WO2023082730A1 - 一种钙钛矿类型的太阳能电池及其制备方法 - Google Patents

一种钙钛矿类型的太阳能电池及其制备方法 Download PDF

Info

Publication number
WO2023082730A1
WO2023082730A1 PCT/CN2022/110418 CN2022110418W WO2023082730A1 WO 2023082730 A1 WO2023082730 A1 WO 2023082730A1 CN 2022110418 W CN2022110418 W CN 2022110418W WO 2023082730 A1 WO2023082730 A1 WO 2023082730A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
transport layer
carbazole
group
solar cell
Prior art date
Application number
PCT/CN2022/110418
Other languages
English (en)
French (fr)
Other versions
WO2023082730A9 (zh
Inventor
刘明侦
毛霖
胡逾超
李发明
王松
许志卫
Original Assignee
电子科技大学
晶澳太阳能有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电子科技大学, 晶澳太阳能有限公司 filed Critical 电子科技大学
Publication of WO2023082730A1 publication Critical patent/WO2023082730A1/zh
Publication of WO2023082730A9 publication Critical patent/WO2023082730A9/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/38Phosphonic acids [RP(=O)(OH)2]; Thiophosphonic acids ; [RP(=X1)(X2H)2(X1, X2 are each independently O, S or Se)]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/40Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising a p-i-n structure, e.g. having a perovskite absorber between p-type and n-type charge transport layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/84Layers having high charge carrier mobility
    • H10K30/86Layers having high hole mobility, e.g. hole-transporting layers or electron-blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K39/00Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00
    • H10K39/10Organic photovoltaic [PV] modules; Arrays of single organic PV cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present application relates to a perovskite type solar cell and a preparation method thereof.
  • Perovskite is the name of a mineral whose chemical composition is CaTiO 3 . After years of research, scientists have discovered that not only perovskite (CaTiO 3 ) itself has special properties, but also materials with an ABX 3 structure similar to the structure of CaTiO 3 have similar properties. Perovskite in this application refers to a substance having an ABX 3 structure.
  • perovskite has been widely used and studied because of its wide and adjustable light absorption range.
  • a perovskite-type solar cell which includes a silicon bottom cell and a perovskite top cell, which uses undoped Spiro-TTB (chemical name is 2,2' ,7,7'-tetrakis(di-p-tolylamino)spiro-9,9'-difluorene; 2,2',7,7'-tetrakis(N,N-di-p-tolylamino)amino-9, 9-spirobifluorene) layer as the modification layer of the hole transport material layer such as the inorganic nickel oxide layer.
  • Spiro-TTB chemical name is 2,2' ,7,7'-tetrakis(di-p-tolylamino)spiro-9,9'-difluorene
  • the technical problem to be solved in the present application is to provide a perovskite type solar cell capable of improving conversion efficiency and a preparation method thereof.
  • the present application provides a perovskite type solar cell, comprising an electron transport layer, a perovskite layer and a hole transport layer, and the hole transport layer includes an inorganic substance that can be used as a hole transport material.
  • An organic layer containing a carbazole derivative is formed on the hole transport layer.
  • the molecular formula of the derivative of carbazole includes a carbazole molecular body and an organic acid group directly or indirectly connected to the nitrogen element of the carbazole molecular body, and the organic acid group is preferably a phosphonic acid group, Carboxylic acid group, sulfonic acid group, sulfinic acid group, thiocarboxylic acid group, wherein the hydrogen atom on the main body of the carbazole molecule can be substituted.
  • the derivative of described carbazole is the compound shown in molecular formula (I):
  • R1 and R2 are each independently selected from a hydrogen atom, an alkyl group, an alkoxy group, an alkenyl group and an alkynyl group, R1 and R2 may be the same or different, and the dotted line represents a linking group, preferably, the linking group refers to A group connecting a phosphorus atom and a nitrogen atom, for example, the connecting group is a substituted or unsubstituted alkylene group with 1 or more carbon atoms, preferably 2 or more, more preferably 3 or more, substituted or unsubstituted Substituted alkenylene groups with 2 or more carbon atoms, preferably 3 or more;
  • R1 and R2 are each independently methyl and methoxy; preferably, both R1 and R2 are methyl; preferably, both R1 and R2 are hydrogen atoms.
  • the present application provides a method for preparing a perovskite type solar cell, comprising the following steps:
  • the hole transport layer includes an inorganic substance that can be used as a hole transport material, and an organic layer comprising a derivative of carbazole is formed on the hole transport layer .
  • the molecular formula of the derivative of carbazole includes a carbazole molecular body and an organic acid group directly or indirectly connected to the nitrogen element of the carbazole molecular body, and the organic acid group is preferably a phosphonic acid group, Carboxylic acid group, sulfonic acid group, sulfinic acid group, thiocarboxylic acid group, wherein the hydrogen atom on the main body of the carbazole molecule can be substituted.
  • the derivative of described carbazole is the compound shown in molecular formula (I):
  • R1 and R2 are each independently selected from a hydrogen atom, an alkyl group, an alkoxy group, an alkenyl group and an alkynyl group, R1 and R2 may be the same or different, and the dotted line represents a linking group, preferably, the linking group refers to A group connecting a phosphorus atom and a nitrogen atom, for example, the connecting group is a substituted or unsubstituted alkylene group with 1 or more carbon atoms, preferably 2 or more, more preferably 3 or more, substituted or unsubstituted Substituted alkenylene groups with 2 or more carbon atoms, preferably 3 or more;
  • R1 and R2 are each independently methyl and methoxy; preferably, both R1 and R2 are methyl; preferably, both R1 and R2 are hydrogen atoms.
  • the present application provides a perovskite type solar cell, comprising:
  • the hole transport layer includes an inorganic substance that can be used as a hole transport material, and is characterized in that an organic layer including a carbazole derivative is formed on the hole transport layer.
  • the molecular formula of the derivative of carbazole includes a carbazole molecular body and an organic acid group directly or indirectly connected to the nitrogen element of the carbazole molecular body, and the organic acid group is preferably a phosphonic acid group, Carboxylic acid group, sulfonic acid group, sulfinic acid group, thiocarboxylic acid group, wherein the hydrogen atom on the main body of the carbazole molecule can be substituted.
  • the derivative of described carbazole is the compound shown in molecular formula (I):
  • R1 and R2 are each independently selected from a hydrogen atom, an alkyl group, an alkoxy group, an alkenyl group and an alkynyl group, R1 and R2 may be the same or different, and the dotted line represents a linking group, preferably, the linking group refers to A group connecting a phosphorus atom and a nitrogen atom, for example, the connecting group is a substituted or unsubstituted alkylene group with 1 or more carbon atoms, preferably 2 or more, more preferably 3 or more, substituted or unsubstituted Substituted alkenylene groups with 2 or more carbon atoms, preferably 3 or more;
  • R1 and R2 are each independently methyl and methoxy; preferably, both R1 and R2 are methyl; preferably, both R1 and R2 are hydrogen atoms.
  • the crystalline silicon solar cell is a heterojunction solar cell.
  • a perovskite solar cell with high conversion efficiency can be obtained by combining a carbazole derivative such as a compound represented by formula (I) with an inorganic material that can be used as a hole transport layer.
  • FIG. 1 is a schematic structural diagram of the first perovskite type solar cell provided in Example 1.
  • FIG. 2 is a schematic structural diagram of a second perovskite type solar cell provided in Example 2.
  • FIG. 2 is a schematic structural diagram of a second perovskite type solar cell provided in Example 2.
  • the first aspect of the present application provides a perovskite type solar cell, comprising an electron transport layer, a perovskite layer and a hole transport layer, and the hole transport layer contains an inorganic substance that can be used as a hole transport material, wherein, An organic layer containing a carbazole derivative is formed on the hole transport layer.
  • the derivatives of carbazole used in this application are preferably those with high purity, the higher the purity, the better, for example, carbazole derivatives with a purity of 95.0% or more, such as 96.0%, 97.0%, 98.0%, 99.0% or more.
  • high purity means that doping with other substances such as oxides is not required. Since it does not need to be doped with other substances, it has good stability.
  • the hole transport layer formed by using inorganic substances such as nickel oxide as hole transport materials will have defects on the surface, for example, other high-valence metal elements will interact with the perovskite layer.
  • the reaction of organic cations (A in ABX 3 ) causes components such as lead halide in the perovskite layer to enrich toward the interface between the hole transport layer and the perovskite layer, thereby forming a potential barrier.
  • the oxidizing elements in the hole transport layer such as oxygen, will also react with the organic cations (A in ABX 3 ) in the perovskite layer when they become in an oxidizing state, thus limiting the carrier migration here.
  • the derivatives of carbazole have the characteristics of blocking electrons, screening holes, and passivating defects such as high-valent nickel and oxygen dangling bonds on the surface of hole transport layers such as nickel oxide.
  • the organic acid groups can anchor metal oxides and other high-energy atoms such as oxygen atoms on the surface of hole transport materials, and only Simple solution contact is required to evenly distribute on the surface of the hole transport layer, form a strong and stable combination, and reduce the work function of the surface of the hole transport layer.
  • the molecular formula of the derivative of carbazole includes a carbazole molecular body and an organic acid group directly or indirectly connected to the nitrogen element of the carbazole molecular body, and the organic acid group is preferably phosphonic acid, carboxylic acid, sulfonic acid , sulfinic acid, thiocarboxylic acid, wherein the hydrogen atoms on the main body of the carbazole molecule can be substituted.
  • the structure of the carbazole molecular body is as follows, where the dotted bond "---" indicates that the carbazole molecular body can be connected to other groups through the N atom;
  • the benzene ring of the carbazole main body contains substituents or does not contain substituents; further, the number of substituents contained on each benzene ring can be 1, 2, 3 or 4;
