WO2023082851A1 - 电动汽车主动放电控制系统及方法 - Google Patents

电动汽车主动放电控制系统及方法 Download PDF

Info

Publication number
WO2023082851A1
WO2023082851A1 PCT/CN2022/120381 CN2022120381W WO2023082851A1 WO 2023082851 A1 WO2023082851 A1 WO 2023082851A1 CN 2022120381 W CN2022120381 W CN 2022120381W WO 2023082851 A1 WO2023082851 A1 WO 2023082851A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
processor
active discharge
input side
signal
Prior art date
Application number
PCT/CN2022/120381
Other languages
English (en)
French (fr)
Inventor
姜涛
林翰东
李威
顾家闻
姜磊
曲振宁
姜瑞
Original Assignee
中国第一汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国第一汽车股份有限公司 filed Critical 中国第一汽车股份有限公司
Publication of WO2023082851A1 publication Critical patent/WO2023082851A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • Embodiments of the present application relate to the technical field of electric vehicles, for example, to an active discharge control system and method for electric vehicles.
  • Electric vehicles use the driving motor and the motor controller as important equipment for driving the vehicle.
  • the bus capacitor of the motor controller will carry high-voltage DC voltage during the operation of the vehicle. When the user stops and leaves or the vehicle collides, the motor controller is needed
  • the active discharge of the bus capacitor is realized through the bleed resistor connected in parallel with the bus capacitor. However, if the motor controller fails to perform active discharge, the risk of electric shock will increase; or, if the motor controller fails to generate unexpected active discharge, the risk of driving safety will increase.
  • Embodiments of the present application provide an active discharge control system and method for an electric vehicle, so as to ensure successful active discharge of the vehicle and avoid unexpected active discharge.
  • an embodiment of the present application provides an active discharge control system for an electric vehicle, the system includes a voltage converter and an airbag controller, and the voltage converter includes a first processor, a second processor and a communication unit ;in,
  • the airbag controller is configured to send an airbag collision signal to the first processor
  • the communication unit is configured to receive an active discharge command, bus capacitor voltage and vehicle speed signal, and send the active discharge command, bus capacitor voltage signal and vehicle speed signal to the first processor;
  • the first processor is configured to determine whether the voltage converter enters an active discharge mode based on the active discharge command, the bus capacitor voltage signal, the vehicle speed signal, and the airbag collision signal, and respond to the determination
  • the voltage converter enters an active discharge working mode, and the first processor is in a normal working state, and the voltage state of the high-voltage input side is normal, and performs an active discharge operation;
  • the second processor is configured to determine the working state of the first processor and the voltage state of the high-voltage input side in response to determining that the voltage converter enters the active discharge working mode, based on the working state of the first processor If the judgment result is abnormal or the voltage state of the high-voltage input side is abnormal, perform an active discharge operation.
  • the embodiment of the present application also provides an active discharge control method for an electric vehicle, the method comprising:
  • FIG. 1 is a schematic structural diagram of an active discharge control system for an electric vehicle provided in an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of another active discharge control system for an electric vehicle provided in the embodiment of the present application.
  • FIG. 3A is a schematic flowchart of an active discharge control method for an electric vehicle provided in an embodiment of the present application
  • FIG. 3B is a schematic flowchart of another active discharge control method for an electric vehicle provided in the embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • FIG. 1 is a schematic structural diagram of an active discharge control system for an electric vehicle provided in an embodiment of the present application.
  • the active discharge control system for an electric vehicle provided in this embodiment includes a voltage converter 11 and an airbag controller 12.
  • the voltage converter 11 It includes a first processor 110, a second processor 120, and a communication unit 130; wherein, the communication unit 130 is configured to receive an active discharge command, bus capacitor voltage and vehicle speed signal, and transmit the active discharge command, bus capacitor voltage signal and vehicle speed signal Send to the first processor 110;
  • the airbag controller 12 is set to send the airbag collision signal to the first processor 110;
  • the first processor 110 is set to be based on the active discharge command, the bus capacitor voltage signal, the vehicle speed signal and the safety signal.
  • the airbag collision signal judges whether the voltage converter 11 enters the active discharge mode, and when the voltage converter 11 enters the active discharge mode, and the first processor 110 is in normal working state and the voltage state of the high-voltage input side is normal, the active discharge operation is performed ;
  • the second processor 120 is configured to judge the working state of the first processor 110 and the voltage state of the high-voltage input side when the voltage converter 11 enters the active discharge mode. If the working state of the first processor 110 is abnormal or the high-voltage input The side voltage state is abnormal, and the active discharge operation is performed.
  • the voltage converter 11 may be a DC-to-DC (Direct current-Direct current, DC/DC) voltage converter.
  • the communication unit 130 may be a component configured to realize mutual communication between the voltage converter 11 and other electronic control units (Electronic Control Unit, ECU). For example, through the communication unit 130, the voltage converter 11 can receive data transmitted by other controllers and send data to other controllers.
  • the communication unit 130 can be composed of a communication chip and related matching circuits, and can convert the received active discharge command, bus capacitor voltage signal and vehicle speed signal into a voltage signal for the first processor 110 in the voltage converter 11 identification and processing.
  • the communication unit 130 may receive data such as an active discharge command, a bus capacitor voltage signal, and a vehicle speed signal sent by other multiple controllers, and forward them to the first processor 110 .
  • the active discharge command, the bus capacitor voltage signal and the vehicle speed signal may be sent by the vehicle controller, the motor controller and the gateway respectively.
  • the electric vehicle active discharge control system proposed in this embodiment also includes a vehicle controller, a motor controller, and a gateway; wherein, the vehicle controller is configured to send an active discharge command to the communication unit 130 and the motor controller; the motor control The device is set to control the internal power switch tube to discharge the bus capacitor voltage below the preset leakage value within the set time when receiving the active discharge command, and send the bus capacitor voltage signal to the communication unit 130; the gateway is set To send a vehicle speed signal to the communication unit 130 .
  • the vehicle controller can monitor the state of the electric vehicle under various working conditions and the faults of various parts in real time, and control the high-voltage power on and off of the vehicle according to the state of the vehicle and the type of fault of the parts, and, in real time, communicate with the electric controller Communication, when the vehicle needs to be powered off, send an active discharge command to the motor controller, so that the motor controller will control the internal power switch to discharge the bus capacitor voltage to the Below the preset leakage value, communicate with the first processor 110 in real time through the communication unit 130 , and report the bus capacitor voltage value to the first processor 110 in the form of a bus capacitor voltage signal. Both the setting time and the preset leakage value can be set according to the actual discharge requirements.
  • the motor controller can also convert the high-voltage DC power of the power battery into the three-phase AC power required by the motor to provide driving force for the electric vehicle.
  • the gateway can be a transit node of multiple types of communication sub-networks in the electric vehicle; the gateway can generate a vehicle speed signal in real time according to the current vehicle speed, and report it to the first processor 110 through the communication unit 130, or, upon detecting that the vehicle controller sends a signal to the communication unit 130 When the active discharge instruction is sent, the current vehicle speed data is sent to the communication unit 130 in the form of a vehicle speed signal. In this way, the vehicle controller, the motor controller, and the gateway can respectively report the active discharge command, the bus capacitor voltage signal, and the vehicle speed signal to the first processor 110 through the communication unit 130, thereby realizing the first processor 110 to multi-class Signal monitoring.
  • the airbag controller 12 may directly send the airbag collision signal to the first processor 110 .
  • the airbag controller 12 can monitor the collision state of the vehicle in real time, and transmit a corresponding voltage signal (airbag collision signal) to the first processor 110 through the wiring harness when the vehicle collides.
  • the first processor 110 in the voltage converter 11 receives the active discharge command, the bus capacitor voltage signal, the vehicle speed signal and the airbag collision signal, it judges whether the voltage converter 11 enters the active discharge operation according to the above signals and commands. model. For example, when the first processor 110 receives the active discharge instruction and the bus capacitor voltage value in the bus capacitor voltage signal exceeds the preset capacitor voltage threshold, it may determine that the motor controller fails to actively discharge, and the voltage converter 11 enters the active discharge Working mode; or, when the active discharge command is received, the current vehicle speed in the vehicle speed signal is less than the preset vehicle speed threshold, and the bus capacitor voltage value in the bus capacitor voltage signal exceeds the preset capacitor voltage threshold, it is determined that the motor controller has failed to actively discharge , the voltage converter 11 enters the active discharge working mode; or, when the airbag collision signal is received and the bus capacitor voltage value in the bus capacitor voltage signal exceeds the preset capacitor voltage threshold, it is determined that the motor controller has failed to actively discharge, and it is determined The voltage converter 11 enters the active discharge working mode
  • the voltage converter 11 performs unexpected active discharge. For example, the active discharge command is received, but the current vehicle speed is high, so the voltage converter 11 does not need to enter the active discharge mode, that is, no active discharge is required.
  • the first processor 110 is further configured to determine that the voltage converter 11 enters the active discharge preparation mode if it is determined based on the vehicle speed signal that the current vehicle speed is lower than the preset vehicle speed threshold when receiving the active discharge command and the vehicle speed signal. ; Or, when the airbag collision signal is received, it is judged that the voltage converter 11 enters the active discharge preparation mode.
