction pipe 4 . In the cooling-dominant operation, the refrigerant circulates through the refrigerant circuit RC in the same process thereafter.
 再熱器21と冷却器22は、風路31と送風機32を共有している。送風機32によって風路31内を導かれた空気は、まず冷却器22を通過することによって冷却および除湿される。これにより、空気の温度は低くなり、空気の水分含有量は少なくなる。冷却器22を通過し終えた空気は、風路31に導かれて再熱器21を通過することによって加熱される。これにより、空気の温度は上昇する。なお、再熱器21では一般に加湿は行われないため、空気の水分含有量は再熱器21の通過前後にて変わらない。再熱器21を通過し終えた空気は、風路31に導かれて、空気調和対象空間に吹き出される。 The reheater 21 and the cooler 22 share the air passage 31 and the blower 32. The air guided through the air passage 31 by the blower 32 is first cooled and dehumidified by passing through the cooler 22 . This lowers the temperature of the air and reduces the moisture content of the air. The air that has finished passing through the cooler 22 is heated by being led to the air passage 31 and passing through the reheater 21 . This increases the temperature of the air. Incidentally, since humidification is generally not performed in the reheater 21 , the moisture content of the air does not change before and after passing through the reheater 21 . The air that has finished passing through the reheater 21 is guided to the air passage 31 and blown out to the air conditioning target space.
 空気は、冷却器22において冷却および除湿された後に、必要に応じて再熱器21にて加熱されるため、空気の除湿量と空気の温度を、それぞれ個別に調節することができる。このため、ユーザーが設定する温度および湿度の空気を空気調和対象空間に供給することができる。 After the air is cooled and dehumidified in the cooler 22, it is heated in the reheater 21 as necessary, so the amount of dehumidification of the air and the temperature of the air can be individually adjusted. Therefore, air having a temperature and humidity set by the user can be supplied to the space to be air-conditioned.
 <加熱主体運転>
 次に、図2を参照して、実施の形態1に係る空気調和機100の加熱主体運転について説明する。加熱主体運転とは、再熱器21における空気の加熱量が冷却器22における空気の冷却量よりも大きく、かつ室外熱交換器13が蒸発器として機能することで、ヒートポンプとしての余剰冷熱量が外気に排熱される運転である。加熱主体運転では、再熱器21を通過した後の空気は、冷却器22を通過する前の空気よりも、温度が高くなり、水分含有量が少なくなる。
<Heating main operation>
Next, the heating main operation of the air conditioner 100 according to Embodiment 1 will be described with reference to FIG. In the heating-dominant operation, the amount of air heating in the reheater 21 is greater than the amount of air cooling in the cooler 22, and the outdoor heat exchanger 13 functions as an evaporator, so that the surplus cold heat amount of the heat pump is reduced. This is an operation in which heat is exhausted to the outside air. In the heating-dominant operation, the air after passing through the reheater 21 has a higher temperature and a lower moisture content than the air before passing through the cooler 22 .
 加熱主体運転では、六方弁12は図2の実線で示されるように第2切替状態に切替えられる。圧縮機11にて高温高圧に圧縮された蒸気冷媒は、吐出配管3に流出し、六方弁12を通過し、高圧配管1を経由して、再熱器21に流入する。再熱器21は凝縮器として機能する。送風機32により再熱器21に導入された空気に対して、高温高圧の蒸気冷媒は放熱する。これにより、高温高圧の蒸気冷媒は、凝縮され、高圧の液冷媒となる。この高圧の液冷媒は第2膨張弁23に流入する。  In the heating main operation, the hexagonal valve 12 is switched to the second switching state as indicated by the solid line in FIG. The vapor refrigerant compressed to high temperature and high pressure by the compressor 11 flows out to the discharge pipe 3 , passes through the hexagonal valve 12 , and flows into the reheater 21 via the high pressure pipe 1 . The reheater 21 functions as a condenser. The high-temperature and high-pressure vapor refrigerant radiates heat to the air introduced into the reheater 21 by the blower 32 . As a result, the high-temperature and high-pressure vapor refrigerant is condensed into a high-pressure liquid refrigerant. This high-pressure liquid refrigerant flows into the second expansion valve 23 .
 この高圧の液冷媒は第2膨張弁23にて膨張し、減圧され、低温低圧の気液二相冷媒となる。この低温低圧の気液二相冷媒は、冷却器22に流入する。冷却器22は蒸発器として機能する。送風機32により冷却器22に導入された空気から吸熱することにより、低温低圧の気液二相冷媒は一部が蒸発する。その後、低温低圧の気液二相冷媒は、低圧配管2を経由して六方弁12に流入し、液配管6に流出し、第1膨張弁14を介して、室外熱交換器13に流入する。 This high-pressure liquid refrigerant is expanded by the second expansion valve 23 and decompressed to become a low-temperature, low-pressure gas-liquid two-phase refrigerant. This low-temperature, low-pressure gas-liquid two-phase refrigerant flows into the cooler 22 . Cooler 22 functions as an evaporator. By absorbing heat from the air introduced into the cooler 22 by the blower 32, part of the low-temperature, low-pressure gas-liquid two-phase refrigerant evaporates. After that, the low-temperature and low-pressure gas-liquid two-phase refrigerant flows through the low-pressure pipe 2 into the hexagonal valve 12, flows out into the liquid pipe 6, and flows through the first expansion valve 14 into the outdoor heat exchanger 13. .
 室外熱交換器13は蒸発器として機能する。室外送風機(図示せず)により室外熱交換器13に導入された室外空気から吸熱することにより、低温低圧の気液二相冷媒は蒸発し、低圧の蒸気冷媒となる。この低圧の蒸気冷媒は、ガス配管5を経由して六方弁12に流入し、吸入配管4を経由して、圧縮機11に吸入される。加熱主体運転では、冷媒は以降同様の過程で冷媒回路RCを循環する。 The outdoor heat exchanger 13 functions as an evaporator. By absorbing heat from outdoor air introduced into the outdoor heat exchanger 13 by an outdoor blower (not shown), the low-temperature, low-pressure gas-liquid two-phase refrigerant evaporates to become a low-pressure vapor refrigerant. This low-pressure vapor refrigerant flows into the hexagonal valve 12 via the gas pipe 5 and is sucked into the compressor 11 via the suction pipe 4 . In the heating-dominant operation, the refrigerant thereafter circulates in the refrigerant circuit RC in the same process.
 送風機32によって風路31内を導かれる空気は、冷却主体運転と同様に、冷却器22において冷却および除湿された後に、再熱器21にて加熱され、空気調和対象空間に吹き出される。したがって、空気の除湿量と空気の温度を、それぞれ個別に調節することができる。このため、ユーザーが設定する温度および湿度の空気を空気調和対象空間に供給することができる。 The air guided through the air passage 31 by the blower 32 is cooled and dehumidified by the cooler 22, then heated by the reheater 21 and blown out to the air conditioning target space, as in the cooling main operation. Therefore, the amount of dehumidification of the air and the temperature of the air can be individually adjusted. Therefore, air having a temperature and humidity set by the user can be supplied to the space to be air-conditioned.
