WO2023083046A1 - 加热器件及电子雾化装置 - Google Patents

加热器件及电子雾化装置 Download PDF

Info

Publication number
WO2023083046A1
WO2023083046A1 PCT/CN2022/128859 CN2022128859W WO2023083046A1 WO 2023083046 A1 WO2023083046 A1 WO 2023083046A1 CN 2022128859 W CN2022128859 W CN 2022128859W WO 2023083046 A1 WO2023083046 A1 WO 2023083046A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
heating
accommodating cavity
heating device
electric field
Prior art date
Application number
PCT/CN2022/128859
Other languages
English (en)
French (fr)
Inventor
韩达
范农杰
肖俊杰
周宏明
Original Assignee
深圳麦克韦尔科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳麦克韦尔科技有限公司 filed Critical 深圳麦克韦尔科技有限公司
Publication of WO2023083046A1 publication Critical patent/WO2023083046A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/46Dielectric heating
    • H05B6/48Circuits
    • H05B6/50Circuits for monitoring or control
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means
    • A24F40/465Shape or structure of electric heating means specially adapted for induction heating
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/20Devices using solid inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • H05B6/105Induction heating apparatus, other than furnaces, for specific applications using a susceptor
    • H05B6/108Induction heating apparatus, other than furnaces, for specific applications using a susceptor for heating a fluid
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/46Dielectric heating
    • H05B6/62Apparatus for specific applications