  • the preset vehicle speed threshold may be a preset critical speed for judging whether the vehicle stops running, for example, 5 km/h. That is, in this embodiment, when the active discharge instruction and the vehicle speed signal are received, and it is determined that the current vehicle speed is lower than the preset vehicle speed threshold, the voltage converter 11 enters the active discharge preparation mode; The device 11 enters the active discharge preparation mode. Further, whether to enter the active discharge working mode can be judged according to the bus capacitor voltage. By determining whether the voltage converter enters the active discharge preparation mode, the speed at which the voltage converter performs active discharge is improved, and the driving safety of the vehicle is further improved.
  • the first processor 110 is also configured to detect the received bus capacitor voltage signal when the voltage converter 11 enters the active discharge preparation mode, if it is detected that the bus capacitor voltage is greater than the preset capacitor voltage threshold, and the bus capacitor voltage If the duration that is greater than the preset capacitor voltage threshold is longer than the preset duration threshold, it is determined that the voltage converter 11 enters the active discharge working mode.
  • the preset capacitor voltage threshold can be a preset critical voltage for judging whether the bus capacitor voltage is successfully discharged, such as 60V; the preset duration threshold can be a preset critical duration for judging whether the motor controller fails to discharge, Such as 2s.
  • the motor controller may continuously generate the bus capacitor voltage signal according to the current bus capacitor voltage, and continuously send the bus capacitor voltage signal to the first processor 110 through the communication unit 130 . For example, if in the received bus capacitor voltage signal, the bus capacitor voltage is greater than the preset capacitor voltage threshold, and the duration for which the bus capacitor voltage is greater than the preset capacitor voltage threshold is longer than the preset duration threshold, it can be determined that the motor controller has failed to actively discharge , the voltage converter 11 enters the active discharge working mode.
  • the voltage converter 11 after it is determined that the voltage converter 11 enters the active discharge working mode, it can be determined whether the first processor 110 or the second processor 120 performs an active discharge operation.
  • the second processor 120 can monitor the working state of the first processor 110 and the voltage state of the high-voltage input side, and when the working state and/or the voltage state of the high-voltage input side are abnormal, the second processor 120 performs an active discharge operation .
  • the second processor 120 first monitors the working state of the first processor 110, and if the working state of the first processor 110 is normal, it continues to monitor the voltage state of the high-voltage input side of the first processor 110; When the working state of 110 is abnormal, there is no need to monitor the voltage state of the high-voltage input side of the first processor 110, and the second processor 120 can perform an active discharge operation.
  • the abnormality of the working state of the first processor 110 may be an abnormality of an internal communication unit, an abnormality of a driving unit, and the like.
  • the voltage state of the high-voltage input side of the first processor 110 is abnormal, which may be due to a processing unit failure of the first processor 110, or a sampling error, etc.
  • the voltage state difference on the input side is too large.
  • a redundant sampling unit may be set to collect the voltage at the high voltage input side of the first processor 110
  • another redundant sampling unit may be set to verify the voltage at the high voltage input side of the first processor 110
  • the voltage converter 11 also includes a first sampling unit and a second sampling unit; wherein, the first sampling unit is configured to collect the voltage at the high voltage input side of the first processor 110, and convert the voltage at the high voltage input side of the first processor 110 to The voltage is sent to the second processor 120 ; the second sampling unit is configured to collect the high voltage input side voltage of the second processor 120 and send the high voltage input side voltage of the second processor 120 to the second processor 120 .
  • the first sampling unit can be composed of a sampling circuit and a high-voltage isolation circuit, and is configured to collect the high-voltage DC side voltage of the first processor 110, and convert the high-voltage DC side voltage into a digital signal, and the first processor 110 Identify and process.
  • the second sampling unit can be composed of a sampling circuit and a high-voltage isolation circuit, collects the high-voltage DC side voltage of the second processor 120, and converts the high-voltage DC side voltage into a digital signal, which is identified and processed by the second processor 120 .
  • the second sampling unit may belong to a redundant safety design, and is configured to verify the accuracy of the voltage signal collected by the first sampling unit.
  • the second processor 120 is also configured to monitor the working state of the first processor 110, and determine the voltage of the first processor 110 according to the high-voltage input side voltage of the first processor 110 and the high-voltage input side voltage of the second processor 120. The voltage state of the high voltage input side.
  • the second processor 120 determines the voltage state of the high-voltage input side of the first processor 110 according to the voltage of the high-voltage input side of the first processor 110 and the voltage of the high-voltage input side of the second processor 120, which may be: the second processor 120 Determine the voltage difference according to the high-voltage input side voltage of the first processor 110 and the high-voltage input side voltage of the second processor 120, and determine the high-voltage input side voltage of the first processor 110 when the voltage difference is greater than a preset voltage difference threshold The status is abnormal.
  • the preset voltage difference threshold may be 3V, 5V and so on.
  • the second processor 120 monitors the voltage state and working state of the high-voltage input side of the first processor 110, so as to perform an active discharge operation when the voltage state or working state of the high-voltage input side of the first processor 110 is abnormal. , to achieve multiple protections for active discharge, to ensure the success of active discharge of the vehicle.
  • the voltage converter 11 also includes a power unit and a drive unit, and the first processor 110 and the second processor 120 are also configured to send switching instructions to the drive unit when performing an active discharge operation; the drive unit is configured to receive The switching command is converted into a driving signal, and the driving signal is sent to the power unit; the power unit is configured to convert the high-voltage DC voltage into a low-voltage DC voltage according to the driving signal.
  • the driving unit can be composed of a certain number of driving chips and related matching circuit components, and can convert the switching instructions of the first processor 110 or the second processor 120 into driving signals to drive the switching tubes in the power unit to work.
  • the power unit can be composed of a certain number of internal switching tubes according to the corresponding circuit topology principle, which can realize the conversion of high-voltage DC voltage into low-voltage DC voltage.
  • the power unit is configured to control the internal switching tube to work based on a preset switching frequency according to the driving signal, so as to transfer the energy of the bus capacitor at the high-voltage input side to the load at the low-voltage output side.
  • the first processor 110 or the second processor 120 in this embodiment detects whether the active discharge is completed during or after the active discharge operation, so as to ensure that the active discharge of the vehicle is successful.
  • the first processor 110 is also configured to execute the active discharge operation again if it detects that the high-voltage input side voltage of the first processor 110 is greater than a preset stop threshold after performing the active discharge operation;
  • the second processor 120 is also configured to After the active discharge operation is performed, if it is detected that the voltage at the high voltage input side of the second processor 120 is greater than a preset stop threshold, the active discharge operation is performed again.
  • the preset stop threshold may be a preset capacitor voltage threshold, or may also be a preset leakage value.
  • the voltage on the high-voltage input side is detected and compared with the preset stop threshold.
  • the active discharge operation is repeated again to ensure the successful active discharge of the vehicle. , thereby improving the driving safety of the vehicle.
  • the electric vehicle active discharge control system includes a voltage converter, a communication unit, and an airbag controller, and the voltage converter includes a first processor and a second processor, wherein the first processor receives After the active discharge command forwarded by the communication unit, the bus capacitor voltage and the vehicle speed signal, and the airbag collision signal sent by the airbag controller, it is judged whether the voltage converter enters the active discharge working mode, and when the voltage converter enters the active discharge working mode and When the working state of the first processor is normal and the voltage state of the high-voltage input side is normal, the active discharge operation is performed, and the second processor judges the working state of the first processor and the voltage of the high-voltage input side state, when the working state of the first processor is abnormal or the voltage state of the high-voltage input side is abnormal, the active discharge operation is performed, which realizes multiple protections of active discharge, ensures the successful active discharge of the vehicle, and avoids unexpected active discharge of the vehicle , improving the driving safety of the vehicle.
  • Fig. 2 is an electric vehicle active discharge control system provided by the embodiment of the present application.
  • the electric vehicle active discharge control system provided by this embodiment includes a voltage converter 21, an airbag controller 22, a vehicle control 23, motor controller 24 and gateway 25, the voltage converter 21 includes a first processor 210, a second processor 220, a communication unit 230, a first sampling unit 240, a second sampling unit 250, a drive unit 260 and a power unit 270.
  • the airbag controller 22 is configured to send an airbag collision signal to the first processor 210;
  • the vehicle controller 23 is configured to send an active discharge command to the communication unit 230 and the motor controller 24;
  • the motor controller 24 is configured to In order to control the internal power switch tube to discharge the bus capacitor voltage below the preset leakage value within the set time when receiving the active discharge command, and send the bus capacitor voltage signal to the communication unit 230;
  • the gateway 24 is set to The communication unit 230 sends the vehicle speed signal;
  • the communication unit 230 is configured to receive the active discharge command, the bus capacitor voltage signal and the vehicle speed signal, and send the active discharge command, the bus capacitor voltage signal and the vehicle speed signal to the first processor 210 .
