WO2023082615A1 - 冷热消融装置 - Google Patents

冷热消融装置 Download PDF

Info

Publication number
WO2023082615A1
WO2023082615A1 PCT/CN2022/096825 CN2022096825W WO2023082615A1 WO 2023082615 A1 WO2023082615 A1 WO 2023082615A1 CN 2022096825 W CN2022096825 W CN 2022096825W WO 2023082615 A1 WO2023082615 A1 WO 2023082615A1
Authority
WO
WIPO (PCT)
Prior art keywords
assembly
ablation
transmission device
cold
quick connection
Prior art date
Application number
PCT/CN2022/096825
Other languages
English (en)
French (fr)
Inventor
刘朋
李雪冬
肖剑
黄乾富
Original Assignee
海杰亚(北京)医疗器械有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海杰亚(北京)医疗器械有限公司 filed Critical 海杰亚(北京)医疗器械有限公司
Publication of WO2023082615A1 publication Critical patent/WO2023082615A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/02Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00172Connectors and adapters therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00577Ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00791Temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/02Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques
    • A61B2018/0231Characteristics of handpieces or probes
    • A61B2018/0262Characteristics of handpieces or probes using a circulating cryogenic fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/02Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques
    • A61B2018/0293Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques using an instrument interstitially inserted into the body, e.g. needle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B2018/044Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating the surgical action being effected by a circulating hot fluid
    • A61B2018/046Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating the surgical action being effected by a circulating hot fluid in liquid form