Definitions

  • the present application relates to the technical field of atomization, in particular to a heating device and an electronic atomization device.
  • Aerosol is a colloidal dispersion system formed by dispersing small solid or liquid particles and suspending them in a gas medium. Since aerosol can be absorbed by the human body through the respiratory system, it provides users with a new alternative absorption method, such as herbal The aerosol-like or cream-like aerosol-generating substrate is baked and heated to generate an aerosol atomizer, which is used in different fields to deliver inhalable aerosols to users, replacing conventional product forms and absorption methods.
  • the electronic atomization device usually adopts a resistive heating method to heat the aerosol generating substrate.
  • resistive heating uses an external power source to energize the resistive element to generate heat, and the heated resistive element then transfers heat to the aerosol-generating substrate through heat conduction.
  • Heat conduction takes time and there is a hysteresis, so the aerosol-generating substrate close to the resistive element is often overheated or even charred. Overheating or scorching at high temperature will not only affect the taste and make the consumer experience worse, but more importantly, it will lead to the release of harmful substances in the aerosol-generating matrix, endangering the health of consumers.
  • microwave heating can be used to heat the aerosol-generating substrate.
  • microwave heating has the following disadvantages: first, microwave is a high-frequency electromagnetic wave, and if it leaks during use, it will endanger human health. In addition, leaking microwaves will cause interference to nearby electronic devices, such as mobile phone signals, and affect the lives of people around them. Second, the microwave wavelength is short and the penetration depth is shallow, so it is actually difficult to achieve uniform heating. Third, microwave transmission requires waveguides and resonant cavities, which are complex in structure and difficult to miniaturize.
  • the traditional method of heating the aerosol-generating substrate cannot achieve uniform heating through a simple and miniaturized structure, and cannot effectively improve the taste of atomization.
  • a heating device comprising:
  • an electrode assembly disposed on the base and surrounding the periphery of the accommodating cavity
  • the electrode assembly includes a first electrode and a second electrode, and the first electrode and the second electrode form a high-frequency electric field in the accommodating cavity through a high-frequency voltage, and the high-frequency electric field is used for heating The aerosol-generating substrate in the accommodating cavity.
  • the above-mentioned heating device can be applied to an electronic atomization device.
  • an electrode assembly is arranged on the outer peripheral side of the accommodating cavity, and after a high-frequency voltage is applied to the first electrode and the second electrode in the electrode assembly, a high-frequency voltage is formed in the accommodating cavity.
  • Electric field, the aerosol-generating matrix placed in the holding chamber is under the action of a high-frequency electric field, the positive and negative charges in the internal molecules and atoms produce high-frequency alternating displacements, and the thermal motion of the molecules and atoms is intensified, thereby making the aerosol-generating matrix Get heated.
  • the aerosol-generating substrate is heated by a high-frequency electric field, and since the heat is generated by the high-frequency alternating displacement of internal positive and negative charges, uniform heating of the aerosol-generating substrate can be achieved. Moreover, the overall structure is simple and miniaturized, which facilitates the application of the heating device in the electronic atomization device.
  • the electrode assembly is provided with at least two groups, the at least two groups of electrode assemblies are arranged at intervals along the axial direction of the accommodating cavity, and the first electrode in each group of the electrode assembly opposite to and spaced apart from the second electrode in the circumferential direction of the accommodating cavity;
  • the at least two groups of electrode assemblies are connected in parallel.
  • the heating device further includes an insulating member, and the insulating member includes an insulating outer layer and an insulating inner layer;
  • the insulating inner layer is insulated between the base and the insulating outer layer, and is enclosed with the insulating outer layer to form an installation space, and the first electrode and the second electrode are arranged on the within the installation space.
  • the heating device further includes an inductor, the inductor is disposed in the accommodating cavity, and generates heat under the action of the high-frequency electric field.
  • the induction body is configured as a circumferential heating structure, including an induction layer disposed on the inner wall of the accommodating cavity, and the induction layer generates heat under the action of the high-frequency electric field; and/or ,
  • the induction body is arranged as a central heating structure, and is arranged in the middle of the accommodating cavity along the axial direction.
  • the induction body or the induction layer includes a material with a high dielectric dissipation factor.
  • the heating device further includes a resistance heating element, the resistance heating element is arranged in the accommodating cavity, and generates heat after being energized under control.
  • the resistance heating body is configured as a circumferential heating structure, including a resistance heating layer disposed on the inner wall of the accommodating cavity, and the resistance heating layer generates heat after being energized under control; and/or,
  • the resistance heating element is arranged as a central heating structure, and is arranged in the middle of the accommodating cavity along the axial direction.
  • the frequency of the high-frequency voltage is 10KHz-200MHz.
  • the heating device further includes a high-frequency generator, the first electrode and the second electrode are both electrically connected to the high-frequency generator, and receive the output of the high-frequency generator high frequency voltage.
  • An electronic atomization device includes the above-mentioned heating device.
  • FIG. 1 is a schematic structural view of a heating device in an embodiment of the present application
  • Fig. 2 is a schematic structural diagram of a heating device in another embodiment of the present application.
  • Fig. 3 is a schematic structural diagram of a heating device in another embodiment of the present application.
  • Fig. 4 is a schematic structural diagram of a heating device in another embodiment of the present application.
  • Fig. 5 is a schematic structural diagram of a heating device in another embodiment of the present application.
  • Fig. 6 is a schematic structural diagram of a heating device in another embodiment of the present application.
  • Heating device 100.
  • Heating device 10. Base; 11. Accommodating chamber; 30.
  • Electrode assembly 32.
  • First electrode 34.
  • Second electrode 40.
  • High-frequency generator 50.
  • Insulator 51.
  • Installation space 71, induction body; 73, induction layer; 82, resistance heating element; 84, resistance heating layer; 90, power supply.
  • first and second are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features.
  • the features defined as “first” and “second” may explicitly or implicitly include at least one of these features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise specifically defined.
  • a first feature being "on” or “under” a second feature may mean that the first and second features are in direct contact, or that the first and second features are indirect through an intermediary. touch.
  • “above”, “above” and “above” the first feature on the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is higher in level than the second feature.
  • “Below”, “beneath” and “beneath” the first feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature is less horizontally than the second feature.
  • a heating device 100 is provided for heating an aerosol-generating substrate of atomized flowers and leaves, herbs or ointments.
  • the heating device 100 includes a base 10 and an electrode assembly 30.
  • the base 10 is formed with a housing cavity 11, and the housing cavity 11 is used to place an aerosol generating substrate.
  • the electrode assembly 30 is arranged on the base 10 and surrounds the accommodating chamber 11. Specifically, the electrode assembly 30 includes a first electrode 32 and a second electrode 34. A high-frequency electric field is formed, and the high-frequency electric field is used to heat the aerosol-generating substrate in the accommodating cavity 11 .
  • the electrode assembly 30 is arranged on the outer peripheral side of the accommodating cavity 11, and after high-frequency voltage is applied to the first electrode 32 and the second electrode 34 in the electrode assembly 30, a high-frequency electric field is formed in the accommodating cavity 11, and placed in the accommodating
  • the aerosol-generating matrix in the cavity 11 is under the action of a high-frequency electric field, and the positive and negative charges in the molecules and atoms inside produce high-frequency alternating displacements, and the thermal motion of the molecules and atoms is intensified, thereby heating the aerosol-generating matrix.
  • the aerosol-generating substrate is heated by a high-frequency electric field, and since the heat is generated by the high-frequency alternating displacement of internal positive and negative charges, uniform heating of the aerosol-generating substrate can be achieved.
  • the overall structure is simple and miniaturized, which facilitates the application of the heating device 100 in electronic atomization devices.
  • high-frequency electric field heating has the following differences from microwave heating: first, high-frequency dielectric heating is carried out in the electric field of parallel capacitors, while microwave is carried out in wave guides and resonant cavities; second, high-frequency electric field The heating frequency is much lower than that of microwaves, so the radiation of high-frequency electric field heating is very low; third, the wavelength of high-frequency electric field heating is longer than that of microwaves, so the penetration depth of heated objects is greater, and the heating uniformity is far superior to that of microwaves. Microwave.
  • the heating device 100 further includes a high-frequency generator 40 , the first electrode 32 and the second electrode 34 are electrically connected to the high-frequency generator 40 , and receive the high-frequency voltage output by the high-frequency generator 40 .