  • the first processor 210 is configured to determine that the voltage converter 21 enters the active discharge preparation mode if it is determined based on the vehicle speed signal that the current vehicle speed is less than the preset vehicle speed threshold when receiving the active discharge command and the vehicle speed signal; When the airbag collision signal is detected, it is judged that the voltage converter 21 enters the active discharge preparation mode; and, when the voltage converter 21 enters the active discharge preparation mode, the received bus capacitor voltage signal is detected, and if the detected bus capacitor voltage is greater than the preset Capacitor voltage threshold, and the duration of the bus capacitor voltage greater than the preset capacitor voltage threshold is greater than the preset duration threshold, then it is determined that the voltage converter 21 enters the active discharge mode of operation; when the voltage converter 21 enters the active discharge mode of operation, and the first processing When the working state of the device 210 is normal and the voltage state of the high-voltage input side is normal, an active discharge operation is performed; and, when the active discharge operation is performed, a switch command is sent to the drive unit 260 .
  • the second processor 220 is configured to monitor the working state of the first processor 210 when the voltage converter 21 enters the active discharge working mode, and according to the high voltage input side voltage of the first processor 210 and the high voltage of the second processor 220
  • the input side voltage determines the voltage state of the high-voltage input side of the first processor 210; if the working state of the first processor 210 is abnormal or the voltage state of the high-voltage input side is abnormal, an active discharge operation is performed; Unit 260 sends switching commands. .
  • the first sampling unit 240 is configured to collect the high-voltage input side voltage of the first processor 210, and sends the high-voltage input side voltage of the first processor 210 to the second processor 220; the second sampling unit 250 is configured to collect the first processor 210.
  • the high-voltage input side voltage of the second processor 220 and send the high-voltage input side voltage of the second processor 220 to the second processor 220;
  • the driving unit 260 is configured to convert the received switching instruction into a driving signal, and convert the driving signal Send it to the power unit 270;
  • the power unit 270 is set to control the internal switching tube to work based on the preset switching frequency according to the driving signal, so as to transfer the bus capacitance energy on the high-voltage input side to the load on the low-voltage output side, and convert the high-voltage DC voltage to low-voltage DC voltage.
  • the first processor 210 is also configured to execute the active discharge operation again if it detects that the high voltage input side voltage of the first processor 210 is greater than a preset stop threshold after performing the active discharge operation; the second processor 220 is also configured to perform the active discharge operation After the active discharge operation is performed, if it is detected that the voltage at the high voltage input side of the second processor 220 is greater than a preset stop threshold, the active discharge operation is performed again.
  • the vehicle controller 23, the motor controller 24 and the gateway 25 can establish a communication connection with the communication unit 230 through the communication line; the communication unit 230 can establish a communication connection with the first processor 210 through the communication line; A processor 210 can respectively establish communication connections with the drive unit 260, the first sampling unit 240, and the second processor 220 through communication lines, and the second processor 220 can respectively establish communication connections with the drive unit 260 and the second sampling unit 240 through communication lines.
  • Communication connection, the drive unit 260 can establish a communication connection with the power unit 270 through a communication line.
  • the first processor 210 and the second processor 220 in this embodiment can constitute the control unit of the voltage converter.
  • the control unit is composed of a control chip and related matching circuits.
  • the vehicle collision voltage signal sent by the airbag and the high-voltage side voltage sampling signal of the sampling unit send corresponding switch command signals to the drive unit 260 according to a certain logic sequence.
  • the first processor 210 monitors the communication unit signal, the airbag controller collision signal, and the high-voltage side voltage signal collected by the first sampling unit 240 in real time, and controls the power unit 270 to perform active discharge through the drive unit 260 .
  • the second processor 220 monitors the high-voltage side voltage collected by the second sampling unit 250 in real time, and checks it with the high-voltage side voltage collected by the first sampling unit 240. If abnormal sampling is found, the power unit 270 can be controlled by the drive unit 260. Active discharge: the second processor 220 has a redundant safety design, and when the first processor 210 is abnormal, the drive unit 260 can control the power unit 270 to directly perform active discharge.
  • the electric vehicle active discharge control system realizes redundant protection of active discharge in the hardware circuit, and actively discharges the bus capacitor on the motor controller through the first processor or the second processor of the voltage converter , which can avoid the risk of being unable to perform active discharge when the motor controller as a whole fails (such as collision damage, external interference, etc.).
  • the voltage converter ensures that unexpected active discharge will not occur through double-backup control, sampling circuits, and reliable control logic, which improves the driving safety of the vehicle.
  • Fig. 3A is a schematic flow chart of an active discharge control method for an electric vehicle provided in the embodiment of the present application. This embodiment is applicable to controlling the active discharge of an electric vehicle, and the method is applicable to the voltage in the active discharge control system of an electric vehicle. converter. As shown in Figure 3A, the method includes the following steps:
  • S310 Receive an active discharge command, a bus capacitor voltage, a vehicle speed signal, and an airbag collision signal.
  • S320 Determine whether to enter an active discharge working mode according to the active discharge instruction, the bus capacitor voltage, the vehicle speed signal, and the airbag collision signal.
  • the active discharge control method for an electric vehicle further includes: when receiving an active discharge command and a vehicle speed signal, if it is determined based on the vehicle speed signal that the current vehicle speed is less than a preset vehicle speed threshold, then judging that the voltage converter enters active discharge preparation mode; or, when receiving an airbag collision signal, it is judged that the voltage converter enters an active discharge preparation mode.
  • the active discharge control method for electric vehicles further includes: when entering the active discharge preparation mode, detecting the received bus capacitance voltage signal, if it is detected that the bus capacitance voltage is greater than the preset capacitance voltage threshold, and the bus capacitance If the duration for which the voltage is greater than the preset capacitor voltage threshold is longer than the preset duration threshold, it is determined that the voltage converter enters an active discharge working mode.
  • the electric vehicle active discharge control method further includes: collecting the high-voltage input side voltage of the first processor based on the first sampling unit, and sending the high-voltage input side voltage of the first processor to the second processor ; collecting the high voltage input side voltage of the second processor based on the second sampling unit, and sending the high voltage input side voltage of the second processor to the second processor.
  • the active discharge control method for electric vehicles further includes: monitoring the working state of the first processor based on the second processor, and according to the high-voltage input side voltage of the first processor and the second processing The high voltage input side voltage of the processor determines the voltage state of the high voltage input side of the first processor.
  • the active discharge control method for an electric vehicle further includes: the first processor or the second processor is further configured to send a switch command to the drive unit when performing the active discharge operation; through the drive unit, the The received switching command is converted into a driving signal, and the driving signal is sent to a power unit; based on the power unit, the high-voltage DC voltage is converted into a low-voltage DC voltage according to the driving signal.
  • the converting the high-voltage DC voltage into a low-voltage DC voltage according to the driving signal includes: controlling the internal switching tube to work at a preset switching frequency according to the driving signal, so as to transfer the energy of the bus capacitor on the high-voltage input side to the low-voltage DC voltage. load on the output side.
  • the active discharge control method for electric vehicles further includes: after the first processor executes the active discharge operation, if it is detected that the high-voltage input side voltage of the first processor is greater than a preset stop threshold, then based on the The first processor executes the active discharge operation again; or, after the second processor executes the active discharge operation, if it is detected that the high-voltage input side voltage of the second processor is greater than a preset stop threshold, based on the first processor The second processor executes the active discharge operation again.
  • the first processor performs the active discharging operation; when the voltage converter enters the active discharging working mode, and the second When the working state of the first processor is abnormal or the voltage state of the high-voltage input side is abnormal, the second processor performs the active discharge operation, which realizes multiple protections for active discharge, ensures the successful active discharge of the vehicle, and avoids unexpected active discharge of the vehicle. discharge, which improves the driving safety of the vehicle.
  • this embodiment also provides another active discharge control method for an electric vehicle, as shown in FIG. 3B , which shows a schematic flowchart of the other active discharge control method for an electric vehicle.
  • FIG. 3B shows a schematic flowchart of the other active discharge control method for an electric vehicle.
  • Step 1 Monitor the active discharge command and vehicle speed signal in real time. When the active discharge command signal is set and the current vehicle speed is lower than the preset vehicle speed threshold, perform step 3;
  • Step 2 Monitor the airbag collision signal in real time. When the airbag collision signal is set, go to step 3;
  • Step 3 Enter the active discharge preparation mode
  • Step 4 Monitor the bus capacitor voltage signal to determine whether the bus capacitor voltage is greater than the preset capacitor voltage threshold, and whether the duration of the bus capacitor voltage greater than the preset capacitor voltage threshold is greater than the preset duration threshold, based on the bus capacitor voltage being greater than Preset the capacitor voltage threshold, and the duration of the bus capacitor voltage greater than the preset capacitor voltage threshold is greater than the judgment result of the preset duration threshold, perform step 5; based on the bus capacitor voltage is less than or equal to the preset capacitor voltage threshold, or the bus capacitor If the duration of the voltage greater than the preset capacitor voltage threshold is less than or equal to the judgment result of the preset duration threshold, go to step 12;