Definitions

  • the present disclosure relates to the technical field of cold and heat ablation surgery, in particular to a cold and heat ablation device.
  • Cold and hot ablation surgery is a surgical medical technology that uses cold working fluid and hot working medium to eliminate target tissue.
  • the cold working medium in the compound cold and hot ablation system will be delivered to the treatment area of the treatment device for freezing operation. It evaporates and absorbs heat, takes away the heat of the lesion tissue corresponding to the treatment area, reduces the temperature of the target ablation site, and thereby destroys the diseased cell tissue to achieve the purpose of treatment.
  • the combined cold and heat ablation system delivers thermal fluid to the treatment area of the treatment device, which instantly releases a large amount of heat, thereby rapidly rewarming the treatment area.
  • the combined cold and heat ablation system can be connected with the ablation device by using the transmission device to transmit the cold working fluid or the hot working fluid. Since both the ablation device and the transmission device involve the inflow and backflow of the working fluid, it takes a lot of time and operations to connect the two before the operation, and it takes a lot of effort to connect the two after the operation. or separated, so its convenience is greatly reduced.
  • the present disclosure provides a cold and heat ablation device, which is used to improve the convenience of operation.
  • the present disclosure provides a cold and heat ablation device, including an ablation instrument and a transmission device, the second end of the transmission device is used to connect with a composite cold and heat ablation system;
  • a movable quick-connect interface assembly the second end of the ablation instrument protrudes into the quick-connect interface assembly and communicates with the transmission device, wherein when the quick-connect interface assembly rotates relative to the transmission device , which is locked with the ablation instrument; when the quick connection interface assembly moves relative to the transmission device and reversely rotates, it is unlocked with the ablation instrument.
  • Fig. 1 is an axial sectional view of a cold and hot ablation device in an embodiment of the present disclosure
  • Fig. 2 is a schematic structural view of the connection between the ablation device and the transmission device through a quick connection interface assembly in an embodiment of the present disclosure
  • Fig. 3 is the view observed from A-A place of Fig. 2;
  • Fig. 4 is the view observed from B-B of Fig. 2;
  • Fig. 5 is a sectional view of the vacuum layer assembly shown in Fig. 1;
  • Fig. 6 is a sectional view of the quick connection interface assembly shown in Fig. 1;
  • FIG. 7 is a cross-sectional view of an ablation instrument in an embodiment of the present disclosure.
  • Fig. 8 is a cross-sectional view of the inlet and return assembly shown in Fig. 7;
  • Fig. 9 is an enlarged view at C of Fig. 8.
  • Fig. 10 is a sectional view of the sealing structure in Fig. 5;
  • Fig. 11 is a top view of one of the sealing plates in Fig. 10;
  • Fig. 12 and Fig. 13 are respectively the top view and the front view of another sealing plate in Fig. 10;
  • Figure 14 is an enlarged view of Figure 1 at A;
  • Fig. 15 is a cross-sectional view of a transport device in an embodiment of the present disclosure.
  • Fig. 16 is a structural diagram showing an enlarged part of the structure shown in Fig. 15;
  • Fig. 17 is a cross-sectional view of the inlet and return passage assembly in Fig. 15;
  • Figure 18 is an enlarged view of Figure 17 at F;
  • Fig. 19 is an enlarged view at B of Fig. 1 (the hatching is not shown in the figure).
  • 11-inlet and return assembly 111-needle tip; 112a-treatment section; 122b-non-treatment section; 113-buffer structure; 114-transfer sleeve;
  • 12-vacuum layer assembly 121-sheath; 122-transition port; 123-getter; 124-sealing structure; 125-quick connection shaft tube; 126-sealing port; 1241-vacuum port; Sealing plate; 1243a-fixing posts; 1242a, 1243b-solder holes;
  • 24-outer casing 25-handle; 26-quick connection interface assembly; 27-thermocouple connector;
  • 229-interface pipe 229a-the first lap pipe; 227a-the second lap pipe; 226a-air outlet;
  • 28-axial locking structure 281-opening; 282-groove; 13-axial engaging part; 131-projection;
  • 29-circumferential locking structure 291-spring plunger; 292-second spring; 14-circumferential engaging part; 141-accommodating groove.
  • the present disclosure provides a cold and heat ablation device, including an ablation instrument 1 and a transmission device 2 , and the second end of the transmission device 2 is used to connect with a combined cold and heat ablation system (not shown).
  • the cold or hot working fluid in the compound cold and hot ablation system is delivered to the ablation device 1 through the transmission device 2, so that the cold and hot ablation treatment can be performed on the tissue in the target area.
  • a rotatable and movable quick connection interface assembly 26 is provided on the first end of the transmission device 2, and the ablation device 1 The second end extends into the quick connection interface assembly 26 and communicates with the transmission device 2 to receive the cold working fluid or the hot working fluid in the transmission device 2 .
  • the quick connection interface assembly 26 rotates relative to the transmission device 2 , it is locked with the ablation device 1 ; when the quick connection interface assembly 26 moves and rotates relative to the transmission device 2 , it is unlocked with the ablation device 1 . Therefore, by rotating the quick connection interface assembly 26, the ablation device 1 can be quickly locked with the transmission device 2, and by moving and rotating the quick connection interface assembly 26, the transmission device 2 can be unlocked and disengaged from the ablation device 1, thus improving The convenience of connection and detachment between the ablation instrument 1 and the transmission device 2 is improved.
  • the quick connection interface assembly 26 can rotate relative to the transmission device 2, when it is locked with the ablation device 1 and then rotates, it can drive the ablation device 1 to rotate together, thereby adjusting the speed of the ablation device 1 entering the target area. Piercing angle.
  • the quick connection interface assembly 26 includes a quick connection interface 261 fixedly connected to the transmission device 2, a locking sleeve 263 rotatably and movably sleeved on the quick connection interface 261, and a locking sleeve 263 arranged on the locking sleeve 263. and the first spring 262 between the quick connection interface 261.
  • the quick connection interface 261 includes a stepped shaft 261a and a retaining ring groove 261b disposed on a side wall of the stepped shaft 261a.
  • a retaining ring 264 is disposed in the retaining ring groove 261 b, and the moving range of the locking sleeve 263 can be limited by the retaining ring 264 .
  • the first spring 262 is arranged on the first step 261c of the step shaft 261a, and the inner wall of the locking sleeve 263 is provided with a matching protrusion 263a for matching with the first step 261c, and the inner wall of the rear end of the locking sleeve 263 is Cooperate with the second step 261d of the stepped shaft 261a, so that the first spring 262 is limited between the locking sleeve 263 and the quick connection interface 261 .
  • the locking sleeve 263 and the quick connection interface 261 are provided with the first spring 262, by compressing the first spring force 262, the locking sleeve 263 can move toward the direction of the quick connection interface 261 along its axial direction (that is, away from the ablation On the contrary, under the restoring force of the first spring force 262, the locking sleeve 263 can move in the opposite direction (ie, the direction close to the ablation instrument 1).
  • the locking sleeve 263 is provided with an axial locking structure 28 and a circumferential locking structure 29 arranged along its circumference.
  • the second end of the ablation instrument 1 (for example, it may be the first Two ends) are respectively provided with an axial engaging portion 13 and a circumferential engaging portion 14 .
  • the axial locking structure 28 is locked with the axial engaging part 13 to limit the axial relative displacement between the quick connection interface assembly 26 and the ablation instrument 1; and in the first Under the action of the restoring force of the spring force 262 , the circumferential locking structure 29 is automatically locked with the circumferential engaging portion 14 to limit the relative displacement in the circumferential direction between the quick connection interface assembly 26 and the ablation instrument 1 .
  • the locking sleeve 263 is moved away from the ablation device 1 relative to the transmission device 2 to compress the first spring 262, and the circumferential locking structure 29 is unlocked from the circumferential engaging portion 14; The rotation of the device 2 can unlock the axial locking structure 28 and the axial engaging portion 13 .
  • the axial locking structure 28 includes a groove 282 with an opening 281 , for example, the groove 282 is a groove provided on the inner wall of the front end of the locking sleeve 263 .
  • the axial engagement portion 13 includes a protrusion 131 protruding radially of the ablation instrument 1 (as shown in FIGS. 2 and 5 ), and the size of the opening 281 (as shown in FIG. B) shown in FIG.
  • the projection 131 can extend into the groove 282 through the opening 281; when it extends into the groove 282, the locking sleeve 263 rotates relative to the transmission device 2, and the projection 131 can leave and slide through the opening 281 into other positions of the groove 282. Since the size of other parts on the groove 282 except the opening 281 is smaller than the size of the projection 131, the projection 131 cannot escape from the groove 282 after reaching other positions of the groove 282 from the opening 281, thereby making the quick connection interface Axial relative displacement cannot be generated between the assembly 26 and the ablation instrument 1 .
  • the circumferential locking structure 29 includes a spring plunger 291 , and the spring plunger 291 can be ejected from the front end of the locking sleeve 263 .
  • the circumferential engaging portion 14 includes a receiving groove 141 extending along the axial direction of the ablation instrument 1 . Therefore, when the locking sleeve 263 rotates relative to the transmission device 2, the spring plunger 291 is ejected under the action of the second spring 292 therein and inserted into the receiving groove 141, so that the quick connection interface assembly 26 and the ablation instrument 1 cannot be connected. Generate relative displacement in the circumferential direction.
  • the locking sleeve 263 moves backward relative to the transmission device 2, so that the spring plunger 291 is disengaged from the receiving groove 141, then The circumferential locking between the quick connection interface assembly 26 and the ablation instrument 1 is released; then the locking sleeve 263 is reversely rotated until the protrusion 131 is rotated to a position aligned with the opening 281 in the groove 282, so that it The opening 281 can slide out of the groove 282, and the axial locking between the quick connection interface assembly 26 and the ablation instrument 1 is released.
  • the first spring 262 can be an ordinary spring, but in order to adapt to the rotation of the locking sleeve 263, it can also be a torsion spring.
  • an outer wall of the quick-connect interface assembly 26 (exemplary ground, on the outer wall of the locking sleeve 263) is provided with a first plane 266 (as shown in Figure 3), the opening 281 corresponds to the first plane 266 of the locking sleeve 263, and the extension direction of the two is the same;
  • the ablation instrument 1 (for example, on the outer wall of the sealing structure 124 described below) is provided with a second plane 128 (as shown in FIG.
  • the protrusion 131 when the first plane 266 of the locking sleeve 263 is coplanar (aligned) with the second plane 128, the protrusion 131 can extend from the opening 281 into the groove 282, so that the second end of the ablation instrument 1 can be inserted smoothly Quick connect interface assembly 26 in.