  • the high-frequency generator 40 outputs high-frequency voltage to the first electrode 32 and the second electrode 34 during operation, so that a high-frequency electric field is formed between the first electrode 32 and the second electrode 34 .
  • the high-frequency generator 40 may be a tube high-frequency generator 40 or a solid-state high-frequency generator 40 .
  • the frequency of the high-frequency voltage is 10KHz-200MHz, and the aerosol-generating substrate can be effectively heated by the high-frequency voltage in this frequency range.
  • the voltage range of the high frequency voltage is 5V-2000V.
  • the heating rate of the high-frequency electric field is related to the frequency and voltage. The higher the frequency, the faster the heating rate; the higher the voltage, the faster the heating rate.
  • the temperature rise rate can be regulated by adjusting the frequency and voltage of the high-frequency voltage.
  • the heating rate of the aerosol-generating substrate is related to the dielectric loss factor of the aerosol-generating substrate. The larger the dielectric loss factor, the faster the heating rate.
  • the formula for calculating the heating rate of the heated aerosol-generating substrate (material) is as follows:
  • is the material density, kg/m3;
  • Cp is specific heat of material, J/(kg ⁇ °C);
  • ⁇ T is the temperature rise of the material, °C
  • f is frequency, Hz
  • E is the electric field strength, E/m
  • the heating rate of the aerosol-generating substrate can be calculated as: 24°C/s.
  • At least two groups of electrode assemblies 30 there are at least two groups of electrode assemblies 30, at least two groups of electrode assemblies 30 are arranged at intervals along the axial direction of the accommodating chamber 11, and the first electrode 32 and the second electrode 34 in each group of electrode assemblies 30 are in the The accommodating cavity 11 is arranged at intervals in the circumferential direction; at least two groups of electrode assemblies 30 are connected in parallel, so at least two groups of electrode assemblies 30 are configured to be able to controlly open some or all groups. That is to say, after at least two groups of electrode assemblies 30 are connected in parallel with each other, some or all of at least two groups of electrode assemblies 30 can be selectively turned on, that is, some groups of multiple groups of electrode assemblies 30 are controlled to be turned on, or multiple groups of electrode assemblies All groups in the module 30 are controlled to be turned on.
  • At least two groups of electrode assemblies 30 are arranged on the outer periphery of the housing chamber 11, and at least two groups of electrode assemblies 30 are arranged at intervals along the axial direction of the housing chamber 11, which is equivalent to dividing the housing chamber 11 into at least two sections in the axial direction.
  • different sections correspond to unused electrode assemblies 30, by controlling the opening of some groups in at least two groups of electrode assemblies 30, segmental heating of the accommodating chamber 11 can be realized, similarly, if all groups of multiple sets of stand-alone assemblies are controlled to be opened, The entire section of the accommodating chamber 11 can be heated. In this way, the heating section can be selected according to the actual atomization requirements, making the heating more flexible.
  • the heating device 100 further includes an insulating member 50, and the insulating member 50 includes an insulating outer layer and an insulating inner layer; wherein, the insulating inner layer is insulated and disposed between the base and the insulating outer layer, and is co-enclosed with the insulating outer layer. are combined to form an installation space 51, and the first electrode 32 and the second electrode 34 are disposed in the installation space 51.
  • the insulating member 50 is sleeved on the outside of the base 10, and the first electrode 32 and the second electrode 34 are accommodated by the insulating member 50, so that the first electrode 32 and the second electrode 34 are wrapped by the insulating member 50, and the insulating inner layer
  • the base 10 is isolated from the first electrode 32 and the second electrode 34 to prevent the first electrode 32 and the second electrode 34 from contacting the base 10 to make the base 10 conduct electricity.
  • the first electrode 32 and the second electrode 34 can be separated by an insulating outer layer, so as to prevent the shell in the electronic atomization device from contacting the first electrode 32 and the second electrode 34 It conducts electricity through contact, preventing users from getting an electric shock, and ensuring that users can use the electronic atomization device normally.
  • the heating device 100 includes an induction body 71 , the induction body 71 is disposed in the accommodating cavity 11 , and generates heat under the action of a high-frequency electric field.
  • the aerosol-generating gas is placed in the housing chamber 11, and the induction body 71 is arranged inside the housing chamber 11.
  • the induction body 71 After the induction body 71 generates heat under the action of a high-frequency electric field, it can transfer heat to the inside of the aerosol-generating matrix, so that the gas
  • the aerosol-generating matrix not only generates heat by itself under the action of the high-frequency electric field, but also receives the heat conducted by the inductor 71, which can greatly increase the heating rate of the aerosol-generating matrix and realize rapid suction.
  • the induction body 71 is set as a central heating structure, and is arranged in the middle of the accommodating cavity 11 along the axial direction, and the aerosol-generating substrate can be inserted on the induction body 71 during the process of being inserted into the accommodating cavity 11 , the final inductor 71 is inserted inside the aerosol-generating matrix, and after heating under the action of a high-frequency electric field, the inductor 71 can transfer heat to the inside of the aerosol-generating matrix, so that the aerosol-generating matrix itself is not only affected by the high-frequency electric field
  • the bottom generates heat, and can also receive the heat conducted by the inductor 71, which can greatly increase the heating rate of the aerosol-generating substrate and realize rapid suction.
  • the induction body 71 is configured as a needle or a sheet, and the free end of the induction body 71 protruding into the accommodating cavity 11 is relatively sharp, and the aerosol generating substrate can be conveniently inserted on the induction body 71 .
  • the inductor 71 includes a material with a high dielectric loss factor, so that the inductor 71 can have a large heat generation under the action of a high-frequency electric field.
  • the induction body is configured as a circumferential heating structure, including an induction layer 73 disposed on the inner wall of the accommodating cavity 11 , and the induction layer 73 generates heat under the action of a high-frequency electric field.
  • An induction layer 73 is arranged on the inner wall of the accommodation chamber 11.
  • the high-frequency electric field can not only make the aerosol generating matrix in the accommodation chamber 11 heat itself, but also make the induction layer 73 generates heat, and then makes the inner wall of the accommodating cavity 11 generate heat, conducts heat from the periphery of the aerosol-generating matrix, can make full use of the high-frequency electric field, and superimpose multiple heating at the same time, can greatly increase the heating rate of the aerosol-generating matrix, and realize rapid pumping suck.
  • the inner peripheral wall of the accommodating chamber 11 is arranged around the inner bottom wall, the induction layer 73 can be provided on the inner bottom wall and the inner peripheral wall of the accommodating chamber 11, and the induction layer 73 can also be provided only on the inner peripheral wall or the inner bottom wall , the range of the sensing layer 73 covering the inner wall of the accommodating cavity 11 can be designed according to actual needs, and is not limited here.
  • the sensing layer 73 includes a material with a high dielectric loss factor, so that the sensing layer 73 can have a larger heat generation under the action of a high-frequency electric field.
  • the heating device 100 includes an induction body 71, the induction body 71 is configured to include a central heating structure and a peripheral heating structure, the central heating structure is arranged in the middle of the accommodating cavity 11 along the axial direction, and the peripheral heating structure The structure is set such that the central heating structure and the peripheral heating structure of the induction layer 73 on the inner wall of the accommodating cavity 11 both generate heat under the action of a high-frequency electric field.
  • the induction body 71 is set inside the accommodation chamber 11, and the induction body 71 includes both the central heating structure and the peripheral heating structure.
  • the central heating structure in the induction body 71 can be inserted inside the aerosol generating matrix, and the induction layer 73 is disposed on the inner wall of the accommodating cavity 11 to form a peripheral heating structure.
  • the high-frequency electric field can not only make the aerosol generating matrix in the accommodating cavity 11 self-heating, but also make the central heating structure in the induction body 71 and the induction heating structure as a peripheral heating structure
  • the layers 73 all generate heat, and the central heating structure and the peripheral heating structure can be used to further heat the inner and outer sides of the aerosol-generating substrate, so as to make full use of the high-frequency electric field, superimpose multiple heat generation at the same time, and greatly increase the heating rate of the aerosol-generating substrate , to achieve rapid suction.
  • the central heating structure in the induction body 71 is configured as a pin type or a sheet type, and the free end of the central heating structure extending into the accommodating cavity 11 is relatively sharp, and the aerosol-generating substrate can be conveniently inserted in the center of the induction body 71 for heating.
  • the inner peripheral wall of the accommodating cavity 11 is arranged around the inner bottom wall, and the induction layer 73 can be provided on the inner bottom wall and the inner peripheral wall of the accommodating cavity 11, or only the inner peripheral wall or the inner peripheral wall can be provided.
  • An induction layer 73 is arranged on the bottom wall, and the induction layer 73 covers the range of the inner wall of the accommodating cavity 11 , which can be designed according to actual needs, and is not limited here.
  • the inductor 71 includes a material with a high dielectric loss factor, so that the inductor 71 can have a large heat generation under the action of a high-frequency electric field.