  • Step 5 carry out the active discharge working mode
  • Step 6 monitor the working state of the first processor in real time by the second processor, and judge whether the working state of the first processor is normal, and then perform step 7 based on the judgment result that the working state of the first processor is normal; based on the first processing If the judging result is that the working state of the device is abnormal, go to step 10;
  • Step 7 the second processor judges whether the absolute value of the difference between Uin1 and Uin2 is less than the preset voltage difference threshold, based on the judgment result that the absolute value of the difference between Uin1 and Uin2 is less than the preset voltage difference threshold, execute Step 8: Based on the judgment result of whether the absolute value of the difference between Uin1 and Uin2 is greater than or equal to the preset voltage difference threshold, perform step 10; wherein, the first processor detects the high voltage of the first processor through the first sampling unit The input side voltage Uin1, the second processor detects the high voltage input side voltage Uin2 of the second processor through the second sampling unit;
  • Step 8 the first processor controls the internal switching tube in the power unit to work at a preset switching frequency through the drive unit, and transfers the bus capacitance energy on the high-voltage input side to the load on the low-voltage output side, so as to realize the active discharge function;
  • Step 9 The first processor judges whether the high-voltage input side voltage detected by the first sampling unit is less than the preset stop threshold, and based on the judgment result that the high-voltage input side voltage detected by the first sampling unit is less than the preset stop threshold, execute step 12. ; Execute step 8 based on the judgment result that the high voltage input side voltage detected by the first sampling unit is greater than or equal to the preset stop threshold;
  • Step 10 the second processor controls the internal switching tube in the power unit to work at a preset switching frequency through the drive unit, and transfers the bus capacitance energy on the high-voltage input side to the load on the low-voltage output side, so as to realize the active discharge function;
  • Step 11 the second processor judges whether the high-voltage input side voltage detected by the second sampling unit is less than the preset stop threshold, and based on the judgment result that the high-voltage input side voltage detected by the second sampling unit is less than the preset stop threshold, execute step 12 ; Execute step 10 based on the judgment result that the high-voltage input side voltage detected by the second sampling unit is greater than or equal to the preset stop threshold;
  • Step 12 Exit the active discharge working mode.
  • the first processor performs the active discharge operation;
  • the second processor performs the active discharge operation, which realizes the multiple protection of the active discharge and can avoid the
  • the failure of the active discharge of the electric vehicle caused by the failure of the unit or the first processor increases the risk of electric shock to ensure the success of the active discharge of the vehicle, and avoids unexpected active discharge of the vehicle, improving the driving safety of the vehicle.
  • FIG. 4 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • FIG. 4 shows a block diagram of an exemplary electronic device 12 suitable for implementing embodiments of the present application.
  • the electronic device 12 shown in FIG. 4 is only an example, and should not limit the functions and scope of use of this embodiment of the present application.
  • the device 12 is typically an electronic device that undertakes the active discharge control function of the electric vehicle.
  • electronic device 12 takes the form of a general-purpose computing device.
  • Components of electronic device 12 may include, but are not limited to: one or more processors or processing units 16, memory 28, bus 18 connecting the various components including memory 28 and processing unit 16.
  • Bus 18 represents one or more of several types of bus structures, including a memory bus or memory controller, a peripheral bus, an accelerated graphics port, a processor, or a local bus using any of a variety of bus structures.
  • these architectures include but are not limited to Industry Standard Architecture (Industry Standard Architecture, ISA) bus, Micro Channel Architecture (Micro Channel Architecture, MCA) bus, Enhanced ISA bus, Video Electronics Standards Association (Video Electronics Standards Association, VESA) local bus and peripheral component interconnect (Peripheral Component Interconnect, PCI) bus.
  • Electronic device 12 typically includes a variety of computer-readable media. These media can be any available media that can be accessed by electronic device 12 and include both volatile and nonvolatile media, removable and non-removable media.
  • Memory 28 may include computer device-readable media in the form of volatile memory, such as Random Access Memory (RAM) 30 and/or cache memory 32 .
  • Electronic device 12 may include other removable/non-removable, volatile/nonvolatile computer storage media.
  • storage device 34 may be configured to read from and write to non-removable, non-volatile magnetic media (not shown in FIG. 4 , commonly referred to as a "hard drive").
  • a disk drive for reading and writing to a removable non-volatile disk may be provided, as well as a removable non-volatile disk (such as a Compact Disc- Read Only Memory, CD-ROM), Digital Video Disc (Digital Video Disc-Read Only Memory, DVD-ROM) or other optical media) CD-ROM drive.
  • each drive may be connected to bus 18 via one or more data media interfaces.
  • Memory 28 may include at least one program product 40 having a set of program modules 42 configured to perform the functions of various embodiments of the present application.
  • Program product 40 which may be stored, for example, in memory 28.
  • Such program modules 42 include, but are not limited to, one or more application programs, other program modules, and program data, each or some combination of which may include a network environment realization.
  • the program modules 42 generally perform the functions and/or methods of the embodiments described herein.
  • the electronic device 12 may also communicate with one or more external devices 14 (such as a keyboard, mouse, camera, etc., and a display), and may also communicate with one or more devices that enable a user to interact with the electronic device 12, and/or Any device (eg, network card, modem, etc.) that enables the electronic device 12 to communicate with one or more other computing devices. Such communication may occur through input/output (I/O) interface 22 .
  • the electronic device 12 can also communicate with one or more networks (such as a local area network (Local Area Network, LAN), a wide area network, Wide Area Network, WAN) and/or a public network, such as the Internet, through the network adapter 20.
  • networks such as a local area network (Local Area Network, LAN), a wide area network, Wide Area Network, WAN) and/or a public network, such as the Internet
  • network adapter 20 communicates with other modules of electronic device 12 via bus 18 .
  • other hardware and/or software modules may be used in conjunction with electronic device 12, including but not limited to: microcode, device drivers, redundant processing units, external disk drive arrays, disk arrays (Redundant Arrays) of Independent Disks, RAID) devices, tape drives, and data backup storage devices.
  • the processor 16 executes a variety of functional applications and data processing by running the program stored in the memory 28, such as implementing the active discharge control method for electric vehicles provided in the above-mentioned embodiments of the present application, including:
  • the active discharge operation is performed based on the first processor; if the working state of the first processor is abnormal or the voltage state of the high-voltage input side is abnormal, based on the The second processor performs an active discharge operation.
  • processor can also implement the technical solution of the active discharge control method for an electric vehicle provided in any embodiment of the present application.
  • the embodiment of the present application also provides a computer-readable storage medium, on which a computer program is stored.
  • the program is executed by a processor, the steps of the method for controlling the active discharge of an electric vehicle as provided in any embodiment of the present application are implemented.
  • the method includes:
  • the active discharge operation is performed based on the first processor; if the working state of the first processor is abnormal or the voltage state of the high-voltage input side is abnormal, based on the The second processor performs an active discharge operation.
  • the computer storage medium in the embodiments of the present application may use any combination of one or more computer-readable media.
  • the computer readable medium may be a computer readable signal medium or a computer readable storage medium.
  • a computer readable storage medium may be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, device, or device, or any combination thereof. More specific examples (non-exhaustive list) of computer readable storage media include: electrical connections with one or more leads, portable computer disks, hard disks, random access memory (RAM), read only memory (ROM), Erasable programmable read-only memory (EPROM or flash memory), optical fiber, portable compact disk read-only memory (CD-ROM), optical storage device, magnetic storage device, or any suitable combination of the above.
  • a computer-readable storage medium may be any tangible medium that contains or stores a program that can be used by or in conjunction with an instruction execution system, apparatus, or device.
  • the computer readable storage medium may be a non-transitory computer
  • a computer readable signal medium may include a data signal carrying computer readable program code in baseband or as part of a carrier wave. Such propagated data signals may take many forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the foregoing.
  • a computer-readable signal medium may also be any computer-readable medium other than a computer-readable storage medium, which can send, propagate, or transmit a program for use by or in conjunction with an instruction execution system, apparatus, or device. .
  • Program code embodied on a computer readable medium may be transmitted using any appropriate medium, including - but not limited to wireless, wireline, optical fiber cable, RF, etc., or any suitable combination of the foregoing.
  • Computer program codes for performing the operations of the embodiments of the present application may be written in one or more programming languages or combinations thereof, the programming languages including object-oriented programming languages—such as Java, Smalltalk, C++, including A conventional procedural programming language - such as "C" or a similar programming language.
  • the program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server.
  • the remote computer can be connected to the user computer through any kind of network, including a local area network (LAN) or a wide area network (WAN), or it can be connected to an external computer (such as through an Internet service provider). Internet connection).