 <冷房運転>
 再び図1を参照して、冷房運転について説明する。冷房運転では、第1膨張弁14は冷媒を膨張させる。つまり、冷房運転では、第1膨張弁14は膨張弁として機能する。一方、冷房運転では、第2膨張弁23は、全開状態であり、膨張弁として機能しない。
<Cooling operation>
The cooling operation will be described with reference to FIG. 1 again. In cooling operation, the first expansion valve 14 expands the refrigerant. That is, in cooling operation, the first expansion valve 14 functions as an expansion valve. On the other hand, in cooling operation, the second expansion valve 23 is fully open and does not function as an expansion valve.
 冷房運転では、冷媒回路RCを、圧縮機11、冷媒流路切替機構RF、室外熱交換器13、第1膨張弁14、冷媒流路切替機構RF、再熱器21、第2膨張弁23、冷却器22、冷媒流路切替機構RFの順に冷媒が循環する。 In the cooling operation, the refrigerant circuit RC includes the compressor 11, the refrigerant flow switching mechanism RF, the outdoor heat exchanger 13, the first expansion valve 14, the refrigerant flow switching mechanism RF, the reheater 21, the second expansion valve 23, The coolant circulates in the order of the cooler 22 and the coolant flow switching mechanism RF.
 <暖房運転>
 再び図2を参照して、暖房運転について説明する。暖房運転では、第1膨張弁14は冷媒を膨張させる。つまり、暖房運転では、第1膨張弁14は膨張弁として機能する。一方、暖房運転では、第2膨張弁23は、全開状態であり、膨張弁として機能しない。
<Heating operation>
The heating operation will be described with reference to FIG. 2 again. In heating operation, the first expansion valve 14 expands the refrigerant. That is, in heating operation, the first expansion valve 14 functions as an expansion valve. On the other hand, in heating operation, the second expansion valve 23 is fully open and does not function as an expansion valve.
 暖房運転では、冷媒回路RCを、圧縮機11、冷媒流路切替機構RF、再熱器21、第2膨張弁23、冷却器22、冷媒流路切替機構RF、第1膨張弁14、室外熱交換器13、冷媒流路切替機構RFの順に冷媒が循環する。 In the heating operation, the refrigerant circuit RC is composed of the compressor 11, the refrigerant flow switching mechanism RF, the reheater 21, the second expansion valve 23, the cooler 22, the refrigerant flow switching mechanism RF, the first expansion valve 14, the outdoor heat The refrigerant circulates in the order of the exchanger 13 and the refrigerant flow switching mechanism RF.
 次に、実施の形態1に係る空気調和機100の作用効果について説明する。
 実施の形態1に係る空気調和機によれば、冷媒流路切替機構RFは、第1切替状態および第2切替状態のいずれでも冷媒回路RCを再熱器21および冷却器22の順に冷媒が流れるように切り替えられるように構成されている。冷媒流路切替機構RFは、冷却主体運転では第1切替状態となり、加熱主体運転では第2切替状態となる。このため、冷却主体運転および加熱主体運転の両方において再熱器21および冷却器22を流れる冷媒の方向を同一とすることができる。
Next, functions and effects of the air conditioner 100 according to Embodiment 1 will be described.
According to the air conditioner according to Embodiment 1, the refrigerant flow switching mechanism RF causes the refrigerant to flow through the refrigerant circuit RC in the order of the reheater 21 and the cooler 22 in both the first switching state and the second switching state. It is configured so that it can be switched as follows. The refrigerant flow switching mechanism RF is in the first switching state during the cooling main operation, and is in the second switching state during the heating main operation. Therefore, the direction of the refrigerant flowing through the reheater 21 and the cooler 22 can be the same in both the cooling-dominant operation and the heating-dominant operation.
 また、再熱器21および冷却器22は、第1切替状態および第2切替状態のいずれでも、送風機32によって送風された空気が冷却器22を通過してから再熱器21を通過するように構成されている。このため、冷却主体運転および加熱主体運転の両方の運転において、空気を冷却および除湿した後に再加熱することができる。したがって、冷却主体運転および加熱主体運転の両方の運転において充分な除湿を行うことができる。 Further, the reheater 21 and the cooler 22 are arranged so that the air blown by the blower 32 passes through the cooler 22 and then the reheater 21 in both the first switching state and the second switching state. It is configured. Therefore, in both the cooling-dominant operation and the heating-dominant operation, the air can be cooled and dehumidified and then reheated. Therefore, sufficient dehumidification can be performed in both the cooling main operation and the heating main operation.
 特に、加熱主体運転において十分な除湿を行うことができるため、加熱主体運転を空気調和対象空間の乾燥除湿に活用することができる。このため、実施の形態1に係る空気調和機100を食品および素材の乾燥用途にも用いることができる。 In particular, since sufficient dehumidification can be performed in heating-dominant operation, heating-dominant operation can be used for drying and dehumidifying the space to be air-conditioned. Therefore, the air conditioner 100 according to Embodiment 1 can also be used for drying foods and materials.
 実施の形態1に係る空気調和機100では、冷媒流路切替機構RFは、六方弁12である。このため、冷却主体運転および加熱主体運転のいずれにおいても、再熱器21と冷却器22を流れる冷媒の流動方向を同一にすることができる。したがって、冷却主体運転および加熱主体運転のいずれにおいても、冷却器22において冷却および除湿された空気を再熱器21で加熱することができる。このため、ユーザーが設定する温度および湿度の空気を空気調和対象空間に供給することができる。 In the air conditioner 100 according to Embodiment 1, the refrigerant channel switching mechanism RF is the hexagonal valve 12 . Therefore, in both the cooling-dominant operation and the heating-dominant operation, the flow directions of the refrigerant flowing through the reheater 21 and the cooler 22 can be the same. Therefore, in both the cooling main operation and the heating main operation, the air cooled and dehumidified by the cooler 22 can be heated by the reheater 21 . Therefore, air having a temperature and humidity set by the user can be supplied to the space to be air-conditioned.