  • the sensing layer 73 includes a material with a high dielectric loss factor, so that the sensing layer 73 can have a larger heat generation under the action of a high-frequency electric field.
  • the heating device 100 includes a resistance heating element 82 .
  • the resistance heating element 82 is disposed in the accommodating cavity 11 and generates heat after being energized under control. In this way, the aerosol-generating gas is placed in the accommodating cavity 11, and the resistive heating element 82 is arranged in the accommodating cavity 11.
  • the resistive heating element 82 can generate heat by itself after being energized, and then can transfer heat to the aerosol-generating substrate.
  • the resistance heating element 82 can be energized, so that the aerosol generating matrix can self-heat under the action of the high-frequency electric field, and can also receive the resistance heating element 82 at the same time.
  • the heat generated by electrification can superimpose multiple heating on the aerosol-generating substrate, which greatly improves the heating rate of the aerosol-generating substrate and realizes rapid suction.
  • the resistance heating element 82 is made of a material with a low dielectric loss factor, and the resistance heating element 82 will not generate heat under the action of a high-frequency electric field, but only generate heat after controlled energization.
  • the heating device 100 is provided with a circuit for controlling the energization of the resistance heating element 82 , and by controlling the on-off of the circuit, it is possible to control whether the resistance heating element 82 works. In this way, the user can selectively energize the resistance heating element 82 according to his own needs. If less heat generation is required, the circuit can be controlled to be disconnected, and only the high-frequency electric field is used to heat the aerosol-generating substrate; Heat can be started until the cover circuit is connected, so as to utilize the high-frequency electric field and the resistance heating element 82 to heat.
  • the resistance heating element 82 is set as a central heating structure, and is arranged in the middle of the accommodation cavity 11 along the axial direction, so that the resistance heating element 82 is set in the accommodation cavity 11, and the aerosol generating matrix is inserted
  • the accommodating cavity 11 is inserted on the central heating structure, and finally the central heating structure is inserted inside the aerosol-generating matrix, and the resistance heating element 82 can generate heat by itself after being energized, so as to transfer from the inside of the aerosol-generating matrix to the outside heat.
  • the resistance heating element 82 can be energized, so that the aerosol-generating matrix can self-heat under the action of the high-frequency electric field, and can also receive resistance from within itself.
  • the heat generated by the heating element 82 can superimpose multiple heating on the aerosol-generating substrate, greatly improving the heating rate of the aerosol-generating substrate, and realizing rapid suction.
  • the central heating structure is made of a material with a low dielectric loss factor, which will not generate heat under the action of a high-frequency electric field, and only generate heat after controlled energization.
  • the heating device 100 is provided with a circuit for controlling the central heating structure to be energized, and by controlling the circuit to be turned on or off, it is possible to control whether the resistance heating element 82 works. In this way, users can selectively electrify the central heating structure according to their own needs. If less heat is required, the circuit can be controlled to be disconnected, and only the high-frequency electric field is used to heat the aerosol-generating substrate; if more heat is required , It can be started until the cover circuit is connected, so as to use the high-frequency electric field and the central heating structure to heat.
  • the resistance heating body is configured as a circumferential heating structure, including a resistance heating layer 84 disposed on the inner wall of the accommodating cavity 11 , and the resistance heating layer 84 generates heat after being energized under control.
  • a resistive heating layer 84 is provided on the inner wall of the accommodating cavity 11, and the resistive heating layer 84 can heat the inner wall of the accommodating cavity 11 after being energized, so as to heat from the outside of the aerosol-generating substrate.
  • the resistance heating layer 84 can be energized, so that the aerosol-generating substrate can self-heat under the action of the high-frequency electric field, and can also receive resistance heat from the outside of itself.
  • the heat generated by energizing the layer 84 can superimpose multiple heating on the aerosol-generating substrate, greatly improving the heating rate of the aerosol-generating substrate, and realizing rapid suction.
  • the resistive heating layer 84 is made of a material with a low dielectric loss factor, and the resistive heating layer 84 will not generate heat under the action of a high-frequency electric field, and only generate heat after controlled energization.
  • the inner peripheral wall of the accommodating chamber 11 is arranged around the inner bottom wall, and the resistance heating layer 84 may be provided on the inner bottom wall and the inner peripheral wall of the accommodating chamber 11, or the resistance heating layer may be provided only on the inner peripheral wall or the inner bottom wall. 84.
  • the range of the resistance heating layer 84 covering the inner wall of the accommodating cavity 11 can be designed according to actual needs, and is not limited here.
  • the resistance heating layer 84 is configured as a layered structure, or the resistance heating layer 84 is configured as a resistance heating wire attached to the inner wall of the accommodating cavity 11 .
  • the heating device 100 is provided with a circuit for controlling the energization of the resistive heating layer 84 , and by controlling the on-off of the circuit, it is possible to control whether the resistive heating layer 84 works. In this way, the user can selectively energize the resistance heating element 82 according to his own needs. If less heat generation is required, the circuit can be controlled to be disconnected, and only the high-frequency electric field is used to heat the aerosol-generating substrate; Heat, the circuit connection can be controlled to use the high-frequency electric field and the resistance heating layer 84 to heat.
  • the heating device 100 includes a resistance heating element 82, and the resistance heating element 82 is configured to include a central heating structure and a peripheral heating structure, the central heating structure is arranged in the middle of the accommodating cavity along the axial direction, and the peripheral heating structure
  • the heating structure is set as a resistive heating layer 84 on the inner wall of the accommodating chamber 11 , and the central heating structure and the resistive heating layer 84 generate heat after being energized under control.
  • the central heating structure of the resistance heating element 82 is set in the accommodating cavity 11, and the aerosol generating substrate is inserted into the central heating structure of the resistance heating element 82 during the process of inserting the aerosol heating element 82 into the accommodating cavity 11, and finally the center of the resistance heating element 82
  • the heating structure is inserted inside the aerosol generating matrix, and a resistance heating layer 84 is provided on the inner wall of the accommodating cavity 11 to form a circumferential heating structure of the resistance heating body 82 .
  • the resistance heating layer 84 and the resistance heating element 82 can be energized, so that the aerosol generating matrix can self-heat under the action of the high-frequency electric field.
  • the inner and outer sides of itself receive heat, and multiple heating can be superimposed on the aerosol-generating substrate, which greatly improves the heating rate of the aerosol-generating substrate and realizes rapid suction.
  • the central heating structure in the resistance heating element 82 and the resistance heating layer 84 as the peripheral heating structure are all made of materials with low dielectric loss factor, and the central heating structure in the resistance heating element 82 and the peripheral heating layer 84 are made of materials with low dielectric loss factor.
  • the resistance heating layer 84 of the heating structure will not generate heat under the action of the high-frequency electric field, and only generate heat after controlled energization.
  • the inner peripheral wall of the accommodating chamber 11 is arranged around the inner bottom wall, and the resistance heating layer 84 may be provided on the inner bottom wall and the inner peripheral wall of the accommodating chamber 11, or the resistance heating layer may be provided only on the inner peripheral wall or the inner bottom wall. 84.
  • the range of the resistance heating layer 84 covering the inner wall of the accommodating cavity 11 can be designed according to actual needs, and is not limited here.
  • the resistance heating layer 84 is configured as a layered structure, or the resistance heating layer 84 is configured as a resistance heating wire attached to the inner wall of the accommodating cavity 11 .
  • the heating device 100 is provided with a circuit for controlling the central heating structure in the resistance heating element 82 and the resistance heating layer 84 as a peripheral heating structure to energize. Whether the central heating structure and the resistance heating layer 84 as the peripheral heating structure work. In this way, the user can selectively energize the central heating structure in the resistance heating element 82 and the resistance heating layer 84 as the peripheral heating structure according to his own needs. If less heat generation is required, the circuit can be controlled to be disconnected. Only use the high-frequency electric field to heat the aerosol-generating substrate; if more heat is needed, the circuit connection can be controlled to utilize the high-frequency electric field, the central heating structure in the resistance heating element 82 and the resistance heating layer 84 as the peripheral heating structure for heating.
  • the heating device 100 also includes a power supply 90, the power supply 90 is used to supply power to the high frequency generator 40, and the power supply 90 can also be used for the central heating structure in the resistance heating element 82 and the resistance heating layer as the peripheral heating structure 84 power supply.
  • an electronic atomization device including the heating device 100 mentioned above.
  • the heating device 100 provides a high-frequency electric field to achieve uniform heating of the aerosol-generating substrate.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Resistance Heating (AREA)

