WO2023082667A1 - 缓启动电路及其控制方法和供电设备 - Google Patents

缓启动电路及其控制方法和供电设备 Download PDF

Info

Publication number
WO2023082667A1
WO2023082667A1 PCT/CN2022/103453 CN2022103453W WO2023082667A1 WO 2023082667 A1 WO2023082667 A1 WO 2023082667A1 CN 2022103453 W CN2022103453 W CN 2022103453W WO 2023082667 A1 WO2023082667 A1 WO 2023082667A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
energy storage
storage unit
slow start
switch
Prior art date
Application number
PCT/CN2022/103453
Other languages
English (en)
French (fr)
Inventor
吴宇坤
忽培青
张善纯
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023082667A1 publication Critical patent/WO2023082667A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection

Definitions

  • the present application relates to the field of electronic technology, in particular to a slow start circuit, a control method thereof, and a power supply device.
  • the slow start circuit can be applied to input ports that need to be hot-swapped or have capacitive loads. Due to the short-circuit of the capacitor at the moment of power-on, the current of the input circuit can instantly increase to infinity, which may cause the protection of the input device and the ignition of the switch. The more serious situation is that the device on the input circuit is damaged. Therefore, it is necessary to Add a slow start circuit to the circuit.
  • a metal oxide semiconductor (MOS) tube is connected in parallel with a capacitor, so that the slow start can be realized through the Miller platform of the MOS tube, so as to achieve the effect of current limiting slow start.
  • MOS tube will work in the linear region for a long time, that is, it is necessary to select a device with a larger safe operating area (Safe Operating Area, SOA), and the package size of the MOS tube with a larger SOA is also larger, which will undoubtedly increase the layout. Area and cost, and then affect the size occupied by the entire slow start circuit.
  • SOA Safe Operating Area
  • the present application provides a slow start circuit, its control method and power supply equipment, which can play the role of slow start, and reduce the occupied size and cost.
  • the embodiment of the present application provides a slow start circuit
  • the slow start circuit is used for start control in the process of the power supply module supplying power to the load equipment
  • the slow start circuit includes a controller, a switch unit, and a freewheeling unit , energy storage unit, energy release unit and controller.
  • the controller is coupled to the switch unit; the switch unit is coupled between the first end of the power module and the energy release unit, and the energy release unit is coupled to the energy storage unit The second end; the first end of the freewheeling unit is coupled to the second end of the power module and the first end of the energy storage unit, and the second end of the freewheeling unit is coupled to the switch The node between the element and the energy release element.
  • the controller is used to control the switch unit to be turned on, so that the power module charges the energy storage unit via the energy release unit.
  • the controller is used to control the switching unit to be turned off, so that the energy releasing unit discharges the energy storage unit via the freewheeling unit.
  • Adopting the slow start circuit of the embodiment of the present application reduces the requirement of the slow start circuit on the switch unit, the switch unit can select a device with a smaller SOA, and the package size of the switch with a larger SOA is also smaller, thereby reducing the switch unit.
  • the size of the circuit board is reduced, thereby reducing the volume of the entire slow start circuit and reducing the volume of the power supply equipment.
  • the controller is coupled to the energy storage unit for detecting the voltage of the energy storage unit. Based on such a design, the controller acquires the state of the energy storage unit in real time, and can control the state of the switch unit according to the state of the energy storage unit, thereby slowly starting the power supply equipment to The power supply process of the load equipment improves the safety performance of the power supply equipment.
  • the controller controls the switch unit to be turned on, so as to control the The power module supplies power to the load device.
  • the controller can end the slow start of the power supply device and control the switch unit to always be in the on state. In this way, the power module can supply power to the load device.
  • the switch unit is any one of a field effect transistor, a transistor, a triode, and a relay.
  • the energy storage unit is a capacitor
  • the energy release unit is an inductor
  • the freewheeling unit includes a diode, the cathode of the diode is coupled to the second terminal of the power module and the first terminal of the energy storage unit, and the anode of the diode is coupled to A node between the switch unit and the energy release unit.
  • an embodiment of the present application provides a slow start circuit, which is used for start control in the process of the power supply module supplying power to load equipment, and the slow start circuit includes a controller, a switch unit, and a freewheeling unit , energy storage unit, energy release unit and controller.
  • the controller is coupled to the switch unit; the switch unit is coupled between the first end of the power module and the first end of the energy storage unit, and the first end of the energy release unit is coupled Connected to the second end of the power module and the first end of the freewheeling unit, the second end of the energy release unit is coupled to the second end of the energy storage unit; the second end of the freewheeling unit
  • the two terminals are coupled to a node between the switch unit and the first terminal of the energy storage unit.
  • the controller is used to control the switch unit to be turned on, so that the power module charges the energy storage unit via the energy release unit.
  • the controller is used to control the switching unit to be turned off, so that the energy releasing unit discharges the energy storage unit via the freewheeling unit.
  • Adopting the slow start circuit of the embodiment of the present application reduces the requirement of the slow start circuit on the switch unit, the switch unit can select a device with a smaller SOA, and the package size of the switch with a larger SOA is also smaller, thereby reducing the switch unit.
  • the size of the circuit board is reduced, thereby reducing the volume of the entire slow start circuit and reducing the volume of the power supply equipment.
  • the embodiments of the present application also provide a control method of a slow start circuit
  • the slow start circuit includes a controller, a switch unit, a freewheeling unit, an energy storage unit and an energy release unit; the slow start circuit
  • the control method includes: controlling the switch unit to be turned on within a first time period to control the power module to charge the energy storage unit; controlling the switch unit to be turned off within a second time period to control the energy release A cell discharges the energy storage unit via the freewheeling unit.
  • the first time period and the second time period are a working cycle.
  • control method in the embodiment of the present application it is possible to slowly start the power supply process of the power supply equipment to the load equipment, and improve the safety performance of the power supply equipment.
  • control method of the slow start circuit in the embodiment of the present application has the advantages of simple logic control and low cost.
  • control method of the slow start circuit further includes: detecting the voltage of the energy storage unit; if the voltage of the energy storage unit is equal to the input voltage of the power supply device, or the energy storage unit The voltage difference between the voltage of the power supply device and the input voltage of the power supply device is less than a preset threshold value, and the switch unit is controlled to always work in a conduction state.
  • the controller can control the switch unit to always work in the conduction state, and then the slow start of the power supply device by the slow start circuit can be ended, that is, the slow start process ends.
  • the embodiment of the present application further provides a power supply device, the power supply device includes a power module and the aforementioned slow start circuit.
  • the slow start circuit, its control method, and the power supply device provided in the embodiments of the present application can slowly start the power supply process from the power supply device to the load device, and improve the safety performance of the power supply device.
  • the switching tube of the embodiment of the present application can choose a device with a smaller SOA, and the package size of the MOS tube with a larger SOA is also smaller, thereby reducing the size of the switching tube and the size of the circuit board, thereby reducing the size of the entire slow start circuit.
  • the volume can also reduce the volume of the power supply equipment.
  • Fig. 1 is a schematic structural diagram of a power supply device provided according to an embodiment of the present application.
  • Fig. 2 is a circuit diagram of a slow start circuit provided according to an embodiment of the present application.
  • FIG. 3 is a graph showing the relationship between voltage and time of an energy storage unit during charging according to an embodiment of the present application.
  • FIG. 4 is a diagram showing the relationship between states and time of a switch unit according to an embodiment of the present application.
  • FIG. 5 is another circuit diagram of a slow start circuit provided according to an embodiment of the present application.
  • FIG. 6 is another circuit diagram of a slow start circuit provided according to an embodiment of the present application.
  • FIG. 7 is another circuit diagram of a slow start circuit provided according to an embodiment of the present application.
  • FIG. 8 is a diagram showing the relationship between the state and time of the switch unit according to the embodiment of the present application.
  • FIG. 9 is a flow chart of a control method for a slow start circuit according to an embodiment of the present application.
  • the slow start circuit can use a (Metal Oxide Semiconductor, MOS) tube in parallel with a capacitor, and realize slow start through the Miller platform of the MOS tube, so as to realize current limiting and slow start.
  • MOS Metal Oxide Semiconductor
  • the MOS tube works in the linear region, and the requirements for the MOS tube are very high, that is, it is necessary to select a device with a larger safe operating area (Safe Operating Area, SOA), and the MOS tube with a larger SOA
  • SOA Safe Operating Area
  • the package size is also relatively large, which will undoubtedly increase the layout area and cost, thereby affecting the size occupied by the entire slow-start circuit.
  • the embodiments of the present application provide a slow start circuit and power supply equipment.
  • the slow start circuit can be used for start control in the process of power supply from the power supply module to the load device, and can play the role of slow start. And reduce the occupied size and reduce the cost.