  • the operator can align the first plane 266 of the quick-connect interface assembly 26 with the second plane 128 of the ablation instrument 1 (i.e., be coplanar) only by touching without careful observation. Just align, so when the locking sleeve 263 is rotated, the first plane 266 and the second plane 128 are not coplanar, and the projection 131 can slide into other positions of the groove 282 through the opening 281 for locking.
  • the ablation instrument 1 and the transmission device 2 can be quickly locked and unlocked.
  • the ablation device 1 of the present disclosure can be, for example, an ablation needle, which includes an inlet-reflux assembly 11 and a vacuum layer assembly 12.
  • the second end of the inlet-reflux assembly 11 passes through the vacuum layer assembly 12 and is connected to the transmission device 2.
  • the fluid enters the second end of the inlet-reflux assembly 11 from the transmission device 2, and flows from the second end to the first end for treatment, and the treated working fluid returns to the transmission device in the opposite direction in the inlet-reflux assembly 11. 2 in.
  • the cold working fluid or the hot working fluid entering the return flow assembly 11 flows in the inner tube.
  • an outer tube is arranged outside the inner tube. There is a vacuum space between the layer tubes.
  • the two ends of the inner layer of the inlet and return assembly 11 are welded to form a fixed state, so the stress of thermal expansion and contraction will cause the inner layer tube and its connecting end pipeline to be pulled or compressed, and the force may cause the inner layer tube Deformation occurs, resulting in a certain stress on the weld.
  • the inlet and return assembly 11 may include a buffer structure 113 (as shown in FIGS. 7 and 8 ) arranged in the vacuum layer assembly 12 .
  • the buffer structure 113 may be formed by bending the inner tube. The interior space is large, so the buffer structure 113 can be accommodated.
  • the buffer structure 113 can effectively absorb the stress caused by thermal expansion and contraction, and can relieve the tension or pressure of the inner tube of the inlet and return assembly 11 and its connecting end pipeline due to thermal expansion and contraction, so that the needle tube remains rigid. Avoid weld tearing.
  • the first end of the inlet-reflux assembly 11 includes a treatment section 122a (please see section G shown in Figure 8) and a non-treatment section 122b, the diameter of the non-treatment section 122b is greater than the diameter of the treatment section 122a, Moreover, the transitional connection between the treatment section 122a and the non-treatment section 122b is made by chamfering with a small angle.
  • the inlet-reflux assembly 11 forms a stepped shape at its first end (i.e., the front end), so that the treatment section becomes thinner while ensuring the treatment effect, which can effectively reduce puncture resistance, and at the same time, the non-treatment section is thicker than the treatment section. , it can increase the rigidity during puncture (especially for thinner ablation needles), which is beneficial for doctors to operate.
  • the front end of the treatment segment 122a is the needle point 111 for puncturing.
  • the vacuum layer assembly 12 includes a sealing structure 124 , a sealing port 126 arranged radially along the sealing structure 124 , and transfer ports 122 and quick-connect shaft tubes 125 respectively arranged on both sides of the sealing structure 124 .
  • the transfer port 122 is used to connect with the outer wall of the inlet-return assembly 11
  • the quick-connect shaft tube 125 is used to insert into the quick-connect interface assembly 26 and connect with the adapter sleeve 114 of the inlet-return assembly 11 .
  • the adapter sleeve 114 is disposed at the end of the quick connection shaft tube 125 with a smaller diameter and connected to the inner wall thereof.
  • a getter 123 is usually placed in the vacuum chamber.
  • the getter 123 is disposed at the rear end of the transfer port 122 .
  • the currently commonly used sealing methods are vacuum plugs that can be pumped repeatedly, oxygen-free copper, glass tubes, and glass sealing.
  • the vacuum plug has a large volume and is sealed by a sealing ring, which cannot withstand high temperature, and the O-ring has the risk of air leakage and deflation, so it can be used in a relatively large chamber.
  • the risk of outgassing is generally sealed with oxygen-free copper, glass tube or glass.
  • the existing seals are all one-time seals, so there is a risk of seal failure.
  • the following improvements are made for ablation needles sealed with glass. That is, there are at least two sealing plates 1243 and 1242 (as shown in FIG. 10 ) stacked in the sealing port 126 along its axial direction, and at least one sealing plate 1243 is provided with a fixing post 1243a.
  • the sealing plates 1242, 1243 are disc-shaped structures with small holes (solder holes 1242a, 1243b shown in Figure 11 and Figure 12), so that the solder on it can cover the small holes after melting (melt body) , the sealing interface 126 can be blocked after being solidified.
  • the diameters of the solder holes 1242a, 1243b should not be too large, otherwise the solder will directly flow through them and enter the vacuum chamber of the sealing structure 124, resulting in vacuum sealing failure.
  • a sheath 121 can also be sheathed on the front end of the adapter 122 , and the sheath 121 is connected to the front end of the sealing structure 124 in a smooth transition.
  • the axial engaging portion 13 is disposed on the circumferential side wall of the quick-connect shaft tube 125 , and the circumferential engaging portion 14 is disposed at the end of the sealing structure 124 (see FIG. 4 and FIG. 5 ).
  • the inlet and return assembly 11 is disposed in the vacuum layer assembly 12 , and its second end extends out of the quick-connect shaft tube 125 .
  • the quick-connect shaft tube 125 passes through the quick-connect interface 261 of the quick-connect interface assembly 26 and is connected to the transmission device 2, while the pin 224 of the transmission device 2 needs to be inserted into the inlet-return assembly 11 in the quick-connect shaft tube 125 And communicate with the inlet and outlet assembly 11. Therefore, when connecting, it is necessary to ensure the cooperation between the quick-connect shaft tube 125 and the quick-connect interface 261, the quick-connect interface 261 and the transmission device 2, and the pin 224 of the transmission device 2 and the inlet-return assembly 11 (please refer to FIG. 14 ).
  • the quick-connect shaft tube 125 is configured as a tube body with variable diameter (see FIG. 5 ), and accordingly, the inner wall of the quick-connect interface 261 is configured with steps (see FIG. 6 ). Insert the smaller diameter part of the quick-connect shaft tube 125 from the front end of the quick-connect interface 261 (it will drive the return assembly 11 into the quick-connect interface 261), and insert the pin 224 from the rear end of the quick-connect interface 261 In the inlet-reflux assembly 11, when the pin 224 is inserted into the inlet of the inlet-reflux assembly 11 for a certain distance (for example, 5 mm), the quick-connect shaft tube 125 is inserted into the larger-diameter part into the quick-connect interface 261, thereby When continuing to connect, it plays a guiding role, so that the pin 224 can be accurately inserted into the inlet port of the return assembly 11 , so as to ensure the sealed communication between the delivery device 2 and the ablation instrument 1 .
  • a groove body 267 is provided at the rear end of the quick connection interface 261 , which can cooperate with the transmission device 2 (for example, cooperate with the front surface 226 of the inlet-return passage assembly 22 described below).
  • the transmission device 2 of the present disclosure will be described in detail below with reference to FIGS. 15-18 .
  • the transmission device 2 uses metal capillary tubes (stainless steel, copper, nickel) as the circulation pipeline, in which the cold working fluid and the hot working fluid circulate, the outside needs to be kept at normal temperature.
  • Existing transmission devices realize heat insulation through a vacuum layer.
  • vacuum insulation needs to form a sealed chamber to meet the requirements of vacuuming, so welding is required between parts; and each part needs to use metal parts (vacuum requirements) to meet the sealing requirements, and heating, degassing and vacuuming are required during operation. , so the cost of vacuum insulation is high, the process is complicated, and the transmission device 2 is relatively heavy.
  • the transmission device 2 of the present disclosure is different from the existing transmission device in that the transmission device 2 of the present disclosure uses heat insulating materials to achieve heat insulation, that is, the transmission device 2 of the present disclosure is non-vacuum transmission
  • the device is simple in process, low in cost, relatively light in weight, and has better flexibility than vacuum transfer devices.
  • the conveying device 2 includes an inflow and return passage assembly 22 , and a heat insulating layer 20 disposed outside the inflow and return passage assembly 22 .
  • the material of the heat insulating layer 20 is aerogel. Airgel has the advantages of light weight, low thermal conductivity, and a wide temperature range. It will not harden due to low temperature freezing, so it can still maintain its flexibility during use.
  • the conveyor 2 of the present disclosure benefits from the insulation being achieved by an insulating material rather than a vacuum, so the conveyor 2 can be insulated.
  • an insulating sleeve 21 may be provided outside the heat insulating layer 20 .
  • the insulating sleeve 21 is located at the rear end side of the inflow and return passage assembly 22, that is, the side close to the combined cold and heat ablation system.
  • the insulating sleeve 21 needs to be able to withstand low temperature and high temperature without deformation, and maintain good insulation under low temperature/reheating. Therefore, polyimide (PI) with good low temperature resistance and good insulation can be used.
  • an outer sleeve 24 is provided on the outside of the inlet and return passage assembly 22 , and the outer sleeve 24 is located at the front end side of the inlet and return passage assembly 22 .
  • a serrated connector 231 is provided on the front end outer wall of the insulating sleeve fixing member 23 , which engages with the sawtooth on the inner wall of the outer sleeve 24 , so that the insulating sleeve fixing member 23 and the outer sleeve 24 connected, and the outer wall is in a flush state after the two are connected.
  • the outer wall of the rear end of the insulating sleeve fixing part 23 is provided with an engaging boss 232, which is engaged with the inner wall of the insulating sleeve 21, and a sealing ring 233 is arranged between the two to prevent the working medium from passing through the insulating sleeve 22 and the insulating sleeve.
  • the gap between the fixing pieces 23 leaks to the outside.
  • a temperature-measuring joint 27 is also provided in the insulating sleeve 21, and the temperature-measuring joint 27 can be connected with a temperature-measuring thermocouple, so as to better detect the real-time temperature of the ablation needle end.
  • the thermocouple used for temperature measurement cannot be placed inside the transmission device, but on the contrary, the present disclosure uses a heat insulating material to achieve heat insulation, so The temperature measuring joint 27 can be arranged in the transmission device 2 (near the outlet end of the ablation device 1 ), so that the real-time temperature at the end of the ablation device 1 can be better detected.
  • the temperature measuring joint 27 can be arranged in the end portion where the insulating sheath 21 is connected with the insulating sheath fixing member 23 .
  • the inlet and return channel assembly 22 includes an inlet channel 227 and a return channel 228 arranged in parallel with the inlet channel 227
  • the heat insulating layer 20 includes an inlet tube heat insulating layer 222 and an outer tube covering the inlet channel 227