  • the group can be selected from alkyl, alkoxy, alkenyl and alkynyl; the number of carbon atoms contained in the alkyl and alkoxy can be 1 to 6, such as 2, 3, 4, 5 ;
  • the number of carbon atoms contained in the alkenyl group and the alkynyl group can be 2 to 6, such as 3, 4, or 5.
  • the derivative of described carbazole is the compound shown in molecular formula (I):
  • R1 and R2 are an atom or group selected from a hydrogen atom, an alkyl group, an alkoxyl group, an alkenyl group, and an alkynyl group, and R1 and R2 may be the same or different, and the dotted line represents a linking group.
  • the A linking group refers to a group connecting a phosphorus atom and a nitrogen atom, for example, the linking group is a substituted or unsubstituted alkylene group with 1 or more carbon atoms, preferably 2 or more, more preferably 3 or more, A substituted or unsubstituted alkenylene group with 2 or more carbon atoms, preferably 3 or more;
  • the R1 and R2 are methyl and methoxy; preferably, both R1 and R2 are methyl; preferably, both R1 and R2 are hydrogen atoms.
  • the R1 and R2 are each independently selected from alkyl, alkoxy, alkenyl, and alkynyl; further, the number of carbon atoms contained in the alkyl and alkoxy can be 1 to 6, For example, 2, 3, 4, 5; the number of carbon atoms contained in alkenyl and alkynyl can be 2 to 6, such as 3, 4, 5.
  • the R1 and R2 are each independently selected from straight-chain alkyl groups and straight-chain alkoxy groups containing 1 to 6 carbon atoms.
  • the linking group contains 1 to 6 carbon atoms, such as 2, 3, 4, 5; preferably, the linking group can be an alkylene group containing 1 to 6 carbon atoms; further Alternatively, the linking group may be a linear alkylene group containing 1 to 6 carbon atoms.
  • the linking group may be an alkenylene group containing 2-6 carbon atoms, and further, the linking group may be a straight-chain alkenylene group containing 2-6 carbon atoms.
  • alkylene group methylene group, ethylene group, butylene group and the like can be selected.
  • unsubstituted alkenylene group vinylene group, propenylene group and the like can be selected.
  • the hydrogen atoms in the alkylene group may be replaced by some specific elements, such as fluorine, chlorine, bromine, iodine and other halogens.
  • the inorganic substance that can be used as a hole transport material can be selected from at least one or two or more of nickel oxide, cuprous iodide, cuprous thiocyanate, cupric oxide, cuprous oxide, and copper sulfide.
  • the thickness of the hole transport layer is more than 1nm and less than 100nm, such as 2nm, 3nm, 4nm, 5nm, 6nm, 7nm, 8nm, 9nm, 10nm, 20nm, 30nm, 40nm, 50nm, 60nm, 70nm, 80nm , 90nm; preferably, the thickness of the organic layer containing carbazole derivatives is more than 0.01nm and less than 5nm, such as 4.5nm, 4nm, 3.5nm, 3nm, 2.5nm, 2nm, 1.5nm, 1nm, 0.5nm , 0.3nm, 0.2nm, 0.1nm.
  • the thickness of the organic layer containing carbazole derivatives described in this application does not need to be too thick, for example, the surface of the hole transport layer can be modified without reaching the hole transport layer, which can play a role The thickness of the defect on the surface of the passivation hole transport layer.
  • the main function of the organic layer comprising carbazole derivatives is to modify or passivate the surface defects of the hole transport layer.
  • the inorganic substance that can be used as a hole-transport material includes nickel oxide; preferably, the inorganic substance that can be used as a hole-transport material is a material mainly composed of nickel oxide, which is not doped or is doped with trivalent Any one or two or more of nickel, copper, cobalt, manganese, lanthanum, yttrium, magnesium, lithium, zinc, indium, and tin.
  • nickel oxide is a P-type semiconductor material with a bandgap width of 3.8eV, and has good transmission in the near-ultraviolet and visible light ranges.
  • the valence band energy level of nickel oxide is -5.28eV, and the conduction band energy level is -1.46eV respectively.
  • the valence band energy level of nickel oxide is similar to the highest occupied molecular orbital energy level (Highest Occupied Molecular Orbital, HOMO energy level) (about -5.30eV) is close, which is conducive to the collection of holes; its conduction band energy level (Conduction Band energy level) is much higher than the lowest unoccupied molecular orbital energy level of perovskite ( Lowest Unoccupied Molecular Orbital, LUMO energy level) (about -3.90eV), which can effectively block the diffusion of electrons to the electrode.
  • a highly efficient composite hole transport layer is prepared by combining the stable structure of nickel oxide, strong electron blocking ability and high hole mobility of carbazole derivatives.
  • nickel oxide can be prepared in a large area by physical vapor deposition, and can maintain long-term stable properties in complex environments such as water, oxygen, and high temperature. At the same time, high-purity nickel oxide materials are cheap.
  • perovskite solar cells using nickel oxide as the hole transport layer tend to exhibit lower open-circuit voltage; this is because trivalent or higher nickel in nickel oxide reacts with organic cations in the perovskite composition , causing lead halide, another component of perovskite, to be enriched at the interface between nickel oxide and perovskite, thereby forming a potential barrier, and the hydroxyl dangling bond on the surface of nickel oxide will also be deprotonated with ABX 3
  • the A-site cation reaction in the battery restricts the carrier migration and intensifies the carrier recombination, which leads to low performance such as low open circuit voltage of the battery.
  • Carbazole derivatives have the properties of blocking electrons and screening holes. At the same time, if there is a phosphonic acid group, the phosphonic acid group can anchor the oxygen atoms on the surface of the oxide, and only a simple solution contact is needed to make it evenly distributed on the surface of the underlying nickel oxide to form a strong and stable bond. reduce the work function of the surface.
  • the nickel oxide material may be based on nickel oxide (NiO), which is not doped or doped with trivalent nickel, copper, cobalt, manganese, lanthanum, yttrium, magnesium, lithium, zinc, indium, Any one or two or more of tin.
  • NiO nickel oxide
  • the electron transport layer may comprise a first electron transport layer and/or a second electron transport layer; preferably, the first electron transport layer and/or the second electron transport layer comprises an inorganic substance which can be used as an electron transport material and/or or organic matter; preferably, the inorganic matter is selected from at least one or more of titanium dioxide (TiO 2 ), tin oxide (SnO 2 ), and zinc oxide (ZnO); preferably, the organic matter is selected from fullerene At least one or more of alkenes and their derivatives, more preferably, the fullerene is a fullerene with 60 carbon atoms (C 60 fullerene) or a fullerene with 70 carbon atoms alkenes (C 70 fullerenes).
  • TiO 2 titanium dioxide
  • SnO 2 tin oxide
  • ZnO zinc oxide
  • the organic matter is selected from fullerene At least one or more of alkenes and their derivatives, more preferably, the fullerene is a fuller
  • Titanium dioxide is the most widely used electron transport material in perovskite solar cells, because the conduction band bottom (CBM, conduction band minimum) of titanium dioxide is -4.1eV, which is slightly lower than the lowest unoccupied molecule of CH 3 NH 3 PbI 3 Orbital energy levels are conducive to electron injection.
  • CBM conduction band bottom
  • Zinc oxide is another electron-transport material commonly used in perovskite-type solar cells.
  • Zinc oxide is a direct bandgap II-VI semiconductor material with a forbidden band width of 3.3eV, its conduction band bottom is -4.2eV, and the exciton binding energy is 60meV at room temperature.
  • Zinc oxide matches the lowest unoccupied molecular orbital energy level (-3.6eV) and the highest occupied molecular orbital energy level (-5.2eV) of CH 3 NH 3 PbI 3 in terms of energy levels, which ensures the efficiency of electron extraction.
  • zinc oxide does not require high-temperature sintering, is easy to prepare large-area thin films, and has higher electron mobility than titanium dioxide.
  • Tin oxide has excellent electrical and optical properties, such as suitable energy levels, high carrier mobility, and good antireflection ability.
  • the perovskite layer is a layer comprising a material with an ABX 3 structure, wherein:
  • B is the second cation, including but not limited to Ti 4+ , Nb 5+ , Mn 4+ , Fe 3+ , Ta 5+ , Th 4+ , Zr 4+ , Pb 2+ , Sr 2+ , Sn 2+ , Cu 2+ , or a combination thereof;
  • X is selected from halogen anion, O 2- , S 2- , or a combination thereof;
  • the halogen anion comprises at least one of F - , Cl - , Br - and I - ;
  • a second aspect of the present application provides a method for preparing a perovskite-type solar cell, comprising the following steps:
  • the hole transport layer includes an inorganic substance that can be used as a hole transport material, and an organic layer comprising a derivative of carbazole is formed on the hole transport layer .
  • the substrate may be a transparent or translucent conductive material.
  • the substrate is a transparent conductive oxide formed on transparent glass.
  • Transparent conductive oxides include indium tin oxide, zinc oxide, doped tin oxide, and doped zinc oxide.
  • ITO indium tin oxide
  • FTO fluorine-doped tin oxide
  • AZO aluminum-doped tin oxide
  • the transparent conductive oxide may contain 90 wt% to 100 wt% of ITO, FTO, or AZO, and in some cases, the transparent conductive oxide may mainly consist of ITO, FTO, or AZO.
  • the thickness of the transparent conductive oxide is 50 to 600 nm, such as 100 nm, 200 nm, 300 nm, 400 nm, 500 nm.
  • Transparent conducting oxides can be formed as the bottom electrode layer of perovskite-type solar cells, so glass with an ITO layer can be a substrate.
  • the methods of forming the electron transport layer include but not limited to radio frequency magnetron sputtering, spin coating, spray pyrolysis, atomic layer deposition, thermal oxidation and other methods.
  • radio frequency magnetron sputtering is used.
  • powdered C60 fullerene is used as a raw material to prepare an electron transport layer containing C60 fullerene by vacuum thermal evaporation.
  • the methods for forming the perovskite layer include but are not limited to one-step spin coating method, step-by-step liquid immersion method, two-step spin coating method, vapor deposition method and the like.
  • the methods of forming the hole transport layer include but not limited to solution method, sol-gel method, radio frequency magnetron sputtering method and the like.
  • the carbazole derivatives can be dissolved in organic solvents such as ethanol, propanol, etc., and then spin-coated on the hole transport layer and heated or annealed.