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种电动汽车主动放电控制系统及方法。系统包括电压变换器(11)、通信单元(130)以及安全气囊控制器(12),电压变换器包括第一处理器(110)、第二处理器(120),其中,第一处理器(110)根据主动放电指令、母线电容电压以及车速信号,以及安全气囊碰撞信号,判断电压变换器(11)是否进入主动放电工作模式,响应于确定电压变换器(11)进入主动放电工作模式,且第一处理器(110)的工作状态正常、高压输入侧电压状态正常,由第一处理器(110)执行主动放电操作;响应于确定第一处理器(110)的工作状态异常或高压输入侧电压状态异常,由第二处理器(120)执行主动放电操作,以确保车辆主动放电成功,并避免发生非预期的主动放电。

Description

电动汽车主动放电控制系统及方法
本申请要求在2021年11月15日提交中国专利局、申请号为202111345460.4的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及电动汽车技术领域,例如涉及一种电动汽车主动放电控制系统及方法。
背景技术
目前,清洁低碳、高效节能的电动汽车已成为越来越多消费者的首选。电动汽车相比于传统燃油汽车,其使用的动力电池电压范围已超过人体安全电压。因此,电动汽车的高压安全设计已成为汽车企业研发的重点关注要素。
电动汽车将驱动电机与电机控制器作为驱动车辆行驶的重要设备,电机控制器的母线电容在车辆运行过程中会带有高压直流电压,当用户停车离开或车辆发生碰撞事故时,需要电机控制器通过与母线电容并联的泄放电阻实现对母线电容的主动放电。但是,如果电机控制器发生故障而无法进行主动放电时,会增加人员触电的风险;又或者,如果电机控制器发生故障从而产生非预期的主动放电时,会增加人员的行驶安全风险。
发明内容
本申请实施例提供了一种电动汽车主动放电控制系统及方法,以确保车辆主动放电成功,并避免发生非预期的主动放电。
第一方面,本申请实施例提供了一种电动汽车主动放电控制系统,所述系统包括电压变换器以及安全气囊控制器,所述电压变换器包括第一处理器、第二处理器以及通信单元;其中,
所述安全气囊控制器,设置为向所述第一处理器发送安全气囊碰撞信号;
所述通信单元,设置为接收主动放电指令、母线电容电压以及车速信号,并将所述主动放电指令、母线电容电压信号以及车速信号发送至所述第一处理器;
所述第一处理器,设置为基于所述主动放电指令、所述母线电容电压信号、所述车速信号以及所述安全气囊碰撞信号判断所述电压变换器是否进入主动放电工作模式,响应于确定所述电压变换器进入主动放电工作模式,且所述第一处理器的工作状态正常、高压输入侧电压状态正常,执行主动放电操作;
所述第二处理器,设置为响应于确定所述电压变换器进入主动放电工作模式,判断所述第一处理器的工作状态、高压输入侧电压状态,基于所述第一处理器的工作状态异常或高压输入侧电压状态异常的判断结果,执行主动放电操作。
第二方面,本申请实施例还提供了一种电动汽车主动放电控制方法,所述方法包括:
接收主动放电指令、母线电容电压、车速信号以及安全气囊碰撞信号;
根据所述主动放电指令、所述母线电容电压、所述车速信号以及所述安全气囊碰撞信号判断是否进入主动放电工作模式;
基于进入主动放电工作模式的判断结果,基于第二处理器判断第一处理器的工作状态、高压输入侧电压状态;
基于第一处理器的工作状态正常、高压输入侧电压状态正常的判断结果,基于所述第一处理器执行主动放电操作;基于第一处理器的工作状态异常或高压输入侧电压状态异常的判断结果,基于所述第二处理器执行主动放电操作。
附图说明
图1为本申请实施例所提供的一种电动汽车主动放电控制系统的结构示意图;
图2为本申请实施例所提供的另一种电动汽车主动放电控制系统的结构示意图;
图3A为本申请实施例所提供的一种电动汽车主动放电控制方法的流程示意图;
图3B为本申请实施例所提供的另一种电动汽车主动放电控制方法的流程示意图;
图4为本申请实施例所提供的一种电子设备的结构示意图。
具体实施方式
图1为本申请实施例提供的一种电动汽车主动放电控制系统的结构示意图,本实施例提供的电动汽车主动放电控制系统包括电压变换器11以及安全气囊控制器12,所述电压变换器11包括第一处理器110、第二处理器120以及通信单元130;其中,通信单元130,设置为接收主动放电指令、母线电容电压以及车速信号,并将主动放电指令、母线电容电压信号以及车速信号发送至第一处理器110;安全气囊控制器12,设置为向第一处理器110发送安全气囊碰撞信号;第一处理器110,设置为基于主动放电指令、母线电容电压信号、车速信号以及安全气囊碰撞信号判断电压变换器11是否进入主动放电工作模式,并在电压变换器11进入主动放电工作模式,且第一处理器110的工作状态正常、高压输入侧电压状态正常时,执行主动放电操作;第二处理器120,设置为在电压变换器11进入主动放电工作模式时,判断第一处理器110的工作状态、高压输入侧电压状态,若第一处理器110的工作状态异常或高压输入侧电压状态异常,执行主动放电操作。
其中,电压变换器11可以是直流转直流(Direct current-Direct current,DC/DC)电压变换器。通信单元130可以是设置为实现电压变换器11与其它电子控制单元(Electronic Control Unit,ECU)的相互通信的部件。例如,通过通信单元130, 电压变换器11可以接收其它控制器传输的数据,以及向其它控制器发送数据。通信单元130可以由通信芯片以及相关匹配电路组建而成,可以将接收到的主动放电指令、母线电容电压信号以及车速信号转换为电压信号,以用于电压变换器11中的第一处理器110识别与处理。
示例性的,通信单元130可以接收其它多个控制器发送的诸如主动放电指令、母线电容电压信号以及车速信号等数据,将其转发至第一处理器110。其中,主动放电指令、母线电容电压信号以及车速信号分别可以是整车控制器、电机控制器以及网关发送的。
例如,本实施例提出的电动汽车主动放电控制系统还包括整车控制器、电机控制器和网关;其中,整车控制器,设置为向通信单元130和电机控制器发送主动放电指令;电机控制器,设置为在接收到主动放电指令时,控制内部功率开关管在设定时间内将母线电容电压泄放至预设泄电值以下,并向通信单元130发送母线电容电压信号;网关,设置为向通信单元130发送车速信号。
其中,整车控制器可以实时监控电动汽车在多类工况下的状态与多类零部件的故障,根据车辆的状态以及零部件故障类型,控制车辆高压上下电,并且,实时与电动控制器进行通信,当车辆需要进行下电时,向电机控制器发送主动放电指令,以使电机控制器在接收到主动放电指令后,控制内部功率开关管在设定时间内将母线电容电压泄放至预设泄电值以下,并通过通信单元130实时与第一处理器110进行通信,将母线电容电压值以母线电容电压信号的方式上报至第一处理器110。设定时间、预设泄电值均可以根据实际放电需求进行设置。电机控制器还可以将动力电池高压直流电能转化为电机所需的三相交流电能,为电动汽车提供驱动力。网关可以是电动汽车中多类通信子网络的中转节点;网关可以实时根据当前车速生成车速信号,通过通信单元130上报至第一处理器110,或者,在检测到整车控制器向通信单元130发送主动放电指令时,将当前车速数据以车速信号的方式发送至通信单元130。通过该方式,整车控制器、电机控制器和网关可以分别通过通信单元130向第一处理器110上报主动放电指令、母线电容电压信号以及车速信号,进而实现了第一处理器110对多类信号的监控。
在本实施例中,安全气囊控制器12可以直接向第一处理器110发送安全气囊碰撞信号。其中,安全气囊控制器12可以实时监控车辆的碰撞状态,当车辆发生碰撞时,通过线束将相应的电压信号(安全气囊碰撞信号)传递至第一处理器110。
例如,电压变换器11中的第一处理器110在接收到主动放电指令、母线电容电压信号、车速信号以及安全气囊碰撞信号后,根据上述信号和指令,判断电压变换器11是否进入主动放电工作模式。例如,第一处理器110可以是在接收到主动放电指令,且母线电容电压信号中的母线电容电压值超过预设电容电压阈值时,确定电机控制器主动放电失败,电压变换器11进入主动放电工作模式;或者,在接收到主动放电指令,车速信号中的当前车速小于预设车速阈值,且母线电容电压信号中的母线电容电压值超过预设电容电压阈值时,确定电机 控制器主动放电失败,电压变换器11进入主动放电工作模式;又或者,在接收到安全气囊碰撞信号,且母线电容电压信号中的母线电容电压值超过预设电容电压阈值时,确定电机控制器主动放电失败,确定电压变换器11进入主动放电工作模式。
需要说明的是,本实施例通过对多个信号进行判断,即主动放电指令、母线电容电压信号、车速信号以及安全气囊碰撞信号,可以在确定电机控制器是否主动放电失败的同时,还可以避免电压变换器11进行非预期的主动放电,如,接收到主动放电指令,但当前车速较高,则电压变换器11可以无需进入主动放电工作模式,即,无需进行主动放电。
在一种实施方式中,第一处理器110还设置为在接收到主动放电指令以及车速信号时,若基于车速信号确定当前车速小于预设车速阈值,则判断电压变换器11进入主动放电准备模式;或者,在接收到安全气囊碰撞信号时,判断电压变换器11进入主动放电准备模式。
其中,预设车速阈值可以是预先设置的用于判断车辆是否中止行驶的临界速度,如,5km/h。即,在该实施方式中,接收到主动放电指令、车速信号,并判断出当前车速小于预设车速阈值时,电压变换器11进入主动放电准备模式;或者,接收到安全气囊碰撞信号,电压变换器11进入主动放电准备模式。进一步的,可以根据母线电容电压判断是否进入主动放电工作模式。通过确定电压变换器是否进入主动放电准备模式,提高了电压变换器执行主动放电的速度,进一步提高了车辆的行驶安全。
例如,第一处理器110还设置为在电压变换器11进入主动放电准备模式时,对接收到的母线电容电压信号进行检测,若检测到母线电容电压大于预设电容电压阈值,且母线电容电压大于预设电容电压阈值的持续时长大于预设时长阈值,则确定电压变换器11进入主动放电工作模式。
其中,预设电容电压阈值可以是预先设置的用于判断母线电容电压是否放电成功的临界电压,如60V;预设时长阈值可以是预先设置的用于判断电机控制器是否放电失败的临界时长,如2s。例如,电机控制器可以根据当前母线电容电压持续生成母线电容电压信号,并通过通信单元130持续向第一处理器110发送母线电容电压信号。例如,若接收到的母线电容电压信号中,母线电容电压大于预设电容电压阈值,且母线电容电压大于预设电容电压阈值的持续时长大于预设时长阈值,则可以确定电机控制器主动放电失败,电压变换器11进入主动放电工作模式。
例如,本实施例在确定出电压变换器11进入主动放电工作模式后,可以根据第一处理器110的工作状态以及高压输入侧电压状态,判断是根据第一处理器110或是第二处理器120执行主动放电操作。
例如,第二处理器120可以对第一处理器110的工作状态以及高压输入侧电压状态进行监控,在工作状态异常和/或高压输入侧电压状态异常时,第二处理器120执行主动放电操作。又或者,第二处理器120先监测第一处理器110的工作状态,若第一处理器110的工作状态正常时,继续监测第一处理器110 的高压输入侧电压状态;若第一处理器110的工作状态异常时,无需再监测第一处理器110的高压输入侧电压状态,可执行由第二处理器120执行主动放电操作。
其中,第一处理器110的工作状态异常可以是内部通信单元异常、驱动单元异常等异常。第一处理器110的高压输入侧电压状态异常,可以是由于第一处理器110的处理单元故障、或采样错误等原因造成的第一处理器110的高压输入侧电压与第二处理器的高压输入侧电压状态差值过大。