  • the inflow and return flow insulation layer 223 is commonly coated on the outside of the inflow channel 227 and the return flow channel 228 .
  • an interface tube 229 is provided at the rear end of the inflow and return passage assembly 22 for connecting with the combined cold and heat ablation system, and the interface tube 229 is connected with the inflow channel 227 through the first inflow and return branch 221 .
  • the inflow and backflow are separated at the end by the first inflow and backflow branch 221 .
  • the front end of the mouthpiece 229 is a first overlapping pipe 229a, whose diameter is smaller than that of other parts on the mouthpiece 229, and the rear end of the inflow channel 227 is a second overlapping pipe 227a, whose diameter is also smaller than The diameter of other parts on the inflow channel 227, so that the first overlapping pipe 229a and the second overlapping pipe 227a can be connected by overlapping, and the two can be sealed by welding.
  • Fig. 19 shows an embodiment where the first overlapping pipe 229a is on the upper part and the second overlapping pipe 227a is on the lower part, that is, the axes of the two are not aligned. Through this arrangement, more space can be saved, so as to reduce the volume and weight of the transmission device 2 .
  • the inflow and return channel assembly 22 further includes a second inflow and return flow divider 225 disposed at the front ends of the inflow channel 227 and the return channel 228 , which fixes the front ends of the inflow channel 227 and the return channel 228 .
  • the second inlet-backflow splitter 225 is connected to the pin 224 (or can be a one-piece structure), and the front end of the inlet channel 227 is also connected to the pin 224 through the above-mentioned similar overlapping method.
  • FIG. 14 preferably shows the inlet and outlet An example in which the flow channel 227 is connected to the pin 224.
  • the front end face 226 of the second inlet-backflow splitter 225 (that is, the end face connected to the pin 224) is provided with an air outlet hole 226a, and the cold working fluid (cold nitrogen gas) vaporized in the early stage of treatment directly flows out of it, thereby It is beneficial for the cold working fluid to quickly reach the treatment section of the inlet-reflux component 11 .
  • the transfer device 2 further includes a handle 25 , and the handle 25 is located at the front end of the inflow and return passage assembly 22 , adjacent to the quick connection interface assembly 26 .
  • the front end of the handle 25 is connected to the rear end of the quick connection interface 261 , and its rear end is connected to the outer sleeve 24 .
  • the rear end of the handle 25 can be provided with a sawtooth connector, and the inner wall of the outer sleeve 24 is also provided with sawtooth, and the outer sleeve 24 is connected to the handle 25 in the form of an undercut.
  • the sawtooth connectors between the insulating sleeve fixing parts 23 are connected in a similar manner.
  • the outer sleeve 24 can be made of soft silicone tube, coated metal hose, rubber hose, PE, PP and the like.
  • ablation needles In order to meet clinical needs, ablation needles generally have various diameters, and ablation needles with different diameters have different resistances. Generally speaking, the resistance of the ablation needle with a large diameter of the inlet and return assembly 11 is small, and the resistance of the ablation needle with a small diameter of the inlet and return assembly 11 is large. In order to match ablation needles of different diameters, the cooling speed and performance are ensured by adjusting the cooperation between the ablation needle and the delivery device 2 .
  • an adapter sleeve 114 is provided on the inlet port 115 at the second end of the inlet-return assembly 11, and the adapter sleeve 114 is disposed in the quick-connect shaft tube 125 (for example, at the rear end of the quick-connect shaft tube 125 end); the return passage assembly 22 includes a pin 224, as described above, the pin 224 passes through the adapter sleeve 114 and is mated with the second end of the return flow assembly 11.
  • the flow resistance between the insertion pin 224 and the inlet-reflux assembly 11 is greater than the flow resistance of the treatment section of the inlet-reflux assembly 11 (that is, the flow resistance of the cold working fluid or the hot working fluid therein), so as to avoid cold working fluid or thermal working fluid.
  • the substance directly flows back into the return channel of the delivery device 2 through the gap between the two, instead of passing through the treatment section of the return assembly 11.
  • the flow resistance between the pin 224 and the inlet-return assembly 11 is related to the depth to which the pin 224 is inserted into the inlet-reflux assembly 11 (that is, the mating length E shown in FIG. 14 ) and the fitting gap between the pin 224 and the inlet-reflux assembly 11 .
  • a larger fit length E and a larger fit play, or a shorter fit length E and a smaller fit play are possible.
  • the diameter C and length D of the pin 224 are fixed. Therefore, the matching length E and matching clearance can be adjusted by adjusting the diameter C1 and length D1 of the inlet port at the second end of the inlet-return assembly 11 .
  • the matching gap between the insertion pin 224 and the inlet-return component 11 of the present disclosure can solve this problem. Because there is a matching gap between the above two, the cold working fluid (cold nitrogen) vaporized in the early stage of treatment flows out from the matching gap and the above-mentioned air outlet 226a, which is beneficial for the cold working fluid to quickly reach the inlet and return components 11 treatment segments, increase cooling speed.
  • the cold nitrogen gas escaping from the matching gap between the pin 224 and the inlet-return assembly 11 can flow out through the return channel of the transmission device 2, so it can also pre-cool the return channel, thereby reducing the resistance of the later return flow, It can also speed up the cooling rate.
  • the refrigerant mentioned above can be liquid nitrogen (-196°C, boiling point under normal pressure), liquid oxygen (-183°C, boiling point under normal pressure), liquid methane (-161°C, boiling point under normal pressure), liquid Argon (-186°C, boiling point under normal pressure), liquid neon (-246°C, boiling point under normal pressure), liquid helium (-269°C, boiling point under normal pressure), liquefied nitrous (-88.5°C, boiling point under normal pressure ), liquefied carbon dioxide (-79°C, boiling point under normal pressure) and Freon 22 (-50°C, boiling point under normal pressure) and other single substances, or a mixture of the above substances.
  • the thermal working medium mentioned above can be water vapor (100°C, boiling point under normal pressure), methanol vapor (64.7°C, boiling point under normal pressure), formic acid vapor (100.8°C, boiling point under normal pressure), ethanol vapor (78 °C, boiling point under normal pressure), acetic acid vapor (117.9 °C, boiling point under normal pressure), ethyl ester vapor (54.3 °C, boiling point under normal pressure), propanol vapor (82.5 °C, boiling point under normal pressure), propionic acid vapor ( 141.1°C, boiling point under normal pressure), acetone vapor (101.6°C, boiling point under normal pressure), etc., can also be a mixture of the above substances.
  • boiling point temperature does not represent the rewarming temperature.
  • steam pressurization is used as the power to deliver the thermal working medium to the ablation device 1, and the treatment temperature can be higher than that of the selected thermal working medium. boiling point.
  • the cold working medium and the hot working medium of the present disclosure have a wide range of sources and low cost, and cover a wider temperature range, thus providing a basis for improving the safety, economy and convenience of surgical operations.
  • first end corresponds to the front end of each component shown in the figure
  • second end corresponds to the rear end of each component shown in the figure.
  • front end is the end close to the patient
  • rear end is the end close to the combined cold and heat ablation system.
  • the method of using the cold and heat ablation device of the present disclosure is as follows.
  • the transmission device 2 is connected to the ablation device 1 through the quick connection interface assembly 26, and under the guidance of the imaging equipment of the combined cold and heat ablation system, it performs puncture positioning. After positioning, the system controls the cold working fluid to pass through the inflow channel 227 and reach the second inflow and return flow diverter 225, and enter the inflow and return flow assembly 11 of the ablation device 1 through the pin 224 at the front end of the second inflow and return flow divider 225, and enter the ablation Instrument treatment section 122a (section G in FIG. 8 ).
  • the vacuum layer assembly 12 ensures that the rest of the ablation device 1 is in a normal temperature state during the treatment, so that no harm will be caused to the patient and the user.
  • the cold working fluid turns back (returns) through the cavity between the return assembly 11 and the needle tip 111, so that it can return to the return channel 228 of the transmission device 2 and return to the system end. That is, the freezing operation is completed.
  • the rewarming operation is carried out, in which the flow path of the hot working fluid is the same as that of the above-mentioned cold working fluid, and a cycle is completed after the hot working fluid returns to the system end.
  • the transmission device and the ablation instrument can be locked by rotating the quick-connect interface assembly on the transmission device; otherwise, when unlocking, the quick-connect interface assembly can be The transmission device and the ablation instrument are unlocked, so that the combination and disassembly of the two are quicker and more convenient.
  • the buffer structure By setting the buffer structure, it can effectively absorb the stress caused by thermal expansion and contraction, and can relieve the tension or pressure of the inner tube of the inlet and return component and its connecting end pipeline due to thermal expansion and contraction, so that the needle tube remains rigid. Avoid weld tearing.
  • the diameter of the treatment section of the ablation instrument is smaller than that of the non-treatment section, so that the ablation instrument has a variable-diameter inlet and return component (needle tube), so it can effectively reduce puncture resistance and trauma while ensuring the strength of the non-treatment section.
  • the problem of single sealing failure can be solved by multiple sealing plates and fixing posts, thereby reducing product cost.
  • the transmission device uses aerogel to achieve heat insulation, instead of vacuum insulation, so the process is simple, the cost is low, and the weight is relatively light, and the flexibility is better.
  • insulation treatment can also be implemented on the transmission device to reduce the difficulty of insulation design at the system end.
  • a temperature measuring joint can also be set therein, so that the real-time temperature at the end of the ablation instrument can be better detected.
  • the flow resistance between the insertion pin and the flow-in and return assembly is greater than the flow resistance of the treatment section of the flow-in and return assembly, which can prevent the cold or hot working fluid from directly flowing back into the return flow channel of the transmission device through the gap between the two, while Treatment segment that does not pass into the return flow assembly.
  • the matching gap between the pin and the inlet and return components allows the cold working fluid (cold nitrogen) vaporized in the early stage of treatment to escape from it, which is conducive to the rapid arrival of the cold working fluid at the treatment section of the inlet and return components, increasing the cooling speed; and the escape
  • the cold nitrogen gas can flow out through the return channel of the transmission device, so it can also pre-cool the return channel, thereby reducing the resistance of the later return flow and speeding up the cooling rate.