  • a third aspect of the present application provides a perovskite type solar cell, comprising:
  • the hole transport layer includes an inorganic substance that can be used as a hole transport material, and is characterized in that an organic layer including a carbazole derivative is formed on the hole transport layer.
  • product features such as the materials, structures, and thicknesses of the layers involved can refer to the first aspect of the present application.
  • the crystalline silicon solar cell is a heterojunction solar cell.
  • the crystalline silicon solar cell can be a heterojunction type solar cell (HIT, SHJ, Heterojunction with Intrinsic Thinfilm), PERC cell (Passivated Emitter and Rear Cell), IBC cell (Interdigitated Back Contact Cell), MWT cell (Metal Wrap Through Cell) or Top-con battery (Tunnel Oxide Passivated Contact Cell). Solar cells of the heterojunction type are preferred.
  • the perovskite solar cell comprises a reverse structure, that is, comprises a back electrode, a hole transport layer, a perovskite layer, an electron transport layer and a front electrode sequentially from bottom to top.
  • the perovskite solar cell comprises a formal structure, that is, sequentially comprises a back electrode, an electron transport layer, a perovskite layer, a hole transport layer and a front electrode from bottom to top.
  • perovskite solar cell of the present application is not limited to the layer structure listed above, but also includes various modification layers, passivation layers, etc. known in the art, as well as various modifications of the above structures.
  • the perovskite-type solar cell of the present application has a reverse perovskite structure, specifically, it includes a bottom electrode (back conductive grid line), a back transparent conductive layer, a P-type solar cell in sequence from bottom to top.
  • Embodiment 1 provides the first perovskite type solar cell and its preparation method.
  • FIG. 1 is a schematic structural diagram of the perovskite type solar cell provided in Example 1.
  • the perovskite type solar cell 1 sequentially comprises a bottom electrode layer 11, a hole transport layer 12, an organic layer 13 containing carbazole derivatives, a perovskite layer 14, a first electron Transport layer 15 , second electron transport layer 16 , and top electrode layer 17 .
  • the material of the bottom electrode layer 11 is indium tin oxide (ITO) with a thickness of about 135nm, and the material of the hole transport layer 12 is nickel oxide with a thickness of 10-30nm, such as 15nm, 20nm, 30nm, containing carbazole
  • the material of the organic matter layer 13 of the derivative is [2-(9H-carbazol-9-yl) ethyl] phosphonic acid (2PACz for short), and the molecular formula is as follows:
  • the organic layer 13 containing a carbazole derivative has a thickness of 1 to 2 nm.
  • the organic layer 13 containing a carbazole derivative modifies the surface of the hole transport layer 12 .
  • the material of the first electron transport layer 15 is fullerene with 60 carbon atoms (C 60 fullerene), and the thickness is 10-30 nm, for example, 15 nm, 20 nm, 25 nm.
  • the material of the second electron transport layer 16 is tin oxide with a thickness of 10-30 nm, such as 15 nm, 20 nm, 25 nm; the material of the top electrode layer 17 is silver with a thickness of 100 nm.
  • the perovskite type solar cell shown in FIG. 1 above can be prepared according to the following steps.
  • bottom electrode layer 11 On the cleaned glass substrate with an ITO layer (bottom electrode layer 11), prepare a layer of nickel oxide by using radio frequency magnetron sputtering with a nickel oxide target material with a diameter of 2 inches and a thickness of 4mm.
  • the thickness of the nickel oxide is 20 nm
  • the deposition pressure is 0.5 Pa
  • the argon gas flow rate is 20 sccm (standard-state cubic centimeter per minute), to form the hole transport layer 12 .
  • the glass substrate with the ITO layer (bottom electrode layer 11) was purchased from South China Xiangcheng Technology Co., Ltd., used for experiments, with a size of 15mm ⁇ 15mm ⁇ 1.1mm, a sheet resistance of less than 15 ⁇ / ⁇ , a thickness of the ITO layer of 135nm, and a thickness of the ITO layer of The color is light red.
  • Oxygen element exists on the surface of nickel oxide, and oxygen element has strong electronegativity. If free water or bound water exists on the surface of nickel oxide, the oxygen atoms between the lattices can easily combine with them to form surface hydroxyl groups.
  • a layer of lead iodide and cesium bromide was vacuum-deposited at a temperature of 320° C., with a deposition rate ratio of 6:1 and a thickness of 400 nm. Then the ethanol solution of FAI, MACl and MABr is spin-coated on the lead iodide layer at a speed of 1500 rpm, and then annealed at 150° C. for 30 minutes to form the perovskite layer 14 .
  • the concentrations of FAI, MACl, and MABr in ethanol solution are 50mg/ml, 10mg/ml, and 10mg/ml, respectively.
  • the perovskite layer 14 use powdered C60 fullerene as a raw material to prepare a C60 fullerene electron transport layer by vacuum thermal evaporation, the evaporation rate is 0.02nm/s, and the deposition thickness is 10nm.
  • TDMASn tetrakis(dimethylamino)tin
  • ALD atomic layer deposition
  • Metal source thermal evaporation generally does not refer to the temperature, and it is enough to directly heat it with power, and the deposition thickness can be judged by observing the rate.
  • Embodiment 2 provides the second perovskite type solar cell and its preparation method.
  • FIG. 2 is a schematic structural diagram of the perovskite type solar cell provided in Example 2.
  • the perovskite type solar cell 2 includes, from bottom to top, a rear conductive grid line 201, a rear transparent conductive layer (bottom electrode layer) 202, a P-type amorphous silicon layer 203, a first intrinsic non-crystalline Crystalline silicon layer 204, N-type silicon substrate 205, second intrinsic amorphous silicon layer 206, N-type amorphous silicon layer 207, middle transparent conductive layer 208, hole transport layer 209, organic matter containing carbazole derivatives layer 210 , perovskite layer 211 , first electron transport layer 212 , second electron transport layer 213 , front transparent conductive layer 214 , and front conductive grid lines 215 .
  • the P-type amorphous silicon layer 203, the first intrinsic amorphous silicon layer 204, the N-type silicon substrate 205, the second intrinsic amorphous silicon layer 206, and the N-type amorphous silicon layer 207 form a heterojunction cell the semiconductor layer.
  • the above-mentioned rear conductive grid lines 201 are silver grid lines.
  • the silver grid lines have a height of 20 ⁇ m and a width of 50 ⁇ m.
  • the distance between every two silver grid lines is 2mm.
  • the back transparent conductive layer (bottom electrode layer) 202 is electrically connected to the back conductive grid line 201 .
  • the material of the back transparent conductive layer (bottom electrode layer) 202 is indium tin oxide (ITO) with a thickness of 80-120 nm.
  • the thickness of the P-type amorphous silicon layer 203 is 8-10 nm.
  • the thickness of the first intrinsic amorphous silicon layer 204 is 8-10 nm, such as 8 nm, 9 nm, 10 nm. It is usually used as the i layer in heterojunction cells.
  • the thickness of the N-type silicon substrate 205 is 250 ⁇ m.
  • the N-type silicon substrate 205 is a square with a size of 2 cm ⁇ 2 cm.
  • the resistivity of the N-type silicon substrate 205 is 5 ⁇ cm.
  • the thickness of the second intrinsic amorphous silicon layer 206 is 10-12 nm, for example, 10 nm, 11 nm, 12 nm. It is usually used as the i layer in heterojunction cells.
  • the thickness of the N-type amorphous silicon layer 207 is 8-15 nm.
  • the material of the middle transparent conductive layer 208 is indium tin oxide, and the thickness is 15-30 nm.
  • the hole transport layer 209 is made of CuNiO with a thickness of 20-50 nm.
  • the material of the organic layer 210 containing carbazole derivatives is [2-(9H-carbazol-9-yl)ethyl]phosphonic acid (abbreviated as 2PACz).
  • the material of the perovskite layer 211 is Cs 0.05 MA 0.1 FA 0.85 Pb(I 0.85 Br 0.15 ) 3 .
  • the material of the first electron transport layer 212 is fullerene with 60 carbon atoms (C 60 ), and the thickness is 10 nm.
  • the material of the second electron transport layer 213 is tin oxide with a thickness of 15 nm.
  • the material of the front transparent conductive layer 214 is indium tin oxide, and the thickness is 80-100 nm.
  • the front conductive grid lines 215 are silver grid lines.
  • the silver grid lines have a height of 20 ⁇ m and a width of 50 ⁇ m.
  • the distance between every two silver grid lines is 2mm.
  • the perovskite type solar cell shown in FIG. 2 above can be prepared according to the following steps.
  • a layer of intrinsic amorphous silicon layer respectively by plasma-enhanced chemical vapor deposition, with a thickness of 8 nm and 10 nm, respectively.
  • the process conditions are that argon gas is passed first, then silane and phosphine, the flow rate is 200 sccm, the RF is 50k-15MHz, the temperature is 200°C, and the power is 45W.
  • the size of the N-type silicon substrate is 2cm ⁇ 2cm, and the resistivity is 5 ⁇ cm.
  • the N-type silicon substrate is used as the N-type silicon substrate 205 in the above-mentioned FIG. 2, and the formed intrinsic amorphous silicon layer is respectively used as the first intrinsic amorphous silicon layer 204 and the second intrinsic amorphous silicon layer in the above-mentioned FIG. Silicon layer 206 .
  • the N-type silicon substrate is deposited, it undergoes texturing treatment, that is, the N-type silicon substrate is etched at 80° C. for 15 minutes through a potassium hydroxide solution with a concentration of 2% to perform texturing. .
  • a layer of N-type amorphous silicon is deposited on the second intrinsic amorphous silicon layer 206 with a thickness of 10 nm to form an N-type amorphous silicon layer 207 with a thickness of 20 nm.
  • the perovskite layer is a light absorbing layer of a perovskite type solar cell.
  • Example 3 The difference between Example 3 and Example 2 is that in Step 5, the material used in Step 5 of Example 3 is the ethanol solution of Me-4PACz instead of the ethanol solution of 2PACz.
  • the concentration of the ethanol solution of Me-4PACz is 1 mg/ml.
  • Me-4PACz is [4-(3,6-dimethyl-9H-carbazol-9-yl)butyl]phosphonic acid ([4-(3,6-dimethyl-9H-carbazol-9- yl)butyl]phosphonic acid).
  • the molecular formula of Me-4PACz is shown below.
  • step 1 the N-type silicon substrate is not subjected to texturing treatment.
  • Spiro-TTB is 2,2',7,7'-tetrakis(di-p-tolylamino)spiro-9,9'-bifluorene; 2,2',7,7'-tetrakis(N, N-di-p-tolyl)amino-9,9-spirobifluorene.
  • the performance of the battery was tested under standard test conditions (AM1.5, 25°C, 1000W/m 2 ), and the short-circuit current density (J sc ), open-circuit voltage (V oc ), conversion efficiency (Eff) and fill factor ( FF).
  • J sc short-circuit current density
  • V oc open-circuit voltage
  • Eff conversion efficiency
  • FF fill factor