例如,可以设置冗余采样单元对第一处理器110的高压输入侧电压进行采集,并设置另一冗余采样单元对第一处理器110的高压输入侧电压进行校验。例如,电压变换器11还包括第一采样单元和第二采样单元;其中,第一采样单元,设置为采集第一处理器110的高压输入侧电压,并将第一处理器110的高压输入侧电压发送至第二处理器120;第二采样单元,设置为采集第二处理器120的高压输入侧电压,并将第二处理器120的高压输入侧电压发送至第二处理器120。
其中,第一采样单元可以由采样电路及高低压隔离电路组建而成,设置为采集第一处理器110的高压直流侧电压,并将高压直流侧电压转化为数字信号,由第一处理器110进行识别与处理。第二采样单元可以由采样电路及高低压隔离电路组建而成,采集第二处理器120的高压直流侧电压,并将高压直流侧电压转化为数字信号,由第二处理器120进行识别与处理。第二采样单元可以属于冗余安全设计,设置为校验第一采样单元采集的电压信号的准确性。在该实施方式中,通过设置冗余采集单元,验证第一处理器的110的高压输入侧电压状态,实现了主动放电的多重保护,可避免由于第一采样单元或第一处理器失效而带来的电动汽车主动放电失败的情况,进而减少人员触电风险。
例如,第二处理器120还设置为监测第一处理器110的工作状态,并根据第一处理器110的高压输入侧电压以及第二处理器120的高压输入侧电压确定第一处理器110的高压输入侧电压状态。
其中,第二处理器120根据第一处理器110的高压输入侧电压以及第二处理器120的高压输入侧电压确定第一处理器110的高压输入侧电压状态,可以是:第二处理器120根据第一处理器110的高压输入侧电压以及第二处理器120的高压输入侧电压确定电压差值,在电压差值大于预设电压差阈值时,确定第一处理器110的高压输入侧电压状态异常。示例性的,预设电压差阈值可以是3V、5V等。在该实施方式中,第二处理器120对第一处理器110的高压输入侧电压状态以及工作状态进行监测,以在第一处理器110高压输入侧电压状态或工作状态异常时执行主动放电操作,实现了主动放电的多重保护,确保车辆主动放电成功。
例如,电压变换器11还包括功率单元和驱动单元,第一处理器110和第二处理器120还设置为在执行主动放电操作时,向驱动单元发送开关指令;驱动单元,设置为将接收到的开关指令转换成驱动信号,将驱动信号发送至功率单元;功率单元,设置为根据驱动信号将高压直流电压转换为低压直流电压。
其中,驱动单元可以由一定数量的驱动芯片以及相关匹配电路组件而成,可将第一处理器110或第二处理器120的开关指令转换为驱动信号,以驱动功率单元中的开关管工作。功率单元可以由一定数量的内部开关管按照相应的电路拓扑原理组建而成,可实现将高压直流电压转换为低压直流电压。示例性的,功率单元设置为根据驱动信号,控制内部开关管基于预设开关频率工作,以将高压输入侧的母线电容能量传递至低压输出侧的负载。
当然,本实施例的第一处理器110或第二处理器120在执行主动放电操作的过程中,或执行主动放电操作之后,检测是否主动放电完毕,以确保车辆主动放电成功。例如,第一处理器110还设置为在执行主动放电操作后,若检测到第一处理器110的高压输入侧电压大于预设停止阈值,则再次执行主动放电操作;第二处理器120还设置为在执行主动放电操作后,若检测到第二处理器120的高压输入侧电压大于预设停止阈值,则再次执行主动放电操作。其中,预设停止阈值可以是预设电容电压阈值,或者,也可以是预设泄电值。
通过在进行主动放电操作后,检测高压输入侧电压,并与预设停止阈值进行比对,在高压输入侧电压大于预设停止阈值时,再次重复执行主动放电操作,确保了车辆的成功主动放电,进而提高了车辆的行驶安全性。
本实施例的技术方案提供的电动汽车主动放电控制系统包括电压变换器、通信单元以及安全气囊控制器,电压变换器包括第一处理器、第二处理器,其中,第一处理器在接收到通信单元转发的主动放电指令、母线电容电压以及车速信号,以及安全气囊控制器发送的安全气囊碰撞信号后,判断电压变换器是否进入主动放电工作模式,并在电压变换器进入主动放电工作模式且第一处理器的工作状态正常、高压输入侧电压状态正常时,执行主动放电操作,第二处理器在电压变换器进入主动放电工作模式时,判断第一处理器的工作状态、高压输入侧电压状态,在第一处理器的工作状态异常或高压输入侧电压状态异常时,执行主动放电操作,实现了主动放电的多重保护,确保车辆主动放电成功,并且,避免了车辆发生非预期的主动放电,提高了车辆的行驶安全性。
图2为本申请实施例提供的一种电动汽车主动放电控制系统,如图2所示,本实施例提供的电动汽车主动放电控制系统包括电压变换器21、安全气囊控制器22、整车控制器23、电机控制器24以及网关25,电压变换器21包括第一处理器210、第二处理器220、通信单元230、第一采样单元240、第二采样单元250、驱动单元260以及功率单元270。
其中,安全气囊控制器22,设置为向第一处理器210发送安全气囊碰撞信号;整车控制器23,设置为向通信单元230和电机控制器24发送主动放电指令;电机控制器24,设置为在接收到主动放电指令时,控制内部功率开关管在设定时间内将母线电容电压泄放至预设泄电值以下,并向通信单元230发送母线电容电压信号;网关24,设置为向通信单元230发送车速信号;通信单元230,设置为接收主动放电指令、母线电容电压信号以及车速信号,并将主动放电指令、母线电容电压信号以及车速信号发送至第一处理器210。
第一处理器210,设置为在接收到主动放电指令以及车速信号时,若基于车速信号确定当前车速小于预设车速阈值,则判断电压变换器21进入主动放电准备模式;或者,在接收到安全气囊碰撞信号时,判断电压变换器21进入主动放电准备模式;并且,在电压变换器21进入主动放电准备模式时,对接收到的母线电容电压信号进行检测,若检测到母线电容电压大于预设电容电压阈值,且母线电容电压大于预设电容电压阈值的持续时长大于预设时长阈值,则确定电压变换器21进入主动放电工作模式;在电压变换器21进入主动放电工作模式,且第一处理器210的工作状态正常、高压输入侧电压状态正常时,执行主动放电操作;以及,在执行主动放电操作时,向驱动单元260发送开关指令。
第二处理器220,设置为在电压变换器21进入主动放电工作模式时,监测第一处理器210的工作状态,并根据第一处理器210的高压输入侧电压以及第二处理器220的高压输入侧电压确定第一处理器210的高压输入侧电压状态;若第一处理器210的工作状态异常或高压输入侧电压状态异常,执行主动放电操作;以及,在执行主动放电操作时,向驱动单元260发送开关指令。。
第一采样单元240,设置为采集第一处理器210的高压输入侧电压,并将第一处理器210的高压输入侧电压发送至第二处理器220;第二采样单元250,设置为采集第二处理器220的高压输入侧电压,并将第二处理器220的高压输入侧电压发送至第二处理器220;驱动单元260,设置为将接收到的开关指令转换成驱动信号,将驱动信号发送至功率单元270;功率单元270,设置为根据驱动信号控制内部开关管基于预设开关频率工作,以将高压输入侧的母线电容能量传递至低压输出侧的负载,将高压直流电压转换为低压直流电压。
第一处理器210还设置为在执行主动放电操作后,若检测到第一处理器210的高压输入侧电压大于预设停止阈值,则再次执行主动放电操作;第二处理器220还设置为在执行主动放电操作后,若检测到第二处理器220的高压输入侧电压大于预设停止阈值,则再次执行主动放电操作。
在本实施例中,整车控制器23、电机控制器24以及网关25,可以通过通信线路与通信单元230建立通信连接;通信单元230可以通过通信线路与第一处理器210建立通信连接;第一处理器210可以通过通信线路分别与驱动单元260、第一采样单元240、第二处理器220建立通信连接,第二处理器220可以通过通信线路分别与驱动单元260、第二采样单元240建立通信连接,驱动单元260可以通过通信线路与功率单元270建立通信连接。
本实施例中的第一处理器210和第二处理器220可以构成电压变换器的控制单元,控制单元由控制芯片及相关匹配电路组建而成,根据通信单元230发送的整车通信信号、安全气囊发送的车辆碰撞电压信号以及采样单元的高压侧电压采样信号,按照一定的逻辑时序发送相应的开关指令信号至驱动单元260。
第一处理器210,实时监控通信单元信号、安全气囊控制器碰撞信号、第一采样单元240采集的高压侧电压信号,通过驱动单元260控制功率单元270进行主动放电。第二处理器220,实时监控第二采样单元250采集的高压侧电压,并与第一采样单元240采集的高压侧电压进行校验,如果发现采样异常,可通 过驱动单元260控制功率单元270进行主动放电;该第二处理器220属于冗余安全设计,当第一处理器210出现异常时,也可通过驱动单元260控制功率单元270直接进行主动放电。
本实施例提供的电动汽车主动放电控制系统,在硬件电路中实现了主动放电的冗余保护,通过电压变换器的第一处理器或第二处理器对电机控制器上的母线电容进行主动放电,可以避免当电机控制器整体发生故障(如碰撞损坏、外部干扰等)而无法进行主动放电的风险。另外,电压变换器通过双备份的控制、采样电路,以及可靠的控制逻辑,确保不会发生非预期的主动放电,提高了车辆的行驶安全性。
值得注意的是,上述系统所包括的多个单元和模块只是按照功能逻辑进行划分的,但并不局限于上述的划分,只要能够实现相应的功能即可;另外,多种功能单元的具体名称也只是为了便于相互区分,并不用于限制本申请实施例的保护范围。
图3A为本申请实施例提供的一种电动汽车主动放电控制方法的流程示意图,本实施例可适用于控制电动汽车进行主动放电的情况,该方法可以适用于电动汽车主动放电控制系统中的电压变换器。如图3A所示,该方法包括如下步骤:
S310、接收主动放电指令、母线电容电压、车速信号以及安全气囊碰撞信号。
S320、根据所述主动放电指令、所述母线电容电压、所述车速信号以及所述安全气囊碰撞信号判断是否进入主动放电工作模式。
S330、若进入主动放电工作模式,则基于第二处理器判断第一处理器的工作状态、高压输入侧电压状态。
S340、若第一处理器的工作状态正常、高压输入侧电压状态正常,则基于所述第一处理器执行主动放电操作,若第一处理器的工作状态异常或高压输入侧电压状态异常,则基于所述第二处理器执行主动放电操作。
例如,所述电动汽车主动放电控制方法还包括:在接收到主动放电指令以及车速信号时,若基于所述车速信号确定当前车速小于预设车速阈值,则判断所述电压变换器进入主动放电准备模式;或者,在接收到安全气囊碰撞信号时,判断所述电压变换器进入主动放电准备模式。
例如,所述电动汽车主动放电控制方法还包括:在进入主动放电准备模式时,对接收到的母线电容电压信号进行检测,若检测到母线电容电压大于预设电容电压阈值,且所述母线电容电压大于所述预设电容电压阈值的持续时长大于预设时长阈值,则确定所述电压变换器进入主动放电工作模式。
例如,所述电动汽车主动放电控制方法还包括:基于第一采样单元采集第一处理器的高压输入侧电压,并将所述第一处理器的高压输入侧电压发送至所述第二处理器;基于第二采样单元采集所述第二处理器的高压输入侧电压,并将所述第二处理器的高压输入侧电压发送至所述第二处理器。
例如,所述电动汽车主动放电控制方法还包括:基于所述第二处理器监测所述第一处理器的工作状态,并根据所述第一处理器的高压输入侧电压以及所述第二处理器的高压输入侧电压确定所述第一处理器的高压输入侧电压状态。
例如,所述电动汽车主动放电控制方法还包括:所述第一处理器或所述第二处理器还设置为在执行主动放电操作时,向驱动单元发送开关指令;通过所述驱动单元,将接收到的开关指令转换成驱动信号,并将所述驱动信号发送至功率单元;基于所述功率单元,根据所述驱动信号将高压直流电压转换为低压直流电压。