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medical Informatics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Otolaryngology (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Surgical Instruments (AREA)

Abstract

一种冷热消融装置,包括消融器械(1)以及传输装置(2),通过旋转传输装置(2)上的快速连接接口组件(26),可实现传输装置(2)与消融器械(1)的锁紧;反之,在进行解锁时,通过反向旋转快速连接接口组件(26),则可将传输装置(2)与消融器械(1)解锁。

Description

冷热消融装置
相关申请的交叉引用
本申请要求享有2021年11月10日提交的名称为“冷热消融装置”的中国专利申请CN202111323100.4的优先权,其全部内容通过引用并入本申请中。
技术领域
本公开涉及冷热消融手术技术领域,特别地涉及一种冷热消融装置。
背景技术
冷热消融手术是一种应用冷工质和热工质消除靶组织的外科医疗技术,手术中会将复合式冷热消融系统中的冷工质输送至治疗器械的治疗区域进行冷冻操作,通过其蒸发吸热,带走治疗区域对应的病灶组织的热量,使目标消融部位温度降低,从而破坏病变细胞组织达到治疗目的。冷冻完成后,复合式冷热消融系统再向治疗器械的治疗区域输送热工质,其瞬间释放大量的热量,从而使治疗区域快速复温。
可利用传输装置将复合式冷热消融系统与消融器械相连,以传输冷工质或热工质。由于消融器械和传输装置均涉及到工质的进流和回流,因此在手术前将二者进行连接时需要花费较多的时间和操作,而完成手术后,又需要花费较大的力气将二者进行分离,因此其便捷性大大降低。
发明内容
本公开提供一种冷热消融装置,用于提高操作的便捷性。
本公开提供一种冷热消融装置,包括消融器械以及传输装置,所述传输装置的第二端用于与复合式冷热消融系统相连;所述传输装置的第一端上连接有可转动且可移动的快速连接接口组件,所述消融器械的第二端伸入所述快速连接接口组件中并与所述传输装置相连通,其中,所述快速连接接口组件相对于所述传输装置旋转时,其与所述消融器械锁紧;所述快速连接接口组件相对于所述传输装置移动并反向旋转时,其与所述消融器械解锁。
附图说明
在下文中将基于实施例并参考附图来对本公开进行更详细的描述。
图1是本公开的实施例中冷热消融装置的轴向剖视图;
图2是本公开的实施例中消融器械与传输装置通过快速连接接口组件相连的结构示意图;
图3是图2从A-A处观测的视图;
图4是图2从B-B处观测的视图;
图5是图1所示真空层组件的剖视图;
图6是图1所示快速连接接口组件的剖视图;
图7是本公开的实施例中消融器械的剖视图;
图8是图7所示的进回流组件的剖视图;
图9是图8在C处的放大图;
图10是图5中封接结构的剖视图;
图11是图10中其中一个封接板的俯视图;
图12和图13分别是图10中另一个封接板的俯视图和主视图;
图14是图1在A处的放大图;
图15是本公开的实施例中传输装置的剖视图;
图16是将图15所示的部分结构放大显示的结构图;
图17是图15中进回流通路组件的剖视图;
图18是图17在F处的放大图;
图19是图1在B处的放大图(图中未示出剖面线)。
附图标记
1-消融器械;
11-进回流组件;111-针尖;112a-治疗段;122b-非治疗段;113-缓冲结构;114-转接套;
12-真空层组件;121-护套;122-转接口;123-吸气剂;124-封接结构;125-快速连接轴管;126-封接口;1241-抽真空口;1242,1243-封接板;1243a-固定柱;1242a,1243b-焊料孔;
2-传输装置;20-绝热层;
21-绝缘套;22-进回流通路组件;
23-绝缘套固定件;231-锯齿状连接件;232-卡合凸台;233-止挡圈;
24-外套管;25-手柄;26-快速连接接口组件;27-热电偶接头;
221-第一进回流分支件;222-进流管绝热层;223-进回流绝热层;224-插针;225-第二进回流分支件;226-前端面;227-进流通道;228-回流通道;
229-接口管;229a-第一搭接管;227a-第二搭接管;226a-出气孔;
261-快速连接接口;262-第一弹簧;263-锁紧套;264-挡圈;267-槽体;
266-第一平面;128-第二平面;
28-轴向锁紧结构;281-开口;282-凹槽;13-轴向卡合部;131-凸块;
29-周向锁紧结构;291-弹簧柱塞;292-第二弹簧;14-周向卡合部;141-容纳槽。
具体实施方式
下面将结合附图对本公开作进一步说明。
如图1所示,本公开提供一种冷热消融装置,包括消融器械1以及传输装置2,传输装置2的第二端用于与复合式冷热消融系统(未图示)相连。复合式冷热消融系统中的冷工质或热工质通过传输装置2输送至消融器械1中,从而可对目标区域的组织进行冷热消融治疗。为了便于消融器械1与传输装置2之间的连接和拆卸,以减少医生的操作步骤,在传输装置2的第一端上设置有可转动且可移动的快速连接接口组件26,消融器械1的第二端伸入快速连接接口组件26中并与传输装置2相连通,以接收传输装置2中的冷工质或热工质。
其中,快速连接接口组件26相对于传输装置2旋转时,其与消融器械1锁紧;快速连接接口组件26相对于传输装置2移动和旋转时,其与消融器械1解锁。因此,通过旋转快速连接接口组件26,能够使消融器械1快速地与传输装置2锁定,而通过移动和旋转快速连接接口组件26,则可使传输装置2与消融器械1解锁并脱离,因此提高了消融器械1与传输装置2之间的连接和拆卸的便捷性。
进一步地,由于快速连接接口组件26可相对于传输装置2旋转,因此当其与消融器械1锁定时再进行旋转,则可带动消融器械1共同进行旋转,从而可调节消融器械1进入目标区域的穿刺角度。
以下提供一种快速连接接口组件26进行旋转锁定以及移动旋转解锁的一种示例性实施方式,请结合图2-6。应当理解地,本领域的技术人员在不脱离本公开的精神的前提下,能够做出任何适当的改变和组合。
如图6所示,快速连接接口组件26包括与传输装置2固定连接的快速连接接口261、 可转动且可移动地套设在快速连接接口261上的锁紧套263以及设置在锁紧套263和快速连接接口261之间的第一弹簧262。
示例性地,快速连接接口261包括台阶轴261a以及设置在台阶轴261a的侧壁上的挡圈槽261b。挡圈槽261b中设置有挡圈264,通过挡圈264可限制锁紧套263的移动范围。
其中,第一弹簧262设置在台阶轴261a的第一级台阶261c上,锁紧套263的内壁上设置有用于与第一台阶261c配合的配合凸起263a,锁紧套263的后端内壁则与台阶轴261a的第二级台阶261d相配合,从而将第一弹簧262限定在锁紧套263和快速连接接口261之间。
配合凸起263a与第一台阶261c之间以及锁紧套263的后端内壁则与第二级台阶261d之间为间隙配合,因此在锁紧套263上施加转动力矩,则可使锁紧套263相对于快速连接接口261旋转(由于快速连接接口261与传输装置2固定连接,因此也可认为锁紧套263相对于传输装置2旋转)。
此外,由于锁紧套263和快速连接接口261设置有第一弹簧262,因此通过压缩第一弹簧力262,使锁紧套263可沿其轴向朝向靠近快速连接接口261的方向(即远离消融器械1的方向)移动;反之,在第一弹簧力262的恢复力的作用下,锁紧套263可沿相反的方向(即靠近消融器械1的方向)移动。
锁紧套263上设置有轴向锁紧结构28和沿其周向设置的周向锁紧结构29,消融器械1的第二端(示例性地,例如可以是下文所述的真空层组件12的第二端)分别设置有轴向卡合部13和周向卡合部14。
锁紧套263相对于传输装置2旋转时,轴向锁紧结构28与轴向卡合部13锁定,以限制快速连接接口组件26与消融器械1之间的轴向相对位移;并且在第一弹簧力262的恢复力的作用下周向锁紧结构29自动与周向卡合部14锁定,以限制快速连接接口组件26与消融器械1之间的周向相对位移。
反之,使锁紧套263相对于传输装置2向远离消融器械1的方向移动以压缩第一弹簧262,则周向锁紧结构29与周向卡合部14解锁;继而使锁紧套263相对于传输装置2旋转,则可使轴向锁紧结构28与轴向卡合部13解锁。
结合图2、图3和图6,示例性地,轴向锁紧结构28包括具有开口281的凹槽282,示例性地,该凹槽282为设置在锁紧套263前端内壁上的凹槽。轴向卡合部13包括沿消融器械1的径向突出的凸块131(如图2和图5所示),开口281的尺寸(如图3所示A)大于凸块131的尺寸(如图2所示B),因此凸块131可由开口281伸入凹槽282;当其伸入凹槽282后,锁紧套263相对于传输装置2旋转,则凸块131可由开口281离开并滑入凹槽 282的其他位置中。由于凹槽282上除开口281之外,其他部分的尺寸小于凸块131的尺寸,因此凸块131从开口281到达凹槽282的其他位置后无法从凹槽282中脱出,从而使快速连接接口组件26与消融器械1之间无法产生轴向相对位移。
进一步地,周向锁紧结构29包括弹簧柱塞291,弹簧柱塞291可从锁紧套263的前端面弹出。周向卡合部14包括沿消融器械1的轴向延伸的容纳槽141。因此,锁紧套263相对于传输装置2旋转时,弹簧柱塞291在其中的第二弹簧292的作用下弹出并插入容纳槽141中,从而使快速连接接口组件26与消融器械1之间无法产生周向相对位移。
当需要将快速连接接口组件26与消融器械1进行解锁时,通过压缩第一弹簧262,使锁紧套263相对于传输装置2向后移动,从而使弹簧柱塞291与容纳槽141脱离,则快速连接接口组件26与消融器械1之间的周向锁定被解除;随后反向旋转锁紧套263直至凸块131在凹槽282中被旋转至与开口281对准的位置处,从而使其可由开口281滑出凹槽282,则快速连接接口组件26与消融器械1之间的轴向锁定被解除。
因此,第一弹簧262可以是普通弹簧,但是为了适应锁紧套263的转动,也可以是扭力弹簧。
优选地,为了使操作者能够仅凭触摸即可使快速连接接口组件26与消融器械1快速对准(即凸块131与开口281对准),在快速连接接口组件26的外壁上(示例性地,在锁紧套263的外壁上)设置有第一平面266(如图3所示),开口281与锁紧套263的第一平面266相对应,且二者的延伸方向相同;消融器械1的外壁上(示例性地,在下文所述的封接结构124的外壁上)设置有第二平面128(如图4所示),第二平面128与轴向卡合部13的凸块131相对应,锁紧套263的第一平面266与第二平面128共面(对齐)时,凸块131可从开口281中伸入凹槽282,使消融器械1的第二端可顺利插入快速连接接口组件26中。
因此,操作者可仅通过触摸而无需仔细观察即可使快速连接接口组件26的第一平面266与消融器械1的第二平面128对准(即共面),此时凸块131与开口281恰好对准,因此转动锁紧套263时,使第一平面266与第二平面128不共面,则凸块131可由开口281滑入凹槽282的其他位置中以进行锁定。
反之,在解锁时,移动并旋转转动锁紧套263,使第一平面266与第二平面128对齐,则可进行解锁。
由此通过上述实施方式中的快速连接接口组件26,可实现消融器械1与传输装置2的快速地锁定和解锁。
本公开的消融器械1例如可以是消融针,其包括进回流组件11以及真空层组件12,进回流组件11的第二端贯穿真空层组件12后与传输装置2相连,冷工质或热工质从传输 装置2进入进回流组件11的第二端,并由其第二端流至其第一端进行治疗,治疗后的工质则在进回流组件11中沿相反的方向返回至传输装置2中。
现有技术中,进回流组件11中的冷工质或热工质在内层管中进行流动,为了提高其操作的安全性和保证工质的治疗温度,在内层管外部还设置有外层管,二者之间为真空空间。为了获得尽可能细的消融针(已实现1.7mm的超细消融针),在满足治疗效果的前提下,选用薄壁的管材,同时牺牲掉一定的真空空间,这样会导致在治疗过程中,内层管由于流过冷工质和热工质的原因,其温度极低或极高,而外层管由于真空空间的存在,其始终保持在常温,因此外层管和内层管之间的温差较大,会使内层管会产生热胀冷缩。但是进回流组件11的内层两端通过焊接而形成固定状态,因此其热胀冷缩的应力会导致内层管及其连接端管路受拉或受压,作用力可能会导致内层管发生形变,导致焊缝受到一定的应力。
为了避免上述问题,将进回流组件11在真空层组件12中的至少一部分设置有缓冲结构113。例如在进回流组件11可包括设置在真空层组件12中的缓冲结构113(如图7和8所示),该缓冲结构113可以是将内层管进行弯曲而形成的,由于真空层组件12内部的空间较大,因此可以容纳该缓冲结构113。该缓冲结构113可有效吸收由于热胀冷缩而产生的应力,能够缓解进回流组件11的内层管及其连接端管路因热胀冷缩产生的拉力或压力,从而使针管保持刚性,避免焊缝撕裂。
此外,医生可根据目标区域的病灶大小,选择对应型号的消融针。对于患者来说,消融针越细,则穿刺力越小,穿刺力越小,则患者体验越好。但是消融针过细则其刚性会降低,从而不利于穿刺。因此为了平衡上述矛盾的需求,本公开进行了如下设置。
如图8和9所示,进回流组件11的第一端包括治疗段122a(请见图8所示的G段)和非治疗段122b,非治疗段122b的直径大于治疗段122a的直径,并且治疗段122a和非治疗段122b之间通过较小角度的倒角进行过渡连接。由此,进回流组件11在其第一端(即前端)形成阶梯状,从而在保证治疗效果的前提下,治疗段变细,可有效减少穿刺阻力,同时由于非治疗段较治疗段变粗,则能增加穿刺时的刚性(特别针对较细的消融针),有利于医生操作。如图8所示,治疗段122a的最前端即为进行穿刺的针尖111。
如图5所示,真空层组件12包括封接结构124、沿封接结构124的径向设置的封接口126以及分别设置在封接结构124两侧的转接口122和快速连接轴管125,转接口122用于与进回流组件11的外壁相连,快速连接轴管125用于插入快速连接接口组件26中并与进回流组件11的转接套114相连。示例性地,转接套114设置在快速连接轴管125的直径较小的端部,并与其内壁相连。
由于消融针需要通过真空层组件12的抽真空口1241以抽真空的方式进行隔热,因此 为了使其维持腔室内的真空,通常在真空腔室内放置吸气剂123。示例性地,吸气剂123设置在转接口122的后端设置。
此外,目前常用的封口方式为可反复抽的真空塞、无氧铜、玻璃管和玻璃封接。真空塞体积较大,通过密封圈密封,无法耐受高温,且O形圈存在漏气、放气的风险,可用在相对大腔室,为保证消融针小腔室的真空保持时间,减少漏放气风险,一般均采用无氧铜、玻璃管或玻璃封接,现有的封接均为一次性封接,因此有封接失败的风险。