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Photovoltaic Devices (AREA)

Abstract

公开了一种钙钛矿类型的太阳能电池及其制备方法。该钙钛矿类型的太阳能电池,包含电子传输层、钙钛矿层和空穴传输层,所述空穴传输层包含可作为空穴传输材料的无机物,其特征在于,在所述空穴传输层上形成有包含咔唑的衍生物的有机物层。通过使用咔唑的衍生物和可作为空穴传输层的无机材料的配合,可以得到转换效率高的钙钛矿类型的太阳能电池。

Description

一种钙钛矿类型的太阳能电池及其制备方法
本申请要求于2021年11月12日提交的题为“一种钙钛矿类型的太阳能电池及其制备方法”的中国专利申请202111343015.4的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本申请涉及一种钙钛矿类型的太阳能电池及其制备方法。
背景技术
钙钛矿(perovskite)是一种矿物的名称,化学组成为CaTiO 3。经过多年的研究,科学家们发现不仅钙钛矿(CaTiO 3)本身具有特殊的性能,而且具有类似于CaTiO 3结构的ABX 3结构的材料也具有类似的特性。在本申请中的钙钛矿是指具有ABX 3结构的物质。
例如在太阳能电池领域,钙钛矿因为具有较宽且可调节的光吸收范围,所以被广泛应用和研究。
例如在专利文献1(CN112103392A)中公开了一种钙钛矿类型的太阳能电池,其包含硅底电池和钙钛矿顶电池,其采用未掺杂的Spiro-TTB(化学名称为2,2’,7,7’-四(二-对甲苯基氨基)螺-9,9’-二芴;2,2’,7,7’-四(N,N-二对甲苯基)氨基-9,9-螺二芴)层作为无机物氧化镍层等空穴传输材料层的修饰层。
然而,专利文献1中的钙钛矿类型的太阳能电池的转换效率仍需提高。
发明内容
因此,本申请所要解决的技术问题在于提供一种可以提高转换效率的钙钛矿类型的太阳能电池及其制备方法。
为了解决上述技术问题,本申请提供以下技术方案:
第一方面,本申请提供一种钙钛矿类型的太阳能电池,包含电子传输层、钙钛矿层和空穴传输层,所述空穴传输层包含可作为空穴传输材料的无机物,在所述空穴传输层上形成有包含咔唑的衍生物的有机物层。
优选地,所述咔唑的衍生物的分子式中包含咔唑分子主体以及与咔唑分子主体的氮元素直接或者间接连接的有机酸基团,所述有机酸基团优选为膦酸基团、羧酸基团、磺酸基 团、亚磺酸基团、硫羧酸基团,其中咔唑分子主体上的氢原子可以被取代。
优选地,所述咔唑的衍生物为分子式(I)所示的化合物:
Figure PCTCN2022110418-appb-000001
其中,R1和R2各自独立地选自氢原子、烷基、烷氧基、烯基和炔基,R1和R2可以相同或者不同,虚线表示连接基团,优选地,所述连接基团是指连接磷原子和氮原子的基团,例如所述连接基团是被取代的或者未被取代的碳原子数为1以上优选为2以上更优选为3以上的亚烷基、被取代的或者未被取代的碳原子数为2以上优选为3以上的亚烯基等;
优选地,所述R1和R2各自独立地为甲基和甲氧基;优选地,所述R1和R2均为甲基;优选地,所述R1和R2均为氢原子。
第二方面,本申请提供一种钙钛矿类型的太阳能电池的制备方法,包含以下步骤:
(a)提供基材;
(b)在所述基材上形成电子传输层;
(c)在所述电子传输层上形成钙钛矿层;
(d)在所述钙钛矿层上形成空穴传输层,所述空穴传输层包含可作为空穴传输材料的无机物,在所述空穴传输层上形成包含咔唑的衍生物的有机物层;
或者
(a)提供基材;
(b)在所述基材上形成空穴传输层;所述空穴传输层包含可作为空穴传输材料的无机物,在所述空穴传输层上形成包含咔唑的衍生物的有机物层。
(c)在所述空穴传输层的有机物层上形成钙钛矿层;
(d)在所述钙钛矿层上形成电子传输层。
优选地,所述咔唑的衍生物的分子式中包含咔唑分子主体以及与咔唑分子主体的氮元素直接或者间接连接的有机酸基团,所述有机酸基团优选为膦酸基团、羧酸基团、磺酸基团、亚磺酸基团、硫羧酸基团,其中咔唑分子主体上的氢原子可以被取代。
优选地,所述咔唑的衍生物为分子式(I)所示的化合物:
Figure PCTCN2022110418-appb-000002
其中,R1和R2各自独立地选自氢原子、烷基、烷氧基、烯基和炔基,R1和R2可以相同或者不同,虚线表示连接基团,优选地,所述连接基团是指连接磷原子和氮原子的基团,例如所述连接基团是被取代的或者未被取代的碳原子数为1以上优选为2以上更优选为3以上的亚烷基、被取代的或者未被取代的碳原子数为2以上优选为3以上的亚烯基等;
优选地,所述R1和R2各自独立地为甲基和甲氧基;优选地,所述R1和R2均为甲基;优选地,所述R1和R2均为氢原子。
第三方面,本申请提供一种钙钛矿类型的太阳能电池,包含:
作为基底的P型或N型晶体硅太阳能电池,
依次形成在所述晶体硅太阳能电池的一个主表面的电子传输层、钙钛矿层和空穴传输层,或空穴传输层、钙钛矿层和电子传输层;
所述空穴传输层包含可作为空穴传输材料的无机物,其特征在于,在所述空穴传输层 上形成有包含咔唑的衍生物的有机物层。
优选地,所述咔唑的衍生物的分子式中包含咔唑分子主体以及与咔唑分子主体的氮元素直接或者间接连接的有机酸基团,所述有机酸基团优选为膦酸基团、羧酸基团、磺酸基团、亚磺酸基团、硫羧酸基团,其中咔唑分子主体上的氢原子可以被取代。
优选地,所述咔唑的衍生物为分子式(I)所示的化合物:
Figure PCTCN2022110418-appb-000003
其中,R1和R2各自独立地选自氢原子、烷基、烷氧基、烯基和炔基,R1和R2可以相同或者不同,虚线表示连接基团,优选地,所述连接基团是指连接磷原子和氮原子的基团,例如所述连接基团是被取代的或者未被取代的碳原子数为1以上优选为2以上更优选为3以上的亚烷基、被取代的或者未被取代的碳原子数为2以上优选为3以上的亚烯基等;
优选地,所述R1和R2各自独立地为甲基和甲氧基;优选地,所述R1和R2均为甲基;优选地,所述R1和R2均为氢原子。
优选地,所述晶体硅太阳能电池为异质结类型的太阳能电池。
本申请通过使用咔唑的衍生物例如式(I)所示的化合物和可作为空穴传输层的无机材料的配合,可以得到转换效率高的钙钛矿类型的太阳能电池。
附图说明
图1为实施例1提供的第一种钙钛矿类型的太阳能电池的结构示意图。
图2为实施例2提供的第二种钙钛矿类型的太阳能电池的结构示意图。
附图标记:
图1中:
1   第一种钙钛矿类型的太阳能电池
11  底电极层
12  空穴传输层
13  包含咔唑的衍生物的有机物层
14  钙钛矿层
15  第一电子传输层
16  第二电子传输层
17  顶电极层
图2中:
2   第二种钙钛矿类型的太阳能电池
201 背面导电栅线
202 背面透明导电层(底电极)
203 P型非晶硅层
204 第一本征非晶硅层
205 N型硅基材
206 第二本征非晶硅层
207 N型非晶硅层
208 中间透明导电层
209 空穴传输层
210 包含咔唑的衍生物的有机物层
211 钙钛矿层
212 第一电子传输层
213 第二电子传输层
214 正面透明导电层
215 正面导电栅线
具体实施方式
以下,详细说明本申请的多个技术方案。
本申请的第一方面提供一种钙钛矿类型的太阳能电池,包含电子传输层、钙钛矿层和空穴传输层,所述空穴传输层包含可作为空穴传输材料的无机物,其中,在所述空穴传输层上形成有包含咔唑的衍生物的有机物层。
用于本申请咔唑的衍生物优选为纯度高的物质,纯度越高越好,例如纯度为95.0%以上、例如96.0%、97.0%、98.0%、99.0%以上的咔唑的衍生物。此处所谓纯度高是指,不需要进行掺杂其它物质例如氧化物等。由于不需要掺杂其它物质,因此具有良好的稳定性。
在钙钛矿类型的太阳能电池中,利用氧化镍等可作为空穴传输材料的无机物而形成的空穴传输层,其表面会有缺陷例如其他高价态的金属元素会与钙钛矿层中的有机阳离子(ABX 3中的A)反应,造成钙钛矿层中的卤化铅等成分向空穴传输层与钙钛矿层的界面处富集,从而形成势垒。而且空穴传输层中的氧化性元素例如氧元素在成为具有氧化能力的状态时也会与钙钛矿层中的有机阳离子(ABX 3中的A)反应,因此会限制此处的载流子迁移,从而加剧载流子的复合,最终导致电池开路电压偏低、转换效率低下等。而在本申请中,通过在其上形成薄的包含咔唑的衍生物的有机物层,可以明显改善上述情况,从而提升太阳能电池的转换效率等性能。因为咔唑的衍生物,具有阻隔电子,筛选空穴的特性,并且钝化氧化镍等空穴传输层表面的高价镍和氧悬挂键等缺陷。而且,如果咔唑的衍生物中具有膦酸基团等有机酸基团,则有机酸基团可以锚定金属氧化物等可作为空穴传输材料的表面的氧原子等高能态的原子,仅需要简单的溶液接触,即可使在空穴传输层的表面均匀分布,形成强力、稳定的结合,降低空穴传输层表面的功函数。
综上,通过使用咔唑的衍生物例如式(I)所示的化合物和可作为空穴传输层的无机材料的配合,可以得到转换效率高的钙钛矿类型的太阳能电池。
所述咔唑的衍生物的分子式中包含咔唑分子主体以及与咔唑分子主体的氮元素直接或者间接连接的有机酸基团,所述有机酸基团优选为膦酸、羧酸、磺酸、亚磺酸、硫羧酸,其中咔唑分子主体上的氢原子可以被取代。
本申请中,咔唑分子主体的结构如下所示,其中,虚线键“---”表示咔唑分子主体可通过N原子与其他基团相连;
Figure PCTCN2022110418-appb-000004
优选地,咔唑主体的苯环上包含取代基或不含取代基;进一步地,每个苯环上所含的取代基的个数可以为1个、2个、3个或4个;取代基可以选自烷基、烷氧基、烯基和炔基;烷基、烷氧基中所含的碳原子个数可以为1~6个,例如2个、3个、4个、5个;烯基、炔基中所含的碳原子个数可以为2~6个,例如3个、4个、5个。
优选地,所述咔唑的衍生物为分子式(I)所示的化合物:
Figure PCTCN2022110418-appb-000005
其中,R1和R2为选自氢原子、烷基、烷氧基、烯基、炔基中一种原子或基团,R1和R2可以相同或者不同,虚线表示连接基团,优选地,所述连接基团是指连接磷原子和氮原子的基团,例如所述连接基团是被取代的或者未被取代的碳原子数为1以上优选为2以上更优选为3以上的亚烷基、被取代的或者未被取代的碳原子数为2以上优选为3以上的亚烯基等;
优选地,所述R1和R2为甲基和甲氧基;优选地,所述R1和R2均为甲基;优选地,所述R1和R2均为氢原子。
优选地,所述R1和R2各自独立地选自烷基、烷氧基、烯基、炔基;进一步地,烷基、烷氧基中所含的碳原子个数可以为1~6个,例如2个、3个、4个、5个;烯基、炔基中 所含的碳原子个数可以为2~6个,例如3个、4个、5个。
优选地,所述R1和R2各自独立地选自含1~6个碳原子的直链烷基、直链烷氧基。