 室内空間の騒音および振動が望まれない場合等には、室外機10内に圧縮機11が設置されるセパレート式と呼ばれる空気調和機100の構成が、室内機20内に圧縮機11が設置されるリモート式と呼ばれる空気調和機100の構成よりも望ましい。リモート式では、再熱器21の一端が冷媒流路切替機構RFを介さずに吐出配管3に接続され、再熱器21のもう一端が液配管6に接続される冷媒回路構成が一般的である。この冷媒回路構成において、圧縮機11が室外機10内に設置されるセパレート式の構成が採られると、室外機10と室内機20を、吐出配管3と液配管6と低圧配管2の3本で接続する必要がある。実施の形態1に係る空気調和機100の構成では、室外機10と室内機20とが高圧配管1および低圧配管2によって接続されている。したがって、室外機10と室内機20を、高圧配管1と低圧配管2の2本で接続することができるため、施工の手間を少なくすることができる。 When noise and vibration in the indoor space are not desired, the configuration of the air conditioner 100 called a separate type in which the compressor 11 is installed in the outdoor unit 10 is used. is preferable to the configuration of the air conditioner 100 called a remote type. The remote type generally has a refrigerant circuit configuration in which one end of the reheater 21 is connected to the discharge pipe 3 without passing through the refrigerant flow switching mechanism RF, and the other end of the reheater 21 is connected to the liquid pipe 6. be. In this refrigerant circuit configuration, if a separate type configuration in which the compressor 11 is installed in the outdoor unit 10 is adopted, the outdoor unit 10 and the indoor unit 20 are connected to three lines of the discharge pipe 3, the liquid pipe 6, and the low pressure pipe 2. must be connected with In the configuration of air conditioner 100 according to Embodiment 1, outdoor unit 10 and indoor unit 20 are connected by high-pressure pipe 1 and low-pressure pipe 2 . Therefore, since the outdoor unit 10 and the indoor unit 20 can be connected by the two high-pressure pipes 1 and the low-pressure pipes 2, the labor for construction can be reduced.
 実施の形態1に係る空気調和機100によれば、センサ15は、冷媒回路RCの冷媒の圧力または温度を測定可能に構成されている。このため、冷却主体運転において再熱器21内の冷媒の圧力または温度をセンサ15が測定した結果に基づいて、空気の加熱量を第1膨張弁14が調節することができる。また、加熱主体運転において冷却器22内の冷媒の圧力または温度をセンサ15が測定した結果に基づいて、空気の冷却量を第1膨張弁14が調節することができる。したがって、冷却主体運転では再熱器21における冷媒凝縮温度を、加熱主体運転では冷却器22における冷媒蒸発温度を、細かく調節することができる。これにより、空気調和機100の吹き出し空気の温度および湿度を安定的に制御することができる。 According to the air conditioner 100 according to Embodiment 1, the sensor 15 is configured to be able to measure the pressure or temperature of the refrigerant in the refrigerant circuit RC. Therefore, in the cooling-dominant operation, the first expansion valve 14 can adjust the heating amount of the air based on the result of the sensor 15 measuring the pressure or temperature of the refrigerant in the reheater 21 . Further, the first expansion valve 14 can adjust the cooling amount of the air based on the result of the sensor 15 measuring the pressure or temperature of the refrigerant in the cooler 22 in the heating-dominant operation. Therefore, it is possible to finely adjust the refrigerant condensation temperature in the reheater 21 in the cooling-dominant operation, and the refrigerant evaporation temperature in the cooler 22 in the heating-dominant operation. Thereby, the temperature and humidity of the air blown out from the air conditioner 100 can be stably controlled.
 具体的には、例えばユーザーの設定する空気調和機100の吹出し空気の温度および湿度に対応した、冷却主体運転における再熱器21内の冷媒圧力値または加熱主体運転における冷却器22内の冷媒圧力値が事前に明らかな場合には、センサ15の測定値が当該冷媒圧力値に近づくように、第1膨張弁14の開度指令が調節される。 Specifically, for example, the refrigerant pressure value in the reheater 21 in the cooling main operation or the refrigerant pressure in the cooler 22 in the heating main operation corresponding to the temperature and humidity of the blown air of the air conditioner 100 set by the user When the value is known in advance, the opening command for the first expansion valve 14 is adjusted so that the measured value of the sensor 15 approaches the refrigerant pressure value.
 実施の形態1に係る空気調和機100によれば、冷媒は、混合冷媒である。二種類以上の冷媒の混合物である混合冷媒は、一般に非共沸となるため、気液相変化時の温度が一定ではない。そのため、混合冷媒の相変化に従い熱交換器に温度勾配が生じる。このため、熱交換器の最適設計が必要となる。実施の形態1に係る空気調和機100では、再熱器21と冷却器22を専用設計することができるため、混合冷媒を用いても高性能な空気調和機100を実現することができる。 According to the air conditioner 100 according to Embodiment 1, the refrigerant is a mixed refrigerant. A mixed refrigerant, which is a mixture of two or more kinds of refrigerants, is generally non-azeotropic, so the temperature during the gas-liquid phase change is not constant. Therefore, a temperature gradient is generated in the heat exchanger according to the phase change of the mixed refrigerant. Therefore, optimum design of the heat exchanger is required. In the air conditioner 100 according to Embodiment 1, the reheater 21 and the cooler 22 can be specially designed, so even if a mixed refrigerant is used, the high performance air conditioner 100 can be realized.
 実施の形態1に係る空気調和機100によれば、再熱器21および冷却器22は、空気の流れに対して冷媒の流れが対向流となるように構成されている。このため、混合冷媒の熱交換器内の温度勾配を活用して、空気と冷媒の熱交換温度差を小さくすることができる。したがって、空気調和機100の高性能運転を実現することができる。 According to the air conditioner 100 according to Embodiment 1, the reheater 21 and the cooler 22 are configured so that the refrigerant flows countercurrent to the air flow. Therefore, the temperature gradient of the mixed refrigerant in the heat exchanger can be utilized to reduce the heat exchange temperature difference between the air and the refrigerant. Therefore, high performance operation of the air conditioner 100 can be realized.
 非共沸冷媒は、冷媒の蒸発に従い温度が上昇するため、蒸発器として機能する冷却器22において空気と冷媒を対向流の構成にすることで、冷媒の流動方向における温度上昇と、空気の流動方向における温度下降が、相互に作用し、冷却器22全域において空気と冷媒の熱交換温度差を縮小することができる。 Since the temperature of the non-azeotropic refrigerant rises as the refrigerant evaporates, by making the air and the refrigerant counterflow in the cooler 22 that functions as an evaporator, the temperature rise in the refrigerant flow direction and the air flow The temperature drops in the directions can interact to reduce the heat exchange temperature difference between the air and the refrigerant across the cooler 22 .
 また、非共沸冷媒は、冷媒の凝縮に従い温度が下降するため、凝縮器として機能する再熱器21において空気と冷媒を対向流の構成にすることで、冷媒の流動方向における温度下降と、空気の流動方向における温度上昇が、相互に作用し、再熱器21全域において空気と冷媒の熱交換温度差を縮小することができる。 In addition, since the temperature of the non-azeotropic refrigerant decreases as the refrigerant condenses, the reheater 21 that functions as a condenser has a structure in which the air and the refrigerant flow in opposite directions, thereby decreasing the temperature in the flow direction of the refrigerant and The temperature rise in the air flow direction can interact to reduce the heat exchange temperature difference between the air and the refrigerant across the reheater 21 .
 なお、送風機32の位置は、図1および図2に示されるような冷却器22の風路31上流に限られない。送風機32の位置は、風路31内の冷却器22と再熱器21の間でもよく、再熱器21の風路31下流でもよい。 It should be noted that the position of the blower 32 is not limited to the upstream of the air passage 31 of the cooler 22 as shown in FIGS. The position of the blower 32 may be between the cooler 22 and the reheater 21 in the air passage 31 or may be downstream of the air passage 31 of the reheater 21 .