  • FIG. 1 is a schematic structural diagram of a power supply device 100 provided by an embodiment of the present application.
  • the power supply device 100 in this embodiment may be coupled to the load device 200 .
  • the power supply device 100 may be used to supply power to the load device 200 .
  • the power supply device 100 may include a slow start circuit 10 and a power module 20 .
  • the slow start circuit 10 may be coupled between the power module 20 and the load device 200 . It can be understood that the slow start circuit 10 can play a role of slow start when the power supply module 20 supplies power to the load device 200, and the slow start circuit 10 can reduce the occupied size and circuit board size, thereby reducing the volume of the entire slow start circuit and reducing costs.
  • the power supply device 100 may further include a power conversion module 30 .
  • the power conversion module 30 may be coupled between the slow start circuit 10 and the load device 200 .
  • the power conversion module 30 may be a voltage converter that converts an input voltage and effectively outputs a fixed voltage.
  • the power conversion module 30 may be a DC-DC converter.
  • the power supply device 100 can use the power conversion module 30 to convert the input power (for example -48V) into the required power, for example, 5V, 3.3V, 2.5V and other power, thus, the power conversion The power converted by the module 30 can supply power to the load device 200 .
  • the slow start circuit 10 may be connected before the power conversion module 30 .
  • the slow start circuit 10 can slowly power on the power supply, thereby reducing the current impact on the power conversion module 30 .
  • FIG. 2 is a schematic circuit structure diagram of a slow start circuit 10 provided by an embodiment of the present application.
  • the slow start circuit 10 in this embodiment may include a switch unit 11 , a freewheel unit 12 , an energy storage unit 13 , a controller 14 , an energy release unit 15 and a current detection unit 16 .
  • the power module 20 in this embodiment may include an output terminal VCC1 and an output terminal VCC2. It can be understood that the voltage of the output terminal VCC1 may be higher than the voltage of the output terminal VCC2.
  • the embodiment of the present application does not specifically limit the voltage level of the power supply, nor does it limit the positive or negative of the power supply, for example, it may be a positive voltage or a negative voltage.
  • the output terminal VCC1 when the power supply module 20 is a negative voltage power supply, the output terminal VCC1 may be 0V, and the output terminal VCC2 may be -48V.
  • the switch unit 11 may be coupled between the output terminal VCC2 and the first end of the energy release unit 15, and the second end of the energy release unit 15 may be coupled to the first end of the energy storage unit 13.
  • Two terminals and the power conversion module 30, the first terminal of the freewheeling unit 12 can be coupled to the output terminal VCC1 and the first terminal of the energy storage unit 13, the second terminal of the freewheeling unit 12 A terminal may be coupled to a node between the switching unit 11 and the energy releasing unit 15 .
  • the controller 14 can be coupled to the switch unit 11 to control the switch unit 11 to be turned off and on.
  • the power module 20 can charge the energy storage unit 13 .
  • the energy releasing unit 15 can discharge the energy storage unit 13 via the freewheeling unit 12 .
  • the switching unit 11 may include a switch Q1, and the freewheeling unit 12 may include a diode D1.
  • the energy storage unit 13 may include a capacitor C1
  • the energy release unit 15 may include an inductor L1.
  • the switch Q1 may be a semiconductor power device, for example, the switch Q1 may be any one of a field effect transistor, a transistor, and a triode.
  • the field effect transistor is a Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET), referred to as a MOS transistor, and the type of the MOS transistor may include PMOS and NMOS.
  • MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
  • the first terminal of the switch Q1 may be coupled to the first terminal of the inductor L1, the second terminal of the switch Q1 may be coupled to the output terminal VCC2 of the power module 20, and the third terminal of the switch Q1
  • the terminal can also be coupled to the first pin 1 of the controller 14 .
  • the third terminal of the switch Q1 may be the control terminal of the switch Q1.
  • the first pin 1 of the controller 14 can output a signal to the switch Q1 to control the state of the switch Q1.
  • the anode of the diode D1 can be coupled to the node between the second end of the switch Q1 and the first end of the inductor L1, and the cathode of the diode D1 can be coupled to the output end of the power module 20 VCC1.
  • the second end of the inductor L1 may be coupled to the first end of the capacitor C1 and the power conversion module 30 .
  • the second terminal of the capacitor C1 can be coupled to the output terminal VCC1 of the power module 20 and the power conversion module 30 .
  • the second pin 2 of the controller 14 may be coupled to the current detection unit 16, and the current detection unit 16 may also be coupled to the second end of the switch Q1 and the anode of the diode D1.
  • the third pin 3 of the controller 14 can be coupled to a node between the first end of the capacitor C1 and the power conversion module 30 . Based on such a design, the controller 14 can detect the voltage of the capacitor C1 in real time, and can control the state of the switch Q1 according to the voltage of the capacitor C1.
  • the first output end of the power conversion module 30 is coupled to the first end of the capacitor C2, and the second output end of the power conversion module 30 is coupled to the second end of the capacitor C2.
  • the capacitor C1 may be used for energy storage.
  • the switch Q1 can be used to delay the charging of the capacitor C1, thereby preventing a large current from charging the capacitor C1, thereby realizing overcurrent protection.
  • the controller 14 can be used to control the state of the switch Q1.
  • the controller 14 can control the switch Q1 to be turned on or off.
  • FIG. 3 it is a schematic diagram of charging the capacitor C1. It can be seen that when the power supply device 100 starts to be powered on, the slow start circuit 10 can work and periodically control the switch Q1 to be on or off. In the off state, the capacitor C1 is further charged, and the voltage of the capacitor C1 gradually increases. When the voltage of the capacitor C1 is equal to the input voltage of the power supply device 100, or the voltage difference between the voltage of the capacitor C1 and the input voltage of the power supply device 100 is smaller than a voltage threshold, the controller 14 may control The switch Q1 always works in a conduction state.
  • the controller 14 may control the switch Q1 to be in the on state during the first time period, and then, the controller 14 will also control the switch Q1 to be in the off state during the second time period.
  • the first time period and the second time period may be a duty cycle T. That is to say, the controller 14 can control the switch Q1 to work in a switch mode within a plurality of working periods T.
  • the switch for slow start control can be divided into the following processes: in the t1 time period (for example, t1 can be the time period of 0.4s), the control The controller 14 can control the switch Q1 to be turned on.
  • the current output by the power module 20 can flow through the capacitor C1, the inductor L1 and the switch Q1 through the output terminal VCC1.
  • the current can charge the capacitor C1, and the current of the inductor L1 is also increasing, that is, the inductor L1 is in the process of storing energy.
  • the controller 14 may also control the switch Q1 to turn off, wherein in the time period t2, the power module 20 is turned off and the slow start
  • the switch Q1 to turn off, wherein in the time period t2, the power module 20 is turned off and the slow start
  • the electrical connection of the circuit 10 the energy stored in the inductor L1 can form a freewheeling path through the diode D1, and at the same time charge the capacitor C1.
  • the controller 14 controls the switch Q1 to be turned on, and at this time, the current output by the power module 20 can flow through the output terminal VCC1
  • the capacitor C1, the inductor L1 and the switch Q1 the current can charge the capacitor C1.
  • the controller 14 may control the switch Q1 to be turned off, and at this time, the energy stored in the inductor L1 may form a freewheeling path through the diode D1 , to charge the capacitor C1.
  • the controller 14 can control the switch Q1 to be turned on or off within a plurality of working periods T.
  • the power module 20 can charge the capacitor C1.
  • the controller 14 may control the The switch Q1 is always working in the conduction state.
  • the controller 14 can set the slow start time of the slow start circuit 10 according to the capacity of the capacitor C1, for example, the controller 14 can control the switch Q1 to turn on and turn-off times, as well as the turn-on time and turn-off time in each duty cycle T.
  • the controller 14 may control the switch Q1 as follows: the switch Q1 works in 4 duty cycles T, and the duration of each duty cycle is 3s. In the first working cycle T1, the switch Q1 may be in the on state for 0.5s and be in the off state for 2.5s. In the second working cycle T2, the switch Q1 may be in the on state within 0.6s and in the off state within 2.4s.
  • the switch Q1 may be in the on state within 0.7s and in the off state within 2.3s.
  • the switch Q1 may be in the on state within 0.8s and in the off state within 2.2s.
  • the control The device 14 will control the switch Q1 to always be in the conduction state, that is, the slow start process ends.
  • the embodiments of the present application can slowly start the power supply process of the power supply equipment to the load equipment, which improves the safety performance of the power supply equipment.
  • the slow start circuit in the embodiment of the present application can set the time of slow start, which has the advantages of simple logic control, simple circuit structure and low cost.
  • the switch Q1 in the embodiment of the present application can work in the pulse width modulation (Pulse width modulation, PWM) mode, which reduces the requirements of the slow start circuit for the MOS tube. That is, the MOS transistor of the embodiment of the present application can choose a device with a smaller SOA, and the package size of the MOS transistor with a larger SOA is also smaller, thereby reducing the size of the MOS transistor and the size of the circuit board, thereby reducing the entire slow start circuit. The volume, reduce the volume of power supply equipment.
  • PWM pulse width modulation
  • the slow start circuit 10 can not only play the role of slow start, but also reduce the occupied size and cost.
  • FIG. 5 is a schematic circuit structure diagram of a slow start circuit 10 provided by another embodiment of the present application.
  • the first end of the switch Q1 may be coupled to the first end of the power module 20, and the first end of the switch Q1