优选地,所述连接基团含1~6个碳原子,例如2个、3个、4个、5个;优选地,连接基团可以为含1~6个碳原子的亚烷基;进一步地,连接基团可以为含1~6个碳原子的直链亚烷基。优选地,连接基团可以为含2~6个碳原子的亚烯基,进一步地,连接基团可以为含2~6个碳原子的直链亚烯基。
作为亚烷基,可以选择:亚甲基、亚乙基、亚丁基等。
作为未被取代的亚烯基,可以选择:亚乙烯基、亚丙烯基等。
所述亚烷基中的氢原子可以为某些特定的元素所取代,例如可以被氟、氯、溴、碘等卤素取代。
所述可作为空穴传输材料的无机物可以选自氧化镍、碘化亚铜、硫氰酸亚铜、氧化铜、氧化亚铜、硫化铜中的至少一种或两种以上。
优选地,所述空穴传输层的厚度为1nm以上且100nm以下,例如2nm、3nm、4nm、5nm、6nm、7nm、8nm、9nm、10nm、20nm、30nm、40nm、50nm、60nm、70nm、80nm、90nm;优选地,所述包含咔唑的衍生物的有机物层的厚度为0.01nm以上且5nm以下,例如4.5nm、4nm、3.5nm、3nm、2.5nm、2nm、1.5nm、1nm、0.5nm、0.3nm、0.2nm、0.1nm。
需要说明的是,在本申请中所述包含咔唑的衍生物的有机物层的厚度不需要太厚,例如不需要达到空穴传输层即可对空穴传输层的表面进行修饰,可以起到钝化空穴传输层的表面的缺陷的厚度。在本申请中,所述包含咔唑的衍生物的有机物层的主要作用在于修饰或钝化空穴传输层的表面的缺陷。
优选地,所述可作为空穴传输材料的无机物包含氧化镍;优选地,所述可作为空穴传输材料的无机物是以氧化镍为主体的材料,其中不掺杂或者掺杂有三价镍、铜、钴、锰、镧、钇、镁、锂、锌、铟、锡中的任意一种或两种以上。
例如,氧化镍为P型半导体材料,其带隙宽度为3.8eV,对近紫外和可见光范围有很好的透过。氧化镍价带能级为-5.28eV,导带能级分别为-1.46eV。氧化镍的价带能级与常用的钙钛矿例如CsFAMAPbIBr(例如Cs 0.1(HN=CHNH 3) 0.8(CH 3NH 3) 0.1Pb(I 0.9Br 0.1) 3)的最高占据分子轨道能级(Highest Occupied Molecular Orbital,HOMO能级)(-5.30eV左右)接近,有利于对空穴的收集;其导带能级(Conduction Band能级)远高于钙钛矿最低未占分子轨道能级(Lowest Unoccupied Molecular Orbital,LUMO能级)(-3.90eV左右),可以有效阻挡电子向电极的扩散。
本申请通过将氧化镍结构稳定、电子阻挡能力强与咔唑的衍生物的高空穴迁移率等特性相结合,制备了高效的复合空穴传输层。
而且氧化镍可以采用物理气相沉积大面积制备,在水、氧、高温等复杂环境中能保持性质长期稳定,同时高纯度氧化镍材料价格低廉。然而,采用氧化镍作为空穴传输层的钙钛矿太阳能电池往往呈现出较低的开路电压;这是因为氧化镍中的三价或更高价的镍会和钙钛矿成分中的有机阳离子反应,造成钙钛矿中的另一成分卤化铅在氧化镍和钙钛矿的界面处富集,从而形成势垒,氧化镍表面的羟基悬挂键去质子化后也会与钙钛矿中ABX 3中的A位阳离子反应,这些限制了该处的载流子迁移而加剧载流子复合,从而导致电池开路电压偏低等性能低下。咔唑的衍生物具有阻隔电子,筛选空穴的特性。同时,如果具有膦酸基团,膦酸基团可以锚定氧化物表面的氧原子,仅需要简单的溶液接触,即可使其在下层的氧化镍表面均匀分布,形成强力、稳定的结合,降低表面的功函数。
需要说明的是,所述氧化镍材料可以是以氧化镍(NiO)为主体,其中不掺杂或者掺杂有三价镍、铜、钴、锰、镧、钇、镁、锂、锌、铟、锡中的任意一种或两种以上。
所述电子传输层可以包含第一电子传输层和/或第二电子传输层;优选地,所述第一电子传输层和/或第二电子传输层包含可作为电子传输材料的无机物和/或有机物;优选地,所述无机物选自二氧化钛(TiO 2)、氧化锡(SnO 2)、氧化锌(ZnO)中的至少一种或两种以上;优选地,所述有机物选自富勒烯及其衍生物中的至少一种或两种以上,更优选地,所述富勒烯为碳原子数为60的富勒烯(C 60富勒烯)或碳原子数为70的富勒烯(C 70富勒烯)。
二氧化钛是钙钛矿类型的太阳能电池中应用最广泛的电子传输材料,因为二氧化钛的导带底(CBM,conduction band minimum)为-4.1eV,稍低于CH 3NH 3PbI 3的最低未占分子轨道能级,有利于电子注入。
氧化锌是另一种常用于钙钛矿类型的太阳能电池的电子传输材料。氧化锌是一种禁带宽度为3.3eV的直接带隙II-VI族半导体材料,其导带底为-4.2eV,在常温下激子束缚能为60meV。氧化锌在能级角度上与CH 3NH 3PbI 3的最低未占分子轨道能级(-3.6eV)和最高占据分子轨道能级(-5.2eV)匹配,保证了电子提取的效率。并且氧化锌无需高温烧结,易于制备成大面积薄膜,且与二氧化钛相比具有更高的电子迁移率。
氧化锡具有优异的电学和光学特性,例如合适的能级、高载流子迁移率和良好的抗反射能力。
优选地,所述钙钛矿层为包含具有ABX 3结构的材料的层,其中:
A为第一阳离子,包含但不限于Rb +、Na +、K +、Ca 2+、Ba 2+、Cs +、HN=CHNH 3 +、CH 3NH 3 +、Pb 2+、Sr 2+、Sn 2+、或其组合;
B为第二阳离子,包含但不限于Ti 4+、Nb 5+、Mn 4+、Fe 3+、Ta 5+、Th 4+、Zr 4+、Pb 2+、Sr 2+、Sn 2+、Cu 2+、或其组合;
X选自卤素阴离子、O 2-、S 2-、或其组合;
优选地,所述卤素阴离子包含F -、Cl -、Br -和I -中的至少一种;
优选地,所述具有ABX 3结构的材料选自CH 3NH 3PbI 3、HN=CHNH 3PbI 3、Cs x((HN=CHNH 3) y(CH 3NH 3) 1-y) 1-xPb(I zBr 1-z) 3中的至少一种或两种以上,其中0<x≤0.25、0.5<y≤1、0.75≤z<1。
本申请的第二方面提供一种钙钛矿类型的太阳能电池的制备方法,包含以下步骤:
(a)提供基材;
(b)在所述基材上形成电子传输层;
(c)在所述电子传输层上形成钙钛矿层;
(d)在所述钙钛矿层上形成空穴传输层,所述空穴传输层包含可作为空穴传输材料的无机物,在所述空穴传输层上形成包含咔唑的衍生物的有机物层;
或者
(a)提供基材;
(b)在所述基材上形成空穴传输层;所述空穴传输层包含可作为空穴传输材料的无机物,在所述空穴传输层上形成包含咔唑的衍生物的有机物层。
(c)在所述空穴传输层的有机物层上形成钙钛矿层;
(d)在所述钙钛矿层上形成电子传输层。
关于第二方面所提供的太阳能电池的制备方法,其中所涉及的层的材料、结构、厚度等产品特征,可以参考本申请的第一方面。
在本申请中,基材可以为透明或半透明导电材料。例如,基材为在透明的玻璃上形成透明导电氧化物。透明导电氧化物包括铟锡氧化物、锌氧化物、掺杂的锡氧化物和掺杂的锌氧化物。例如,ITO(氧化铟锡)、FTO(氟掺杂的锡氧化物)或AZO(铝掺杂的锡氧化物)等,优选ITO。透明导电氧化物可包含90wt%至100wt%的ITO、FTO或AZO,并且在一些情况下,透明导电氧化物可以主要由ITO、FTO或AZO组成。通常,透明导电氧化物的厚度为50至600nm,例如为100nm、200nm、300nm、400nm、500nm。透明导电 氧化物可以形成为钙钛矿类型的太阳能电池的底电极层,因此具有ITO层的玻璃可以成为一种基材。
形成电子传输层的方式包括但不限于射频磁控溅射法、旋涂法、喷雾热解法、原子层沉积法、热氧化法等方法。在一种实现方案中,采用射频磁控溅射法。例如采用粉末状的C 60的富勒烯作为原料利用真空热蒸发的方式制备包含C 60的富勒烯的电子传输层。
形成钙钛矿层的方式包括但不限于一步旋涂法、分步液浸法、两步旋涂法、气相沉积法等。
形成空穴传输层的方式包括但不限于溶液法、溶胶-凝胶法、射频磁控溅射法等。
关于形成包含咔唑的衍生物的有机物层的方式,可以将咔唑的衍生物溶解于有机溶剂例如乙醇、丙醇等中,然后旋涂在空穴传输层并加热或退火而形成。
关于上述形成电子传输层的方式、形成钙钛矿层的方式、形成空穴传输层的方式可以参考肖立新等编著的《钙钛矿太阳能电池》(北京大学出版社2016年10月第1版)。
本申请的第三方面提供一种钙钛矿类型的太阳能电池,包含:
作为基底的P型或N型晶体硅太阳能电池,
依次形成在所述晶体硅太阳能电池的一个主表面的电子传输层、钙钛矿层和空穴传输层,或空穴传输层、钙钛矿层和电子传输层;
所述空穴传输层包含可作为空穴传输材料的无机物,其特征在于,在所述空穴传输层上形成有包含咔唑的衍生物的有机物层。
关于第三方面所提供的太阳能电池,其中所涉及的层的材料、结构、厚度等产品特征,可以参考本申请的第一方面。
优选地,所述晶体硅太阳能电池为异质结类型的太阳能电池。另外,所述晶体硅太阳能电池可以为异质结类型的太阳能电池(HIT、SHJ、Heterojunction with Intrinsic Thinfilm)、PERC电池(Passivated Emitterand Rear Cell)、IBC电池(Interdigitated Back Contact Cell)、MWT电池(Metal Wrap Through Cell)或Top-con电池(Tunnel Oxide Passivated Contact Cell)。优选为异质结类型的太阳能电池。
在一种实施方案中,该钙钛矿太阳能电池包含反式结构,即从下至上顺次包含背面电极、空穴传输层、钙钛矿层、电子传输层和正面电极。
在一个实施方案中,该钙钛矿太阳能电池包含正式结构,即从下至上顺次包含背面电极、电子传输层、钙钛矿层、空穴传输层和正面电极。
需要理解的是,本申请的钙钛矿太阳能电池不限于上面列举的层结构,还包含本领域已知的各种修饰层、钝化层等,以及上述结构的各种变型。
在一种实施方案中,本申请的钙钛矿类型的太阳能电池为反式钙钛矿结构,具体地,从下至上顺次包含底电极(背面导电栅线)、背面透明导电层、P型非晶硅层、第一本征非晶硅层、N型晶硅基材、第二本征非晶硅层、N型非晶硅层、中间透明导电层、空穴传输层、包含咔唑的衍生物的有机物层、钙钛矿层、电子传输层(可以包含第一电子传输层和第二电子传输层)、正面透明导电层和顶电极(正面导电栅线)。
下面提供本申请的钙钛矿类型的太阳能电池及其制备方法的实施例。
实施例1
本实施例1提供第一种钙钛矿类型的太阳能电池及其制备方法。
如图1所示,图1为实施例1提供的钙钛矿类型的太阳能电池的结构示意图。如图1所示,该钙钛矿类型的太阳能电池1从下至上依次包含底电极层11、空穴传输层12、包含咔唑的衍生物的有机物层13、钙钛矿层14、第一电子传输层15、第二电子传输层16、以及顶电极层17。