 また、図3および図4を参照して、六方弁12は、ロータリー式の構成のものでもよい。図3は、ロータリー式の六方弁12の第1切替状態の模式図である。図4は、ロータリー式の六方弁12の第2切替状態の模式図である。ロータリー式の六方弁12は、弁座12aと、弁座12aに対して回転可能に構成された弁体12bとを有している。弁座12aに対して弁体12bが回転することによって、第1切替状態と第2切替状態とに流路が切り替えられる。 Also, with reference to FIGS. 3 and 4, the hexagonal valve 12 may have a rotary configuration. FIG. 3 is a schematic diagram of the first switching state of the rotary hexagonal valve 12. As shown in FIG. FIG. 4 is a schematic diagram of the second switching state of the rotary hexagonal valve 12. As shown in FIG. The rotary six-way valve 12 has a valve seat 12a and a valve body 12b rotatable with respect to the valve seat 12a. The flow path is switched between the first switching state and the second switching state by rotating the valve body 12b with respect to the valve seat 12a.
 また、図5および図6を参照して、六方弁12は、スライド式の構成のものでもよい。図5は、スライド式の六方弁12の第1切替状態の模式図である。図6は、スライド式の六方弁12の第2切替状態の模式図である。スライド式の六方弁12は、弁座12aと、弁座12aに対してスライド可能に構成された弁体12bとを有している。弁座12aに対して弁体12bが摺動することによって、第1切替状態と第2切替状態とに流路が切り替えられる。 Also, referring to FIGS. 5 and 6, the hexagonal valve 12 may have a slide type configuration. FIG. 5 is a schematic diagram of the first switching state of the slide-type hexagonal valve 12. As shown in FIG. FIG. 6 is a schematic diagram of the second switching state of the slide-type hexagonal valve 12. As shown in FIG. The slide-type hexagonal valve 12 has a valve seat 12a and a valve body 12b configured to be slidable with respect to the valve seat 12a. The flow path is switched between the first switching state and the second switching state by sliding the valve body 12b against the valve seat 12a.
 実施の形態2.
 実施の形態2に係る空気調和機100は特に説明しない限り、実施の形態1に係る空気調和機100と同一の構成、動作および作用効果を有している。
Embodiment 2.
The air conditioner 100 according to Embodiment 2 has the same configuration, operation, and effects as those of the air conditioner 100 according to Embodiment 1 unless otherwise specified.
 <装置構成>
 図7は実施の形態2に係る空気調和機100の冷媒回路図である。図7を参照して、実施の形態2に係る空気調和機100の構成について説明する。
<Device configuration>
FIG. 7 is a refrigerant circuit diagram of the air conditioner 100 according to Embodiment 2. As shown in FIG. A configuration of the air conditioner 100 according to Embodiment 2 will be described with reference to FIG.
 実施の形態2では、冷媒流路切替機構RFは、四方弁41および逆止弁ブリッジ回路NCを有している。四方弁41は、圧縮機11、室外熱交換器13および逆止弁ブリッジ回路NCに接続されている。逆止弁ブリッジ回路NCは、第1逆止弁42、第2逆止弁43、第3逆止弁44、第4逆止弁45を有している。 In Embodiment 2, the refrigerant flow switching mechanism RF has the four-way valve 41 and the check valve bridge circuit NC. The four-way valve 41 is connected to the compressor 11, the outdoor heat exchanger 13 and the check valve bridge circuit NC. The check valve bridge circuit NC has a first check valve 42 , a second check valve 43 , a third check valve 44 and a fourth check valve 45 .
 四方弁41の四つの接続口(第1接続口P1~第4接続口P4)の各々は、高圧配管1または低圧配管2、吐出配管3、吸入配管4、ガス配管5にそれぞれ接続されている。第1接続口P1は吐出配管3に接続されている。第2接続口P2はガス配管5に接続されている。第3接続口P3は第1逆止弁42の流入口と第4逆止弁45の流出口に接続されている。第4接続口P4は吸入配管4に接続されている。 Each of the four connection ports (first connection port P1 to fourth connection port P4) of the four-way valve 41 is connected to the high-pressure pipe 1 or the low-pressure pipe 2, the discharge pipe 3, the suction pipe 4, and the gas pipe 5, respectively. . The first connection port P1 is connected to the discharge pipe 3 . The second connection port P2 is connected to the gas pipe 5 . The third connection port P3 is connected to the inlet of the first check valve 42 and the outlet of the fourth check valve 45 . The fourth connection port P4 is connected to the suction pipe 4 .
 第1逆止弁42の流出口と第3逆止弁44の流出口は、高圧配管1に接続されている。第4逆止弁45の流入口と第2逆止弁43の流入口は、低圧配管2に接続されている。第2逆止弁43の流出口と第3逆止弁44の流入口は、液配管6に接続されている。 The outflow port of the first check valve 42 and the outflow port of the third check valve 44 are connected to the high pressure pipe 1 . The inlet of the fourth check valve 45 and the inlet of the second check valve 43 are connected to the low-pressure pipe 2 . The outflow port of the second check valve 43 and the inflow port of the third check valve 44 are connected to the liquid pipe 6 .
 四方弁41の第1切替状態では、圧縮機11、吐出配管3、四方弁41、ガス配管5、室外熱交換器13、液配管6、第1膨張弁14、第3逆止弁44、高圧配管1、再熱器21、第2膨張弁23、冷却器22、低圧配管2、第4逆止弁45、四方弁41、吸入配管4を経由して再度圧縮機11へと至る冷媒回路RCが構成されている。四方弁41の第1切替状態では、第1接続口P1に第2接続口P2が接続されており、第3接続口P3に第4接続口が接続されている。 In the first switching state of the four-way valve 41, the compressor 11, the discharge pipe 3, the four-way valve 41, the gas pipe 5, the outdoor heat exchanger 13, the liquid pipe 6, the first expansion valve 14, the third check valve 44, the high pressure Refrigerant circuit RC leading to compressor 11 again via pipe 1, reheater 21, second expansion valve 23, cooler 22, low pressure pipe 2, fourth check valve 45, four-way valve 41, suction pipe 4 is configured. In the first switching state of the four-way valve 41, the second connection port P2 is connected to the first connection port P1, and the fourth connection port is connected to the third connection port P3.
 四方弁41の第2切替状態では、圧縮機11、吐出配管3、四方弁41、第1逆止弁42、高圧配管1、再熱器21、第2膨張弁23、冷却器22、低圧配管2、第2逆止弁43、第1膨張弁14、液配管6、室外熱交換器13、ガス配管5、四方弁41、吸入配管4を経由して再度圧縮機11へと至る冷媒回路RCが構成されている。四方弁41の第2切替状態では、第1接続口P1に第3接続口P3が接続されており、第2接続口P2に第4接続口P4が接続されている。 In the second switching state of the four-way valve 41, the compressor 11, the discharge pipe 3, the four-way valve 41, the first check valve 42, the high-pressure pipe 1, the reheater 21, the second expansion valve 23, the cooler 22, and the low-pressure pipe. 2. Refrigerant circuit RC leading to compressor 11 again via second check valve 43, first expansion valve 14, liquid pipe 6, outdoor heat exchanger 13, gas pipe 5, four-way valve 41, suction pipe 4 is configured. In the second switching state of the four-way valve 41, the third connection port P3 is connected to the first connection port P1, and the fourth connection port P4 is connected to the second connection port P2.