为此了避免封接失败,针对采用玻璃封接的消融针做出如下改进。即封接口126中至少有两个沿其轴向层叠设置的封接板1243,1242(如图10所示),至少一个封接板1243上设置有固定柱1243a。
因此,通过设置多个封接板,当一次封接失败后,可进行二次或三次封接,从而降低产品的浪费,提高产品的利用率。
以两个封接板1243,1242为例,请结合图10-13,封接口126为阶梯孔,两个封接板1243,1242分别设置在阶梯孔的相应的台阶上,最上一层的封接板1243上设置有固定柱1243a。封接完成后,如真空失效,可将玻璃进行加热,并用工具拉住该固定柱1243a,使其脱出。脱出后,在第二阶梯孔,放置下层封接板1242,进行封接,从而能够有效降低废品率,提高产品利用率。
还可根据需要,设置三次封接等,本公开对此不再赘述。
其中,封接板1242,1243为具有小孔(如图11和图12所示的焊料孔1242a,1243b)的圆盘状结构,以使其上的焊料熔化后(熔融体)可覆盖小孔,待凝固即可封堵封接口126。
其中,焊料孔1242a,1243b的直径不能过大,其直径过大会使焊料直接从其中流过并进入封接结构124的真空腔室内,从而导致真空封接失败。
此外,通过设置多个直径较小的焊料孔1242a,1243b可弥补仅设置单个小孔流阻过大的问题,从而提高抽气效率。
如图5所示,转接口122的前端还可套设护套121,护套121与封接结构124的前端平滑过渡连接。
上述实施方式中的轴向卡合部13设置在快速连接轴管125的周向侧壁上,周向卡合部14设置在封接结构124的端部(请参见图4和图5)。
进回流组件11设置在真空层组件12中,其第二端延伸出快速连接轴管125的外部。其中,快速连接轴管125会穿过快速连接接口组件26的快速连接接口261后与传输装置2相连,而传输装置2的插针224则需要插入快速连接轴管125中的进回流组件11中并与进 回流组件11连通。因此在进行连接时,需要同时保证快速连接轴管125与快速连接接口261、快速连接接口261与传输装置2以及传输装置2的插针224与进回流组件11之间的配合(请参考图14)。
为了提高配合的精度,将快速连接轴管125构造为具有变直径的管体(请见图5),相应地,快速连接接口261的内壁构造有台阶(请见图6)。将快速连接轴管125上直径较小的部分从快速连接接口261的前端插入其中(会带动进回流组件11进入快速连接接口261中),同时将插针224从快速连接接口261的后端插入进回流组件11中,当插针224插入进回流组件11的进流口一定距离后(例如5mm),则快速连接轴管125插入至其直径较大的部分进入与快速连接接口261中,从而在继续连接时起到导向作用,以使插针224能够准确插入进回流组件11的进流口中,从而保证传输装置2和消融器械1的密封连通。
如图6所示,快速连接接口261的后端设置有槽体267,其可与传输装置2配合(示例性地,与下文所述的进回流通路组件22的前端面226)配合。
下面将结合图15-18对本公开的传输装置2进行详细地说明。
由于传输装置2采用金属毛细管(不锈钢、铜、镍)作为流通管路中,其中流通有冷工质和热工质,因此其外部需要保持在常温状态。现有的传输装置是通过真空层来实现绝热。但是真空绝热需要形成密封的腔室以满足抽真空的要求,因此零件之间均需采用焊接;且各零件需要采用金属零件(真空要求)以达到密封要求,操作中需要进行加热除气抽真空,因此真空绝热的成本高、工艺复杂、并且造成传输装置2相对较重。与现有技术所不同的是,本公开的传输装置2与现有传输装置所不同的是,本公开的传输装置2是通过绝热材料来实现绝热,即本公开的传输装置2为非真空传输装置,其工艺简单、成本低,并且重量方面相对较轻,柔性性能也更优于真空传输装置。
示例性地,如图15所示,传输装置2包括进回流通路组件22、设置在进回流通路组件22外部的绝热层20。绝热层20的材料为气凝胶。气凝胶具有质轻,导热系数低、耐受温度范围大等优点,不会出现因低温冷冻而出现的硬化现象,因此在使用过程中仍能保持其柔性。
并且进一步地,在治疗过程中为避免复合式冷热消融系统中漏电流传输到患者,需要进行绝缘处理。但是由于现有的传输装置采用真空绝热,因此无法对传输装置进行绝缘处理而使只能在复合式冷热消融系统侧进行绝缘处理。而复合式冷热消融系统侧的绝缘处理较为复杂且成本较高。相反地,本公开的传输装置2得益于通过绝热材料而并非真空来实现绝热,因此可对传输装置2进行绝缘处理。
示例性地,可在绝热层20外部设置绝缘套21。其中,绝缘套21位于进回流通路组件 22的后端一侧,即靠近复合式冷热消融系统的一侧。绝缘套21需要既能承受低温温度和高温温度不发生形变,且在低温/复温下保持良好的绝缘性。因此可采用耐低温好、绝缘良好的聚酰亚胺(PI)。
此外,进回流通路组件22的外部还设置有外套管24,外套管24位于进回流通路组件22的前端一侧,该外套管24与绝缘套21通过绝缘套固定件23进行固定。
示例性地,如图16所示,绝缘套固定件23的前端外壁上设置有锯齿状连接件231,其与外套管24内壁上的锯齿向咬合,从而使绝缘套固定件23与外套管24相连,并且二者相连后外壁为齐平状态。
绝缘套固定件23的后端外壁上设置有卡合凸台232,其与绝缘套21的内壁相卡合,并且二者之间设置有密封圈233以避免工质从绝缘套22和绝缘套固定件23之间的间隙而泄露至外部。
更进一步地,绝缘套21中还设置有测温接头27,该测温接头27可与测温热电偶相连,从而更好的检测消融针端的实时温度。现有的采用真空绝热的传输装置为了保证热电偶不破坏其真空,因此不能将用于测温的热电偶放置在传输装置的内部,但是反之,本公开由于采用了绝热材料来实现绝热,因此可将测温接头27设置在传输装置2中(靠近消融器械1的出口端),从而能够更好地检测消融器械1端的实时温度。
具体设置时可将测温接头27设置在绝缘套21与绝缘套固定件23相连的端部中。
如图17所示,进回流通路组件22包括进流通道227和与进流通道227并行设置的回流通道228,绝热层20包括包覆在进流通道227外部的进流管绝热层222和在进流通道227和回流通道228外部共同包覆的进回流绝热层223。其中,进回流通路组件22的后端设置有用于与复合式冷热消融系统相连的接口管229,接口管229通过第一进回流分支件221与进流通道227相连。通过第一进回流分支件221在末端将进流和回流进行分隔。
如图19所示,接口管229的前端为第一搭接管229a,其直径小于接口管229上其他部位的直径,进流通道227的后端为第二搭接管227a,其直径同样小于进流通道227上其他部位的直径,从而第一搭接管229a和第二搭接管227a可以进行搭接相连,并通过焊接使二者密封。图19示出了第一搭接管229a在上部而第二搭接管227a在下部的实施方式,即二者的轴线并未对齐。通过这种设置方式,能够更节约空间,以减小传输装置2的体积和减轻其重量。
请继续参照图17,进回流通路组件22还包括设置在进流通道227和回流通道228的前端的第二进回流分流件225,其将进流通道227和回流通道228的前端进行固定。
第二进回流分流件225与插针224相连(或者可为一体式结构),进流通道227的前端同样通过上述类似的搭接方式与插针224相连,图14较佳地示出了进流通道227与插针224相连的示例。
如图18所示,第二进回流分流件225的前端面226(即与插针224相连的端面)设置有出气孔226a,治疗前期汽化的冷工质(冷氮气)直接从其中流出,从而有利于冷工质快速到达进回流组件11的治疗段。
请继续参照图15,传输装置2还包括手柄25,手柄25位于进回流通路组件22的前端,与快速连接接口组件26相邻。手柄25的前端与快速连接接口261的后端相连,其后端与外套管24相连。手柄25的后端可设置锯齿形的连接件,外套管24的内壁也设置有锯齿,外套管24通过倒扣的形式与手柄25相连,即二者的连接方式可采用与上述外套管24与绝缘套固定件23之间的锯齿连接件类似的方式进行连接。
如上所述,由于进流通道227和回流通道228上已经包覆有绝热材料,因此其包覆表面处于常温状态,故套设在二者之外的外套管24的选材范围很广,只要能够有一定的强度和柔性即可。优选地,为保证外套管24的柔性,外套管24可采用柔软的硅胶管、包覆金属软管、橡胶软管、PE、PP等。
为了满足临床需求,消融针一般会有多种直径,不同直径消融针阻力不同。一般来说,进回流组件11管径大的消融针的阻力小,进回流组件11管径小的消融针的阻力大。为了匹配不同直径的消融针,通过调整消融针与输送装置2的配合来保证降温速度及性能。
示例性地,进回流组件11第二端的进流口115上设置有转接套114,转接套114设置在快速连接轴管125中(示例性地,设置在快速连接轴管125的后端末端);回流通路组件22包括插针224,如上所述,插针224穿过转接套114并与进回流组件11的第二端配合连接。
其中,插针224与进回流组件11之间的流阻大于进回流组件11的治疗段的流阻(即冷工质或热工质在其中的流阻),以避免冷工质或热工质直接通过二者之间的间隙反流到传输装置2的回流通道中,而不通过进回流组件11的治疗段。
插针224与进回流组件11之间的流阻与插针224插入进回流组件11的深度(即图14所示配合长度E)以及插针224与进回流组件11之间的配合间隙相关。例如可以为较大的配合长度E和较大的配合间隙,或者较短的配合长度E和较小的配合间隙。
如图14所示,插针224的直径C和长度D为固定尺寸,因此通过调整进回流组件11第二端的进流口的直径C1和长度D1来达到调整配合长度E和配合间隙的目的。
此外,基于无菌原则并为保证有足够的操作空间,一般在复合式冷热消融系统和消融器械1之间具有一段距离,因此在工质输出前期,该段距离会使大量低温介质汽化,从而影响流动速度,进而影响降温速度。而本公开的插针224与进回流组件11之间的配合间隙则可解决该问题。因为上述二者之间具有配合间隙,因此治疗前期汽化的冷工质(冷氮气)从该配合间隙以及从上文所述的出气孔226a中流出,从而有利于冷工质快速到达进回流组件11的治疗段,提高降温速度。并且从插针224与进回流组件11之间的配合间隙中逸出的冷氮气可通过传输装置2的回流通道流出,因此还可对回流通道起到预冷作用,从而减少后期回流的阻力,也能加快降温速度。
上文所述的冷工质可以是液氮(-196℃,常压下沸点)、液氧(-183℃,常压下沸点)、液态甲烷(-161℃,常压下沸点)、液氩(-186℃,常压下沸点)、液氖(-246℃,常压下沸点)、液氦(-269℃,常压下沸点)、液化亚氮(-88.5℃,常压下沸点)、液化二氧化碳(-79℃,常压下沸点)及氟氯昂22(-50℃,常压下沸点)等单一物质,可也是上述物质的混合物。
上文所述的热工质可以是水蒸汽(100℃,常压下沸点)、甲醇蒸汽(64.7℃,常压下沸点)、甲酸蒸汽(100.8℃,常压下沸点)、乙醇蒸汽(78℃,常压下沸点)、乙酸蒸汽(117.9℃,常压下沸点)、乙酯蒸汽(54.3℃,常压下沸点)、丙醇蒸汽(82.5℃,常压下沸点)、丙酸蒸汽(141.1℃,常压下沸点)、丙脂蒸汽(101.6℃,常压下沸点)等单一物质,可也是上述物质的混合物。需要说明的是,上述沸点温度并不代表复温温度,在一些实施例中,例如采用蒸汽加压方式作为动力向消融器械1输送热工质,其治疗温度可高于所选热工质的沸点。
因此本公开的冷工质和热工质的来源广泛并且成本较低,其所覆盖的温度范围更宽,因此能够为外科手术安全性、经济性和便利性的提升提供基础。
本领域的技术人员应当了解,本公开中未详细阐述的消融针(或传输装置2、复合式冷热消融系统)的部件和零件可以采用现有技术中已知的结构形式。
为了便于理解,上文所述“第一端”均对应图示各部件的前端,所述“第二端”均对应图示各部件的后端。其中,前端即为靠近患者的一端,后端即靠近复合式冷热消融系统的一端。
本公开的冷热消融装置的使用方法如下。
传输装置2通过快速连接接口组件26与消融器械1相连,在复合式冷热消融系统的影像设备的引导下,进行穿刺定位。定位后系统控制冷工质通过进流通道227,到达第二进回流分流件225,通过该第二进回流分流件225前端的插针224进入到消融器械1的进回流组件11,并进入消融器械治疗段122a(图8中G段)。通过真空层组件12保证消融器械1的其余部分在治疗过程中均处于常温状态,因此不会对患者和使用者造成伤害。
冷工质在治疗端进行换热后,通过进回流组件11与针尖111之间的空腔进行折返(回流),从而可返回到传输装置2的回流通道228内,使其回到系统端,即完成冷冻操作。
冷冻操作完成后进行复温操作,其中热工质的流动路径与上述冷工质的流动路径相同,热工质返回到系统端后即完成一个循环。
利用本公开提出的上述实施方案,通过旋转传输装置上的快速连接接口组件,可实现传输装置与消融器械的锁紧;反之,在进行解锁时,通过反向旋转快速连接接口组件,则可将传输装置与所述消融器械解锁,由此二者的组合与拆卸更快捷和方便。
通过设置缓冲结构,可有效吸收因热胀冷缩而产生的应力,能够缓解进回流组件的内层管及其连接端管路因热胀冷缩产生的拉力或压力,从而使针管保持刚性,避免焊缝撕裂。
消融器械的治疗段直径小于非治疗段直径,使消融器械具有变径进回流组件(针管),因此能够在保证非治疗段强度的同时,有效减小穿刺阻力及创伤。
通过多个封接板和固定柱能够解决单次封接失败的问题,从而可降低产品成本。
传输装置通过气凝胶来实现绝热,摒弃了真空绝热的方式,因此工艺简单、成本低,并且重量方面相对较轻,柔性性能也更优。此外,由于并非是真空绝热的方式,因此传输装置上还可实现绝缘处理,以降低系统端绝缘设计的难度。并且还可在其中设置测温接头,从而可更好地检测消融器械端的实时温度。
插针与进回流组件之间的流阻大于进回流组件的治疗段的流阻,能够避免冷工质或热工质直接通过二者之间的间隙反流到传输装置的回流通道中,而不通过进回流组件的治疗段。并且插针与进回流组件之间的配合间隙使治疗前期汽化的冷工质(冷氮气)从其中逸出,从而有利于冷工质快速到达进回流组件的治疗段,提高降温速度;而且逸出的冷氮气可通过传输装置的回流通道流出,因此还可对回流通道起到预冷作用,从而减少后期回流的阻力,也能加快降温速度。
虽然已经参考优选实施例对本公开进行了描述,但在不脱离本公开的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本公开并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (10)