其中底电极层11的材料为氧化铟锡(ITO),厚度约为135nm,空穴传输层12的材料为氧化镍,厚度为10~30nm,例如可以为15nm、20nm、30nm,包含咔唑的衍生物的有机物层13的材料为[2-(9H-咔唑-9-基)乙基]膦酸(简称2PACz),分子式如下所示:
Figure PCTCN2022110418-appb-000006
包含咔唑的衍生物的有机物层13的厚度为1~2nm。包含咔唑的衍生物的有机物层13修饰空穴传输层12的表面。钙钛矿层14的材料的一种选择为Cs 0.05MA 0.1FA 0.85Pb(I 0.85Br 0.15) 3, 其中MA表示HN=CHNH 3 +,FA表示CH 3NH 3 +,钙钛矿层14的厚度为300~700nm,例如400nm、500nm、600nm。第一电子传输层15的材料为碳原子数为60的富勒烯(C 60富勒烯),厚度为10~30nm,例如为15nm、20nm、25nm。第二电子传输层16的材料为氧化锡,厚度为10~30nm,例如为15nm、20nm、25nm;顶电极层17的材料为银,其厚度为100nm。
上述图1所示的钙钛矿类型的太阳能电池,可以按照以下步骤制备。
1.在清洗过的具有ITO层(底电极层11)的玻璃基底上,通过将直径2英寸、厚度4mm的氧化镍靶材使用射频磁控溅射制备一层氧化镍,氧化镍的厚度为20nm,沉积气压为0.5Pa,氩气流量为20sccm(standard-state cubic centimeter per minute),形成空穴传输层12。具有ITO层(底电极层11)的玻璃基底采购自华南湘城科技有限公司,实验用,尺寸为15mm×15mm×1.1mm,方块电阻小于15Ω/□,ITO层的厚度为135nm,ITO层的颜色为淡红色。氧化镍的表面存在氧元素,而氧元素具有很强的电负性。如果氧化镍的表面存在自由水或结合水,晶格间的氧原子很容易与它们结合,形成表面羟基。
2.在氧化镍层表面以3000转/分的速度旋涂一层2PACz的乙醇溶液,在100℃下退火1分钟,形成包含咔唑的衍生物的有机物层13。其中所涂布的2PACz的乙醇溶液的浓度为1mg/ml。包含咔唑的衍生物的有机物层13的厚度为约1~2nm。
3.在包含咔唑的衍生物的有机物层13上,在320℃的温度下真空蒸镀碘化铅和溴化铯层,蒸镀速率比例为6:1,厚度为400nm。然后在碘化铅层上以1500转/分的速度旋涂FAI、MACl、MABr的乙醇溶液,然后在150℃的温度下退火30分钟后形成钙钛矿层14。FAI、MACl、MABr在乙醇溶液中的浓度分别为50mg/ml、10mg/ml、10mg/ml。
4、在钙钛矿层14上采用粉末状的C 60的富勒烯作为原料利用真空热蒸发制备C 60的富勒烯电子传输层,蒸发速率0.02nm/s,沉积厚度为10nm。
5、在第一电子传输层15上采用四(二甲氨基)锡(TDMASn)作为有机锡源,纯水作为氧源利用原子层沉积(ALD)制备一层氧化锡,沉积厚度为15nm,形成第二电子传输层16。
6、在氧化锡层上热蒸镀制备的银电极层,厚度为100nm,形成顶电极层17作为该钙钛矿类型的太阳能电池的阴极。金属源热蒸发一般不参考温度,直接通功率加热就可以了,通过观察速率来判断沉积厚度。
7、沉积的膜层刮开一部分,露出具有ITO玻璃基材的电极,在ITO焊上铟电极,作 为正极。
实施例2
本实施例2提供第二种钙钛矿类型的太阳能电池及其制备方法。
如图2所示,图2为实施例2提供的钙钛矿类型的太阳能电池的结构示意图。如图2所示,该钙钛矿类型的太阳能电池2从下至上依次包含背面导电栅线201、背面透明导电层(底电极层)202、P型非晶硅层203、第一本征非晶硅层204、N型硅基材205、第二本征非晶硅层206、N型非晶硅层207、中间透明导电层208、空穴传输层209、包含咔唑的衍生物的有机物层210、钙钛矿层211、第一电子传输层212、第二电子传输层213、正面透明导电层214、以及正面导电栅线215。
其中,P型非晶硅层203、第一本征非晶硅层204、N型硅基材205、第二本征非晶硅层206、以及N型非晶硅层207组成异质结电池的半导体层。
上述背面导电栅线201为银栅线。银栅线的高度为20μm,宽度为50μm。每两条银栅线之间的距离为2mm。
背面透明导电层(底电极层)202与背面导电栅线201电连接。背面透明导电层(底电极层)202的材料是氧化铟锡(ITO),厚度为80~120nm。
P型非晶硅层203的厚度为8~10nm。
第一本征非晶硅层204的厚度为8~10nm,例如为8nm、9nm、10nm。通常在异质结电池中作为i层使用。
N型硅基材205的厚度为250μm。N型硅基材205为正方形,其尺寸为2cm×2cm。N型硅基材205的电阻率为5Ω·cm。
第二本征非晶硅层206的厚度为10~12nm,例如为10nm、11nm、12nm。通常在异质结电池中作为i层使用。
N型非晶硅层207的厚度为8~15nm。
中间透明导电层208的材料为氧化铟锡,厚度为15~30nm。
空穴传输层209的材料为CuNiO,厚度为20~50nm。
包含咔唑的衍生物的有机物层210的材料为[2-(9H-咔唑-9-基)乙基]膦酸(简称2PACz)。
钙钛矿层211的材料为Cs 0.05MA 0.1FA 0.85Pb(I 0.85Br 0.15) 3
第一电子传输层212的材料为碳原子数为60的(C 60)的富勒烯,厚度为10nm。
第二电子传输层213的材料为氧化锡,厚度为15nm。
正面透明导电层214的材料为氧化铟锡,厚度为80~100nm。
正面导电栅线215为银栅线。银栅线的高度为20μm,宽度为50μm。每两条银栅线之间的距离为2mm。
上述图2所示的钙钛矿类型的太阳能电池,可以按照以下步骤制备。
1.在厚度为200μm的片状的N型硅基材的两个主表面上,通过等离子体增强化学气相沉积分别沉积一层本征非晶硅层,厚度分别为8nm和10nm,沉积时的工艺条件是,首先通过氩气,然后硅烷和磷烷,流量为200sccm,RF为50k~15MHz,温度为200℃,功率为45W。该N型硅基材的尺寸为2cm×2cm,电阻率为5Ω·cm。N型硅基材作为上述图2中的N型硅基材205,所形成的本征非晶硅层分别作为上述图2中的第一本征非晶硅层204和第二本征非晶硅层206。
需要说明的是,N型硅基材在进行沉积之前,经过制绒处理,即,通过浓度为2%的氢氧化钾溶液,在80℃下对N型硅基材腐蚀15分钟,进行制绒。
2.在厚度为8nm的第一本征非晶硅层204上沉积一层P型非晶硅,形成P型非晶硅层203,厚度为15nm。在厚度为10nm的第二本征非晶硅层206上沉积一层N型非晶硅,形成N型非晶硅层207,厚度为20nm。
3.在N型非晶硅层207上通过磁控溅射方式制备氧化铟锡(靶材In:Sn=90:10),厚度为20nm。该氧化铟锡层作为上述图2中的中间透明导电层208。
4.在氧化铟锡层(中间透明导电层208)上通过磁控溅射方式沉积一层CuNiO(靶材Cu:Ni=95:5),厚度为30nm。该CuNiO层作为上述图2中的空穴传输层209。
5.在CuNiO层(空穴传输层209)的表面以3000转/分的速度旋涂一层2PACz的乙醇溶液,在100℃下退火1分钟,其中所涂布的2PACz的乙醇溶液的浓度为1mg/ml,从而形成包含咔唑的衍生物的有机物层210。
6.将碘化铅、溴化铯分别以0.105nm/s和0.015nm/s的速度热蒸发沉积于包含咔唑的衍生物的有机物层210的表面,形成碘化铅和溴化铯的薄膜,并且将FAI、MABr以10:1的摩尔比溶于乙醇中,总浓度为1.5mmol/ml,充分溶解后经过口径为0.45μm的聚四氟乙烯滤膜过滤,再以4000转/分的转速旋涂在上述碘化铅和溴化铯的薄膜上,保持旋转30秒,然后在150℃的温度、50%的相对湿度下加热60分钟,完成钙钛矿层211的制备。该钙钛矿层为钙钛矿类型的太阳能电池的光吸收层。
7.在钙钛矿层211上依次热蒸发20nm的碳原子数为60的(C 60)富勒烯,形成第一 电子传输层212。
8.在第一电子传输层212上通过原子层沉积的方式制备一层氧化锡层,厚度为20nm,从而形成第二电子传输层213。
9.使用反应等离子体沉积分别在P型非晶硅层203和第二电子传输层213上分别制备厚度为100nm和20nm的氧化铟锡层,分别作为背面透明导电层202和正面透明导电层214.
10.在背面透明导电层202和正面透明导电层214上使用丝网印刷制备银栅线,银栅线高度为20μm,宽度为50μm。银栅线之间距离为2mm。
实施例3
实施例3与实施例2的差别仅在于在步骤5中,实施例3的步骤5中所用的材料为Me-4PACz的乙醇溶液代替2PACz的乙醇溶液。其中Me-4PACz的乙醇溶液的浓度为1mg/ml。
Me-4PACz的化学名称为[4-(3,6-二甲基-9H-咔唑-9-基)丁基]膦酸([4-(3,6-dimethyl-9H-carbazol-9-yl)butyl]phosphonic acid)。Me-4PACz的分子式如下所示。
Figure PCTCN2022110418-appb-000007
对比例1
对比例1与实施例1差别仅在于,没有步骤2。
对比例2
对比例2与实施例2的区别仅在于,没有步骤5。
对比例3
对比例3与实施例2的区别仅在于,没有步骤4。
实施例4
实施例4与实施例2的区别仅在于,在步骤1中,N型硅基材没有经过制绒处理。
对比例4
对比例4与实施例1的区别仅在于,在步骤5中使用Spiro-TTB代替2PACz的乙醇溶液,浓度不变。Spiro-TTB采用真空热蒸发。
Spiro-TTB的化学名称为2,2’,7,7’-四(二-对甲苯基氨基)螺-9,9’-二芴;2,2’,7,7’-四(N,N-二对甲苯基)氨基-9,9-螺二芴。
对比例5
对比例5与实施例2的区别仅在于,在步骤5中使用Spiro-TTB代替2PACz的乙醇溶液,浓度不变。Spiro-TTB采用真空热蒸发。
性能测试:
在标准测试条件(AM1.5,25℃,1000W/m 2)下测试电池的性能,分别测试了短路电流密度(J sc)、开路电压(V oc)、转换效率(Eff)和填充因子(FF)。本申请各实施例的性能测试结果见表1。
表1本申请各实施例与对比例的IV性能(电流电压性能)对比
Figure PCTCN2022110418-appb-000008
Figure PCTCN2022110418-appb-000009
从表中可以看出,采用本申请的空穴传输层的太阳能电池具有更高的转化效率等特性。
虽然以上叙述了本申请的一些实施方式,但所述的内容仅为便于理解本申请而采用的实施方式,并非用以限定本申请的保护范围。任何本申请所属领域内的技术人员,在不脱离本申请所公开的技术方案的原理的前提下,可以在实施的形式及细节上进行任何的修改与变化,这些修改与变化仍属于本申请的保护范围。