 次に、実施の形態2に係る空気調和機100の動作について説明する。
 実施の形態2に係る空気調和機100の動作は、基本的には実施の形態1と同一である。図7を参照して、実施の形態2に係る空気調和機100の冷却主体運転では、冷媒は、圧縮機11、吐出配管3、四方弁41、ガス配管5、室外熱交換器13、液配管6、第1膨張弁14、第3逆止弁44、高圧配管1、再熱器21、第2膨張弁23、冷却器22、低圧配管2、第4逆止弁45、四方弁41、吸入配管4を経由して再度圧縮機11へと冷媒回路RCを流れる。
Next, operation of the air conditioner 100 according to Embodiment 2 will be described.
The operation of the air conditioner 100 according to the second embodiment is basically the same as that of the first embodiment. Referring to FIG. 7, in the cooling main operation of air conditioner 100 according to Embodiment 2, refrigerant is used in compressor 11, discharge pipe 3, four-way valve 41, gas pipe 5, outdoor heat exchanger 13, liquid pipe 6, first expansion valve 14, third check valve 44, high pressure pipe 1, reheater 21, second expansion valve 23, cooler 22, low pressure pipe 2, fourth check valve 45, four-way valve 41, suction It flows through the refrigerant circuit RC to the compressor 11 again via the pipe 4 .
 図8を参照して、実施の形態2に係る空気調和機100の加熱主体運転では、冷媒は、圧縮機11、吐出配管3、四方弁41、第1逆止弁42、高圧配管1、再熱器21、第2膨張弁23、冷却器22、低圧配管2、第2逆止弁43、第1膨張弁14、液配管6、室外熱交換器13、ガス配管5、四方弁41、吸入配管4を経由して再度圧縮機11へと冷媒回路RCを流れる。 Referring to FIG. 8, in the heating-dominant operation of air conditioner 100 according to Embodiment 2, refrigerant is supplied to compressor 11, discharge pipe 3, four-way valve 41, first check valve 42, high-pressure pipe 1, re Heater 21, second expansion valve 23, cooler 22, low-pressure pipe 2, second check valve 43, first expansion valve 14, liquid pipe 6, outdoor heat exchanger 13, gas pipe 5, four-way valve 41, suction It flows through the refrigerant circuit RC to the compressor 11 again via the pipe 4 .
 再び図7を参照して、実施の形態2に係る空気調和機100の冷房運転では、冷媒は冷却主体運転と同様に冷媒回路RCを流れる。再び図8を参照して、実施の形態2に係る空気調和機100の暖房運転では、冷媒は加熱主体運転と同様に冷媒回路RCを流れる。 Referring to FIG. 7 again, in the cooling operation of the air conditioner 100 according to Embodiment 2, the refrigerant flows through the refrigerant circuit RC as in the cooling main operation. Referring to FIG. 8 again, in the heating operation of the air conditioner 100 according to Embodiment 2, the refrigerant flows through the refrigerant circuit RC as in the heating main operation.
 次に、実施の形態2に係る空気調和機100の作用効果について説明する。
 実施の形態2に係る空気調和機100では、冷媒流路切替機構RFは、四方弁41および逆止弁ブリッジ回路NCを有している。このため、冷却主体運転と加熱主体運転のいずれにおいても、再熱器21と冷却器22を流れる冷媒の方向を同一とすることができる。したがって、冷却主体運転と加熱主体運転のいずれにおいても、冷却器22において冷却および除湿された空気を再熱器21で加熱することができる。このため、ユーザーが設定する温度および湿度の空気を空気調和対象空間に供給することができる。
Next, effects of the air conditioner 100 according to Embodiment 2 will be described.
In the air conditioner 100 according to Embodiment 2, the refrigerant flow switching mechanism RF has the four-way valve 41 and the check valve bridge circuit NC. Therefore, the direction of the refrigerant flowing through the reheater 21 and the cooler 22 can be the same in both the cooling-dominant operation and the heating-dominant operation. Therefore, in both the cooling main operation and the heating main operation, the air cooled and dehumidified by the cooler 22 can be heated by the reheater 21 . Therefore, air having a temperature and humidity set by the user can be supplied to the space to be air-conditioned.
 また、冷媒流路切替機構RFを四方弁41および逆止弁ブリッジ回路NCで構成することができるため、冷媒流路切替機構RFを安価な部品で構成することができる。 In addition, since the refrigerant flow switching mechanism RF can be composed of the four-way valve 41 and the check valve bridge circuit NC, the refrigerant flow switching mechanism RF can be composed of inexpensive parts.
 実施の形態3.
 実施の形態3に係る空気調和機100は特に説明しない限り、実施の形態1に係る空気調和機100と同一の構成、動作および作用効果を有している。
Embodiment 3.
The air conditioner 100 according to Embodiment 3 has the same configuration, operation, and effects as those of the air conditioner 100 according to Embodiment 1 unless otherwise specified.
 図9および図10を参照して、実施の形態3に係る空気調和機100の構成について説明する。 The configuration of the air conditioner 100 according to Embodiment 3 will be described with reference to FIGS. 9 and 10. FIG.
 図9および図10に示されるように、再熱器21は、並列に配置された複数の第1伝熱流路T1を有している。冷却器22は、並列に配置された複数の第2伝熱流路T2を有している。 As shown in FIGS. 9 and 10, the reheater 21 has a plurality of first heat transfer paths T1 arranged in parallel. The cooler 22 has a plurality of second heat transfer paths T2 arranged in parallel.
 図11および図12を参照して、冷却器22の複数の第2伝熱流路T2の並列数は、再熱器21の複数の第1伝熱流路T1の並列数よりも多い。並列数は、分岐数である。言い換えれば、並列数は、パス数である。 11 and 12, the parallel number of the plurality of second heat transfer paths T2 of the cooler 22 is greater than the number of the plurality of first heat transfer paths T1 of the reheater 21. The number of parallels is the number of branches. In other words, the number of parallels is the number of passes.
 次に、実施の形態3係る空気調和機100の作用効果について説明する。
 再熱器21内の冷媒は、高温高圧状態であり、密度が大きい。このため、第1伝熱流路T1の並列数を少なくすることで、冷媒流動速度を上昇させることにより伝熱流路内の熱伝達率を上昇させることができる。したがって、第1伝熱流路T1の並列数を少なくすることが空気調和機100の性能向上に寄与する。
Next, functions and effects of the air conditioner 100 according to Embodiment 3 will be described.
The refrigerant in the reheater 21 is in a high temperature and high pressure state and has a high density. Therefore, by reducing the parallel number of the first heat transfer passages T1, the heat transfer coefficient in the heat transfer passages can be increased by increasing the flow velocity of the refrigerant. Therefore, reducing the number of parallel first heat transfer paths T1 contributes to improving the performance of the air conditioner 100 .