例如,所述根据所述驱动信号将高压直流电压转换为低压直流电压,包括:根据所述驱动信号,控制内部开关管基于预设开关频率工作,以将高压输入侧的母线电容能量传递至低压输出侧的负载。
例如,所述电动汽车主动放电控制方法还包括:在所述第一处理器执行主动放电操作后,若检测到所述第一处理器的高压输入侧电压大于预设停止阈值,则基于所述第一处理器再次执行主动放电操作;或者,在所述第二处理器执行主动放电操作后,若检测到所述第二处理器的高压输入侧电压大于预设停止阈值,则基于所述第二处理器再次执行主动放电操作。
在本实施例中,通过在接收到通信单元转发的主动放电指令、母线电容电压以及车速信号,以及安全气囊控制器发送的安全气囊碰撞信号后,判断电压变换器是否进入主动放电工作模式,并在电压变换器进入主动放电工作模式且第一处理器的工作状态正常、高压输入侧电压状态正常时,由第一处理器执行主动放电操作;在电压变换器进入主动放电工作模式时,且第一处理器的工作状态异常或高压输入侧电压状态异常时,由第二处理器执行主动放电操作,实现了主动放电的多重保护,确保车辆主动放电成功,并且,避免了车辆发生非预期的主动放电,提高了车辆的行驶安全性。
示例性的,本实施例还提供另一种电动汽车主动放电控制方法,如图3B所示,展示了该另一种电动汽车主动放电控制方法的流程示意图。结合图3B,对电动汽车主动放电控制方法的步骤:
步骤1、对主动放电指令与车速信号进行实时监控,当主动放电指令信号已置位且当前车速小于预设车速阈值时,执行步骤3;
步骤2、对安全气囊碰撞信号进行实时监控,当安全气囊碰撞信号已置位时,执行步骤3;
步骤3、进入主动放电准备模式;
步骤4、对母线电容电压信号进行监测,判断母线电容电压是否大于预设电容电压阈值,且母线电容电压大于所述预设电容电压阈值的持续时长是否大于预设时长阈值,基于母线电容电压大于预设电容电压阈值,且母线电容电压大于所述预设电容电压阈值的持续时长大于预设时长阈值的判断结果,执行步骤5;基于母线电容电压小于或等于预设电容电压阈值,或母线电容电压大于所述预设电容电压阈值的持续时长小于或等于预设时长阈值的判断结果,执行步骤12;
步骤5、进行主动放电工作模式;
步骤6、由第二处理器实时监控第一处理器的工作状态,并判断第一处理器工作状态是否正常,基于第一处理器工作状态正常的判断结果,则执行步骤7;基于第一处理器工作状态不正常的判断结果,执行步骤10;
步骤7、第二处理器判断Uin1与Uin2之间的差值的绝对值是否小于预设电压差阈值,基于Uin1与Uin2之间的差值的绝对值小于预设电压差阈值的判断结果,执行步骤8;基于Uin1与Uin2之间的差值的绝对值是否大于或等于预设电压差阈值的判断结果,执行步骤10;其中,第一处理器通过第一采样单元检测第一处理器的高压输入侧电压Uin1,第二处理器通过第二采样单元检测第二处理器的高压输入侧电压Uin2;
步骤8、第一处理器通过驱动单元控制功率单元中的内部开关管以预设的开关频率工作,将高压输入侧的母线电容能量传递至低压输出侧的负载,以实现主动放电功能;
步骤9、第一处理器判断通过第一采样单元检测的高压输入侧电压是否小于预设停止阈值,基于通过第一采样单元检测的高压输入侧电压小于预设停止阈值的判断结果,执行步骤12;基于通过第一采样单元检测的高压输入侧电压大于或等于预设停止阈值的判断结果,执行步骤8;
步骤10、第二处理器通过驱动单元控制功率单元中的内部开关管以预设的开关频率工作,将高压输入侧的母线电容能量传递至低压输出侧的负载,以实现主动放电功能;
步骤11、第二处理器判断通过第二采样单元检测的高压输入侧电压是否小于预设停止阈值,基于通过第二采样单元检测的高压输入侧电压小于预设停止阈值的判断结果,执行步骤12;基于通过第二采样单元检测的高压输入侧电压大于或等于预设停止阈值的判断结果,执行步骤10;
步骤12、退出主动放电工作模式。
在该电动汽车主动放电控制方法中,在电压变换器进入主动放电工作模式且第一处理器的工作状态正常、高压输入侧电压状态正常时,由第一处理器执行主动放电操作;在电压变换器进入主动放电工作模式时,且第一处理器的工作状态异常或高压输入侧电压状态异常时,由第二处理器执行主动放电操作,实现了主动放电的多重保护,可避免由于第一采样单元或第一处理器失效而带来的电动汽车主动放电失败、增加人员触电风险的情况,确保车辆主动放电成功,并且,避免了车辆发生非预期的主动放电,提高了车辆的行驶安全性。
图4是本申请实施例提供的一种电子设备的结构示意图。图4示出了适于用来实现本申请实施方式的示例性电子设备12的框图。图4显示的电子设备12仅仅是一个示例,不应对本申请实施例的功能和使用范围带来任何限制。设备12典型的是承担电动汽车主动放电控制功能的电子设备。
如图4所示,电子设备12以通用计算设备的形式表现。电子设备12的组件可以包括但不限于:一个或者多个处理器或者处理单元16,存储器28,连接不同组件(包括存储器28和处理单元16)的总线18。
总线18表示几类总线结构中的一种或多种,包括存储器总线或者存储器控制器,外围总线,图形加速端口,处理器或者使用多种总线结构中的任意总线结构的局域总线。举例来说,这些体系结构包括但不限于工业标准体系结构(Industry Standard Architecture,ISA)总线,微通道体系结构(Micro Channel Architecture,MCA)总线,增强型ISA总线、视频电子标准协会(Video Electronics Standards Association,VESA)局域总线以及外围组件互连(Peripheral Component Interconnect,PCI)总线。
电子设备12典型地包括多种计算机可读介质。这些介质可以是任何能够被电子设备12访问的可用介质,包括易失性和非易失性介质,可移动的和不可移动的介质。
存储器28可以包括易失性存储器形式的计算机装置可读介质,例如随机存取存储器(Random Access Memory,RAM)30和/或高速缓存存储器32。电子设备12可以包括其它可移动/不可移动的、易失性/非易失性计算机存储介质。仅作为举例,存储装置34可以设置为读写不可移动的、非易失性磁介质(图4未显示,通常称为“硬盘驱动器”)。尽管图4中未示出,可以提供用于对可移动非易失性磁盘(例如“软盘”)读写的磁盘驱动器,以及对可移动非易失性光盘(例如只读光盘(Compact Disc-Read Only Memory,CD-ROM)、数字视盘(Digital Video Disc-Read Only Memory,DVD-ROM)或者其它光介质)读写的光盘驱动器。在这些情况下,每个驱动器可以通过一个或者多个数据介质接口与总线18相连。存储器28可以包括至少一个程序产品40,该程序产品40具有一组程序模块42,这些程序模块被配置以执行本申请多个实施例的功能。程序产品40,可以存储在例如存储器28中,这样的程序模块42包括但不限于一个或者多个应用程序、其它程序模块以及程序数据,这些示例中的每一个或某种组合中可能包括网络环境的实现。程序模块42通常执行本申请所描述的实施例中的功能和/或方法。
电子设备12也可以与一个或多个外部设备14(例如键盘、鼠标、摄像头等和显示器)通信,还可与一个或者多个使得用户能与该电子设备12交互的设备通信,和/或与使得该电子设备12能与一个或多个其它计算设备进行通信的任何设备(例如网卡,调制解调器等等)通信。这种通信可以通过输入/输出(I/O)接口22进行。并且,电子设备12还可以通过网络适配器20与一个或者多个网络(例如局域网(Local Area Network,LAN),广域网Wide Area Network,WAN)和/或公共网络,例如因特网)通信。如图所示,网络适配器20通过总线18与电子设备12的其它模块通信。应当明白,尽管图中未示出,可以结合电子设备12使用其它硬件和/或软件模块,包括但不限于:微代码、设备驱动器、冗余处理单元、外部磁盘驱动阵列、磁盘阵列(Redundant Arrays of Independent Disks,RAID)装置、磁带驱动器以及数据备份存储装置等。
处理器16通过运行存储在存储器28中的程序,从而执行多种功能应用以及数据处理,例如实现本申请上述实施例所提供的电动汽车主动放电控制方法,包括:
接收主动放电指令、母线电容电压、车速信号以及安全气囊碰撞信号;
根据所述主动放电指令、所述母线电容电压、所述车速信号以及所述安全气囊碰撞信号判断是否进入主动放电工作模式;
若进入主动放电工作模式,则基于第二处理器判断第一处理器的工作状态、高压输入侧电压状态;
若第一处理器的工作状态正常、高压输入侧电压状态正常,则基于所述第一处理器执行主动放电操作,若第一处理器的工作状态异常或高压输入侧电压状态异常,则基于所述第二处理器执行主动放电操作。
当然,本领域技术人员可以理解,处理器还可以实现本申请任意实施例所提供的电动汽车主动放电控制方法的技术方案。
本申请实施例还提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现如本申请任意实施例所提供的电动汽车主动放电控制方法步骤,该方法包括:
接收主动放电指令、母线电容电压、车速信号以及安全气囊碰撞信号;
根据所述主动放电指令、所述母线电容电压、所述车速信号以及所述安全气囊碰撞信号判断是否进入主动放电工作模式;
若进入主动放电工作模式,则基于第二处理器判断第一处理器的工作状态、高压输入侧电压状态;
若第一处理器的工作状态正常、高压输入侧电压状态正常,则基于所述第一处理器执行主动放电操作,若第一处理器的工作状态异常或高压输入侧电压状态异常,则基于所述第二处理器执行主动放电操作。
本申请实施例的计算机存储介质,可以采用一个或多个计算机可读的介质的任意组合。计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质。计算机可读存储介质例如可以是——但不限于——电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子(非穷举的列表)包括:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑磁盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本文件中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。计算机可读存储介质可以是非暂态计算机可读存储介质。
计算机可读的信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读的信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。
计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括——但不限于无线、电线、光缆、RF等等,或者上述的任意合适的组合。
可以以一种或多种程序设计语言或其组合来编写用于执行本申请实施例操作的计算机程序代码,所述程序设计语言包括面向对象的程序设计语言—诸如Java、Smalltalk、C++,还包括常规的过程式程序设计语言——诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络——包括局域网(LAN)或广域网(WAN)—连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。