Claims (15)

  1. 一种钙钛矿类型的太阳能电池,包含电子传输层、钙钛矿层和空穴传输层,所述空穴传输层包含可作为空穴传输材料的无机物,其特征在于,在所述空穴传输层上形成有包含咔唑的衍生物的有机物层。
  2. 根据权利要求1所述的太阳能电池,其特征在于,所述咔唑的衍生物的分子式中包含咔唑分子主体以及与咔唑分子主体的氮元素直接或者间接连接的有机酸基团,所述有机酸基团优选为膦酸基团、羧酸基团、磺酸基团、亚磺酸基团、硫羧酸基团,其中咔唑分子主体上的氢原子可以被取代。
  3. 根据权利要求1或2所述的太阳能电池,其特征在于,所述咔唑的衍生物为分子式(I)所示的化合物:
    Figure PCTCN2022110418-appb-100001
    其中,R1和R2各自独立地选自氢原子、烷基、烷氧基、烯基和炔基,R1和R2可以相同或者不同,虚线表示连接基团,优选地,所述连接基团是指连接磷原子和氮原子的基团,例如所述连接基团是被取代的或者未被取代的碳原子数为1以上优选为2以上更优选为3以上的亚烷基、被取代的或者未被取代的碳原子数为2以上优选为3以上的亚烯基等;
    优选地,所述R1和R2各自独立地为甲基或甲氧基;优选地,所述R1和R2均为甲基;优选地,所述R1和R2均为氢原子。
  4. 根据权利要求1~3中任一项所述的太阳能电池,其特征在于,所述可作为空穴传输材料的无机物选自氧化镍、碘化亚铜、硫氰酸亚铜、氧化铜、氧化亚铜、硫化铜中的至少 一种或两种以上。
  5. 根据权利要求1~4中任一项所述的太阳能电池,其特征在于,所述空穴传输层的厚度为1nm以上且100nm以下,例如2nm、3nm、4nm、5nm、6nm、7nm、8nm、9nm、10nm、20nm、30nm、40nm、50nm、60nm、70nm、80nm、90nm;优选地,所述包含咔唑的衍生物的有机物层的厚度为0.01nm以上且5nm以下,例如4.5nm、4nm、3.5nm、3nm、2.5nm、2nm、1.5nm、1nm、0.5nm、0.3nm、0.2nm、0.1nm。
  6. 根据权利要求1~5中任一项所述的太阳能电池,其特征在于,所述可作为空穴传输材料的无机物包含氧化镍;优选地,所述可作为空穴传输材料的无机物是以氧化镍为主体的材料,其中不掺杂或者掺杂有三价镍、铜、钴、锰、镧、钇、镁、锂、锌、铟、锡中的任意一种或两种以上。
  7. 根据权利要求1~6中任一项所述的太阳能电池,其特征在于,所述电子传输层包含第一电子传输层和/或第二电子传输层;优选地,所述第一电子传输层和/或第二电子传输层包含可作为电子传输材料的无机物和/或有机物;优选地,所述无机物选自二氧化钛、氧化锡、氧化锌中的至少一种或两种以上;优选地,所述有机物选自富勒烯及其衍生物中的至少一种或两种以上,更优选地,所述富勒烯为碳原子数为60的富勒烯(C 60富勒烯)或碳原子数为70的富勒烯(C 70富勒烯)。
  8. 根据权利要求1~7中任一项所述的太阳能电池,其特征在于,所述钙钛矿层为包含具有ABX 3结构的材料的层,其中:
    A为第一阳离子,包含但不限于Rb +、Na +、K +、Ca 2+、Ba 2+、Cs +、HN=CHNH 3 +、CH 3NH 3 +、Pb 2+、Sr 2+、Sn 2+中的任意一种或其组合;
    B为第二阳离子,包含但不限于Ti 4+、Nb 5+、Mn 4+、Fe 3+、Ta 5+、Th 4+、Zr 4+、Pb 2+、Sr 2+、Sn 2+、Cu 2+中的任意一种或其组合;
    X选自卤素阴离子、O 2-、S 2-中的任意一种或其组合;
    优选地,所述卤素阴离子包含F -、Cl -、Br -和I -中的至少一种;
    优选地,所述具有ABX 3结构的材料选自CH 3NH 3PbI 3、HN=CHNH 3PbI 3、Cs x((HN=CHNH 3) y(CH 3NH 3) 1-y) 1-xPb(I zBr 1-z) 3中的至少一种或两种以上,其中0<x≤0.25、0.5<y≤1、0.75≤z<1。
  9. 一种钙钛矿类型的太阳能电池的制备方法,包含以下步骤:
    (a)提供基材;
    (b)在所述基材上形成电子传输层;
    (c)在所述电子传输层上形成钙钛矿层;
    (d)在所述钙钛矿层上形成空穴传输层,所述空穴传输层包含可作为空穴传输材料的无机物,在所述空穴传输层上形成包含咔唑的衍生物的有机物层;
    或者
    (a)提供基材;
    (b)在所述基材上形成空穴传输层;所述空穴传输层包含可作为空穴传输材料的无机物,在所述空穴传输层上形成包含咔唑的衍生物的有机物层;
    (c)在所述空穴传输层的有机物层上形成钙钛矿层;
    (d)在所述钙钛矿层上形成电子传输层。
  10. 根据权利要求9所述的制备方法,其特征在于,所述咔唑的衍生物的分子式中包含咔唑分子主体以及与咔唑分子主体的氮元素直接或者间接连接的有机酸基团,所述有机酸基团优选为膦酸基团、羧酸基团、磺酸基团、亚磺酸基团、硫羧酸基团,其中咔唑分子主体上的氢原子可以被取代。
  11. 根据权利要求9或10所述的制备方法,其特征在于,所述咔唑的衍生物为分子式(I)所示的化合物:
    Figure PCTCN2022110418-appb-100002
    其中,R1和R2各自独立地选自氢原子、烷基、烷氧基、烯基和炔基,R1和R2可以相同或者不同,虚线表示连接基团,优选地,所述连接基团是指连接磷原子和氮原子的基团,例如所述连接基团是被取代的或者未被取代的碳原子数为1以上优选为2以上更优选 为3以上的亚烷基、被取代的或者未被取代的碳原子数为2以上优选为3以上的亚烯基等;
    优选地,所述R1和R2各自独立地为甲基或甲氧基;优选地,所述R1和R2均为甲基;优选地,所述R1和R2均为氢原子。
  12. 一种钙钛矿类型的太阳能电池,包含:
    作为基底的P型或N型晶体硅太阳能电池,
    依次形成在所述晶体硅太阳能电池的一个主表面的电子传输层、钙钛矿层和空穴传输层,或空穴传输层、钙钛矿层和电子传输层;
    所述空穴传输层包含可作为空穴传输材料的无机物,其特征在于,在所述空穴传输层上形成有包含咔唑的衍生物的有机物层。
  13. 根据权利要求12所述的太阳能电池,其特征在于,所述咔唑的衍生物的分子式中包含咔唑分子主体以及与咔唑分子主体的氮元素直接或者间接连接的有机酸基团,所述有机酸基团优选为膦酸基团、羧酸基团、磺酸基团、亚磺酸基团、硫羧酸基团,其中咔唑分子主体上的氢原子可以被取代。
  14. 根据权利要求12或13所述的太阳能电池,其特征在于,所述咔唑的衍生物为分子式(I)所示的化合物:
    Figure PCTCN2022110418-appb-100003
    其中,R1和R2各自独立地选自氢原子、烷基、烷氧基、烯基和炔基,R1和R2可以相同或者不同,虚线表示连接基团,优选地,所述连接基团是指连接磷原子和氮原子的基团,例如所述连接基团是被取代的或者未被取代的碳原子数为1以上优选为2以上更优选 为3以上的亚烷基、被取代的或者未被取代的碳原子数为2以上优选为3以上的亚烯基等;
    优选地,所述R1和R2各自独立地为甲基和甲氧基;优选地,所述R1和R2均为甲基;优选地,所述R1和R2均为氢原子。
  15. 根据权利要求12~14中任一项所述的太阳能电池,其特征在于,所述晶体硅太阳能电池为异质结类型的太阳能电池。
PCT/CN2022/110418 2021-11-12 2022-08-05 一种钙钛矿类型的太阳能电池及其制备方法 WO2023082730A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202111343015 2021-11-12
CN202111343015.4 2021-11-12
CN202111544558.2 2021-12-16
CN202111544558.2A CN116133497A (zh) 2021-11-12 2021-12-16 一种钙钛矿类型的太阳能电池及其制备方法