 冷却器22内の冷媒は、低温低圧状態であり、密度が小さい。このため、第2伝熱流路T2の並列数を多くすることで、冷媒流動速度を低減させることにより伝熱流路内の圧力損失を低減させることができる。したがって、第2伝熱流路T2の並列数を多くすることが空気調和機100の性能向上に寄与する。 The refrigerant in the cooler 22 is in a low temperature, low pressure state and has a low density. Therefore, by increasing the parallel number of the second heat transfer passages T2, it is possible to reduce the pressure loss in the heat transfer passages by reducing the flow velocity of the refrigerant. Therefore, increasing the parallel number of the second heat transfer paths T2 contributes to improving the performance of the air conditioner 100. FIG.
 したがって、実施の形態3に係る空気調和機100によれば、冷却器22の複数の第2伝熱流路T2の並列数は、再熱器21の複数の第1伝熱流路T1の並列数よりも多いため、高性能な空気調和機100を実現することができる。 Therefore, according to the air conditioner 100 according to Embodiment 3, the parallel number of the plurality of second heat transfer passages T2 of the cooler 22 is greater than the number of parallelization of the plurality of first heat transfer passages T1 of the reheater 21. Therefore, the high-performance air conditioner 100 can be realized.
 風路上流側の熱交換器を冷却器22、風路下流側の熱交換器を再熱器21として、専用設計が可能となるため、熱交換器内の伝熱管並列分岐数の設計観点では、冷媒の熱伝達率向上による性能向上の効果と、冷媒の圧力損失減少による性能向上の効果を最適設計することができる。 Since a dedicated design is possible with the heat exchanger on the upstream side of the air passage as the cooler 22 and the heat exchanger on the downstream side of the air passage as the reheater 21, from the viewpoint of designing the number of parallel branches of the heat transfer tubes in the heat exchanger Optimum design is possible for the effect of improving the performance by improving the heat transfer coefficient of the refrigerant and the effect of improving the performance by reducing the pressure loss of the refrigerant.
 実施の形態4.
 実施の形態4に係る空気調和機100は特に説明しない限り、実施の形態1に係る空気調和機100と同一の構成、動作および作用効果を有している。
Embodiment 4.
The air conditioner 100 according to Embodiment 4 has the same configuration, operation, and effects as those of the air conditioner 100 according to Embodiment 1 unless otherwise specified.
 図13~図15を参照して、実施の形態4に係る空気調和機100の再熱器21および冷却器22の構成について説明する。 The configurations of the reheater 21 and the cooler 22 of the air conditioner 100 according to Embodiment 4 will be described with reference to FIGS. 13 to 15. FIG.
 図13に示されるように、再熱器21は、第1フィンF1を有している。再熱器21は、複数の第1フィンF1を有していてもよい。図14に示されるように、冷却器22は、第2フィンを有している。冷却器22は、複数の第2フィンF2を有していてもよい。冷却器22の第2フィンF2の表面での水との接触角は、再熱器21の第1フィンF1の表面での水との接触角よりも小さい。 As shown in FIG. 13, the reheater 21 has first fins F1. The reheater 21 may have a plurality of first fins F1. As shown in FIG. 14, the cooler 22 has second fins. The cooler 22 may have a plurality of second fins F2. The contact angle with water on the surface of the second fins F2 of the cooler 22 is smaller than the contact angle with water on the surface of the first fins F1 of the reheater 21 .
 図15に示されるように、空気が冷却され結露が生じる冷却器22の第2フィンF2の表面は、風路への露飛び抑制とフィン表面の排水性の向上のために、親水処理がなされることが望ましい。冷却器22の第2フィンF2は、本体部Faと、本体部Faの表面を覆う親水処理部Fbとを有している。一方で、再熱器21のフィン表面には結露水は生じないため、コストのかかる親水処理は不要である。 As shown in FIG. 15, the surfaces of the second fins F2 of the cooler 22, on which dew condensation occurs when the air is cooled, are subjected to a hydrophilic treatment in order to suppress dewdrops in the air passage and improve the drainage performance of the fin surfaces. preferably The second fin F2 of the cooler 22 has a body portion Fa and a hydrophilic treatment portion Fb covering the surface of the body portion Fa. On the other hand, since dew condensation water does not occur on the fin surfaces of the reheater 21, costly hydrophilic treatment is unnecessary.
 次に、実施の形態4に係る空気調和機100の作用効果について説明する。
 実施の形態4に係る空気調和機100によれば、冷却器22の第2フィンF2の表面での水との接触角は、再熱器21の第1フィンF1の表面での水との接触角よりも小さい。このため、除湿性能とコストを両立した、空気調和機100を実現することができる。
Next, functions and effects of the air conditioner 100 according to Embodiment 4 will be described.
According to the air conditioner 100 according to Embodiment 4, the contact angle with water on the surface of the second fin F2 of the cooler 22 is the contact angle with water on the surface of the first fin F1 of the reheater 21. smaller than the corner. Therefore, it is possible to realize the air conditioner 100 that satisfies both dehumidification performance and cost.
 風路上流側の熱交換器を冷却器22とし、風路下流側の熱交換器を再熱器21として、専用設計が可能となるため、たとえば、冷却器22のフィン表面にのみ親水処理が施されることで、再熱器21の第1フィンF1の表面よりも冷却器22の第2フィンF2の表面において水の接触角を小さくすることができる。 Since the heat exchanger on the upstream side of the air passage is the cooler 22 and the heat exchanger on the downstream side of the air passage is the reheater 21, a dedicated design is possible. By applying the coating, the contact angle of water on the surface of the second fins F2 of the cooler 22 can be made smaller than that on the surface of the first fins F1 of the reheater 21 .
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed this time should be considered illustrative in all respects and not restrictive. The scope of the present disclosure is indicated by the scope of claims rather than the above description, and is intended to include all changes within the meaning and scope of equivalence to the scope of claims.
 1 高圧配管、2 低圧配管、3 吐出配管、4 吸入配管、5 ガス配管、6 液配管、10 室外機、11 圧縮機、12 六方弁、13 室外熱交換器、14 第1膨張弁、15 センサ、20 室内機、21 再熱器、22 冷却器、23 第2膨張弁、31 風路、32 送風機、41 四方弁、42 第1逆止弁、43 第2逆止弁、44 第3逆止弁、45 第4逆止弁、100 空気調和機、F1 第1フィン、F2 第2フィン、NC 逆止弁ブリッジ回路、RC 冷媒回路、RF 冷媒流路切替機構、T1 第1伝熱流路、T2 第2伝熱流路。 1 high pressure pipe, 2 low pressure pipe, 3 discharge pipe, 4 suction pipe, 5 gas pipe, 6 liquid pipe, 10 outdoor unit, 11 compressor, 12 hexagonal valve, 13 outdoor heat exchanger, 14 first expansion valve, 15 sensor , 20 Indoor unit, 21 Reheater, 22 Cooler, 23 Second expansion valve, 31 Air passage, 32 Blower, 41 Four-way valve, 42 First check valve, 43 Second check valve, 44 Third check valve, 45 fourth check valve, 100 air conditioner, F1 first fin, F2 second fin, NC check valve bridge circuit, RC refrigerant circuit, RF refrigerant channel switching mechanism, T1 first heat transfer channel, T2 A second heat transfer channel.