Abstract

一种加热器件(100)及电子雾化装置,加热器件(100)包括:基座(10),基座(10)上形成有容置腔(11);及电极组件(30),设置于基座(10)上且围绕容置腔(11)的外周;其中,电极组件(30)包括第一电极(32)和第二电极(34),第一电极(33)和第二电极(34)通过高频电压在容置腔(11)内形成高频电场,高频电场用于加热容置腔(11)内的气溶胶生成基质。加热器件(100)可应用于电子雾化装置中,在容置腔(11)的外周侧设置电极组件(30),并且向电极组件(30)中第一电极(32)和第二电极(34)通入高频电压后,容置腔(11)内形成高频电场,放置在容置腔(11)内的气溶胶生成基质在高频电场作用下得到加热,通过高频电场加热气溶胶生成基质,由于热量通过内部正负电荷高频交替位移产生,可实现气溶胶生成基质的均匀加热。

Description

加热器件及电子雾化装置 技术领域
本申请涉及雾化技术领域,特别是涉及加热器件及电子雾化装置。
背景技术
气溶胶是一种由固体或液体小质点分散并悬浮在气体介质中形成的胶体分散体系,由于气溶胶可通过呼吸系统被人体吸收,为用户提供一种新型的替代吸收方式,例如可对草本类或膏类的气溶胶生成基质烘烤加热而产生气溶胶的雾化装置,应用于不同领域中,为用户递送可供吸入的气溶胶,替代常规的产品形态及吸收方式。
一般地,电子雾化装置通常采用电阻式的加热方式来加热气溶胶生成基质。具体地,电阻式加热是通过外部电源使电阻元件通电发热,发热的电阻元件再把热量通过热传导的方式传递给气溶胶生成基质。热传导需要时间,存在着滞后性,所以会导致靠近电阻元件的气溶胶生成基质往往过烧甚至烧焦。高温过烧或者烧焦,不仅影响口感,使得消费者体验感变差,更为重要的是会导致气溶胶生成基质中有害物质释放,危害消费者健康。
另外,为了解决气溶胶生成基质加热不均匀的问题,可采用微波加热来加热气溶胶生成基质。但是,采用微波加热存在以下弊端:第一,微波是一种高频电磁波,在使用的时候如果有泄露会危害人体健康。此外,泄露微波会对身边的电子设备,比如手机信号带来干扰,影响周边人生活。第二,微波波长短,渗透深度浅,实际上很难实现均匀加热。第三,微波的传输需要波导管和谐振腔,结构复杂且小型化难度高。
因此,传统加热气溶胶生成基质的方式无法通过简单小型化的结构实现均匀加热,无法有效改善雾化口感。
发明内容
基于此,有必要针对无法通过简单小型化的结构实现均匀加热的问题,提供一种加热器件及电子雾化装置。
一种加热器件,所述加热器件包括:
基座,所述基座上形成有容置腔;及
电极组件,设置于所述基座上且围绕所述容置腔的外周;
其中,所述电极组件包括第一电极和第二电极,所述第一电极和所述第二电极通过高 频电压在所述容置腔内形成高频电场,所述高频电场用于加热所述容置腔内的气溶胶生成基质。
上述加热器件可应用于电子雾化装置中,具体在容置腔的外周侧设置电极组件,并且向电极组件中第一电极和第二电极通入高频电压后,容置腔内形成高频电场,放置在容置腔内的气溶胶生成基质在高频电场作用下,内部的分子和原子中正负电荷产生高频率的交替位移,分子和原子的热运动加剧,从而使气溶胶生成基质得到加热。这样,通过高频电场加热气溶胶生成基质,由于热量通过内部正负电荷高频交替位移产生,可实现气溶胶生成基质的均匀加热。并且,整体结构简单小型化,便于将加热器件应用于电子雾化装置中。
在其中一个实施例中,所述电极组件设置有至少两组,所述至少两组电极组件沿所述容置腔的轴向间隔排布,且每组所述电极组件中所述第一电极与所述第二电极在所述容置腔的周向上相对且间隔设置;
所述至少两组电极组件相互并联。
在其中一个实施例中,所述加热器件还包括绝缘件,所述绝缘件包括绝缘外层和绝缘内层;
其中,所述绝缘内层绝缘设置于所述基座与所述绝缘外层之间,并与所述绝缘外层共同围合形成安装空间,所述第一电极和所述第二电极设置于所述安装空间内。
在其中一个实施例中,所述加热器件还包括感应体,所述感应体设置于所述容置腔内,且在所述高频电场作用下发热。
在其中一个实施例中,所述感应体设置为周圈加热结构,包括设置于所述容置腔的内壁上的感应层,所述感应层在所述高频电场作用下发热;及/或,
所述感应体设置为中心加热结构,沿轴向设置于所述容置腔中部。
在其中一个实施例中,所述感应体或所述感应层包括高介电损耗因子材料。
在其中一个实施例中,所述加热器件还包括电阻发热体,所述电阻发热体设置于所述容置腔内,且受控通电后发热。
在其中一个实施例中,所述电阻发热体设置为周圈加热结构,包括设置于所述容置腔的内壁上的电阻发热层,所述电阻发热层受控通电后发热;及/或,
所述电阻发热体设置为中心加热结构,沿轴向设置于所述容置腔中部。
在其中一个实施例中,所述高频电压的频率为10KHz-200MHz。
在其中一个实施例中,所述加热器件还包括高频发生器,所述第一电极及所述第二电极均与所述高频发生器电连接,并接收所述高频发生器输出的高频电压。
一种电子雾化装置,包括上述加热器件。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据公开的附图获得其他的附图。
图1为本申请一实施例中发热器件的结构示意图;
图2为本申请另一实施例中发热器件的结构示意图;
图3为本申请又一实施例中发热器件的结构示意图;
图4为本申请又一实施例中发热器件的结构示意图;
图5为本申请又一实施例中发热器件的结构示意图;
图6为本申请又一实施例中发热器件的结构示意图。
100、加热器件;10、基座;11、容置腔;30、电极组件;32、第一电极;34、第二电极;40、高频发生器;50、绝缘件;51、安装空间;71、感应体;73、感应层;82、电阻发热体;84、电阻发热层;90、电源。
具体实施方式
为使本申请的上述目的、特征和优点能够更加明显易懂,下面结合附图对本申请的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本申请。但是本申请能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本申请内涵的情况下做类似改进,因此本申请不受下面公开的具体实施例的限制。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“上”、“下”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
参阅图1,本申请一实施例中,提供一种加热器件100,用于加热雾化花叶类、草本类或膏类的气溶胶生成基质。
加热器件100包括基座10及电极组件30,基座10上形成有容置腔11,容置腔11内用于放置气溶胶生成基质。电极组件30设置于基座10上且围绕容置腔11,具体电极组件30包括第一电极32和第二电极34,第一电极32和第二电极34通过高频电压在容置腔11内形成高频电场,高频电场用于加热容置腔11内的气溶胶生成基质。在容置腔11的外周侧设置电极组件30,并向电极组件30中的第一电极32和第二电极34通入高频电压后,容置腔11内形成高频电场,放置在容置腔11内的气溶胶生成基质在高频电场作用下,内部的分子和原子中正负电荷产生高频率的交替位移,分子和原子的热运动加剧,从而使气溶胶生成基质得到加热。
这样,通过高频电场加热气溶胶生成基质,由于热量通过内部正负电荷高频交替位移产生,可实现气溶胶生成基质的均匀加热。并且,整体结构简单小型化,便于将加热器件100应用于电子雾化装置中。
进一步地,高频电场加热与微波加热具有以下不同点:第一,高频电介质加热是在平行电容器电场中进行的,而微波是在波导管和谐振腔中进行的;第二,高频电场加热频率 远低于微波,因此高频电场加热辐射非常低;第三,高频电场加热的波长比微波要长,所以对加热物体的渗透深度要大,在加热均匀度上要远远优于微波加热。
一些实施例中,加热器件100还包括高频发生器40,第一电极32及第二电极34均与高频发生器40电连接,且接收高频发生器40输出的高频电压。这样,高频发生器40工作时向第一电极32和第二电极34输出高频电压,使第一电极32和第二电极34两者之间形成高频电场。其中,高频发生器40可以是电子管高频发生器40,也可以是固态高频发生器40。
进一步地,高频电压的频率为10KHz-200MHz,通过该频段的高频电压可以有效加热气溶胶生成基质。可选地,高频电压的电压范围为5V-2000V。高频电场的加热升温速率与频率和电压大小有关,频率越高,升温速率越快;电压越大,升温速率越快。可以通过调整高频电压的频率和电压,实现对升温速率的调控。此外,气溶胶生成基质升温速率与气溶胶生成基质的介电损耗因子有关,介电损耗因子越大,升温速率越快。加热气溶胶生成基质(物料)升温速率计算公式如下:
其中,ρ为物料密度,kg/m3;
Cp为物料比热,J/(kg·℃);
△T为物料的升温,℃;
f为频率,Hz;
E为电场强度,E/m;
为真空介电常数,8.85*10-12F/m;
为物料的介电损耗,F/m。
典型地,当电压E为100V,被加热物料厚度为3mm,频率为200MHz,被加热物料的介电损耗因子为1,气溶胶生成基质的比热容为2000J/(kg·℃),气溶胶生成基质的密度为250kg/m3。利用上述参数,可以计算得到气溶胶生成基质的升温速率为:24℃/s。
一些实施例中,电极组件30设置有至少两组,至少两组电极组件30沿容置腔11的轴向间隔排布,且每组电极组件30中的第一电极32和第二电极34在容置腔11的周向上相对间隔设置;至少两组电极组件30相互并联,如此至少两组电极组件30被构造为能够受控开启部分组或者所有组。也就是说,将至少两组电极组件30相互并联后,可以选择性地开启至少两组电极组件30中的部分或全部,即多组电极组件30中的部分组受控开启,或者多组电极组件30中的全部组受控开启。
如此,在容置腔11的外周设置至少两组电极组件30,至少两组电极组件30沿容置腔11的轴向间隔排布,相当于将容置腔11沿轴向分隔为至少两段,不同段对应不用的电极组件30,通过控制至少两组电极组件30中的部分组开启,可实现对容置腔11的分段加热,同样地若控制多组单机组件中的全部组开启,可实现对容置腔11的全段加热。如此,可根据实际的雾化需求来选择加热段,使加热更加灵活。