  • the second terminal may be coupled to the first terminal of the capacitor C1 and the power conversion module 30, the third terminal of the switch Q1 may be coupled to the first pin 1 of the controller 14, wherein the The third terminal of the switch Q1 is the control terminal of the switch Q1.
  • the cathode of the diode D1 can be coupled to the second terminal of the switch Q1, the anode of the diode D1 can be coupled to the first terminal of the inductor L1, and the second terminal of the inductor L1 can be coupled to the The second end of the capacitor C1 is connected to the power conversion module 30 .
  • the second pin 2 of the controller 14 can be coupled to the current detection unit 16, and the current detection unit 16 can be coupled between the anode of the diode D1 and the output terminal VCC2, the control
  • the third pin 3 of the device 14 can be coupled to the first end of the capacitor C1 to detect the voltage of the capacitor C1.
  • the switch Q1 in the embodiment shown in FIG. 5 can also work in a pulse width modulation (Pulse width modulation, PWM) mode, which can reduce the requirements of the slow start circuit on the MOS tube, and can reduce the MOS tube.
  • PWM pulse width modulation
  • the size of the circuit board is reduced, thereby reducing the volume of the entire slow start circuit and reducing the volume of the power supply equipment.
  • FIG. 6 is a schematic circuit structure diagram of a slow start circuit 10 provided by another embodiment of the present application.
  • the first end of the inductor L1 may be coupled to the output terminal VCC1 of the power module 20, and the inductor L1
  • the second end may be coupled to the first end of the capacitor C1 and the power conversion module 30, the cathode of the diode D1 may be coupled to the first end of the inductor L1, and the anode of the diode D1 may be coupled to connected to the second terminal of the switch Q1, the first terminal of the switch Q1 can be coupled to the output terminal VCC2 of the power module 20, and the third terminal of the switch Q1 can be coupled to the controller 14
  • the first pin 1 of the switch Q1, wherein the third terminal of the switch Q1 may be the control terminal of the switch Q1, and the second terminal of the capacitor C1 may be coupled to the power conversion module 30 .
  • the second pin 2 of the controller 14 can be coupled to the current detection unit 16, and the current detection unit 16 can also be coupled between the anode of the diode D1 and the second end of the switch Q1 , the third pin 3 of the controller 14 may be coupled to the first end of the capacitor C1.
  • the switch Q1 in the embodiment shown in FIG. 6 can also work in a pulse width modulation (Pulse width modulation, PWM) mode, which can reduce the requirements of the slow start circuit on the MOS tube, and can reduce the MOS tube.
  • PWM pulse width modulation
  • the size of the circuit board is reduced, thereby reducing the volume of the entire slow start circuit and reducing the volume of the power supply equipment.
  • FIG. 7 is a schematic circuit structure diagram of a slow start circuit 10 provided by another embodiment of the present application.
  • the first end of the switch Q1 may be coupled to the output end VCC1 of the power module 20, and the first end of the switch Q1
  • the second terminal may be coupled to the first terminal of the inductor L1
  • the third terminal of the switch Q1 may be coupled to the first pin 1 of the controller 14, and the second terminal of the inductor L1 may be coupled to Connected to the power conversion module 30, the first end of the inductor L1 can also be coupled to the first end of the capacitor C1
  • the cathode of the diode D1 can be coupled to the second end of the switch Q1 and
  • the node between the first end of the inductor L1 and the anode of the diode D1 may be coupled to the output end VCC2 of the power module 20 and the second end of the capacitor C1.
  • the second pin 2 of the controller 14 can be coupled to the current detection unit 16, and the current detection unit 16 can be coupled between the anode of the diode D1 and the output terminal VCC2, the control
  • the third pin 3 of the device 14 can be coupled to the first end of the capacitor C1 to detect the voltage of the capacitor C1.
  • the controller 14 can control the state of the switch Q1 according to the detected voltage of the capacitor C1, when the input voltage of the power module 20 and the voltage of the capacitor C1 When the voltage difference between the voltages is less than the voltage threshold, the slow start of the power supply equipment may be terminated. For example, taking the voltage threshold value of 1V as an example for illustration, if the input voltage of the power module 20 is 48V, and the voltage of the capacitor C1 is 46V, at this time, the input voltage and the voltage of the capacitor C1 The voltage difference between them is 2V, that is, the voltage difference between the two is greater than the voltage threshold. At this time, the power supply device 100 has not completed the slow start of the circuit, and the controller 14 controls the switch Q1 to be PWM control mode.
  • the power supply device 100 can complete the slow start of the circuit, and the controller 14 controls the switch Q1 to be always on.
  • the slow start circuit in the embodiment of the present application can end the slow start when it detects that the voltage difference between the input voltage and the voltage of the capacitor C1 reaches the voltage threshold, and has strong self-adaptive ability.
  • the controller 14 may control the switch Q1 in different time periods. For example, as shown in FIG. 8, during the time period t1, the controller 14 controls the switch Q1 to work in PWM mode, thereby charging the capacitor C1, so that the voltage of the capacitor C1 reaches a Voltage value.
  • the controller 14 can detect the current of the power supply device through the current detection unit 16, and can control the state of the switch Q1 according to the detected current. For example, if the detected current reaches 1A, the switch Q1 is controlled to be turned off. At this time, the capacitor C1 is still in the charging state, and the slow start will not end until the voltage difference between the input voltage and the voltage of the capacitor C1 is less than the voltage threshold, and the switch Q1 is controlled to be always on state.
  • the embodiments of the present application can slowly start the power supply process of the power supply device to the load device, which improves the safety performance of the power supply device.
  • the MOS transistor of the embodiment of the present application can choose a device with a smaller SOA, and the packaging size of the MOS transistor with a larger SOA is also smaller, thereby reducing the size of the MOS transistor and the size of the circuit board, thereby reducing the size of the entire slow start circuit.
  • the volume can also reduce the volume of the power supply equipment.
  • FIG. 9 is a flowchart of a control method for a slow start circuit provided by an embodiment of the present application.
  • the control method of the slow start circuit may include the following steps:
  • Step S91 Control the switch unit to be turned on within the first time period, and then control the power module to charge the energy storage unit.
  • the controller 14 may control the switch unit 11 to be in a conducting state within a first time period.
  • the controller 14 may control the switch Q1 to be turned on.
  • the current output by the power module 20 may flow through the energy storage unit 13 , the energy release unit 15 and the switch unit 11 via the output terminal VCC1 .
  • the current can charge the energy storage unit 13 , and the current of the energy release unit 15 is also increasing, that is, the inductor L1 is in the process of storing energy.
  • Step S92 Control the switch unit to turn off within the second time period, and then control the energy release unit to discharge the energy storage unit via the freewheeling unit.
  • the first time period and the second time period are a working cycle.
  • the controller 14 may control the switch unit 11 to be in an off state within the second time period. For example, during the time period t2 (for example, t2 may be a time period of 1.6s), the controller 14 may also control the switch unit 11 to turn off. Wherein, within the time period t2, the power supply module 20 shuts off the electrical connection with the slow start circuit 10, the energy stored in the energy release unit 15 can form a freewheeling path through the freewheeling unit 12, and at the same time Charge the energy storage unit 13 .
  • the first time period and the second time period may be a duty cycle T. That is to say, the controller 14 can control the switch unit to work in the on and off modes within a plurality of working periods T.
  • the first time period may be a time period of 0.4s
  • the second time period may be a time period of 1.6s
  • the first time period may be a time period of 0.3s
  • the second time period may be a time period of 1.7s.
  • Step S93 Detect the voltage of the energy storage unit.
  • the third pin 3 of the controller 14 may be coupled to the connection between the first end of the energy storage unit 13 and the power conversion module 30 node.
  • the controller 14 can detect the voltage of the energy storage unit 13 in real time, and can control the state of the switch unit 11 according to the voltage of the energy storage unit 13 .
  • Step S94 If the voltage of the energy storage unit is equal to the input voltage of the power supply equipment, or the voltage difference between the voltage of the energy storage unit and the input voltage of the power supply equipment is less than a preset threshold, control the switch unit to keep work in the conduction state.
  • the controller 14 may control the switching unit 11 to be turned on or off within a plurality of working periods T.
  • the power module 20 can charge the energy storage unit 13 .
  • the control The controller 14 can control the switch unit 11 to always work in the conduction state, then the slow start of the power supply equipment by the slow start circuit 10 can be ended, and the controller 14 will control the switch Q1 to always be in conduction state, that is, the slow start process is over.
  • the embodiment of the present application can slowly start the power supply process of the power supply equipment to the load equipment, which improves the safety performance of the power supply equipment.
  • the control method of the slow start circuit in the embodiment of the present application has the advantages of simple logic control and low cost.
  • the switching unit in the embodiments of the present application can work in the pulse width modulation mode, which reduces the requirements of the slow start circuit for the MOS transistors, that is, the MOS transistors of the embodiments of the present application
  • the tube can choose a device with a smaller SOA, and the package size of the MOS tube with a larger SOA is also smaller, thereby reducing the size of the MOS tube and the size of the circuit board, thereby reducing the volume of the entire slow start circuit and reducing the power supply equipment. volume.
  • the slow start circuit 10 can not only play the role of slow start, but also reduce the occupied size and cost.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