Claims (10)

  1. 一种电动汽车主动放电控制系统,包括电压变换器以及安全气囊控制器,所述电压变换器包括第一处理器、第二处理器以及通信单元;其中,
    所述安全气囊控制器,设置为向所述第一处理器发送安全气囊碰撞信号;
    所述通信单元,设置为接收主动放电指令、母线电容电压以及车速信号,并将所述主动放电指令、所述母线电容电压信号以及所述车速信号发送至所述第一处理器;
    所述第一处理器,设置为基于所述主动放电指令、所述母线电容电压信号、所述车速信号以及所述安全气囊碰撞信号判断所述电压变换器是否进入主动放电工作模式,响应于确定所述电压变换器进入主动放电工作模式,且所述第一处理器的工作状态正常、高压输入侧电压状态正常,执行主动放电操作;
    所述第二处理器,设置为响应于确定所述电压变换器进入主动放电工作模式,判断所述第一处理器的工作状态、高压输入侧电压状态,基于所述第一处理器的工作状态异常或高压输入侧电压状态异常的判断结果,执行主动放电操作。
  2. 根据权利要求1所述的系统,其中,所述第一处理器还设置为响应于确定接收到所述主动放电指令以及所述车速信号,且基于所述车速信号确定当前车速小于预设车速阈值,确定所述电压变换器进入主动放电准备模式;或者,响应于确定接收到安全气囊碰撞信号,确定所述电压变换器进入主动放电准备模式。
  3. 根据权利要求2所述的系统,其中,所述第一处理器还设置为响应于确定所述电压变换器进入主动放电准备模式,对接收到的所述母线电容电压信号进行检测,响应于确定检测到母线电容电压大于预设电容电压阈值,且所述母线电容电压大于所述预设电容电压阈值的持续时长大于预设时长阈值,确定所述电压变换器进入主动放电工作模式。
  4. 根据权利要求1所述的系统,其中,所述电压变换器还包括第一采样单元和第二采样单元;其中,
    所述第一采样单元,设置为采集所述第一处理器的高压输入侧电压,并将所述第一处理器的高压输入侧电压发送至所述第二处理器;
    所述第二采样单元,设置为采集所述第二处理器的高压输入侧电压,并将所述第二处理器的高压输入侧电压发送至所述第二处理器。
  5. 根据权利要求4所述的系统,其中,所述第二处理器还设置为监测所述第一处理器的工作状态,并根据所述第一处理器的高压输入侧电压以及所述第二处理器的高压输入侧电压确定所述第一处理器的高压输入侧电压状态。
  6. 根据权利要求1所述的系统,其中,所述电压变换器还包括功率单元和驱动单元,所述第一处理器和所述第二处理器还设置为响应于确定执行主动放电操作,向所述驱动单元发送开关指令;
    所述驱动单元,设置为将接收到的所述开关指令转换成驱动信号,将所述驱动信号发送至所述功率单元;
    所述功率单元,设置为根据所述驱动信号将高压直流电压转换为低压直流电压。
  7. 根据权利要求6所述的系统,其中,所述功率单元设置为根据所述驱动信号,控制内部开关管基于预设开关频率工作,以将高压输入侧的母线电容能量传递至低压输出侧的负载。
  8. 根据权利要求4所述的系统,其中,所述第一处理器还设置为在执行主动放电操作后,响应于确定检测到所述第一处理器的高压输入侧电压大于预设停止阈值,再次执行主动放电操作;所述第二处理器还设置为在执行主动放电操作后,响应于确定检测到所述第二处理器的高压输入侧电压大于所述预设停止阈值,再次执行主动放电操作。
  9. 根据权利要求1所述的系统,还包括整车控制器、电机控制器和网关;
    所述整车控制器,设置为向所述通信单元和所述电机控制器发送主动放电指令;
    所述电机控制器,设置为响应于确定接收到所述主动放电指令,控制内部功率开关管在设定时间内将母线电容电压泄放至预设泄电值以下,并向所述通信单元发送所述母线电容电压信号;
    所述网关,设置为向所述通信单元发送所述车速信号。
  10. 一种电动汽车主动放电控制方法,包括:
    接收主动放电指令、母线电容电压、车速信号以及安全气囊碰撞信号;
    根据所述主动放电指令、所述母线电容电压、所述车速信号以及所述安全气囊碰撞信号判断是否进入主动放电工作模式;
    基于进入主动放电工作模式的判断结果,基于第二处理器判断第一处理器的工作状态、高压输入侧电压状态;
    基于所述第一处理器的工作状态正常、高压输入侧电压状态正常的判断结果,基于所述第一处理器执行主动放电操作;基于所述第一处理器的工作状态异常或高压输入侧电压状态异常的判断结果,基于所述第二处理器执行主动放电操作。
PCT/CN2022/120381 2021-11-15 2022-09-22 电动汽车主动放电控制系统及方法 WO2023082851A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111345460.4A CN113954640B (zh) 2021-11-15 2021-11-15 电动汽车主动放电控制系统及方法
CN202111345460.4 2021-11-15

Publications (1)

Publication Number Publication Date
WO2023082851A1 true WO2023082851A1 (zh) 2023-05-19

Family

ID=79470474

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/120381 WO2023082851A1 (zh) 2021-11-15 2022-09-22 电动汽车主动放电控制系统及方法

Country Status (2)

Country Link
CN (1) CN113954640B (zh)
WO (1) WO2023082851A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113954640B (zh) * 2021-11-15 2023-10-03 中国第一汽车股份有限公司 电动汽车主动放电控制系统及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050184495A1 (en) * 2003-12-30 2005-08-25 Bernd Zerbe Safety system for use in a vehicle
CN203611767U (zh) * 2013-10-30 2014-05-28 北汽福田汽车股份有限公司 电动汽车及其碰撞安全控制系统
CN104057838A (zh) * 2014-06-16 2014-09-24 深圳市汇川技术股份有限公司 电动车驱动系统及其母线电容放电方法
US20150360569A1 (en) * 2014-06-17 2015-12-17 Hyundai Motor Company High voltage shut down system and method for electric vehicle
CN111645525A (zh) * 2020-04-03 2020-09-11 摩登汽车(盐城)有限公司 电动汽车的主动放电的控制方法、系统及电动汽车
EP3829918A1 (en) * 2018-08-03 2021-06-09 Meta System S.p.A. Active discharge system for electric or hybrid motor vehicles
CN113954640A (zh) * 2021-11-15 2022-01-21 中国第一汽车股份有限公司 电动汽车主动放电控制系统及方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3438128B2 (ja) * 1998-06-25 2003-08-18 株式会社オーク製作所 放電灯点灯装置
DE102007047713A1 (de) * 2007-10-05 2009-04-09 Robert Bosch Gmbh Verfahren zur Entladung des Hochspannungsnetzes
CN106956595A (zh) * 2017-04-01 2017-07-18 深圳市瀚路新能源汽车有限公司 电动汽车的高压回路放电方法和系统
CN113595374B (zh) * 2021-08-09 2023-04-07 合肥阳光电动力科技有限公司 一种功率变换器的主动放电方法和控制器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050184495A1 (en) * 2003-12-30 2005-08-25 Bernd Zerbe Safety system for use in a vehicle
CN203611767U (zh) * 2013-10-30 2014-05-28 北汽福田汽车股份有限公司 电动汽车及其碰撞安全控制系统
CN104057838A (zh) * 2014-06-16 2014-09-24 深圳市汇川技术股份有限公司 电动车驱动系统及其母线电容放电方法
US20150360569A1 (en) * 2014-06-17 2015-12-17 Hyundai Motor Company High voltage shut down system and method for electric vehicle
EP3829918A1 (en) * 2018-08-03 2021-06-09 Meta System S.p.A. Active discharge system for electric or hybrid motor vehicles
CN111645525A (zh) * 2020-04-03 2020-09-11 摩登汽车(盐城)有限公司 电动汽车的主动放电的控制方法、系统及电动汽车
CN113954640A (zh) * 2021-11-15 2022-01-21 中国第一汽车股份有限公司 电动汽车主动放电控制系统及方法

Also Published As

Publication number Publication date
CN113954640A (zh) 2022-01-21
CN113954640B (zh) 2023-10-03

Similar Documents

Publication Publication Date Title
CN112078366B (zh) 一种电动车辆双电源控制系统及电动车辆
EP3764498A1 (en) Igbt drive circuit for motor controller, and motor controller
US7750501B2 (en) System and method of over voltage control for a power system
CN102255282B (zh) 一种纯电动车用永磁同步电机和控制器系统的温度保护方法
CN111786598B (zh) 一种电机控制装置及电机控制方法
WO2023082851A1 (zh) 电动汽车主动放电控制系统及方法
WO2021047343A1 (zh) 一种直流配电网直流线路保护方法及装置
KR102043050B1 (ko) 전기차 충전기의 고장 검출 방법 및 장치
CN113246887B (zh) 一种时序电路控制方法、装置、电子设备及存储介质
CN111942177A (zh) 一种asc控制装置及电机控制器
CN106771851B (zh) 牵引变流器高压直流母线安全保护测试方法
CN106647715A (zh) 一种基于spi接口实现主控制器的can通道扩展的装置和方法
CN109301919A (zh) 一种不间断电源旁路接管控制方法
CN116054685B (zh) 一种基于多核处理器的电流采样冗余系统
CN108562786A (zh) 一种高压采样系统和方法
CN108539835B (zh) 一种ac-dc电池充电装置
CN109378896B (zh) 一种应用于gyk设备且具有多功能的电源板
CN110247387A (zh) 具有容错性的伺服驱动模块
CN113364246B (zh) 一种晶闸管的驱动控制装置和方法
CN220040577U (zh) 电压采样装置
CN111799996B (zh) 一种故障保护电路、方法、变频器设备及空调
CN113928367B (zh) 道岔控制系统
CN212400918U (zh) 一种asc控制装置及电机控制器
CN108152727A (zh) 一种多级可控硅开关及故障检测与报警系统
EP2933892B1 (en) Changeover method of hvdc transmission system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22891654

Country of ref document: EP

Kind code of ref document: A1