一些实施例中,加热器件100还包括绝缘件50,绝缘件50包括绝缘外层和绝缘内层;其中,绝缘内层绝缘设置于基座与绝缘外层之间,并与绝缘外层共同围合形成安装空间51,第一电极32和第二电极34设置于安装空间51内。将绝缘件50套设于基座10外,且通过绝缘件50来容置第一电极32和第二电极34,使第一电极32和第二电极34被绝缘件50包裹,通过绝缘内层隔离基座10和第一电极32及第二电极34,防止第一电极32及第二电极34与基座10接触而使基座10导电。另外,当加热器件100装配到电子雾化装置中后,可通过绝缘外层隔开第一电极32和第二电极34,防止电子雾化装置中的外壳与第一电极32及第二电极34接触而导电,防止使用者触电,保证用户可以正常使用电子雾化装置。
参阅图1,一些实施例中,加热器件100包括感应体71,感应体71设置于容置腔11内,且在高频电场的作用下发热。如此,在容置腔11内容置气溶胶生成气质,且在容置腔11内部设置感应体71,感应体71在高频电场作用下发热后,可向气溶胶生成基质内部传递热量,使气溶胶生成基质不仅自身因为高频电场的作用下发热,还可接收感应体71传导的热量,可以极大提高气溶胶生成基质的升温速率,实现快速抽吸。
参阅图1,一些实施例中,感应体71设置为中心加热结构,沿轴向设置于容置腔11中部,气溶胶生成基质套入容置腔11的过程中便可插在感应体71上,最终感应体71插设于气溶胶生成基质内部,并且在高频电场作用下发热后,感应体71可向气溶胶生成基质内部传递热量,使气溶胶生成基质不仅自身因为高频电场的作用下发热,还可接收感应体71传导的热量,可以极大提高气溶胶生成基质的升温速率,实现快速抽吸。
进一步地,感应体71被构造为针式或者片式,感应体71伸入容置腔11的自由端较为锋利,气溶胶生成基质可方便地插在感应体71上。
可选地,感应体71包括高介电损耗因子材料,使感应体71能够在高频电场的作用下具有较大的发热量。
参阅图2,另一些实施例中,感应体设置为周圈加热结构,包括设置于容置腔11的内壁上的感应层73,感应层73在高频电场的作用下发热。在容置腔11的内壁上设置感应层73,当容置腔11内形成有高频电场时,高频电场不仅能够使容置腔11内的气溶胶生成基 质自身发热,还可以使感应层73发热,进而使容置腔11的内壁发热,从气溶胶生成基质的外周传导热量,可充分利用高频电场,同时叠加多重发热,可以极大提高气溶胶生成基质的升温速率,实现快速抽吸。
进一步地,容置腔11的内周壁围绕内底壁设置,可在容置腔11的内底壁及内周壁上设置感应层73,也可仅在内周壁或者内底壁上设置感应层73,对于感应层73覆盖容置腔11内壁的范围,可根据实际需求进行设计,在此不做限定。
可选地,感应层73包括高介电损耗因子材料,使感应层73能够在高频电场的作用下具有较大的发热量。
参阅图3,又一些实施例中,加热器件100包括感应体71,感应体71设置为包括中心加热结构及周圈加热结构,中心加热结构沿轴向设置于容置腔11中部,周圈加热结构设置为容置腔11的内壁上的感应层73中心加热结构及周圈加热结构均在高频电场的作用下发热。如此,在容置腔11内部设置感应体71,且感应体71即包括中心加热结构也包括周圈加热结构,气溶胶生成基质套入容置腔11的过程中插在中心加热结构上,最终感应体71中的中心加热结构可插设于气溶胶生成基质内部,且容置腔11的内壁上设置感应层73形成周圈加热结构。当容置腔11内形成高频电场时,高频电场不仅能够使容置腔11内的气溶胶生成基质自身发热,还可以使感应体71中的中心加热结构及作为周圈加热结构的感应层73均发热,可利用中心加热结构和周圈加热结构从气溶胶生成基质的内外两侧进一步进行加热,以充分利用高频电场,同时叠加多重发热,极大提高气溶胶生成基质的升温速率,实现快速抽吸。
进一步地,感应体71中的中心加热结构被构造为针式或者片式,中心加热结构伸入容置腔11的自由端较为锋利,气溶胶生成基质可方便地插在感应体71的中心加热结构上。并且,对于周圈加热结构而言,容置腔11的内周壁围绕内底壁设置,可在容置腔11的内底壁及内周壁上设置感应层73,也可仅在内周壁或者内底壁上设置感应层73,感应层73覆盖容置腔11内壁的范围,可根据实际需求进行设计,在此不做限定。
可选地,感应体71包括高介电损耗因子材料,使感应体71能够在高频电场的作用下具有较大的发热量。还可选地,感应层73包括具有高介电损耗因子的材料,使感应层73能够在高频电场的作用下具有较大的发热量。
参阅图4,又一些实施例中,加热器件100包括电阻发热体82,电阻发热体82设置于容置腔11内,且受控通电后发热。如此,在容置腔11内容置气溶胶生成气质,且在容置腔11内设置电阻发热体82,电阻发热体82通电后自身便可发热,进而可以向气溶胶生成基质传递热量。如此,可通过第一电极32和第二电极34形成高频电场的同时,使电阻 发热体82通电,可使气溶胶生成基质在高频电场作用下自发热,同时还可接收电阻发热体82通电产生的热量,可在气溶胶生成基质上叠加多重加热,极大提高气溶胶生成基质的升温速率,实现快速抽吸。
可选地,电阻发热体82由低介电损耗因子材料制成,电阻发热体82不会在高频电场的作用下发热,仅在受控通电后发热。
进一步地,加热器件100中设置有控制电阻发热体82通电的电路,通过控制该电路的通断,便可控制电阻发热体82是否工作。如此,使用者可以根据自身需求,使电阻发热体82可选择地通电,若需要较少的发热量,可控制该电路断开,仅利用高频电场加热气溶胶生成基质;若需要较多的热量,可开工至盖电路俩通,以利用高频电场及电阻发热体82加热。
参阅图4,一些实施例中,电阻发热体82设置为中心加热结构,沿轴向设置于容置腔11中部,如此,在容置腔11内设置电阻发热体82,气溶胶生成基质套入容置腔11的过程中插在中心加热结构上,最终中心发热结构插设于气溶胶生成基质内部,并且电阻发热体82通电后自身便可发热,以从气溶胶生成基质的内部向外传递热量。如此,可通过第一电极32和第二电极34形成高频电场的同时,使电阻发热体82通电,可使气溶胶生成基质在高频电场作用下自发热,同时还可从自身内部接收电阻发热体82通电产生的热量,可在气溶胶生成基质上叠加多重加热,极大提高气溶胶生成基质的升温速率,实现快速抽吸。
可选地,中心加热结构由低介电损耗因子材料制成,不会在高频电场的作用下发热,仅在受控通电后发热。
进一步地,加热器件100中设置有控制中心加热结构通电的电路,通过控制该电路的通断,便可控制电阻发热体82是否工作。如此,使用者可以根据自身需求,使中心加热结构可选择地通电,若需要较少的发热量,可控制该电路断开,仅利用高频电场加热气溶胶生成基质;若需要较多的热量,可开工至盖电路俩通,以利用高频电场及中心加热结构加热。
参阅图5,又一些实施例中,电阻发热体设置为周圈加热结构,包括设置于容置腔11的内壁的电阻发热层84,电阻发热层84受控通电后发热。在容置腔11的内壁上设置电阻发热层84,电阻发热层84通电后可使容置腔11的内壁发热,以从气溶胶生成基质的外侧进行加热。如此,通过第一电极32和第二电极34形成高频电场的同时,可使电阻发热层84通电,使气溶胶生成基质在高频电场作用下自发热,同时还可从自身外侧接收电阻发热层84通电产生的热量,可在气溶胶生成基质上叠加多重加热,极大提高气溶胶生成基质的升温速率,实现快速抽吸。
可选地,电阻发热层84由低介电损耗因子材料制成,电阻发热层84不会在高频电场的作用下发热,仅在受控通电后发热。并且,容置腔11的内周壁围绕内底壁设置,可在容置腔11的内底壁及内周壁上设置电阻发热层84,也可仅在内周壁或者内底壁上设置电阻发热层84,对于电阻发热层84覆盖容置腔11内壁的范围,可根据实际需求进行设计,在此不做限定。还可选地,电阻发热层84被构造为层状结构,或者电阻发热层84被构造为附着在容置腔11内壁上的电阻发热丝。
进一步地,加热器件100中设置有控制电阻发热层84通电的电路,通过控制该电路的通断,便可控制电阻发热层84是否工作。如此,使用者可以根据自身需求,使电阻发热体82可选择地通电,若需要较少的发热量,可控制该电路断开,仅利用高频电场加热气溶胶生成基质;若需要较多的热量,可控制该电路连通,以利用高频电场及电阻发热层84加热。
参阅图6,又一些实施例中,加热器件100包括电阻发热体82,电阻发热体82设置为包括中心加热结构及周圈加热结构,中心加热结构沿轴向设置于容置腔中部,周圈加热结构设置为容置腔11的内壁上的电阻发热层84,中心加热结构及电阻发热层84均受控通电后发热。即,在容置腔11内设置电阻发热体82的中心加热结构,气溶胶生成基质套入容置腔11的过程中插在电阻发热体82的中心加热结构上,最终电阻发热体82的中心加热结构插设于气溶胶生成基质内部,同时在容置腔11的内壁上设置电阻发热层84,以形成电阻发热体82的周圈加热结构。当电阻发热体82中的中心加热结构及作为周圈加热结构的电阻发热层84通电后,可从气溶胶生成基质的内外两侧进行加热。如此,通过第一电极32和第二电极34形成高频电场的同时,可使电阻发热层84及电阻发热体82通电,使气溶胶生成基质在高频电场作用下自发热,同时还可从自身内外两侧接收热量,可在气溶胶生成基质上叠加多重加热,极大提高气溶胶生成基质的升温速率,实现快速抽吸。
可选地,电阻发热体82中的中心加热结构及作为周圈加热结构的电阻发热层84均由具有低介电损耗因子的材料制成,电阻发热体82中的中心加热结构及作为周圈加热结构的电阻发热层84不会在高频电场的作用下发热,仅在受控通电后发热。并且,容置腔11的内周壁围绕内底壁设置,可在容置腔11的内底壁及内周壁上设置电阻发热层84,也可仅在内周壁或者内底壁上设置电阻发热层84,对于电阻发热层84覆盖容置腔11内壁的范围,可根据实际需求进行设计,在此不做限定。还可选地,电阻发热层84被构造为层状结构,或者电阻发热层84被构造为附着在容置腔11内壁上的电阻发热丝。
进一步地,加热器件100中设置有控制电阻发热体82中的中心加热结构及作为周圈加热结构的电阻发热层84通电的电路,通过控制该电路的通断,便可控制电阻发热体82 中的中心加热结构及作为周圈加热结构的电阻发热层84是否工作。如此,使用者可以根据自身需求,使电阻发热体82中的中心加热结构及作为周圈加热结构的电阻发热层84可选择地通电,若需要较少的发热量,可控制该电路断开,仅利用高频电场加热气溶胶生成基质;若需要较多的热量,可控制该电路连通,以利用高频电场、电阻发热体82中的中心加热结构及作为周圈加热结构的电阻发热层84进行加热。
一些实施例中,加热器件100还包括电源90,电源90用于为高频发生器40供电,电源90还可用于为电阻发热体82中的中心加热结构及作为周圈加热结构的电阻发热层84供电。
基于同样的构思,本申请一实施例中,还提供一种电子雾化装置,包括上述加热器件100,加热器件100提供高频电场,实现对气溶胶生成基质均匀的加热。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (11)