提供一种缓启动电路(10)及其控制方法和供电设备(100),缓启动电路(10)包括控制器(14)、开关单元(11)、续流单元(12)、储能单元(13)和释能单元(15),开关单元(11)耦接于电源模块(20)的第一端与释能单元(15)之间,释能单元(15)耦接于储能单元(13)的第二端,续流单元(12)的第一端耦接于电源模块(20)的第二端和储能单元(13)的第一端,续流单元(12)的第二端耦接于开关单元(11)和释能单元(15)之间的节点,在第一时间段,控制器(14)用于控制开关单元(11)导通,以使电源模块(20)经由释能单元(15)为储能单元(13)充电;在第二时间段,控制器(14)用于控制开关单元(11)关断,以使释能单元(15)经由续流单元(12)对储能单元(13)放电;其中,第一时间段和第二时间段为一个工作周期,缓启动电路(10)及其控制方法和供电设备(100)能够起到缓启动的作用,并且减小所占的尺寸,降低成本。

Description

缓启动电路及其控制方法和供电设备
相关申请的交叉引用
本申请要求于2021年11月10日提交中国专利局、申请号为202111328984.2、申请名称为“缓启动电路及其控制方法和供电设备”的中国专利的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电子技术领域,尤其涉及一种缓启动电路及其控制方法和供电设备。
背景技术
缓启动电路可以应用于需要进行热插拔或者带容性负载的输入端口。由于在上电的瞬间电容短路,输入回路的电流可以瞬间增大到无穷大,可能导致输入设备保护和开关打火的情况发生,更为严重的情况是导致输入回路上器件损坏,因此必要在输入回路上增加缓启动电路。
现有的缓启动电路在金属氧化物半导体(Metal Oxide Semiconductor,MOS)管并联电容,由此可以通过MOS管的米勒平台来实现缓启,从而达到限流缓启的效果。但是,该MOS管将长时间工作在线性区,即需要选择较大安全工作区(Safe Operating Area,SOA)的器件,并且SOA较大的MOS管的封装尺寸也较大,这无疑会增加布局面积和成本,进而影响整个缓启动电路所占的尺寸。
发明内容
有鉴于此,本申请提供一种缓启动电路及其控制方法和供电设备,能够起到缓启动的作用,并且减小所占的尺寸,降低成本。
第一方面,本申请的实施例提供一种缓启动电路,所述缓启动电路用于电源模块向负载设备供电过程中的启动控制,所述缓启动电路包括控制器、开关单元、续流单元、储能单元、释能单元和控制器。所述控制器耦接于所述开关单元;所述开关单元耦接于所述电源模块的第一端与所述释能单元之间,所述释能单元耦接于所述储能单元的第二端;所述续流单元的第一端耦接于所述电源模块的第二端和所述储能单元的第一端,所述续流单元的第二端耦接于所述开关单元和所述释能单元之间的节点。在第一时间段,所述控制器用于控制所述开关单元导通,以使所述电源模块经由所述释能单元为所述储能单元充电。在第二时间段,所述控制器用于控制所述开关单元关断,以使所述释能单元经由所述续流单元对所述储能单元放电。其中,所述第一时间段和所述第二时间段为一个工作周期。
采用本申请的实施例的缓启动电路,降低了缓启动电路对该开关单元的要求,该开关单元可以选择较小SOA的器件,并且SOA较大的开关的封装尺寸也较小,从而降低开关的尺寸,减小电路板的尺寸,从而缩小整个缓启动电路的体积,降低供电设备的体积。
在一种可能的设计中,所述控制器耦接于所述储能单元,以用于检测所述储能单元的电压。基于这样的设计,所述控制器实时地获取所述储能单元的状态,并可以根据所述储能单元的状态来控制所述开关单元的状态,由此来实现缓慢启动所述供电设备向所述负载设备的供电过程,提升了所述供电设备的安全性能。
在一种可能的设计中,当所述储能单元的电压与所述电源模块的输入电压之间的差值小于电压阈值时,所述控制器控制所述开关单元导通,以控制所述电源模块对所述负载设备进行供电。基于这样的设计,在所述储能单元的电压接近所述电源模块的输入电压时,所述控制器可以结束所述供电设备的缓启动,并控制所述开关单元一直处于导通状态。这样,所述电源模块可以向所述负载设备供电。
在一种可能的设计中,所述开关单元为场效应管、晶体管、三极管、继电器中的任意一种。
在一种可能的设计中,所述储能单元为电容,所述释能单元为电感。
在一种可能的设计中,所述续流单元包括二极管,所述二极管的阴极耦接于所述电源模块的第二端和所述储能单元的第一端,所述二极管的阳极耦接于所述开关单元和所述释能单元之间的节点。
第二方面,本申请的实施例提供一种缓启动电路,所述缓启动电路用于电源模块向负载设备供电过程中的启动控制,所述缓启动电路包括控制器、开关单元、续流单元、储能单元、释能单元和控制器。所述控制器耦接于所述开关单元;所述开关单元耦接于所述电源模块的第一端与所述储能单元的第一端之间,所述释能单元的第一端耦接于所述电源模块的第二端和所述续流单元的第一端,所述释能单元的第二端耦接于所述储能单元的第二端;所述续流单元的第二端耦接于所述开关单元与所述储能单元的第一端之间的节点。在第一时间段,所述控制器用于控制所述开关单元导通,以使所述电源模块经由所述释能单元为所述储能单元充电。在第二时间段,所述控制器用于控制所述开关单元关断,以使所述释能单元经由所述续流单元对所述储能单元放电。其中,所述第一时间段和所述第二时间段为一个工作周期。
采用本申请的实施例的缓启动电路,降低了缓启动电路对该开关单元的要求,该开关单元可以选择较小SOA的器件,并且SOA较大的开关的封装尺寸也较小,从而降低开关的尺寸,减小电路板的尺寸,从而缩小整个缓启动电路的体积,降低供电设备的体积。
第三方面,本申请的实施例还提供一种缓启动电路的控制方法,所述缓启动电路包括控制器、开关单元、续流单元、储能单元和释能单元;所述缓启动电路的控制方法包括:控制所述开关单元在第一时间段内导通,以控制电源模 块为所述储能单元充电;控制所述开关单元在第二时间段内关断,以控制所述释能单元经由所述续流单元对所述储能单元放电。其中,所述第一时间段和所述第二时间段为一个工作周期。
采用本申请实施例中的控制方法,可以实现缓慢启动所述供电设备向所述负载设备的供电过程,提升了供电设备的安全性能。此外,本申请实施例中的缓启动电路的控制方法,具有逻辑控制简单、成本低的优点。
在一种可能的设计中,所述缓启动电路的控制方法还包括:检测所述储能单元的电压;若所述储能单元的电压与供电设备的输入电压相等,或者所述储能单元的电压和供电设备的输入电压之间的压差小于预设阈值,控制所述开关单元一直工作在导通状态。
基于这样的设计,所述控制器可以控制所述开关单元一直工作在导通状态,则可以结束所述缓启动电路对所述供电设备的缓启动,即缓启动过程结束。
第三方面,本申请的实施例还提供一种供电设备,所述供电设备包括电源模块和上述所述的缓启动电路。
本申请实施例提供的缓启动电路及其控制方法和供电设备,可以实现缓慢启动所述供电设备向所述负载设备的供电过程,提升了所述供电设备的安全性能。本申请实施例的开关管可以选择较小SOA的器件,并且SOA较大的MOS管的封装尺寸也较小,从而降低开关管的尺寸,减小电路板的尺寸,从而缩小整个缓启动电路的体积,还可以降低供电设备的体积。
附图说明