  1. 一种冷热消融装置,包括消融器械(1)以及传输装置(2),其中,
    所述传输装置(2)的第二端用于与复合式冷热消融系统相连;
    所述传输装置(2)的第一端上连接有可转动且可移动的快速连接接口组件(26),所述消融器械(1)的第二端伸入所述快速连接接口组件(26)中并与所述传输装置(2)相连通,
    其中,所述快速连接接口组件(26)相对于所述传输装置(2)旋转时,其与所述消融器械(1)锁紧;所述快速连接接口组件(26)相对于所述传输装置(2)移动并反向旋转时,其与所述消融器械(1)解锁。
  2. 根据权利要求1所述的冷热消融装置,其中,所述快速连接接口组件(26)包括与所述传输装置(2)固定连接的快速连接接口(261)、可转动且可移动地套设在所述快速连接接口(261)外侧的锁紧套(263)以及设置在所述锁紧套(263)和所述快速连接接口(261)之间的第一弹簧(262);
    所述锁紧套(263)上设置有轴向锁紧结构(28)和沿其周向设置的周向锁紧结构(29),所述消融器械(1)的第二端分别设置有轴向卡合部(13)和周向卡合部(14);
    所述锁紧套(263)相对于所述传输装置(2)旋转时,所述轴向锁紧结构(28)与所述轴向卡合部(13)锁定,以限制所述快速连接接口组件(26)与所述消融器械(1)之间的轴向相对位移;且所述周向锁紧结构(29)与所述周向卡合部(14)锁定,以限制所述快速连接接口组件(26)与所述消融器械(1)之间的周向相对位移;
    所述锁紧套(263)相对于所述传输装置(2)移动并压缩所述第一弹簧(262),以使所述周向锁紧结构(29)与所述周向卡合部(14)解锁;继而所述锁紧套(263)相对于所述传输装置(2)旋转,以使所述轴向锁紧结构(28)与所述轴向卡合部(13)解锁。
  3. 根据权利要求2所述的冷热消融装置,其中,所述轴向锁紧结构(28)包括具有开口(281)的凹槽(282),所述轴向卡合部(13)包括沿所述消融器械(1)的径向突出的凸块(131),所述开口(281)的尺寸大于所述凸块(131)的尺寸,所述锁紧套(263)相对于所述传输装置(2)旋转时,所述凸块(131)可由所述开口(281)滑入所述凹槽(282)中。
  4. 根据权利要求2所述的冷热消融装置,其中,所述周向锁紧结构(29)包括弹簧柱塞(291),所述周向卡合部(14)包括沿所述消融器械(1)的轴向延伸的容纳槽 (141);
    所述锁紧套(263)相对于所述传输装置(2)旋转时,所述弹簧柱塞(291)弹出并插入所述容纳槽(141)中,以限制所述快速连接接口组件(26)与所述消融器械(1)之间的周向相对位移。
  5. 根据权利要求3所述的冷热消融装置,其中,所述快速连接接口组件(26)的外壁上设置有第一平面(266),所述开口(281)与所述第一平面(266)相对应,且二者的延伸方向相同;
    所述消融器械(1)的外壁上设置有第二平面(128),所述第一平面(266)与所述第二平面(128)共面时,所述凸块(131)可伸入所述开口(281)中,使所述消融器械(1)的第二端可顺利插入所述快速连接接口组件(26)中。
  6. 根据权利要求2-5中任一项所述的冷热消融装置,其中,所述消融器械(1)包括进回流组件(11)以及真空层组件(12),所述进回流组件(11)贯穿所述真空层组件(12),且所述进回流组件(11)上设置有缓冲结构(113),所述缓冲结构(113)位于所述真空层组件(12)中。
  7. 根据权利要求6所述的冷热消融装置,其中,所述进回流组件(11)的第一端包括治疗段(122a)和非治疗段(122b),所述非治疗段(122b)的直径大于所述治疗段(122a)的直径。
  8. 根据权利要求6所述的冷热消融装置,其中,所述真空层组件(12)包括封接结构(124)、沿所述封接结构(124)的径向设置的封接口(126)以及分别设置在所述封接结构(124)两侧的转接口(122)和快速连接轴管(125),所述转接口(122)用于与所述进回流组件(11)的外壁相连,所述快速连接轴管(125)用于插入所述快速连接接口组件(26)中并与所述进回流组件(11)的转接套(114)相连;
    其中,所述轴向卡合部(13)设置在所述快速连接轴管(125)的周向侧壁上,所述周向卡合部(14)设置在所述封接结构(124)的端部;
    所述封接口(126)中至少有两个沿其轴向层叠设置的封接板(1243,1242),至少一个所述封接板(1243)上设置有固定柱(1243a)。
  9. 根据权利要求8所述的冷热消融装置,其中,所述传输装置(2)包括进回流通路组件(22)、设置在所述进回流通路组件(22)外部的绝热层(20)以及设置在所述绝热层(20)外部的绝缘套(21),所述绝热层(20)的材料为气凝胶。
  10. 根据权利要求9所述的冷热消融装置,其中,所述转接套(114)设置在所述 进回流组件(11)第二端的进流口(115)处,并与所述快速连接轴管(125)的内壁相连;
    所述回流通路组件(22)包括插针(224),所述插针(224)穿过所述转接套(114)并与所述进回流组件(11)的第二端配合连接;
    所述插针(224)与所述进回流组件(11)之间的流阻大于所述进回流组件(11)的治疗段的流阻。
PCT/CN2022/096825 2021-11-10 2022-06-02 冷热消融装置 WO2023082615A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111323100.4 2021-11-10
CN202111323100.4A CN113768609B (zh) 2021-11-10 2021-11-10 冷热消融装置