Claims (9)

  1.  圧縮機、冷媒流路切替機構、室外熱交換器、第1膨張弁、再熱器、第2膨張弁および冷却器とを有し、冷媒を循環させるように構成された冷媒回路と、
     前記再熱器および前記冷却器に空気を送風可能に構成された送風機とを備え、
     前記冷媒流路切替機構は、第1切替状態と第2切替状態とに切替可能に構成されており、
     前記冷媒流路切替機構は、
     前記第1切替状態では、前記冷媒回路を、前記圧縮機、前記冷媒流路切替機構、前記室外熱交換器、前記第1膨張弁、前記冷媒流路切替機構、前記再熱器、前記第2膨張弁、前記冷却器、前記冷媒流路切替機構の順に前記冷媒が流れるように切り替えられるように構成されており、かつ
     前記第2切替状態では、前記冷媒回路を、前記圧縮機、前記冷媒流路切替機構、前記再熱器、前記第2膨張弁、前記冷却器、前記冷媒流路切替機構、前記第1膨張弁、前記室外熱交換器、前記冷媒流路切替機構の順に前記冷媒が流れるように切り替えられるように構成されており、
     前記再熱器および前記冷却器は、前記第1切替状態および前記第2切替状態のいずれでも、前記送風機によって送風された前記空気が前記冷却器を通過してから前記再熱器を通過するように構成されている、空気調和機。
    a refrigerant circuit having a compressor, a refrigerant flow switching mechanism, an outdoor heat exchanger, a first expansion valve, a reheater, a second expansion valve, and a cooler, and configured to circulate the refrigerant;
    A blower configured to blow air to the reheater and the cooler,
    The refrigerant channel switching mechanism is configured to be switchable between a first switching state and a second switching state,
    The refrigerant flow switching mechanism is
    In the first switching state, the refrigerant circuit includes the compressor, the refrigerant flow switching mechanism, the outdoor heat exchanger, the first expansion valve, the refrigerant flow switching mechanism, the reheater, and the second It is configured such that the refrigerant is switched to flow in the order of the expansion valve, the cooler, and the refrigerant flow switching mechanism, and in the second switching state, the refrigerant circuit is switched between the compressor and the refrigerant flow. The refrigerant flows in order of the path switching mechanism, the reheater, the second expansion valve, the cooler, the refrigerant flow switching mechanism, the first expansion valve, the outdoor heat exchanger, and the refrigerant flow switching mechanism. It is configured so that it can be switched between
    The reheater and the cooler are arranged such that the air blown by the blower passes through the cooler before passing through the reheater in both the first switching state and the second switching state. An air conditioner configured to
  2.  前記冷媒流路切替機構は、六方弁である、請求項1に記載の空気調和機。 The air conditioner according to claim 1, wherein the refrigerant channel switching mechanism is a hexagonal valve.
  3.  前記冷媒流路切替機構は、四方弁および逆止弁ブリッジ回路を有し、
     前記四方弁は、前記圧縮機、前記室外熱交換器および前記逆止弁ブリッジ回路に接続されている、請求項1に記載の空気調和機。
    The refrigerant flow switching mechanism has a four-way valve and a check valve bridge circuit,
    The air conditioner according to claim 1, wherein said four-way valve is connected to said compressor, said outdoor heat exchanger and said check valve bridge circuit.
  4.  前記再熱器は、並列に配置された複数の第1伝熱流路を有し、
     前記冷却器は、並列に配置された複数の第2伝熱流路を有し、
     前記冷却器の前記複数の第2伝熱流路の並列数は、前記再熱器の前記複数の第1伝熱流路の並列数よりも多い、請求項1~3のいずれか1項に記載の空気調和機。
    The reheater has a plurality of first heat transfer channels arranged in parallel,
    The cooler has a plurality of second heat transfer channels arranged in parallel,
    The parallel number of the plurality of second heat transfer paths of the cooler is larger than the number of parallel of the plurality of first heat transfer paths of the reheater, according to any one of claims 1 to 3. Air conditioner.
  5.  前記再熱器は、第1フィンを有し、
     前記冷却器は、第2フィンを有し、
     前記冷却器の前記第2フィンの表面での水との接触角は、前記再熱器の前記第1フィンの表面での水との接触角よりも小さい、請求項1~4のいずれか1項に記載の空気調和機。
    The reheater has a first fin,
    The cooler has a second fin,
    The water contact angle on the surface of the second fin of the cooler is smaller than the water contact angle on the surface of the first fin of the reheater. The air conditioner described in the paragraph.
  6.  前記圧縮機および前記室外熱交換器を有する室外機と、
     前記再熱器と前記冷却器とを有する室内機と、
     高圧配管と、
     低圧配管とをさらに備え、
     前記室外機と前記室内機とが前記高圧配管および前記低圧配管によって接続されている、請求項1~5のいずれか1項に記載の空気調和機。
    an outdoor unit having the compressor and the outdoor heat exchanger;
    an indoor unit having the reheater and the cooler;
    high pressure pipes,
    further equipped with low-pressure piping,
    The air conditioner according to any one of claims 1 to 5, wherein the outdoor unit and the indoor unit are connected by the high pressure pipe and the low pressure pipe.
  7.  前記第1膨張弁と前記冷媒流路切替機構とを接続する配管上にセンサをさらに備え、
     前記センサは、前記配管における前記冷媒の圧力または温度を測定可能に構成されている、請求項1~6のいずれか1項に記載の空気調和機。
    further comprising a sensor on a pipe connecting the first expansion valve and the refrigerant flow switching mechanism;
    The air conditioner according to any one of claims 1 to 6, wherein said sensor is configured to measure the pressure or temperature of said refrigerant in said pipe.
  8.  前記冷媒は、混合冷媒である、請求項1~7のいずれか1項に記載の空気調和機。 The air conditioner according to any one of claims 1 to 7, wherein the refrigerant is a mixed refrigerant.
  9.  前記再熱器および前記冷却器は、前記空気の流れに対して前記冷媒の流れが対向流となるように構成されている、請求項8に記載の空気調和機。 The air conditioner according to claim 8, wherein the reheater and the cooler are configured such that the flow of the refrigerant is countercurrent to the flow of the air.
PCT/JP2021/041422 2021-11-10 2021-11-10 Air conditioner WO2023084658A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/041422 WO2023084658A1 (en) 2021-11-10 2021-11-10 Air conditioner
CN202180103854.0A CN118176395A (en) 2021-11-10 2021-11-10 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/041422 WO2023084658A1 (en) 2021-11-10 2021-11-10 Air conditioner