图1为根据本申请实施例提供的供电设备的结构示意图。
图2为根据本申请实施例提供的缓启动电路的电路图。
图3为根据本申请实施例的储能单元在充电时的电压与时间关系图。
图4为根据本申请实施例的开关单元的状态与时间关系图。
图5为根据本申请实施例提供的缓启动电路的另一电路图。
图6为根据本申请实施例提供的缓启动电路的另一电路图。
图7为根据本申请实施例提供的缓启动电路的另一电路图。
图8为根据本申请实施例的开关单元的状态与时间关系图。
图9为根据本申请实施例提供的缓启动电路的控制方法的流程图。
主要元件符号说明
供电设备 100
负载设备 200
缓启动电路 10
开关单元 11
续流单元 12
储能单元 13
控制器 14
释能单元 15
电流检测单元 16
电源模块 20
电源转换模块 30
开关 Q1
电容 C1-C2
电感 L1
二极管 D1
如下具体实施方式将结合上述附图进一步说明本申请。
具体实施方式
需要说明的是,当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中设置的元件。当一个元件被认为是“设置在”另一个元件,它可以是直接设置在另一个元件上或者可能同时存在居中设置的元件。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
在通信系统中,有一些负载设备中存在电容。例如电源、路由器、交换机等。该种负载设备在上电瞬间,负载设备中的电容容易发生短路,一旦发生短路,供电回路中的电流可以在瞬间形成峰值,由此可能导致前级电路过载重启,甚至会导致供电回路上器件损坏。因此,在供电回路上增加缓启动电路非常重要。
在一种场景下,缓启动电路可以采用(Metal Oxide Semiconductor,MOS)管并联电容的方式,并通过该MOS管的米勒平台实现缓启,从而来实现限流和缓启动。然而,在该种方式中,该MOS管工作在线性区,对MOS管的要求非常高,即需要选择较大安全工作区(Safe Operating Area,SOA)的器件,并且SOA较大的MOS管的封装尺寸也较大,这无疑会增加布局面积和成本,进而影响整个缓启动电路所占的尺寸。
针对上述场景中的问题,本申请的实施例提供一种缓启动电路和供电设备,该缓启动电路可以用于在电源模块向负载设备供电过程中的启动控制,能够起到缓启动的作用,并且减小所占的尺寸,降低成本。
请参阅图1,图1所示为本申请的一个实施例提供的一种供电设备100的结构示意图。本实施例中的所述供电设备100可以耦接于所述负载设备200。在一种可能的场景下,所述供电设备100可以用于为所述负载设备200供电。
具体地,所述供电设备100可以包括缓启动电路10和电源模块20。所述缓启动电路10可以耦接于所述电源模块20和所述负载设备200之间。可以理解,所述缓启动电路10可以在所述电源模块20为所述负载设备200供电过程中, 起到缓启动的作用,并且该缓启动电路10可以减小所占的尺寸,减少电路板的尺寸,从而缩小整个缓启动电路的体积,降低成本。
可以理解,在一种可能的实现方式中,所述供电设备100还可以进一步包括电源转换模块30。所述电源转换模块30可以耦接于所述缓启动电路10和所述负载设备200之间。在一个实施例中,所述电源转换模块30可以是一种转变输入电压并有效输出固定电压的电压转换器。例如,所述电源转换模块30可以为DC-DC转换器。举例说明,所述供电设备100可以采用所述电源转换模块30将输入电源(例如-48V)转换为所需要的电源,例如,5V、3.3V、2.5V等电源,由此,所述电源转换模块30转换后的电源可以为所述负载设备200供电。可以理解,为了降低所述负载设备在插接上电时的电流冲击,本申请的实施例可以在所述电源转换模块30之前连接有所述缓启动电路10。
可以理解,由于所述供电设备100的输入电压和输出电压之间的压差较高,并且电路中又存在用于滤波和防止瞬间掉电的大电容,存在充放电,因此在所述电源模块20插入上电时,可能会对-48V电源造成冲击,瞬时产生的大电流将会造成-48V电源的电压出现跌落,可能影响到其它器件的正常工作。同时,由于瞬时大电流的原因,单板插入时在接插件上会产生明显的打火现象,引起电磁干扰,并对接插件造成腐蚀。因此,为了解决上述技术问题,需要控制-48V电源的上电速率,即需要增加所述缓启动电路10。当发生热插拔时,所述缓启动电路10可以使电源缓慢上电,从而降低对电源转换模块30的电流冲击。
请参阅图2,图2所示为本申请的一个实施例提供的一种缓启动电路10的电路结构示意图。
本实施例中的所述缓启动电路10可以包括开关单元11、续流单元12、储能单元13、控制器14、释能单元15和电流检测单元16。
可以理解,本实施例中的所述电源模块20可以包括输出端VCC1和输出端VCC2。可以理解,所述输出端VCC1的电压可以高于输出端VCC2的电压。本申请的实施例具体不限定电源的电压等级,也不限定电源的正负,例如可以为正电压,也可以为负电压。例如,在一种实现方式中,当所述电源模块20为负电压电源时,所述输出端VCC1可以为0V,所述输出端VCC2可以为-48V。
所述开关单元11可以耦接于所述输出端VCC2与所述释能单元15的第一端之间,所述释能单元15的第二端可以耦接于所述储能单元13的第二端和所述电源转换模块30,所述续流单元12的第一端可以耦接于所述输出端VCC1和所述储能单元13的第一端,所述续流单元12的第二端可以耦接于所述开关单元11和所述释能单元15之间的节点。
所述控制器14可以耦接于所述开关单元11,以控制所述开关单元11的关断与导通。例如,当所述开关单元11导通时,所述电源模块20可以对所述储能单元13充电。当所述开关单元11关断时,所述释能单元15可以经由所述续流单元12对所述储能单元13放电。
示例性地,在一个实施例中,所述开关单元11可以包括开关Q1,所述续流单元12可以包括二极管D1。所述储能单元13可以包括电容C1,所述释能 单元15可以包括电感L1。可以理解,在一种可能的实现方式中,所述开关Q1可以为半导体功率器件,例如,所述开关Q1可以为场效应管、晶体管和三极管中的任意一种。其中,所述场效应管即金属氧化物半导体场效应晶体管(Metal-Oxide-Semiconductor Field-Effect Transistor,MOSFET),简称MOS管,MOS管的类型可以包括PMOS和NMOS。
所述开关Q1的第一端可以耦接于所述电感L1的第一端,所述开关Q1的第二端可以耦接于所述电源模块20的输出端VCC2,所述开关Q1的第三端还可以耦接于所述控制器14的第一引脚1。其中,所述开关Q1的第三端可以为所述开关Q1的控制端。其中,所述控制器14的第一引脚1可以输出信号给所述开关Q1,以控制所述开关Q1的状态。
所述二极管D1的阳极可以耦接于所述开关Q1的第二端与所述电感L1的第一端之间的节点,所述二极管D1的阴极可以耦接于所述电源模块20的输出端VCC1。所述电感L1的第二端可以耦接于所述电容C1的第一端和所述电源转换模块30。所述电容C1的第二端可以耦接于所述电源模块20的输出端VCC1和所述电源转换模块30。在一种可能的实现方式中,所述控制器14的第二引脚2可以耦接于所述电流检测单元16,所述电流检测单元16还可以耦接于所述开关Q1的第二端与所述二极管D1的阳极之间。所述控制器14的第三引脚3可以耦接于所述电容C1的第一端与所述电源转换模块30之间的节点。基于这样的设计,所述控制器14可以实时地检测所述电容C1的电压,并可以根据所述电容C1的电压控制所述开关Q1的状态。所述电源转换模块30的第一输出端耦接于电容C2的第一端,所述电源转换模块30的第二输出端耦接于电容C2的第二端。