  1. 一种加热器件,其特征在于,所述加热器件包括:
    基座,所述基座上形成有容置腔;及
    电极组件,设置于所述基座上且围绕所述容置腔的外周;
    其中,所述电极组件包括第一电极和第二电极,所述第一电极和所述第二电极通过高频电压在所述容置腔内形成高频电场,所述高频电场用于加热所述容置腔内的气溶胶生成基质。
  2. 根据权利要求1所述的加热器件,其特征在于,所述电极组件设置有至少两组,所述至少两组电极组件沿所述容置腔的轴向间隔排布,且每组所述电极组件中所述第一电极与所述第二电极在所述容置腔的周向上相对且间隔设置;
    所述至少两组电极组件相互并联。
  3. 根据权利要求1或2所述的加热器件,其特征在于,所述加热器件还包括绝缘件,所述绝缘件包括绝缘外层和绝缘内层;
    其中,所述绝缘内层绝缘设置于所述基座与所述绝缘外层之间,并与所述绝缘外层共同围合形成安装空间,所述第一电极和所述第二电极设置于所述安装空间内。
  4. 根据权利要求1所述的加热器件,其特征在于,所述加热器件还包括感应体,所述感应体设置于所述容置腔内,且在所述高频电场作用下发热。
  5. 根据权利要求4所述的加热器件,其特征在于,所述感应体设置为周圈加热结构,包括设置于所述容置腔的内壁上的感应层,所述感应层在所述高频电场作用下发热;及/或,
    所述感应体设置为中心加热结构,沿轴向设置于所述容置腔中部。
  6. 根据权利要求5所述的加热器件,其特征在于,所述感应体或所述感应层包括高介电损耗因子材料。
  7. 根据权利要求1所述的加热器件,其特征在于,所述加热器件还包括电阻发热体,所述电阻发热体设置于所述容置腔内,且受控通电后发热。
  8. 根据权利要求7所述的加热器件,其特征在于,所述电阻发热体设置为周圈加热结构,包括设置于所述容置腔的内壁上的电阻发热层,所述电阻发热层受控通电后发热;及/或,
    所述电阻发热体设置为中心加热结构,沿轴向设置于所述容置腔中部。
  9. 根据权利要求1所述的加热器件,其特征在于,所述高频电压的频率为 10KHz-200MHz。
  10. 根据权利要求1或9所述的加热器件,其特征在于,所述加热器件还包括高频发生器,所述第一电极及所述第二电极均与所述高频发生器电连接,并接收所述高频发生器输出的高频电压。
  11. 一种电子雾化装置,其特征在于,包括上述权利要求1-10任意一项所述的加热器件。
PCT/CN2022/128859 2021-11-09 2022-11-01 加热器件及电子雾化装置 WO2023083046A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111317924.0 2021-11-09
CN202111317924.0A CN113892695A (zh) 2021-11-09 2021-11-09 加热器件及电子雾化装置