Publications (1)

Publication Number Publication Date
WO2023082615A1 true WO2023082615A1 (zh) 2023-05-19

Family

ID=78956989

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/096825 WO2023082615A1 (zh) 2021-11-10 2022-06-02 冷热消融装置

Country Status (2)

Country Link
CN (1) CN113768609B (zh)
WO (1) WO2023082615A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116350337A (zh) * 2023-05-30 2023-06-30 海杰亚(北京)医疗器械有限公司 冷热消融针及消融系统
CN117883173A (zh) * 2024-03-11 2024-04-16 海杰亚(北京)医疗器械有限公司 简易冷热消融针及消融装置
CN117883173B (zh) * 2024-03-11 2024-05-31 海杰亚(北京)医疗器械有限公司 简易冷热消融针及消融装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113768609B (zh) * 2021-11-10 2022-02-22 海杰亚(北京)医疗器械有限公司 冷热消融装置
CN117338397A (zh) * 2022-06-27 2024-01-05 上海美杰医疗科技有限公司 分体式消融针及冷冻消融穿刺系统
CN115836907B (zh) * 2022-07-13 2023-11-03 海杰亚(北京)医疗器械有限公司 流体通道及消融针系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1256325A1 (de) * 2001-05-09 2002-11-13 Olympus Winter & Ibe Gmbh Urologisches Resektoskop mit Isolierkörper
US20040267248A1 (en) * 2003-06-25 2004-12-30 Thach Duong Detachable cryosurgical probe
CN107221794A (zh) * 2017-06-08 2017-09-29 北京北方长龙新材料技术有限公司 一种可快速插拔的连接装置
CN108030548A (zh) * 2017-12-13 2018-05-15 南京康友医疗科技有限公司 一种可循环利用的微波软杆消融针
CN108498162A (zh) * 2018-04-24 2018-09-07 海杰亚(北京)医疗器械有限公司 分体连接冷冻消融针及其针头组件和针尾组件
CN110575242A (zh) * 2019-09-16 2019-12-17 海杰亚(北京)医疗器械有限公司 冷热消融针
CN113576648A (zh) * 2021-06-30 2021-11-02 海杰亚(北京)医疗器械有限公司 消融装置
CN113768609A (zh) * 2021-11-10 2021-12-10 海杰亚(北京)医疗器械有限公司 冷热消融装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017200877A1 (en) * 2016-05-20 2017-11-23 C2 Therapeutics, Inc. Cryogenic ablation system with rotatable and translatable catheter
CN106264707B (zh) * 2016-09-28 2018-08-21 康沣生物科技(上海)有限公司 冷冻消融快速接头
CN209611293U (zh) * 2019-01-21 2019-11-12 上海导向医疗系统有限公司 一种用于低温接头的快速锁定解锁装置
CN211723421U (zh) * 2020-02-07 2020-10-23 北京和华瑞博医疗科技有限公司 一种快插式锁定机构
CN113288428A (zh) * 2021-04-30 2021-08-24 北京长木谷医疗科技有限公司 用于骨科手术机器人的手术器械夹持装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1256325A1 (de) * 2001-05-09 2002-11-13 Olympus Winter & Ibe Gmbh Urologisches Resektoskop mit Isolierkörper
US20040267248A1 (en) * 2003-06-25 2004-12-30 Thach Duong Detachable cryosurgical probe
CN107221794A (zh) * 2017-06-08 2017-09-29 北京北方长龙新材料技术有限公司 一种可快速插拔的连接装置
CN108030548A (zh) * 2017-12-13 2018-05-15 南京康友医疗科技有限公司 一种可循环利用的微波软杆消融针
CN108498162A (zh) * 2018-04-24 2018-09-07 海杰亚(北京)医疗器械有限公司 分体连接冷冻消融针及其针头组件和针尾组件
CN110575242A (zh) * 2019-09-16 2019-12-17 海杰亚(北京)医疗器械有限公司 冷热消融针
CN113576648A (zh) * 2021-06-30 2021-11-02 海杰亚(北京)医疗器械有限公司 消融装置
CN113768609A (zh) * 2021-11-10 2021-12-10 海杰亚(北京)医疗器械有限公司 冷热消融装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116350337A (zh) * 2023-05-30 2023-06-30 海杰亚(北京)医疗器械有限公司 冷热消融针及消融系统
CN116350337B (zh) * 2023-05-30 2023-09-12 海杰亚(北京)医疗器械有限公司 冷热消融针及消融系统
CN117883173A (zh) * 2024-03-11 2024-04-16 海杰亚(北京)医疗器械有限公司 简易冷热消融针及消融装置
CN117883173B (zh) * 2024-03-11 2024-05-31 海杰亚(北京)医疗器械有限公司 简易冷热消融针及消融装置

Also Published As

Publication number Publication date
CN113768609B (zh) 2022-02-22
CN113768609A (zh) 2021-12-10

Similar Documents

Publication Publication Date Title
WO2023082615A1 (zh) 冷热消融装置
CN115429415B (zh) 冷热消融针
AU722318B2 (en) Cryosurgical probe with disposable sheath
JP4275341B2 (ja) 伸長可能な冷凍プローブシース
WO2021109206A1 (zh) 高低温复合消融手术系统
CN108498162B (zh) 分体连接冷冻消融针及其针头组件和针尾组件
US20080115509A1 (en) Methods and Apparatus for Forming and Connecting Cryoprobes for use with Cryosurgical Treatment Systems
WO2023273942A1 (zh) 消融装置
CN112402005B (zh) 一种腔道冷冻治疗系统
US20150338008A1 (en) Multi-Lumen Axial Cryogenic Connector
WO2023087671A1 (zh) 冷热消融针系统
CN216319399U (zh) 介入治疗用血管导管鞘
CN210019627U (zh) 一种冷冻消融针
CN108498163A (zh) 分体连接冷冻消融针的真空夹层处理工艺
CN218792468U (zh) 分体式消融针及冷冻消融穿刺系统
CN207785273U (zh) 一种带推送装置的冷冻消融导管
WO2024000998A1 (zh) 分体式消融针及冷冻消融穿刺系统
CN115836907B (zh) 流体通道及消融针系统
CN114601554B (zh) 消融针及消融系统
WO2021248939A1 (zh) 一种双层冷冻扩张球囊
CN110292437B (zh) 一种靶向消融针控制系统
CN213432461U (zh) 一种带气囊阻隔的多通路插管
US20230190356A1 (en) High Pressure, Low Temperature Coupling
CN211357355U (zh) 一种一次性使用无菌导引器械套装
CN114711946A (zh) 消融针及消融系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22891425

Country of ref document: EP

Kind code of ref document: A1