本申请的实施例中,所述电容C1可以用于进行储能。所述开关Q1可以用于对所述电容C1的充电进行延时,由此可以防止大电流给所述电容C1充电,进而可以实现过流保护。
所述控制器14可以用于控制所述开关Q1的状态。例如,所述控制器14可以控制所述开关Q1的导通或关断。
如图3所示,为所述电容C1的充电示意图,可以看出,当所述供电设备100开始上电时,所述缓启动电路10可以工作周期性地控制所述开关Q1在导通或关断状态,进而为所述电容C1充电,所述电容C1的电压慢慢增大。当所述电容C1的电压与所述供电设备100的输入电压相等,或者所述电容C1电压和所述供电设备100的输入电压之间的压差小于电压阈值时,所述控制器14可以控制所述开关Q1一直工作在导通状态。
更进一步,所述控制器14可以在第一时间段内控制所述开关Q1处于导通状态,接着,所述控制器14还将在第二时间段内控制所述开关Q1处于关断状态。可以理解,所述第一时间段和第二时间段可以为一个工作周期T。也就是说,所述控制器14可以在多个工作周期T内控制所述开关Q1工作在开关的模式下。
以一个工作周期T为2s进行举例说明,如图4所示,用于缓启动控制的开 关开启可以分为以下过程:在t1时间段(例如t1可以为0.4s的时间段),所述控制器14可以控制所述开关Q1导通,在t1时间段内,所述电源模块20输出的电流可以经由所述输出端VCC1流经电容C1、所述电感L1以及所述开关Q1。此时,所述电流可以为所述电容C1充电,并且所述电感L1的电流也在增大,即所述电感L1在进行储能的过程。
在t2时间段(例如t2可以为1.6s的时间段),所述控制器14还可以控制所述开关Q1关断,其中在t2时间段内,所述电源模块20关断与所述缓启动电路10的电连接,所述电感L1中储存的能量可以通过所述二极管D1形成续流通路,同时给所述电容C1充电。
接着,在t3时间段(例如t3可以为1.5s的时间段),所述控制器14控制所述开关Q1导通,此时所述电源模块20输出的电流可以经由所述输出端VCC1流经电容C1、所述电感L1以及所述开关Q1,所述电流可以为所述电容C1充电。
在t4时间段(例如t4可以为1.5s的时间段),所述控制器14可以控制所述开关Q1关断,此时所述电感L1中储存的能量可以通过所述二极管D1形成续流通路,以为所述电容C1充电。
所述控制器14可以控制所述开关Q1在多个工作周期T内的导通或者关断。在所述开关Q1导通和关断的过程中,所述电源模块20均可以为电容C1进行充电。当所述电容C1的电压与所述供电设备100的输入电压相等,或者所述电容C1电压和所述供电设备100的输入电压之间的压差小于阈值时,所述控制器14可以控制所述开关Q1一直工作在导通状态。
在可能的一种实现方式中,所述控制器14可以根据所述电容C1的容量,来设置所述缓启动电路10的缓启动时间,例如所述控制器14可以控制所述开关Q1导通与关断次数,以及每个工作周期T内的导通时间和关断时间。举例说明,所述控制器14可以对开关Q1进行如下控制:所述开关Q1的工作在4个工作周期T,并且每个工作周期的时间均为3s。在第一个工作周期T1中,所述开关Q1可以在0.5s时间内处于导通状态,并且在2.5s时间内处于关断状态。在第二个工作周期T2中,所述开关Q1可以在0.6s时间内处于导通状态,并且在2.4s时间内处于关断状态。在第三个工作周期T3中,所述开关Q1可以在0.7s时间内处于导通状态,并且在2.3s时间内处于关断状态。在第四个工作周期T4中,所述开关Q1可以在0.8s时间内处于导通状态,并且在2.2s时间内处于关断状态。接着,在第四个工作周期T4之后,所述电容C1的电压充电与所述电源模块20的输入电压相等,则可以结束所述缓启动电路10对所述供电设备的缓启动,所述控制器14将会控制所述开关Q1一直处于导通状态,即缓启动过程结束。基于这样的设计,本申请的实施例可以实现了缓慢启动所述供电设备向所述负载设备的供电过程,提升了所述供电设备的安全性能。此外,本申请实施例中的缓启动电路可以设置缓启动的时间,具有逻辑控制简单、电路结构简单、成本低的优点。
相较于现有技术中MOS管长期工作于线性区,本申请的实施例中开关Q1 可以工作于脉冲宽度调制(Pulse width modulation,PWM)模式,即降低了缓启动电路对MOS管的要求,即本申请实施例的MOS管可以选择较小SOA的器件,并且SOA较大的MOS管的封装尺寸也较小,从而降低MOS管的尺寸,减小电路板的尺寸,从而缩小整个缓启动电路的体积,降低供电设备的体积。
基于本申请实施例的设计,所述缓启动电路10不仅可以能够起到缓启动的作用,还可以减小所占的尺寸,降低成本。
请参阅图5,图5所示为本申请的另一个实施例提供的一种缓启动电路10的电路结构示意图。
与图2示出的实施例的区别在于,本实施例中,如图5所示,所述开关Q1的第一端可以耦接于所述电源模块20的第一端,所述开关Q1的第二端可以耦接于所述电容C1的第一端和所述电源转换模块30,所述开关Q1的第三端可以耦接于所述控制器14的第一引脚1,其中,所述开关Q1的第三端为所述开关Q1的控制端。所述二极管D1的阴极可以耦接于所述开关Q1的第二端,所述二极管D1的阳极可以耦接于所述电感L1的第一端,所述电感L1的第二端可以耦接于所述电容C1的第二端和所述电源转换模块30。所述控制器14的第二引脚2可以耦接于所述电流检测单元16,所述电流检测单元16可以耦接于所述二极管D1的阳极和所述输出端VCC2之间,所述控制器14的第三引脚3可以耦接于所述电容C1的第一端,以检测所述电容C1的电压。
可以理解,图5示出的实施例中的所述开关Q1也可以工作于脉冲宽度调制(Pulse width modulation,PWM)模式,可以降低所述缓启动电路对MOS管的要求,可以减小MOS管的尺寸,减小电路板的尺寸,从而缩小整个缓启动电路的体积,降低供电设备的体积。
请参阅图6,图6所示为本申请的另一个实施例提供的一种缓启动电路10的电路结构示意图。
与图2示出的实施例的区别在于,本实施例中,如图6所示,所述电感L1的第一端可以耦接于所述电源模块20的输出端VCC1,所述电感L1的第二端可以耦接于所述电容C1的第一端和所述电源转换模块30,所述二极管D1的阴极可以耦接于所述电感L1的第一端,所述二极管D1的阳极可以耦接于所述开关Q1的第二端,所述开关Q1的第一端可以耦接于所述电源模块20的输出端VCC2,所述开关Q1的第三端可以耦接于所述控制器14的第一引脚1,其中,所述开关Q1的第三端可以为所述开关Q1的控制端,所述电容C1的第二端可以耦接于所述电源转换模块30。所述控制器14的第二引脚2可以耦接于所述电流检测单元16,所述电流检测单元16还可以耦接于所述二极管D1的阳极与所述开关Q1的第二端之间,所述控制器14的第三引脚3可以耦接于所述电容C1的第一端。