Publications (1)

Publication Number Publication Date
WO2023084658A1 true WO2023084658A1 (en) 2023-05-19

Family

ID=86335360

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/041422 WO2023084658A1 (en) 2021-11-10 2021-11-10 Air conditioner

Country Status (2)

Country Link
CN (1) CN118176395A (en)
WO (1) WO2023084658A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0331640A (en) * 1989-06-28 1991-02-12 Mitsubishi Electric Corp Air conditioning apparatus
JP2002089998A (en) 2000-09-18 2002-03-27 Matsushita Electric Ind Co Ltd Control method for operation of air conditioner
JP2003050061A (en) * 2001-08-06 2003-02-21 Mitsubishi Electric Corp Air conditioner
JP2014001917A (en) * 2012-05-23 2014-01-09 Daikin Ind Ltd Refrigerator
CN103822391A (en) * 2013-12-02 2014-05-28 广东志高空调有限公司 Temperature and power variable dehumidification system and control method thereof
CN104089393A (en) * 2014-07-21 2014-10-08 深圳市沃森空调技术有限公司 Indoor heat exchanger with adjustable dehumidification amount and indoor unit
JP2016061489A (en) * 2014-09-18 2016-04-25 株式会社富士通ゼネラル Air conditioner
JP2017040464A (en) * 2014-09-03 2017-02-23 三星電子株式会社Samsung Electronics Co.,Ltd. Refrigerant amount detection device
WO2017145219A1 (en) * 2016-02-22 2017-08-31 三菱電機株式会社 Refrigeration cycle apparatus
JP2019138522A (en) * 2018-02-08 2019-08-22 株式会社富士通ゼネラル Air conditioner

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0331640A (en) * 1989-06-28 1991-02-12 Mitsubishi Electric Corp Air conditioning apparatus
JP2002089998A (en) 2000-09-18 2002-03-27 Matsushita Electric Ind Co Ltd Control method for operation of air conditioner
JP2003050061A (en) * 2001-08-06 2003-02-21 Mitsubishi Electric Corp Air conditioner
JP2014001917A (en) * 2012-05-23 2014-01-09 Daikin Ind Ltd Refrigerator
CN103822391A (en) * 2013-12-02 2014-05-28 广东志高空调有限公司 Temperature and power variable dehumidification system and control method thereof
CN104089393A (en) * 2014-07-21 2014-10-08 深圳市沃森空调技术有限公司 Indoor heat exchanger with adjustable dehumidification amount and indoor unit
JP2017040464A (en) * 2014-09-03 2017-02-23 三星電子株式会社Samsung Electronics Co.,Ltd. Refrigerant amount detection device
JP2016061489A (en) * 2014-09-18 2016-04-25 株式会社富士通ゼネラル Air conditioner
WO2017145219A1 (en) * 2016-02-22 2017-08-31 三菱電機株式会社 Refrigeration cycle apparatus
JP2019138522A (en) * 2018-02-08 2019-08-22 株式会社富士通ゼネラル Air conditioner

Also Published As

Publication number Publication date
CN118176395A (en) 2024-06-11

Similar Documents

Publication Publication Date Title
US7437884B2 (en) Air conditioner
WO2009087733A1 (en) Refrigeration cycle device and four-way valve
WO2012077275A1 (en) Air-conditioner
JPWO2018061188A1 (en) Indoor unit and air conditioner
WO2012086746A1 (en) Flow path switching valve and air conditioner with same
JP2019109044A (en) Indoor unit
EP1806542A1 (en) Air conditioner
CN103890495A (en) Refrigeration and air-conditioning device, and humidity adjustment device
WO2012085965A1 (en) Air conditioner
JP5127870B2 (en) Air conditioner
EP3711984A1 (en) Air conditioning system and control method therefor
JP4647399B2 (en) Ventilation air conditioner
JP3969381B2 (en) Multi-room air conditioner
JP2002267204A (en) Dehumidifier
WO2023084658A1 (en) Air conditioner
JPWO2003104719A1 (en) Dehumidifying air conditioner
US7086242B2 (en) Dehumidifying air-conditioning apparatus
CN110207417B (en) Air conditioning system
JP2998740B2 (en) Air conditioner
WO2021014520A1 (en) Air-conditioning device
WO2023243054A1 (en) Air conditioner
JP4020705B2 (en) Heat pump and dehumidifying air conditioner
JP2001330309A (en) Air conditioner
JP7450807B2 (en) air conditioner
CN112577101B (en) Air conditioner and control method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21964013

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023559275

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2021964013

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021964013

Country of ref document: EP

Effective date: 20240610