Publications (2)

Publication Number Publication Date
WO2023082730A1 true WO2023082730A1 (zh) 2023-05-19
WO2023082730A9 WO2023082730A9 (zh) 2024-05-16

Family

ID=86297833

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/110418 WO2023082730A1 (zh) 2021-11-12 2022-08-05 一种钙钛矿类型的太阳能电池及其制备方法

Country Status (2)

Country Link
CN (1) CN116133497A (zh)
WO (1) WO2023082730A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116669449A (zh) * 2023-08-02 2023-08-29 宁德时代新能源科技股份有限公司 钙钛矿太阳能电池及其制备方法以及用电设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180366539A1 (en) * 2016-03-09 2018-12-20 The Regents Of The University Of California Graded bandgap perovskite solar cell
CN109768170A (zh) * 2019-01-23 2019-05-17 原秀玲 一种钙钛矿太阳能电池的制备方法
CN112103392A (zh) 2019-06-18 2020-12-18 北京宏泰创新科技有限公司 一种复合空穴传输层及包含其的钙钛矿太阳能电池
CN112469727A (zh) * 2018-04-25 2021-03-09 赫姆霍茨中心柏林材料与能源有限公司 用于钙钛矿太阳能电池的空穴传输的自组织的单层

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180366539A1 (en) * 2016-03-09 2018-12-20 The Regents Of The University Of California Graded bandgap perovskite solar cell
CN112469727A (zh) * 2018-04-25 2021-03-09 赫姆霍茨中心柏林材料与能源有限公司 用于钙钛矿太阳能电池的空穴传输的自组织的单层
CN109768170A (zh) * 2019-01-23 2019-05-17 原秀玲 一种钙钛矿太阳能电池的制备方法
CN112103392A (zh) 2019-06-18 2020-12-18 北京宏泰创新科技有限公司 一种复合空穴传输层及包含其的钙钛矿太阳能电池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XIAO LIXIN ET AL.: "''Perovskite Solar Cells", October 2016, PEKING UNIVERSITY PRESS

Also Published As

Publication number Publication date
WO2023082730A9 (zh) 2024-05-16
CN116133497A (zh) 2023-05-16

Similar Documents

Publication Publication Date Title
Fang et al. Perovskite-based tandem solar cells
US10515767B2 (en) Mesoscopic framework for organic-inorganic perovskite based photoelectric conversion device and method for manufacturing the same
Wali et al. Tin oxide as an emerging electron transport medium in perovskite solar cells
Ibarra Michel et al. Carrier‐selective contacts using metal compounds for crystalline silicon solar cells
Wang et al. Recent progress of inorganic hole transport materials for efficient and stable perovskite solar cells
CN111081878A (zh) 一种钙钛矿/硅基异质结叠层太阳能电池及其制备方法
EP3306691B1 (en) Organic-inorganic composite solar cell
KR102093431B1 (ko) 페로브스카이트 태양전지 및 이의 제조방법
CN112018100A (zh) 一种硅/钙钛矿叠层太阳能电池
WO2023185464A1 (zh) 一种钙钛矿/硅异质结叠层太阳能电池及其制备方法
Meng et al. Environmental risks and strategies for the long-term stability of carbon-based perovskite solar cells
Yan et al. Recent progress of metal-halide perovskite-based tandem solar cells
CN115084384A (zh) 一种具有阻挡插层的钙钛矿太阳能电池及其制备方法
CN108346742A (zh) 基于聚苯乙烯界面层提高光伏性能的钙钛矿电池及其制备
WO2023098022A1 (zh) 一种钙钛矿材料层的制备方法和电池器件
Principe et al. Inverted perovskite solar cells: the emergence of a highly stable and efficient architecture
WO2023082730A1 (zh) 一种钙钛矿类型的太阳能电池及其制备方法
Lyu et al. Counter electrodes for perovskite solar cells: Materials, interfaces and device stability
Jiang et al. Recent advances of monolithic all‐perovskite tandem solar cells: from materials to devices
CN209087911U (zh) 一种钙钛矿/晶硅叠层太阳能电池
WO2024040920A1 (zh) 一种空穴传输层及其应用
KR102511394B1 (ko) 페로브스카이트 전구체 용액을 이용한 페로브스카이트 태양전지
CN114388696B (zh) 一种光吸收材料、其制备方法及光伏电池
CN114678391A (zh) 一种叠层太阳电池
CN114914365A (zh) 一种具有倒置结构的钙钛矿/钙钛矿叠层太阳电池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022891539

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022891539

Country of ref document: EP

Effective date: 20240327