可以理解,图6示出的实施例中的所述开关Q1也可以工作于脉冲宽度调制(Pulse width modulation,PWM)模式,可以降低所述缓启动电路对MOS管的要求,可以减小MOS管的尺寸,减小电路板的尺寸,从而缩小整个缓启动电路的体积,降低供电设备的体积。
请参阅图7,图7所示为本申请的另一个实施例提供的一种缓启动电路10的电路结构示意图。
与图2示出的实施例的区别在于,本实施例中,如图7所示,所述开关Q1的第一端可以耦接于所述电源模块20的输出端VCC1,所述开关Q1的第二端可以耦接于所述电感L1的第一端,所述开关Q1的第三端可以耦接于所述控制器14的第一引脚1,所述电感L1的第二端可以耦接于所述电源转换模块30,所述电感L1的第一端还可以耦接于所述电容C1的第一端,所述二极管D1的阴极可以耦接于所述开关Q1的第二端与所述电感L1的第一端之间的节点,所述二极管D1的阳极可以耦接于所述电源模块20的输出端VCC2和所述电容C1的第二端。所述控制器14的第二引脚2可以耦接于所述电流检测单元16,所述电流检测单元16可以耦接于所述二极管D1的阳极和所述输出端VCC2之间,所述控制器14的第三引脚3可以耦接于所述电容C1的第一端,以检测所述电容C1的电压。
在一种可能的实现方式中,所述控制器14可以根据检测到的所述电容C1的电压,来控制所述开关Q1的状态,当所述电源模块20的输入电压与所述电容C1的电压之间的压差小于电压阈值时,则可以结束所述供电设备的缓启动。例如,以所述电压阈值为1V为例进行说明,若所述电源模块20的输入电压为48V,并且所述电容C1的电压为46V,此时,所述输入电压与所述电容C1的电压之间的压差为2V,即两者之间的压差大于所述电压阈值,此时,所述供电设备100还未完成电路的缓启动,所述控制器14控制所述开关Q1为PWM控制模式。若所述电源模块20的输入电压为48V,所述电容C1的电压为47.5V,此时,所述输入电压与所述电容C1的电压之间的压差为0.5V,即两者之间的压差小于所述电压阈值,此时,所述供电设备100可以完成电路的缓启动,所述控制器14控制所述开关Q1为一直导通状态。基于这样的设计,本申请实施例中的缓启动电路在检测到所述输入电压与所述电容C1的电压之间的压差到了电压阈值时,即可结束缓启动,自适应能力强。
在另一种可能的实现方式中,所述控制器14可以在不同时间段对所述开关Q1进行控制。举例说明,如图8所示,在时间段t1内,所述控制器14控制所述开关Q1工作在PWM模式,由此可以对所述电容C1充电,而使得所述电容C1的电压达到一个电压值。在时间段t2内,所述控制器14可以通过所述电流检测单元16来检测所述供电设备的电流,并可以根据检测到的电流来控制所述开关Q1的状态。举例说明,若检测到的电流达到1A,则控制所述开关Q1关断。此时,所述电容C1还处于充电状态,直到所述输入电压与所述电容C1的电压之间的压差小于所述电压阈值,才会结束缓启动,控制所述开关Q1为一直导通状态。
基于以上的实施例,本申请的实施例可以实现缓慢启动所述供电设备向所述负载设备的供电过程,提升了所述供电设备的安全性能。本申请实施例的MOS管可以选择较小SOA的器件,并且SOA较大的MOS管的封装尺寸也较小,从而降低MOS管的尺寸,减小电路板的尺寸,从而缩小整个缓启动电路的体积, 还可以降低供电设备的体积。
请参阅图9,图为本申请的一个实施例提供的缓启动电路的控制方法的流程图。所述缓启动电路的控制方法可以包括以下步骤:
步骤S91:控制开关单元在第一时间段内导通,进而控制电源模块为储能单元充电。
以图2示出的缓启动电路10为例进行说明,所述控制器14可以在第一时间段内控制所述开关单元11处于导通状态。例如,在t1时间段(例如t1可以为0.4s的时间段),所述控制器14可以控制所述开关Q1导通。其中,在t1时间段内,所述电源模块20输出的电流可以经由所述输出端VCC1流经所述储能单元13、所述释能单元15以及所述开关单元11。此时,所述电流可以为所述储能单元13充电,并且所述释能单元15的电流也在增大,即所述电感L1在进行储能的过程。
步骤S92:控制开关单元在第二时间段内关断,进而控制释能单元经由续流单元对储能单元放电。其中,所述第一时间段和所述第二时间段为一个工作周期。
所述控制器14可以在第二时间段内控制所述开关单元11处于关断状态。例如,在t2时间段(例如t2可以为1.6s的时间段),所述控制器14还可以控制所述开关单元11关断。其中,在t2时间段内,所述电源模块20关断与所述缓启动电路10的电连接,所述释能单元15中储存的能量可以通过所述续流单元12形成续流通路,同时给所述储能单元13充电。
可以理解,所述第一时间段和第二时间段可以为一个工作周期T。也就是说,所述控制器14可以在多个工作周期T内控制所述开关单元工作在开和关的模式下。以一个工作周期T为2s进行举例说明,第一时间段可以为0.4s的时间段,第二时间段可以为1.6s的时间段。或者,第一时间段可以为0.3s的时间段,第二时间段可以为1.7s的时间段。
步骤S93:检测所述储能单元的电压。
以图2示出的缓启动电路10为例进行说明,所述控制器14的第三引脚3可以耦接于所述储能单元13的第一端与所述电源转换模块30之间的节点。由此,所述控制器14可以实时地检测所述储能单元13的电压,并可以根据所述储能单元13的电压控制所述开关单元11的状态。
步骤S94:若所述储能单元的电压与供电设备的输入电压相等,或者所述储能单元的电压和供电设备的输入电压之间的压差小于预设阈值,则控制所述开关单元一直工作在导通状态。
可以理解,本实施例中,所述控制器14可以控制所述开关单元11在多个工作周期T内的导通或者关断。在所述开关单元11导通和关断的过程中,所述电源模块20均可以为储能单元13进行充电。当所述储能单元13的电压与所述供电设备100的输入电压相等,或者所述储能单元13的电压和所述供电设备100的输入电压之间的压差小于阈值时,所述控制器14可以控制所述开关单元11一直工作在导通状态,则可以结束所述缓启动电路10对所述供电设备的缓启动, 所述控制器14将会控制所述开关Q1一直处于导通状态,即缓启动过程结束。基于这样的设计,本申请的实施例可以实现了缓慢启动所述供电设备向所述负载设备的供电过程,提升了所述供电设备的安全性能。此外,本申请实施例中的缓启动电路的控制方法,具有逻辑控制简单、成本低的优点。
相较于现有技术中MOS管长期工作于线性区,本申请的实施例中开关单元可以工作于脉冲宽度调制模式,即降低了缓启动电路对MOS管的要求,即本申请实施例的MOS管可以选择较小SOA的器件,并且SOA较大的MOS管的封装尺寸也较小,从而降低MOS管的尺寸,减小电路板的尺寸,从而缩小整个缓启动电路的体积,降低供电设备的体积。
基于本申请实施例的设计,所述缓启动电路10不仅可以能够起到缓启动的作用,还可以减小所占的尺寸,降低成本。
以上所述,仅是本申请的较佳实施方式而已,并非对本申请任何形式上的限制,虽然本申请已是较佳实施方式揭露如上,并非用以限定本申请,任何熟悉本专业的技术人员,在不脱离本申请技术方案范围内,当可利用上述揭示的技术内容做出些许更动或修饰为等同变化的等效实施方式,但凡是未脱离本申请技术方案内容,依据本申请的技术实质对以上实施方式所做的任何简单修改、等同变化与修饰,均仍属于本申请技术方案的范围内。