Publications (1)

Publication Number Publication Date
WO2023083046A1 true WO2023083046A1 (zh) 2023-05-19

Family

ID=79193516

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/128859 WO2023083046A1 (zh) 2021-11-09 2022-11-01 加热器件及电子雾化装置

Country Status (2)

Country Link
CN (1) CN113892695A (zh)
WO (1) WO2023083046A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113892695A (zh) * 2021-11-09 2022-01-07 深圳麦克韦尔科技有限公司 加热器件及电子雾化装置
CN114831341A (zh) * 2022-01-20 2022-08-02 深圳麦时科技有限公司 雾化装置及用于微波雾化器具的微波加热组件
CN114304753A (zh) * 2022-02-24 2022-04-12 湖北中烟工业有限责任公司 一种多极点射频加热烟具
CN114424845B (zh) * 2022-02-24 2023-12-22 湖北中烟工业有限责任公司 一种分段控温的烟具加热方法、装置及电子设备
CN114504123B (zh) * 2022-03-17 2023-07-14 湖北中烟工业有限责任公司 一种多电极加热的气溶胶生成基质
CN114468375A (zh) * 2022-03-17 2022-05-13 湖北中烟工业有限责任公司 一种具有梳式极板的介电加热气溶胶生成结构
CN114796736A (zh) * 2022-03-18 2022-07-29 杭州玉壶技术咨询有限公司 一种气溶胶发生器及系统

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1931534A (zh) * 2006-06-13 2007-03-21 车炳雷 人造木材的固化方法
CN1961987A (zh) * 2005-11-08 2007-05-16 中国科学院理化技术研究所 用于全身或局部肿瘤热疗的电极板阵列加热装置
CN108697164A (zh) * 2016-02-23 2018-10-23 富特姆控股第有限公司 高频极性气溶胶发生器
CN210143835U (zh) * 2019-06-19 2020-03-17 云南巴菰生物科技有限公司 一种同轴加热腔及具有同轴加热腔的电子烟装置
CN212488479U (zh) * 2020-07-24 2021-02-09 深圳市卓力能技术股份有限公司 一种加热组件及气溶胶生成装置
CN112535321A (zh) * 2019-09-19 2021-03-23 深圳麦克韦尔科技有限公司 烟具
US20210106046A1 (en) * 2018-04-10 2021-04-15 Philip Morris Products S.A. An aerosol-generating article comprising a heatable element
US20210127738A1 (en) * 2018-05-18 2021-05-06 Jt International S.A. Aerosol Generating Article And An Aerosol Generating Device For Heating The Same
CN113598423A (zh) * 2021-07-28 2021-11-05 深圳麦克韦尔科技有限公司 一种气溶胶生成制品
CN113892695A (zh) * 2021-11-09 2022-01-07 深圳麦克韦尔科技有限公司 加热器件及电子雾化装置
CN216701691U (zh) * 2021-11-09 2022-06-10 深圳麦克韦尔科技有限公司 加热器件及电子雾化装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1961987A (zh) * 2005-11-08 2007-05-16 中国科学院理化技术研究所 用于全身或局部肿瘤热疗的电极板阵列加热装置
CN1931534A (zh) * 2006-06-13 2007-03-21 车炳雷 人造木材的固化方法
CN108697164A (zh) * 2016-02-23 2018-10-23 富特姆控股第有限公司 高频极性气溶胶发生器
US20210106046A1 (en) * 2018-04-10 2021-04-15 Philip Morris Products S.A. An aerosol-generating article comprising a heatable element
US20210127738A1 (en) * 2018-05-18 2021-05-06 Jt International S.A. Aerosol Generating Article And An Aerosol Generating Device For Heating The Same
CN210143835U (zh) * 2019-06-19 2020-03-17 云南巴菰生物科技有限公司 一种同轴加热腔及具有同轴加热腔的电子烟装置
CN112535321A (zh) * 2019-09-19 2021-03-23 深圳麦克韦尔科技有限公司 烟具
CN212488479U (zh) * 2020-07-24 2021-02-09 深圳市卓力能技术股份有限公司 一种加热组件及气溶胶生成装置
CN113598423A (zh) * 2021-07-28 2021-11-05 深圳麦克韦尔科技有限公司 一种气溶胶生成制品
CN113892695A (zh) * 2021-11-09 2022-01-07 深圳麦克韦尔科技有限公司 加热器件及电子雾化装置
CN216701691U (zh) * 2021-11-09 2022-06-10 深圳麦克韦尔科技有限公司 加热器件及电子雾化装置

Also Published As

Publication number Publication date
CN113892695A (zh) 2022-01-07

Similar Documents

Publication Publication Date Title
WO2023083046A1 (zh) 加热器件及电子雾化装置
EP3801088B1 (en) Electrical heating assembly for heating an aerosol-forming substrate
AU2016286401B2 (en) Electronic aerosol provision systems
CN110235237A (zh) 晶圆支撑台
WO2023024812A1 (zh) 加热器件及电子雾化装置
JP2022145806A (ja) エアロゾル生成装置
WO2023151328A1 (zh) 雾化器及电子雾化装置
WO2023124517A1 (zh) 气溶胶生成基质带、气溶胶生成基质盒及雾化装置
CN216701691U (zh) 加热器件及电子雾化装置
WO2023124519A1 (zh) 加热元件及电子雾化装置
WO2024055731A1 (zh) 加热组件及气溶胶生成装置
WO2023165209A1 (zh) 微波加热组件及气溶胶产生装置和气溶胶生成系统
WO2024055720A1 (zh) 加热组件及气溶胶生成装置
WO2023020188A1 (zh) 雾化管及雾化器
WO2023109399A1 (zh) 电子雾化装置及其发热组件和发热体
JP2023021007A (ja) 霧化本体及びエアロゾル生成装置
CN115486573A (zh) 加热组件、气溶胶生成装置及气溶胶生成系统
JP2024505650A (ja) ループギャップ共振器を有するエアロゾル発生装置
CN108634378B (zh) 一种基于磁材料的低温烘烤烟具
CN218921711U (zh) 电子雾化装置
JP2024062929A (ja) エアロゾル発生装置及びエアロゾル発生システム
WO2023116221A1 (zh) 雾化器及电子雾化装置
WO2023134278A1 (zh) 雾化器及电子雾化装置
WO2024012184A1 (zh) 导电线圈、感应加热组件及气溶胶生成装置
CN218551328U (zh) 加热组件及电子雾化装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22891842

Country of ref document: EP

Kind code of ref document: A1