Claims (10)

  1. 一种缓启动电路,其特征在于,所述缓启动电路用于电源模块向负载设备供电过程中的启动控制,所述缓启动电路包括控制器、开关单元、续流单元、储能单元和释能单元;
    所述控制器耦接于所述开关单元;所述开关单元耦接于所述电源模块的第一端与所述释能单元之间,所述释能单元耦接于所述储能单元的第二端;所述续流单元的第一端耦接于所述电源模块的第二端和所述储能单元的第一端,所述续流单元的第二端耦接于所述开关单元和所述释能单元之间的节点;
    在第一时间段,所述控制器用于控制所述开关单元导通,以使所述电源模块经由所述释能单元为所述储能单元充电;
    在第二时间段,所述控制器用于控制所述开关单元关断,以使所述释能单元经由所述续流单元对所述储能单元放电;
    其中,所述第一时间段和所述第二时间段为一个工作周期。
  2. 如权利要求1所述的缓启动电路,其特征在于,
    所述控制器耦接于所述储能单元,以用于检测所述储能单元的电压。
  3. 如权利要求1或2所述的缓启动电路,其特征在于,
    当所述储能单元的电压与所述电源模块的输入电压之间的差值小于电压阈值时,所述控制器控制所述开关单元导通,以控制所述电源模块对所述负载设备进行供电。
  4. 如权利要求1-3任意一项所述的缓启动电路,其特征在于,
    所述开关单元为场效应管、晶体管、三极管、继电器中的任意一种。
  5. 如权利要求1-4任意一项所述的缓启动电路,其特征在于,
    所述储能单元为电容,所述释能单元为电感。
  6. 如权利要求1-5任意一项所述的缓启动电路,其特征在于,
    所述续流单元包括二极管,所述二极管的阴极耦接于所述电源模块的第二端和所述储能单元的第一端,所述二极管的阳极耦接于所述开关单元和所述释能单元之间的节点。
  7. 一种缓启动电路,其特征在于,所述缓启动电路用于电源模块向负载设备供电过程中的启动控制,所述缓启动电路包括控制器、开关单元、续流单元、储能单元、释能单元和控制器;
    所述控制器耦接于所述开关单元;所述开关单元耦接于所述电源模块的第一端与所述储能单元的第一端之间,所述释能单元的第一端耦接于所述电源模块的第二端和所述续流单元的第一端,所述释能单元的第二端耦接于所述储能单元的第二端;所述续流单元的第二端耦接于所述开关单元与所述储能单元的第一端之间的节点;
    在第一时间段,所述控制器用于控制所述开关单元导通,以使所述电源模块经由所述释能单元为所述储能单元充电;
    在第二时间段,所述控制器用于控制所述开关单元关断,以使所述释能单元经由所述续流单元对所述储能单元放电;
    其中,所述第一时间段和所述第二时间段为一个工作周期。
  8. 一种缓启动电路的控制方法,其特征在于,所述缓启动电路包括控制器、开关单元、续流单元、储能单元和释能单元;所述缓启动电路的控制方法包括:
    控制所述开关单元在第一时间段内导通,以控制电源模块为所述储能单元充电;
    控制所述开关单元在第二时间段内关断,以控制所述释能单元经由所述续流单元对所述储能单元放电;
    其中,所述第一时间段和所述第二时间段为一个工作周期。
  9. 如权利要求8所述的缓启动电路的控制方法,其特征在于,还包括:
    检测所述储能单元的电压;
    若所述储能单元的电压与供电设备的输入电压相等,或者所述储能单元的电压和供电设备的输入电压之间的压差小于预设阈值,控制所述开关单元一直工作在导通状态。
  10. 一种供电设备,其特征在于,所述供电设备包括电源模块和如权利要求1-7任意一项所述的缓启动电路。
PCT/CN2022/103453 2021-11-10 2022-07-01 缓启动电路及其控制方法和供电设备 WO2023082667A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111328984.2A CN114221534A (zh) 2021-11-10 2021-11-10 缓启动电路及其控制方法和供电设备
CN202111328984.2 2021-11-10

Publications (1)

Publication Number Publication Date
WO2023082667A1 true WO2023082667A1 (zh) 2023-05-19

Family

ID=80696859

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/103453 WO2023082667A1 (zh) 2021-11-10 2022-07-01 缓启动电路及其控制方法和供电设备

Country Status (2)

Country Link
CN (1) CN114221534A (zh)
WO (1) WO2023082667A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114221534A (zh) * 2021-11-10 2022-03-22 华为技术有限公司 缓启动电路及其控制方法和供电设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103713255A (zh) * 2013-12-12 2014-04-09 华为技术有限公司 一种电路故障检测方法、系统以及控制器
US20160352322A1 (en) * 2013-07-31 2016-12-01 Hewlett-Packard Development Company, L.P. Digital pulse width modulation control for load switch circuits
CN206559229U (zh) * 2016-11-30 2017-10-13 深圳市能隙科技有限公司 一种开关式缓启动电路
CN207530702U (zh) * 2017-07-07 2018-06-22 四川铭扬通信科技有限公司 一种缓启动电路
CN114221534A (zh) * 2021-11-10 2022-03-22 华为技术有限公司 缓启动电路及其控制方法和供电设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160352322A1 (en) * 2013-07-31 2016-12-01 Hewlett-Packard Development Company, L.P. Digital pulse width modulation control for load switch circuits
CN103713255A (zh) * 2013-12-12 2014-04-09 华为技术有限公司 一种电路故障检测方法、系统以及控制器
CN206559229U (zh) * 2016-11-30 2017-10-13 深圳市能隙科技有限公司 一种开关式缓启动电路
CN207530702U (zh) * 2017-07-07 2018-06-22 四川铭扬通信科技有限公司 一种缓启动电路
CN114221534A (zh) * 2021-11-10 2022-03-22 华为技术有限公司 缓启动电路及其控制方法和供电设备

Also Published As

Publication number Publication date
CN114221534A (zh) 2022-03-22

Similar Documents

Publication Publication Date Title
US10910951B2 (en) Systems and methods for reducing standby power consumption of switch-mode power converters
US9698677B2 (en) Brownout recovery circuit for bootstrap capacitor and switch power supply circuit
CN106786395B (zh) 一种保护电路及方法
US20230291307A1 (en) Power supply system, soft-start circuit, and control method
CN103887984A (zh) 隔离式变换器及应用其的开关电源
US20230341459A1 (en) Power-loss delay circuit and detection control circuit thereof
EP3910777A1 (en) Boost circuit and control method for boost circuit
CN101677212A (zh) 正激变换器变压器的饱和防止
US10622879B2 (en) Control module with active snubber and related flyback power converting device
CN213846230U (zh) 一种过流保护电路
JP6203020B2 (ja) 充放電スイッチ回路を有する電池パック
WO2023082667A1 (zh) 缓启动电路及其控制方法和供电设备
CN216929868U (zh) 输入防冲击mos管保护电路
CN102157919A (zh) 升压型电源转换装置
US20190149058A1 (en) Switched mode power supply controller
CN104426127A (zh) 一种负载启动电路
CN113541497A (zh) 控制方法和控制设备
KR101147257B1 (ko) 포지티브 직류 전원단 돌입전류 저감회로
GB2535115A (en) Flyback switching power supply circuit and backlight driving device applying same
US11581885B2 (en) Pre-charge control circuit and method of controlling the same
CN210297249U (zh) 自激振荡双向限流电路
CN108111003B (zh) 一种晶闸管驱动电路及方法
CN110165880B (zh) 一种稳定开关电路输出电压的电路及方法
CN111293880B (zh) 一种直流功率变换电路
CN217590599U (zh) 一种保护电路及开关电源

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22891476

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022891476

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022891476

Country of ref document: EP

Effective date: 20240507